Sample records for mathematicians computer scientists

  1. Mathematical computer programs: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Computer programs, routines, and subroutines for aiding engineers, scientists, and mathematicians in direct problem solving are presented. Also included is a group of items that affords the same users greater flexibility in the use of software.

  2. The Unified English Braille Code: Examination by Science, Mathematics, and Computer Science Technical Expert Braille Readers

    ERIC Educational Resources Information Center

    Holbrook, M. Cay; MacCuspie, P. Ann

    2010-01-01

    Braille-reading mathematicians, scientists, and computer scientists were asked to examine the usability of the Unified English Braille Code (UEB) for technical materials. They had little knowledge of the code prior to the study. The research included two reading tasks, a short tutorial about UEB, and a focus group. The results indicated that the…

  3. Computer Art--A New Tool in Advertising Graphics.

    ERIC Educational Resources Information Center

    Wassmuth, Birgit L.

    Using computers to produce art began with scientists, mathematicians, and individuals with strong technical backgrounds who used the graphic material as visualizations of data in technical fields. People are using computer art in advertising, as well as in painting; sculpture; music; textile, product, industrial, and interior design; architecture;…

  4. Cultivating Critique: A (Humanoid) Response to the Online Teaching of Critical Thinking

    ERIC Educational Resources Information Center

    Waggoner, Matt

    2013-01-01

    The Turing era, defined by British mathematician and computer science pioneer Alan Turing's question about whether or not computers can think, is not over. Philosophers and scientists will continue to haggle over whether thought necessitates intentionality, and whether computation can rise to that level. Meanwhile, another frontier is emerging in…

  5. Computing Logarithms by Hand

    ERIC Educational Resources Information Center

    Reed, Cameron

    2016-01-01

    How can old-fashioned tables of logarithms be computed without technology? Today, of course, no practicing mathematician, scientist, or engineer would actually use logarithms to carry out a calculation, let alone worry about deriving them from scratch. But high school students may be curious about the process. This article develops a…

  6. ModeLang: a new approach for experts-friendly viral infections modeling.

    PubMed

    Wasik, Szymon; Prejzendanc, Tomasz; Blazewicz, Jacek

    2013-01-01

    Computational modeling is an important element of systems biology. One of its important applications is modeling complex, dynamical, and biological systems, including viral infections. This type of modeling usually requires close cooperation between biologists and mathematicians. However, such cooperation often faces communication problems because biologists do not have sufficient knowledge to understand mathematical description of the models, and mathematicians do not have sufficient knowledge to define and verify these models. In many areas of systems biology, this problem has already been solved; however, in some of these areas there are still certain problematic aspects. The goal of the presented research was to facilitate this cooperation by designing seminatural formal language for describing viral infection models that will be easy to understand for biologists and easy to use by mathematicians and computer scientists. The ModeLang language was designed in cooperation with biologists and its computer implementation was prepared. Tests proved that it can be successfully used to describe commonly used viral infection models and then to simulate and verify them. As a result, it can make cooperation between biologists and mathematicians modeling viral infections much easier, speeding up computational verification of formulated hypotheses.

  7. ModeLang: A New Approach for Experts-Friendly Viral Infections Modeling

    PubMed Central

    Blazewicz, Jacek

    2013-01-01

    Computational modeling is an important element of systems biology. One of its important applications is modeling complex, dynamical, and biological systems, including viral infections. This type of modeling usually requires close cooperation between biologists and mathematicians. However, such cooperation often faces communication problems because biologists do not have sufficient knowledge to understand mathematical description of the models, and mathematicians do not have sufficient knowledge to define and verify these models. In many areas of systems biology, this problem has already been solved; however, in some of these areas there are still certain problematic aspects. The goal of the presented research was to facilitate this cooperation by designing seminatural formal language for describing viral infection models that will be easy to understand for biologists and easy to use by mathematicians and computer scientists. The ModeLang language was designed in cooperation with biologists and its computer implementation was prepared. Tests proved that it can be successfully used to describe commonly used viral infection models and then to simulate and verify them. As a result, it can make cooperation between biologists and mathematicians modeling viral infections much easier, speeding up computational verification of formulated hypotheses. PMID:24454531

  8. Information Seeking Behaviour of Mathematicians: Scientists and Students

    ERIC Educational Resources Information Center

    Sapa, Remigiusz; Krakowska, Monika; Janiak, Malgorzata

    2014-01-01

    Introduction: The paper presents original research designed to explore and compare selected aspects of the information seeking behaviour of mathematicians (scientists and students) on the Internet. Method: The data were gathered through a questionnaire distributed at the end of 2011 and in January 2012. Twenty-nine professional mathematicians and…

  9. The Multiple Pendulum Problem via Maple[R

    ERIC Educational Resources Information Center

    Salisbury, K. L.; Knight, D. G.

    2002-01-01

    The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…

  10. Developing Data System Engineers

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Byrnes, J. B.; Kobler, B.

    2011-12-01

    In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.

  11. Data in the Cloud

    ERIC Educational Resources Information Center

    Bull, Glen; Garofalo, Joe

    2010-01-01

    The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…

  12. Bernoulli's Principle: Science as a Human Endeavor

    ERIC Educational Resources Information Center

    McCarthy, Deborah

    2008-01-01

    What do the ideas of Daniel Bernoulli--an 18th-century Swiss mathematician, physicist, natural scientist, and professor--and your students' next landing of the space shuttle via computer simulation have in common? Because of his contribution, referred in physical science as Bernoulli's principle, modern flight is possible. The mini learning-cycle…

  13. NRL Fact Book

    DTIC Science & Technology

    2004-12-31

    and engineers work together with industry , academia, state or local governments, or other Federal agencies to develop NRL technologies for government...http://www.nrl.navy.mil) annually. It is printed every other year. NRL has a continuing need for physical scientists, mathematicians, engineers , and...listed for each activity. NRL has a continuing need for physical scientists, mathematicians, engineers , and support personnel. Vacancies are filled

  14. System biology of gene regulation.

    PubMed

    Baitaluk, Michael

    2009-01-01

    A famous joke story that exhibits the traditionally awkward alliance between theory and experiment and showing the differences between experimental biologists and theoretical modelers is when a University sends a biologist, a mathematician, a physicist, and a computer scientist to a walking trip in an attempt to stimulate interdisciplinary research. During a break, they watch a cow in a field nearby and the leader of the group asks, "I wonder how one could decide on the size of a cow?" Since a cow is a biological object, the biologist responded first: "I have seen many cows in this area and know it is a big cow." The mathematician argued, "The true volume is determined by integrating the mathematical function that describes the outer surface of the cow's body." The physicist suggested: "Let's assume the cow is a sphere...." Finally the computer scientist became nervous and said that he didn't bring his computer because there is no Internet connection up there on the hill. In this humorous but explanatory story suggestions proposed by theorists can be taken to reflect the view of many experimental biologists that computer scientists and theorists are too far removed from biological reality and therefore their theories and approaches are not of much immediate usefulness. Conversely, the statement of the biologist mirrors the view of many traditional theoretical and computational scientists that biological experiments are for the most part simply descriptive, lack rigor, and that much of the resulting biological data are of questionable functional relevance. One of the goals of current biology as a multidisciplinary science is to bring people from different scientific areas together on the same "hill" and teach them to speak the same "language." In fact, of course, when presenting their data, most experimentalist biologists do provide an interpretation and explanation for the results, and many theorists/computer scientists aim to answer (or at least to fully describe) questions of biological relevance. Thus systems biology could be treated as such a socioscientific phenomenon and a new approach to both experiments and theory that is defined by the strategy of pursuing integration of complex data about the interactions in biological systems from diverse experimental sources using interdisciplinary tools and personnel.

  15. The Study Team for Early Life Asthma Research (STELAR) consortium ‘Asthma e-lab’: team science bringing data, methods and investigators together

    PubMed Central

    Custovic, Adnan; Ainsworth, John; Arshad, Hasan; Bishop, Christopher; Buchan, Iain; Cullinan, Paul; Devereux, Graham; Henderson, John; Holloway, John; Roberts, Graham; Turner, Steve; Woodcock, Ashley; Simpson, Angela

    2015-01-01

    We created Asthma e-Lab, a secure web-based research environment to support consistent recording, description and sharing of data, computational/statistical methods and emerging findings across the five UK birth cohorts. The e-Lab serves as a data repository for our unified dataset and provides the computational resources and a scientific social network to support collaborative research. All activities are transparent, and emerging findings are shared via the e-Lab, linked to explanations of analytical methods, thus enabling knowledge transfer. eLab facilitates the iterative interdisciplinary dialogue between clinicians, statisticians, computer scientists, mathematicians, geneticists and basic scientists, capturing collective thought behind the interpretations of findings. PMID:25805205

  16. Marketing and commercialization of computational research services.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toevs, J. W.

    Physical and computational scientists and mathematicians in Russia's nuclear cities are turning their work toward generating profits from Western markets. Successful ventures require an understanding of the marketing of contract research as well as Western expectations regarding contract execution, quality, and performance. This paper will address fundamentals in business structure, marketing, and contract performance for organizations engaging in the marketing and commercialization of research services. Considerable emphasis will be placed on developing adequate communication within the organization.

  17. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  18. Computational nuclear quantum many-body problem: The UNEDF project

    NASA Astrophysics Data System (ADS)

    Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2013-10-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  19. A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY

    PubMed Central

    2010-01-01

    Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined. Results We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field. Conclusions This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important. PMID:20167082

  20. Control Circuitry for High Speed VLSI (Very Large Scale Integration) Winograd Fourier Transform Processors.

    DTIC Science & Technology

    1985-12-01

    Office of Scientific Research , and Air Force Space Division are sponsoring research for the development of a high speed DFT processor. This DFT...to the arithmetic circuitry through a master/slave 11-15 %v OPR ONESHOT OUTPUT OUTPUT .., ~ INITIALIZATION COLUMN’ 00 N DONE CUTRPLANE PLAtNE Figure...Since the TSP is an NP-complete problem, many mathematicians, operations researchers , computer scientists and the like have proposed heuristic

  1. Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view.

    PubMed

    Smith, Rob; Mathis, Andrew D; Ventura, Dan; Prince, John T

    2014-01-01

    For decades, mass spectrometry data has been analyzed to investigate a wide array of research interests, including disease diagnostics, biological and chemical theory, genomics, and drug development. Progress towards solving any of these disparate problems depends upon overcoming the common challenge of interpreting the large data sets generated. Despite interim successes, many data interpretation problems in mass spectrometry are still challenging. Further, though these challenges are inherently interdisciplinary in nature, the significant domain-specific knowledge gap between disciplines makes interdisciplinary contributions difficult. This paper provides an introduction to the burgeoning field of computational mass spectrometry. We illustrate key concepts, vocabulary, and open problems in MS-omics, as well as provide invaluable resources such as open data sets and key search terms and references. This paper will facilitate contributions from mathematicians, computer scientists, and statisticians to MS-omics that will fundamentally improve results over existing approaches and inform novel algorithmic solutions to open problems.

  2. What Physicists Should Know About High Performance Computing - Circa 2002

    NASA Astrophysics Data System (ADS)

    Frederick, Donald

    2002-08-01

    High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.

  3. A computational image analysis glossary for biologists.

    PubMed

    Roeder, Adrienne H K; Cunha, Alexandre; Burl, Michael C; Meyerowitz, Elliot M

    2012-09-01

    Recent advances in biological imaging have resulted in an explosion in the quality and quantity of images obtained in a digital format. Developmental biologists are increasingly acquiring beautiful and complex images, thus creating vast image datasets. In the past, patterns in image data have been detected by the human eye. Larger datasets, however, necessitate high-throughput objective analysis tools to computationally extract quantitative information from the images. These tools have been developed in collaborations between biologists, computer scientists, mathematicians and physicists. In this Primer we present a glossary of image analysis terms to aid biologists and briefly discuss the importance of robust image analysis in developmental studies.

  4. SEIZURE PREDICTION: THE FOURTH INTERNATIONAL WORKSHOP

    PubMed Central

    Zaveri, Hitten P.; Frei, Mark G.; Arthurs, Susan; Osorio, Ivan

    2010-01-01

    The recently convened Fourth International Workshop on Seizure Prediction (IWSP4) brought together a diverse international group of investigators, from academia and industry, including epileptologists, neurosurgeons, neuroscientists, computer scientists, engineers, physicists, and mathematicians who are conducting interdisciplinary research on the prediction and control of seizures. IWSP4 allowed the presentation and discussion of results, an exchange of ideas, an assessment of the status of seizure prediction, control and related fields and the fostering of collaborative projects. PMID:20674508

  5. A gathering for Gardner

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-07-01

    Martin Gardner, who turns 94 this autumn, seems to have pulled off an astounding trick. Every other year hundreds of people gather to honour Gardner, who is the author of over 70 books and wrote the popular "Mathematical Games" column that appeared in Scientific American for a quarter of a century from 1956. What is astonishing is that the people come from a bewildering variety of professions and include jugglers, magicians, artists, puzzle-makers, logicians, computer scientists, pseudoscience debunkers and mathematicians.

  6. Visualizing a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew

    2008-12-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  7. Neurocomputing

    NASA Technical Reports Server (NTRS)

    Hecht-Nielsen, Robert

    1990-01-01

    The present work is intended to give technologists, research scientists, and mathematicians a graduate-level overview of the field of neurocomputing. After exploring the relationship of this field to general neuroscience, attention is given to neural network building blocks, the self-adaptation equations of learning laws, the data-transformation structures of associative networks, and the multilayer data-transformation structures of mapping networks. Also treated are the neurocomputing frontiers of spatiotemporal, stochastic, and hierarchical networks, 'neurosoftware', the creation of neural network-based computers, and neurocomputing applications in sensor processing, control, and data analysis.

  8. Pattern perception and computational complexity: introduction to the special issue

    PubMed Central

    Fitch, W. Tecumseh; Friederici, Angela D.; Hagoort, Peter

    2012-01-01

    Research on pattern perception and rule learning, grounded in formal language theory (FLT) and using artificial grammar learning paradigms, has exploded in the last decade. This approach marries empirical research conducted by neuroscientists, psychologists and ethologists with the theory of computation and FLT, developed by mathematicians, linguists and computer scientists over the last century. Of particular current interest are comparative extensions of this work to non-human animals, and neuroscientific investigations using brain imaging techniques. We provide a short introduction to the history of these fields, and to some of the dominant hypotheses, to help contextualize these ongoing research programmes, and finally briefly introduce the papers in the current issue. PMID:22688630

  9. The life-cycle research productivity of mathematicians and scientists.

    PubMed

    Diamond, A M

    1986-07-01

    Declining research productivity with age is implied by economic models of life-cycle human capital investment but is denied by some recent empirical studies. The purpose of the present study is to provide new evidence on whether a scientist's output generally declines with advancing age. A longitudinal data set has been compiled for scientists and mathematicians at six major departments, including data on age, salaries, annual citations (stock of human capital), citations to current output (flow of human capital), and quantity of current output measured both in number of articles and in number of pages. Analysis of the data indicates that salaries peak from the early to mid-60s, whereas annual citations appear to peak from age 39 to 89 for different departments with a mean age of 59 for the 6 departments. The quantity and quality of current research output appear to decline continuously with age.

  10. Enabling the Discovery of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Isaacson, Richard

    2017-01-01

    The discovery of gravitational radiation was announced with the publication of the results of a physics experiment involving over a thousand participants. This was preceded by a century of theoretical work, involving a similarly large group of physicists, mathematicians, and computer scientists. This huge effort was enabled by a substantial commitment of resources, both public and private, to develop the different strands of this complex research enterprise, and to build a community of scientists to carry it out. In the excitement following the discovery, the role of key enablers of this success has not always been adequately recognized in popular accounts. In this talk, I will try to call attention to a few of the key ingredients that proved crucial to enabling the successful discovery of gravitational waves, and the opening of a new field of science.

  11. Exascale computing and what it means for shock physics

    NASA Astrophysics Data System (ADS)

    Germann, Timothy

    2015-06-01

    The U.S. Department of Energy is preparing to launch an Exascale Computing Initiative, to address the myriad challenges required to deploy and effectively utilize an exascale-class supercomputer (i.e., one capable of performing 1018 operations per second) in the 2023 timeframe. Since physical (power dissipation) requirements limit clock rates to at most a few GHz, this will necessitate the coordination of on the order of a billion concurrent operations, requiring sophisticated system and application software, and underlying mathematical algorithms, that may differ radically from traditional approaches. Even at the smaller workstation or cluster level of computation, the massive concurrency and heterogeneity within each processor will impact computational scientists. Through the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx), we have initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. In my talk, I will discuss these challenges, and what it will mean for exascale-era electronic structure, molecular dynamics, and engineering-scale simulations of shock-compressed condensed matter. In particular, we anticipate that the emerging hierarchical, heterogeneous architectures can be exploited to achieve higher physical fidelity simulations using adaptive physics refinement. This work is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research.

  12. The Experimental Mathematician: The Pleasure of Discovery and the Role of Proof

    ERIC Educational Resources Information Center

    Borwein, Jonathan M.

    2005-01-01

    The emergence of powerful mathematical computing environments, the growing availability of correspondingly powerful (multi-processor) computers and the pervasive presence of the Internet allow for mathematicians, students and teachers, to proceed heuristically and "quasi-inductively." We may increasingly use symbolic and numeric computation,…

  13. Role of mathematics in cancer research: attitudes and training of Japanese mathematicians.

    PubMed

    Kudô, A

    1979-10-01

    An extensive survey of attitude towards scientific information of scientists in Japan was conducted in Japan. It was published in a technical report, and this survey is reviewed in this paper, with the hope that this will furnish findings important in working out the plan for promoting exploitation of mathematical talent in biomedical research. Findings are concordant with the impression of foreign visitors: (1) pure mathematicians tend to concentrate on mathematics only; (2) applied mathematics and statistics are heavily oriented toward industry; (3) mathematicians and pharmacologists are very different in their attitudes to scientific information. Based on the personal experience of the author, difficulties to be circumvented in utilizing aptitudes for mathematics and/or statistics in biomedical research are discussed.

  14. Role of mathematics in cancer research: attitudes and training of Japanese mathematicians.

    PubMed Central

    Kudô, A

    1979-01-01

    An extensive survey of attitude towards scientific information of scientists in Japan was conducted in Japan. It was published in a technical report, and this survey is reviewed in this paper, with the hope that this will furnish findings important in working out the plan for promoting exploitation of mathematical talent in biomedical research. Findings are concordant with the impression of foreign visitors: (1) pure mathematicians tend to concentrate on mathematics only; (2) applied mathematics and statistics are heavily oriented toward industry; (3) mathematicians and pharmacologists are very different in their attitudes to scientific information. Based on the personal experience of the author, difficulties to be circumvented in utilizing aptitudes for mathematics and/or statistics in biomedical research are discussed. PMID:540605

  15. The trials, tribulations, and triumphs of black faculty in the math and science pipeline: A life history approach

    NASA Astrophysics Data System (ADS)

    Williams, Lisa D.

    2000-12-01

    This study explores the career progression and life history of black mathematicians and scientists who teach on university faculties in the United States. It investigates the following questions: Why are there so few black mathematicians and scientists in colleges and universities in the United States? What is the experience of black students who express an interest in science and math? What barriers do black scientists and mathematicians face as they move through school towards their career in higher education? What factors facilitate their success? The current literature shows that there are few women and minorities teaching or working in math and science compared to white men, although reasons for this underrepresentation are still not well understood. I explored this phenomenon by conducting two sets of in-depth interviews with twelve black faculty, six women, six men, from both historically black and predominantly white higher educational institutions in the United States. My interviews were based upon a life history approach that identified the participants' perceptions of the barriers and obstacles, as well as the supports and facilitators encountered in their schooling and career progression. The findings from the study show the importance of a strong family, community, and teacher support for the participants throughout their schooling. Support systems continued to be important in their faculty positions. These support systems include extended family members, teachers, community members, supervisors, and classmates, who serve as role models and mentors. The life study interviews provide striking evidence of the discrimination, isolation, and harassment due to race and gender experienced by black male and female mathematicians and scientists. The racial discrimination and the compounding effect of racism and sexism play out differently for the male and female participants in this study. This study suggests directions for future research on the experiences of young black students who are currently in the math and science educational pipeline. It also offers recommendations for ways in which parents, teachers, administrators, faculty, advisors, and government officials can enhance the educational experiences of black students who express interest and have skills in math and science.

  16. [out of scope].

    PubMed

    Siegmund-Schultze, Reinhard

    2008-01-01

    The paper discusses several still unsettled and not systematically investigated questions concerning the situation of Jewish scientists, among them mathematicians, in the Republic of Weimar. Contemporary statements by the well-known leftist and liberal journalists Carl von Ossietzky (1932) and Rudolf Olden (1934) are used to describe the general political situation. A wide-spread feeling of a social and political crisis and changes and perturbations in international scientific communication provide explanatory background for the conditions within academia in the 1920s. A comparison of appointments of Jewish mathematicians to full professorships before and after World War I does not give significant differences. Attitudes of Jewish mathematicians such as Felix Bernstein, Richard Courant, Emil Julius Gumbel, Edmund Landau, Richard von Mises, Johann von Neumann and Adolf A. Fraenkel, but also of non-Jewish mathematicians such as Felix Klein, Walther von Dyck and Theodor Vahlen will be discussed, providing some unpublished material. One statement by Felix Klein (1920), which shows his undecided stance with respect to the problem of anti-Semitism, and an excerpt from Richard von Mises' diary (1933), where he reflects on his status as a Jewish mathematician and as a refugee, are particularly valuable as points of reference for necessary further research.

  17. Shortage or Surplus? A Long-Term Perspective on the Supply of Scientists and Engineers in the USA and the UK

    ERIC Educational Resources Information Center

    Smith, Emma

    2017-01-01

    A "crisis account" of shortages of well-qualified scientists, engineers, mathematicians and technologists has shaped education policy in the UK and the USA for decades. The apparent poor quality of school science education along with insufficient numbers of well-qualified teachers have been linked to skills shortages by government and…

  18. Group Theory, Computational Thinking, and Young Mathematicians

    ERIC Educational Resources Information Center

    Gadanidis, George; Clements, Erin; Yiu, Chris

    2018-01-01

    In this article, we investigate the artistic puzzle of designing mathematics experiences (MEs) to engage young children with ideas of group theory, using a combination of hands-on and computational thinking (CT) tools. We elaborate on: (1) group theory and why we chose it as a context for young mathematicians' experiences with symmetry and…

  19. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  20. Do Mathematicians Integrate Computer Algebra Systems in University Teaching? Comparing a Literature Review to an International Survey Study

    ERIC Educational Resources Information Center

    Marshall, Neil; Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt

    2012-01-01

    We present a comparative study of a literature review of 326 selected contributions (Buteau, Marshall, Jarvis & Lavicza, 2010) to an international (US, UK, Hungary) survey of mathematicians (Lavicza, 2008) regarding the use of Computer Algebra Systems (CAS) in post-secondary mathematics education. The comparison results are organized with respect…

  1. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    NASA Astrophysics Data System (ADS)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late stage. As industrial problems become increasingly multidisciplinary, their successful solutions are often contingent on effective collaborative efforts between scientists, mathematicians, industrialists, and engineers. This volume has provided several examples of such collaborative efforts in the context of real-world industrial problems along with the analysis of important physics-based mathematical models applicable in a range of industrial contexts. Roderick V N Melnik, Professor of Mathematical Modelling, Syddansk Universitet (Denmark) and Professor and Canada Research Chair, Wilfrid Laurier University, Waterloo, Canada E-mail: rmelnik@wlu.ca Frands Voss, Director of the Mads Clausen Institute, Syddansk Universitet (Denmark)

  2. On the Integration of Computer Algebra Systems (CAS) by Canadian Mathematicians: Results of a National Survey

    ERIC Educational Resources Information Center

    Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt

    2014-01-01

    In this article, we outline the findings of a Canadian survey study (N = 302) that focused on the extent of computer algebra systems (CAS)-based technology use in postsecondary mathematics instruction. Results suggest that a considerable number of Canadian mathematicians use CAS in research and teaching. CAS use in research was found to be the…

  3. Preface: SciDAC 2006

    NASA Astrophysics Data System (ADS)

    Tang, William M., Dr.

    2006-01-01

    The second annual Scientific Discovery through Advanced Computing (SciDAC) Conference was held from June 25-29, 2006 at the new Hyatt Regency Hotel in Denver, Colorado. This conference showcased outstanding SciDAC-sponsored computational science results achieved during the past year across many scientific domains, with an emphasis on science at scale. Exciting computational science that has been accomplished outside of the SciDAC program both nationally and internationally was also featured to help foster communication between SciDAC computational scientists and those funded by other agencies. This was illustrated by many compelling examples of how domain scientists collaborated productively with applied mathematicians and computer scientists to effectively take advantage of terascale computers (capable of performing trillions of calculations per second) not only to accelerate progress in scientific discovery in a variety of fields but also to show great promise for being able to utilize the exciting petascale capabilities in the near future. The SciDAC program was originally conceived as an interdisciplinary computational science program based on the guiding principle that strong collaborative alliances between domain scientists, applied mathematicians, and computer scientists are vital to accelerated progress and associated discovery on the world's most challenging scientific problems. Associated verification and validation are essential in this successful program, which was funded by the US Department of Energy Office of Science (DOE OS) five years ago. As is made clear in many of the papers in these proceedings, SciDAC has fundamentally changed the way that computational science is now carried out in response to the exciting challenge of making the best use of the rapid progress in the emergence of more and more powerful computational platforms. In this regard, Dr. Raymond Orbach, Energy Undersecretary for Science at the DOE and Director of the OS has stated: `SciDAC has strengthened the role of high-end computing in furthering science. It is defining whole new fields for discovery.' (SciDAC Review, Spring 2006, p8). Application domains within the SciDAC 2006 conference agenda encompassed a broad range of science including: (i) the DOE core mission of energy research involving combustion studies relevant to fuel efficiency and pollution issues faced today and magnetic fusion investigations impacting prospects for future energy sources; (ii) fundamental explorations into the building blocks of matter, ranging from quantum chromodynamics - the basic theory that describes how quarks make up the protons and neutrons of all matter - to the design of modern high-energy accelerators; (iii) the formidable challenges of predicting and controlling the behavior of molecules in quantum chemistry and the complex biomolecules determining the evolution of biological systems; (iv) studies of exploding stars for insights into the nature of the universe; and (v) integrated climate modeling to enable realistic analysis of earth's changing climate. Associated research has made it quite clear that advanced computation is often the only means by which timely progress is feasible when dealing with these complex, multi-component physical, chemical, and biological systems operating over huge ranges of temporal and spatial scales. Working with the domain scientists, applied mathematicians and computer scientists have continued to develop the discretizations of the underlying equations and the complementary algorithms to enable improvements in solutions on modern parallel computing platforms as they evolve from the terascale toward the petascale regime. Moreover, the associated tremendous growth of data generated from the terabyte to the petabyte range demands not only the advanced data analysis and visualization methods to harvest the scientific information but also the development of efficient workflow strategies which can deal with the data input/output, management, movement, and storage challenges. If scientific discovery is expected to keep apace with the continuing progression from tera- to petascale platforms, the vital alliance between domain scientists, applied mathematicians, and computer scientists will be even more crucial. During the SciDAC 2006 Conference, some of the future challenges and opportunities in interdisciplinary computational science were emphasized in the Advanced Architectures Panel and by Dr. Victor Reis, Senior Advisor to the Secretary of Energy, who gave a featured presentation on `Simulation, Computation, and the Global Nuclear Energy Partnership.' Overall, the conference provided an excellent opportunity to highlight the rising importance of computational science in the scientific enterprise and to motivate future investment in this area. As Michael Strayer, SciDAC Program Director, has noted: `While SciDAC may have started out as a specific program, Scientific Discovery through Advanced Computing has become a powerful concept for addressing some of the biggest challenges facing our nation and our world.' Looking forward to next year, the SciDAC 2007 Conference will be held from June 24-28 at the Westin Copley Plaza in Boston, Massachusetts. Chairman: David Keyes, Columbia University. The Organizing Committee for the SciDAC 2006 Conference would like to acknowledge the individuals whose talents and efforts were essential to the success of the meeting. Special thanks go to Betsy Riley for her leadership in building the infrastructure support for the conference, for identifying and then obtaining contributions from our corporate sponsors, for coordinating all media communications, and for her efforts in organizing and preparing the conference proceedings for publication; to Tim Jones for handling the hotel scouting, subcontracts, and exhibits and stage production; to Angela Harris for handling supplies, shipping, and tracking, poster sessions set-up, and for her efforts in coordinating and scheduling the promotional activities that took place during the conference; to John Bui and John Smith for their superb wireless networking and A/V set-up and support; to Cindy Latham for Web site design, graphic design, and quality control of proceedings submissions; and to Pamelia Nixon-Hartje of Ambassador for budget and quality control of catering. We are grateful for the highly professional dedicated efforts of all of these individuals, who were the cornerstones of the SciDAC 2006 Conference. Thanks also go to Angela Beach of the ORNL Conference Center for her efforts in executing the contracts with the hotel, Carolyn James of Colorado State for on-site registration supervision, Lora Wolfe and Brittany Hagen for administrative support at ORNL, and Dami Rich and Andrew Sproles for graphic design and production. We are also most grateful to the Oak Ridge National Laboratory, especially Jeff Nichols, and to our corporate sponsors, Data Direct Networks, Cray, IBM, SGI, and Institute of Physics Publishing for their support. We especially express our gratitude to the featured speakers, invited oral speakers, invited poster presenters, session chairs, and advanced architecture panelists and chair for their excellent contributions on behalf of SciDAC 2006. We would like to express our deep appreciation to Lali Chatterjee, Graham Douglas, Margaret Smith, and the production team of Institute of Physics Publishing, who worked tirelessly to publish the final conference proceedings in a timely manner. Finally, heartfelt thanks are extended to Michael Strayer, Associate Director for OASCR and SciDAC Director, and to the DOE program managers associated with SciDAC for their continuing enthusiasm and strong support for the annual SciDAC Conferences as a special venue to showcase the exciting scientific discovery achievements enabled by the interdisciplinary collaborations championed by the SciDAC program.

  4. Visualization in Science and the Arts.

    ERIC Educational Resources Information Center

    Roth, Susan King

    Visualization as a factor of intelligence includes the mental manipulation of spatial configurations and has been associated with spatial abilities, creative thinking, and conceptual problem solving. There are numerous reports of scientists and mathematicians using visualization to anticipate transformation of the external world. Artists and…

  5. "Ex Ovo Omnia"

    ERIC Educational Resources Information Center

    Pagano, Todd

    2012-01-01

    One of history's most diverse thinkers metaphorically depicted humanity's dangerous reliance on nonrenewable energy resources as an unborn chick in an egg. American philosopher, poet, scientist, and mathematician, Buckminster Fuller, described the nutrients in an egg as the temporary and extinguishable support required for the development of an…

  6. Formalizing an integrative, multidisciplinary cancer therapy discovery workflow

    PubMed Central

    McGuire, Mary F.; Enderling, Heiko; Wallace, Dorothy I.; Batra, Jaspreet; Jordan, Marie; Kumar, Sushil; Panetta, John C.; Pasquier, Eddy

    2014-01-01

    Although many clinicians and researchers work to understand cancer, there has been limited success to effectively combine forces and collaborate over time, distance, data and budget constraints. Here we present a workflow template for multidisciplinary cancer therapy that was developed during the 2nd Annual Workshop on Cancer Systems Biology sponsored by Tufts University, Boston, MA in July 2012. The template was applied to the development of a metronomic therapy backbone for neuroblastoma. Three primary groups were identified: clinicians, biologists, and scientists (mathematicians, computer scientists, physicists and engineers). The workflow described their integrative interactions; parallel or sequential processes; data sources and computational tools at different stages as well as the iterative nature of therapeutic development from clinical observations to in vitro, in vivo, and clinical trials. We found that theoreticians in dialog with experimentalists could develop calibrated and parameterized predictive models that inform and formalize sets of testable hypotheses, thus speeding up discovery and validation while reducing laboratory resources and costs. The developed template outlines an interdisciplinary collaboration workflow designed to systematically investigate the mechanistic underpinnings of a new therapy and validate that therapy to advance development and clinical acceptance. PMID:23955390

  7. The Power of Concept Fields

    ERIC Educational Resources Information Center

    Stoyanova, Elena

    2008-01-01

    The ability to discover, explore, describe and mathematise relationships between different concepts is at the heart of scientific work of professional mathematicians and scientists. At school level, however, helping students to link, differentiate or investigate the nature of relationships between mathematics concepts remains in the shadow of…

  8. The Evaluation of Project SEED, 1990-91.

    ERIC Educational Resources Information Center

    Webster, William J.; Chadbourn, Russell A.

    Project Special Elementary Education for the Disadvantaged (SEED) is a national program in which professional mathematicians and scientists from universities and industry teach abstract, conceptually oriented mathematics to full-sized classes of elementary school children as a supplement to their regular mathematics instruction. In the Dallas…

  9. A Succinct Naming Convention for Lengthy Hexadecimal Numbers

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.

    1997-01-01

    Engineers, computer scientists, mathematicians and others must often deal with lengthy hexadecimal numbers. As memory requirements for software increase, the associated memory address space for systems necessitates the use of longer and longer strings of hexadecimal characters to describe a given number. For example, the address space of some digital signal processors (DSP's) now ranges in the billions of words, requiring eight hexadecimal characters for many of the addresses. This technical memorandum proposes a simple grouping scheme for more clearly representing lengthy hexadecimal numbers in written material, as well as a "code" for naming and more quickly verbalizing such numbers. This should facilitate communications among colleagues in engineering and related fields, and aid in comprehension and temporary memorization of important hexadecimal numbers during design work.

  10. Harvard, Wisconsin Programs Aim to Improve Science Education.

    ERIC Educational Resources Information Center

    Krieger, James

    1983-01-01

    Describes two programs to improve science education. Harvard University will provide a teacher training program for mid- to late-career mathematicians/scientists in industry and will provide inservice programs for current science/mathematics teachers. University of Wisconsin's program involves a national institute to foster research in chemical…

  11. The Evaluation of Project SEED, 1989-90.

    ERIC Educational Resources Information Center

    Webster, William J.; Chadbourn, Russell A.

    Project Special Elementary Education for the Disadvantaged (Project SEED) is a nationwide program in which mathematicians and scientists from academia and industry teach abstract, conceptually oriented mathematics to full-sized classes of elementary school students as a supplement to their regular arithmetic classes. A Socratic group-discovery…

  12. Kentucky's New Contribution to the Global Community

    ERIC Educational Resources Information Center

    Gott, Tim

    2007-01-01

    Throughout the United States, legislators, business leaders, educators, and other stakeholders are debating the impending crisis of the shortage of mathematicians and scientists in the United States. Several books, such as Thomas Friedman's "The World Is Flat" and Ted Fishman's "China, Inc.," accentuate this growing dilemma.…

  13. How to Build Schools Where Adults Learn

    ERIC Educational Resources Information Center

    Fahey, Kevin; Ippolito, Jacy

    2014-01-01

    In the current, very complex, and even conflicted discourse about schools, one thing is clear: Schools need to be about student learning. Schools need to ensure that students are good readers, proficient writers, capable mathematicians, competent scientists, and knowledgeable historians. Students also need to learn to work together, be healthy, be…

  14. Transformational Play: Using Games to Position Person, Content, and Context

    ERIC Educational Resources Information Center

    Barab, Sasha A.; Gresalfi, Melissa; Ingram-Goble, Adam

    2010-01-01

    Videogames are a powerful medium that curriculum designers can use to create narratively rich worlds for achieving educational goals. In these worlds, youth can become scientists, doctors, writers, and mathematicians who critically engage complex disciplinary content to transform a virtual world. Toward illuminating this potential, the authors…

  15. Analogy and Intersubjectivity: Political Oratory, Scholarly Argument and Scientific Reports.

    ERIC Educational Resources Information Center

    Gross, Alan G.

    1983-01-01

    Focuses on the different ways political oratory, scholarly argument, and scientific reports use analogy. Specifically, analyzes intersubjective agreement in Franklin D. Roosevelt's First Inaugural address, the scholarly argument between Sir Karl Popper and Thomas S. Kuhn, and the scientific reports of various mathematicians and scientists. (PD)

  16. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  17. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  18. Is Learning Data in the Right Shape?

    ERIC Educational Resources Information Center

    Kelly, Anthony E.

    2017-01-01

    In this short thought-piece, I attempt to capture the type of freewheeling discussions I had with our late colleague, Mika Seppälä, a research mathematician from Helsinki. Mika, not being a psychometrician or learning scientist, was blissfully free from the design constraints that experts sometimes ingest, unwittingly. I also draw on delightful…

  19. Opening Real Science: Evaluation of an Online Module on Statistical Literacy for Pre-Service Primary Teachers

    ERIC Educational Resources Information Center

    Bilgin, Ayse Aysin Bombaci; Date-Huxtable, Elizabeth; Coady, Carmel; Geiger, Vincent; Cavanagh, Michael; Mulligan, Joanne; Petocz, Peter

    2017-01-01

    Opening Real Science (ORS) is a three-year government initiative developed as part of the Mathematics and Science Teachers program. It is a collaboration across universities involving teacher educators, scientists, mathematicians, statisticians and educational designers aimed at improving primary and secondary pre-service teachers' competence and…

  20. Creating Mathematicians and Scientists: Disciplinary Literacy in the Early Childhood Classroom

    ERIC Educational Resources Information Center

    Mongillo, Maria Boeke

    2017-01-01

    Disciplinary literacy focuses on the specific ways a content area thinks, uses language, and shares information. While much of the literature on disciplinary literacy suggests it is an advanced language strategy to be taught to secondary students, early childhood classrooms may be the ideal environment in which to introduce this type of…

  1. Educated in Romance. Women, Achievement, and College Culture.

    ERIC Educational Resources Information Center

    Holland, Dorothy C.; Eisenhart, Margaret A.

    This ethnographic study investigated why so few women become scientists or mathematicians. The study followed the lives of two groups of women, one black and one white, all with strong academic records, who were attending two southern U.S. universities, one predominantly black and the other predominantly white. The study was initiated in 1979 when…

  2. Selected Issues Facing U.S. Graduate Education.

    ERIC Educational Resources Information Center

    Neal, Homer A.

    Three issues are discussed that relate to (1) the need for the United States to become more technologically competitive and more daring in ways to produce, nurture and encourage high quality research and (2) the state of the talent pool that must produce the scientists, mathematicians and engineers to do this research. The first issue concerns…

  3. Designing Online Learning for Developing Pre-Service Teachers' Capabilities in Mathematical Modelling and Applications

    ERIC Educational Resources Information Center

    Geiger, Vince; Date-Huxtable, Liz; Ahlip, Rehez; Herberstein, Marie; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian; Mulligan, Joanne

    2016-01-01

    The purpose of this paper is to describe the processes utilised to develop an online learning module within the Opening Real Science (ORS) project--"Modelling the present: Predicting the future." The module was realised through an interdisciplinary collaboration, among mathematicians, scientists and mathematics and science educators that…

  4. The National Defense Education Act, Current STEM Initiative, and the Gifted

    ERIC Educational Resources Information Center

    Jolly, Jennifer L.

    2009-01-01

    During the past several years, much discussion has focused on developing America's future scientists, technologists, engineers, and mathematicians (STEM) in order to remain viable and competitive in a growing global economy. In retrospect, America has had a long-standing involvement with STEM issues that dates back to the establishment of West…

  5. Scientists and Mathematicians Collaborating to Build Quantitative Skills in Undergraduate Science

    ERIC Educational Resources Information Center

    Rylands, Leanne; Simbag, Vilma; Matthews, Kelly E.; Coady, Carmel; Belward, Shaun

    2013-01-01

    There is general agreement in Australia and beyond that quantitative skills (QS) in science, the ability to use mathematics and statistics in context, are important for science. QS in the life sciences are becoming ever more important as these sciences become more quantitative. Consequently, undergraduates studying the life sciences require better…

  6. Integrating Literacy, Math, and Science to Make Learning Come Alive

    ERIC Educational Resources Information Center

    Bintz, William P.; Moore, Sara D.; Hayhurst, Elaine; Jones, Rubin; Tuttle, Sherry

    2006-01-01

    In this article, the authors who are an interdisciplinary team of middle school educators collaboratively developed and implemented an interdisciplinary unit designed to help middle school students: (1) think like mathematicians and scientists; (2) develop specific areas of expertise in math and science; and (3) use literature as a tool to learn…

  7. Nanotechnology: A Vast Field for the Creative Mind

    NASA Technical Reports Server (NTRS)

    Benavides, Jeannette

    2003-01-01

    Nanotechnology is a rapidly developing field worldwide. Nanotechnology is the development of smart systems for many different applications by building from the molecular level up. Current research, sponsored by The National Nanotechnology Alliance in the US will be described. Future needs in manpower of different disciplines will be discussed. Nanotechnology is a field of research that could allow developing countries to establish a technological infrastructure. The nature of nanotechnology requires professionals in many areas, such as engineers, chemists, physicists, mathematicians, computer scientists, materials scientists, etc. One of the materials that provide unique properties for nanotechnology is carbon nanotubes. At Goddard we have develop a process to produce nanotubes at lower costs and without metal catalysts which will be of great importance for the development of new materials for space applications and others outside NASA. Nanotechnology in general is a very broad and exciting field that will provide the technologies of tomorrow including biomedical applications for the betterment of mankind. There is room in this area for many researchers all over the world. The key is collaboration, nationally and internationally.

  8. ISMB/ECCB 2009 Stockholm

    PubMed Central

    Sagot, Marie-France; McKay, B.J. Morrison; Myers, Gene

    2009-01-01

    The International Society for Computational Biology (ISCB; http://www.iscb.org) presents the Seventeenth Annual International Conference on Intelligent Systems for Molecular Biology (ISMB), organized jointly with the Eighth Annual European Conference on Computational Biology (ECCB; http://bioinf.mpi-inf.mpg.de/conferences/eccb/eccb.htm), in Stockholm, Sweden, 27 June to 2 July 2009. The organizers are putting the finishing touches on the year's premier computational biology conference, with an expected attendance of 1400 computer scientists, mathematicians, statisticians, biologists and scientists from other disciplines related to and reliant on this multi-disciplinary science. ISMB/ECCB 2009 (http://www.iscb.org/ismbeccb2009/) follows the framework introduced at the ISMB/ECCB 2007 (http://www.iscb.org/ismbeccb2007/) in Vienna, and further refined at the ISMB 2008 (http://www.iscb.org/ismb2008/) in Toronto; a framework developed to specifically encourage increased participation from often under-represented disciplines at conferences on computational biology. During the main ISMB conference dates of 29 June to 2 July, keynote talks from highly regarded scientists, including ISCB Award winners, are the featured presentations that bring all attendees together twice a day. The remainder of each day offers a carefully balanced selection of parallel sessions to choose from: proceedings papers, special sessions on emerging topics, highlights of the past year's published research, special interest group meetings, technology demonstrations, workshops and several unique sessions of value to the broad audience of students, faculty and industry researchers. Several hundred posters displayed for the duration of the conference has become a standard of the ISMB and ECCB conference series, and an extensive commercial exhibition showcases the latest bioinformatics publications, software, hardware and services available on the market today. The main conference is preceded by 2 days of Special Interest Group (SIG) and Satellite meetings running in parallel to the fifth Student Council Symposium on 27 June, and in parallel to Tutorials on 28 June. All scientific sessions take place at the Stockholmsmässan/Stockholm International Fairs conference and exposition facility. Contact: bj@iscb.org PMID:19447790

  9. Modeling high-temperature superconductors and metallic alloys on the Intel IPSC/860

    NASA Astrophysics Data System (ADS)

    Geist, G. A.; Peyton, B. W.; Shelton, W. A.; Stocks, G. M.

    Oak Ridge National Laboratory has embarked on several computational Grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys from first principles and, in particular, the electronic structure of high-temperature superconductors. While the present focus of the project is on superconductivity, the approach is general enough to permit study of other properties of metallic alloys such as strength and magnetic properties. This paper describes the progress to date on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification. Performance of this code on the Intel iPSC/860 is also compared to a CRAY 2, CRAY YMP, and several workstations. Finally, some density of state calculations of two perovskite superconductors are given.

  10. Both Perelmans Thrown Down Gauntlets Versus Would-Be ``Science'' But Alas Sadly Mere ``SEANCES'' Put Jargonial-Obfuscation Sociological-Dysfunctionality(S-D) Ridden/Dominated Would-Be ``Sciences'' But Alas Sadly Mere SEANCES in ``Peril, Man''!!!

    NASA Astrophysics Data System (ADS)

    Carlson, J.; Young, F.; Clay, London; Siegel, Edward Carl-Ludwig (Physical-Mathematicist/Mathsicist)

    2011-03-01

    Both Perelman (Grigory[Poincare-conjecture: partial(with Richard Hamilton!!!)-"sole"-prover: by turning down first the Fields Medal at International Congress of [S-D right there: not mathematICS, but mathematicIANS!!!] Mathematicians (2007: Madrid); then the million-dollar Clay-Institute of Mathemat"ICS" (but really mathematicIANS POLITICIANS: Carlson, Yau,...et. al.) millennium-problem prize, revealing that it and its INSIDER POLITICS/POLITICIANS has/have "Feet of Clay"!!!], as sumarized by Naser-Gruber[Manfold-Destiny, The New Yorker, (August, 2007)] and separately Carlos Castro[with Corredoira: Against the Tid (2008)] put, by revealing the Jargonial-Obfuscation(J.-O.) (Bradshaw[Healing the SHAME that BINDS You, Hazelden(1980s)]-Martin[Brian, Wollongong University]-...ad INFINITUM (i.e. most if not all scientists), ad NAUSEUM!!! (disgusted with "games people play!!!)) S-D ridden/ dominated "games people play" would-be "sciences" (maths, physics,...: ad infinitum; ad NAUSEUM!!!) but alas sadly only mere Bradshaw-Martin S-D DOMINATED "SEANCES"!!!, in "peril, man"!!!

  11. Grand minima of solar activity and sociodynamics of culture

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.

    2012-12-01

    Indices of creative productivity introduced by C. Murrey were used to verify S. Ertel's conclusion about a global increase in creative productivity during the prolonged minimum of solar activity in 1640-1710. It was found that these indices for mathematicians, philosophers, and scientists increase in the Maunder era by factor of 1.6 in comparison with intervals of the same length before and after the minimum. A similar effect was obtained for mathematicians and philosophers for five earlier equitype minima in total (an increase by a factor of 1.9). The regularity that is revealed is confirmed by the fact that the most important achievements of high-ranking mathematicians and philosophers during the whole time period (2300 years) considered in this study fall on epochs of reduced levels of solar activity. The rise in the probability of the generation of rational ideas during grand minima is reflected also in the fact that they precede the appearance of written language and farming. Ultra-low-frequency electromagnetic fields appear to serve as a physical agent stimulating the activity of the brain's left hemisphere during the epochs of minima.

  12. Where's Spot? Finding STEM Opportunities for Young Children in Moments of Dramatic Tension

    ERIC Educational Resources Information Center

    McClure, Elisabeth; Guernsey, Lisa; Ashbrook, Peggy

    2017-01-01

    The potential for integrated science, technology, engineering, and math (STEM) learning really is all around us. The moments of intense drama children experience when they test out a new design are the engines that drive STEM practices; it's what keeps scientists, programmers, engineers, and mathematicians up at night, wanting to try "just…

  13. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    ERIC Educational Resources Information Center

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  14. Differential forms for scientists and engineers

    NASA Astrophysics Data System (ADS)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  15. Whatever happened to the 'mad, bad' scientist? Overturning the stereotype.

    PubMed

    Haynes, Roslynn D

    2016-01-01

    The cluster of myths relating to the pursuit of knowledge has perpetuated the archetype of the alchemist/scientist as sinister, dangerous, possibly mad and threatening to society's values. Shelley's Frankenstein provided imagery and a vocabulary universally invoked in relation to scientific discoveries and technological innovation. The reasons for the longevity of this seemingly antiquated, semiotic imagery are discussed. In the twenty-first century, this stereotype has been radically revised, even overturned. Scientists are now rarely objects of fear or mockery. Mathematicians, both real-life and fictional, are discussed here as being representative of scientists now depicted empathically. This article examines possible sociological reasons for this reversal; what the revisionist image suggests about society's changed attitudes to science; and what might be the substitute fears and sources of horror. © The Author(s) 2014.

  16. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  17. Overview of the SAMSI year-long program on Statistical, Mathematical and Computational Methods for Astronomy

    NASA Astrophysics Data System (ADS)

    Jogesh Babu, G.

    2017-01-01

    A year-long research (Aug 2016- May 2017) program on `Statistical, Mathematical and Computational Methods for Astronomy (ASTRO)’ is well under way at Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation research institute in Research Triangle Park, NC. This program has brought together astronomers, computer scientists, applied mathematicians and statisticians. The main aims of this program are: to foster cross-disciplinary activities; to accelerate the adoption of modern statistical and mathematical tools into modern astronomy; and to develop new tools needed for important astronomical research problems. The program provides multiple avenues for cross-disciplinary interactions, including several workshops, long-term visitors, and regular teleconferences, so participants can continue collaborations, even if they can only spend limited time in residence at SAMSI. The main program is organized around five working groups:i) Uncertainty Quantification and Astrophysical Emulationii) Synoptic Time Domain Surveysiii) Multivariate and Irregularly Sampled Time Seriesiv) Astrophysical Populationsv) Statistics, computation, and modeling in cosmology.A brief description of each of the work under way by these groups will be given. Overlaps among various working groups will also be highlighted. How the wider astronomy community can both participate and benefit from the activities, will be briefly mentioned.

  18. The Importance of Mathematical Models to Scientific Discovery: A Case Study on the Feeding Mechanism of the Goliath Grouper "Epinephelus itajara"

    ERIC Educational Resources Information Center

    Huber, Daniel; Jones, Leslie; Helminski, Christine

    2015-01-01

    The use of collaborative problem solving within mathematics education is imperative in this day and age of integrative science. The formation of interdisciplinary teams of mathematicians and scientists to investigate crucial problems is on the rise, as greater insight can be gained from an interdisciplinary perspective. Mathematical modelling, in…

  19. Poles, Parking Lots, and Mount Piton: Classroom Activities that Combine Astronomy, History, and Mathematics

    ERIC Educational Resources Information Center

    Madden, Sean P.; Comstock, Jocelyn M.; Downing, James P.

    2006-01-01

    This article describes how a series of lessons might be used to allow students to discover the size of the Earth, the distance to the Moon, the size of the Moon, and the altitude of Mount Piton on the Moon. Measurement with a sextant, principles of geometry and trigonometry, and historically important scientists and mathematicians are discussed.

  20. The role of mathematical models in understanding pattern formation in developmental biology.

    PubMed

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

  1. Some remarks on the genesis of scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Goenner, Hubert

    2012-08-01

    Between 1941 and 1962, scalar-tensor theories of gravitation were suggested four times by different scientists in four different countries. The earliest originator, the Swiss mathematician W. Scherrer, was virtually unknown until now whereas the chronologically latest pair gave their names to a multitude of publications on Brans-Dicke theory. P. Jordan, one of the pioneers of quantum mechanics and quantum field theory, and Y. Thiry, known by his book on celestial mechanics, a student of the mathematician Lichnerowicz, complete the quartet. Diverse motivations for and conceptual interpretations of their theories will be discussed as well as relations among them. Also, external factors like language, citation habits, or closeness to the mainstream are considered. It will become clear why Brans-Dicke theory, although structurally a déjà-vu, superseded all the other approaches.

  2. A Successful Program for Women Faculty and Graduate Students in Natural Sciences, Mathematics, and Engineering at the University of Nevada, Las Vegas.

    ERIC Educational Resources Information Center

    Rees, Margaret N. (Peg); Amy, Penny; Jacobson, Ellen; Weistrop, Donna E.

    2000-01-01

    Introduces a program initiated at the University of Nevada, Las Vegas to stimulate the retention and promotion of women scientists, mathematicians, and engineers and support women graduate students in the same fields. Results of the program suggest that such initiatives can increase the number of women in science, mathematics, and engineering.…

  3. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Rapper and Actor Daniel Curtis Lee performs during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  4. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    A group of Jet Propulsion Laboratory (JPL) engineers are recognized during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  5. Biological insight, high-throughput datasets and the nature of neuro-degenerative disorders.

    PubMed

    Valente, André X C N; Oliveira, Paulo J; Khaiboullina, Svetlana F; Palotás, András; Rizvanov, Albert A

    2013-09-01

    Life sciences are experiencing a historical shift towards a quantitative, data-rich regime. This transition has been associated with the advent of bio-informatics: mathematicians, physicists, computer scientists and statisticians are now commonplace in the field, working on the analysis of ever larger data-sets. An open question regarding what should drive scientific progress in this new era remains: will biological insight become increasingly irrelevant in a world of hypothesis-free, unbiased data analysis? This piece offers a different perspective, pin-pointing that biological thought is more-than-ever relevant in a data-rich setting. Some of the novel highthroughput information being acquired in the field of neuro-degenerative disorders is highlighted here. As but one example of how theory and experiment can interact in this new reality, our efforts in developing an idiopathic neuro-degenerative disease hematopoietic stemcell ageing theory are described.

  6. Laboratory Mathematics

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2004-01-01

    Computers were invented to help mathematicians perform long and complicated calculations more efficiently. By the time that a computing area became a familiar space in primary and secondary schools, the initial motivation for computer use had been submerged in the many other functions that modern computers now accomplish. Not only the mathematics…

  7. Fusion Simulation Project Workshop Report

    NASA Astrophysics Data System (ADS)

    Kritz, Arnold; Keyes, David

    2009-03-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  8. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Director Dr. Charles Elachi speaks with teachers and middle school students during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  9. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA astronaut Leland Melvin welcomes teachers and middle school students to the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  10. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden speaks with teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  11. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden signs autographs to middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  12. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA astronaut Leland Melvin signs autographs to middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  13. Studies in Mathematics, Volume 22. Studies in Computer Science.

    ERIC Educational Resources Information Center

    Pollack, Seymour V., Ed.

    The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…

  14. Recommendations for an Undergraduate Program in Computational Mathematics.

    ERIC Educational Resources Information Center

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    This report describes an undergraduate program designed to produce mathematicians who will know how to use and to apply computers. There is a core of 12 one-semester courses: five in mathematics, four in computational mathematics and three in computer science, leaving the senior year for electives. The content and spirit of these courses are…

  15. Computer-Based Self-Instructional Modules. Final Technical Report.

    ERIC Educational Resources Information Center

    Weinstock, Harold

    Reported is a project involving seven chemists, six mathematicians, and six physicists in the production of computer-based, self-study modules for use in introductory college courses in chemistry, physics, and mathematics. These modules were designed to be used by students and instructors with little or no computer backgrounds, in institutions…

  16. Digital Maps, Matrices and Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2005-01-01

    The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…

  17. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Performers from Los Angeles Hamilton High School's Kid Tribe entertain teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  18. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    A performer from Los Angeles Hamilton High School's Kid Tribe entertains teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  19. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Teachers and middle school students react to performers from Los Angeles Hamilton High School's Kid Tribe during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  20. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Julie Townsend, JPL Engineer, talks about her experiences to teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  1. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Manager of Elementary and Secondary Education David Seidel motivates teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  2. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, center, listens as NASA astronaut Leland Melvin welcomes teachers and middle school students to the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  3. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA astronaut Stephanie Wilson talks about her experiences to teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  4. Undergraduate Training for Industrial Careers.

    ERIC Educational Resources Information Center

    Stehney, Ann K.

    1983-01-01

    Forty-eight mathematicians in industry, business, and government replied to a questionnaire on the relative merits of the traditional undergraduate curriculum, advanced topics in pure mathematics, computer programing, additional computer science, and specialized or applied topics. They favored programing and applied mathematics, along with a…

  5. The Role of Mathematical Models in Understanding Pattern Formation in Developmental Biology

    PubMed Central

    Umulis, David M.

    2016-01-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics—whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: “It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations.” This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, “The laws of Nature are written in the language of mathematics…the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word.” Mathematics has moved beyond the geometry-based model of Galileo’s time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837–838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades—that of how organisms can scale in size. Mathematical analysis alone cannot “solve” these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology. PMID:25280665

  6. The National Cancer Institute's Physical Sciences - Oncology Network

    NASA Astrophysics Data System (ADS)

    Espey, Michael Graham

    In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.

  7. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Erin Gilbert, Director of Professional Development from the National Summer Learning Associations, motivates teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  8. Simulating the Dynamics of Earth's Core: Using NCCS Supercomputers Speeds Calculations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    If one wanted to study Earth's core directly, one would have to drill through about 1,800 miles of solid rock to reach liquid core-keeping the tunnel from collapsing under pressures that are more than 1 million atmospheres and then sink an instrument package to the bottom that could operate at 8,000 F with 10,000 tons of force crushing every square inch of its surface. Even then, several of these tunnels would probably be needed to obtain enough data. Faced with difficult or impossible tasks such as these, scientists use other available sources of information - such as seismology, mineralogy, geomagnetism, geodesy, and, above all, physical principles - to derive a model of the core and, study it by running computer simulations. One NASA researcher is doing just that on NCCS computers. Physicist and applied mathematician Weijia Kuang, of the Space Geodesy Branch, and his collaborators at Goddard have what he calls the,"second - ever" working, usable, self-consistent, fully dynamic, three-dimensional geodynamic model (see "The Geodynamic Theory"). Kuang runs his model simulations on the supercomputers at the NCCS. He and Jeremy Bloxham, of Harvard University, developed the original version, written in Fortran 77, in 1996.

  9. Partially solidified systems

    NASA Astrophysics Data System (ADS)

    The evolution of magmas is a topic of considerable importance in geology and geophysics because it affects volcanology, igneous petrology, geothermal energy sources, mantle convection, and the thermaland chemical evolution of the earth. The dynamics and evolution of magmas are strongly affected by the presence of solid crystals that occur either in suspension in liquid or as a rigid porous matrix through which liquid magma can percolate. Such systems are physically complex and difficult to model mathematically. Similar physical situations are encountered by metallurgists who study the solidification of molten alloys, and applied mathematicians have long been interested in such moving boundary problems. Clearly, it would be of mutual benefit to bring together scientists, engineers, and mathematicians with a common interest in such systems. Such a meeting is being organized as a North Atlantic Treaty Organization (NATO) Advanced Research Workshop on the Structure and Dynamics of Partially Solidified Systems, to be held at Stanford University's Fallen Leaf Lodge at Tahoe, Calif., May 12-16, 1986 The invited speakers and their topics are

  10. Exosemiotics: an inter-disciplinary approach

    NASA Astrophysics Data System (ADS)

    Reed, Mary L.

    2000-06-01

    Over the past several hundred years, many ideas have been expressed as to how human beings might communicate with extraterrestrials. These ideas have been put forth by experts from a diverse range of fields including physical scientists, mathematicians, behavioral scientists, philosophers and creative writers who have widely differing views on how to express ourselves coherently with civilizations from other worlds. This paper will look at some of these differing viewpoints and stress the need for an inter-disciplinary approach to the challenges of sending and, perhaps most important, receiving messages. Could we decipher a message if we got one? Who is doing the listening and what advantages could an inter-disciplinary approach bring to these efforts? What are some inter-disciplinary approaches to sending messages to extraterrestrials?

  11. Teaching Pascal's Triangle from a Computer Science Perspective

    ERIC Educational Resources Information Center

    Skurnick, Ronald

    2004-01-01

    Pascal's Triangle is named for the seventeenth-century French philosopher and mathematician Blaise Pascal (the same person for whom the computer programming language is named). Students are generally introduced to Pascal's Triangle in an algebra or precalculus class in which the Binomial Theorem is presented. This article, presents a new method…

  12. T198. A SCHIZOPHRENIA-LIKE BIRTH SEASONALITY AMONG MATHEMATICIANS AND AN OPPOSITE SEASONALITY AMONG BIOLOGISTS: MORE EVIDENCE IMPLICATING BIMODAL RHYTHMS OF GENERAL BIRTHS

    PubMed Central

    Marzullo, Giovanni

    2018-01-01

    Abstract Background Based on early-20th century births, a pre-electric illumination time of comparatively normal human exposure to sunlight, studies of schizophrenia (SCZ) found a birth seasonality with two opposite effects: a SCZ-liability peak among subjects born around late-February and an equally significant SCZ-resistance peak among those born six months later, around late-August. We previously investigated this rhythm in connection with a sunlight-dependent bimodal rhythm of general births that, prior to the full advent of electric lighting (but not later), occurred ubiquitously in non-equatorial parts of the world. We found that the SCZ-liability peak coincided with a first, Feb-Mar peak of general-population births (the GP1) while the SCZ-resistance peak coincided with a second, Aug-Sep peak of those births (the GP2). Moreover, in a study of hand and visual-field preferences among professional baseball players, we found the SCZ-liability, GP1-coincident seasonality among players with preferences denoting cerebral asymmetry “deficits” (CADs) and the SCZ-resistance, GP2-coincident seasonality among those with preferences denoting cerebral asymmetry “excesses.” Also, in a study suggested by associations of CADs with artistic abilities, we found the SCZ-liability, GP1-coincident seasonality among groups representing visual, performing and literary art “creators” (VPL-Artists) and the SCZ-resistance, GP2-coincident seasonality among groups representing art critics, historians, curators and other art “observers” (Para-Artists). Together, these findings suggested, as one possibility (but see later), that the SCZ-liability, CAD effects and artistic abilities could all three represent traits genetically or otherwise selected into the GP1 excess population of newborns and out of the GP2 population. The present study of “scientists” was initially aimed at the purported arts/science antithesis. Methods Birth seasonalities were examined among early-20th century born American scientists and among yet earlier European biologists and mathematicians. Results A group representing 1,925 American scientists showed the SCZ-resistance, GP2-coincident seasonality. However, this effect proved to be mostly due to biologists because biochemists, chemists, and physicists showed gradually less seasonality while mathematicians suggested an altogether artist-like, GP1-coincident seasonality. This intimation of a biologist-mathematician antithesis was pursued with an investigation of most major figures in the history of the two sciences from the 15th to the early-20th century. The two groups, numbering 576 mathematicians and 787 biologists, shared the same mean decade of birth, the 1780s, and essentially the same geographic origin in Western Europe. The mathematicians showed a very significant SCZ liability-like, GP1-coincident seasonality while the biologists showed an even more significant SCZ resistance-like, GP2-coincident seasonality. The latter effect was particularly strong among naturalists, anatomists and other groups representing biological “observationalism” as opposed to “experimentalism.” Discussion The findings are discussed in light of a) new evidence that the annual photoperiod is indeed alone responsible for both peaks of general births, with the GP1 and the GP2 being caused by maternal periconceptional exposure to, respectively, the summer-solstice sunlight maximum and the winter-solstice minimum, and b) an approach/withdrawal theory of lateralization of basic emotions where the left cerebral cortex would handle external stimuli eliciting complacent emotions towards external realities while the right cortex would handle internal stimuli eliciting disdain for those realities.

  13. Bridging the Vector Calculus Gap

    NASA Astrophysics Data System (ADS)

    Dray, Tevian; Manogue, Corinne

    2003-05-01

    As with Britain and America, mathematicians and physicists are separated from each other by a common language. In a nutshell, mathematics is about functions, but physics is about things. For the last several years, we have led an NSF-supported effort to "bridge the vector calculus gap" between mathematics and physics. The unifying theme we have discovered is to emphasize geometric reasoning, not (just) algebraic computation. In this talk, we will illustrate the language differences between mathematicians and physicists, and how we are trying reconcile them in the classroom. For further information about the project go to: http://www.physics.orst.edu/bridge

  14. Jeanette Scissum-Mickens, was honored by Alabama Governor Kay Ivey at the Alabama Historically Black Colleges and Universities Roundtable Discussion: Minority Women in STEM

    NASA Image and Video Library

    2017-09-27

    Retired Marshall scientist, Jeanette Scissum-Mickens, was honored by Alabama Governor Kay Ivey at the Alabama Historically Black Colleges and Universities Roundtable Discussion: Minority Women in STEM event held at the University of Alabama A&M in Huntsville, Alabama. Scissum-Mickens was honored as the “Hidden Figure of Alabama A&M.” She was the first African-American mathematician hired by Marshall in 1964.

  15. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, left, and Jet Propulsion Laboratory Director Dr. Charles Elachi lead school students to High Bay One at JPL during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  16. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, left, along with teachers and middle school students visit High Bay One in the Spacecraft Assembly Building as part of the kick off to NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  17. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Director Dr. Charles Elachi, center, and NASA Administrator Charles Bolden, right, lead school students to High Bay One at JPL during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  18. Becoming and Being a Mathematizing Mathematician

    ERIC Educational Resources Information Center

    De Geest, Els

    2012-01-01

    What does "to be a mathematician" mean? What is implied, and what image is created of "a mathematician"? Are "mathematicians" members of an exclusive club? Are mathematicians different to "other people"? Are mathematicians different because they are able to mathematize? These might not be the most oft asked questions, but are they questions to…

  19. Characteristics of the Navy Laboratory Warfare Center Technical Workforce

    DTIC Science & Technology

    2013-09-29

    Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information

  20. A brief historical development of classical mathematics before the Renaissance

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2011-07-01

    'If you wish to foresee the future of mathematics our proper course is to study the history and present condition of the science.' Henri Poincaré 'It is India that gave us the ingenious method of expressing all numbers by ten symbols, each symbol receiving a value of position, as well as an absolute value. We shall appreciate the grandeur of the achievement when we remember that it escaped the genius of Archimedes and Apollonius.' P.S. Laplace 'The Greeks were the first mathematicians who are still 'real' to us today. Oriental mathematics may be an interesting curiosity, but Greek mathematics is the real thing. The Greek first spoke of a language which modern mathematicians can understand.' G.H. Hardy This article deals with a short history of mathematics and mathematical scientists during the ancient and medieval periods. Included are some major developments of the ancient, Indian, Arabic, Egyptian, Greek and medieval mathematics and their significant impact on the Renaissance mathematics. Special attention is given to many results, theorems, generalizations, and new discoveries of arithmetic, algebra, number theory, geometry and astronomy during the above periods. A number of exciting applications of the above areas is discussed in some detail. It also contains a wide variety of important material accessible to college and even high school students and teachers at all levels. Included also is mathematical information that puts the professionals and prospective mathematical scientists at the forefront of current research.

  1. Mathematical representations in science: a cognitive-historical case history.

    PubMed

    Tweney, Ryan D

    2009-10-01

    The important role of mathematical representations in scientific thinking has received little attention from cognitive scientists. This study argues that neglect of this issue is unwarranted, given existing cognitive theories and laws, together with promising results from the cognitive historical analysis of several important scientists. In particular, while the mathematical wizardry of James Clerk Maxwell differed dramatically from the experimental approaches favored by Michael Faraday, Maxwell himself recognized Faraday as "in reality a mathematician of a very high order," and his own work as in some respects a re-representation of Faraday's field theory in analytic terms. The implications of the similarities and differences between the two figures open new perspectives on the cognitive role of mathematics as a learned mode of representation in science. Copyright © 2009 Cognitive Science Society, Inc.

  2. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians.

    PubMed

    Baron-Cohen, S; Wheelwright, S; Skinner, R; Martin, J; Clubley, E

    2001-02-01

    Currently there are no brief, self-administered instruments for measuring the degree to which an adult with normal intelligence has the traits associated with the autistic spectrum. In this paper, we report on a new instrument to assess this: the Autism-Spectrum Quotient (AQ). Individuals score in the range 0-50. Four groups of subjects were assessed: Group 1: 58 adults with Asperger syndrome (AS) or high-functioning autism (HFA); Group 2: 174 randomly selected controls. Group 3: 840 students in Cambridge University; and Group 4: 16 winners of the UK Mathematics Olympiad. The adults with AS/HFA had a mean AQ score of 35.8 (SD = 6.5), significantly higher than Group 2 controls (M = 16.4, SD = 6.3). 80% of the adults with AS/HFA scored 32+, versus 2% of controls. Among the controls, men scored slightly but significantly higher than women. No women scored extremely highly (AQ score 34+) whereas 4% of men did so. Twice as many men (40%) as women (21%) scored at intermediate levels (AQ score 20+). Among the AS/HFA group, male and female scores did not differ significantly. The students in Cambridge University did not differ from the randomly selected control group, but scientists (including mathematicians) scored significantly higher than both humanities and social sciences students, confirming an earlier study that autistic conditions are associated with scientific skills. Within the sciences, mathematicians scored highest. This was replicated in Group 4, the Mathematics Olympiad winners scoring significantly higher than the male Cambridge humanities students. 6% of the student sample scored 32+ on the AQ. On interview, 11 out of 11 of these met three or more DSM-IV criteria for AS/HFA, and all were studying sciences/mathematics, and 7 of the 11 met threshold on these criteria. Test-retest and interrater reliability of the AQ was good. The AQ is thus a valuable instrument for rapidly quantifying where any given individual is situated on the continuum from autism to normality. Its potential for screening for autism spectrum conditions in adults of normal intelligence remains to be fully explored.

  3. Big Data, Deep Learning and Tianhe-2 at Sun Yat-Sen University, Guangzhou

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Dzwinel, W.; Liu, J.; Zhang, K.

    2014-12-01

    In this decade the big data revolution has permeated in many fields, ranging from financial transactions, medical surveys and scientific endeavors, because of the big opportunities people see ahead. What to do with all this data remains an intriguing question. This is where computer scientists together with applied mathematicians have made some significant inroads in developing deep learning techniques for unraveling new relationships among the different variables by means of correlation analysis and data-assimilation methods. Deep-learning and big data taken together is a grand challenge task in High-performance computing which demand both ultrafast speed and large memory. The Tianhe-2 recently installed at Sun Yat-Sen University in Guangzhou is well positioned to take up this challenge because it is currently the world's fastest computer at 34 Petaflops. Each compute node of Tianhe-2 has two CPUs of Intel Xeon E5-2600 and three Xeon Phi accelerators. The Tianhe-2 has a very large fast memory RAM of 88 Gigabytes on each node. The system has a total memory of 1,375 Terabytes. All of these technical features will allow very high dimensional (more than 10) problem in deep learning to be explored carefully on the Tianhe-2. Problems in seismology which can be solved include three-dimensional seismic wave simulations of the whole Earth with a few km resolution and the recognition of new phases in seismic wave form from assemblage of large data sets.

  4. Examining the Use of Computer Algebra Systems in University-Level Mathematics Teaching

    ERIC Educational Resources Information Center

    Lavicza, Zsolt

    2009-01-01

    The use of Computer Algebra Systems (CAS) is becoming increasingly important and widespread in mathematics research and teaching. In this paper, I will report on a questionnaire study enquiring about mathematicians' use of CAS in mathematics teaching in three countries; the United States, the United Kingdom, and Hungary. Based on the responses…

  5. "Mathematicians Would Say It This Way": An Investigation of Teachers' Framings of Mathematicians

    ERIC Educational Resources Information Center

    Cirillo, Michelle; Herbel-Eisenmann, Beth

    2011-01-01

    Although popular media often provides negative images of mathematicians, we contend that mathematics classroom practices can also contribute to students' images of mathematicians. In this study, we examined eight mathematics teachers' framings of mathematicians in their classrooms. Here, we analyze classroom observations to explore some of the…

  6. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  7. Macmillan Encyclopedia of Chemistry (edited by Joseph J. Lagowski)

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1998-11-01

    Macmillan: New York, 1997. Four volumes. Figs., tables. lxxi + 1696 pp. 22.0 x 28.5 cm. $400. ISBN 0-02-897225-2. This latest addition to Macmillan's series of comprehensive core science encyclopedias (previous sets dealt with physics and earth sciences) will be of particular interest to readers of this Journal, for it is edited by longtime Journal of Chemical Education editor Joe Lagowski, assisted by a board of five distinguished associate editors. The attractively priced set offers clear explanations of the phenomena and concepts of chemistry and its materials, whether found in industry, the laboratory, or the natural world. It is intended for a broad spectrum of readers-professionals whose work draws on chemical concepts and knowledge (e.g., material scientists, engineers, health workers, biotechnologists, mathematicians, and computer programmers), science teachers at all levels from kindergarten to high school, high school and college students interested in medicine or the sciences, college and university professors, and laypersons desiring information on practical aspects of chemistry (e.g., household cleaning products, food and food additives, manufactured materials, herbicides, the human body, sweeteners, and animal communication).

  8. "Machine" consciousness and "artificial" thought: an operational architectonics model guided approach.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Neves, Carlos F H

    2012-01-05

    Instead of using low-level neurophysiology mimicking and exploratory programming methods commonly used in the machine consciousness field, the hierarchical operational architectonics (OA) framework of brain and mind functioning proposes an alternative conceptual-theoretical framework as a new direction in the area of model-driven machine (robot) consciousness engineering. The unified brain-mind theoretical OA model explicitly captures (though in an informal way) the basic essence of brain functional architecture, which indeed constitutes a theory of consciousness. The OA describes the neurophysiological basis of the phenomenal level of brain organization. In this context the problem of producing man-made "machine" consciousness and "artificial" thought is a matter of duplicating all levels of the operational architectonics hierarchy (with its inherent rules and mechanisms) found in the brain electromagnetic field. We hope that the conceptual-theoretical framework described in this paper will stimulate the interest of mathematicians and/or computer scientists to abstract and formalize principles of hierarchy of brain operations which are the building blocks for phenomenal consciousness and thought. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Searching the Heavens: Astronomy, Computation, Statistics, Data Mining and Philosophy

    NASA Astrophysics Data System (ADS)

    Glymour, Clark

    2012-03-01

    Our first and purest science, the mother of scientific methods, sustained by sheer curiosity, searching the heavens we cannot manipulate. From the beginning, astronomy has combined mathematical idealization, technological ingenuity, and indefatigable data collection with procedures to search through assembled data for the processes that govern the cosmos. Astronomers are, and ever have been, data miners, and for that reason astronomical methods (but not astronomical discoveries) have often been despised by statisticians and philosophers. Epithets laced the statistical literature: Ransacking! Data dredging! Double Counting! Statistical disdain was usually directed at social scientists and biologists, rarely if ever at astronomers, but the methodological attitudes and goals that many twentieth-century philosophers and statisticians rejected were creations of the astronomical tradition. The philosophical criticisms were earlier and more direct. In the shadow (or in Alexander Pope’s phrasing, the light) cast on nature in the eighteenth century by the Newtonian triumph, David Hume revived arguments from the ancient Greeks to challenge the very possibility of coming to know what causes what. His conclusion was endorsed in the twentieth century by many philosophers who found talk of causation unnecessary or unacceptably metaphysical, and absorbed by many statisticians as a general suspicion of causal claims, except possibly when they are founded on experimental manipulation. And yet in the hands of a mathematician, Thomas Bayes, and another mathematician and philosopher, Richard Price, Hume’s essays prompted the development of a new kind of statistics, the kind we now call "Bayesian." The computer and new data acquisition methods have begun to dissolve the antipathy between astronomy, philosophy, and statistics. But the resolution is practical, without much reflection on the arguments or the course of events. So, I offer a largely unoriginal history, substituting rather dry commentary on method for the fuller, livelier history of astronomers’ ambitions, politics, and passions. My accounts of various episodes in the astronomical tradition are taken from standard sources, especially Neugebauer (1952), Baum & Sheehan (1997), Crelensten (2006), and Stigler (1990). Methodological commentary is mine, not that of these sources.

  10. What makes a mathematician?

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2017-12-01

    Sofia Vasilyevna Kovalevskaia is surely the only person in history who became a mathematician because of a botched redecoration project. She is one of 25 mathematicians profiled in Ian Stewart's book Significant Figures: the Lives and Work of Great Mathematicians.

  11. SIAM conference on applications of dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  12. SIAM conference on applications of dynamical systems. Abstracts and author index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  13. National Calendar-2008

    NASA Astrophysics Data System (ADS)

    Ghedrovici, Vera; Svet, Maria; Matvei, Valeria; Madan, Ion; Perju, Elena; Sargun, Maria; Netida, Maria

    The calendar represents a few hundreds of biographies of scientists, artists and writers from everywhere, printed in chronological order and adjusted to their birthdays. A number of international and national holydays, including some refering to science are included in the Calendar. A great defect of the calendar is the introduction of the "International day of astrology" in the list of holydays. Another defect is the absence of the indication on the membership to the Communist Party for persons cited from the former Soviet Union. The following Physicists, mathematicians, chemists and astronomers had biographies in this issue: Ilie I. Lupu (math),Lev D. Landau,

  14. On mathematicians' different standards when evaluating elementary proofs.

    PubMed

    Inglis, Matthew; Mejia-Ramos, Juan Pablo; Weber, Keith; Alcock, Lara

    2013-04-01

    In this article, we report a study in which 109 research-active mathematicians were asked to judge the validity of a purported proof in undergraduate calculus. Significant results from our study were as follows: (a) there was substantial disagreement among mathematicians regarding whether the argument was a valid proof, (b) applied mathematicians were more likely than pure mathematicians to judge the argument valid, (c) participants who judged the argument invalid were more confident in their judgments than those who judged it valid, and (d) participants who judged the argument valid usually did not change their judgment when presented with a reason raised by other mathematicians for why the proof should be judged invalid. These findings suggest that, contrary to some claims in the literature, there is not a single standard of validity among contemporary mathematicians. Copyright © 2013 Cognitive Science Society, Inc.

  15. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  16. An on-line system for hand-printed input

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Bebb, J.

    1971-01-01

    The capability of graphic input/output systems is described. Topics considered are a character recognizer and dictionary building program, an initial flow chart element input program, and a system entitled The Assistant Mathematician, which uses ordinary mathematics to specify numeric computation. All three parts are necessary to allow a user to carry on a mathematical dialogue with the computer in the language and notation of his discipline or problem domain.

  17. Solving the "Hidden Line" Problem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).

  18. Mathematicians' Perspectives on Features of a Good Pedagogical Proof

    ERIC Educational Resources Information Center

    Lai, Yvonne; Weber, Keith; Mejia-Ramos, Juan Pablo

    2012-01-01

    In this article, we report two studies investigating what mathematicians value in a pedagogical proof. Study 1 is a qualitative study of how eight mathematicians revised two proofs that would be presented in a course for mathematics majors. These mathematicians thought that introductory and concluding sentences should be included in the proofs,…

  19. Mathematicians' Views on Current Publishing Issues: A Survey of Researchers

    ERIC Educational Resources Information Center

    Fowler, Kristine K.

    2011-01-01

    This article reports research mathematicians' attitudes about and activity in specific scholarly communication areas, as captured in a 2010 survey of more than 600 randomly-selected mathematicians worldwide. Key findings include: (1) Most mathematicians have papers in the arXiv, but posting to their own web pages remains more common; (2) A third…

  20. Chen Jingrun, China's famous mathematician: devastated by brain injuries on the doorstep to solving a fundamental mathematical puzzle.

    PubMed

    Lei, Ting; Belykh, Evgenii; Dru, Alexander B; Yagmurlu, Kaan; Elhadi, Ali M; Nakaji, Peter; Preul, Mark C

    2016-07-01

    Chen Jingrun (1933-1996), perhaps the most prodigious mathematician of his time, focused on the field of analytical number theory. His work on Waring's problem, Legendre's conjecture, and Goldbach's conjecture led to progress in analytical number theory in the form of "Chen's Theorem," which he published in 1966 and 1973. His early life was ravaged by the Second Sino-Japanese War and the Chinese Cultural Revolution. On the verge of solving Goldbach's conjecture in 1984, Chen was struck by a bicyclist while also bicycling and suffered severe brain trauma. During his hospitalization, he was also found to have Parkinson's disease. Chen suffered another serious brain concussion after a fall only a few months after recovering from the bicycle crash. With significant deficits, he remained hospitalized for several years without making progress while receiving modern Western medical therapies. In 1988 traditional Chinese medicine experts were called in to assist with his treatment. After a year of acupuncture and oxygen therapy, Chen could control his basic bowel and bladder functions, he could walk slowly, and his swallowing and speech improved. When Chen was unable to produce complex work or finish his final work on Goldbach's conjecture, his mathematical pursuits were taken up vigorously by his dedicated students. He was able to publish Youth Math, a mathematics book that became an inspiration in Chinese education. Although he died in 1996 at the age of 63 after surviving brutal political repression, being deprived of neurological function at the very peak of his genius, and having to be supported by his wife, Chen ironically became a symbol of dedication, perseverance, and motivation to his students and associates, to Chinese youth, to a nation, and to mathematicians and scientists worldwide.

  1. Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations

    NASA Astrophysics Data System (ADS)

    O'Malley, Robert E., Jr.; Williams, David B.

    2006-06-01

    Results by physicists on renormalization group techniques have recently sparked interest in the singular perturbations community of applied mathematicians. The survey paper, [Phys. Rev. E 54(1) (1996) 376-394], by Chen et al. demonstrated that many problems which applied mathematicians solve using disparate methods can be solved using a single approach. Analysis of that renormalization group method by Mudavanhu and O'Malley [Stud. Appl. Math. 107(1) (2001) 63-79; SIAM J. Appl. Math. 63(2) (2002) 373-397], among others, indicates that the technique can be streamlined. This paper carries that analysis several steps further to present an amplitude equation technique which is both well adapted for use with a computer algebra system and easy to relate to the classical methods of averaging and multiple scales.

  2. An Invitation to the Mathematics of Topological Quantum Computation

    NASA Astrophysics Data System (ADS)

    Rowell, E. C.

    2016-03-01

    Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials.

  3. Sixteenth ARPA Systems and Technology Symposium

    DTIC Science & Technology

    1993-06-22

    10:1 weight reduction over existing MILSTAR feed networks. 0 • In addition, EMS has demonstrated their dedication to ARPA and this technology bY cost...Corporation Computing Devices International DynCorp-Meridian COMSAT Laboratories E-Systems Inc. Context Systems Eastman Kodak Company Contraves Inc. EG&G CTA...were outstanding mathematicians and said, "Your first project is to compute how much volume and weight of water would fill the light bulb." He gave

  4. Your Students' Images of Mathematicians and Mathematics.

    ERIC Educational Resources Information Center

    Picker, Susan H.; Berry, John S.

    2001-01-01

    Discusses the subliminal images that students might have of mathematicians. Presents the disparity between boys and girls in envisioning mathematicians of their own sex. Explores implications for pedagogy. (KHR)

  5. The Human Genome Project: big science transforms biology and medicine.

    PubMed

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  6. Epidemic processes in complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro

    2015-07-01

    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.

  7. The Human Genome Project: big science transforms biology and medicine

    PubMed Central

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project. PMID:24040834

  8. Mathematics and evolutionary biology make bioinformatics education comprehensible.

    PubMed

    Jungck, John R; Weisstein, Anton E

    2013-09-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.

  9. Mathematics and evolutionary biology make bioinformatics education comprehensible

    PubMed Central

    Weisstein, Anton E.

    2013-01-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621

  10. The National Supply of Scientists, Mathematicians, and Engineers. Volume 3. Appendix D

    DTIC Science & Technology

    1992-05-01

    10 . Mid-Range Foreign Bachelor’s Degrees and Immigration Table D-11. Mid-Range Foreign Master’s Degrees Projections Table D-12. Mid-Range Foreign...2271 2284 14283 14452 14621 14790 14837 14884 14973 9 9 9 10 10 10 10 25 26 26 26 26 27 27 29 30 30 30 30 31 31 157 158 160 162 163 163 164 188 190...14906 14813 14720 14627 10 10 10 10 10 10 9 27 27 27 27 26 26 26 31 31 31 31 30 30 30 165 166 165 163 162 161 160 198 200 198 196 195 194 193

  11. The Future of Chemistry Is All of Us

    NASA Astrophysics Data System (ADS)

    Walter, Paul

    1999-05-01

    It is a pleasure to have this opportunity affirming the ACS's appreciation for the role you play as faculty from two-year colleges in preparing the next generation of scientists, engineers, and mathematicians. In particular, I salute the efforts of 2YC3 in reaching out to the diverse groups of students who are studying at your institutions, including older students, female students, minority, and immigrant students. The quality of the conferences you organize, and their geographic accessibility to your more than 700 members, have resulted in catalyzing professional development and growth among two-year college chemistry faculty, and thus improving the quality of instruction delivered to your students.

  12. History of Binary and Other Nondecimal Numeration.

    ERIC Educational Resources Information Center

    Glaser, Anton

    This study traces the development of nondecimal numeration from the 16th century to the present. The first six chapters detail the contributions of mathematicians as well as people from other fields. Applications to computers are covered in one chapter, while another chapter discusses the coverage of numeration systems in college textbooks for…

  13. Euclid, Fibonacci, Sketchpad.

    ERIC Educational Resources Information Center

    Litchfield, Daniel C.; Goldenheim, David A.

    1997-01-01

    Describes the solution to a geometric problem by two ninth-grade mathematicians using The Geometer's Sketchpad computer software program. The problem was to divide any line segment into a regular partition of any number of parts, a variation on a problem by Euclid. The solution yielded two constructions, one a GLaD construction and the other using…

  14. Introduction to Mathematica® for Physicists

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey

    We were taught at calculus classes that integration is an art, not a science (in contrast to differentiation—even a monkey can be trained to take derivatives). And we were taught wrong. The Risch algorithm (which is known for decades) allows one to find, in a finite number of steps, if a given indefinite integral can be taken in elementary functions, and if so, to calculate it. This algorithm has been constructed in works by an American mathematician Risch near 1970; many cases were not analyzed completely in these works and were later considered by other mathematicians. The algorithm is very complicated, and no computer algebra system implements it fully. Its implementation in Mathematica is rather complete, even with extensions to some classes of special functions, but details are not publicly known. Strictly speaking, it is not quite an algorithm, because it contains algorithmically unsolvable subproblems, such as finding out if a given combination of elementary functions vanishes. But in practice computer algebra systems are quite good in solving such problems. Here we shall consider, at a very elementary level, the main ideas of the Risch algorithm; see [16] for more details.

  15. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    PubMed

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P < .01). Left-inferior frontal and bilateral parietal regions are involved in arithmetic processing. Inferior parietal regions are also involved in high-level mathematic thinking, which requires visuospatial imagery, such as mental creation and manipulation of 3D objects. The voxel-based morphometric analysis of mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  16. Professional development for university scientists around issues of equity and diversity: Investigating dissent within community

    NASA Astrophysics Data System (ADS)

    Bianchini, Julie A.; Hilton-Brown, Bryan A.; Breton, Therese D.

    2002-10-01

    We investigated the role of dissent in a community of university scientists, engineers, mathematicians, and social scientists engaged in a 2-year professional development project around issues of equity and diversity. Members of this teacher learning community explored issues related to gender and ethnicity in science education, and attempted to develop course materials and instructional strategies inclusive of students from underrepresented groups. We focused our attention on those professional development sessions (6 of the 19) devoted to a contentious yet integral topic in science education: the gendered and multicultural nature of science. We examined conversations initiated by a member's concerns to learn how dissent led (or failed to lead) to new insights into feminist science studies scholarship or to greater understanding of ways to address equity issues in undergraduate science education. We also explored how teacher learners' resulting views of feminist science studies scholarship informed (or failed to inform) changes in their own educational practices. From our qualitative analyses, we highlight the challenges in balancing respect for members' individual voices with collective progress toward project goals, and in structuring conversations initiated by dissent to provide adequate space for deliberation and movement toward deeper understanding of equity and excellence.

  17. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    NASA Astrophysics Data System (ADS)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  18. Gloria Hewitt: Mathematician.

    ERIC Educational Resources Information Center

    Lattimore, Randy

    2001-01-01

    Points out the importance of incorporating minority life histories in education. Presents biographical information on Gloria Hewitt, a woman mathematician of color, to help encourage all potential mathematicians, especially those who belong to minority groups. Includes practical suggestions that teachers can use to encourage or inspire students to…

  19. CosmoQuest: Supporting Subject Matter Experts in Broadening the Impacts of their Work beyond their Institutional Walls.

    NASA Astrophysics Data System (ADS)

    Noel-Storr, J.; Buxner, S.; Grier, J.; Gay, P.

    2016-12-01

    CosmoQuest is a virtual research facility, which, like its physical counterparts, provides tools for scientists to acquire reduced data products (thanks to our cadre of citizen scientists working to analyze images and produce results online), and also to participate in education and outreach activities either directly through CosmoQuest activities (such as CosmoAcademy and the Educators' Zone) or with the support of CosmoQuest. Here, we present our strategies to inspire, engage and support Subject Matter Experts (SMEs - Scientists, Engineers, Technologists and Mathematicians) in activities outside of their institutions, and beyond college classroom teaching. We provide support for SMEs who are interested in increasing the impacts of their science knowledge and expertise by interacting with people online, or in other venues outside of their normal work environment. This includes a broad spectrum of opportunities for those interested in hosting webinars; running short courses for the public; using Facebook, Twitter or other social media to communicate science; or other diverse activities such as supporting an open house, science fair, or star party. As noted by Katheryn Woods-Townsend and colleagues, "...face-to-face interactions with scientists allowed students to view scientists as approachable and normal people, and to begin to understand the range of scientific areas and careers that exist. Scientists viewed the scientist-student interactions as a vehicle for science communication" (2015). As CosmoQuest fosters these relationships, it We present a framework for SMEs which combine opportunities for continuing professional development (virtually and in person at conferences) with ongoing online support, creating a dynamic professional learning network. The goal of this is to deepen SME capacity-knowledge, attitudes and behaviors-both encouraging and empowering them to connect to broader audiences in new ways.

  20. The Characteristics of Mathematical Creativity

    ERIC Educational Resources Information Center

    Sriraman, Bharath

    2004-01-01

    Mathematical creativity ensures the growth of mathematics as a whole. However, the source of this growth, the creativity of the mathematician, is a relatively unexplored area in mathematics and mathematics education. In order to investigate how mathematicians create mathematics, a qualitative study involving five creative mathematicians was…

  1. The Expert Mathematician. Revised. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2006

    2006-01-01

    "The Expert Mathematician" is designed to help middle school students develop the thinking processes for mathematical applications and communication. A three-year program of instruction, "The Expert Mathematician" uses a software and consumable print materials package with 196 lessons that teach the "Logo" programming…

  2. Drawing Space: Mathematicians' Kinetic Conceptions of Eigenvectors

    ERIC Educational Resources Information Center

    Sinclair, Nathalie; Gol Tabaghi, Shiva

    2010-01-01

    This paper explores how mathematicians build meaning through communicative activity involving talk, gesture and diagram. In the course of describing mathematical concepts, mathematicians use these semiotic resources in ways that blur the distinction between the mathematical and physical world. We shall argue that mathematical meaning of…

  3. What are mathematicians doing?

    PubMed

    Friedman, B

    1966-10-21

    Let me emphasize the point I have been trying to make. The mathematician's playing with the roots of equations, a play which had no practical motivations and almost no possibilities of practical application, led to the recognition of the importance of symmetry and groups. The study of theory of groups led to mathematical discoveries in geometry and differential equations, and finally to prediction of the existence of a new elementary particle. Surely a surprising outcome for the ivory-tower speculations of an impractical mathematician! Despite my professional bias, I must acknowledge that the importance of symmetry was recognized before mathematicians invented the theory of groups. In 1794 William Blake wrote: Tiger, Tiger, burning bright In the forests of the night, What immortal hand or eye Could frame thy fearful symmetry? However, to the mathematicians must be given the credit of recognizing that, to understand symmetry, you must study the theory of groups. I can now answer my original question, What are mathematicians doing? They are trying to make precise the intuitions of poets.

  4. Physicists for Human Rights in the Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Chernyak, Yuri

    2005-03-01

    In his 1940 paper `Freedom and Science' Albert Einstein emphasized that ``intellectual independence is a primary necessity for the scientific inquirer'' and that ``political liberty is also extraordinarily important for his work.'' Raised in the tradition of intellectual independence and dedicated to the scientific truth, physicists were among the first to stand up for freedom in the USSR. It was no coincidence that the founders of the first independent Human Rights Committee (1970) were physicists: Andrei Sakharov, Valery Chalidze and Andrei Tverdokhlebov. In 1973 a physicist, Alexander Voronel, founded a Moscow Sunday (refusenik) Seminar -- the first openly independent scientific body in the history of the USSR. In 1976 physicists Andrei Sakharov, Yuri Orlov and a mathematician Natan Sharansky were the leading force in founding the famous Moscow Helsinki Human Rights Watch group. This talk briefly describes the special position of physicists (often viewed as Einstein's colleagues) in Soviet society, as well as their unique role in the struggle for human rights. It describes in some detail the Moscow Sunday Seminar, and extensions thereof such as International Conferences, the Computer School and the Computer Database of Refuseniks. The Soviet government considered such truly independent organizations as a challenge to Soviet authority and tried to destroy them. The Seminar's success and its very existence owed much to the support of Western scientific organizations, who persuaded their members to attend the Seminar and visit scientist-refuseniks. The human rights struggle led by physicists contributed substantially to the demise of the Soviet system.

  5. Final Report for "Implimentation and Evaluation of Multigrid Linear Solvers into Extended Magnetohydrodynamic Codes for Petascale Computing"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinath Vadlamani; Scott Kruger; Travis Austin

    Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems.more » For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.« less

  6. Mathematicians' Perspectives on the Utility of Software

    ERIC Educational Resources Information Center

    Quinlan, James

    2016-01-01

    In this study, we examine mathematicians' perspectives of the utility of software in mathematics and the teaching of mathematics. In particular, we report findings from a survey questioning 422 mathematicians with respect to their beliefs regarding the usefulness of software in mathematics research, teaching, and learning; recommended software…

  7. Research Mathematicians' Practices in Selecting Mathematical Problems

    ERIC Educational Resources Information Center

    Misfeldt, Morten; Johansen, Mikkel Willum

    2015-01-01

    Developing abilities to create, inquire into, qualify, and choose among mathematical problems is an important educational goal. In this paper, we elucidate how mathematicians work with mathematical problems in order to understand this mathematical process. More specifically, we investigate how mathematicians select and pose problems and discuss to…

  8. The Writing Mathematician

    ERIC Educational Resources Information Center

    Yoon, Caroline

    2017-01-01

    Popular culture casts mathematics and writing as opposites--a false dichotomy, which can be harmful for our discipline of mathematics education. Positioning writing outside the domain of the mathematician's abilities and cultivated skill set can create doubt in the mathematician wishing to write--not that one cannot be both writer and…

  9. Participation of V. S. Vladimirov in work on the USSR atomic project: A significant milestone in the development of the foundations of mathematical modeling of the processes of neutron physics

    NASA Astrophysics Data System (ADS)

    Trutnev, Yu. A.; Shagaliev, R. M.; Evdokimov, V. V.; Bochkov, A. I.

    2013-02-01

    This paper is dedicated to the 90th anniversary of the birth of a leading Soviet and Russian scientist and a member of the USSR Academy of Sciences: Academician Vasilii Sergeevich Vladimirov. Vladimirov, one of the strongest contemporary mathematicians, worked from 1951 through 1955 at KB-11 (today, the Russian Federal Nuclear Center — All-Russian Scientific Research Institute for Experimental Physics), the "secret facility" where development of atomic weaponry was conducted. We present the main results of Vladimirov's scientific activity connected with his work on the USSR atomic project.

  10. A Passion for Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, Peter

    The human side of doing theoretical physics is explored through stories about the interactions between physicists and about the way world events can affect not only the scientists' behavior, but even their scientific interests and style.  These stories cluster nicely around certain bigger themes to create an overarching whole.  This happens both on account of some interesting narrative structures intrinsic to the science of Physics itself and on account of the way Physics integrates into the general culture. The stories concern Einstein, Schrödinger, Pauli, Heisenberg, Stueckelberg, Jordan and Fock and also involve some mathematicians like Emmy Noether, Teichmüller and Bersmore » and even the psychologist C.G. Jung.« less

  11. Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Harper, David

    1989-06-01

    This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.

  12. Methodologies for Optimum Capital Expenditure Decisions for New Medical Technology

    PubMed Central

    Landau, Thomas P.; Ledley, Robert S.

    1980-01-01

    This study deals with the development of a theory and an analytical model to support decisions regarding capital expenditures for complex new medical technology. Formal methodologies and quantitative techniques developed by applied mathematicians and management scientists can be used by health planners to develop cost-effective plans for the utilization of medical technology on a community or region-wide basis. In order to maximize the usefulness of the model, it was developed and tested against multiple technologies. The types of technologies studied include capital and labor-intensive technologies, technologies whose utilization rates vary with hospital occupancy rate, technologies whose use can be scheduled, and limited-use and large-use technologies.

  13. A Passion for Discovery

    ScienceCinema

    Freund, Peter

    2017-12-11

    The human side of doing theoretical physics is explored through stories about the interactions between physicists and about the way world events can affect not only the scientists' behavior, but even their scientific interests and style.  These stories cluster nicely around certain bigger themes to create an overarching whole.  This happens both on account of some interesting narrative structures intrinsic to the science of Physics itself and on account of the way Physics integrates into the general culture. The stories concern Einstein, Schrödinger, Pauli, Heisenberg, Stueckelberg, Jordan and Fock and also involve some mathematicians like Emmy Noether, Teichmüller and Bers and even the psychologist C.G. Jung.

  14. Preface.

    PubMed

    Ditlevsen, Susanne; Lansky, Petr

    2016-06-01

    This Special Issue of Mathematical Biosciences and Engineering contains 11 selected papers presented at the Neural Coding 2014 workshop. The workshop was held in the royal city of Versailles in France, October 6-10, 2014. This was the 11th of a series of international workshops on this subject, the first held in Prague (1995), then Versailles (1997), Osaka (1999), Plymouth (2001), Aulla (2003), Marburg (2005), Montevideo (2007), Tainan (2009), Limassol (2010), and again in Prague (2012). Also selected papers from Prague were published as a special issue of Mathematical Biosciences and Engineering and in this way a tradition was started. Similarly to the previous workshops, this was a single track multidisciplinary event bringing together experimental and computational neuroscientists. The Neural Coding Workshops are traditionally biennial symposia. They are relatively small in size, interdisciplinary with major emphasis on the search for common principles in neural coding. The workshop was conceived to bring together scientists from different disciplines for an in-depth discussion of mathematical model-building and computational strategies. Further information on the meeting can be found at the NC2014 website at https://colloque6.inra.fr/neural_coding_2014. The meeting was supported by French National Institute for Agricultural Research, the world's leading institution in this field. This Special Issue of Mathematical Biosciences and Engineering contains 11 selected papers presented at the Neural Coding 2014 workshop. The workshop was held in the royal city of Versailles in France, October 6-10, 2014. This was the 11th of a series of international workshops on this subject, the first held in Prague (1995), then Versailles (1997), Osaka (1999), Plymouth (2001), Aulla (2003), Marburg (2005), Montevideo (2007), Tainan (2009), Limassol (2010), and again in Prague (2012). Also selected papers from Prague were published as a special issue of Mathematical Biosciences and Engineering and in this way a tradition was started. Similarly to the previous workshops, this was a single track multidisciplinary event bringing together experimental and computational neuroscientists. The Neural Coding Workshops are traditionally biennial symposia. They are relatively small in size, interdisciplinary with major emphasis on the search for common principles in neural coding. The workshop was conceived to bring together scientists from different disciplines for an in-depth discussion of mathematical model-building and computational strategies. Further information on the meeting can be found at the NC2014 website at https://colloque6.inra.fr/neural_coding_2014. The meeting was supported by French National Institute for Agricultural Research, the world's leading institution in this field. Understanding how the brain processes information is one of the most challenging subjects in neuroscience. The papers presented in this special issue show a small corner of the huge diversity of this field, and illustrate how scientists with different backgrounds approach this vast subject. The diversity of disciplines engaged in these investigations is remarkable: biologists, mathematicians, physicists, psychologists, computer scientists, and statisticians, all have original tools and ideas by which to try to elucidate the underlying mechanisms. In this issue, emphasis is put on mathematical modeling of single neurons. A variety of problems in computational neuroscience accompanied with a rich diversity of mathematical tools and approaches are presented. We hope it will inspire and challenge the readers in their own research. We would like to thank the authors for their valuable contributions and the referees for their priceless effort of reviewing the manuscripts. Finally, we would like to thank Yang Kuang for supporting us and making this publication possible.

  15. The Portrayal of Mathematicians and Mathematics in Popular Culture

    ERIC Educational Resources Information Center

    Barba, Kimberly

    2018-01-01

    Mathematicians are often inimically portrayed in popular culture, resulting in an abundance of non-mathematical identities in the classroom. Various tropes are propagated by the media that dominate our mental schemas of what makes a mathematician: the eccentric Einstein-like old man; the young, tortured genius; and the "genetically…

  16. Proofs that Develop Insight

    ERIC Educational Resources Information Center

    Weber, Keith

    2010-01-01

    Many mathematics educators have noted that mathematicians do not only read proofs to gain conviction but also to obtain insight. The goal of this article is to discuss what this insight is from mathematicians' perspective. Based on interviews with nine research-active mathematicians, two sources of insight are discussed. The first is reading a…

  17. Thinking Like a Mathematician

    ERIC Educational Resources Information Center

    Weiss, Michael K.; Moore-Russo, Deborah

    2012-01-01

    What does it mean to think like a mathematician? One of the great paradoxes of mathematics education is that, although mathematics teachers are immersed in mathematical work every day of their professional lives, most of them nevertheless have little experience with the kind of work that research mathematicians do. Their ideas of what doing…

  18. Information Technology in University-Level Mathematics Teaching and Learning: A Mathematician's Point of View

    ERIC Educational Resources Information Center

    Borovik, Alexandre

    2011-01-01

    Although mathematicians frequently use specialist software in direct teaching of mathematics, as a means of delivery e-learning technologies have so far been less widely used. We (mathematicians) insist that teaching methods should be subject-specific and content-driven, not delivery-driven. We oppose generic approaches to teaching, including…

  19. Commitment of mathematicians in medicine: a personal experience, and generalisations.

    PubMed

    Clairambault, Jean

    2011-12-01

    I will present here a personal point of view on the commitment of mathematicians in medicine. Starting from my personal experience, I will suggest generalisations including favourable signs and caveats to show how mathematicians can be welcome and helpful in medicine, both in a theoretical and in a practical way.

  20. Academic Mathematicians' Dispositions toward Software Use in Mathematics Instruction: What Are the Underlying Reasons?

    ERIC Educational Resources Information Center

    Khoshaim, Heba Bakr

    2012-01-01

    Academic mathematicians' opinions are divided regarding software use in undergraduate mathematics instruction. This study explored these opinions through interviews and a subsequent survey of mathematicians at PhD-granting institutions in the United States regarding their dispositions and the underlying attitudes. Most prior related work had…

  1. Structural Model Error and Decision Relevancy

    NASA Astrophysics Data System (ADS)

    Goldsby, M.; Lusk, G.

    2017-12-01

    The extent to which climate models can underwrite specific climate policies has long been a contentious issue. Skeptics frequently deny that climate models are trustworthy in an attempt to undermine climate action, whereas policy makers often desire information that exceeds the capabilities of extant models. While not skeptics, a group of mathematicians and philosophers [Frigg et al. (2014)] recently argued that even tiny differences between the structure of a complex dynamical model and its target system can lead to dramatic predictive errors, possibly resulting in disastrous consequences when policy decisions are based upon those predictions. They call this result the Hawkmoth effect (HME), and seemingly use it to rebuke rightwing proposals to forgo mitigation in favor of adaptation. However, a vigorous debate has emerged between Frigg et al. on one side and another philosopher-mathematician pair [Winsberg and Goodwin (2016)] on the other. On one hand, Frigg et al. argue that their result shifts the burden to climate scientists to demonstrate that their models do not fall prey to the HME. On the other hand, Winsberg and Goodwin suggest that arguments like those asserted by Frigg et al. can be, if taken seriously, "dangerous": they fail to consider the variety of purposes for which models can be used, and thus too hastily undermine large swaths of climate science. They put the burden back on Frigg et al. to show their result has any effect on climate science. This paper seeks to attenuate this debate by establishing an irenic middle position; we find that there is more agreement between sides than it first seems. We distinguish a `decision standard' from a `burden of proof', which helps clarify the contributions to the debate from both sides. In making this distinction, we argue that scientists bear the burden of assessing the consequences of HME, but that the standard Frigg et al. adopt for decision relevancy is too strict.

  2. Consortium for Mathematics in the Geosciences (CMG++): Promoting the application of mathematics, statistics, and computational sciences to the geosciences

    NASA Astrophysics Data System (ADS)

    Mead, J.; Wright, G. B.

    2013-12-01

    The collection of massive amounts of high quality data from new and greatly improved observing technologies and from large-scale numerical simulations are drastically improving our understanding and modeling of the earth system. However, these datasets are also revealing important knowledge gaps and limitations of our current conceptual models for explaining key aspects of these new observations. These limitations are impeding progress on questions that have both fundamental scientific and societal significance, including climate and weather, natural disaster mitigation, earthquake and volcano dynamics, earth structure and geodynamics, resource exploration, and planetary evolution. New conceptual approaches and numerical methods for characterizing and simulating these systems are needed - methods that can handle processes which vary through a myriad of scales in heterogeneous, complex environments. Additionally, as certain aspects of these systems may be observable only indirectly or not at all, new statistical methods are also needed. This type of research will demand integrating the expertise of geoscientist together with that of mathematicians, statisticians, and computer scientists. If the past is any indicator, this interdisciplinary research will no doubt lead to advances in all these fields in addition to vital improvements in our ability to predict the behavior of the planetary environment. The Consortium for Mathematics in the Geosciences (CMG++) arose from two scientific workshops held at Northwestern and Princeton in 2011 and 2012 with participants from mathematics, statistics, geoscience and computational science. The mission of CMG++ is to accelerate the traditional interaction between people in these disciplines through the promotion of both collaborative research and interdisciplinary education. We will discuss current activities, describe how people can get involved, and solicit input from the broader AGU community.

  3. Computational Models of Rock Failure

    NASA Astrophysics Data System (ADS)

    May, Dave A.; Spiegelman, Marc

    2017-04-01

    Practitioners in computational geodynamics, as per many other branches of applied science, typically do not analyse the underlying PDE's being solved in order to establish the existence or uniqueness of solutions. Rather, such proofs are left to the mathematicians, and all too frequently these results lag far behind (in time) the applied research being conducted, are often unintelligible to the non-specialist, are buried in journals applied scientists simply do not read, or simply have not been proven. As practitioners, we are by definition pragmatic. Thus, rather than first analysing our PDE's, we first attempt to find approximate solutions by throwing all our computational methods and machinery at the given problem and hoping for the best. Typically this approach leads to a satisfactory outcome. Usually it is only if the numerical solutions "look odd" that we start delving deeper into the math. In this presentation I summarise our findings in relation to using pressure dependent (Drucker-Prager type) flow laws in a simplified model of continental extension in which the material is assumed to be an incompressible, highly viscous fluid. Such assumptions represent the current mainstream adopted in computational studies of mantle and lithosphere deformation within our community. In short, we conclude that for the parameter range of cohesion and friction angle relevant to studying rocks, the incompressibility constraint combined with a Drucker-Prager flow law can result in problems which have no solution. This is proven by a 1D analytic model and convincingly demonstrated by 2D numerical simulations. To date, we do not have a robust "fix" for this fundamental problem. The intent of this submission is to highlight the importance of simple analytic models, highlight some of the dangers / risks of interpreting numerical solutions without understanding the properties of the PDE we solved, and lastly to stimulate discussions to develop an improved computational model of rock failure suitable for geodynamic studies.

  4. How Mathematicians Determine if an Argument Is a Valid Proof

    ERIC Educational Resources Information Center

    Weber, Keith

    2008-01-01

    The purpose of this article is to investigate the mathematical practice of proof validation--that is, the act of determining whether an argument constitutes a valid proof. The results of a study with 8 mathematicians are reported. The mathematicians were observed as they read purported mathematical proofs and made judgments about their validity;…

  5. Introducing geometry concept based on history of Islamic geometry

    NASA Astrophysics Data System (ADS)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  6. Mathematicians, Attributional Complexity, and Gender

    NASA Astrophysics Data System (ADS)

    Stalder, Daniel R.

    Given indirect indications in sex role and soda! psychology research that mathematical-deductive reasoning may negatively relate to social acuity, Study 1 investigated whether mathematicians were less attributionally complex than nonmathematicians. Study 1 administered the Attributional Complexity Scale, a measure of social acuity, to female and male faculty members and graduate students in four Midwestern schools. Atlrihutional complexity (AC) is the ability and motivation to give complex explanations for behavior. Study 1 found a significant interaction between field and gender. Only among women did mathematicians score lower on AC. In addition, an established gender difference in AC (that women score higher than men) was present only among nonmathematicians. Studies 2 and 3 offered some preliminary support for the possibility that it is generally female students who score tow on AC who aspire to he mathematicians and for the underlying view that female students' perceived similarity to mathematicians can influence their vocational choices.

  7. Gravitation, Symmetry and Undergraduates

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  8. Computer Attitude, Use, Experience, Software Familiarity and Perceived Pedagogical Usefulness: The Case of Mathematics Professors

    ERIC Educational Resources Information Center

    Yushau, Balarabe

    2006-01-01

    As the pedagogical-effectiveness of information technology (IT) in mathematics education is carefully established the topic of discourse among mathematicians and mathematics educators is no longer a dispute about whether or not to use IT in the teaching and learning of mathematics but a shift to some debate about the when and how of its usage.…

  9. On Mathematicians' Proof Skimming: A Reply to Inglis and Alcock

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2013-01-01

    n a recent article, Inglis and Alcock (2012) contended that their data challenge the claim that when mathematicians validate proofs, they initially skim a proof to grasp its main idea before reading individual parts of the proof more carefully. This result is based on the fact that when mathematicians read proofs in their study, on average their…

  10. Constructions of Mathematicians in Popular Culture and Learners' Narratives: A Study of Mathematical and Non-Mathematical Subjectivities

    ERIC Educational Resources Information Center

    Moreau, Marie-Pierre; Mendick, Heather; Epstein, Debbie

    2010-01-01

    In this paper, based on a project funded by the UK Economic and Social Research Council considering how people position themselves in relation to popular representations of mathematics and mathematicians, we explore constructions of mathematicians in popular culture and the ways learners make meanings from these. Drawing on an analysis of popular…

  11. Mathematical Optimization Techniques

    NASA Technical Reports Server (NTRS)

    Bellman, R. (Editor)

    1963-01-01

    The papers collected in this volume were presented at the Symposium on Mathematical Optimization Techniques held in the Santa Monica Civic Auditorium, Santa Monica, California, on October 18-20, 1960. The objective of the symposium was to bring together, for the purpose of mutual education, mathematicians, scientists, and engineers interested in modern optimization techniques. Some 250 persons attended. The techniques discussed included recent developments in linear, integer, convex, and dynamic programming as well as the variational processes surrounding optimal guidance, flight trajectories, statistical decisions, structural configurations, and adaptive control systems. The symposium was sponsored jointly by the University of California, with assistance from the National Science Foundation, the Office of Naval Research, the National Aeronautics and Space Administration, and The RAND Corporation, through Air Force Project RAND.

  12. Map projections

    USGS Publications Warehouse

    ,

    1993-01-01

    A map projection is used to portray all or part of the round Earth on a flat surface. This cannot be done without some distortion. Every projection has its own set of advantages and disadvantages. There is no "best" projection. The mapmaker must select the one best suited to the needs, reducing distortion of the most important features. Mapmakers and mathematicians have devised almost limitless ways to project the image of the globe onto paper. Scientists at the U. S. Geological Survey have designed projections for their specific needs—such as the Space Oblique Mercator, which allows mapping from satellites with little or no distortion. This document gives the key properties, characteristics, and preferred uses of many historically important projections and of those frequently used by mapmakers today.

  13. Mathematical Sense, Mathematical Sensibility: The Role of the Secondary Geometry Course in Teaching Students to Be Like Mathematicians

    ERIC Educational Resources Information Center

    Weiss, Michael Kevin

    2009-01-01

    How can the secondary Geometry course serve as an opportunity for students to learn to "be like" a mathematician--that is, to acquire a mathematical sensibility? In the first part of this dissertation, I investigate what might be meant by "mathematical sensibility". By analyzing narratives of mathematicians and their work, I identify a collection…

  14. Implicit Theories of Creativity in Computer Science in the United States and China

    ERIC Educational Resources Information Center

    Tang, Chaoying; Baer, John; Kaufman, James C.

    2015-01-01

    To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…

  15. Intuitive Space Weather Displays to Improve Space Situational Awareness (SSA)

    DTIC Science & Technology

    2011-09-01

    parsimonious offering. After engaging several mathematicians and space physicists to devise valid computational formulas for aggregating the four hazard... PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aptima, Inc.,12 Gill Street Ste 200,Woburn,MA... physicists , the operational users find little use in receiving particle fluxes or magnetometer readings collected by the scientific community. Fortunately

  16. Professional mathematicians differ from controls in their spatial-numerical associations.

    PubMed

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  17. Calling computers names in Swedish

    DOE PAGES

    Carlsson, Johan

    2017-11-01

    I very much enjoyed reading Jim Fleming’s article on Carl-Gustaf Rossby and the seminal contributions Rossby made to meteorology. Furthermore, the otherwise excellent article has two errors. Something must have gotten lost in translation to cause Fleming to claim that “Rossby pursued numerical weather prediction in Sweden in an era in which there was no Swedish word for digital computer.” With applied mathematician Germund Dahlquist, Rossby developed a weather model for the Binär Elektronisk Sekvens Kalkylator (BESK; Binary Electronic Sequence Calculator). Designed and built in Sweden, BESK was the world’s fastest computer when it became operational in 1953. From Septembermore » 1954, BESK weather simulations enabled routine 24-hour national forecasts.« less

  18. Calling computers names in Swedish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson, Johan

    I very much enjoyed reading Jim Fleming’s article on Carl-Gustaf Rossby and the seminal contributions Rossby made to meteorology. Furthermore, the otherwise excellent article has two errors. Something must have gotten lost in translation to cause Fleming to claim that “Rossby pursued numerical weather prediction in Sweden in an era in which there was no Swedish word for digital computer.” With applied mathematician Germund Dahlquist, Rossby developed a weather model for the Binär Elektronisk Sekvens Kalkylator (BESK; Binary Electronic Sequence Calculator). Designed and built in Sweden, BESK was the world’s fastest computer when it became operational in 1953. From Septembermore » 1954, BESK weather simulations enabled routine 24-hour national forecasts.« less

  19. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  20. Chaotic dynamics in the physical sciences (Lewis Fry Richardson Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ott, Edward

    2017-04-01

    Chaos was discovered at the end of the 19th century by Poincare in his famous work on the motion of N>2 celestial bodies interacting through gravitational attraction. Although steady progress was made by mathematicians following Poincare's work, the widespread impact and development of chaos in the physical sciences is comparatively recent, i.e., approximately starting in the 1970's. This talk will review and comment on this history and will give some examples illustrating the types of questions, problems and results arising from perspectives resulting from the widespread participation of physical scientists in chaos research. One of these examples will be from our work on data assimilation for weather prediction [ Ott et al., Tellus A vol.56, 415 (2004); Patil, Phys. Rev. Lett. vol.86, 5878 (2001)].

  1. The Tunnels of Samos

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1995-01-01

    This 'Project Mathematics' series video from CalTech presents the tunnel of Samos, a famous underground aquaduct tunnel located near the capital of Pithagorion (named after the famed Greek mathematician, Pythagoras, who lived there), on one of the Greek islands. This tunnel was constructed around 600 BC by King Samos and was built under a nearby mountain. Through film footage and computer animation, the mathematical principles and concepts of why and how this aquaduct tunnel was built are explained.

  2. On the role of visual experience in mathematical development: Evidence from blind mathematicians.

    PubMed

    Amalric, Marie; Denghien, Isabelle; Dehaene, Stanislas

    2018-04-01

    Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n=1) or became blind during childhood (n=2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The challenge of computer mathematics.

    PubMed

    Barendregt, Henk; Wiedijk, Freek

    2005-10-15

    Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.

  4. Conversations about curriculum change: mathematical thinking and team-based learning in a discrete mathematics course

    NASA Astrophysics Data System (ADS)

    Paterson, Judy; Sneddon, Jamie

    2011-10-01

    This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused on what he calls the 'unspoken curriculum': mathematical thinking. We consider the ways in which the TBL model promoted and enabled this in the light of literature on mathematical thinking, sense-making and behaviours, and strongly suggest that this approach warrants more attention from the mathematics teaching community. We also discuss shifts in the mathematician's thinking about task construction as he refined the tasks to encourage students to think and behave like mathematicians.

  5. Developing the next generation of diverse computer scientists: the need for enhanced, intersectional computing identity theory

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sarah L.; Lehman, Kathleen

    2017-10-01

    This theoretical paper explores the need for enhanced, intersectional computing identity theory for the purpose of developing a diverse group of computer scientists for the future. Greater theoretical understanding of the identity formation process specifically for computing is needed in order to understand how students come to understand themselves as computer scientists. To ensure that the next generation of computer scientists is diverse, this paper presents a case for examining identity development intersectionally, understanding the ways in which women and underrepresented students may have difficulty identifying as computer scientists and be systematically oppressed in their pursuit of computer science careers. Through a review of the available scholarship, this paper suggests that creating greater theoretical understanding of the computing identity development process will inform the way in which educational stakeholders consider computer science practices and policies.

  6. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    PubMed

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  7. Graph Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for themore » representation of grammar formalisms.« less

  8. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  9. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  10. Computational methods in the pricing and risk management of modern financial derivatives

    NASA Astrophysics Data System (ADS)

    Deutsch, Hans-Peter

    1999-09-01

    In the last 20 years modern finance has developed into a complex mathematically challenging field. Very complicated risks exist in financial markets which need very advanced methods to measure and/or model them. The financial instruments invented by the market participants to trade these risk, the so called derivatives are usually even more complicated than the risks themselves and also sometimes generate new riks. Topics like random walks, stochastic differential equations, martingale measures, time series analysis, implied correlations, etc. are of common use in the field. This is why more and more people with a science background, such as physicists, mathematicians, or computer scientists, are entering the field of finance. The measurement and management of all theses risks is the key to the continuing success of banks. This talk gives insight into today's common methods of modern market risk management such as variance-covariance, historical simulation, Monte Carlo, “Greek” ratios, etc., including the statistical concepts on which they are based. Derivatives are at the same time the main reason for and the most effective means of conducting risk management. As such, they stand at the beginning and end of risk management. The valuation of derivatives and structured financial instruments is therefore the prerequisite, the condition sine qua non, for all risk management. This talk introduces some of the important valuation methods used in modern derivatives pricing such as present value, Black-Scholes, binomial trees, Monte Carlo, etc. In summary this talk highlights an area outside physics where there is a lot of interesting work to do, especially for physicists. Or as one of our consultants said: The fascinating thing about this job is that Arthur Andersen hired me not ALTHOUGH I am a physicist but BECAUSE I am a physicist.

  11. Virtual Observatories, Data Mining, and Astroinformatics

    NASA Astrophysics Data System (ADS)

    Borne, Kirk

    The historical, current, and future trends in knowledge discovery from data in astronomy are presented here. The story begins with a brief history of data gathering and data organization. A description of the development ofnew information science technologies for astronomical discovery is then presented. Among these are e-Science and the virtual observatory, with its data discovery, access, display, and integration protocols; astroinformatics and data mining for exploratory data analysis, information extraction, and knowledge discovery from distributed data collections; new sky surveys' databases, including rich multivariate observational parameter sets for large numbers of objects; and the emerging discipline of data-oriented astronomical research, called astroinformatics. Astroinformatics is described as the fourth paradigm of astronomical research, following the three traditional research methodologies: observation, theory, and computation/modeling. Astroinformatics research areas include machine learning, data mining, visualization, statistics, semantic science, and scientific data management.Each of these areas is now an active research discipline, with significantscience-enabling applications in astronomy. Research challenges and sample research scenarios are presented in these areas, in addition to sample algorithms for data-oriented research. These information science technologies enable scientific knowledge discovery from the increasingly large and complex data collections in astronomy. The education and training of the modern astronomy student must consequently include skill development in these areas, whose practitioners have traditionally been limited to applied mathematicians, computer scientists, and statisticians. Modern astronomical researchers must cross these traditional discipline boundaries, thereby borrowing the best of breed methodologies from multiple disciplines. In the era of large sky surveys and numerous large telescopes, the potential for astronomical discovery is equally large, and so the data-oriented research methods, algorithms, and techniques that are presented here will enable the greatest discovery potential from the ever-growing data and information resources in astronomy.

  12. The collaboration between anatomists and mathematicians in the mid-seventeenth century with a study of images as experiments and Galileo's role in Steno's Myology.

    PubMed

    Meli, Domenico Bertoloni

    2008-01-01

    Moving from Paris, Pisa, and Oxford to London, Amsterdam, and Cambridge, this essay documents extensive collaborations between anatomists and mathematicians. At a time when no standard way to acknowledge collaboration existed, it is remarkable that in all the cases I discuss anatomists expressed in print their debt to mathematicians. The cases I analyze document an extraordinarily fertile period in the history of anatomy and science and call into question historiographic divisions among historians of science and medicine. I focus on Steno's Myology, showing how his collaboration with mathematician Viviani led to a geometrical treatment of muscular contraction and to an epistemology inspired by Galileo. The collaboration between Steno and Viviani enables us to interpret a major text in the history of anatomy, one whose implications had so far eluded historians.

  13. Better Than Earth

    NASA Astrophysics Data System (ADS)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  14. Reflections concerning triply-periodic minimal surfaces.

    PubMed

    Schoen, Alan H

    2012-10-06

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau-Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346-362).

  15. Reflections concerning triply-periodic minimal surfaces

    PubMed Central

    Schoen, Alan H.

    2012-01-01

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau–Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346–362). PMID:24098851

  16. Modelling spatiotemporal change using multidimensional arrays Meng

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Appel, Marius; Pebesma, Edzer

    2017-04-01

    The large variety of remote sensors, model simulations, and in-situ records provide great opportunities to model environmental change. The massive amount of high-dimensional data calls for methods to integrate data from various sources and to analyse spatiotemporal and thematic information jointly. An array is a collection of elements ordered and indexed in arbitrary dimensions, which naturally represent spatiotemporal phenomena that are identified by their geographic locations and recording time. In addition, array regridding (e.g., resampling, down-/up-scaling), dimension reduction, and spatiotemporal statistical algorithms are readily applicable to arrays. However, the role of arrays in big geoscientific data analysis has not been systematically studied: How can arrays discretise continuous spatiotemporal phenomena? How can arrays facilitate the extraction of multidimensional information? How can arrays provide a clean, scalable and reproducible change modelling process that is communicable between mathematicians, computer scientist, Earth system scientist and stakeholders? This study emphasises on detecting spatiotemporal change using satellite image time series. Current change detection methods using satellite image time series commonly analyse data in separate steps: 1) forming a vegetation index, 2) conducting time series analysis on each pixel, and 3) post-processing and mapping time series analysis results, which does not consider spatiotemporal correlations and ignores much of the spectral information. Multidimensional information can be better extracted by jointly considering spatial, spectral, and temporal information. To approach this goal, we use principal component analysis to extract multispectral information and spatial autoregressive models to account for spatial correlation in residual based time series structural change modelling. We also discuss the potential of multivariate non-parametric time series structural change methods, hierarchical modelling, and extreme event detection methods to model spatiotemporal change. We show how array operations can facilitate expressing these methods, and how the open-source array data management and analytics software SciDB and R can be used to scale the process and make it easily reproducible.

  17. Recruitment of Foreigners in the Market for Computer Scientists in the United States

    PubMed Central

    Bound, John; Braga, Breno; Golden, Joseph M.

    2016-01-01

    We present and calibrate a dynamic model that characterizes the labor market for computer scientists. In our model, firms can recruit computer scientists from recently graduated college students, from STEM workers working in other occupations or from a pool of foreign talent. Counterfactual simulations suggest that wages for computer scientists would have been 2.8–3.8% higher, and the number of Americans employed as computers scientists would have been 7.0–13.6% higher in 2004 if firms could not hire more foreigners than they could in 1994. In contrast, total CS employment would have been 3.8–9.0% lower, and consequently output smaller. PMID:27170827

  18. The Transition from Mathematician to Astrophysicist

    NASA Astrophysics Data System (ADS)

    Flannery, M. R.

    Various landmarks in the evolution of Alexander Dalgarno from a gifted mathematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted.

  19. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    PubMed

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  20. Numerical methods for studying anharmonic oscillator approximations to the phi super 4 sub 2 quantum field theory

    NASA Technical Reports Server (NTRS)

    Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.

    1980-01-01

    This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.

  1. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema

    Andy Nonaka

    2017-12-09

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.

  2. Sines and Cosines. Part 3 of 3

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1994-01-01

    In this 'Project Mathematics' series video, the addition formulas of sines and cosines are explained and their real life applications are demonstrated. Both film footage and computer animation is used. Several mathematical concepts are discussed and include: Ptolemy's theorem concerned with quadrilaterals; the difference between a central angle and an inscribed angle; sines and chord lengths; special angles; subtraction formulas; and a application to simple harmonic motion. A brief history of the city Alexandria, its mathematicians, and their contribution to the field of mathematics is shown.

  3. Mathematics delivering the advantage: the role of mathematicians in manufacturing and beyond.

    PubMed

    Saward, Vicki

    2017-05-01

    Much has been written about the benefits that mathematics can bring to the UK economy and the manufacturing sector in particular, but less on the value of mathematicians and a mathematical training. This article, written from an industry perspective, considers the value of mathematicians to the UK's industrial base and the importance to the UK economy of encouraging young people in the UK to choose to study mathematics at school as a gateway to a wide range of careers. The points are illustrated using examples from the author's 20 years' experience in the security and intelligence and manufacturing sectors.

  4. Accommodation in the formal world of mathematical thinking

    NASA Astrophysics Data System (ADS)

    Stewart, Sepideh; Schmidt, Ralf

    2017-11-01

    In this study, we examined a mathematician and one of his students' teaching journals and thought processes concurrently as the class was moving towards the proof of the Fundamental Theorem of Galois Theory. We employed Tall's framework of three worlds of mathematical thinking as well as Piaget's notion of accommodation to theoretically study the narratives. This paper reveals the pedagogical challenges of proving an elegant theory as the events unfolded. Although the mathematician was conscious of the students' abilities as he carefully made the path accessible, the disparity between the mind of the mathematician and the student became apparent.

  5. Making Mathematics.

    ERIC Educational Resources Information Center

    Huckstep, Peter

    2002-01-01

    Contends teachers must resist the temptation to suggest that, while children can create stories and melodies, they cannot create mathematics. Quotes mathematician G. H. Hardy: "A mathematician, like a painter or poet, is a 'maker' of patterns." Considers mathematics should be able to stand up for itself. (BT)

  6. The Vector Calculus Gap: Mathematics (Does Not Equal) Physics.

    ERIC Educational Resources Information Center

    Dray, Tevian; Manogue, Corinne A.

    1999-01-01

    Discusses some of the differences between the ways mathematicians and physicists view vector calculus and the gap between the way this material is traditionally taught by mathematicians and the way physicists use it. Suggests some ways to narrow the gap. (Author/ASK)

  7. REVIEWS OF TOPICAL PROBLEMS: Analytic calculations on digital computers for applications in physics and mathematics

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.

    1980-01-01

    The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.

  8. The Story of PI

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1989-01-01

    The early history and the uses of the mathematical notation - pi - are presented through both film footage and computer animation in this 'Project Mathematics' series video. Pi comes from the first letter in the Greek word for perimeter. Archimedes, and early Greek mathematician, formulated the equations for the computation of a circle's area using pi and was the first person to seriously approximate pi numerically, although only to a few decimal places. By 1985, pi had been approximated to over one billion decimal places and was found to have no repeating pattern. One use of pi is the application of its approximation calculation as an analytical tool for determining the accuracy of supercomputers and software designs.

  9. Giftedness and Aesthetics: Perspectives of Expert Mathematicians and Mathematically Gifted Students

    ERIC Educational Resources Information Center

    Tjoe, Hartono

    2015-01-01

    Giftedness in mathematics has been characterized by exceptional attributes including strong mathematical memory, formalizing perception, generalization, curtailment, flexibility, and elegance. Focusing on the last attribute, this study examined the following: (a) the criteria which expert mathematicians and mathematically gifted students fleshed…

  10. Mathematics delivering the advantage: the role of mathematicians in manufacturing and beyond

    PubMed Central

    2017-01-01

    Much has been written about the benefits that mathematics can bring to the UK economy and the manufacturing sector in particular, but less on the value of mathematicians and a mathematical training. This article, written from an industry perspective, considers the value of mathematicians to the UK's industrial base and the importance to the UK economy of encouraging young people in the UK to choose to study mathematics at school as a gateway to a wide range of careers. The points are illustrated using examples from the author's 20 years' experience in the security and intelligence and manufacturing sectors. PMID:28588416

  11. The emergence of modern statistics in agricultural science: analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919-1933.

    PubMed

    Parolini, Giuditta

    2015-01-01

    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.

  12. Mathematicians and the Selection Task

    ERIC Educational Resources Information Center

    Inglis, Matthew; Simpson, Adrian

    2004-01-01

    Learning to think logically and present ideas in a logical fashion has always been considered a central part of becoming a mathematician. In this paper we compare the performance of three groups: mathematics undergraduates, mathematics staff and history undergraduates (representative of a "general population"). These groups were asked to solve…

  13. The Great Mathematician Project

    ERIC Educational Resources Information Center

    Goldberg, Sabrina R.

    2013-01-01

    The Great Mathematician Project (GMP) introduces both mathematically sophisticated and struggling students to the history of mathematics. The rationale for the GMP is twofold: first, mathematics is a uniquely people-centered discipline that is used to make sense of the world; and second, students often express curiosity about the history of…

  14. Final Technical Progress Report; Closeout Certifications; CSSV Newsletter Volume I; CSSV Newsletter Volume II; CSSV Activity Journal; CSSV Final Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, Johnny L; Geter, Kerry

    This Project?s third year of implementation in 2007-2008, the final year, as designated by Elizabeth City State University (ECSU), in cooperation with the National Association of Mathematicians (NAM) Inc., in an effort to promote research and research training programs in computational science ? scientific visualization (CSSV). A major goal of the Project was to attract the energetic and productive faculty, graduate and upper division undergraduate students of diverse ethnicities to a program that investigates science and computational science issues of long-term interest to the Department of Energy (DoE) and the nation. The breadth and depth of computational science?scientific visualization andmore » the magnitude of resources available are enormous for permitting a variety of research activities. ECSU?s Computational Science-Science Visualization Center will serve as a conduit for directing users to these enormous resources.« less

  15. [Jena philosophies of nature around 1800].

    PubMed

    Breidbach, O

    2000-01-01

    This paper describes the situation and the outline of positions in philosophy of nature in Jena about 1800, in focusing on research other than the key figures Schelling and Hegel. In 1789, Schelling introduced philosophy of nature into the course program of Jena University. Already in 1800, two young scientists--a mathematician (Fischer) and a physiologist--reacted, announcing lectures on Schellingian topics. But only in late 1802, younger philosophers offered courses on those topics. From 1802 onwards, lectures were announced by Schad, Krause, Henrici, Hegel, Oken and the botanist Schelver. Apart from the Fisher lecture from 1800, the program of these presentations was based on Schellingian principles. Analyses of the ideas of Schad, Krause and Schelver show that, about 1800, philosophy of nature in Jena conserved basic ideas of the early philosophy of nature of Schelling. Thus, philosophy of nature in this period of Jena University seemed to follow just one line of reasoning.

  16. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  17. National Calendar-2009

    NASA Astrophysics Data System (ADS)

    Ghedrovici, Vera; Svet, Maria; Matvei, Valeria; Perju, Elena; Sargun, Maria; Netida, Maria

    2009-10-01

    The calendar represents a few hundreds of biographies of scientists, artists and writers from everywhere, printed in chronological order and adjusted to their birthdays. A number of international and national holydays, including some refering to science are included in the Calendar. A great deffect of the Calendar is the introduction in the list of holydays of the "international day of astrology". Another defect is the absence of the indication of the membership to Communist Parties for persons cited from the former USSR and former Communist Countries. The following physicists, astronomers and mathematicians had biographies in the actual issue: Kon, Lia Z., Arnautov, Vladimir I. (math), Tsukerblat, B., Kapitza, P., Donici (Donitch), N.N., Sklodowska-Curie, Maria, da Vinci, Leonardo, Birkhof, George David, Galilei, Galileo, Pisarzhveskij, Lev (chemist), Mossbauer, Rudolf Ludwig, Clochisner (Klokishner), Sofia I., Miscoi (Mishkoy), Gh. (Math), Mendel, Gregor Lohan (genet.), Glavan, Vasile (math), Chetrus (Ketrush), P. (chem), Bostan, Ion (mech. eng.), Boltzmann, Ludwig Ed.

  18. Prophet”or Professor? The Life and Work of Lewis Fry Richardson

    NASA Astrophysics Data System (ADS)

    Smagorinsky, Joseph

    This book focuses on a man who, in his lifetime, was scarcely known to the general public. Yet within certain circles, Richardson has had enormous impact within recent years. Although there are many scientists and humanists who exercise influence in their own respective fields, rarely do they bridge disciplines. It is this combination that has made Lewis Fry Richardson a figure worthy of a full-length biography, not just to record his contributions to each field but to provide an analysis and understanding of what motivated his diversity. In another age, Richardson would have been counted as a Renaissance man. He has variously been referred to as a chemist, physicist, mathematician, psychologist, meteorologist, economist, and biologist. In retrospect, he clearly was well ahead of his time, whether the subject in question was his work in numerical weather prediction or in war studies.

  19. [Thomas Fincke and trigonometry].

    PubMed

    Schönbeck, Jürgen

    2004-01-01

    Thomas Fincke (January 6th, 1561 - April 24th, 1650), born in Flensburg (Germany), was one of the very most important and significant scientists in Denmark during the seventeenth century, a mathematician and astrologer and physician in the beginning of modern science, a representative of humanism and an influentual academic organizer. He studied in Strasbourg (since 1577) and Padua (since 1583) and received his M.D. in Basel (1587), he practised as a physician throughtout his life (since 1587 or 1590) and became a professor at Copenhagen (1591). But he was best known because of his Geometriae rotundi libri XIIII (1583), a famous book on plane and spherical trigonometry, based not on Euclid but on Petrus Ramus. In this influentual work, in which Fincke introduced the terms tangent and secant and probable first noticed the Law of Tangents and the so-called Newton-Oppel-Mauduit-Simpson-Mollweide-Gauss-formula, he showed himself to be ,,abreast of the mathematics of his time".

  20. 2017 ISCB Accomplishment by a Senior Scientist Award: Pavel Pevzner

    PubMed Central

    Fogg, Christiana N.; Kovats, Diane E.; Berger, Bonnie

    2017-01-01

    The International Society for Computational Biology ( ISCB) recognizes an established scientist each year with the Accomplishment by a Senior Scientist Award for significant contributions he or she has made to the field. This award honors scientists who have contributed to the advancement of computational biology and bioinformatics through their research, service, and education work. Pavel Pevzner, PhD, Ronald R. Taylor Professor of Computer Science and Director of the NIH Center for Computational Mass Spectrometry at University of California, San Diego, has been selected as the winner of the 2017 Accomplishment by a Senior Scientist Award. The ISCB awards committee, chaired by Dr. Bonnie Berger of the Massachusetts Institute of Technology, selected Pevzner as the 2017 winner. Pevzner will receive his award and deliver a keynote address at the 2017 Intelligent Systems for Molecular Biology-European Conference on Computational Biology joint meeting ( ISMB/ECCB 2017) held in Prague, Czech Republic from July 21-July 25, 2017. ISMB/ECCB is a biennial joint meeting that brings together leading scientists in computational biology and bioinformatics from around the globe. PMID:28713548

  1. Three Styles Characterising Mathematicians' Pedagogical Perspectives on Proof

    ERIC Educational Resources Information Center

    Hemmi, Kirsti

    2010-01-01

    The article describes mathematicians' pedagogical perspectives on proof in the teaching of first year university students at a mathematics department in Sweden. A conceptual frame that was used in the data analysis combines theories about proof from earlier mathematics education research with a social practice approach of Lave and Wenger. A…

  2. How Mathematicians Obtain Conviction: Implications for Mathematics Instruction and Research on Epistemic Cognition

    ERIC Educational Resources Information Center

    Weber, Keith; Inglis, Matthew; Mejia-Ramos, Juan Pablo

    2014-01-01

    The received view of mathematical practice is that mathematicians gain certainty in mathematical assertions by deductive evidence rather than empirical or authoritarian evidence. This assumption has influenced mathematics instruction where students are expected to justify assertions with deductive arguments rather than by checking the assertion…

  3. Expert and Novice Approaches to Reading Mathematical Proofs

    ERIC Educational Resources Information Center

    Inglis, Matthew; Alcock, Lara

    2012-01-01

    A comparison of the proof validation behavior of beginning undergraduate students and research-active mathematicians is explored. Participants' eye movements were recorded as they validated purported proofs. The main findings are that (a) contrary to previous suggestions, mathematicians sometimes appear to disagree about the validity of even short…

  4. Mathematicians' and Math Educators' Views on "Doing Mathematics"

    ERIC Educational Resources Information Center

    Brandt, Jim; Lunt, Jana; Meilstrup, Gretchen Rimmasch

    2016-01-01

    Educators often argue that mathematics should be taught so that the students in the course are actually "doing mathematics." Is there a consensus among mathematicians and mathematics educators as to the meaning of "doing mathematics?" In an effort to answer this question, we administered a survey to hundreds of university-level…

  5. CIMAC: A Coordinated Introduction to Calculus and Mechanics

    NASA Astrophysics Data System (ADS)

    Fathe, Laurie; Quinn, Jennifer; McDonald, Michael A.

    1997-04-01

    CIMAC, new course incorporating Mechanics, Precalculus, and Calculus, targets the growing number of motivated but underprepared students who wish to pursue a major in science or mathematics. Team-taught by a Physicist and a Mathematician, CIMAC, a new course incorporating Mechanics, Precalculus, and Calculus, targets the growing number of motivated but underprepared students who wish to pursue a major in science or mathematics. Team-taught by a Physicist and a Mathematician, the class contains specific content while exploiting the substantial commonality of these subjects. CIMAC also addresses variety of non-content areas, including supplementing basic mathematics and communication skills, accommodating various learning styles, and building student confidence. Specific approaches include class formats; gateway exams; group assignments; emphasis on writing and reading; use of computers and graphing calculators for comprehension, data acquisition, analysis, and modeling; student-led help sessions; and use of the Web http://www.oxy.edu/ departments/math/cimac/ This talk highlights the development of the course and teaching insights and innovations which have arisen from it, and addresses benefits and difficulties of coordinating material and team teaching across disciplinary lines. Finally, it presents data on student success and retention.

  6. BOOK REVIEW: Symmetry and the Monster: One of the Greatest Quests of Mathematics

    NASA Astrophysics Data System (ADS)

    Szabo, R. J.

    2007-04-01

    The book Symmetry and the Monster: One of the Greatest Quests of Mathematics describes historical events leading up to the discovery of the Monster sporadic group, the largest simple sporadic group. It also expounds the significance and deep relationships between this group and other areas of mathematics and theoretical physics. It begins, in the prologue, with a nice overview of some of the mathematical drama surrounding the discovery of the Monster and its subsequent relationship to number theory (the so-called Moonshine conjectures). From a historical perspective, the book traces back to the roots of group theory, Galois theory, and steadily runs through time through the many famous mathematicians who contributed to group theory, including Lie, Killing and Cartan. Throughout, the author has provided a very nice and deep insight into the sociological and scientific problems at the time, and gives the reader a very prominent inside view of the real people behind the mathematics. The book should be an enjoyable read to anyone with an interest in the history of mathematics. For the non-mathematician the book makes a good, and mostly successful, attempt at being non-technical. Technical mathematical jargon is replaced with more heuristic, intuitive terminology, making the mathematical descriptions in the book fairly easy going. A glossary\\hspace{0.25pc} of\\hspace{0.25pc} terminology for noindent the more scientifically inclined is included in various footnotes throughout the book and in a comprehensive listing at the end of the book. Some more technical material is also included in the form of appendices at the end of the book. Some aspects of physics are also explained in a simple, intuitive way. The author further attempts at various places to give the non-specialist a glimpse into what mathematical proof is all about, and explains the difficulties and technicalities involved in this very nicely (for instance, he mentions the various 100+ page articles that appeared in the hey-day of finite group theory, indicating the enormous technical nature of the subject). The book nicely paints a dramatic landscape leading up to the discovery of the Monster group, and the problems that remain to this day in trying to understand its significance. One can really take from this book a feel of the mathematics leading up to its appearance, and the importance of the classification problem which was responsible for this. One also really gets an appreciation of the efforts and commitments of the mathematicians who contributed to the subject. All in all, this book achieves a nice balance between providing a beautiful historical account of group theory, and explaining the classification problem for finite groups in a way that is accessible to non-scientists. This should prove to be a good read for both the layperson interested in mathematics or mathematical physics, and also both mathematicians and physicists alike.

  7. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema

    Applin, Bradford; Almgren, Ann S.; Nonaka, Andy

    2018-05-11

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html

  8. Calculating degree-based topological indices of dominating David derived networks

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Saeed; Nazeer, Waqas; Kang, Shin Min; Imran, Muhammad; Gao, Wei

    2017-12-01

    An important area of applied mathematics is the Chemical reaction network theory. The behavior of real world problems can be modeled by using this theory. Due to applications in theoretical chemistry and biochemistry, it has attracted researchers since its foundation. It also attracts pure mathematicians because it involves interesting mathematical structures. In this report, we compute newly defined topological indices, namely, Arithmetic-Geometric index (AG1 index), SK index, SK1 index, and SK2 index of the dominating David derived networks [1, 2, 3, 4, 5].

  9. Preface: SciDAC 2005

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2005-01-01

    On 26-30 June 2005 at the Grand Hyatt on Union Square in San Francisco several hundred computational scientists from around the world came together for what can certainly be described as a celebration of computational science. Scientists from the SciDAC Program and scientists from other agencies and nations were joined by applied mathematicians and computer scientists to highlight the many successes in the past year where computation has led to scientific discovery in a variety of fields: lattice quantum chromodynamics, accelerator modeling, chemistry, biology, materials science, Earth and climate science, astrophysics, and combustion and fusion energy science. Also highlighted were the advances in numerical methods and computer science, and the multidisciplinary collaboration cutting across science, mathematics, and computer science that enabled these discoveries. The SciDAC Program was conceived and funded by the US Department of Energy Office of Science. It is the Office of Science's premier computational science program founded on what is arguably the perfect formula: the priority and focus is science and scientific discovery, with the understanding that the full arsenal of `enabling technologies' in applied mathematics and computer science must be brought to bear if we are to have any hope of attacking and ultimately solving today's computational Grand Challenge problems. The SciDAC Program has been in existence for four years, and many of the computational scientists funded by this program will tell you that the program has given them the hope of addressing their scientific problems in full realism for the very first time. Many of these scientists will also tell you that SciDAC has also fundamentally changed the way they do computational science. We begin this volume with one of DOE's great traditions, and core missions: energy research. As we will see, computation has been seminal to the critical advances that have been made in this arena. Of course, to understand our world, whether it is to understand its very nature or to understand it so as to control it for practical application, will require explorations on all of its scales. Computational science has been no less an important tool in this arena than it has been in the arena of energy research. From explorations of quantum chromodynamics, the fundamental theory that describes how quarks make up the protons and neutrons of which we are composed, to explorations of the complex biomolecules that are the building blocks of life, to explorations of some of the most violent phenomena in our universe and of the Universe itself, computation has provided not only significant insight, but often the only means by which we have been able to explore these complex, multicomponent systems and by which we have been able to achieve scientific discovery and understanding. While our ultimate target remains scientific discovery, it certainly can be said that at a fundamental level the world is mathematical. Equations ultimately govern the evolution of the systems of interest to us, be they physical, chemical, or biological systems. The development and choice of discretizations of these underlying equations is often a critical deciding factor in whether or not one is able to model such systems stably, faithfully, and practically, and in turn, the algorithms to solve the resultant discrete equations are the complementary, critical ingredient in the recipe to model the natural world. The use of parallel computing platforms, especially at the TeraScale, and the trend toward even larger numbers of processors, continue to present significant challenges in the development and implementation of these algorithms. Computational scientists often speak of their `workflows'. A workflow, as the name suggests, is the sum total of all complex and interlocking tasks, from simulation set up, execution, and I/O, to visualization and scientific discovery, through which the advancement in our understanding of the natural world is realized. For the computational scientist, enabling such workflows presents myriad, signiflcant challenges, and it is computer scientists that are called upon at such times to address these challenges. Simulations are currently generating data at the staggering rate of tens of TeraBytes per simulation, over the course of days. In the next few years, these data generation rates are expected to climb exponentially to hundreds of TeraBytes per simulation, performed over the course of months. The output, management, movement, analysis, and visualization of these data will be our key to unlocking the scientific discoveries buried within the data. And there is no hope of generating such data to begin with, or of scientific discovery, without stable computing platforms and a sufficiently high and sustained performance of scientific applications codes on them. Thus, scientific discovery in the realm of computational science at the TeraScale and beyond will occur at the intersection of science, applied mathematics, and computer science. The SciDAC Program was constructed to mirror this reality, and the pages that follow are a testament to the efficacy of such an approach. We would like to acknowledge the individuals on whose talents and efforts the success of SciDAC 2005 was based. Special thanks go to Betsy Riley for her work on the SciDAC 2005 Web site and meeting agenda, for lining up our corporate sponsors, for coordinating all media communications, and for her efforts in processing the proceedings contributions, to Sherry Hempfling for coordinating the overall SciDAC 2005 meeting planning, for handling a significant share of its associated communications, and for coordinating with the ORNL Conference Center and Grand Hyatt, to Angela Harris for producing many of the documents and records on which our meeting planning was based and for her efforts in coordinating with ORNL Graphics Services, to Angie Beach of the ORNL Conference Center for her efforts in procurement and setting up and executing the contracts with the hotel, and to John Bui and John Smith for their superb wireless networking and A/V set up and support. We are grateful for the relentless efforts of all of these individuals, their remarkable talents, and for the joy of working with them during this past year. They were the cornerstones of SciDAC 2005. Thanks also go to Kymba A'Hearn and Patty Boyd for on-site registration, Brittany Hagen for administrative support, Bruce Johnston for netcast support, Tim Jones for help with the proceedings and Web site, Sherry Lamb for housing and registration, Cindy Lathum for Web site design, Carolyn Peters for on-site registration, and Dami Rich for graphic design. And we would like to express our appreciation to the Oak Ridge National Laboratory, especially Jeff Nichols, the Argonne National Laboratory, the Lawrence Berkeley National Laboratory, and to our corporate sponsors, Cray, IBM, Intel, and SGI, for their support. We would like to extend special thanks also to our plenary speakers, technical speakers, poster presenters, and panelists for all of their efforts on behalf of SciDAC 2005 and for their remarkable achievements and contributions. We would like to express our deep appreciation to Lali Chatterjee, Graham Douglas and Margaret Smith of Institute of Physics Publishing, who worked tirelessly in order to provide us with this finished volume within two months, which is nothing short of miraculous. Finally, we wish to express our heartfelt thanks to Michael Strayer, SciDAC Director, whose vision it was to focus SciDAC 2005 on scientific discovery, around which all of the excitement we experienced revolved, and to our DOE SciDAC program managers, especially Fred Johnson, for their support, input, and help throughout.

  10. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  11. Final Report of Cambridge Conference on School Mathematics, January 1962 - August 1970.

    ERIC Educational Resources Information Center

    Cambridge Conference on School Mathematics, Newton, MA.

    The Cambridge Conference on School Mathematics (CCSM) was an association of prominent mathematicians who had a concern for mathematics education at school level, from kindergarten through grade twelve. These mathematicians organized three main conferences in three areas of mathematics education, and have carried on activities related to the…

  12. The Experience of Security in Mathematics

    ERIC Educational Resources Information Center

    Charalampous, Eleni; Rowland, Tim

    2013-01-01

    In this paper, we report some findings from an investigation of a topic related to affect and mathematics which is not well-represented in the literature. For some mathematicians, mathematics itself is a source of security in an uncertain world, and we investigated this feeling and experience in the case of 19 adult mathematicians working in…

  13. How Do Mathematicians Learn Math?: Resources and Acts for Constructing and Understanding Mathematics

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle H.; Wilensky, Uri J.

    2011-01-01

    In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a "network of mathematical resources" by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyze the reasoning of ten mathematicians and mathematics…

  14. Imagining the Mathematician: Young People Talking about Popular Representations of Maths

    ERIC Educational Resources Information Center

    Epstein, Debbie; Mendick, Heather; Moreau, Marie-Pierre

    2010-01-01

    This paper makes both a critical analysis of some popular cultural texts about mathematics and mathematicians, and explores the ways in which young people deploy the discourses produced in these texts. We argue that there are particular (and sometimes contradictory) meanings and discourses about mathematics that circulate in popular culture, that…

  15. Learning at the Boundaries: Collaboration between Mathematicians and Mathematics Educators within and across Institutions

    ERIC Educational Resources Information Center

    Bennison, Anne; Goos, Merrilyn

    2016-01-01

    Collaboration between mathematicians and mathematics educators may provide a means of improving the quality of pre-service teacher education for prospective teachers of mathematics. Some preliminary findings of a project that investigates this type of interdisciplinary collaboration, both within and across institutions, are reported on in this…

  16. A Fruitful Exchange/Conflict: Engineers and Mathematicians in Early Modern Italy

    ERIC Educational Resources Information Center

    Maffioli, Cesare S.

    2013-01-01

    Exchanges of learning and controversies between engineers and mathematicians were important factors in the development of early modern science. This theme is discussed by focusing, first, on architectural and mathematical dynamism in mid 16th-century Milan. While some engineers-architects referred to Euclid and Vitruvius for improving their…

  17. Teachers' Beliefs about School Mathematics and Mathematicians' Mathematics and Their Relationship to Practice

    ERIC Educational Resources Information Center

    Beswick, Kim

    2012-01-01

    There is broad acceptance that mathematics teachers' beliefs about the nature of mathematics influence the ways in which they teach the subject. It is also recognised that mathematics as practised in typical school classrooms is different from the mathematical activity of mathematicians. This paper presents case studies of two secondary…

  18. Increasing Awareness of Practice through Interaction across Communities: The Lived Experiences of a Mathematician and Mathematics Teacher Educator

    ERIC Educational Resources Information Center

    Bleiler, Sarah K.

    2015-01-01

    Collaborations between mathematicians and mathematics teacher educators are increasingly being expected, and realized, within the context of mathematics teacher education. Most research related to collaborative efforts between members of the mathematics and mathematics education communities has focused on the products, rather than the process of…

  19. Conversations about Curriculum Change: Mathematical Thinking and Team-Based Learning in a Discrete Mathematics Course

    ERIC Educational Resources Information Center

    Paterson, Judy; Sneddon, Jamie

    2011-01-01

    This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…

  20. Examining the Image of Prospective Teachers towards Mathematicians

    ERIC Educational Resources Information Center

    Yazlik, Derya Ozlem; Erdogan, Ahmet

    2018-01-01

    The aim of this study is to identify how prospective teachers see mathematicians by the pictures they visualized. In accordance with this purpose phenomenology pattern which is one of the qualitative patterns was used. The study was carried out with 160 volunteered prospective teachers. The data collection tool to be used in this study consists of…

  1. John Todd--Numerical Mathematics Pioneer

    ERIC Educational Resources Information Center

    Albers, Don

    2007-01-01

    John Todd, now in his mid-90s, began his career as a pure mathematician, but World War II interrupted that. In this interview, he talks about his education, the significant developments in his becoming a numerical analyst, and the journey that concluded at Caltech. Among the interesting stories are how he met his wife-to-be the mathematician Olga…

  2. My Experience with Alcohol, a 17th-Century Mathematician, and a Personal Decision

    ERIC Educational Resources Information Center

    Eaton, Dennis R.; Rector, Sheila M.

    2009-01-01

    This writing shares the first author's personal experience with alcohol, the negative consequences of his choices, and the ultimate answering of the question, "Am I an alcoholic and should I drink again?" The decision-making process and the eventual answer come from Blaise Pascal, a 17th-century mathematician. This process is explained and…

  3. Voices of Women Mathematicians: Understanding Their Success Using a Narrative Approach to Inquiry.

    ERIC Educational Resources Information Center

    Anderson, Dawn Leigh

    This study investigated the lives of six women mathematicians to describe the factors and experiences that led each woman to become successful in mathematics. Because "voice" was used as a metaphor in this study, emphasis was placed on listening to and interpreting the participants' voices. The study used narrative inquiry to investigate…

  4. The Academic and the Everyday in Mathematicians' Talk: The Case of the Hyper-Bagel

    ERIC Educational Resources Information Center

    Barwell, Richard

    2013-01-01

    Mathematics curricula increasingly emphasise the importance of mathematical communication. Students are seen as progressing from the use of a more informal or everyday form of communication to a more mathematical approach. There have, however, been very few studies of how mathematicians actually talk about mathematics. This paper reports analysis…

  5. Mathematical Experiences and Parental Involvement of Parents Who Are and Who Are Not Mathematicians

    ERIC Educational Resources Information Center

    Antolin Drešar, Darja; Lipovec, Alenka

    2017-01-01

    Previous studies suggest that parental involvement in children's mathematics education is more established for parents who feel competent in mathematics. This qualitative study aimed to gain an in-depth insight into the experiences of parental involvement of two different groups of parents: those who are mathematicians and those who are not. Data…

  6. Mary Somerville, mathematician and astronomer of underused talents

    NASA Astrophysics Data System (ADS)

    Bruck, M. T.

    1996-08-01

    Mary Somerville (1780-1872), self-taught mathematician, expert on theoretical astronomy and successful writer, has been described as `the most remarkable woman of her generation'. The publication of her mathematical treatise The Mechanism of the Heavens in 1831, followed by the more popular Connexion of the Physical Sciences in 1834, made her an international celebrity. Her life and work is described.

  7. "I Can Actually Be Very Feminine Here": Contradiction and Hybridity in becoming a Female Mathematician

    ERIC Educational Resources Information Center

    Solomon, Yvette; Radovic, Darinka; Black, Laura

    2016-01-01

    A common theme in accounts of choosing mathematics is that of persistence in the face of troubles or difficulties which are often associated with the structuring effects of gender, class, culture and ethnicity. Centring on an analysis of one woman's account of becoming a mathematician, we build on our understanding of multiple and developing…

  8. Why and How Mathematicians Read Proofs: An Exploratory Study

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2011-01-01

    In this paper, we report a study in which nine research mathematicians were interviewed with regard to the goals guiding their reading of published proofs and the type of reasoning they use to reach these goals. Using the data from this study as well as data from a separate study (Weber, "Journal for Research in Mathematics Education" 39:431-459,…

  9. Acting Like a Mathematician: A Project to Encourage Inquiry Early in the Math Major

    ERIC Educational Resources Information Center

    Camenga, Kristin A.

    2017-01-01

    Inquiry is promoted as a way to engage students so that they learn more deeply; inquiry is also an end in itself, introducing students to the research process and the behaviors of a mathematician. This article reflects on an individual exploratory project used in a sophomore-level number theory course, examining how it supported student inquiry…

  10. Multicultural and Gender Equity Issues in a History of Mathematics Course: Not Only Dead European Males

    ERIC Educational Resources Information Center

    Flores, Alfinio; Kimpton, Kelly E.

    2012-01-01

    We address issues related to gender and cultural equity in a history of mathematics course. We first look at the preponderance of male European mathematicians represented in textbooks of mathematics and history or mathematics. Then we discuss ways to highlight the presence of female and non-European mathematicians in the history of mathematics.…

  11. The Influence of Sources in the Reading of Mathematical Text: A Reply to Shanahan, Shanahan, and Misischia

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2013-01-01

    In a recent article published in this journal, Shanahan, Shanahan, and Misischia investigated the differences in how chemists, historians, and mathematicians read text specific to their disciplines. Unlike the chemists and historians, the pair of mathematicians in this study did not consider sources when reading and evaluating their text. In this…

  12. On the Sophistication of Naïve Empirical Reasoning: Factors Influencing Mathematicians' Persuasion Ratings of Empirical Arguments

    ERIC Educational Resources Information Center

    Weber, Keith

    2013-01-01

    This paper presents the results of an experiment in which mathematicians were asked to rate how persuasive they found two empirical arguments. There were three key results from this study: (a) Participants judged an empirical argument as more persuasive if it verified that integers possessed an infrequent property than if it verified that integers…

  13. Interactive visualization of Earth and Space Science computations

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  14. Opening Comments: SciDAC 2009

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2009-07-01

    Welcome to San Diego and the 2009 SciDAC conference. Over the next four days, I would like to present an assessment of the SciDAC program. We will look at where we've been, how we got to where we are and where we are going in the future. Our vision is to be first in computational science, to be best in class in modeling and simulation. When Ray Orbach asked me what I would do, in my job interview for the SciDAC Director position, I said we would achieve that vision. And with our collective dedicated efforts, we have managed to achieve this vision. In the last year, we have now the most powerful supercomputer for open science, Jaguar, the Cray XT system at the Oak Ridge Leadership Computing Facility (OLCF). We also have NERSC, probably the best-in-the-world program for productivity in science that the Office of Science so depends on. And the Argonne Leadership Computing Facility offers architectural diversity with its IBM Blue Gene/P system as a counterbalance to Oak Ridge. There is also ESnet, which is often understated—the 40 gigabit per second dual backbone ring that connects all the labs and many DOE sites. In the President's Recovery Act funding, there is exciting news that ESnet is going to build out to a 100 gigabit per second network using new optical technologies. This is very exciting news for simulations and large-scale scientific facilities. But as one noted SciDAC luminary said, it's not all about the computers—it's also about the science—and we are also achieving our vision in this area. Together with having the fastest supercomputer for science, at the SC08 conference, SciDAC researchers won two ACM Gordon Bell Prizes for the outstanding performance of their applications. The DCA++ code, which solves some very interesting problems in materials, achieved a sustained performance of 1.3 petaflops, an astounding result and a mark I suspect will last for some time. The LS3DF application for studying nanomaterials also required the development of a new and novel algorithm to produce results up to 400 times faster than a similar application, and was recognized with a prize for algorithm innovation—a remarkable achievement. Day one of our conference will include examples of petascale science enabled at the OLCF. Although Jaguar has not been officially commissioned, it has gone through its acceptance tests, and during its shakedown phase there have been pioneer applications used for the acceptance tests, and they are running at scale. These include applications in the areas of astrophysics, biology, chemistry, combustion, fusion, geosciences, materials science, nuclear energy and nuclear physics. We also have a whole compendium of science we do at our facilities; these have been documented and reviewed at our last SciDAC conference. Many of these were highlighted in our Breakthroughs Report. One session at this week's conference will feature a cross-section of these breakthroughs. In the area of scalable electromagnetic simulations, the Auxiliary-space Maxwell Solver (AMS) uses specialized finite element discretizations and multigrid-based techniques, which decompose the original problem into easier-to-solve subproblems. Congratulations to the mathematicians on this. Another application on the list of breakthroughs was the authentication of PETSc, which provides scalable solvers used in many DOE applications and has solved problems with over 3 billion unknowns and scaled to over 16,000 processors on DOE leadership-class computers. This is becoming a very versatile and useful toolkit to achieve performance at scale. With the announcement of SIAM's first class of Fellows, we are remarkably well represented. Of the group of 191, more than 40 of these Fellows are in the 'DOE space.' We are so delighted that SIAM has recognized them for their many achievements. In the coming months, we will illustrate our leadership in applied math and computer science by looking at our contributions in the areas of programming models, development and performance tools, math libraries, system software, collaboration, and visualization and data analytics. This is a large and diverse list of libraries. We have asked for two panels, one chaired by David Keyes and composed of many of the nation's leading mathematicians, to produce a report on the most significant accomplishments in applied mathematics over the last eight years, taking us back to the start of the SciDAC program. In addition, we have a similar panel in computer science to be chaired by Kathy Yelick. They are going to identify the computer science accomplishments of the past eight years. These accomplishments are difficult to get a handle on, and I'm looking forward to this report. We will also have a follow-on to our report on breakthroughs in computational science and this will also go back eight years, looking at the many accomplishments under the SciDAC and INCITE programs. This will be chaired by Tony Mezzacappa. So, where are we going in the SciDAC program? It might help to take a look at computational science and how it got started. I go back to Ken Wilson, who made the model and has written on computational science and computational science education. His model was thus: The computational scientist plays the role of the experimentalist, and the math and CS researchers play the role of theorists, and the computers themselves are the experimental apparatus. And that in simulation science, we are carrying out numerical experiments as to the nature of physical and biological sciences. Peter Lax, in the same time frame, developed a report on large-scale computing in science and engineering. Peter remarked, 'Perhaps the most important applications of scientific computing come not in the solution of old problems, but in the discovery of new phenomena through numerical experimentation.' And in the early years, I think the person who provided the most guidance, the most innovation and the most vision for where the future might lie was Ed Oliver. Ed Oliver died last year. Ed did a number of things in science. He had this personality where he knew exactly what to do, but he preferred to stay out of the limelight so that others could enjoy the fruits of his vision. We in the SciDAC program and ASCR Facilities are still enjoying the benefits of his vision. We will miss him. Twenty years after Ken Wilson, Ray Orbach laid out the fundamental premise for SciDAC in an interview that appeared in SciDAC Review: 'SciDAC is unique in the world. There isn't any other program like it anywhere else, and it has the remarkable ability to do science by bringing together physical scientists, mathematicians, applied mathematicians, and computer scientists who recognize that computation is not something you do at the end, but rather it needs to be built into the solution of the very problem that one is addressing. ' As you look at the Lax report from 1982, it talks about how 'Future significant improvements may have to come from architectures embodying parallel processing elements—perhaps several thousands of processors.' And it continues, 'esearch in languages, algorithms and numerical analysis will be crucial in learning to exploit these new architectures fully.' In the early '90s, Sterling, Messina and Smith developed a workshop report on petascale computing and concluded, 'A petaflops computer system will be feasible in two decades, or less, and rely in part on the continual advancement of the semiconductor industry both in speed enhancement and cost reduction through improved fabrication processes.' So they were not wrong, and today we are embarking on a forward look that is at a different scale, the exascale, going to 1018 flops. In 2007, Stevens, Simon and Zacharia chaired a series of town hall meetings looking at exascale computing, and in their report wrote, 'Exascale computer systems are expected to be technologically feasible within the next 15 years, or perhaps sooner. These systems will push the envelope in a number of important technologies: processor architecture, scale of multicore integration, power management and packaging.' The concept of computing on the Jaguar computer involves hundreds of thousands of cores, as do the IBM systems that are currently out there. So the scale of computing with systems with billions of processors is staggering to me, and I don't know how the software and math folks feel about it. We have now embarked on a road toward extreme scale computing. We have created a series of town hall meetings and we are now in the process of holding workshops that address what I call within the DOE speak 'the mission need,' or what is the scientific justification for computing at that scale. We are going to have a total of 13 workshops. The workshops on climate, high energy physics, nuclear physics, fusion, and nuclear energy have been held. The report from the workshop on climate is actually out and available, and the other reports are being completed. The upcoming workshops are on biology, materials, and chemistry; and workshops that engage science for nuclear security are a partnership between NNSA and ASCR. There are additional workshops on applied math, computer science, and architecture that are needed for computing at the exascale. These extreme scale workshops will provide the foundation in our office, the Office of Science, the NNSA and DOE, and we will engage the National Science Foundation and the Department of Defense as partners. We envision a 10-year program for an exascale initiative. It will be an integrated R&D program initially—you can think about five years for research and development—that would be in hardware, operating systems, file systems, networking and so on, as well as software for applications. Application software and the operating system and the hardware all need to be bundled in this period so that at the end the system will execute the science applications at scale. We also believe that this process will have to have considerable investment from the manufacturers and vendors to be successful. We have formed laboratory, university and industry working groups to start this process and formed a panel to look at where SciDAC needs to go to compute at the extreme scale, and we have formed an executive committee within the Office of Science and the NNSA to focus on these activities. We will have outreach to DoD in the next few months. We are anticipating a solicitation within the next two years in which we will compete this bundled R&D process. We don't know how we will incorporate SciDAC into extreme scale computing, but we do know there will be many challenges. And as we have shown over the years, we have the expertise and determination to surmount these challenges.

  15. Topographic Spreading Analysis of an Empirical Sex Workers' Network

    NASA Astrophysics Data System (ADS)

    Bjell, Johannes; Canright, Geoffrey; Engø-Monsen, Kenth; Remple, Valencia P.

    The problem of epidemic spreading over networks has received considerable attention in recent years, due both to its intrinsic intellectual challenge and to its practical importance. A good recent summary of such work may be found in Newman (8), while (9) gives an outstanding example of a non-trivial prediction which is obtained from explicitly modeling the network in the epidemic spreading. In the language of mathematicians and computer scientists, a network of nodes connected by edges is called a graph. Most work on epidemic spreading over networks focuses on whole-graph properties, such as the percentage of infected nodes at long time. Two of us have, in contrast, focused on understanding the spread of an infection over time and space (the network) (61; 63; 62). This work involves decomposing any given network into subgraphs called regions (61). Regions are precisely defined as disjoint subgraphs which may be viewed as coarse-grained units of infection—in that, once one node in a region is infected, the progress of the infection over the remainder of the region is relatively fast and predictable (63). We note that this approach is based on the ‘Susceptible-Infected’ (SI) model of infection, in which nodes, once infected, are never cured. This model is reasonable for some infections, such as HIV—which is one of the diseases studied here. We also study gonorrhea and chlamydia, for which a more appropriate model is Susceptible-Infected-Susceptible (SIS) (67) (since nodes can be cured); we discuss the limitations of our approach for these cases below.

  16. Transactions of the Conference of Army Mathematicians (23rd), held at U. S. Army Mobility Research and Development Laboratory, Langley Research Center, Hampton, Virginia, 11-13 May 1977

    DTIC Science & Technology

    1978-02-01

    Trans. ASME, Vol. 81, 1959, pp. 259- 264 . 112 0 C> 0 LJj 0 CD 0 D ~) . [") r "-’ . 1’ n -- 1 . 2 0 1 . lj 0 1. :iO 1 • 13 0 ? . (JO p;a...n ntout Compute determinant elements forb n, Comoute and write backsc~tter cross-section\\ (Figure 2.2-1) 264 J. BACKSCATTER CROSS-SECTION FOR A...Overrelaxation Iteration Methods," Report WAPD -TM-1038, Bettis Atomic Power Laboratory, Westinghouse Electric Corp., Pittsburgh, Pennsylvania. 10

  17. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

  18. Basic instincts

    NASA Astrophysics Data System (ADS)

    Hutson, Matthew

    2018-05-01

    In their adaptability, young children demonstrate common sense, a kind of intelligence that, so far, computer scientists have struggled to reproduce. Gary Marcus, a developmental cognitive scientist at New York University in New York City, believes the field of artificial intelligence (AI) would do well to learn lessons from young thinkers. Researchers in machine learning argue that computers trained on mountains of data can learn just about anything—including common sense—with few, if any, programmed rules. But Marcus says computer scientists are ignoring decades of work in the cognitive sciences and developmental psychology showing that humans have innate abilities—programmed instincts that appear at birth or in early childhood—that help us think abstractly and flexibly. He believes AI researchers ought to include such instincts in their programs. Yet many computer scientists, riding high on the successes of machine learning, are eagerly exploring the limits of what a naïve AI can do. Computer scientists appreciate simplicity and have an aversion to debugging complex code. Furthermore, big companies such as Facebook and Google are pushing AI in this direction. These companies are most interested in narrowly defined, near-term problems, such as web search and facial recognition, in which blank-slate AI systems can be trained on vast data sets and work remarkably well. But in the longer term, computer scientists expect AIs to take on much tougher tasks that require flexibility and common sense. They want to create chatbots that explain the news, autonomous taxis that can handle chaotic city traffic, and robots that nurse the elderly. Some computer scientists are already trying. Such efforts, researchers hope, will result in AIs that sit somewhere between pure machine learning and pure instinct. They will boot up following some embedded rules, but will also learn as they go.

  19. Albert Einstein and Wernher von Braun - the two great German-American physicists seen in a historical perspective.

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2008-04-01

    It was Albert Einstein who for the first time changed our view of the universe to be a non-euclidean curved space-time. And it was Wernher von Braun who blazed the trail to take us into this universe, leaving for the first time the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his landsman, the mathematician Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosvelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: ``Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?'' Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist.

  20. Facilities | Computational Science | NREL

    Science.gov Websites

    technology innovation by providing scientists and engineers the ability to tackle energy challenges that scientists and engineers to take full advantage of advanced computing hardware and software resources

  1. Simon Newcomb, Other Aspects of His Career

    NASA Astrophysics Data System (ADS)

    Corbin, Brenda G.

    2014-01-01

    Simon Newcomb (1835-1909) is perhaps the best known American astronomer of the late 19th century. Among the many aspects of his long career, he was one of the founders and the first president of what later became the American Astronomical Society. However, he wrote widely on subjects other than astronomy, even producing works of fiction. He was especially interested in economics and published such titles as A critical examination of our financial policy during the Southern rebellion, A plain man's talk on the labor question, Principles of political economy and others. The very interesting title, A statistical inquiry into the probability of causes of the production of sex in human offspring was written in 1904. Newcomb even produced a work of science fiction, His Wisdom, the Defender: a story, published in 1900. William Alvord, President of the Astronomical Society of the Pacific, on awarding Newcomb the Bruce Medal stated “The essential quality of his mind is that of a philosopher rather than that of a mathematician or an astronomer merely.” It has been suggested (Bradley Schaefer and others) that Arthur Conan Doyle used Newcomb as the model for Prof. Moriarty in his Sherlock Holmes novels. He had close friendships with many scientists of his time including Alexander Graham Bell. On the other hand, it has been reported that he also had contentious relationships with some scientists and could be intimidating. A devoted family man, he encouraged his three daughters in their intellectual pursuits. Newcomb, who held naval rank in the Corps of Professors of Mathematics, was buried in Arlington National Cemetery with full military honors. His funeral was attended by many noted scientists and other dignitaries including President William Howard Taft.

  2. An Analysis of Computer-Mediated Communication between Middle School Students and Scientist Role Models: A Pilot Study.

    ERIC Educational Resources Information Center

    Murfin, Brian

    1994-01-01

    Reports on a study of the effectiveness of computer-mediated communication (CMC) in providing African American and female middle school students with scientist role models. Quantitative and qualitative data gathered by analyzing messages students and scientists posted on a shared electronic bulletin board showed that CMC could be an effective…

  3. A dynamic, climate-driven model of Rift Valley fever.

    PubMed

    Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  4. The Arcane of Cinchona and the New Granada Expedition: the multi-dimensional mind of José Celestino Mutis (1732-1808).

    PubMed

    Herranz, Jaime Pascual

    2014-08-01

    José Celestino Mutis y Bosio was a Spanish physician, naturalist, astronomer, priest, theologian and mathematician, and one of the icons of the Enlightment Age both in Spain and the American Continent. As the Viceroy's personal doctor, he travelled to the territory of New Granada in what is now Colombia. Mutis was the creator and first leader of the Royal Botanic Expedition of New Granada to study South American wildlife, discovering thousands of new species. He also launched several Public Health measures in the Santa Fe area, helping to introduce a vaccination campaign. Mutis was the first person to introduce Newtonian physics in the Spanish America and he established the first Observatory in the New World which is still in use. He was deeply admired and recognized as a prominent scientist by great personalities of his time including Carl von Linée and Alexander von Humboldt. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Cosmological Views of Anania Shirakatsi

    NASA Astrophysics Data System (ADS)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2017-12-01

    Since the ancient times the usage of cosmological ideas in mythology and poetry has contributed to the formation and development of human's philosophical thought. It is believed that before the M. Mashtots's alphabet, ancient Armenians have expressed their astronomical knowledge through stone structures and rock art.In the Armenian reality, the cosmological views, the idea of the spherical shape of the Earth and information of other celestial bodies more vividly were manifested in the works of Movses Khorenatsi, David Anhaght (5th century) and Anania Shirakatsi (7th century).Anania Shirakatsi is an Armenian Astronomer, Mathematician, Philosopher, Geographer and Alchemist.The importance of his work is also noted by foreign authors and he was called 7th century Cosmologist, First Scientist of Armenia and Middival Astronomer. Shirakatsi's works are united in his comprehensive knowledge, his insight of the mind, the ability of combining and analyzing facts and his literature talent.His works have simultaneous historical, cosmic, geographical, religious, literary and mystical significance. In the present study we will show Anania Shirakatsi's cosmological ideas and observations.

  6. A starry message from the Starry Messenger

    NASA Astrophysics Data System (ADS)

    Francis, Michael

    2011-05-01

    To many the Universe is a closed book of secrets never to be read. Four hundred years ago, an unknown court mathematician in Italy opened that book and laid the foundation for modern science. Galileo Galilei turned his telescope to the heavens to discover mountains and craters on the moon, four moons of Jupiter, and countless stars never before seen. Even more significant was his method of observation and mathematical analysis. He taught future scientists the way to discover the laws of nature. In this session the professor will return to discuss some of his most recent discoveries. Using the gifts of a storyteller and actively involving the audience, Galileo will take his audience through discoveries that changed the very nature of science. First person living history programs have become a staple of informal educational institutions like museums, planetariums and libraries as well as scholastic settings. We will be examining how to use this theatrical technique to educate, entertain and bring Astronomy to life.

  7. The foundation: Mechanism, prediction, and falsification in Bayesian enactivism. Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al.

    NASA Astrophysics Data System (ADS)

    Allen, Micah

    2018-03-01

    In Isaac Asimov's science fiction classic, Foundation, fictional mathematician Hari Seldon applies his theory of psychohistory, a synthesis of psychology, history, and statistical physics, to predict that humanity will suffer a dark age lasting thirty millennia [1]. Although Seldon's psychohistory successfully predicts the future of human society, its basis in the physical law of mass action carries a limitation - it can only do so for sufficiently massive populations (i.e., billions of individuals), rendering it inert at an individual level. This limitation is of course a key source of dramatic tension in the series, in which the individual characters of Asimov's universe grapple with the challenges inherent to applying a lawlike theory of collective action to the constitutive individuals. To avert crisis, Seldon ultimately assembles the namesake Foundation, an interdisciplinary, intergalactic research centre bringing together various biological, physical, and social scientists who ultimately attempt to alter the predicted course of history.

  8. Scout: high-performance heterogeneous computing made simple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice

    2011-01-26

    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less

  9. The Multimedia Case as a Tool for Professional Development: An Analysis of Online and Face-to-Face Interaction among Mathematics Pre-Service Teachers, In-Service Teachers, Mathematicians, and Mathematics Teacher Educators

    ERIC Educational Resources Information Center

    McGraw, Rebecca; Lynch, Kathleen; Koc, Yusuf; Budak, Ayfer; Brown, Catherine A.

    2007-01-01

    In this study, we consider the potential of multimedia cases as tools for teacher professional development. Specifically, we examined online and face-to-face discussions that occurred within groups composed of pre-service mathematics teachers, in-service mathematics teachers, mathematicians, and mathematics teacher educators. Discussions within…

  10. Boundary crossing and brokering between disciplines in pre-service mathematics teacher education

    NASA Astrophysics Data System (ADS)

    Goos, Merrilyn; Bennison, Anne

    2017-12-01

    In many countries, pre-service teacher education programs are structured so that mathematics content is taught in the university's mathematics department and mathematics pedagogy in the education department. Such program structures make it difficult to authentically interweave content with pedagogy in ways that acknowledge the roles of both mathematicians and mathematics educators in preparing future teachers. This article reports on a project that deliberately fostered collaboration between mathematicians and mathematics educators in six Australian universities in order to investigate the potential for learning at the boundaries between the two disciplinary communities. Data sources included two rounds of interviews with mathematicians and mathematics educators and annual reports prepared by each participating university over the three years of the project. The study identified interdisciplinary boundary practices that led to integration of content and pedagogy through new courses co-developed and co-taught by mathematicians and mathematics educators, and new approaches to building communities of pre-service teachers. It also developed an evidence-based classification of conditions that enable or hinder sustained collaboration across disciplinary boundaries, together with an empirical grounding for Akkerman and Bakker's conceptualisation of transformation as a mechanism for learning at the boundary between communities. The study additionally highlighted the ambiguous nature of boundaries and implications for brokers who work there to connect disciplinary paradigms.

  11. From Both Sides, Now: Librarians Team up with Computer Scientist to Deliver Virtual Computer-Information Literacy Instruction

    ERIC Educational Resources Information Center

    Loesch, Martha Fallahay

    2011-01-01

    Two members of the library faculty at Seton Hall University teamed up with a respected professor of mathematics and computer science, in order to create an online course that introduces information literacy both from the perspectives of the computer scientist and from the instruction librarian. This collaboration is unique in that it addresses the…

  12. Origins of the brain networks for advanced mathematics in expert mathematicians

    PubMed Central

    Amalric, Marie; Dehaene, Stanislas

    2016-01-01

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit. PMID:27071124

  13. Origins of the brain networks for advanced mathematics in expert mathematicians.

    PubMed

    Amalric, Marie; Dehaene, Stanislas

    2016-05-03

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.

  14. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    NASA Astrophysics Data System (ADS)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2017-03-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  15. Introduction to multigrid methods

    NASA Technical Reports Server (NTRS)

    Wesseling, P.

    1995-01-01

    These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.

  16. Biophysics and systems biology.

    PubMed

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  17. Biophysics and systems biology

    PubMed Central

    Noble, Denis

    2010-01-01

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  18. Design Graphics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A mathematician, David R. Hedgley, Jr. developed a computer program that considers whether a line in a graphic model of a three-dimensional object should or should not be visible. Known as the Hidden Line Computer Code, the program automatically removes superfluous lines and displays an object from a specific viewpoint, just as the human eye would see it. An example of how one company uses the program is the experience of Birdair which specializes in production of fabric skylights and stadium covers. The fabric called SHEERFILL is a Teflon coated fiberglass material developed in cooperation with DuPont Company. SHEERFILL glazed structures are either tension structures or air-supported tension structures. Both are formed by patterned fabric sheets supported by a steel or aluminum frame or cable network. Birdair uses the Hidden Line Computer Code, to illustrate a prospective structure to an architect or owner. The program generates a three- dimensional perspective with the hidden lines removed. This program is still used by Birdair and continues to be commercially available to the public.

  19. Feasibility of Single and Dual Satellite Systems to Enable Continuous Communication Capability to a Manned Mars Mission

    DTIC Science & Technology

    2014-09-01

    periodicity for many centuries but it was not until Johannes Kepler (1619), a German mathematician, developed his three laws of planetary motion in the early...ORBITS Johannes Kepler was a brilliant mathematician hired to map the orbit of Mars by the infamous elk owner, duelist, and astronomer Tycho Brahe...Dreyer & Brahe, 1890). Despite a difference in viewpoints ( Kepler supported Copernicus while Brahe developed his own model of planetary motion in

  20. Provenance-Powered Automatic Workflow Generation and Composition

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, S.; Pan, L.; Lee, T. J.

    2015-12-01

    In recent years, scientists have learned how to codify tools into reusable software modules that can be chained into multi-step executable workflows. Existing scientific workflow tools, created by computer scientists, require domain scientists to meticulously design their multi-step experiments before analyzing data. However, this is oftentimes contradictory to a domain scientist's daily routine of conducting research and exploration. We hope to resolve this dispute. Imagine this: An Earth scientist starts her day applying NASA Jet Propulsion Laboratory (JPL) published climate data processing algorithms over ARGO deep ocean temperature and AMSRE sea surface temperature datasets. Throughout the day, she tunes the algorithm parameters to study various aspects of the data. Suddenly, she notices some interesting results. She then turns to a computer scientist and asks, "can you reproduce my results?" By tracking and reverse engineering her activities, the computer scientist creates a workflow. The Earth scientist can now rerun the workflow to validate her findings, modify the workflow to discover further variations, or publish the workflow to share the knowledge. In this way, we aim to revolutionize computer-supported Earth science. We have developed a prototyping system to realize the aforementioned vision, in the context of service-oriented science. We have studied how Earth scientists conduct service-oriented data analytics research in their daily work, developed a provenance model to record their activities, and developed a technology to automatically generate workflow starting from user behavior and adaptability and reuse of these workflows for replicating/improving scientific studies. A data-centric repository infrastructure is established to catch richer provenance to further facilitate collaboration in the science community. We have also established a Petri nets-based verification instrument for provenance-based automatic workflow generation and recommendation.

  1. Center for computation and visualization of geometric structures. Final report, 1992 - 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    This report describes the overall goals and the accomplishments of the Geometry Center of the University of Minnesota, whose mission is to develop, support, and promote computational tools for visualizing geometric structures, for facilitating communication among mathematical and computer scientists and between these scientists and the public at large, and for stimulating research in geometry.

  2. What do computer scientists tweet? Analyzing the link-sharing practice on Twitter.

    PubMed

    Schmitt, Marco; Jäschke, Robert

    2017-01-01

    Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists' style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science.

  3. Statistical Optics

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  4. The Bruce Medalists

    NASA Astrophysics Data System (ADS)

    Tenn, J. S.

    2001-12-01

    The Astronomical Society of the Pacific (ASP) has presented the Catherine Wolfe Bruce gold medal for lifetime contributions to astronomy most years since 1898. The 94 medalists include most of the scientists whose work has greatly changed astronomy since the late nineteenth century: Huggins, Pickering, Campbell, Hale, Eddington, Russell, Adams, Slipher, Hertzsprung, Hubble, Shapley, Oort, Baade, ... Major exceptions include those who died young, those who worked in teams, and, in the early years, women. Mathematicians appear to have been as likely to be honored as astronomers from the beginning, but the fortunes of physicist nominees have varied. The nomination process is an unusual one, with the directors of six observatories, three in the U.S. and three abroad, asked to nominate up to three candidates each year. For the first six decades the observatories rarely varied, and directors had long tenures. They nominated the same individuals repeatedly. Now both observatories and their directors vary regularly. Much can be learned about the changes in astronomy from the late nineteenth century, when observers worked alone with long refractors and a theorist could spend a lifetime computing the orbit of one comet, to the present, when most papers have multiple authors and a single project may include millions of objects. For example, celestial mechanics was the specialty of many of the early medalists but none since 1966. I have posted photographs, brief biographies, extensive bibliographies, and links to publications by and about all of the medalists, from Simon Newcomb in 1898 to Hans Bethe in 2001, at http://phys-astro.sonoma.edu/BruceMedalists/. I will discuss a bit of the history of the medal and some of the medalists.

  5. From Competence to Efficiency: A Tale of GA Progress

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.

    1996-01-01

    Genetic algorithms (GAs) - search procedures based on the mechanics of natural selection and genetics - have grown in popularity for the solution of difficult optimization problems. Concomitant with this growth has been a rising cacaphony of complaint asserting that too much time must be spent by the GA practitioner diddling with codes, operators, and GA parameters; and even then these GA cassandras continue, and the user is still unsure that the effort will meet with success. At the same time, there has been a rising interest in GA theory by a growing community - a theorocracy - of mathematicians and theoretical computer scientists, and these individuals have turned their efforts increasingly toward elegant abstract theorems and proofs that seem to the practitioner to offer little in the way of answers for GA design or practice. What both groups seem to have missed is the largely unheralded 1993 assembly of integrated, applicable theory and its experimental confirmation. This theory has done two key things. First, it has predicted that simple GAs are severely limited in the difficulty of problems they can solve, and these limitations have been confirmed experimentally. Second, it has shown the path to circumventing these limitations in nontraditional GA designs such as the fast messy GA. This talk surveys the history, methodology, and accomplishment of the 1993 applicable theory revolution. After arguing that these accomplishments open the door to universal GA competence, the paper shifts the discussion to the possibility of universal GA efficiency in the utilization of time and real estate through effective parallelization, temporal decomposition, hybridization, and relaxed function evaluation. The presentation concludes by suggesting that these research directions are quickly taking us to a golden age of adaptation.

  6. New Frontiers in Analyzing Dynamic Group Interactions: Bridging Social and Computer Science

    PubMed Central

    Lehmann-Willenbrock, Nale; Hung, Hayley; Keyton, Joann

    2017-01-01

    This special issue on advancing interdisciplinary collaboration between computer scientists and social scientists documents the joint results of the international Lorentz workshop, “Interdisciplinary Insights into Group and Team Dynamics,” which took place in Leiden, The Netherlands, July 2016. An equal number of scholars from social and computer science participated in the workshop and contributed to the papers included in this special issue. In this introduction, we first identify interaction dynamics as the core of group and team models and review how scholars in social and computer science have typically approached behavioral interactions in groups and teams. Next, we identify key challenges for interdisciplinary collaboration between social and computer scientists, and we provide an overview of the different articles in this special issue aimed at addressing these challenges. PMID:29249891

  7. Human computers: the first pioneers of the information age.

    PubMed

    Grier, D A

    2001-03-01

    Before computers were machines, they were people. They were men and women, young and old, well educated and common. They were the workers who convinced scientists that large-scale calculation had value. Long before Presper Eckert and John Mauchly built the ENIAC at the Moore School of Electronics, Philadelphia, or Maurice Wilkes designed the EDSAC for Manchester University, human computers had created the discipline of computation. They developed numerical methodologies and proved them on practical problems. These human computers were not savants or calculating geniuses. Some knew little more than basic arithmetic. A few were near equals of the scientists they served and, in a different time or place, might have become practicing scientists had they not been barred from a scientific career by their class, education, gender or ethnicity.

  8. New Frontiers in Analyzing Dynamic Group Interactions: Bridging Social and Computer Science.

    PubMed

    Lehmann-Willenbrock, Nale; Hung, Hayley; Keyton, Joann

    2017-10-01

    This special issue on advancing interdisciplinary collaboration between computer scientists and social scientists documents the joint results of the international Lorentz workshop, "Interdisciplinary Insights into Group and Team Dynamics," which took place in Leiden, The Netherlands, July 2016. An equal number of scholars from social and computer science participated in the workshop and contributed to the papers included in this special issue. In this introduction, we first identify interaction dynamics as the core of group and team models and review how scholars in social and computer science have typically approached behavioral interactions in groups and teams. Next, we identify key challenges for interdisciplinary collaboration between social and computer scientists, and we provide an overview of the different articles in this special issue aimed at addressing these challenges.

  9. Building place-based collaborations to develop high school students' groundwater systems knowledge and decision-making capacity

    NASA Astrophysics Data System (ADS)

    Podrasky, A.; Covitt, B. A.; Woessner, W.

    2017-12-01

    The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.

  10. Research of large-amplitude waves evolution in the framework of shallow water equations and their implication for people's safety in extreme situations

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Efim; Chaikovskaia, Natalya; Rodin, Artem

    2015-04-01

    The paper presents the analysis of the formation and evolution of shock wave in shallow water with no restrictions on its amplitude in the framework of the nonlinear shallow water equations. It is shown that in the case of large-amplitude waves appears a new nonlinear effect of reflection from the shock front of incident wave. These results are important for the assessment of coastal flooding by tsunami waves and storm surges. Very often the largest number of victims was observed on the coastline where the wave moved breaking. Many people, instead of running away, were just looking at the movement of the "raging wall" and lost time. This fact highlights the importance of researching the problem of security and optimal behavior of people in situations with increased risk. Usually there is uncertainty about the exact time, when rogue waves will impact. This fact limits the ability of people to adjust their behavior psychologically to the stressful situations. It concerns specialists, who are busy both in the field of flying activity and marine service as well as adults, young people and children, who live on the coastal zone. The rogue wave research is very important and it demands cooperation of different scientists - mathematicians and physicists, as well as sociologists and psychologists, because the final goal of efforts of all scientists is minimization of the harm, brought by rogue waves to humanity.

  11. Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy.

    PubMed

    Bekhuis, Tanja

    2006-04-03

    Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians.

  12. Scientific Computing Paradigm

    NASA Technical Reports Server (NTRS)

    VanZandt, John

    1994-01-01

    The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.

  13. Message from the ISCB: 2015 ISCB Accomplishment by a Senior Scientist Award: Cyrus Chothia.

    PubMed

    Fogg, Christiana N; Kovats, Diane E

    2015-07-01

    The International Society for Computational Biology (ISCB; http://www.iscb.org) honors a senior scientist annually for his or her outstanding achievements with the ISCB Accomplishment by a Senior Scientist Award. This award recognizes a leader in the field of computational biology for his or her significant contributions to the community through research, service and education. Cyrus Chothia, an emeritus scientist at the Medical Research Council Laboratory of Molecular Biology and emeritus fellow of Wolfson College at Cambridge University, England, is the 2015 ISCB Accomplishment by a Senior Scientist Award winner.Chothia was selected by the Awards Committee, which is chaired by Dr Bonnie Berger of the Massachusetts Institute of Technology. He will receive his award and deliver a keynote presentation at 2015 Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Dublin, Ireland, in July 2015. dkovats@iscb.org. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Enabling Earth Science: The Facilities and People of the NCCS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NCCS's mass data storage system allows scientists to store and manage the vast amounts of data generated by these computations, and its high-speed network connections allow the data to be accessed quickly from the NCCS archives. Some NCCS users perform studies that are directly related to their ability to run computationally expensive and data-intensive simulations. Because the number and type of questions scientists research often are limited by computing power, the NCCS continually pursues the latest technologies in computing, mass storage, and networking technologies. Just as important as the processors, tapes, and routers of the NCCS are the personnel who administer this hardware, create and manage accounts, maintain security, and assist the scientists, often working one on one with them.

  15. The Effect of Gender in the Publication Patterns in Mathematics.

    PubMed

    Mihaljević-Brandt, Helena; Santamaría, Lucía; Tullney, Marco

    2016-01-01

    Despite the increasing number of women graduating in mathematics, a systemic gender imbalance persists and is signified by a pronounced gender gap in the distribution of active researchers and professors. Especially at the level of university faculty, women mathematicians continue being drastically underrepresented, decades after the first affirmative action measures have been put into place. A solid publication record is of paramount importance for securing permanent positions. Thus, the question arises whether the publication patterns of men and women mathematicians differ in a significant way. Making use of the zbMATH database, one of the most comprehensive metadata sources on mathematical publications, we analyze the scholarly output of ∼150,000 mathematicians from the past four decades whose gender we algorithmically inferred. We focus on development over time, collaboration through coautorships, presumed journal quality and distribution of research topics-factors known to have a strong impact on job perspectives. We report significant differences between genders which may put women at a disadvantage when pursuing an academic career in mathematics.

  16. The Effect of Gender in the Publication Patterns in Mathematics

    PubMed Central

    2016-01-01

    Despite the increasing number of women graduating in mathematics, a systemic gender imbalance persists and is signified by a pronounced gender gap in the distribution of active researchers and professors. Especially at the level of university faculty, women mathematicians continue being drastically underrepresented, decades after the first affirmative action measures have been put into place. A solid publication record is of paramount importance for securing permanent positions. Thus, the question arises whether the publication patterns of men and women mathematicians differ in a significant way. Making use of the zbMATH database, one of the most comprehensive metadata sources on mathematical publications, we analyze the scholarly output of ∼150,000 mathematicians from the past four decades whose gender we algorithmically inferred. We focus on development over time, collaboration through coautorships, presumed journal quality and distribution of research topics—factors known to have a strong impact on job perspectives. We report significant differences between genders which may put women at a disadvantage when pursuing an academic career in mathematics. PMID:27780266

  17. Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science

    NASA Astrophysics Data System (ADS)

    Baru, C.

    2014-12-01

    Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.

  18. CREASE 6.0 Catalog of Resources for Education in Ada and Software Engineering

    DTIC Science & Technology

    1992-02-01

    Programming Software Engineering Strong Typing Tasking Audene . Computer Scientists Terbook(s): Barnes, J. Programming in Ada, 3rd ed. Addison-Wesley...Ada. Concept: Abstract Data Types Management Overview Package Real-Time Programming Tasking Audene Computer Scientists Textbook(s): Barnes, J

  19. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  20. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  1. Philipp Frank, Richard von Mises, and the Frank-Mises

    NASA Astrophysics Data System (ADS)

    Siegmund-Schultze, Reinhard

    2007-01-01

    The theoretical physicist Philipp Frank (1884 1966) and the applied mathematician Richard von Mises (1883 1953) both received their university education in Vienna shortly after 1900 and became friends at the latest during the Great War.They were attached to the Vienna Circle of Logical Positivists and wrote an influential two-part work on the differential and integral equations of mechanics and physics, the Frank-Mises, of 1925 and 1927, with its second edition following in 1930 and 1935.This work originated in the lectures that the mathematician Bernhard Riemann (1826 1866) delivered on partial differential equations and their applications to physical questions at the University of Göttingen between 1854 and 1862, which were edited and published posthumously in1869 by the physicist Karl Hattendorff (1834 1882).The immediate precursor of the Frank-Mises, however, was the extensive revision of Hattendorff’s edition of Riemann’s lectures that the mathematician Heinrich Weber (1842 1913) published in two volumes, the Riemann-Weber, of 1900 and 1901, with its second edition following in 1910 and 1912. I trace this historical lineage, explore the nature and contents of the Frank-Mises, and discuss its complementary relationship to the first volume of the text that the mathematicians Richard Courant (1888 1972) and David Hilbert (1862 1943) published on the methods of mathematical physics in 1924, the Courant-Hilbert,which, when it and its second volume of 1937 were translated into English and extensively revised in 1953 and 1961, eclipsed the classic Frank-Mises.

  2. An economic and financial exploratory

    NASA Astrophysics Data System (ADS)

    Cincotti, S.; Sornette, D.; Treleaven, P.; Battiston, S.; Caldarelli, G.; Hommes, C.; Kirman, A.

    2012-11-01

    This paper describes the vision of a European Exploratory for economics and finance using an interdisciplinary consortium of economists, natural scientists, computer scientists and engineers, who will combine their expertise to address the enormous challenges of the 21st century. This Academic Public facility is intended for economic modelling, investigating all aspects of risk and stability, improving financial technology, and evaluating proposed regulatory and taxation changes. The European Exploratory for economics and finance will be constituted as a network of infrastructure, observatories, data repositories, services and facilities and will foster the creation of a new cross-disciplinary research community of social scientists, complexity scientists and computing (ICT) scientists to collaborate in investigating major issues in economics and finance. It is also considered a cradle for training and collaboration with the private sector to spur spin-offs and job creations in Europe in the finance and economic sectors. The Exploratory will allow Social Scientists and Regulators as well as Policy Makers and the private sector to conduct realistic investigations with real economic, financial and social data. The Exploratory will (i) continuously monitor and evaluate the status of the economies of countries in their various components, (ii) use, extend and develop a large variety of methods including data mining, process mining, computational and artificial intelligence and every other computer and complex science techniques coupled with economic theory and econometric, and (iii) provide the framework and infrastructure to perform what-if analysis, scenario evaluations and computational, laboratory, field and web experiments to inform decision makers and help develop innovative policy, market and regulation designs.

  3. Award-Winning Animation Helps Scientists See Nature at Work | News | NREL

    Science.gov Websites

    Scientists See Nature at Work August 8, 2008 A computer-aided image combines a photo of a man with a three -dimensional, computer-generated image. The man has long brown hair and a long beard. He is wearing a blue - simultaneously. "It is very difficult to parallelize the process to run even on a huge computer,"

  4. Mathematical Practices and Arts Integration in an Activity-Based Projective Geometry Course

    NASA Astrophysics Data System (ADS)

    Ernest, Jessica Brooke

    It is a general assumption that the mathematical activity of students in school should, at least to some degree, parallel the practices of professional mathematicians (Brown, Collins, Duguid, 1989; Moschkovich, 2013). This assumption is reflected in the Common Core State Standards (CCSSI, 2010) and National Council of Teachers of Mathematics (NCTM, 2000) standards documents. However, the practices included in these standards documents, while developed to reflect the practices of professional mathematicians, may be idealized versions of what mathematicians actually do (Moschkovich, 2013). This might lead us to question then: "What is it that mathematicians do, and what practices are not being represented in the standards documents?" In general, the creative work of mathematicians is absent from the standards and, in turn, from school mathematics curricula, much to the dismay of some mathematicians and researchers (Lockhart, 2009; Rogers, 1999). As a result, creativity is not typically being fostered in mathematics students. As a response to this lack of focus on fostering creativity (in each of the science, technology, engineering, and mathematics disciplines--the STEM disciplines), a movement to integrate the arts emerged. This movement, called the STEAM movement--introducing the letter A into the acronym STEM to signify incorporating the arts--has been gaining momentum, yet limited research has been carried out on the efficacy of integrating the arts into mathematics courses. My experiences as the co-instructor for an activity-based course focused on projective geometry led me to consider the course as a setting for investigating both mathematical practices and arts integration. In this work, I explored the mathematical practices in which students engaged while working to develop an understanding of projective geometry through group activities. Furthermore, I explored the way in which students' learning experiences were enriched through artistic engagement in the course. I discuss mathematical play and acts of imagination--two mathematical practices in which students engaged, and which emerged from a grounded theory approach to analysis of the classroom data. In addition, I discuss particular ways in which artistic engagement, including creating two mathematically inspired artistic pieces, enriched students' learning experiences in the course. The six themes I address are artistic engagement (a) fostering mathematical play, (b) giving students the opportunity to make sense of pop-up topics, (c) providing students with the opportunity to develop coordination of mathematical tools, (d) allowing students to weave their personal experiences with mathematics, (e) contributing to students' notions of the connections between mathematics and art, and (f) changing students' relationships with art.

  5. From Years of Work in Psychology and Computer Science, Scientists Build Theories of Thinking and Learning.

    ERIC Educational Resources Information Center

    Wheeler, David L.

    1988-01-01

    Scientists feel that progress in artificial intelligence and the availability of thousands of experimental results make this the right time to build and test theories on how people think and learn, using the computer to model minds. (MSE)

  6. Climate science in the tropics: waves, vortices and PDEs

    NASA Astrophysics Data System (ADS)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    Hybrid programming models for beyond-CMOS technologies will prove critical for integrating new computing technologies alongside our existing infrastructure. Unfortunately the software infrastructure required to enable this is lacking or not available. XACC is a programming framework for extreme-scale, post-exascale accelerator architectures that integrates alongside existing conventional applications. It is a pluggable framework for programming languages developed for next-gen computing hardware architectures like quantum and neuromorphic computing. It lets computational scientists efficiently off-load classically intractable work to attached accelerators through user-friendly Kernel definitions. XACC makes post-exascale hybrid programming approachable for domain computational scientists.

  8. "Ask Argonne" - Charlie Catlett, Computer Scientist, Part 2

    ScienceCinema

    Catlett, Charlie

    2018-02-14

    A few weeks back, computer scientist Charlie Catlett talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1joBtzk). In Part 2, he answers some of the questions that were submitted. Enjoy!

  9. "Ask Argonne" - Charlie Catlett, Computer Scientist, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catlett, Charlie

    2014-06-17

    A few weeks back, computer scientist Charlie Catlett talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1joBtzk). In Part 2, he answers some of the questions that were submitted. Enjoy!

  10. Partial differential equation models in macroeconomics.

    PubMed

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Sir Hermann Bondi KCB

    NASA Astrophysics Data System (ADS)

    Roxburgh, Ian W.

    2007-12-01

    Hermann Bondi was an Applied Mathematician of distinction who will be remembered by fellow scientists for his outstanding contributions to astronomy, cosmology and General Relativity, and particularly for his pioneering contributions to our understanding of gravitational waves, his foundational work on accretion, and as co-creator with Tommy Gold and Fred Hoyle of the steady state theory of cosmology. But Hermann had an equally important second career in scientific administration: advising the UK Government on the Thames Barrier, as Director General of the European Space Research Organisation (ESRO; now the European Space Agency (ESA)), as Chief Scientific Advisor to the UK Government on Defence and then on Energy, as Chairman of the Natural Environmental Research Council (NERC), and finally as Master of Churchill College, Cambridge. He was knighted in 1973. He continued his research on gravitational radiation throughout his administrative career and published his 16th paper in the series on gravitational waves in 2004. Hermann will be remembered not only for his contributions to science and administration, but for his outstanding communication skills and as a charismatic, warm, and stimulating person.

  12. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  13. Does one size fit all? A study of beginning science and mathematics teacher induction

    NASA Astrophysics Data System (ADS)

    Kralik, Jeffrey M.

    Over the past few years, many induction programs have been implemented across the country, primarily designed to limit the amount beginning teacher attrition. Few of these programs have focused on improving teacher quality or identifying the specific needs of individual teachers. Research suggests that beginning science and mathematics teachers have specific needs that are not being met by current induction models, possibly resulting in higher rates of attrition. Harry and Janet Knowles created the Knowles Science Teaching Foundation (KSTF) to identify and support young scientists and mathematicians as they dedicate their lives to teaching young people. Through financial, curricular, and emotional support, KSTF encourages new teachers to remain in teaching and become leaders in their schools and districts. This dissertation is a sequential explanatory study, which first establishes national estimates for beginning teacher attrition rates and the reasons for the migration based on subject area taught, with an emphasis on mathematics and science teachers. This study then evaluates the KSTF model through multiple methods---analysis of KSTF survey data and interviews with KSTF participants and stakeholders.

  14. Mathematics applied to the climate system: outstanding challenges and recent progress

    PubMed Central

    Williams, Paul D.; Cullen, Michael J. P.; Davey, Michael K.; Huthnance, John M.

    2013-01-01

    The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions. PMID:23588054

  15. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens.

    PubMed

    Smith, David L; Battle, Katherine E; Hay, Simon I; Barker, Christopher M; Scott, Thomas W; McKenzie, F Ellis

    2012-01-01

    Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various "Ross-Macdonald" mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955-1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention.

  16. Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens

    PubMed Central

    Smith, David L.; Battle, Katherine E.; Hay, Simon I.; Barker, Christopher M.; Scott, Thomas W.; McKenzie, F. Ellis

    2012-01-01

    Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various “Ross-Macdonald” mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955–1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention. PMID:22496640

  17. From Lived Experiences to Game Creation: How Scaffolding Supports Elementary School Students Learning Computer Science Principles in an After School Setting

    ERIC Educational Resources Information Center

    Her Many Horses, Ian

    2016-01-01

    The world, and especially our own country, is in dire need of a larger and more diverse population of computer scientists. While many organizations have approached this problem of too few computer scientists in various ways, a promising, and I believe necessary, path is to expose elementary students to authentic practices of the discipline.…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayer, Vidya M.; Miguez, Sheila; Toby, Brian H.

    Scientists have been central to the historical development of the computer industry, but the importance of software only continues to grow for all areas of scientific research and in particular for powder diffraction. Knowing how to program a computer is a basic and useful skill for scientists. The article introduces the three types of programming languages and why scripting languages are now preferred for scientists. Of them, the authors assert Python is the most useful and easiest to learn. Python is introduced. Also presented is an overview to a few of the many add-on packages available to extend the capabilitiesmore » of Python, for example, for numerical computations, scientific graphics and graphical user interface programming.« less

  19. Long live the Data Scientist, but can he/she persist?

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.

    2011-12-01

    In recent years the fourth paradigm of data intensive science has slowly taken hold as the increased capacity of instruments and an increasing number of instruments (in particular sensor networks) have changed how fundamental research is undertaken. Most modern scientific research is about digital capture of data direct from instruments, processing it by computers, storing the results on computers and only publishing a small fraction of data in hard copy publications. At the same time, the rapid increase in capacity of supercomputers, particularly at petascale, means that far larger data sets can be analysed and to greater resolution than previously possible. The new cloud computing paradigm which allows distributed data, software and compute resources to be linked by seamless workflows, is creating new opportunities in processing of high volumes of data to an increasingly larger number of researchers. However, to take full advantage of these compute resources, data sets for analysis have to be aggregated from multiple sources to create high performance data sets. These new technology developments require that scientists must become more skilled in data management and/or have a higher degree of computer literacy. In almost every science discipline there is now an X-informatics branch and a computational X branch (eg, Geoinformatics and Computational Geoscience): both require a new breed of researcher that has skills in both the science fundamentals and also knowledge of some ICT aspects (computer programming, data base design and development, data curation, software engineering). People that can operate in both science and ICT are increasingly known as 'data scientists'. Data scientists are a critical element of many large scale earth and space science informatics projects, particularly those that are tackling current grand challenges at an international level on issues such as climate change, hazard prediction and sustainable development of our natural resources. These projects by their very nature require the integration of multiple digital data sets from multiple sources. Often the preparation of the data for computational analysis can take months and requires painstaking attention to detail to ensure that anomalies identified are real and are not just artefacts of the data preparation and/or the computational analysis. Although data scientists are increasingly vital to successful data intensive earth and space science projects, unless they are recognised for their capabilities in both the science and the computational domains they are likely to migrate to either a science role or an ICT role as their career advances. Most reward and recognition systems do not recognise those with skills in both, hence, getting trained data scientists to persist beyond one or two projects can be challenge. Those data scientists that persist in the profession are characteristically committed and enthusiastic people who have the support of their organisations to take on this role. They also tend to be people who share developments and are critical to the success of the open source software movement. However, the fact remains that survival of the data scientist as a species is being threatened unless something is done to recognise their invaluable contributions to the new fourth paradigm of science.

  20. The sound manifesto

    NASA Astrophysics Data System (ADS)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer scientists with that of numerical mathematicians studying sonification, psychologists, linguists, bioacousticians, and musicians to illuminate the structure of sound from different angles. Each of these disciplines deals with the use of sound to carry a different sort of information, under different requirements and constraints. By combining their insights, we can learn to understand of the structure of sound in general.

  1. How to Cloud for Earth Scientists: An Introduction

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2018-01-01

    This presentation is a tutorial on getting started with cloud computing for the purposes of Earth Observation datasets. We first discuss some of the main advantages that cloud computing can provide for the Earth scientist: copious processing power, immense and affordable data storage, and rapid startup time. We also talk about some of the challenges of getting the most out of cloud computing: re-organizing the way data are analyzed, handling node failures and attending.

  2. In accordance with a "more majestic order". The new math and the nature of mathematics at midcentury.

    PubMed

    Phillips, Christopher J

    2014-09-01

    The "new math" curriculum, one version of which was developed in the 1950s and 1960s by the School Mathematics Study Group under the auspices of the National Science Foundation, occasioned a great deal of controversy among mathematicians. Well before its rejection by parents and teachers, some mathematicians were vocal critics, decrying the new curriculum because of the way it described the practice and history of the discipline. The nature of mathematics, despite the field's triumphs in helping to win World War II and its midcentury promotion as the key to a modern technological society, was surprisingly contested in this period. Supporters of the School Mathematics Study Group, like its director, Edward Begle, emphasized the importance of portraying mathematics as a system of abstract structures, while opponents like Morris Kline argued that math was essentially a tool for understanding the natural world. The debate about the curriculum--and the role of mathematicians in its design--was also a debate about the underlying identity of the subject itself.

  3. Eurekas and Euphorias - The Oxford Book of Scientific Anecdotes

    NASA Astrophysics Data System (ADS)

    Gratzer, Walter

    2002-11-01

    The march of science has been marked through the years by episodes of drama and comedy, of failure as well as triumph, by outrageous strokes of luck, deserved and undeserved, and sometimes by human tragedy. In Eurekas and Euphorias , Walter Gratzer captures the human face of discovery as he relates many intriguing tales of scientific adventures spanning over two thousand years. Open this book at random and you may chance on the clumsy chemist named Sapper who broke a thermometer in a reaction vat and made the discovery that launched the modern dyestuff industry. Or the physicist who dissolved his gold Nobel Prize medal in acid to prevent it from falling into the hands of the Nazis. The book uncovers deep intellectual friendships, as well as ferocious animosities, and even acts of theft and malice, deceit, and a hoax or two. Indeed, we discover that scientists come in all shapes--the obsessive and the dilettantish, the genial, the envious, the preternaturally brilliant and the slow-witted who sometimes saw further in the end, the open-minded and the intolerant, recluses and arrivistes . We meet mathematicians and physicists in prison cells, and even in a madhouse, making important advances in their field. And we witness the careers, sometimes tragic, sometimes carefree, of the great women scientists, from Hypatia of Alexandria, to Sophie Germain and Sonia Kovalevskaya, to Marie Curie and her relentless battle with the French Academy. Told with wit and relish, here then is a glorious parade to delight the reader, with stories to astonish, to instruct, and most especially, to entertain.

  4. Utility and translatability of mathematical modeling, cell culture and small and large animal models in magnetic nanoparticle hyperthermia cancer treatment research

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Pearce, John A.; Ryan, Thomas P.

    2015-03-01

    For more than 50 years, hyperthermia-based cancer researchers have utilized mathematical models, cell culture studies and animal models to better understand, develop and validate potential new treatments. It has been, and remains, unclear how and to what degree these research techniques depend on, complement and, ultimately, translate accurately to a successful clinical treatment. In the past, when mathematical models have not proven accurate in a clinical treatment situation, the initiating quantitative scientists (engineers, mathematicians and physicists) have tended to believe the biomedical parameters provided to them were inaccurately determined or reported. In a similar manner, experienced biomedical scientists often tend to question the value of mathematical models and cell culture results since those data typically lack the level of biologic and medical variability and complexity that are essential to accurately study and predict complex diseases and subsequent treatments. Such quantitative and biomedical interdependence, variability, diversity and promise have never been greater than they are within magnetic nanoparticle hyperthermia cancer treatment. The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and, recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. The goal of this paper is to use proven concepts and current research to address the potential pathobiology, modeling and quantification of the effects of treatment as pertaining to the similarities and differences in energy delivered by known external delivery techniques and iron oxide nanoparticles.

  5. Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth)

    NASA Astrophysics Data System (ADS)

    Vershik, Anatolii M.; Kutateladze, Semen S.; Novikov, Sergei P.

    2012-06-01

    The 19th of January 2012 was the 100th anniversary of the birth of Leonid Vital'evich Kantorovich, an outstanding mathematician and economist of international fame. A child prodigy, who graduated from the university at 18 and became a professor at 20, an academician in the mathematical sciences and a laureate of the Nobel Prize in economics, - these are extraordinary circumstances of his life. They are remarkable in themselves, but also the results he achieved were exceptional and immensely impressive, and the younger generations of researchers, first and foremost mathematicians and economists, must know about them.

  6. The IT in Secondary Science Book. A Compendium of Ideas for Using Computers and Teaching Science.

    ERIC Educational Resources Information Center

    Frost, Roger

    Scientists need to measure and communicate, to handle information, and model ideas. In essence, they need to process information. Young scientists have the same needs. Computers have become a tremendously important addition to the processing of information through database use, graphing and modeling and also in the collection of information…

  7. 75 FR 64996 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... cruises. A laptop computer is located on the observer platform for ease of data entry. The computer is... lines, the receiving systems will receive the returning acoustic signals. The study (e.g., equipment...-board assistance by the scientists who have proposed the study. The Chief Scientist is Dr. Franco...

  8. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  9. T-Duality for Orientifolds and Twisted KR-Theory

    NASA Astrophysics Data System (ADS)

    Doran, Charles; Méndez-Diez, Stefan; Rosenberg, Jonathan

    2014-08-01

    D-brane charges in orientifold string theories are classified by the KR-theory of Atiyah. However, this is assuming that all O-planes have the same sign. When there are O-planes of different signs, physics demands a "KR-theory with a sign choice" which up until now has not been studied by mathematicians (with the unique exception of Moutuou, who did not have a specific application in mind). We give a definition of this theory and compute it for orientifold theories compactified on S 1 and T 2. We also explain how and why additional "twisting" is implemented. We show that our results satisfy all possible T-duality relationships for orientifold string theories on elliptic curves, which will be studied further in subsequent work.

  10. What do computer scientists tweet? Analyzing the link-sharing practice on Twitter

    PubMed Central

    Schmitt, Marco

    2017-01-01

    Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists’ style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science. PMID:28636619

  11. Analysis of severe storm data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1983-01-01

    The Mesoscale Analysis and Space Sensor (MASS) Data Management and Analysis System developed by Atsuko Computing International (ACI) on the MASS HP-1000 Computer System within the Systems Dynamics Laboratory of the Marshall Space Flight Center is described. The MASS Data Management and Analysis System was successfully implemented and utilized daily by atmospheric scientists to graphically display and analyze large volumes of conventional and satellite derived meteorological data. The scientists can process interactively various atmospheric data (Sounding, Single Level, Gird, and Image) by utilizing the MASS (AVE80) share common data and user inputs, thereby reducing overhead, optimizing execution time, and thus enhancing user flexibility, useability, and understandability of the total system/software capabilities. In addition ACI installed eight APPLE III graphics/imaging computer terminals in individual scientist offices and integrated them into the MASS HP-1000 Computer System thus providing significant enhancement to the overall research environment.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  13. Introduction to the Space Physics Analysis Network (SPAN)

    NASA Technical Reports Server (NTRS)

    Green, J. L. (Editor); Peters, D. J. (Editor)

    1985-01-01

    The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.

  14. Most Social Scientists Shun Free Use of Supercomputers.

    ERIC Educational Resources Information Center

    Kiernan, Vincent

    1998-01-01

    Social scientists, who frequently complain that the federal government spends too little on them, are passing up what scholars in the physical and natural sciences see as the government's best give-aways: free access to supercomputers. Some social scientists say the supercomputers are difficult to use; others find desktop computers provide…

  15. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    PubMed Central

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  16. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.

    PubMed

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-11

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  17. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    NASA Astrophysics Data System (ADS)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  18. Meet EPA Scientist Valerie Zartarian, Ph.D.

    EPA Pesticide Factsheets

    Senior exposure scientist and research environmental engineer Valerie Zartarian, Ph.D. helps build computer models and other tools that advance our understanding of how people interact with chemicals.

  19. Hot, Hot, Hot Computer Careers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1988-01-01

    Discusses the increasing need for electrical, electronic, and computer engineers; and scientists. Provides current status of the computer industry and average salaries. Considers computer chip manufacture and the current chip shortage. (MVL)

  20. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics, nanomaterials, medical- and biomaterials, cosmetics, coatings, light metals, alloys, glasses, films, composites, hetero-modulus, hetero-viscous, hetero-plastic complex materials, petrochemicals and hybrid materials, ...etc. Multidisciplinary applications of rheology and rheological modeling in material science and technology encountered in sectors like alloys, ceramics, glasses, thin films, polymers, clays, construction materials, energy, aerospace, automotive and marine industry. Rheology in food, chemistry, medicine, biosciences and environmental sciences are of particular interests. In accordance to the program of the conference ic-rmm1 more than 160 inquiries and registrations were received from 51 countries. Finally the scientists and researchers have arrived to our conference from 42 countries. Including co-authors, the research work of more than 300 scientists are presented in this book.

  1. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Jennifer

    The Association for Women in Mathematics (AWM) seeks to advance the rates of participation by women in events at national mathematical sciences conference primarily in the U.S. The grant was funded from 8/1/2007 through 3/31/2015. The first component is the lecture series (Noether, Kovalevsky and Falconer Lectures) named after celebrated mathematicians, and featuring prominent women mathematicians, with the result that men, as well as women, will learn about the achievements of women in the mathematical sciences. 22 women mathematicians gave lectures at the annual JMM, SIAM Annual Meetings, and the MAA MathFest. The second component is AWM’s “Workshops for Womenmore » Graduate Students and Recent PhDs,” which select junior women to give research talks and research poster presentations at the SIAM Annual Meeting. The workshop activities allow wider recruitment of participants and increased attention to mentoring. 122 women gave mathematics research presentations. The third component is the AWM’s 40th Anniversary Research Symposium, 2011. 300 women and men attended the two-day symposium with 135 women presenting mathematics research. These activities have succeeded in increasing the number of women speakers and presenters at meetings and have brought more women attendees to the meetings.« less

  3. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    PubMed Central

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar, Arjun

    Computer scientist Arjun Shankar is director of the Compute and Data Environment for Science (CADES), ORNL’s multidisciplinary big data computing center. CADES offers computing, networking and data analytics to facilitate workflows for both ORNL and external research projects.

  5. Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds

    NASA Astrophysics Data System (ADS)

    Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.

    In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

  6. Surfing through Hyperspace - Understanding Higher Universes in Six Easy Lessons

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    1999-09-01

    Do a little armchair time-travel, rub elbows with a four-dimensional intelligent life form, or stretch your mind to the furthest corner of an uncharted universe. With this astonishing guidebook, Surfing Through Hyperspace , you need not be a mathematician or an astrophysicist to explore the all-but-unfathomable concepts of hyperspace and higher-dimensional geometry.No subject in mathematics has intrigued both children and adults as much as the idea of a fourth dimension. Philosophers and parapsychologists have meditated on this mysterious space that no one can point to but may be all around us. Yet this extra dimension has a very real, practical value to mathematicians and physicists who use it every day in their calculations. In the tradtion of Flatland , and with an infectious enthusiasm, Clifford Pickover tackles the problems inherent in our 3-D brains trying to visualize a 4-D world, muses on the religious implications of the existence of higher-dimensional consciousness, and urges all curious readers to venture into "the unexplored territory lying beyond the prison of the obvious." Pickover alternates sections that explain the science of hyperspace with sections that dramatize mind-expanding concepts through a fictional dialogue between two futuristic FBI agents who dabble in the fourth dimension as a matter of national security. This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers.Surfing Through Hyperspace concludes with a number of puzzles, computer experiments and formulas for further exploration, inviting readers to extend their minds across this inexhaustibly intriguing scientific terrain.

  7. Surfing through Hyperspace - Understanding Higher Universes in Six Easy Lessons

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    2001-05-01

    Do a little armchair time-travel, rub elbows with a four-dimensional intelligent life form, or stretch your mind to the furthest corner of an uncharted universe. With this astonishing guidebook, Surfing Through Hyperspace , you need not be a mathematician or an astrophysicist to explore the all-but-unfathomable concepts of hyperspace and higher-dimensional geometry.No subject in mathematics has intrigued both children and adults as much as the idea of a fourth dimension. Philosophers and parapsychologists have meditated on this mysterious space that no one can point to but may be all around us. Yet this extra dimension has a very real, practical value to mathematicians and physicists who use it every day in their calculations. In the tradition of Flatland , and with an infectious enthusiasm, Clifford Pickover tackles the problems inherent in our 3-D brains trying to visualize a 4-D world, muses on the religious implications of the existence of higher-dimensional consciousness, and urges all curious readers to venture into "the unexplored territory lying beyond the prison of the obvious." Pickover alternates sections that explain the science of hyperspace with sections that dramatize mind-expanding concepts through a fictional dialogue between two futuristic FBI agents who dabble in the fourth dimension as a matter of national security. This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers.Surfing Through Hyperspace concludes with a number of puzzles, computer experiments and formulas for further exploration, inviting readers to extend their minds across this inexhaustibly intriguing scientific terrain.

  8. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action

    PubMed Central

    Pawlik, Aleksandra; van Gelder, Celia W.G.; Nenadic, Aleksandra; Palagi, Patricia M.; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community. PMID:28781745

  9. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action.

    PubMed

    Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  10. Opening Remarks: SciDAC 2007

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2007-09-01

    Good morning. Welcome to Boston, the home of the Red Sox, Celtics and Bruins, baked beans, tea parties, Robert Parker, and SciDAC 2007. A year ago I stood before you to share the legacy of the first SciDAC program and identify the challenges that we must address on the road to petascale computing—a road E E Cummins described as `. . . never traveled, gladly beyond any experience.' Today, I want to explore the preparations for the rapidly approaching extreme scale (X-scale) generation. These preparations are the first step propelling us along the road of burgeoning scientific discovery enabled by the application of X- scale computing. We look to petascale computing and beyond to open up a world of discovery that cuts across scientific fields and leads us to a greater understanding of not only our world, but our universe. As part of the President's America Competitiveness Initiative, the ASCR Office has been preparing a ten year vision for computing. As part of this planning the LBNL together with ORNL and ANL hosted three town hall meetings on Simulation and Modeling at the Exascale for Energy, Ecological Sustainability and Global Security (E3). The proposed E3 initiative is organized around four programmatic themes: Engaging our top scientists, engineers, computer scientists and applied mathematicians; investing in pioneering large-scale science; developing scalable analysis algorithms, and storage architectures to accelerate discovery; and accelerating the build-out and future development of the DOE open computing facilities. It is clear that we have only just started down the path to extreme scale computing. Plan to attend Thursday's session on the out-briefing and discussion of these meetings. The road to the petascale has been at best rocky. In FY07, the continuing resolution provided 12% less money for Advanced Scientific Computing than either the President, the Senate, or the House. As a consequence, many of you had to absorb a no cost extension for your SciDAC work. I am pleased that the President's FY08 budget restores the funding for SciDAC. Quoting from Advanced Scientific Computing Research description in the House Energy and Water Development Appropriations Bill for FY08, "Perhaps no other area of research at the Department is so critical to sustaining U.S. leadership in science and technology, revolutionizing the way science is done and improving research productivity." As a society we need to revolutionize our approaches to energy, environmental and global security challenges. As we go forward along the road to the X-scale generation, the use of computation will continue to be a critical tool along with theory and experiment in understanding the behavior of the fundamental components of nature as well as for fundamental discovery and exploration of the behavior of complex systems. The foundation to overcome these societal challenges will build from the experiences and knowledge gained as you, members of our SciDAC research teams, work together to attack problems at the tera- and peta- scale. If SciDAC is viewed as an experiment for revolutionizing scientific methodology, then a strategic goal of ASCR program must be to broaden the intellectual base prepared to address the challenges of the new X-scale generation of computing. We must focus our computational science experiences gained over the past five years on the opportunities introduced with extreme scale computing. Our facilities are on a path to provide the resources needed to undertake the first part of our journey. Using the newly upgraded 119 teraflop Cray XT system at the Leadership Computing Facility, SciDAC research teams have in three days performed a 100-year study of the time evolution of the atmospheric CO2 concentration originating from the land surface. The simulation of the El Nino/Southern Oscillation which was part of this study has been characterized as `the most impressive new result in ten years' gained new insight into the behavior of superheated ionic gas in the ITER reactor as a result of an AORSA run on 22,500 processors that achieved over 87 trillion calculations per second (87 teraflops) which is 74% of the system's theoretical peak. Tomorrow, Argonne and IBM will announce that the first IBM Blue Gene/P, a 100 teraflop system, will be shipped to the Argonne Leadership Computing Facility later this fiscal year. By the end of FY2007 ASCR high performance and leadership computing resources will include the 114 teraflop IBM Blue Gene/P; a 102 teraflop Cray XT4 at NERSC and a 119 teraflop Cray XT system at Oak Ridge. Before ringing in the New Year, Oak Ridge will upgrade to 250 teraflops with the replacement of the dual core processors with quad core processors and Argonne will upgrade to between 250-500 teraflops, and next year, a petascale Cray Baker system is scheduled for delivery at Oak Ridge. The multidisciplinary teams in our SciDAC Centers for Enabling Technologies and our SciDAC Institutes must continue to work with our Scientific Application teams to overcome the barriers that prevent effective use of these new systems. These challenges include: the need for new algorithms as well as operating system and runtime software and tools which scale to parallel systems composed of hundreds of thousands processors; program development environments and tools which scale effectively and provide ease of use for developers and scientific end users; and visualization and data management systems that support moving, storing, analyzing, manipulating and visualizing multi-petabytes of scientific data and objects. The SciDAC Centers, located primarily at our DOE national laboratories will take the lead in ensuring that critical computer science and applied mathematics issues are addressed in a timely and comprehensive fashion and to address issues associated with research software lifecycle. In contrast, the SciDAC Institutes, which are university-led centers of excellence, will have more flexibility to pursue new research topics through a range of research collaborations. The Institutes will also work to broaden the intellectual and researcher base—conducting short courses and summer schools to take advantage of new high performance computing capabilities. The SciDAC Outreach Center at Lawrence Berkeley National Laboratory complements the outreach efforts of the SciDAC Institutes. The Outreach Center is our clearinghouse for SciDAC activities and resources and will communicate with the high performance computing community in part to understand their needs for workshops, summer schools and institutes. SciDAC is not ASCR's only effort to broaden the computational science community needed to meet the challenges of the new X-scale generation. I hope that you were able to attend the Computational Science Graduate Fellowship poster session last night. ASCR developed the fellowship in 1991 to meet the nation's growing need for scientists and technology professionals with advanced computer skills. CSGF, now jointly funded between ASCR and NNSA, is more than a traditional academic fellowship. It has provided more than 200 of the best and brightest graduate students with guidance, support and community in preparing them as computational scientists. Today CSGF alumni are bringing their diverse top-level skills and knowledge to research teams at DOE laboratories and in industries such as Proctor and Gamble, Lockheed Martin and Intel. At universities they are working to train the next generation of computational scientists. To build on this success, we intend to develop a wholly new Early Career Principal Investigator's (ECPI) program. Our objective is to stimulate academic research in scientific areas within ASCR's purview especially among faculty in early stages of their academic careers. Last February, we lost Ken Kennedy, one of the leading lights of our community. As we move forward into the extreme computing generation, his vision and insight will be greatly missed. In memorial to Ken Kennedy, we shall designate the ECPI grants to beginning faculty in Computer Science as the Ken Kennedy Fellowship. Watch the ASCR website for more information about ECPI and other early career programs in the computational sciences. We look to you, our scientists, researchers, and visionaries to take X-scale computing and use it to explode scientific discovery in your fields. We at SciDAC will work to ensure that this tool is the sharpest and most precise and efficient instrument to carve away the unknown and reveal the most exciting secrets and stimulating scientific discoveries of our time. The partnership between research and computing is the marriage that will spur greater discovery, and as Spencer said to Susan in Robert Parker's novel, `Sudden Mischief', `We stick together long enough, and we may get as smart as hell'. Michael Strayer

  11. "Adotta scienza e arte nella tua classe": The results of a successfully teaching project which combines science with art⋆

    NASA Astrophysics Data System (ADS)

    Giansanti, S.

    2015-03-01

    The project called Adotta scienza e arte nella tua classe ("Adopt Science and Art in your class"), on the interconnection between science and art, has been addressed to the Italian secondary middle and high school involving more than 200 teachers and about 2200 students. The main purpose of this project is to make the young students aware of the strong link between science and art is a unique cultural and interdisciplinary occasion. To reach this goal, the Adotta project asked students to produce an artwork inspired by the interpretation of a quotation among a hundred commented quotes by physicists, mathematicians, scientist, writers, artists, accompanied by an original short sentence written by students themselves. More than 1000 artworks have been produced and collected in two galleries on Facebook. From their analysis emerges the students' feeling about science, which is usually associated to human brain, based on mathematical laws and related to technological progress, but it is also a powerful tool that should be responsibly used. This project also valorizes teachers' role in scientific education through activities that encourage students to recognize science in every aspect of their lives.

  12. Eleven quick tips for running an interdisciplinary short course for new graduate students.

    PubMed

    Saunders, Timothy E; He, Cynthia Y; Koehl, Patrice; Ong, L L Sharon; So, Peter T C

    2018-03-01

    Quantitative reasoning and techniques are increasingly ubiquitous across the life sciences. However, new graduate researchers with a biology background are often not equipped with the skills that are required to utilize such techniques correctly and efficiently. In parallel, there are increasing numbers of engineers, mathematicians, and physical scientists interested in studying problems in biology with only basic knowledge of this field. Students from such varied backgrounds can struggle to engage proactively together to tackle problems in biology. There is therefore a need to establish bridges between those disciplines. It is our proposal that the beginning of graduate school is the appropriate time to initiate those bridges through an interdisciplinary short course. We have instigated an intensive 10-day course that brought together new graduate students in the life sciences from across departments within the National University of Singapore. The course aimed at introducing biological problems as well as some of the quantitative approaches commonly used when tackling those problems. We have run the course for three years with over 100 students attending. Building on this experience, we share 11 quick tips on how to run such an effective, interdisciplinary short course for new graduate students in the biosciences.

  13. What are the ultimate limits to computational techniques: verifier theory and unverifiability

    NASA Astrophysics Data System (ADS)

    Yampolskiy, Roman V.

    2017-09-01

    Despite significant developments in proof theory, surprisingly little attention has been devoted to the concept of proof verifiers. In particular, the mathematical community may be interested in studying different types of proof verifiers (people, programs, oracles, communities, superintelligences) as mathematical objects. Such an effort could reveal their properties, their powers and limitations (particularly in human mathematicians), minimum and maximum complexity, as well as self-verification and self-reference issues. We propose an initial classification system for verifiers and provide some rudimentary analysis of solved and open problems in this important domain. Our main contribution is a formal introduction of the notion of unverifiability, for which the paper could serve as a general citation in domains of theorem proving, as well as software and AI verification.

  14. Mathematical Games

    ERIC Educational Resources Information Center

    Gardner, Martin

    1978-01-01

    Describes zoo creatures of interest to recreational mathematicians. Includes the geometrical symmetries of micro- and macroorganisms, topological studies, and imaginary creatures of scientific interest. (MA)

  15. NUCLEAR ESPIONAGE: Report Details Spying on Touring Scientists.

    PubMed

    Malakoff, D

    2000-06-30

    A congressional report released this week details dozens of sometimes clumsy attempts by foreign agents to obtain nuclear secrets from U.S. nuclear scientists traveling abroad, ranging from offering scientists prostitutes to prying off the backs of their laptop computers. The report highlights the need to better prepare traveling researchers to safeguard secrets and resist such temptations, say the two lawmakers who requested the report and officials at the Department of Energy, which employs the scientists.

  16. Keeping an Eye on the Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A U

    2007-02-06

    Setting performance goals is part of the business plan for almost every company. The same is true in the world of supercomputers. Ten years ago, the Department of Energy (DOE) launched the Accelerated Strategic Computing Initiative (ASCI) to help ensure the safety and reliability of the nation's nuclear weapons stockpile without nuclear testing. ASCI, which is now called the Advanced Simulation and Computing (ASC) Program and is managed by DOE's National Nuclear Security Administration (NNSA), set an initial 10-year goal to obtain computers that could process up to 100 trillion floating-point operations per second (teraflops). Many computer experts thought themore » goal was overly ambitious, but the program's results have proved them wrong. Last November, a Livermore-IBM team received the 2005 Gordon Bell Prize for achieving more than 100 teraflops while modeling the pressure-induced solidification of molten metal. The prestigious prize, which is named for a founding father of supercomputing, is awarded each year at the Supercomputing Conference to innovators who advance high-performance computing. Recipients for the 2005 prize included six Livermore scientists--physicists Fred Streitz, James Glosli, and Mehul Patel and computer scientists Bor Chan, Robert Yates, and Bronis de Supinski--as well as IBM researchers James Sexton and John Gunnels. This team produced the first atomic-scale model of metal solidification from the liquid phase with results that were independent of system size. The record-setting calculation used Livermore's domain decomposition molecular-dynamics (ddcMD) code running on BlueGene/L, a supercomputer developed by IBM in partnership with the ASC Program. BlueGene/L reached 280.6 teraflops on the Linpack benchmark, the industry standard used to measure computing speed. As a result, it ranks first on the list of Top500 Supercomputer Sites released in November 2005. To evaluate the performance of nuclear weapons systems, scientists must understand how materials behave under extreme conditions. Because experiments at high pressures and temperatures are often difficult or impossible to conduct, scientists rely on computer models that have been validated with obtainable data. Of particular interest to weapons scientists is the solidification of metals. ''To predict the performance of aging nuclear weapons, we need detailed information on a material's phase transitions'', says Streitz, who leads the Livermore-IBM team. For example, scientists want to know what happens to a metal as it changes from molten liquid to a solid and how that transition affects the material's characteristics, such as its strength.« less

  17. Final Report. Center for Scalable Application Development Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codesmore » for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.« less

  18. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  19. Virtual Visualisation Laboratory for Science and Mathematics Content (Vlab-SMC) with Special Reference to Teaching and Learning of Chemistry

    NASA Astrophysics Data System (ADS)

    Badioze Zaman, Halimah; Bakar, Norashiken; Ahmad, Azlina; Sulaiman, Riza; Arshad, Haslina; Mohd. Yatim, Nor Faezah

    Research on the teaching of science and mathematics in schools and universities have shown that available teaching models are not effective in instilling the understanding of scientific and mathematics concepts, and the right scientific and mathematics skills required for learners to become good future scientists (mathematicians included). The extensive development of new technologies has a marked influence on education, by facilitating the design of new learning and teaching materials, that can improve the attitude of learners towards Science and Mathematics and the plausibility of advanced interactive, personalised learning process. The usefulness of the computer in Science and Mathematics education; as an interactive communication medium that permits access to all types of information (texts, images, different types of data such as sound, graphics and perhaps haptics like smell and touch); as an instrument for problem solving through simulations of scientific and mathematics phenomenon and experiments; as well as measuring and monitoring scientific laboratory experiments. This paper will highlight on the design and development of the virtual Visualisation Laboratory for Science & Mathematics Content (VLab-SMC) based on the Cognitivist- Constructivist-Contextual development life cycle model as well as the Instructional Design (ID) model, in order to achieve its objectives in teaching and learning. However, this paper with only highlight one of the virtual labs within VLab-SMC that is, the Virtual Lab for teaching Chemistry (VLab- Chem). The development life cycle involves the educational media to be used, measurement of content, and the authoring and programming involved; whilst the ID model involves the application of the cognitivist, constructivist and contextual theories in the modeling of the modules of VLab-SMC generally and Vlab-Chem specifically, using concepts such as 'learning by doing', contextual learning, experimental simulations 3D and real-time animations to create a virtual laboratory based on a real laboratory. Initial preliminary study shows positive indicators of VLab-Chem for the teaching and learning of Chemistry on the topic of 'Salts and Acids'.

  20. Challenges and Rewards on the Road to Translational Systems Biology in Acute Illness: Four Case Reports from Interdisciplinary Teams

    PubMed Central

    An, Gary; Hunt, C. Anthony; Clermont, Gilles; Neugebauer, Edmund; Vodovotz, Yoram

    2007-01-01

    Introduction Translational systems biology approaches can be distinguished from mainstream systems biology in that their goal is to drive novel therapies and streamline clinical trials in critical illness. One systems biology approach, dynamic mathematical modeling (DMM), is increasingly used in dealing with the complexity of the inflammatory response and organ dysfunction. The use of DMM often requires a broadening of research methods and a multidisciplinary team approach that includes bioscientists, mathematicians, engineers, and computer scientists. However, the development of these groups must overcome domain-specific barriers to communication and understanding. Methods We present four case studies of successful translational, interdisciplinary systems biology efforts, which differ by organizational level from an individual to an entire research community. Results Case 1 is a single investigator involved in DMM of the acute inflammatory response at Cook County Hospital, in which extensive translational progress was made using agent-based models of inflammation and organ damage. Case 2 is a community-level effort from the University of Witten-Herdecke in Cologne, whose efforts have led to the formation of the Society for Complexity in Acute Illness. Case 3 is an institution-based group, the Biosystems Group at the University of California, San Francisco, whose work has included a focus on a common lexicon for DMM. Case 4 is an institution-based, trans-disciplinary research group (the Center for Inflammation and Regenerative Modeling at the University of Pittsburgh, whose modeling work has led to internal education efforts, grant support, and commercialization. Conclusion A transdisciplinary approach, which involves team interaction in an iterative fashion to address ambiguity and is supported by educational initiatives, is likely to be necessary for DMM in acute illness. Community-wide organizations such as the Society of Complexity in Acute Illness (SCAI) must strive to facilitate the implementation of DMM in sepsis/trauma research into the research community as a whole. PMID:17548029

  1. The Fermilab Connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermilab

    More than 4,000 scientists in 53 countries use Fermilab and its particle accelerators, detectors and computers for their research. That includes about 2,500 scientists from 223 U.S. institutions in 42 states, plus the District of Columbia and Puerto Rico.

  2. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  3. Bruno de Finetti: the mathematician, the statistician, the economist, the forerunner.

    PubMed

    Rossi, C

    2001-12-30

    Bruno de Finetti is possibly the best known Italian applied mathematician of the 20th century, but was he really just a mathematician? Looking at his papers it is always possible to find original and pioneering contributions to the various fields he was interested in, where he always put his mathematical "formamentis" and skills at the service of the applications, often extending standard theories and models in order to achieve more general results. Many contributions are also devoted to educational issues, in mathematics in general and in probability and statistics in particular.He really thought that mathematics and, in particular, those topics related to uncertainty, should enter in everyday life as a useful support to everyone's decision making. He always imagined and lived mathematics as a basic tool both for better understanding and describing complex phenomena and for helping decision makers in assuming coherent and feasible actions. His many important contributions to the theory of probability and to mathematical statistics are well known all over the world, thus, in the following, minor, but still pioneering, aspects of his work, related both to theory and to applications of mathematical tools, and to his work in the field of education and training of teachers, are presented. Copyright 2001 John Wiley & Sons, Ltd.

  4. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills.

    PubMed

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-09-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Volunteer Clouds and Citizen Cyberscience for LHC Physics

    NASA Astrophysics Data System (ADS)

    Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Chen, Gang; Ellis, John; Garcia Quintas, David; Harutyunyan, Artem; Grey, Francois; Lombrana Gonzalez, Daniel; Marquina, Miguel; Mato, Pere; Rantala, Jarno; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Weir, David; Wu, Jie; Wu, Wenjing; Yadav, Rohit

    2011-12-01

    Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in "volunteer computing", where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a "volunteer cloud", essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.

  6. Computer-based communication in support of scientific and technical work. [conferences on management information systems used by scientists of NASA programs

    NASA Technical Reports Server (NTRS)

    Vallee, J.; Wilson, T.

    1976-01-01

    Results are reported of the first experiments for a computer conference management information system at the National Aeronautics and Space Administration. Between August 1975 and March 1976, two NASA projects with geographically separated participants (NASA scientists) used the PLANET computer conferencing system for portions of their work. The first project was a technology assessment of future transportation systems. The second project involved experiments with the Communication Technology Satellite. As part of this project, pre- and postlaunch operations were discussed in a computer conference. These conferences also provided the context for an analysis of the cost of computer conferencing. In particular, six cost components were identified: (1) terminal equipment, (2) communication with a network port, (3) network connection, (4) computer utilization, (5) data storage and (6) administrative overhead.

  7. Know Your Discipline: Teaching the Philosophy of Computer Science

    ERIC Educational Resources Information Center

    Tedre, Matti

    2007-01-01

    The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…

  8. Geochemistry of post-spreading lavas from fossil Mathematician and Galapagos spreading axes, revisited

    NASA Astrophysics Data System (ADS)

    Tian, L.; Castillo, P. R.; Hilton, D. R.

    2010-12-01

    The Mathematician Ridge, located west of the northern end of the EPR at about 10-20°N, 110°W, was abandoned during the Pliocene when the Pacific plate captured the Mathematician microplate. The Galapagos Rise, located east of the southern segment of the EPR at about 10-18°S, 95°W, ceased spreading after the Late Miocene capture of the Bauer microplate by the Nazca plate. Here we report new major and trace element and Sr, Nd and Pb isotope data for lavas dredged from seamounts and volcanic ridges along the crest of Mathematician Ridge [Batiza and Vanko, J. Petrol. 26, 1985] and from narrow volcanic ridges built along extinct segments of the Galapagos Rise [Batiza et al., Mar. Geol. 49, 1982]. These lavas consist predominantly of alkalic basalts and their differentiates, similar to the post-spreading alkalic lava series in other fossil spreading axes (e.g., Davidson Seamount, Guide Seamount, Socorro Island, and fossil spreading axes off Baja California Sur) and alkalic lavas from near-ridge seamounts in the eastern Pacific [Castillo et al., G3 11, 2010; Tian et al., sub. to G3]. Collectively, the alkalic lavas have higher incompatible trace element contents and highly/moderately incompatible trace element ratios (e.g., Ba/Zr >1.3, La/Sm >2.7 and Nb/Zr >0.14) than EPR basalts, and are similar to average alkalic OIB. They also have similar 87Sr/86Sr (0.7027 - 0.7037), 143Nd/144Nd (0.51289 - 0.51306) and 206Pb/204Pb (18.70 - 19.84) compositions, which overlap with geochemically enriched (E-) MORB and ~depleted OIB from major hotspot volcanic chains such as Galapagos, Hawaii and Iceland. The new data suggest that intraplate lavas from fossil spreading axes and non-hotspot seamounts in the eastern Pacific share a common enriched source which is geographically dispersed in the upper mantle.

  9. Northern East Pacific Rise: Magnetic anomaly and bathymetric framework

    USGS Publications Warehouse

    Klitgord, Kim D.; Mammerickx, Jacqueline

    1982-01-01

    The oceanic crust in the eastern Pacific between 7°N and 30°N and east of 127°W contains a fairly complete history of the spreading centers associated with the East Pacific Rise since 25 m.y. B.P. (late Oligocene). In this paper, we have summarized the seafloor spreading magnetic-anomaly data and the bathymetric data that reflect the record of this tectonic history. The well-defined magnetic lineations north of the Clarion fracture zone, in the mouth of the Gulf of California, and on the east flank of the East Pacific Rise (EPR) are carefully examined and used to provide a guide for interpreting the spreading pattern between the Clarion and Clipperton fracture zones, southward of the Rivera fracture zone over the Mathematician Ridge, and over the entire EPR east of the Mathematician Ridge between the Rivera and Siqueiros fracture zones. The bathymetric data provide a trace of the fracture zone pattern in each of the above mentioned areas. The fracture zone bathymetry and the seafloor spreading magnetic lineations on the EPR south of the Rivera fracture zone have a distinctive fanning pattern caused by close poles of rotation and plate boundary reorganizations. All these data provide a good record of the plate reorganizations in the middle Miocene at magnetic anomaly 5 A time (12.5 to 11 m.y. B.P.), in the late Miocene at magnetic anomaly 3′−4 time (6.5 m.y. B.P.), and in the Pliocene at magnetic anomaly 2′−3 time (3.5 m.y. B.P.). Several abandoned spreading centers, including the Mathematician Ridge, were left behind as a result of these reorganizations. The Mathematician Ridge is shown to be a set of ridges and trough whose origin is related to the tectonic activity associated with each of the above mentioned reorganizations since anomaly 5A.

  10. Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm

    NASA Astrophysics Data System (ADS)

    von Larcher, Th; Klein, R.

    2012-04-01

    Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.

  11. Imagining Deep Time (Invited)

    NASA Astrophysics Data System (ADS)

    Talasek, J.

    2013-12-01

    Imagining Deep Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term Deep Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and observations drawn from the study of the earth's structure and discovered fossilized flora and fauna. Deep time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as deep time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping and relating to a vast concept on a personal level. This exhibition explores the usefulness as well as the limitations of the visualization of deep time.

  12. Benefits of Exchange Between Computer Scientists and Perceptual Scientists: A Panel Discussion

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    We have established several major goals for this panel: 1) Introduce the computer graphics community to some specific leaders in the use of perceptual psychology relating to computer graphics; 2) Enumerate the major results that are known, and provide a set of resources for finding others; 3) Identify research areas where knowledge of perceptual psychology can help computer system designers improve their systems; and 4) Provide advice to researchers on how they can establish collaborations in their own research programs. We believe this will be a very important panel. In addition to generating lively discussion, we hope to point out some of the fundamental issues that occur at the boundary between computer science and perception, and possibly help researchers avoid some of the common pitfalls.

  13. Boom. Bust. Build.

    ERIC Educational Resources Information Center

    Kite, Vance; Park, Soonhye

    2018-01-01

    In 2006 Jeanette Wing, a professor of computer science at Carnegie Mellon University, proposed computational thinking (CT) as a literacy just as important as reading, writing, and mathematics. Wing defined CT as a set of skills and strategies computer scientists use to solve complex, computational problems (Wing 2006). The computer science and…

  14. Workforce Retention Study in Support of the U.S. Army Aberdeen Test Center Human Capital Management Strategy

    DTIC Science & Technology

    2016-09-01

    Sciences Group 6% 1550s Computer Scientists Group 5% Other 1500s ORSAa, Mathematics, & Statistics Group 3% 1600s Equipment & Facilities Group 4...Employee removal based on misconduct, delinquency , suitability, unsatisfactory performance, or failure to qualify for conversion to a career appointment...average of 10.4% in many areas, but over double the average for the 1550s (Computer Scientists) and other 1500s (ORSA, Mathematics, and Statistics ). Also

  15. Research Institute for Advanced Computer Science: Annual Report October 1998 through September 1999

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    1999-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center (ARC). It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. ARC has been designated NASA's Center of Excellence in Information Technology. In this capacity, ARC is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA ARC and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  16. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  17. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such as the national and regional electricity grid, carbon sequestration, virtual engineering, and the nuclear fuel cycle. The successes of the first five years of SciDAC have demonstrated the power of using advanced computing to enable scientific discovery. One measure of this success could be found in the President’s State of the Union address in which President Bush identified ‘supercomputing’ as a major focus area of the American Competitiveness Initiative. Funds were provided in the FY 2007 President’s Budget request to increase the size of the NERSC-5 procurement to between 100-150 teraflops, to upgrade the LCF Cray XT3 at Oak Ridge to 250 teraflops and acquire a 100 teraflop IBM BlueGene/P to establish the Leadership computing facility at Argonne. We believe that we are on a path to establish a petascale computing resource for open science by 2009. We must develop software tools, packages, and libraries as well as the scientific application software that will scale to hundreds of thousands of processors. Computer scientists from universities and the DOE’s national laboratories will be asked to collaborate on the development of the critical system software components such as compilers, light-weight operating systems and file systems. Standing up these large machines will not be business as usual for ASCR. We intend to develop a series of interconnected projects that identify cost, schedule, risks, and scope for the upgrades at the LCF at Oak Ridge, the establishment of the LCF at Argonne, and the development of the software to support these high-end computers. The critical first step in defining the scope of the project is to identify a set of early application codes for each leadership class computing facility. These codes will have access to the resources during the commissioning phase of the facility projects and will be part of the acceptance tests for the machines. Applications will be selected, in part, by breakthrough science, scalability, and ability to exercise key hardware and software components. Possible early applications might include climate models; studies of the magnetic properties of nanoparticles as they relate to ultra-high density storage media; the rational design of chemical catalysts, the modeling of combustion processes that will lead to cleaner burning coal, and fusion and astrophysics research. I have presented just a few of the challenges that we look forward to on the road to petascale computing. Our road to petascale science might be paraphrased by the quote from e e cummings, ‘somewhere I have never traveled, gladly beyond any experience . . .’

  18. Recent Advances and Issues in Computers. Oryx Frontiers of Science Series.

    ERIC Educational Resources Information Center

    Gay, Martin K.

    Discussing recent issues in computer science, this book contains 11 chapters covering: (1) developments that have the potential for changing the way computers operate, including microprocessors, mass storage systems, and computing environments; (2) the national computational grid for high-bandwidth, high-speed collaboration among scientists, and…

  19. The interaction of representation and reasoning.

    PubMed

    Bundy, Alan

    2013-09-08

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group.

  20. Llewellyn Hilleth Thomas: An appraisal of an under-appreciated polymath

    NASA Astrophysics Data System (ADS)

    Jackson, John David

    2010-02-01

    Llewellyn Hilleth Thomas was born in 1903 and died in 1992 at the age of 88. His name is known by most for only two things, Thomas precession and the Thomas-Fermi atom. The many other facets of his career - astrophysics, atomic and molecular physics, nonlinear problems, accelerator physics, magnetohydrodynamics, computer design principles and software and hardware - are largely unknown or forgotten. I review his whole career - his early schooling, his time at Cambridge, then Copenhagen in 1925-26, and back to Cambridge, his move to the US as an assistant professor at Ohio State University in 1929, his wartime years at the Ballistic Research Laboratory, Aberdeen Proving Grounds, then in 1946 his new career as a unique resource at IBM's Watson Scientific Computing Laboratory and Columbia University until his first retirement in 1968, and his twilight years at North Carolina State University. Although the Thomas precession and the Thomas-Fermi atom may be the jewels in his crown, his many other accomplishments add to our appreciation of this consummate applied mathematician and physicist. )

  1. Electronic Ecosystem.

    ERIC Educational Resources Information Center

    Travis, John

    1991-01-01

    A discipline in which scientists seek to simulate and synthesize lifelike behaviors within computers, chemical mixtures, and other media is discussed. A computer program with self-replicating digital "organisms" that evolve as they compete for computer time and memory is described. (KR)

  2. Chemistry Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Philip Morris research center scientists use a computer program called CECTRP, for Chemical Equilibrium Composition and Transport Properties, to gain insight into the behavior of atoms as they progress along the reaction pathway. Use of the program lets the scientist accurately predict the behavior of a given molecule or group of molecules. Computer generated data must be checked by laboratory experiment, but the use of CECTRP saves the researchers hundreds of hours of laboratory time since experiments must run only to validate the computer's prediction. Philip Morris estimates that had CECTRP not been available, at least two man years would have been required to develop a program to perform similar free energy calculations.

  3. Developing an online programme in computational biology.

    PubMed

    Vincent, Heather M; Page, Christopher

    2013-11-01

    Much has been written about the need for continuing education and training to enable life scientists and computer scientists to manage and exploit the different types of biological data now becoming available. Here we describe the development of an online programme that combines short training courses, so that those who require an educational programme can progress to complete a formal qualification. Although this flexible approach fits the needs of course participants, it does not fit easily within the organizational structures of a campus-based university.

  4. Argonne Out Loud: Computation, Big Data, and the Future of Cities

    ScienceCinema

    Catlett, Charlie

    2018-01-16

    Charlie Catlett, a Senior Computer Scientist at Argonne and Director of the Urban Center for Computation and Data at the Computation Institute of the University of Chicago and Argonne, talks about how he and his colleagues are using high-performance computing, data analytics, and embedded systems to better understand and design cities.

  5. Mathematical Games

    ERIC Educational Resources Information Center

    Gardner, Martin

    1978-01-01

    Describes the life and work of Charles Peirce, U.S. mathematician and philosopher. His accomplishments include contributions to logic, the foundations of mathematics and scientific method, and decision theory and probability theory. (MA)

  6. RIACS FY2002 Annual Report

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    2002-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. Operated by the Universities Space Research Association (a non-profit university consortium), RIACS is located at the NASA Ames Research Center, Moffett Field, California. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in September 2003. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology (IT) Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1) Automated Reasoning for Autonomous Systems; 2) Human-Centered Computing; and 3) High Performance Computing and Networking. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains including aerospace technology, earth science, life sciences, and astrobiology. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  7. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. Research areas of primary interest at CESDIS include: 1) High performance computing, especially software design and performance evaluation for massively parallel machines; 2) Parallel input/output and data storage systems for high performance parallel computers; 3) Data base and intelligent data management systems for parallel computers; 4) Image processing; 5) Digital libraries; and 6) Data compression. CESDIS funds multiyear projects at U. S. universities and colleges. Proposals are accepted in response to calls for proposals and are selected on the basis of peer reviews. Funds are provided to support faculty and graduate students working at their home institutions. Project personnel visit Goddard during academic recess periods to attend workshops, present seminars, and collaborate with NASA scientists on research projects. Additionally, CESDIS takes on specific research tasks of shorter duration for computer science research requested by NASA Goddard scientists.

  8. Computational Thinking: A Digital Age Skill for Everyone

    ERIC Educational Resources Information Center

    Barr, David; Harrison, John; Conery, Leslie

    2011-01-01

    In a seminal article published in 2006, Jeanette Wing described computational thinking (CT) as a way of "solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science." Wing's article gave rise to an often controversial discussion and debate among computer scientists,…

  9. Application of advanced computing techniques to the analysis and display of space science measurements

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lapolla, M. V.; Horblit, B.

    1995-01-01

    A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.

  10. Heavenly Networks. Celestial Maps and Globes in Circulation between Artisans, Mathematicians, and Noblemen in Renaissance Europe.

    PubMed

    Gessner, Samuel

    2015-01-01

    The aim of this paper is to examine the iconography on a set of star charts by Albrecht Dürer (1515), and celestial globes by Caspar Vopel (1536) and Christoph Schissler (1575). The iconography on these instruments is conditioned by strong traditions which include not only the imagery on globes and planispheres (star charts), but also ancient literature about the constellations. Where this iconography departs from those traditions, the change had to do with humanism in the sixteenth century. This "humanistic" dimension is interwoven with other concerns that involve both "social" and "technical" motivations. The interplay of these three dimensions illustrates how the iconography on celestial charts and globes expresses some features of the shared knowledge and shared culture between artisans, mathematicians, and nobles in Renaissance Europe.

  11. Information processing, computation, and cognition.

    PubMed

    Piccinini, Gualtiero; Scarantino, Andrea

    2011-01-01

    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both - although others disagree vehemently. Yet different cognitive scientists use 'computation' and 'information processing' to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism, connectionism, and computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates' empirical aspects.

  12. Scientists at Work. Final Report.

    ERIC Educational Resources Information Center

    Education Turnkey Systems, Inc., Falls Church, VA.

    This report summarizes activities related to the development, field testing, evaluation, and marketing of the "Scientists at Work" program which combines computer assisted instruction with database tools to aid cognitively impaired middle and early high school children in learning and applying thinking skills to science. The brief report reviews…

  13. [Mathematics, natural sciences and technology--parts of the encyclopedia Die Kultur der Gegenwart (The culture of today)].

    PubMed

    Tobies, Renate

    2008-03-01

    The paper explores the trend of the early 20th century to consolidate mathematics, natural sciences, medicine and technology under the umbrella of one integrative culture--a tendency which contrasts with the increasing mainstream trend of separating the humanities from the natural sciences. The unifying umbrella was framed by the great encyclopedia Die Kultur der Gegenwart which was published by B. G. Teubner from 1905 to 1925 and was planned to run up to 62 volumes. We analyze the quantitative rate of the parts devoted to the humanities, the natural sciences and technology, respectively, the degree to which these parts were completed in this encyclopedia. In particular, we investigate the role of mathematicians and their reasons to find a classification for the mathematical, natural scientific and engineering parts of culture as well as their reasons, to win Nobel prize winners and other famous scientists to become co-editors and authors. We examine the published volumes in the fields of mathematics, chemistry, physics, astronomy and technology in order to show what type of publication--professional or popular--was intended. Furthermore, we illuminate how the educational reform of mathematics, natural sciences and technology of this period--which included a reform of girls' and women's education--was reflected in the encyclopedia Die Kultur der Gegenwart.

  14. The Melencolia Manifesto

    NASA Astrophysics Data System (ADS)

    Finkelstein, David Ritz

    2016-12-01

    Few artworks have been the subject of more extensive modern interpretation than Melencolia I by renowned artist, mathematician, and scientist Albrecht Dürer (1514). And yet, did each of these art experts and historians miss a secret manifesto that Dürer included within the engraving? This is the first work to decrypt secrets within Melencolia I based not on guesswork, but Dürer's own writings, other subliminal artists that inspired him (i.e., Leonardo da Vinci), the Jewish and Christian Bibles, and books that inspired Dürer (De Occulta Philosophia and the Hieorglyphica). To read the covert message of Melencolia I is to understand that Dürer was a humanist in his interests in mathematics, science, poetry, and antiquity. This book recognizes his unparalleled power with the burin, his mathematical skill in perspective, his dedication to precise language, and his acute observation of nature. Melencolia I may also be one of the most controversial (and at the time most criminal) pieces of art as it hid Dürer's disdain for the hierarchy of the Catholic Church, the Kaiser, and the Holy Roman Empire from the general public for centuries. This book closely ties the origins of philosophy (science) and the work of a Renaissance master together, and will be of interest for anyone who loves scientific history, art interpretation, and secret manifestos.

  15. International medical graduates in the United States: a view from an ECFMG certificant.

    PubMed

    Zerhouni, Elias A

    2006-12-01

    The author was instilled with a passion for mathematics and physics by his father, who taught those subjects in a small Algerian town. Another indelible influence came during a high school mathematics class when his teacher gave the class a problem to solve. Little did the students know that it was Fermat's Last Theorem, which stumped them, and before that, every mathematician since 1630. This experience taught the author that failing to get the final answer was part of learning. He became enchanted with imaging techniques and after earning his medical degree in Algeria, came to study at Johns Hopkins. There he received the training he desired in diagnostic radiology. The author believes science has no borders and would like to see the opportunities that were extended to him in 1975 given to immigrants today. Although the United States produces many graduates in the sciences and mathematics, the nation still has a shortfall and must, he argues, work harder to educate and inspire this country's youth in addition to welcoming the brightest and most able scientists from around the world. He also discusses the crucial role of the National Institutes of Health in furthering global health by funding international biomedical research and by transforming medicine in the 21st century.

  16. Johannes Kepler - And the New Astronomy

    NASA Astrophysics Data System (ADS)

    Voelkel, James R.

    1999-11-01

    Johannes Kepler (1571-1630) is remembered as one of the greatest medieval astronomers in the tradition of Copernicus and Galileo, a man who made major contributions to physics, astronomy, and mathematics. Born in Germany and trained as a theologian, Kepler did not hesitate to challenge church doctrine by supporting the iconoclastic theory of a Sun-centered solar system. As Imperial Mathematician to the Holy Roman Emperor, he conducted careful observations of the night sky, which led to his discovery of the three Laws of Planetary Motion and the orbit of Mars. He also devised the Rudolphine Tables on planetary movements, and made key improvements to the telescope. Voelkel vividly describes the scientific achievements, providing enough background in physics and trigonometry so even beginners can enjoy this book. The author also gives us a captivating account of Kepler's tumultuous life, plagued by misery, disease, and fervent religious prosecution by the Catholic Church.Oxford Portraits in Science is an ongoing series of scientific biographies for young adults. Written by top scholars and writers, each biography examines the personality of its subject as well as the thought process leading to his or her discoveries. These illustrated biographies combine accessible technical information with compelling personal stories to portray the scientists whose work has shaped our understanding of the natural world.

  17. Bridging Social and Semantic Computing - Design and Evaluation of User Interfaces for Hybrid Systems

    ERIC Educational Resources Information Center

    Bostandjiev, Svetlin Alex I.

    2012-01-01

    The evolution of the Web brought new interesting problems to computer scientists that we loosely classify in the fields of social and semantic computing. Social computing is related to two major paradigms: computations carried out by a large amount of people in a collective intelligence fashion (i.e. wikis), and performing computations on social…

  18. Profugus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Thomas; Hamilton, Steven; Slattery, Stuart

    Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less

  19. Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric

    2015-01-16

    This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less

  20. Perspectives on an education in computational biology and medicine.

    PubMed

    Rubinstein, Jill C

    2012-09-01

    The mainstream application of massively parallel, high-throughput assays in biomedical research has created a demand for scientists educated in Computational Biology and Bioinformatics (CBB). In response, formalized graduate programs have rapidly evolved over the past decade. Concurrently, there is increasing need for clinicians trained to oversee the responsible translation of CBB research into clinical tools. Physician-scientists with dedicated CBB training can facilitate such translation, positioning themselves at the intersection between computational biomedical research and medicine. This perspective explores key elements of the educational path to such a position, specifically addressing: 1) evolving perceptions of the role of the computational biologist and the impact on training and career opportunities; 2) challenges in and strategies for obtaining the core skill set required of a biomedical researcher in a computational world; and 3) how the combination of CBB with medical training provides a logical foundation for a career in academic medicine and/or biomedical research.

  1. Integrated Circuits/Segregated Labor: Women in Three Computer-Related Occupations. Project Report No. 84-A27.

    ERIC Educational Resources Information Center

    Strober, Myra H.; Arnold, Carolyn L.

    This discussion of the impact of new computer occupations on women's employment patterns is divided into four major sections. The first section describes the six computer-related occupations to be analyzed: (1) engineers; (2) computer scientists and systems analysts; (3) programmers; (4) electronic technicians; (5) computer operators; and (6) data…

  2. Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations

    ERIC Educational Resources Information Center

    Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa

    2013-01-01

    The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…

  3. Collective Computation of Neural Network

    DTIC Science & Technology

    1990-03-15

    Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model

  4. What Are the Odds?

    ERIC Educational Resources Information Center

    Beam, John

    2012-01-01

    Students and mathematicians alike have long struggled to understand the nature of probability. This article explores the use of gambling activities as a basis for defining probabilities. (Contains 1 table and 1 figure.)

  5. A Look at Infinite Series

    ERIC Educational Resources Information Center

    Basor, Estelle

    1978-01-01

    Sums for divergent series that were seriously considered by eighteenth century mathematicians are shown to have reappeared as result of new interpretations for divergent series that make these previous conclusions valid. (MN)

  6. Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermilab

    2017-09-01

    Scientists, engineers and programmers at Fermilab are tackling today’s most challenging computational problems. Their solutions, motivated by the needs of worldwide research in particle physics and accelerators, help America stay at the forefront of innovation.

  7. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  8. OptFuels: Fuel treatment optimization

    Treesearch

    Greg Jones

    2011-01-01

    Scientists at the USDA Forest Service, Rocky Mountain Research Station, in Missoula, MT, in collaboration with scientists at the University of Montana, are developing a tool to help forest managers prioritize forest fuel reduction treatments. Although several computer models analyze fuels and fire behavior, stand-level effects of fuel treatments, and priority planning...

  9. Four Argonne National Laboratory scientists receive Early Career Research

    Science.gov Websites

    Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing

  10. Air Force Laboratory’s 2005 Technology Milestones

    DTIC Science & Technology

    2006-01-01

    Computational materials science methods can benefit the design and property prediction of complex real-world materials. With these models , scientists and...Warfighter Page Air High - Frequency Acoustic System...800) 203-6451 High - Frequency Acoustic System Payoff Scientists created the High - Frequency Acoustic Suppression Technology (HiFAST) airflow control

  11. A toolbox and record for scientific models

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Computational science presents a host of challenges for the field of knowledge-based software design. Scientific computation models are difficult to construct. Models constructed by one scientist are easily misapplied by other scientists to problems for which they are not well-suited. Finally, models constructed by one scientist are difficult for others to modify or extend to handle new types of problems. Construction of scientific models actually involves much more than the mechanics of building a single computational model. In the course of developing a model, a scientist will often test a candidate model against experimental data or against a priori expectations. Test results often lead to revisions of the model and a consequent need for additional testing. During a single model development session, a scientist typically examines a whole series of alternative models, each using different simplifying assumptions or modeling techniques. A useful scientific software design tool must support these aspects of the model development process as well. In particular, it should propose and carry out tests of candidate models. It should analyze test results and identify models and parts of models that must be changed. It should determine what types of changes can potentially cure a given negative test result. It should organize candidate models, test data, and test results into a coherent record of the development process. Finally, it should exploit the development record for two purposes: (1) automatically determining the applicability of a scientific model to a given problem; (2) supporting revision of a scientific model to handle a new type of problem. Existing knowledge-based software design tools must be extended in order to provide these facilities.

  12. Computer Series, 98. Electronics for Scientists: A Computer-Intensive Approach.

    ERIC Educational Resources Information Center

    Scheeline, Alexander; Mork, Brian J.

    1988-01-01

    Reports the design for a principles-before-details presentation of electronics for an instrumental analysis class. Uses computers for data collection and simulations. Requires one semester with two 2.5-hour periods and two lectures per week. Includes lab and lecture syllabi. (MVL)

  13. Big data computing: Building a vision for ARS information management

    USDA-ARS?s Scientific Manuscript database

    Improvements are needed within the ARS to increase scientific capacity and keep pace with new developments in computer technologies that support data acquisition and analysis. Enhancements in computing power and IT infrastructure are needed to provide scientists better access to high performance com...

  14. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  15. Le contenu astronomique des Sphériques de Ménélaos

    NASA Astrophysics Data System (ADS)

    Nadal, Robert; Taha, Abdelkaddous; Pinel, Pierre

    2004-07-01

    The Spherics were written by Menelaos in the form of a purely mathematical treatise. However, the material developed in the second and third book is closely linked to problems met in astronomy: computation of equatorial coordinates of the Sun, setting up of rising-time tables, study of the motion of the Sun in the sphaera obliqua, simultaneous risings. This link, which remains implicit in the text, was clearly displayed by two arabo-islamic mathematicians and astronomers, who expounded the astronomical meaning of some theorems of the Spherics. We describe, comment and complement their explanations, by classifying the implications of the theorems in three groups: direction of variation of some quantities on the sphere, spherical trigonometry and applications, direction of variation of ratios of some quantities on the sphere. An erratum to this article can be found at http://dx.doi.org/10.1007/s00407-004-0084-7

  16. Correction to "What is a fractional derivative?" by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, Pages 4-13. Special issue on Fractional PDEs

    NASA Astrophysics Data System (ADS)

    Katugampola, Udita N.

    2016-09-01

    There is a debate among contemporary mathematicians about what it really means by a fractional derivative. The question arose as a consequence of introducing a 'new' definition of a fractional derivative in [1]. In a reply, Ortigueira and Machado [2] came up with several very important criteria to determine whether a given derivative is a fractional derivative. According to their criterion, the new fractional derivative, called conformable fractional derivative, introduced by Khalil et al. [1] turns out not to be a fractional derivative, but rather a controlled or conformable derivative. In proving the claim the authors in [2] use an example [2, p. 6]. It turns out that the explanation given there needs some corrections and it is the sole purpose of this note.

  17. Quantum Information: an invitation for mathematicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Garcia, David

    2009-05-06

    Quantum Information is the science that aims to use the unusual behavior of the microscopic world, governed by the laws of Quantum Mechanics, in order to improve the way in which we compute or communicate information. Though the first ideas in this direction come from the early 80's, it is in the last decade when Quantum Information has suffered an spectacular development. It is impossible to resume in a paper like this one the importance and complexity of the field. Therefore, I will limit to briefly explain some of the initial ideas (considered classical by now), and to briefly suggestmore » some of the modern lines of research. By the nature of this exposition, I have decided to avoid rigor and to concentrate more in ideas and intuitions. Anyhow, I have tried to provide with enough references, in such a way that an interested reader could find there proper theorems and proofs.« less

  18. High-Performance Computing Unlocks Innovation at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Need to fly around a wind farm? Or step inside a molecule? NREL scientists use a super powerful (and highly energy-efficient) computer to visualize and solve big problems in renewable energy research.

  19. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, R J

    This month's issue has the following articles: (1) Dawn of a New Era of Scientific Discovery - Commentary by Edward I. Moses; (2) At the Frontiers of Fundamental Science Research - Collaborators from national laboratories, universities, and international organizations are using the National Ignition Facility to probe key fundamental science questions; (3) Livermore Responds to Crisis in Post-Earthquake Japan - More than 70 Laboratory scientists provided round-the-clock expertise in radionuclide analysis and atmospheric dispersion modeling as part of the nation's support to Japan following the March 2011 earthquake and nuclear accident; (4) A Comprehensive Resource for Modeling, Simulation, and Experimentsmore » - A new Web-based resource called MIDAS is a central repository for material properties, experimental data, and computer models; and (5) Finding Data Needles in Gigabit Haystacks - Livermore computer scientists have developed a novel computer architecture based on 'persistent' memory to ease data-intensive computations.« less

  1. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)

    2000-01-01

    The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.

  2. The Effects of a Robot Game Environment on Computer Programming Education for Elementary School Students

    ERIC Educational Resources Information Center

    Shim, Jaekwoun; Kwon, Daiyoung; Lee, Wongyu

    2017-01-01

    In the past, computer programming was perceived as a task only carried out by computer scientists; in the 21st century, however, computer programming is viewed as a critical and necessary skill that everyone should learn. In order to improve teaching of problem-solving abilities in a computing environment, extensive research is being done on…

  3. RIACS

    NASA Technical Reports Server (NTRS)

    Moore, Robert C.

    1998-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. Research is carried out by a staff of full-time scientist,augmented by visitors, students, post doctoral candidates and visiting university faculty. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: Automated Reasoning. Human-Centered Computing. and High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling.

  4. A Visit from Pythagoras--Using Costumes in the Classroom.

    ERIC Educational Resources Information Center

    Shirley, Lawrence H.

    2000-01-01

    Presents ways of making mathematics come alive for students including inviting historical mathematicians into the classroom. Suggests that costumes and drama add special appeal to looking at the history of mathematics. (KHR)

  5. Relativistic Theory of Gheorghe Zapan for Psychical Phenoma

    NASA Astrophysics Data System (ADS)

    Sofonea, Liviu

    A biography and an account of main scientific research of a Psychologist, Mathematician, Cybernetician, Teacher, Army officer, Lawyer Gheorghe Zapan (1891-1976) and of his relation with Special and General Relativity is given.

  6. Computational chemistry at Janssen

    NASA Astrophysics Data System (ADS)

    van Vlijmen, Herman; Desjarlais, Renee L.; Mirzadegan, Tara

    2017-03-01

    Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

  7. Computing Life

    ERIC Educational Resources Information Center

    National Institute of General Medical Sciences (NIGMS), 2009

    2009-01-01

    Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through one's school, and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could…

  8. Liquid Sloshing Dynamics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raouf A.

    2005-06-01

    The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.

  9. Identifying the Factors Leading to Success: How an Innovative Science Curriculum Cultivates Student Motivation

    ERIC Educational Resources Information Center

    Scogin, Stephen C.

    2016-01-01

    "PlantingScience" is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific…

  10. Tessera: Open source software for accelerated data science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sego, Landon H.; Hafen, Ryan P.; Director, Hannah M.

    2014-06-30

    Extracting useful, actionable information from data can be a formidable challenge for the safeguards, nonproliferation, and arms control verification communities. Data scientists are often on the “front-lines” of making sense of complex and large datasets. They require flexible tools that make it easy to rapidly reformat large datasets, interactively explore and visualize data, develop statistical algorithms, and validate their approaches—and they need to perform these activities with minimal lines of code. Existing commercial software solutions often lack extensibility and the flexibility required to address the nuances of the demanding and dynamic environments where data scientists work. To address this need,more » Pacific Northwest National Laboratory developed Tessera, an open source software suite designed to enable data scientists to interactively perform their craft at the terabyte scale. Tessera automatically manages the complicated tasks of distributed storage and computation, empowering data scientists to do what they do best: tackling critical research and mission objectives by deriving insight from data. We illustrate the use of Tessera with an example analysis of computer network data.« less

  11. Cross Domain Deterrence: Livermore Technical Report, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Peter D.; Bahney, Ben; Matarazzo, Celeste

    2016-08-03

    Lawrence Livermore National Laboratory (LLNL) is an original collaborator on the project titled “Deterring Complex Threats: The Effects of Asymmetry, Interdependence, and Multi-polarity on International Strategy,” (CDD Project) led by the UC Institute on Global Conflict and Cooperation at UCSD under PIs Jon Lindsay and Erik Gartzke , and funded through the DoD Minerva Research Initiative. In addition to participating in workshops and facilitating interaction among UC social scientists, LLNL is leading the computational modeling effort and assisting with empirical case studies to probe the viability of analytic, modeling and data analysis concepts. This report summarizes LLNL work on themore » CDD Project to date, primarily in Project Years 1-2, corresponding to Federal fiscal year 2015. LLNL brings two unique domains of expertise to bear on this Project: (1) access to scientific expertise on the technical dimensions of emerging threat technology, and (2) high performance computing (HPC) expertise, required for analyzing the complexity of bargaining interactions in the envisioned threat models. In addition, we have a small group of researchers trained as social scientists who are intimately familiar with the International Relations research. We find that pairing simulation scientists, who are typically trained in computer science, with domain experts, social scientists in this case, is the most effective route to developing powerful new simulation tools capable of representing domain concepts accurately and answering challenging questions in the field.« less

  12. Towards Robot Scientists for autonomous scientific discovery

    PubMed Central

    2010-01-01

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist. PMID:20119518

  13. Towards Robot Scientists for autonomous scientific discovery.

    PubMed

    Sparkes, Andrew; Aubrey, Wayne; Byrne, Emma; Clare, Amanda; Khan, Muhammed N; Liakata, Maria; Markham, Magdalena; Rowland, Jem; Soldatova, Larisa N; Whelan, Kenneth E; Young, Michael; King, Ross D

    2010-01-04

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.

  14. Implementations of the CC'01 Human-Computer Interaction Guidelines Using Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Manaris, Bill; Wainer, Michael; Kirkpatrick, Arthur E.; Stalvey, RoxAnn H.; Shannon, Christine; Leventhal, Laura; Barnes, Julie; Wright, John; Schafer, J. Ben; Sanders, Dean

    2007-01-01

    In today's technology-laden society human-computer interaction (HCI) is an important knowledge area for computer scientists and software engineers. This paper surveys existing approaches to incorporate HCI into computer science (CS) and such related issues as the perceived gap between the interests of the HCI community and the needs of CS…

  15. Eckert, Wallace John (1902-71)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Computer scientist and astronomer. Born in Pittsburgh, PA, Eckert was a pioneer of the use of IBM punched card equipment for astronomical calculations. As director of the US Nautical Almanac Office he introduced computer methods to calculate and print tables instead of relying on human `computers'. When, later, he became director of the Watson Scientific Computing Laboratory at Columbia Universit...

  16. "I'm Good, but Not That Good": Digitally-Skilled Young People's Identity in Computing

    ERIC Educational Resources Information Center

    Wong, Billy

    2017-01-01

    Computers and information technology are fast becoming a part of young people's everyday life. However, there remains a difference between the majority who can use computers and the minority who are computer scientists or professionals. Drawing on 32 semi-structured interviews with digitally skilled young people (aged 13-19), we explore their…

  17. Computers in Education: Realizing the Potential. Chairmen's Report of a Research Conference, Pittsburgh, Pennsylvania, November 20-24, 1982.

    ERIC Educational Resources Information Center

    Lesgold, Alan; Reif, Frederick

    The future of computers in education and the research needed to realize the computer's potential are discussed in this report, which presents a summary and the conclusions from an invitational conference involving 40 computer scientists, psychologists, educational researchers, teachers, school administrators, and parents. The summary stresses the…

  18. 2005 White Paper on Institutional Capability Computing Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnes, B; McCoy, M; Seager, M

    This paper documents the need for a significant increase in the computing infrastructure provided to scientists working in the unclassified domains at Lawrence Livermore National Laboratory (LLNL). This need could be viewed as the next step in a broad strategy outlined in the January 2002 White Paper (UCRL-ID-147449) that bears essentially the same name as this document. Therein we wrote: 'This proposed increase could be viewed as a step in a broader strategy linking hardware evolution to applications development that would take LLNL unclassified computational science to a position of distinction if not preeminence by 2006.' This position of distinctionmore » has certainly been achieved. This paper provides a strategy for sustaining this success but will diverge from its 2002 predecessor in that it will: (1) Amplify the scientific and external success LLNL has enjoyed because of the investments made in 2002 (MCR, 11 TF) and 2004 (Thunder, 23 TF). (2) Describe in detail the nature of additional investments that are important to meet both the institutional objectives of advanced capability for breakthrough science and the scientists clearly stated request for adequate capacity and more rapid access to moderate-sized resources. (3) Put these requirements in the context of an overall strategy for simulation science and external collaboration. While our strategy for Multiprogrammatic and Institutional Computing (M&IC) has worked well, three challenges must be addressed to assure and enhance our position. The first is that while we now have over 50 important classified and unclassified simulation codes available for use by our computational scientists, we find ourselves coping with high demand for access and long queue wait times. This point was driven home in the 2005 Institutional Computing Executive Group (ICEG) 'Report Card' to the Deputy Director for Science and Technology (DDST) Office and Computation Directorate management. The second challenge is related to the balance that should be maintained in the simulation environment. With the advent of Thunder, the institution directed a change in course from past practice. Instead of making Thunder available to the large body of scientists, as was MCR, and effectively using it as a capacity system, the intent was to make it available to perhaps ten projects so that these teams could run very aggressive problems for breakthrough science. This usage model established Thunder as a capability system. The challenge this strategy raises is that the majority of scientists have not seen an improvement in capacity computing resources since MCR, thus creating significant tension in the system. The question then is: 'How do we address the institution's desire to maintain the potential for breakthrough science and also meet the legitimate requests from the ICEG to achieve balance?' Both the capability and the capacity environments must be addressed through this one procurement. The third challenge is to reach out more aggressively to the national science community to encourage access to LLNL resources as part of a strategy for sharpening our science through collaboration. Related to this, LLNL has been unable in the past to provide access for sensitive foreign nationals (SFNs) to the Livermore Computing (LC) unclassified 'yellow' network. Identifying some mechanism for data sharing between LLNL computational scientists and SFNs would be a first practical step in fostering cooperative, collaborative relationships with an important and growing sector of the American science community.« less

  19. 75 FR 60820 - United States v. Adobe Systems, Inc., et al.; Proposed Final Judgment and Competitive Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... compete for high tech employees, and in particular specialized computer science and engineering talent on the basis of salaries, benefits, and career opportunities. In recent years, talented computer... Venue 4. Each Defendant hires specialized computer engineers and scientists throughout the United States...

  20. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  1. Integrating Computational Science Tools into a Thermodynamics Course

    ERIC Educational Resources Information Center

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of…

  2. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  3. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  4. hackseq: Catalyzing collaboration between biological and computational scientists via hackathon.

    PubMed

    2017-01-01

    hackseq ( http://www.hackseq.com) was a genomics hackathon with the aim of bringing together a diverse set of biological and computational scientists to work on collaborative bioinformatics projects. In October 2016, 66 participants from nine nations came together for three days for hackseq and collaborated on nine projects ranging from data visualization to algorithm development. The response from participants was overwhelmingly positive with 100% (n = 54) of survey respondents saying they would like to participate in future hackathons. We detail key steps for others interested in organizing a successful hackathon and report excerpts from each project.

  5. hackseq: Catalyzing collaboration between biological and computational scientists via hackathon

    PubMed Central

    2017-01-01

    hackseq ( http://www.hackseq.com) was a genomics hackathon with the aim of bringing together a diverse set of biological and computational scientists to work on collaborative bioinformatics projects. In October 2016, 66 participants from nine nations came together for three days for hackseq and collaborated on nine projects ranging from data visualization to algorithm development. The response from participants was overwhelmingly positive with 100% (n = 54) of survey respondents saying they would like to participate in future hackathons. We detail key steps for others interested in organizing a successful hackathon and report excerpts from each project. PMID:28417000

  6. The interaction of representation and reasoning

    PubMed Central

    Bundy, Alan

    2013-01-01

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group. PMID:24062623

  7. Software Assurance of PLCs Training Course

    NASA Technical Reports Server (NTRS)

    Threatt, Jamarr

    2004-01-01

    Being heavily visually-oriented, I am a firm believer in communication and conveying emotions through the art of color, motion, and transformation. A four-part online training course was created in PowerPoint and needed to be translated over into a Flash format. Issues with the Powerpoint were that the size of the files caused noticeable delays when placed online, there were compatibility issues, and from a composition and design perspective, color schemes and layout left much to be desired. High contrast, pixilated yellow text spiraling and flying on to a background of overly rich hues of blue with cheesy gradient patterns was just not appeasing to my eye, along with the menu directory buttons located at the top resembling blue pills of NyQuil on top of a stale gray border that had nothing to do with the background. The course itself is extremely broad and verbose, and will get monotonous very soon after starting. Moving about the course was very cumbersome as well. efficient by drastically reducing the size (The file size of all four parts of the actual course combined will ultimately not even be a fifth as big as one part of the original PowerPoint alone!); along with that, the course was made to be more interactive and user-friendly, as well as pleasing to the eye. Upon being viewed by fellow co-workers, nothing but positive feedback has been received. When beginning the presentation, onscreen comes a 3' 2" chubby, balding professor, who is a master in his knowledge of Programmable Logic Controllers (PLCs). He introduces himself and presents all of his vast knowledge over PLCs in a fun and innovative manner, making it much easier to acquire the information presented. A Scene Selection feature has been added making it a lot easier to jump from part to part and the back and forth arrows are much easier to utilize, and they are both less obtrusive than its PowerPoint predecessor. The user can also go at their pace, as the presentation pauses after at the end of each statement. computer animation, it was.. .still. ..animation done on a computer. I was able to incorporate my artistic talent and intuitive creativity into it, one thing I am very proficient at doing when it comes to what I do and what I will do in my profession as an artist/computer animator. At first, I felt that there was no place for an artist within a faculty of scientists, engineers, chemists, mathematicians, and programmers, but I managed to fit in quite successfully. My task was to convert the course into a Flash format, which would make it much more My project surprisingly somewhat dealt with my field of interest-though it was not

  8. How Many Spots Does a Cheetah Have?

    ERIC Educational Resources Information Center

    Reed, Kristine M.

    2000-01-01

    Describes first grade students' mathematical investigation of the number of spots on a cheetah. The exploration of counting and estimation strategies that grew from the investigation gives evidence that mathematicians come in all ages. (ASK)

  9. Reiche, Maria (1903-98)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    German mathematician and archaeologist, born Dresden, fled the Nazi regime to Peru, identified and researched the huge figures of Nazca drawn in the desert and revealed the knowledge of astronomy of the ancient inhabitants of Peru's coastal region....

  10. openBEB: open biological experiment browser for correlative measurements

    PubMed Central

    2014-01-01

    Background New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from diverse complementary techniques are combined and correlated. PMID:24666611

  11. Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership

    NASA Technical Reports Server (NTRS)

    Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan

    2003-01-01

    With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will suggest a possible future for the NASA - National Guard Bureau partnership, one potentially to include live multi-party interaction of hundreds of students in several countries with astronauts, scientists, engineers and designers. To inspire the next generation of explorers as only NASA can!

  12. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    Japanese (n=94) and U.S. (n=340) aerospace scientists/engineers described time spent communicating information, collaborative writing, importance of technical communication courses, and the use of libraries, computer networks, and technical reports. Japanese respondents had greater language fluency; U.S. respondents spent more time with…

  13. MeDICi Software Superglue for Data Analysis Pipelines

    ScienceCinema

    Ian Gorton

    2017-12-09

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework is an integrated middleware platform developed to solve data analysis and processing needs of scientists across many domains. MeDICi is scalable, easily modified, and robust to multiple languages, protocols, and hardware platforms, and in use today by PNNL scientists for bioinformatics, power grid failure analysis, and text analysis.

  14. The Draw a Scientist Test: A Different Population and a Somewhat Different Story

    ERIC Educational Resources Information Center

    Thomas, Mark D.; Henley, Tracy B.; Snell, Catherine M.

    2006-01-01

    This study examined Draw-a-Scientist-Test (DAST) images solicited from 212 undergraduate students for the presence of traditional gender stereotypes. Participants were 100 males and 112 females enrolled in psychology or computer science courses with a mean age of 21.02 years. A standard multiple regression generated a model that accounts for the…

  15. Multiscale computing.

    PubMed

    Kobayashi, M; Irino, T; Sweldens, W

    2001-10-23

    Multiscale computing (MSC) involves the computation, manipulation, and analysis of information at different resolution levels. Widespread use of MSC algorithms and the discovery of important relationships between different approaches to implementation were catalyzed, in part, by the recent interest in wavelets. We present two examples that demonstrate how MSC can help scientists understand complex data. The first is from acoustical signal processing and the second is from computer graphics.

  16. A characterization of workflow management systems for extreme-scale applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  17. A characterization of workflow management systems for extreme-scale applications

    DOE PAGES

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...

    2017-02-16

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  18. Information processing, computation, and cognition

    PubMed Central

    Scarantino, Andrea

    2010-01-01

    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism, connectionism, and computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates’ empirical aspects. PMID:22210958

  19. Mobile Devices and GPU Parallelism in Ionospheric Data Processing

    NASA Astrophysics Data System (ADS)

    Mascharka, D.; Pankratius, V.

    2015-12-01

    Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of smartphones.

  20. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE PAGES

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.; ...

    2017-01-04

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  1. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  2. Mighty Mathematicians: Using Problem Posing and Problem Solving to Develop Mathematical Power

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Sheffield, Linda J.

    2006-01-01

    This article describes a year-long professional development institute combined with a summer camp for students. Both were designed to help teachers and students develop their problem-solving and problem-posing abilities.

  3. Math Roots: The Beginnings of the Metric System

    ERIC Educational Resources Information Center

    Johnson, Art; Norris, Kit; Adams,Thomasina Lott, Ed.

    2007-01-01

    This article reviews the history of the metric system, from a proposal of a sixteenth-century mathematician to its implementation in Revolutionary France some 200 years later. Recent developments in the metric system are also discussed.

  4. New Forms of Stolz-Cesaro Lemma

    ERIC Educational Resources Information Center

    Mortici, Cristinel

    2011-01-01

    The well-known Stolz-Cesaro lemma is due to the mathematicians Ernesto Cesaro (1859-1906) and Otto Stolz (1842-1905). The aim of this article is to give new forms of Stolz-Cesaro lemma involving the limit [image omitted].

  5. Theano: The World's First Female Mathematician?

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2013-01-01

    Theano, an associate, most likely the wife, of Pythagoras, has some claim to be the first woman to play an active role in mathematics. The question of how far this claim can be supported is here examined.

  6. Reflections on the Notion of Culture in the History of Mathematics: The Example of "Geometrical Equations".

    PubMed

    Lê, François

    2016-09-01

    Argument This paper challenges the use of the notion of "culture" to describe a particular organization of mathematical knowledge, shared by a few mathematicians over a short period of time in the second half of the nineteenth century. This knowledge relates to "geometrical equations," objects that proved crucial for the mechanisms of encounters between equation theory, substitution theory, and geometry at that time, although they were not well-defined mathematical objects. The description of the mathematical collective activities linked to "geometrical equations," and especially the technical aspects of these activities, is made on the basis of a sociological definition of "culture." More precisely, after an examination of the social organization of the group of mathematicians, I argue that these activities form an intricate system of patterns, symbols, and values, for which I suggest a characterization as a "cultural system."

  7. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  8. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  9. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences

    PubMed Central

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099

  10. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  11. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    PubMed

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  12. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  13. Alliance for Computational Science Collaboration HBCU Partnership at Fisk University. Final Report 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. E.

    2004-08-16

    Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less

  14. Staff | Computational Science | NREL

    Science.gov Websites

    develops and leads laboratory-wide efforts in high-performance computing and energy-efficient data centers Professional IV-High Perf Computing Jim.Albin@nrel.gov 303-275-4069 Ananthan, Shreyas Senior Scientist - High -Performance Algorithms and Modeling Shreyas.Ananthan@nrel.gov 303-275-4807 Bendl, Kurt IT Professional IV-High

  15. Parallel computer vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhr, L.

    1987-01-01

    This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.

  16. How to Teach Residue Number System to Computer Scientists and Engineers

    ERIC Educational Resources Information Center

    Navi, K.; Molahosseini, A. S.; Esmaeildoust, M.

    2011-01-01

    The residue number system (RNS) has been an important research field in computer arithmetic for many decades, mainly because of its carry-free nature, which can provide high-performance computing architectures with superior delay specifications. Recently, research on RNS has found new directions that have resulted in the introduction of efficient…

  17. A Research and Development Strategy for High Performance Computing.

    ERIC Educational Resources Information Center

    Office of Science and Technology Policy, Washington, DC.

    This report is the result of a systematic review of the status and directions of high performance computing and its relationship to federal research and development. Conducted by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET), the review involved a series of workshops attended by numerous computer scientists and…

  18. Relevancy in Problem Solving: A Computational Framework

    ERIC Educational Resources Information Center

    Kwisthout, Johan

    2012-01-01

    When computer scientists discuss the computational complexity of, for example, finding the shortest path from building A to building B in some town or city, their starting point typically is a formal description of the problem at hand, e.g., a graph with weights on every edge where buildings correspond to vertices, routes between buildings to…

  19. Knowledge Discovery from Climate Data using Graph-Based Methods

    NASA Astrophysics Data System (ADS)

    Steinhaeuser, K.

    2012-04-01

    Climate and Earth sciences have recently experienced a rapid transformation from a historically data-poor to a data-rich environment, thus bringing them into the realm of the Fourth Paradigm of scientific discovery - a term coined by the late Jim Gray (Hey et al. 2009), the other three being theory, experimentation and computer simulation. In particular, climate-related observations from remote sensors on satellites and weather radars, in situ sensors and sensor networks, as well as outputs of climate or Earth system models from large-scale simulations, provide terabytes of spatio-temporal data. These massive and information-rich datasets offer a significant opportunity for advancing climate science and our understanding of the global climate system, yet current analysis techniques are not able to fully realize their potential benefits. We describe a class of computational approaches, specifically from the data mining and machine learning domains, which may be novel to the climate science domain and can assist in the analysis process. Computer scientists have developed spatial and spatio-temporal analysis techniques for a number of years now, and many of them may be applicable and/or adaptable to problems in climate science. We describe a large-scale, NSF-funded project aimed at addressing climate science question using computational analysis methods; team members include computer scientists, statisticians, and climate scientists from various backgrounds. One of the major thrusts is in the development of graph-based methods, and several illustrative examples of recent work in this area will be presented.

  20. The house of the future

    ScienceCinema

    None

    2017-12-09

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

Top