Sample records for mathematics stem learning

  1. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    NASA Astrophysics Data System (ADS)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  2. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  3. Defining the Relationship of Student Achievement Between STEM Subjects Through Canonical Correlation Analysis of 2011 Trends in International Mathematics and Science Study (TIMSS) Data

    NASA Astrophysics Data System (ADS)

    O'Neal, Melissa Jean

    Canonical correlation analysis was used to analyze data from Trends in International Mathematics and Science Study (TIMSS) 2011 achievement databases encompassing information from fourth/eighth grades. Student achievement in life science/biology was correlated with achievement in mathematics and other sciences across three analytical areas: mathematics and science student performance, achievement in cognitive domains, and achievement in content domains. Strong correlations between student achievement in life science/biology with achievement in mathematics and overall science occurred for both high- and low-performing education systems. Hence, partial emphases on the inter-subject connections did not always lead to a better student learning outcome in STEM education. In addition, student achievement in life science/biology was positively correlated with achievement in mathematics and science cognitive domains; these patterns held true for correlations of life science/biology with mathematics as well as other sciences. The importance of linking student learning experiences between and within STEM domains to support high performance on TIMSS assessments was indicated by correlations of moderate strength (57 TIMSS assessments was indicated by correlations of moderate strength (57 < r < 85) stronger correlations (73 < r < 97) between life science/biology and other science domains. Results demonstrated the foundational nature of STEM knowledge at the fourth grade level, and established the importance of strong interconnections among life science/biology, mathematics, and other sciences. At the eighth grade level, students who built increasing levels of cognitive complexity upon firm foundations were prepared for successful learning throughout their educational careers. The results from this investigation promote a holistic design of school learning opportunities to improve student achievement in life science/biology and other science, technology, engineering, and mathematics (STEM) subjects at the elementary and middle school levels. While the curriculum can vary from combined STEM subjects to separated mathematics or science courses, both professional learning communities (PLC) for teachers and problem-based learning (PBL) for learners can be strengthened through new knowledge construction beyond the traditional boundaries of each subject. It is the knowledge transfer across subjects that breaks barriers of future STEM discoveries to improve STEM education outcomes.

  4. Students' Attitude towards STEM Education

    ERIC Educational Resources Information Center

    Popa, Roxana-Alexandra; Ciascai, Liliana

    2017-01-01

    STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…

  5. Student’s STEM Literacy in Biotechnology Learning at Junior High School

    NASA Astrophysics Data System (ADS)

    Nurlaely, N.; Permanasari, A.; Riandi, R.

    2017-09-01

    A considerable study to student’s STEM literacy achievement profile, especially in biotechnology learning, has been conducted to make the innovation of the STEM-based learning. The study aims to find out the STEM literacy. The sample is taken through purposive sampling technique to 45 students of 9th grade of a junior high school in Tasikmalaya district. The instruments are multiple choice questions. Data are analysed by calculating mean score of students’ STEM literacy achievement. The results show that student’s STEM literacy achievement was low. Science literacy aspect was the lowest, while mathematical literacy gained better than another aspect. The low achievement of students’ STEM literacy was because of learning activities that have not been able to integrate science, technology, engineering, and mathematics in science learning. The literacy profile indicates the importance of applying STEM approach to science learning, and it is recommended to improve students’ STEM literacy achievement.

  6. Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context

    ERIC Educational Resources Information Center

    Stage, Frances K.; Kinzie, Jillian

    2009-01-01

    This article reports the results of a series of site visits examining modifications to science, technology, engineering, and mathematics (STEM) teaching and learning based on reform on three differing campuses. Innovations in stem classrooms included collaborative approaches to learning; incorporation of active learning, authentic contexts, peer…

  7. Attitudes towards Science, Technology, Engineering and Mathematics (STEM) in a Project-Based Learning (PjBL) Environment

    ERIC Educational Resources Information Center

    Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Chen, Wen-Ping

    2013-01-01

    Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview…

  8. Implementing "Big Ideas" to Advance the Teaching and Learning of Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Chalmers, Christina; Carter, Merilyn; Cooper, Tom; Nason, Rod

    2017-01-01

    Although education experts are increasingly advocating the incorporation of integrated Science, Technology, Engineering, and Mathematics (STEM) curriculum units to address limitations in much current STEM teaching and learning, a review of the literature reveals that more often than not such curriculum units are not mediating the construction of…

  9. Connecting mathematics learning through spatial reasoning

    NASA Astrophysics Data System (ADS)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  10. iSTEM: Learning Mathematics through Minecraft

    ERIC Educational Resources Information Center

    Bos, Beth; Wilder, Lucy; Cook, Marcelina; O'Donnell, Ryan

    2014-01-01

    The Common Core State Standards can be taught with Minecraft, an interactive creative Lego®-like game. Integrating Science, Technology, Engineering, and Mathematics (iSTEM) authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K-grade 6 classrooms.

  11. Developing Middle School Students' Interests in STEM via Summer Learning Experiences: See Blue STEM Camp

    ERIC Educational Resources Information Center

    Mohr-Schroeder, Margaret J.; Jackson, Christa; Miller, Maranda; Walcott, Bruce; Little, David L.; Speler, Lydia; Schooler, William; Schroeder, D. Craig

    2014-01-01

    It is a well-known fact that, in general, many students have a lack of interest and proficiency in mathematics and science. Therefore, it is imperative that we prepare and inspire all students, specifically students of underrepresented populations, to learn science, technology, engineering, and mathematics (STEM) content. Now in its fourth year,…

  12. The Relationships among High School STEM Learning Experiences, Expectations, and Mathematics and Science Efficacy and the Likelihood of Majoring in STEM in College

    ERIC Educational Resources Information Center

    Sahin, Alpaslan; Ekmekci, Adem; Waxman, Hersh C.

    2017-01-01

    This study examines college students' science, technology, engineering, and mathematics (STEM) choices as they relate to high school experiences, parent, teacher, and self-expectations, and mathematics and science efficacy. Participants were 2246 graduates of a STEM-focused public Harmony Public Schools in Texas, Harmony Public Schools (HPS).…

  13. The Effect of STEM Learning through the Project of Designing Boat Model toward Student STEM Literacy

    NASA Astrophysics Data System (ADS)

    Tati, T.; Firman, H.; Riandi, R.

    2017-09-01

    STEM Learning focusses on development of STEM-literate society, the research about implementation of STEM learning to develope students’ STEM literacy is still limited. This study is aimed to examine the effect of implementation STEM learning through the project of designing boat model on students STEM literacy in energy topic. The method of this study was a quasi-experiment with non-randomized pretest-posttest control group design. There were two classes involved, the experiment class used Project Based Learning with STEM approach and control class used Project-Based Learning without STEM approach. A STEM Literacy test instrument was developed to measure students STEM literacy which consists of science literacy, mathematics literacy, and technology-engineering literacy. The analysis showed that there were significant differences on improvement science literacy, mathematics technology-engineering between experiment class and control class with effect size more than 0.8 (large effect). The difference of improvement of STEM literacy between experiment class and control class is caused by the existence of design engineering activity which required students to apply the knowledge from every field of STEM. The challenge that was faced in STEM learning through design engineering activity was how to give the students practice to integrate STEM field in solving the problems. In additional, most of the students gave positive response toward implementation of STEM learning through design boat model project.

  14. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    NASA Astrophysics Data System (ADS)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.

  15. Using Learning Stories to Capture "Gifted" and "Hard Worker" Mindsets within a NYC Specialized High School for the Sciences

    ERIC Educational Resources Information Center

    Pride, Leah D.

    2014-01-01

    All science, technology, engineering, and mathematics (STEM) educators working in urban public school systems are expected to provide opportunities for students to develop foundational scientific literacy skills in mathematics and science learning. However, the demands on STEM educators teaching the "gifted" or…

  16. Development of Analytical Thinking Ability and Attitudes towards Science Learning of Grade-11 Students through Science Technology Engineering and Mathematics (STEM Education) in the Study of Stoichiometry

    ERIC Educational Resources Information Center

    Chonkaew, Patcharee; Sukhummek, Boonnak; Faikhamta, Chatree

    2016-01-01

    The purpose of this study was to investigate the analytical thinking abilities and attitudes towards science learning of grade-11 students through science, technology, engineering, and mathematics (STEM) education integrated with a problem-based learning in the study of stoichiometry. The research tools consisted of a pre- and post-analytical…

  17. Exploring Collective Mathematical Creativity in Elementary School

    ERIC Educational Resources Information Center

    Levenson, Esther

    2011-01-01

    This study combines theories related to collective learning and theories related to mathematical creativity to investigate the notion of collective mathematical creativity in elementary school classrooms. Collective learning takes place when mathematical ideas and actions, initially stemming from an individual, are built upon and reworked,…

  18. STEM Learning Research through a Funds of Knowledge Lens

    ERIC Educational Resources Information Center

    Civil, Marta

    2016-01-01

    This article examines STEM learning as a cultural process with a focus on non-dominant communities. Building on my work in funds of knowledge and mathematics education, I present three vignettes to raise some questions around connections between in-school and out-of-school mathematics. How do we define competence? How do task and environment…

  19. Learning Scientific Reasoning Skills May Be Key to Retention in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Jensen, Jamie L.; Neeley, Shannon; Hatch, Jordan B.; Piorczynski, Ted

    2017-01-01

    The United States produces too few Science, Technology, Engineering, and Mathematics (STEM) graduates to meet demand. We investigated scientific reasoning ability as a possible factor in STEM retention. To do this, we classified students in introductory biology courses at a large private university as either declared STEM or non-STEM majors and…

  20. Using Food Science Demonstrations to Engage Students of All Ages in Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.

    2012-01-01

    The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…

  1. Developing teaching process for enhancing students' mathematical problem solving in the 21st century through STEM education

    NASA Astrophysics Data System (ADS)

    Prawvichien, Sutthaporn; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    The STEM education could provide the context for students' learning in the 21st century. The Mathematical problem solving requires a context which simulates real life in order to give students experience of the power of mathematics in the world around them. This study aimed to develop the teaching process for enhancing students' mathematical problem solving in the 21st century through STEM education. The paper will clarify the STEM learning activities about graph theories regarding on the 6 steps of engineering design process. These include identify a challenge, exploring ideas, designing and planning, doing and developing, test and evaluate, and present the solution. The learning activities will start from the Identify a challenge stage which provides the northern part of Thailand flooding situation in order to set the students' tasks of develop the solutions of providing the routes of fastest moving people away from the flooding areas. The explore ideas stage will provide activities for enhance students to learn some knowledge based for designing the possible solutions. This knowledge based could focus on measuring, geometry, graph theory, and mathematical process. The design and plan stage will ask students to model the city based on the map and then provide the possible routes. The doing and development stage will ask students to develop the routes based on their possible model. The test and evaluating will ask students to clarify how to test and evaluate the possible routes, and then test it. The present solution stage will ask students to present the whole process of designing routes. Then, the paper will discuss how these learning activities could enhance students' mathematical problem solving. The paper may have implication for STEM education in school setting.

  2. Math Is All around Us: Exploring the Teaching, Learning, and Professional Development of Three Urban Mathematics Teachers

    ERIC Educational Resources Information Center

    Cosby, Missy; Horton, Akesha; Berzina-Pitcher, Inese

    2017-01-01

    The MSUrbanSTEM fellowship program aims to support science, technology, engineering, and mathematics (STEM) educators teaching in an urban context. In this chapter, we used a multiple case studies methodology to examine the qualitatively different ways three urban mathematics educators implemented a yearlong project in their mathematics classrooms…

  3. Community Partnerships for Fostering Student Interest and Engagement in STEM

    ERIC Educational Resources Information Center

    Watters, James J.; Diezmann, Carmel M.

    2013-01-01

    The foundations of Science, Technology, Engineering and Mathematics (STEM) education begins in the early years of schooling when students encounter formal learning experiences primarily in mathematics and science. Politicians, economists and industrialists recognise the importance of STEM in society, and therefore a number of strategies have been…

  4. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  5. Learning for STEM Literacy: STEM Literacy for Learning

    ERIC Educational Resources Information Center

    Zollman, Alan

    2012-01-01

    We are in the STEM generation whose comprehensive purpose is to resolve (1) societal needs for new technological and scientific advances; (2) economic needs for national security; and (3) personal needs to become a fulfilled, productive, knowledgeable citizen. STEM specifically refers to science, technology, engineering, and mathematics, but now…

  6. Effective Practices for Evaluating STEM Out-of-School Time Programs

    ERIC Educational Resources Information Center

    Wilkerson, Stephanie B.; Haden, Carol M.

    2014-01-01

    Science, technology, engineering, and mathematics (STEM) programs in out-of-school time (OST) are designed to supplement school work, ignite student interest, and extend STEM learning. From interactive museum exhibits to summer-long science camps, opportunities for informal student engagement in STEM learning abound. The differences these programs…

  7. Mathematics, Programming, and STEM

    ERIC Educational Resources Information Center

    Yeh, Andy; Chandra, Vinesh

    2015-01-01

    Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10- week teaching experiment, mathematical meaning-making was enriched when primary…

  8. National STEM School Education Strategy: A Comprehensive Plan for Science, Technology, Engineering and Mathematics Education in Australia

    ERIC Educational Resources Information Center

    Education Council, 2015

    2015-01-01

    There are many factors that affect student engagement in science, technology, engineering and mathematics (STEM). Underlying this are the views of the broader community--and parents in particular--about the relevance of STEM, and the approach to the teaching and learning of STEM from the early years and continuing throughout schooling. Connected…

  9. STEM learning research through a funds of knowledge lens

    NASA Astrophysics Data System (ADS)

    Civil, Marta

    2016-03-01

    This article examines STEM learning as a cultural process with a focus on non-dominant communities. Building on my work in funds of knowledge and mathematics education, I present three vignettes to raise some questions around connections between in-school and out-of-school mathematics. How do we define competence? How do task and environment affect engagement? What is the role of affect, language, and cognition in different settings? These vignettes serve to highlight the complexity of moving across different domains of STEM practice—everyday life, school, and STEM disciplines. Based on findings from occupational interviews I discuss characteristics of learning and engaging in everyday practices and propose several areas for further research, including the nature of everyday STEM practices, valorization of knowledge, language choice, and different forms of engagement.

  10. Avoiding Misinterpretations of Piaget and Vygotsky: Mathematical Teaching without Learning, Learning without Teaching, or Helpful Learning-Path Teaching?

    ERIC Educational Resources Information Center

    Fuson, Karen C.

    2009-01-01

    This article provides an overview of some perspectives about special issues in classroom mathematical teaching and learning that have stemmed from the huge explosion of research in children's mathematical thinking stimulated by Piaget. It concentrates on issues that are particularly important for less-advanced learners and for those who might be…

  11. Influences on Visual Spatial Rotation: Science, Technology, Engineering, and Mathematics (STEM) Experiences, Age, and Gender

    ERIC Educational Resources Information Center

    Perry, Paula Christine

    2013-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that instructs…

  12. STEM Learning Community: An Interdisciplinary Seminar for First- and Second-Year College Science Majors

    ERIC Educational Resources Information Center

    Piper, Jon K.; Krehbiel, Dwight

    2015-01-01

    To attract and retain more academically qualified students to science and mathematics, we developed a merit-based scholarship program for incoming students with STEM interests. Scholarship recipients participate for the first two years in an interdisciplinary learning community and declare a STEM major by the sophomore year. STEM Learning…

  13. Formation and Assessment of a Tool to Evaluate STEM Literacy in Service-Learning Projects

    ERIC Educational Resources Information Center

    Hayford, Barbara; Blomstrom, Sally; Mumpower, Lori

    2015-01-01

    The purpose of the authors' research was to create a tool to evaluate science, technology, engineering, and mathematics (STEM) literacy in service-learning projects. The researchers posited that components of service-learning, which in this case included the deliverable and reflections, are examples of fundamental STEM literacy and thus can be…

  14. Connecting Mathematics Learning through Spatial Reasoning

    ERIC Educational Resources Information Center

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-01-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…

  15. Modules as Learning Tools in Linear Algebra

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  16. Shifting Expectations: Bringing STEM to Scale through Expanded Learning Systems

    ERIC Educational Resources Information Center

    Donner, Jessica; Wang, Yvonne

    2013-01-01

    Expanded learning opportunities, such as afterschool and summer programs, are particularly well positioned to help address science, technology, engineering, and mathematics (STEM) education crisis. A large percentage of youth participating in afterschool programs are members of groups traditionally underrepresented in STEM fields. Additionally,…

  17. Identifying STEM Concepts Associated with Junior Livestock Projects

    ERIC Educational Resources Information Center

    Wooten, Kate; Rayfield, John; Moore, Lori L.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is intended to provide students with a cross-subject, contextual learning experience. To more fully prepare our nation's students to enter the globally competitive workforce, STEM integration allows students to make connections between the abstract concepts learned in core subject…

  18. Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning

    ERIC Educational Resources Information Center

    Rau, Martina A.

    2017-01-01

    Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…

  19. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Belichesky, Jennifer

    2013-01-01

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational…

  20. Dismantling the Birdcage: Adolescent Girls' Attitudes towards Learning Mathematics with a Relational Pedagogy in a Problem-Based Environment

    ERIC Educational Resources Information Center

    Schettino, Carmel

    2013-01-01

    Although the Gender Achievement Gap is closing in mathematics, the "interest gap" in pursuing STEM fields is not. Mathematics education research has discussed constructivist, student-centered and inclusive methods of teaching that have been found to encourage students that have underachieved and been underrepresented in STEM fields. One…

  1. STEM Learning Is Everywhere: Summary of a Convocation on Building Learning Systems

    ERIC Educational Resources Information Center

    Olson, Steve; Labov, Jay

    2014-01-01

    Science, technology, engineering, and mathematics (STEM) permeate the modern world. The jobs people do, the foods they eat, the vehicles in which they travel, the information they receive, the medicines they take, and many other facets of modern life are constantly changing as STEM knowledge steadily accumulates. Yet STEM education in the United…

  2. Movers, Shakers, & Everyone in Between: Faculty Personas Surrounding Active Learning in the Undergraduate STEM Classroom

    ERIC Educational Resources Information Center

    Guy, Batsheva R.

    2017-01-01

    This qualitative study explores the attitudes that STEM (Science, Technology, Engineering, and Mathematics) faculty have about active learning (AL), the barriers that STEM faculty face when implementing AL, and what would encourage STEM faculty to use AL. Data was gathered using a modified Group-Level Assessment (GLA), a participatory method meant…

  3. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    ERIC Educational Resources Information Center

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  4. The relationships among high school STEM learning experiences, expectations, and mathematics and science efficacy and the likelihood of majoring in STEM in college

    NASA Astrophysics Data System (ADS)

    Sahin, Alpaslan; Ekmekci, Adem; Waxman, Hersh C.

    2017-07-01

    This study examines college students' science, technology, engineering, and mathematics (STEM) choices as they relate to high school experiences, parent, teacher, and self-expectations, and mathematics and science efficacy. Participants were 2246 graduates of a STEM-focused public Harmony Public Schools in Texas, Harmony Public Schools (HPS). Descriptive analyses indicated that the overall percentage of HPS graduates who chose a STEM major in college was greater than Texas state and national averages. Logistic regression analyses revealed that males and Asian students are more likely to choose a STEM major in college than females and non-Asian students, respectively. Moreover, students whose parents had a college degree in the U.S. are more likely to major in STEM fields than those who did not. Furthermore, males with higher mathematics efficacy and females with higher science efficacy are more likely to choose a STEM major than their counterparts with lower mathematics and science efficacy.

  5. Promoting Literacy-Embedded, Authentic STEM Instruction for Students with Disabilities and Other Struggling Learners

    ERIC Educational Resources Information Center

    Israel, Maya; Maynard, Kathie; Williamson, Pamela

    2013-01-01

    Students with diverse learning needs, including students with disabilities, have historically struggled in science, technology, engineering, and mathematics (STEM) learning. This article highlights barriers that students with disabilities and other struggling learners often face in STEM education. Several applied, evidence-based practices are…

  6. Evaluating the Impact of a Faculty Learning Community on STEM Teaching and Learning

    ERIC Educational Resources Information Center

    Smith, Tori Rhoulac; McGowan, Jill; Allen, Andrea R.; Johnson, Wayne David, II; Dickson, Leon A., Jr.; Najee-ullah, Muslimah Ali; Peters, Monique

    2008-01-01

    The faculty learning community project at Howard University involved a diverse group of men and women, tenured, tenure-track, and future faculty across science, technology, engineering, and mathematics (STEM) disciplines. The purpose of the group was to engage in the scholarship of teaching and learning by learning about teaching, reflecting on…

  7. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    ERIC Educational Resources Information Center

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  8. A Research about the Placement of the Top Thousand Students in STEM Fields in Turkey between 2000 and 2014

    ERIC Educational Resources Information Center

    Akgunduz, Devrim

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics), one of the mostly emphasized concepts in the world, is a paradigm that creates interdisciplinary learning and provides achievement of the outcomes of science, mathematics, engineering and technology while doing this. This research was carried out to investigate the STEM fields' placement of…

  9. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Iannelli, Joe; Sirinterlikci, Arif; Semich, George; Bernauer, James

    2012-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  10. Does Applied STEM Course Taking Link to STEM Outcomes for High School Students with Learning Disabilities?

    ERIC Educational Resources Information Center

    Gottfried, Michael A.; Sublett, Cameron

    2018-01-01

    Over the most recent two decades, federal policy has urged high schools to embed applied science, technology, engineering, and mathematics (STEM) courses into the curriculum to reinforce concepts learned in traditional math and science classes as well as to motivate students' interests and long-term pursuits in STEM areas. While prior research has…

  11. Integrating STEM education through Project-Based Inquiry Learning (PIL) in topic space among year one pupils

    NASA Astrophysics Data System (ADS)

    Ng, Chee Hoe; Adnan, M.

    2018-01-01

    This research aims to investigate the effect of integrating STEM education through Project-based Inquiry Learning (PIL) and the users of the STEM modules which consists of five projects on topic Space in Year One Mathematics Syllabus in Kurikulum Standard Sekolah Rendah (KSSR) of Malaysia. STEM education in primary school focuses on the introduces and awareness of students about the importance of STEM education. The projects in STEM modules are covering the different ethnic cultures in Malaysia. The modules are designed using the four phases in PIL. Concepts and the explanation of STEM education on each project are emphasized and provided in the modules so the teachers able to carry out the projects by using the modules. By using the modules in primary Mathematics, the students and teachers will be more understanding on how to integrate the Mathematics’ concepts in STEM education.

  12. Early Undergraduate Research Experiences Lead to Similar Learning Gains for STEM and Non-STEM Undergraduates

    ERIC Educational Resources Information Center

    Stanford, Jennifer S.; Rocheleau, Suzanne E.; Smith, Kevin P. W.; Mohan, Jaya

    2017-01-01

    Undergraduate research is touted as a high-impact educational practice yielding important benefits such as increased retention and notable learning gains. Large-scale studies describing benefits of mentored research programs have focused primarily on outcomes for science, technology, engineering and mathematics (STEM) undergraduates. The Students…

  13. Improving Student Achievement in Introductory Computer Science Courses Using Peer-Led Team Learning

    ERIC Educational Resources Information Center

    Dennis, Sonya Maria

    2013-01-01

    There has been a steady decline of majors in the disciplines of science, technology, engineering, and mathematics ("STEM majors"). In an effort to improve recruitment and retention in "STEM" majors, an active-learning methodology--"peer-led team learning" ("PLTL")--was implemented by the participating…

  14. Coupling between Metacognition and Emotions during STEM Learning with Advanced Learning Technologies: A Critical Analysis, Implications for Future Research, and Design of Learning Systems

    ERIC Educational Resources Information Center

    Azevedo, Roger; Mudrick, Nicholas; Taub, Michelle; Wortha, Franz

    2017-01-01

    Metacognition and emotions play a critical role in learners' ability to monitor and regulate their learning about 21st-century skills related to science, technology, engineering, and mathematics (STEM) content while using advanced learning technologies (ALTs; e.g., intelligent tutoring systems, serious games, hypermedia, augmented reality). In…

  15. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant--Part II

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Sirinterlikci, Arif

    2015-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  16. Characteristics of Schools Successful in STEM: Evidence from Two States' Longitudinal Data

    ERIC Educational Resources Information Center

    Hansen, Michael

    2014-01-01

    Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels…

  17. A National Partnership-Based Summer Learning Initiative to Engage Underrepresented Students with Science, Technology, Engineering and Mathematics

    NASA Technical Reports Server (NTRS)

    Melvin, Leland

    2010-01-01

    In response to the White House Educate to Innovate campaign, NASA developed a new science, technology, engineering, and mathematics (STEM) education program for non-traditional audiences that also focused on public-private partnerships and nationwide participation. NASA recognized that summer break is an often overlooked but opportune time to engage youth in STEM experiences, and elevated its ongoing commitment to the cultivation of diversity. The Summer of Innovation (SoI) is the resulting initiative that uses NASA's unique missions and resources to boost summer learning, particularly for students who are underrepresented, underserved and underperforming in STEM. The SoI pilot, launched in June 2010, is a multi-faceted effort designed to improve STEM teaching and learning through partnership, multi-week summer learning programs, special events, a national concluding event, and teacher development. The SoI pilot features strategic infusion of NASA content and educational resource materials, sustainability through STEM Learning Communities, and assessments of effectiveness of SoI interventions with other pilot efforts. This paper examines the inception and development of the Summer of Innovation pilot project, including achievements and effectiveness, as well as lessons learned for future efforts.

  18. STEM, STEM Education, STEMmania

    ERIC Educational Resources Information Center

    Sanders, Mark

    2009-01-01

    In this article, the author introduces integrative STEM (science, technology, engineering, and/or mathematics) education and discusses the importance of the program. The notion of integrative STEM education includes approaches that explore teaching and learning between/among any two or more of the STEM subject areas, and/or between a STEM subject…

  19. Case study of the science, engineering, mathematics, and aerospace academy: Participant and parental perceptions

    NASA Astrophysics Data System (ADS)

    Graves, Catherine

    The science, engineering, mathematics, and aerospace academy (SEMAA) is a federally-funded national out-of-school time (OST) science, technology, engineering, and mathematics (STEM) program that provides K-12 grade participants with hands-on activities and access to an aerospace education laboratory with the goals of increasing participants' engagement and interest in STEM and STEM careers. The SEMAA also provides support, resources, and training for SEMAA participants' parents through the Family Cafe. This multiple-case study investigated participants' and their parents' reasons for enrolling in the SEMAA and characterized the SEMAA in terms of its operations and infrastructure, instructors, learning environment, curriculum and instruction, and parental engagement. This study also assessed the role of the SEMAA in supporting participants' STEM college degree and career interests. Additionally, this study assessed the participants' attitudes towards science and science motivation factors. The findings of this study have implications for SEMAA and other OST STEM program providers related to: (a) recruitment and retention, (b) operations and infrastructure, (c) learning environments, (d) instructors, (e) curriculum and instruction, (f) parental engagement, and (g) OST STEM program outcomes.

  20. The Design and Validation of an Early Childhood STEM Classroom Observational Protocol

    ERIC Educational Resources Information Center

    Milford, Todd; Tippett, Christine

    2015-01-01

    Across K-12 education, there has been recent attention to the learning opportunities available to students in science, technology, engineering, and mathematics (STEM) learning. Early childhood education (ECE) has been excluded from this process. The scholarly literature contains good evidence for including science teaching and learning at the ECE…

  1. Multi-Role Project (MRP): A New Project-Based Learning Method for STEM

    ERIC Educational Resources Information Center

    Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric

    2016-01-01

    This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…

  2. A Study of Student Engagement in Project-Based Learning across Multiple Approaches to STEM Education Programs

    ERIC Educational Resources Information Center

    Hall, Alfred; Miro, Danielle

    2016-01-01

    Objective: In this study, we investigated the implementation of project-based learning (PBL) activities in four secondary science, technology, engineering, and mathematics (STEM) education settings to examine the impact of inquiry based instructional practices on student learning. Method: Direct classroom observations were conducted during the…

  3. Are Universities Providing Non-STEM Students the Mathematics Preparation Required by Their Programs?: A Case Study of A Quantitative Literacy Pathway and Vertical Alignment from Remediation to Degree Completion

    ERIC Educational Resources Information Center

    Allen, Charles

    2017-01-01

    Informed by Gagne's belief in the necessity of prerequisite knowledge for new learning, and Bruner's Spiral Curriculum Theory, the objective of this case study was to explore the postsecondary pathway from remedial mathematics, through one gateway mathematics course, and into the quantitative literacy requirements of various non-STEM programs of…

  4. Small-Group Learning in Undergraduate STEM Disciplines: Effect of Group Type on Student Achievement

    ERIC Educational Resources Information Center

    Micari, Marina; Pazos, Pilar; Streitwieser, Bernhard; Light, Gregory

    2010-01-01

    Small-group learning in the science, technology, engineering, and mathematics (STEM) disciplines has been widely studied, and it is clear that this method offers many benefits to students. Less attention has been paid to the ways in which small learning groups differ from one another, and how these differences may affect student learning and…

  5. Using Aviation to Change Math Attitudes

    ERIC Educational Resources Information Center

    Wood, Jerra

    2013-01-01

    Mathematics teachers are constantly looking for real-world applications of mathematics. Aerospace education provides an incredible context for teaching and learning important STEM concepts, inspiring young people to pursue careers in science, technology, engineering, and mathematics. Teaching mathematics within the context of aerospace generates…

  6. Ignite Zeal for STEM Learning

    ERIC Educational Resources Information Center

    Morales, Hector

    2010-01-01

    Incorporating business skills such as problem-solving, public presentations, collaboration, and self-direction into STEM (science, technology, engineering and mathematics) subjects is an excellent way to build students' enthusiasm for these disciplines. When educators add workplace internships to the learning experience, they are well on their way…

  7. Korean Students' Attitudes toward STEM Project-Based Learning and Major Selection

    ERIC Educational Resources Information Center

    Han, Sunyoung

    2017-01-01

    The trend of avoiding science, technology, engineering, and mathematics (STEM) majors has persisted resulting in a lack of professionals in STEM fields. Further, the current STEM education system in Korea does not meet domestic demands for STEM labor. To discover an educational approach encouraging students to choose STEM majors at the…

  8. Learning with STEM Simulations in the Classroom: Findings and Trends from a Meta-Analysis

    ERIC Educational Resources Information Center

    D'Angelo, Cynthia M.; Rutstein, Daisy; Harris, Christopher J.

    2016-01-01

    This article presents a summary of the findings of a systematic review and meta-analysis of the literature on computer-based interactive simulations for K-12 science, technology, engineering, and mathematics (STEM) learning topics. For achievement outcomes, simulations had a moderate to strong effect on student learning. Overall, simulations have…

  9. Peer-Led Team Learning in Mathematics Courses for Freshmen Engineering and Computer Science Students

    ERIC Educational Resources Information Center

    Reisel, John R.; Jablonski, Marissa R.; Munson, Ethan; Hosseini, Hossein

    2014-01-01

    Peer-led Team Learning (PLTL) is an instructional method reported to increase student learning in STEM courses. As mathematics is a significant hurdle for many freshmen engineering students, a PLTL program was implemented for students to attempt to improve their course performance. Here, an analysis of PLTL for freshmen engineering students in…

  10. The Learning and Educational Capital of Male and Female Students in STEM Magnet Schools and in Extracurricular STEM Programs: A Study in High-Achiever-Track Secondary Schools in Germany

    ERIC Educational Resources Information Center

    Stoeger, Heidrun; Greindl, Teresa; Kuhlmann, Johanna; Balestrini, Daniel Patrick

    2017-01-01

    Magnet schools focused on science, technology, engineering, and mathematics (STEM) as well as extracurricular programs in STEM support talented students and help increase their participation rates in those domains. We examined whether and the extent to which the learning and educational capital of male and female students (N = 801) enrolled in…

  11. Perceptions of STEM-Based Outreach Learning Activities in Secondary Education

    ERIC Educational Resources Information Center

    Vennix, J.; den Brok, P.; Taconis, R.

    2017-01-01

    We investigated and compared the learning environment perceptions of students, teachers and guides who participated in Science, Technology, Engineering and Mathematics (STEM)-based outreach activities in secondary education. In outreach activities, schools and teachers work together with companies and other external institutions in learning…

  12. The Development of STEAM Educational Policy to Promote Student Creativity and Social Empowerment

    ERIC Educational Resources Information Center

    Allina, Babette

    2018-01-01

    The Science, Technology, Engineering, Arts, and Mathematics (STEAM) movement argues that broad-based education that promotes creativity recognizes student learning diversity, increases student engagement and can potentially enhance Science, Technology, Engineering, and Mathematics (STEM) learning by embracing cross-cutting translational skills…

  13. Threading Mathematics through Symbols, Sketches, Software, Silicon, and Wood: Teachers Produce and Maintain Cohesion to Support STEM Integration

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Wolfgram, Matthew; Srisurichan, Rachaya; Walkington, Candace; Alibali, Martha W.

    2017-01-01

    This classroom-based investigation sought to document how, in real time, STEM teachers and students attempt to locate the invariant mathematical relations that are threaded through the range of activities and representations in these classes, and how highlighting this common thread influences student participation and learning. The authors…

  14. Community, Inquiry, Leadership: Exploring Early Career Opportunities That Support STEM Teacher Growth and Sustainability

    ERIC Educational Resources Information Center

    Galosy, Jodie A.; Gillespie, Nicole M.

    2013-01-01

    Much has been written about the need for high-quality science, technology, engineering, and mathematics (STEM) teachers and their role in U.S. educational reform. In this article we provide evidence that beginning science and mathematics teachers need a blend of three mutually reinforcing learning opportunities for growth and sustainability:…

  15. Professionalizing the Role of Peer Leaders in STEM

    ERIC Educational Resources Information Center

    Bowling, Bethany; Doyle, Maureen; Taylor, Jennifer; Antes, Alison

    2015-01-01

    Efforts to improve retention in science, technology, engineering, and mathematics (STEM) majors frequently utilize peer mentors and/or leaders. At Northern Kentucky University, the STEM Ambassador (SA) program involves students in the creation of a STEM community through multifaceted roles as mentors, peer-learning facilitators, and social…

  16. Developing design-based STEM education learning activities to enhance students' creative thinking

    NASA Astrophysics Data System (ADS)

    Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.

  17. Long Term Benefits for Women in a Science, Technology, Engineering, and Mathematics Living-Learning Community

    ERIC Educational Resources Information Center

    Maltby, Jennifer L.; Brooks, Christopher; Horton, Marjorie; Morgan, Helen

    2016-01-01

    Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation…

  18. Teacher Learning in the Digital Age: Online Professional Development in STEM Education

    ERIC Educational Resources Information Center

    Dede, Chris, Ed.; Eisenkraft, Arthur, Ed.; Frumin, Kim, Ed.; Hartley, Alex, Ed.

    2016-01-01

    With an emphasis on science, technology, engineering, and mathematics (STEM) training, "Teacher Learning in the Digital Age" examines exemplary models of online and blended teacher professional development, including information on the structure and design of each model, intended audience, and existing research and evaluation data. From…

  19. Think3d!: Improving Mathematics Learning through Embodied Spatial Training

    ERIC Educational Resources Information Center

    Burte, Heather; Gardony, Aaron L.; Hutton, Allyson; Taylor, Holly A.

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a…

  20. A Model of Factors Contributing to STEM Learning and Career Orientation

    ERIC Educational Resources Information Center

    Nugent, Gwen; Barker, Bradley; Welch, Greg; Grandgenett, Neal; Wu, ChaoRong; Nelson, Carl

    2015-01-01

    The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive…

  1. The Future of STEM Curriculum and Instructional Design: A Research and Development Agenda for Learning Designers. Report of a Workshop Series

    ERIC Educational Resources Information Center

    Center for the Study of Mathematics Curriculum, 2012

    2012-01-01

    In 2009-10 a series of Workshops was organized to focus on STEM (science, technology, engineering, and mathematics) learning design for young students and adolescents. The objective was to provide visionary leadership to the education community by: (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and…

  2. Stories of Learning, Identity, Navigations and Boundary Crossings in STEM in Non-Dominant Communities: New Imaginaries for Research and Action

    ERIC Educational Resources Information Center

    Rahm, Jrène

    2016-01-01

    Marta Civil's paper "STEM Learning Research through a Funds of Knowledge Lens" (see EJ1091567) can be read as a story about her trajectory as a researcher of everyday and school mathematics over time, grounded in sociocultural historical theory. Building on her work, I explore three issues. First, I address the grounding of STEM research…

  3. STEM learning on electricity using arduino-phet based experiment to improve 8th grade students’ STEM literacy

    NASA Astrophysics Data System (ADS)

    Prima, E. C.; Oktaviani, T. D.; Sholihin, H.

    2018-05-01

    Technology is the application of scientific knowledge for practical purposes, especially in industry. One way to support the development of the technology is by integrating the use of technology and build the technology with the learning process in the form of STEM (science, technology, engineering, mathematics) Learning approach. Applying STEM Learning could improve Students’ STEM Literacy. The learning approach is applied in every aspect of Learning including the application of STEM Learning in the lesson plan and worksheet. The method used in this research is weak experimental method. One group class (N=15) is taken and learn using STEM Learning approach. The topic choosen is the electricity topic which is separated into electrical circuit and parameters. The learning process is separated into 3 meetings. 15 Students are given a STEM Literacy test item before and after the lesson. The result of the normalized gain shows there are improvement in students’ STEM Literacy by < \\overline{g}> 0.16 categorieed as low improvement. The most higher improvement is the students’ technology literacy, because students learn using the same technology in every meeting. This factor influences students’ technology literacy so the result is higher than another.

  4. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema

    None

    2017-12-09

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  5. Focusing on Challenging Content and Practical Applications in Science, Technology, Engineering and Mathematics (STEM) Studies in Middle Grades Schools, High Schools and Technology Centers.

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2012

    2012-01-01

    Schools that give students access to STEM (science, technology, engineering and mathematics) studies are accomplishing several objectives: introducing students to higher-level academic and career studies, expanding project-based learning in the curriculum, enticing students to remain in school until graduation, and preparing students for…

  6. Idaho Science, Technology, Engineering and Mathematics Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P

    2011-02-11

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  7. Making STEM Connections

    ERIC Educational Resources Information Center

    Stump, Sheryl L.; Bryan, Joel A.; McConnell, Tom J.

    2016-01-01

    Integrated approaches to education in science, technology, engineering, and mathematics (STEM), especially those set in the context of real-world situations, can motivate and deepen students' learning of the STEM subjects (National Academy of Engineering and National Research Council 2014). This article describes two integrated investigations used…

  8. Teaching STEM by Design

    ERIC Educational Resources Information Center

    Billiar, Kristen; Hubelbank, Jeanne; Oliva, Thomas; Camesano, Terri

    2014-01-01

    Developing innovative science, technology, engineering and mathematics (STEM) curricula that elicit student excitement for learning is a continuous challenge for K-12 STEM teachers. Generating these lessons while meeting conflicting pedagogical objectives and constraints of time, content, and cost from various parties is truly a challenging task…

  9. Effects of Transferring to STEM-Focused Charter and Magnet Schools on Student Achievement

    ERIC Educational Resources Information Center

    Judson, Eugene

    2014-01-01

    There have been strong calls to action in recent years to promote both school choice and the learning of science, technology, engineering, and mathematics (STEM). This has led to the burgeoning development of STEM-focused schools. Nine STEM-focused charter and 2 STEM-focused magnet schools that serve elementary-aged students were examined to…

  10. ElectronixTutor: An Intelligent Tutoring System with Multiple Learning Resources for Electronics

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; Hu, Xiangen; Nye, Benjamin D.; VanLehn, Kurt; Kumar, Rohit; Heffernan, Cristina; Heffernan, Neil; Woolf, Beverly; Olney, Andrew M.; Rus, Vasile; Andrasik, Frank; Pavlik, Philip; Cai, Zhiqiang; Wetzel, Jon; Morgan, Brent; Hampton, Andrew J.; Lippert, Anne M.; Wang, Lijia; Cheng, Qinyu; Vinson, Joseph E.; Kelly, Craig N.; McGlown, Cadarrius; Majmudar, Charvi A.; Morshed, Bashir; Baer, Whitney

    2018-01-01

    Background: The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics,…

  11. Among Friends: The Role of Academic-Preparedness Diversity in Individual Performance within a Small-Group STEM Learning Environment

    ERIC Educational Resources Information Center

    Micari, Marina; Van Winkle, Zachary; Pazos, Pilar

    2016-01-01

    In this study, we investigate the relationship between academic-preparedness diversity within small learning groups and individual academic performance in science, technology, engineering, and mathematics (STEM) university courses. We further examine whether academic-preparedness diversity impacts academically more- and less-prepared students…

  12. Exploring Design Elements for Online STEM Courses: Active Learning, Engagement & Assessment Design

    ERIC Educational Resources Information Center

    Chen, Baiyun; Bastedo, Kathleen; Howard, Wendy

    2018-01-01

    The purpose of this study was to examine effective design elements for online courses in the science, technology, engineering, and mathematics (STEM) fields at a large four-year public university in southeastern United States. Our research questions addressed the influence of online design elements on students' perception of learning and learning…

  13. Using Inquiry-Based Strategies for Enhancing Students' STEM Education Learning

    ERIC Educational Resources Information Center

    Lai, Ching-San

    2018-01-01

    The major purpose of this study was to investigate whether or not the inquiry-based method is effective in improving students' learning in STEM (Science, Technology, Engineering, and Mathematics) education. Both quantitative and qualitative methods were used. A total of 73 college students studying Information Technology (IT) were chosen as…

  14. Math Path: Encouraging Female Students in Mathematics through Project-Based Learning

    ERIC Educational Resources Information Center

    Evans, Riley; Friedman, Jane; McGrath, Lynn; Myers, Perla; Ruiz, Amanda

    2018-01-01

    Although the number of bachelor's degrees in the U.S. awarded to women has gone up, engagement of women in science, technology, engineering, and mathematics (STEM) continues to be low. This paper presents a project-based learning program, informed by education research best practices, designed to provide research experiences to female students…

  15. Improving Student Learning in Calculus through Applications

    ERIC Educational Resources Information Center

    Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.

    2011-01-01

    Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the…

  16. Does Continued Participation in STEM Enrichment and Enhancement Activities Affect School Maths Attainment?

    ERIC Educational Resources Information Center

    Banerjee, Pallavi Amitava

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) skills are very valuable for economic growth. However, the number of young people pursuing STEM learning trajectories in the United Kingdom was lower than the predicted demand during the last decade. Several STEM enrichment and enhancement activities were thus funded by the government,…

  17. Helping Students Succeed within Secondary-Level STEM Content: Using the "T" in STEM to Improve Literacy Skills

    ERIC Educational Resources Information Center

    Kennedy, Michael J.; Wexler, Jade

    2013-01-01

    Literacy and other content-specific demands presented within science, technology, engineering, and mathematics (STEM) coursework can overwhelm all students and especially students with learning challenges. Although STEM content is often complex in itself (e.g., numerous multisyllabic words, lengthy expository texts, abstract concepts), some…

  18. Expanding STEM Education | Poster

    Cancer.gov

    Editor’s note: This article is written as a reflection on experiential STEM education by a student who completed her Werner H. Kirsten internship in June 2015. Here, she advocates for incorporating hands-on experience into STEM curricula. If the only way for high school students to learn science, technology, engineering, and mathematics (STEM) is through textbooks, then count

  19. Building Better Bridges into STEM: A Synthesis of 25 Years of Literature on STEM Summer Bridge Programs

    ERIC Educational Resources Information Center

    Ashley, Michael; Cooper, Katelyn M.; Cala, Jacqueline M.; Brownell, Sara E.

    2017-01-01

    Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to…

  20. Relationship between Students' Diagnostic Assessment and Achievement in a Pre-University Mathematics Course

    ERIC Educational Resources Information Center

    Shim, George Tan Geok; Shakawi, Abang Mohammad Hudzaifah Abang; Azizan, Farah Liyana

    2017-01-01

    Educators have always highlighted the importance of mathematics mastery in education for many years. With the current emphasis of Science, Technology, Engineering and Mathematics (STEMs) education, mathematics mastery is even more vital because it supports the learning and mastery of science fields such as engineering and science. Furthermore, in…

  1. A Conceptual Metaphor Framework for the Teaching of Mathematics

    ERIC Educational Resources Information Center

    Danesi, Marcel

    2007-01-01

    Word problems in mathematics seem to constantly pose learning difficulties for all kinds of students. Recent work in math education (for example, [Lakoff, G. & Nunez, R. E. (2000). "Where mathematics comes from: How the embodied mind brings mathematics into being." New York: Basic Books]) suggests that the difficulties stem from an…

  2. Investigating students' view on STEM in learning about electrical current through STS approach

    NASA Astrophysics Data System (ADS)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  3. The Relationships among High School STEM Learning Experiences and Students' Intent to Declare and Declaration of a STEM Major in College

    ERIC Educational Resources Information Center

    Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Moller, Stephanie; Parker, Ashley Dawn

    2015-01-01

    Background/Context: Schools are integral to augmenting and diversifying the science, technology, engineering, and mathematics (STEM) workforce. This is because K-12 schools can inspire and reinforce students' interest in STEM, in addition to academically preparing them to pursue a STEM career. Previous literature emphasizes the importance of…

  4. Symposium Promotes Technological Literacy through STEM

    ERIC Educational Resources Information Center

    Havice, Bill; Marshall, Jerry

    2009-01-01

    This article describes a symposium which promotes technological literacy through science, technology, engineering, and mathematics (STEM). The three-day symposium titled, "The Anderson, Oconee, Pickens Symposium on Teaching and Learning STEM Standards for the 21st Century," was held August 4-6, 2008 at the Tri-County Technical College…

  5. Expanding STEM Education | Poster

    Cancer.gov

    Editor’s note: This article is written as a reflection on experiential STEM education by a student who completed her Werner H. Kirsten internship in June 2015. Here, she advocates for incorporating hands-on experience into STEM curricula. If the only way for high school students to learn science, technology, engineering, and mathematics (STEM) is through textbooks, then count me out. But how then do you get students to learn STEM outside of the classroom? The focus of this article is to advocate for high school STEM education through experiential learning. Tom Freston, one of the founders and the chief executive officer (CEO) of MTV Productions, said in an interview in Men’s Journal that “innovation is taking two things that already exist and...

  6. The Effect of a Pre-University Mathematics Bridging Course on Adult Learners' Self-Efficacy and Retention Rates in STEM Subjects

    ERIC Educational Resources Information Center

    Johnson, Patrick; O'Keeffe, Lisa

    2016-01-01

    In August 2008, the Mathematics Learning Centre at the University of Limerick initiated a mathematics bridging course, entitled "Head Start Maths", to provide mathematics revision for adult learners about to embark on science or technology degree programmes. The aim of Head Start Maths was to revise mathematics fundamentals before the…

  7. The Role of High School Racial Composition and Opportunities to Learn in Students' STEM College Participation

    ERIC Educational Resources Information Center

    Bottia, Martha Cecilia; Mickelson, Roslyn Arlin; Giersch, Jason; Stearns, Elizabeth; Moller, Stephanie

    2018-01-01

    We analyze longitudinal data from students who spent their academic careers in North Carolina (NC) public secondary schools and attended NC public universities to investigate the importance of high school racial composition and opportunities to learn in secondary school for choosing a science, technology, engineering, and mathematics (STEM) major.…

  8. Evaluation of Engineering and Technology Activities in Primary Schools in Terms of Learning Environment, Attitudes and Understanding

    ERIC Educational Resources Information Center

    Koul, Rekha B.; Fraser, Barry J.; Maynard, Nicoleta; Tade, Moses

    2018-01-01

    Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools.…

  9. Asynchronous Online Access as an Accommodation on Students with Learning Disabilities and/or Attention-Deficit Hyperactivity Disorders in Postsecondary STEM Courses

    ERIC Educational Resources Information Center

    Graves, Laura; Asunda, Paul A.; Plant, Stacey J.; Goad, Chester

    2011-01-01

    The purpose of this study was to investigate whether asynchronous online access of course recordings was beneficial to students with learning disabilities (LD) and/or Attention Deficit/Hyperactivity Disorder (ADHD) enrolled in science, technology, engineering, and mathematics (STEM) courses. Data were collected through semi-structured interviews…

  10. Applying the Quadratic Usage Framework to Research on K-12 STEM Digital Learning Resources

    ERIC Educational Resources Information Center

    Luetkemeyer, Jennifer R.

    2016-01-01

    Numerous policymakers have called for K-12 educators to increase their effectiveness by transforming science, technology, engineering, and mathematics (STEM) learning and teaching with digital resources and tools. In this study we outline the significance of studying pressing issues related to use of digital resources in the K-12 environment and…

  11. Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes

    ERIC Educational Resources Information Center

    Nugent, Gwen; Barker, Bradley; Grandgenett, Neal; Adamchuk, Viacheslav I.

    2010-01-01

    This study examined the impact of robotics and geospatial technologies interventions on middle school youth's learning of and attitudes toward science, technology, engineering, and mathematics (STEM). Two interventions were tested. The first was a 40-hour intensive robotics/GPS/GIS summer camp; the second was a 3-hour event modeled on the camp…

  12. A Study of Creativity in CaC[subscript 2] Steamship-Derived STEM Project-Based Learning

    ERIC Educational Resources Information Center

    Lou, Shi-Jer; Chou, Yung-Chieh; Shih, Ru-Chu; Chung, Chih-Chao

    2017-01-01

    This study mainly aimed to explore the effects of project-based learning (PBL) integrated into science, technology, engineering and mathematics (STEM) activities and to analyze the creativity displayed by junior high school students while performing these activities. With a quasi-experimental design, 60 ninth-grade students from a junior high…

  13. Science Fairs: A Qualitative Study of Their Impact on Student Science Inquiry Learning and Attitudes toward STEM

    ERIC Educational Resources Information Center

    Schmidt, Kathleen M.; Kelter, Paul

    2017-01-01

    Little is known about the impact of science fair participation on student science inquiry learning. Furthermore, there is only a small research base relating to science fair participation and student attitudes toward science, technology, engineering, and mathematics (STEM) careers and coursework. In this study, 41 seventh-grade science fair…

  14. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students

    ERIC Educational Resources Information Center

    Marshall, Matthew M.; Carrano, Andres L.; Dannels, Wendy A.

    2016-01-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and…

  15. From Fearing STEM to Playing with It: The Natural Integration of STEM into the Preschool Classroom

    ERIC Educational Resources Information Center

    Torres-Crespo, Marisel N.; Kraatz, Emily; Pallansch, Lindsey

    2014-01-01

    The article describes the process of developing and implementing a STEM Summer Camp that allowed Preschoolers to experiment and investigate with materials while learning basic concepts of science, technology, engineering, and mathematics (STEM) through play as part of the educational process. The participants were presented with problems that they…

  16. Understanding Science Teachers' Implementations of Integrated STEM Curricular Units through a Phenomenological Multiple Case Study

    ERIC Educational Resources Information Center

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2018-01-01

    Background: Current reforms in K-12 STEM education call for integration between science, technology, engineering, and mathematics (STEM). Such integration of STEM disciplines at the K-12 level offers students an opportunity to experience learning in real-world, multidisciplinary contexts; however, there is little reported research about teachers'…

  17. Designing an Optical Instrument: A Culminating STEM Activity for a Primary Science Light Unit

    ERIC Educational Resources Information Center

    King, Donna; English, Lyn

    2016-01-01

    Nationally and internationally there have been calls for a focus on STEM (science, technology, engineering and mathematics) teaching and learning in schools to prepare students for the many future careers in the STEM fields. One way to do this is through engineering activities that provide opportunities for integrating STEM to solve problems using…

  18. Green Action through Education: A Model for Fostering Positive Attitudes about STEM

    ERIC Educational Resources Information Center

    Wheland, Ethel R.; Donovan, William J.; Dukes, J. Thomas; Qammar, Helen K.; Smith, Gregory A.; Williams, Bonnie L.

    2013-01-01

    This paper describes an innovative collaboration between instructors of non-STEM (science, technology, engineering, and mathematics) courses and scientists who teach STEM courses in the GATE (Green Action Through Education) learning community. The scientists in this project presented engaging science--in such diverse locations as a sewage…

  19. STEM Education in Canada: A Knowledge Synthesis

    ERIC Educational Resources Information Center

    DeCoito, Isha

    2016-01-01

    Across Canada many initiatives have been initiated to generate more interest in science, technology, engineering, and mathematics (STEM) education; however, no single or comprehensive overview has been conducted that takes into account the impact of these STEM initiatives on teaching/learning outcomes in K-12 education. This knowledge synthesis of…

  20. Virtual Mentoring and Persistence in STEM for Students with Disabilities

    ERIC Educational Resources Information Center

    Gregg, Noel; Galyardt, April; Wolfe, Gerri; Moon, Nathan; Todd, Robert

    2017-01-01

    The purpose of this study was to investigate the effectiveness of virtual mentoring for enhancing the persistence of secondary and postsecondary students with disabilities engaged in science, technology, engineering, and mathematics (STEM) learning. The student participants (N = 189) were all engaged in STEM coursework and enrolled in a…

  1. Considerations for Teaching Integrated STEM Education

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Moore, Tamara J.; Roehrig, Gillian H.

    2012-01-01

    Quality Science, Technology, Engineering, and Mathematics (STEM) education is vital for the future success of students. Integrated STEM education is one way to make learning more connected and relevant for students. There is a need for further research and discussion on the knowledge, experiences, and background that teachers need to effectively…

  2. A Science Fair Partnership: An Active Learning Experience for Teacher Candidates

    ERIC Educational Resources Information Center

    McCarthy, Deborah Louise

    2015-01-01

    STEM (science, technology, engineering, and mathematics) education is a national instructional priority. As part of Southeastern Louisiana University's STEM Outreach Initiative, funded by a Shell Oil Company Foundation grant to raise interest in STEM-related activities, teacher candidates were given the opportunity to leave their classroom to…

  3. Instructional Utility and Learning Efficacy of Common Active Learning Strategies

    ERIC Educational Resources Information Center

    McConell, David A.; Chapman, LeeAnna; Czaijka, C. Douglas; Jones, Jason P.; Ryker, Katherine D.; Wiggen, Jennifer

    2017-01-01

    The adoption of active learning instructional practices in college science, technology, engineering, and mathematics (STEM) courses has been shown to result in improvements in student learning, contribute to increased retention rates, and reduce the achievement gap among different student populations. Descriptions of active learning strategies…

  4. KSC Education Technology Research and Development Plan

    NASA Technical Reports Server (NTRS)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  5. Supporting the Development of Science Communication Skills in STEM University Students: Understanding Their Learning Experiences as They Work in Middle and High School Classrooms

    ERIC Educational Resources Information Center

    Grant, Brooke L.; Liu, Xiufeng; Gardella, Joseph A.

    2015-01-01

    This paper examines the roles that 52 university Science, Technology, Engineering, and Mathematics (STEM) students play in an Interdisciplinary Science and Engineering Partnership that connects several middle schools, high schools, institutions of higher learning, businesses, and community institutions. It also examines the support these students…

  6. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry

    NASA Astrophysics Data System (ADS)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.

    2018-04-01

    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  7. Integrating Science, Technology, Engineering, and Mathematics: Issues, Reflections, and Ways Forward. Teaching and Learning in Science Series

    ERIC Educational Resources Information Center

    Rennie, Leonie, Ed.; Venville, Grady, Ed.; Wallace, John, Ed.

    2012-01-01

    How can curriculum integration of school science with the related disciplines of technology, engineering and mathematics (STEM) enhance students' skills and their ability to link what they learn in school with the world outside the classroom? Featuring actual case studies of teachers' attempts to integrate their curriculum, their reasons for doing…

  8. Teacher Knowledge for Active-Learning Instruction: Expert-Novice Comparison Reveals Differences

    ERIC Educational Resources Information Center

    Auerbach, A. J.; Higgins, M.; Brickman, P.; Andrews, T. C.

    2018-01-01

    Active-learning strategies "can" improve science, technology, engineering, and mathematics (STEM) undergraduates' abilities to learn fundamental concepts and skills. However, the results instructors achieve vary substantially. One explanation for this is that instructors commonly implement active learning differently than intended. An…

  9. Business, Education Partnerships -- Bridging the Paradigm Divide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne L. Seifert; Louis S. Nadelson

    2013-01-01

    The authors discuss the integrated science, technology, engineering, and mathematics (i-STEM) curriculum in business and industry comparing it with the traditional STEM K-12 curriculum in the U.S. Topics discussed includes limitations associated with the traditional STEM education, advantages of i-STEM such as enhancing professional development of educators to enhance their capacity to make youth capable for i-STEM careers, and i-STEM tools such as a project-based learning.

  10. Boosting the Supply and Effectiveness of Washington's STEM Teachers. Executive Summary

    ERIC Educational Resources Information Center

    New Teacher Project, 2010

    2010-01-01

    In the spring of 2009, the Partnership for Learning (PFL) asked The New Teacher Project (TNTP) to analyze challenges Washington faces in science, technology, engineering and mathematics (STEM) instruction and to make recommendations to overcome these challenges as part of a new STEM initiative. This initiative aims to dramatically raise student…

  11. Promoting STEM Education through Mobile Teaching and Learning

    ERIC Educational Resources Information Center

    Krishnamurthi, Murali; Richter, Stephanie

    2013-01-01

    The recruitment and retention of more students, especially women and minority students, into science, technology, engineering and mathematics (STEM) programs is a critical need in technologically advanced countries like the U.S. as there is expected to be shortage of qualified STEM graduates in the future. Educators have to find new ways to…

  12. Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocol for Undergraduate STEM

    ERIC Educational Resources Information Center

    Velasco, Jonathan B.; Knedeisen, Adam; Xue, Dihua; Vickrey, Trisha L.; Abebe, Marytza; Stains, Marilyne

    2016-01-01

    Chemistry laboratories play an essential role in the education of undergraduate Science, Technology, Engineering, and Mathematics (STEM) and non-STEM students. The extent of student learning in any educational environment depends largely on the effectiveness of the instructors. In chemistry laboratories at large universities, the instructors of…

  13. Why Students Choose STEM Majors: Motivation, High School Learning, and Postsecondary Context of Support

    ERIC Educational Resources Information Center

    Wang, Xueli

    2013-01-01

    This study draws upon social cognitive career theory and higher education literature to test a conceptual framework for understanding the entrance into science, technology, engineering, and mathematics (STEM) majors by recent high school graduates attending 4-year institutions. Results suggest that choosing a STEM major is directly influenced by…

  14. Developing Non-Formal Education Competences as a Complement of Formal Education for STEM Lecturers

    ERIC Educational Resources Information Center

    Terrazas-Marín, Roy Alonso

    2018-01-01

    This paper focuses on a current practice piece on professional development for university lecturers, transformative learning, dialogism and STEM (Science, Technology, Engineering and Mathematics) education. Its main goals are to identify the key characteristics that allow STEM educators to experiment with the usage of non-formal education…

  15. A GRE Test for the STEM Disciplines: Developing an Assessment "of" and "for" Learning

    ERIC Educational Resources Information Center

    Payne, David G.; Briel, Jacqueline B.; Hawthorn, John; Riedeburg, Karen

    2006-01-01

    Plans are described for creating a Graduate Record Examination (GRE) test for the STEM (science, technology, engineering, and mathematics) disciplines. Previous work showed that a quantitative measure for the STEM disciplines exacerbated group differences beyond those reflected in the current GRE General Test. A test development approach is…

  16. Advancing STEM Undergraduate Learning: Preparing the Nation's Future Faculty

    ERIC Educational Resources Information Center

    Pfund, Christine; Mathieu, Robert; Austin, Ann; Connolly, Mark; Manske, Brian; Moore, Katie

    2012-01-01

    Graduate students and post-doctoral scholars at research universities will shape the future of undergraduate education in the natural and social sciences, technology, engineering, and mathematics (the STEM disciplines) in the United States. In 2009 alone, more than 41,000 doctorates were awarded in STEM fields, and if employment trends hold,…

  17. Mapping Curriculum Innovation in STEM Schools to Assessment Requirements: Tensions and Dilemmas

    ERIC Educational Resources Information Center

    Tan, Aik-Ling; Leong, Woon Foong

    2014-01-01

    Specialized science, technology, engineering, and mathematics (STEM) schools create niche areas in an attempt to attract the best students, establish the school status, and justify their privilege to valuable resources. One Singapore STEM school does this in applied science learning to differentiate its curriculum from the national prescribed…

  18. Nature as Inspiration

    ERIC Educational Resources Information Center

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  19. Among friends: the role of academic-preparedness diversity in individual performance within a small-group STEM learning environment

    NASA Astrophysics Data System (ADS)

    Micari, Marina; Van Winkle, Zachary; Pazos, Pilar

    2016-08-01

    In this study, we investigate the relationship between academic-preparedness diversity within small learning groups and individual academic performance in science, technology, engineering, and mathematics (STEM) university courses. We further examine whether academic-preparedness diversity impacts academically more- and less-prepared students differently. We use data from 5367 university students nested within 1141 science, engineering, and mathematics learning groups and use a regression analysis to estimate the effect of group diversity, measured in two ways, on course performance. Our results indicate that academic-preparedness diversity is generally associated with positive learning outcomes, that academically less-prepared students derive greater benefit, and that less-prepared students fare best when they are not alone in a group of highly prepared students. Implications for teaching and small-group facilitation are addressed.

  20. The Federal Science, Technology, Engineering, and Mathematics (STEM) Education Portfolio. A Report from the Federal Inventory of STEM Education Fast-Track Action Committee, Committee on STEM Education

    DTIC Science & Technology

    2011-12-01

    Administration Leland Melvin Department of Defense David Honey Department of the Interior Anne Castle National Science Foundation Subra Suresh Department of...Mars Education/Public Outreach Formal: Education 1.20 1.00 1.30 - Broader STEM Learning No 0075 NASA MESSENGER (mission to Mercury ) Education 0.43

  1. Advancing STEM Career and Learning through Civic Engagement

    ERIC Educational Resources Information Center

    Xie, Yichun

    2014-01-01

    The Mayor's Youth Technology Corps (MYTC)--Creating Safe Communities through Information Technology Training in Homeland Security Applications (2008-2012)--offered a collaboration of resources, supports, and opportunities for strengthening science, technology, engineering, and mathematics (STEM) education efforts in an underserved community, the…

  2. Developing and Applying Quantitative Skills Maps for STEM Curricula, with a Focus on Different Modes of Learning

    ERIC Educational Resources Information Center

    Reid, Jackie; Wilkes, Janelle

    2016-01-01

    Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional…

  3. Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument

    ERIC Educational Resources Information Center

    King, Donna; English, Lyn D.

    2016-01-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts.…

  4. Meeting the STEM Workforce Demand: Accelerating Math Learning among Students Interested in STEM. BHEF Research Brief

    ERIC Educational Resources Information Center

    Business-Higher Education Forum (NJ1), 2011

    2011-01-01

    Efforts by federal and state governments to increase the STEM (science, technology, engineering and mathematics) workforce in support of innovation and competitiveness are frustrated by a shortage of adequately prepared and interested students. Less than half of 12th graders meet the math proficiency benchmark that indicates college readiness.…

  5. The Classroom Observation Protocol for Undergraduate STEM (COPUS): A New Instrument to Characterize University STEM Classroom Practices

    ERIC Educational Resources Information Center

    Smith, Michelle K.; Jones, Francis H. M.; Gilbert, Sarah L.; Wieman, Carl E.

    2013-01-01

    Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To…

  6. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    NASA Astrophysics Data System (ADS)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  7. Design-based online teacher professional development to introduce integration of STEM in Pakistan

    NASA Astrophysics Data System (ADS)

    Anwar, Tasneem

    In today's global society where innovations spread rapidly, the escalating focus on science, technology, engineering and mathematics (STEM) has quickly intensified in the United States, East Asia and much of Western Europe. Our ever-changing, increasingly global society faces many multidisciplinary problems, and many of the solutions require the integration of multiple science, technology, engineering, and mathematics (STEM) concepts. Thus, there is a critical need to explore the integration of STEM subjects in international education contexts. This dissertation study examined the exploration of integration of STEM in the unique context of Pakistan. This study used three-phase design-based methodological framework derived from McKenney and Reeves (2012) to explore the development of a STEM focused online teacher professional development (oTPD-STEM) and to identify the design features that facilitate teacher learning. The oTPD-STEM program was designed to facilitate eight Pakistani elementary school teachers' exploration of the new idea of STEM integration through both practical and theoretical considerations. This design-based study employed inductive analysis (Strauss and Corbin, 1998) to analyze multiple data sources of interviews, STEM perception responses, reflective learning team conversations, pre-post surveys and artifacts produced in oTPD-STEM. Findings of this study are presented as: (1) design-based decisions for oTPD-STEM, and (2) evolution in understanding of STEM by sharing participant teachers' STEM model for Pakistani context. This study advocates for the potential of school-wide oTPD for interdisciplinary collaboration through support for learner-centered practices.

  8. Virtually the Same: A Comparison of STEM Students' Content Knowledge, Course Performance, and Motivation to Learn in Virtual and Face-to-Face Introductory Biology Laboratories. Research and Teaching

    ERIC Educational Resources Information Center

    Reece, Amber J.; Butler, Malcolm B.

    2017-01-01

    Biology I is a required course for many science, technology, engineering, and mathematics (STEM) majors and is often their first college-level laboratory experience. The replacement of the traditional face-to-face laboratory experience with virtual laboratories could influence students' content knowledge, motivation to learn biology, and overall…

  9. Making STEM Real

    ERIC Educational Resources Information Center

    Hoachlander, Gary; Yanofsky, Dave

    2011-01-01

    In too many schools, science and mathematics are taught separately with little or no attention to technology and engineering. Also, science and mathematics tend to function in isolation from other core subjects. In California, Linked Learning: Pathways to College and Career Success connects core academics to challenging professional and technical…

  10. Exploring Slope with Stairs & Steps

    ERIC Educational Resources Information Center

    Smith, Toni M.; Seshaiyer, Padmanabhan; Peixoto, Nathalia; Suh, Jennifer M.; Bagshaw, Graham; Collins, Laurena K.

    2013-01-01

    As much as ever before, mathematics teachers are searching for ways to connect mathematics to real-life scenarios within STEM contexts. As students develop skill in proportional reasoning, they examine graphical representations of linear functions, learn to associate "slope" with "steepness" and rate of change, and develop…

  11. Stories of learning, identity, navigations and boundary crossings in STEM in non-dominant communities: new imaginaries for research and action

    NASA Astrophysics Data System (ADS)

    Rahm, Jrène

    2016-03-01

    Marta Civil's paper "STEM learning research through a funds of knowledge lens" can be read as a story about her trajectory as a researcher of everyday and school mathematics over time, grounded in sociocultural historical theory. Building on her work, I explore three issues. First, I address the grounding of STEM research in studies of learning and show what this may imply in the context of multilingualism and transculturism. Second, I explore how funds of knowledge can put into question what counts as science. Third, I discuss some of the methodological challenges the article raises. I conclude with some comments to think with for the future of the STEM field and equitable science.

  12. STEM in Afterschool: Changing Perspectives. Shaping Lives. The Impact of Afterschool rograms on Young People's Aspirations and Skills in Science, Technology, Engineering and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Afterschool Alliance, 2014

    2014-01-01

    After the school bell rings, young people are learning, exploring, making and questioning. Afterschool programs have long influenced students' personal development and supported their social and emotional growth. Today, the afterschool field has enthusiastically embraced STEM as an integral part of their educational offerings. This handout…

  13. Towards a Unified Theory of Engineering Education

    ERIC Educational Resources Information Center

    Salcedo Orozco, Oscar H.

    2017-01-01

    STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons and activities as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling STEM literacy (Tsupros, Kohler and…

  14. Embedding Multiple Literacies into STEM Curricula

    ERIC Educational Resources Information Center

    Soules, Aline; Nielsen, Sarah; LeDuc, Danika; Inouye, Caron; Singley, Jason; Wildy, Erica; Seitz, Jeff

    2014-01-01

    In fall 2012, an interdisciplinary team of science, English, and library faculty embedded reading, writing, and information literacy strategies in Science, Technology, Engineering, and Mathematics (STEM) curricula as a first step in improving student learning and retention in science courses and aligning them with the Next Generation Science and…

  15. Designing a Children's Recreation Room

    ERIC Educational Resources Information Center

    Lee, Mi Yeon

    2015-01-01

    Project-based learning (PBL) is an effective approach to STEM education because it allows students to experience scientific inquiry by using their knowledge and skills in science, technology, engineering, and mathematics (STEM) to solve realistic problems. PBL consists of four components: (1) posing and comprehending a driving question; (2)…

  16. Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching

    ERIC Educational Resources Information Center

    Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.

    2017-01-01

    Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…

  17. Bridging Formal and Informal Learning Environments

    ERIC Educational Resources Information Center

    Barker, Bradley S.; Larson, Kim; Krehbiel, Michelle

    2014-01-01

    Out-of-school time programs that provide science, technology, engineering, and mathematics (STEM) educational content are promising approaches to develop skills and abilities in students. These programs may potentially inspire students with engaging hands-on, minds-on activities that encourages their natural curiosity around STEM content areas.…

  18. Learning about the Weather through an Integrated STEM Approach

    ERIC Educational Resources Information Center

    Serin, Gokhan

    2014-01-01

    Introducing concepts through an integrated science, technology, engineering and mathematics (STEM) approach can promote interest and motivation (Bennett, Lubben and Hogarth, 2007; Bybee, 2010). However, implementing such an approach effectively in a classroom setting, with relevant links, is a challenging task. Some concepts lend themselves more…

  19. I-STEM Ed Exemplar: Implementation of the PIRPOSAL Model

    ERIC Educational Resources Information Center

    Wells, John G.

    2016-01-01

    The opening pages of the first PIRPOSAL (Problem Identification, Ideation, Research, Potential Solutions, Optimization, Solution Evaluation, Alterations, and Learned Outcomes) article make the case that the instructional models currently used in K-12 Science, Technology, Engineering, and Mathematics (STEM) Education fall short of conveying their…

  20. Student Perceptions of a Summer Robotics Camp Experience

    ERIC Educational Resources Information Center

    Conrad, James; Polly, Drew; Binns, Ian; Algozzine, Bob

    2018-01-01

    Research on the effectiveness of STEM-focused (science, technology, engineering, and mathematics-focused) schools and other learning experiences (e.g., short-term camps) on student outcomes is sparse. This study documented perceptions of STEM content and careers for elementary, middle, and secondary school students participating in…

  1. Listening to their voices: Exploring mathematics-science identity development of African American males in an urban school community

    NASA Astrophysics Data System (ADS)

    Wilson, Kimi Leemar

    National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these experiences impact mathematics-science identity development. The goal of the study seeks to inform educational, psychological and sociological theory about how urban adolescent African American males understand, develop and make use of their mathematics and science knowledge. Finally, this work seeks to inform mathematics and science educational research to include identity theory, beyond a personal or individual identity perspective, but also to include relational, collective, and material identity components to understand how the culture of mathematics and science within and outside of K-12 public schooling impacts African American males in an endeavor to become learners of mathematics and science.

  2. Measuring the utility of the Science, Technology, Engineering, Mathematics (STEM) Academy Measurement Tool in assessing the development of K-8 STEM academies as professional learning communities

    NASA Astrophysics Data System (ADS)

    Irish, Teresa J.

    The aim of this study was to provide insights addressing national concerns in Science, Technology, Engineering, and Mathematics (STEM) education by examining how a set of six perimeter urban K-12 schools were transformed into STEM-focused professional learning communities (PLC). The concept of a STEM Academy as a STEM-focused PLC emphasizes the development of a STEM culture where professional discourse and teaching are focused on STEM learning. The STEM Academies examined used the STEM Academy Measurement Tool and Rubric (Tool) as a catalyst for discussion and change. This Tool was developed with input from stakeholders and used for school-wide initiatives, teacher professional development and K-12 student engagement to improve STEM teaching and learning. Two primary goals of this study were to assess the levels of awareness and use of the tool by all stakeholders involved in the project and to determine how the Tool assisted in the development and advancement of these schools as STEM PLCs. Data from the STEM Academy Participant Survey was analyzed to determine stakeholders' perceptions of the Tool in terms of (i) how aware stakeholders were of the Tool, (ii) whether they participated in the use of the Tool, (iii) how the characteristics of PLCs were perceived in their schools, and finally (iv) how the awareness of the Tool influenced teachers' perceptions of the presence of PLC characteristics. Findings indicate that school faculty were aware of the Tool on a number of different levels and evidence exists that the use of the Tool assisted in the development of STEM Academies, however impact varied from school to school. Implications of this study suggest that the survey should be used for a longer period of time to gain more in-depth knowledge on teachers' perceptions of the Tool as a catalyst across time. Additional findings indicate that the process for using the Tool should be ongoing and involve the stakeholders to have the greatest impact on school culture. This research contributes to the knowledge base related to building STEM PLCs aimed at improving K-12 teacher content and pedagogical knowledge as well as student learning and achievement in STEM education.

  3. Use of a Mathematics Word Problem Strategy to Improve Achievement for Students with Mild Disabilities

    ERIC Educational Resources Information Center

    Taber, Mary R.

    2013-01-01

    Mathematics can be a difficult topic both to teach and to learn. Word problems specifically can be difficult for students with disabilities because they have to conceptualize what the problem is asking for, and they must perform the correct operation accurately. Current trends in mathematics instruction stem from the National Council of Teachers…

  4. Lecturers' Experiences of Teaching STEM to Students with Disabilities

    ERIC Educational Resources Information Center

    Ngubane-Mokiwa, S. A.; Khoza, S. B.

    2016-01-01

    Innovative teaching is a concept based on student-centred teaching strategies. Access to Science, Technology, Engineering and Mathematics (STEM) subjects has not been equitable due to use of traditional teaching strategies. These strategies tend to exclude students with disabilities who can effectively learn in environments that appropriately and…

  5. Relational Reasoning in STEM Domains: A Foundation for Academic Development

    ERIC Educational Resources Information Center

    Alexander, Patricia A.

    2017-01-01

    What is relational reasoning? Why is it critical to consider the role of relational reasoning in students learning and development in science, technology, engineering, and mathematics (STEM)? Moreover, how do the particular contributions populating this special issue address the pressing societal needs and offer guidance to researchers and…

  6. The Roles of Social Influences on Student Competence, Relatedness, Achievement, and Retention in STEM

    ERIC Educational Resources Information Center

    Hilts, Alexis; Part, Rachel; Bernacki, Matthew L.

    2018-01-01

    Students' perceptions of competence and relatedness are known to influence learning processes and achievement, and may have particular import for underrepresented science, technology, engineering and mathematics (STEM) learners. Sources of social support that contribute to undergraduate life science learners' perceived competence and relatedness…

  7. The Empire Strikes Back--Putting the "E" into STEM

    ERIC Educational Resources Information Center

    Loughran, Melissa

    2017-01-01

    The challenge schools face when creating a science, technology, engineering and mathematics (STEM) program is how to incorporate the "E" into the curriculum. The author's school was meeting the National (U. K.) Curriculum Science, Technology and Maths learning objectives, so how could they justify adding another subject into the mix…

  8. The Engineering Design Process as a Model for STEM Curriculum Design

    ERIC Educational Resources Information Center

    Corbett, Krystal Sno

    2012-01-01

    Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…

  9. Advancing K-8 Teachers' STEM Education for Teaching Interdisciplinary Science and Mathematics with Technologies

    ERIC Educational Resources Information Center

    Niess, Margaret; Gillow-Wiles, Henry

    2013-01-01

    This primarily online Master's degree program focused on advancing K-8 teachers' interdisciplinary mathematical and science content knowledge while integrating appropriate digital technologies as learning and teaching tools. The mixed-method, interpretive study examined in-service teachers' technological, pedagogical, and content knowledge (TPACK)…

  10. Supporting Mathematical Discourse in the Early Grades. Interactive STEM Research + Practice Brief

    ERIC Educational Resources Information Center

    Stiles, Jennifer

    2016-01-01

    This research brief discusses the benefits of teachers using mathematical discourse--allowing students to explain, justify, and debate their individual techniques for solving math problems--to enhance learning. Using this strategy requires educators to discard traditional teacher-centered modes of instruction and adopt new student-centered modes…

  11. STEM learning activity among home-educating families

    NASA Astrophysics Data System (ADS)

    Bachman, Jennifer

    2011-12-01

    Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a current gap regarding STEM learning among home-educating families, a small, but growing part of society's STEM learning infrastructure for which little research exists.

  12. Snow snakes and science agency: Empowering American Indian students through a culturally-based science, technology, engineering, and mathematics (STEM) curriculum

    NASA Astrophysics Data System (ADS)

    Miller, Brant Gregory

    Mainstream curricula have struggled to provide American Indian students with meaningful learning experiences. This research project studied a novel approach to engaging students with science, technology, engineering, and mathematics (STEM) content through a culturally-based context. The traditional American Indian game of Snow Snakes (shushumeg in Ojibwe) presented a highly engaging context for delivering STEM content. Through the engaging context of snow snakes, the designed STEM curriculum explicitly applied mathematics (scaling and data), and science (force and motion) to an engineering prototype iteration that used available materials and tools (technology) for success. It was hypothesized that by engaging students through the carefully integrated STEM curriculum, driven by the culturally based context of snow snakes, students would exhibit an increase in science agency and achievement. The overarching research question explored for this study was: How does a culturally-based and integrated STEM curriculum impact student's science agency? Associated sub-questions were: (1) What does science agency look like for 6th grade students? (2) What key experiences are involved in the development of science agency through a culturally-based STEM curriculum context? And (3) What are the impacts on the community associated with the implementation of a culturally-based STEM curriculum? A case study research design was implemented for this research. Yin (2003) defines a case study as investigating a phenomenon (e.g. science agency) which occurs within authentic contexts (e.g. snow snakes, Adventure Learning, and Eagle Soaring School) especially when the boundaries between phenomenon and context are unclear. For this case study Eagle Soaring School acted as the bounded case with students from the 6th grade class representing the embedded units. Science agency was the theoretical framework for data analysis. Major findings were categorized as science and STEM learning, agency, and community impact. Concerning agency, students displayed science agency through: connecting snow snake experiences to outside contexts; students emerging as leaders; and students commanding a facility with science. This research lays the foundation for future inquiry into the development of science agency in students using culturally-based contexts.

  13. A Framework for Structuring Learning Assessment in a Online Educational Game: Experiment Centered Design

    ERIC Educational Resources Information Center

    Conrad, Shawn; Clarke-Midura, Jody; Klopfer, Eric

    2014-01-01

    Educational games offer an opportunity to engage and inspire students to take interest in science, technology, engineering, and mathematical (STEM) subjects. Unobtrusive learning assessment techniques coupled with machine learning algorithms can be utilized to record students' in-game actions and formulate a model of the students' knowledge…

  14. Assessing STEM content learning: using the Arctic's changing climate to develop 21st century learner

    NASA Astrophysics Data System (ADS)

    Henderson, G. R.; Durkin, S.; Moran, A.

    2016-12-01

    In recent years the U.S. federal government has called for an increased focus on science, technology, engineering, and mathematics (STEM) in the educational system to ensure that there will be sufficient technical expertise to meet the needs of business and industry. As a direct result of this STEM emphasis, the number of outreach activities aimed at actively engaging these students in STEM learning has surged. Such activities, frequently in the form of summer camps led by university faculty, have targeted primary and secondary school students with the goal of growing student interest in STEM majors and STEM careers. This study assesses short-term content learning using a climate module that highlights rapidly changing Arctic climate conditions to illustrate concepts of radiative energy balance and climate feedback. Hands-on measurement of short and longwave radiation using simple instrumentation is used to demonstrate concepts that are then related back to the "big picture" Arctic issue. Pre and post module questionnaires were used to assess content learning, as this learning type has been identified as the basis for STEM literacy and the vehicle by which 21st century learning skills are usually developed. In this instance, students applied subject knowledge they gained by taking radiation measurements to better understand the real-world problem of climate change.

  15. A Model of Factors Contributing to STEM Learning and Career Orientation

    NASA Astrophysics Data System (ADS)

    Nugent, Gwen; Barker, Bradley; Welch, Greg; Grandgenett, Neal; Wu, ChaoRong; Nelson, Carl

    2015-05-01

    The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive career theory provided the foundation for the research because of its emphasis on explaining mechanisms which influence both career orientations and academic performance. Key constructs investigated were youth STEM interest, self-efficacy, and career outcome expectancy (consequences of particular actions). The study also investigated the effects of prior knowledge, use of problem-solving learning strategies, and the support and influence of informal educators, family members, and peers. A structural equation model was developed, and structural equation modeling procedures were used to test proposed relationships between these constructs. Results showed that educators, peers, and family-influenced youth STEM interest, which in turn predicted their STEM self-efficacy and career outcome expectancy. STEM career orientation was fostered by youth-expected outcomes for such careers. Results suggest that students' pathways to STEM careers and learning can be largely explained by these constructs, and underscore the importance of youth STEM interest.

  16. Teaching STEM as a Second Language: Utilizing SLA to Develop Equitable Learning for All Students

    ERIC Educational Resources Information Center

    Collier, Shartriya; Burston, Betty; Rhodes, Aarika

    2016-01-01

    Purpose: A review of current initiatives to increase science, technology, engineering and mathematics (STEM) achievement among American youth and young adults reveals the presence of "IQism". That is, whether such interventions are directed toward low-income minorities and/or the disproportionate number of higher-income youth who have…

  17. Review of Gender Differences in Learning Styles: Suggestions for STEM Education

    ERIC Educational Resources Information Center

    Kulturel-Konak, Sadan; D'Allegro, Mary Lou; Dickinson, Sarah

    2011-01-01

    Women have made great strides in baccalaureate degree obtainment, out numbering men by over 230,000 conferred baccalaureate degrees in 2008. However, the proportion of earned degrees for women in some of the Science, Technology, Engineering, and Mathematics (STEM) courses continues to lag behind male baccalaureate completions (National Science…

  18. Designing for Success in STEM Communities of Practice: Philosophy and Personal Interactions

    ERIC Educational Resources Information Center

    Kezar, Adrianna; Gehrke, Sean; Bernstein-Sierra, Samantha

    2017-01-01

    For the past 20 years, countless reports have been issued calling for reform of undergraduate education to improve student learning, persistence, and graduation rates for students in science, technology, engineering, and mathematics (STEM) majors. However, by many measures, recommendations in these reports have not been widely implemented. While…

  19. Working with the Wesley College Cannon Scholar Program: Improving Retention, Persistence, and Success

    ERIC Educational Resources Information Center

    D'Souza, Malcolm J.; Shuman, Kevin E.; Wentzien, Derald E.; Roeske, Kristopher P.

    2018-01-01

    Wesley College secured a five-year National Science Foundation (NSF) S-STEM (scholarships in science, technology, engineering, and mathematics) grant (1355554) to provide affordability and access to its robust STEM programs. With these funds, the college initiated a freshman to senior level, mixed-cohort, Cannon Scholar (CS) learning community…

  20. Triple Nexus: Improving STEM Teaching through a Research-Public Engagement-Teaching Nexus

    ERIC Educational Resources Information Center

    Stevenson, E.; McArthur, J.

    2015-01-01

    In this Reflection on Practice we propose a triple nexus of research, public engagement and teaching that could provide a new pathway for academic developers to enable greater engagement in learning and teaching issues from science, technology, engineering, and mathematics (STEM) academics. We argue that the public engagement activities demanded…

  1. Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering

    ERIC Educational Resources Information Center

    Burrows, Andrea; Lockwood, Meghan; Borowczak, Mike; Janak, Edward; Barber, Brian

    2018-01-01

    This article showcases STEM as an interdisciplinary field in which the disciplines strengthen and support each other (not as separate science, technology, engineering, and mathematics disciplines). The authors focus on an open-ended, complex problem--water quality--as the primary teaching and learning task. The participants, middle school female…

  2. STEM Thinking!

    ERIC Educational Resources Information Center

    Reeve, Edward M.

    2015-01-01

    Science, Technology, Engineering, and Mathematics (STEM) is a term seen almost daily in the news. In 2009, President Obama launched the Educate to Innovate initiative to move American students from the middle to the top of the pack in science and math achievement over the next decade (The White House, n.d.). Learning about the attributes of STEM…

  3. Designing Philadelphia Land Science as a Game to Promote Identity Exploration

    ERIC Educational Resources Information Center

    Barany, Amanda; Shah, Mamta; Cellitti, Jessica; Duka, Migela; Swiecki, Zachari; Evenstone, Amanda; Kinley, Hannah; Quigley, Peter; Shaffer, David Williamson; Foster, Aroutis

    2017-01-01

    Few digital tools are designed to support identity exploration around careers in science, technology, engineering, and mathematics (STEM) that may help close existing representation gaps in STEM fields. The aim of this project is to inform the design of games that facilitate learning as identity change as defined by the Projective Reflection…

  4. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    ERIC Educational Resources Information Center

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice.…

  5. Learning through STEM-Rich Tinkering: Findings from a Jointly Negotiated Research Project Taken up in Practice

    ERIC Educational Resources Information Center

    Bevan, Bronwyn; Gutwill, Joshua P.; Petrich, Mike; Wilkinson, Karen

    2015-01-01

    The Maker Movement has taken the educational field by storm due to its perceived potential as a driver of creativity, excitement, and innovation (Honey & Kanter, [Honey, M., 2013]; Martinez & Stager, [Martin, L., 2013]). Making is promoted as advancing entrepreneurship, developing science, technology, engineering, and mathematics (STEM)…

  6. Empowering K-12 Students with Disabilities to Learn Computational Thinking and Computer Programming

    ERIC Educational Resources Information Center

    Israel, Maya; Wherfel, Quentin M.; Pearson, Jamie; Shehab, Saadeddine; Tapia, Tanya

    2015-01-01

    This article's focus is on including computing and computational thinking in K-12 instruction within science, technology, engineering, and mathematics (STEM) education, and to provide that instruction in ways that promote access for students traditionally underrepresented in the STEM fields, such as students with disabilities. Providing computing…

  7. Bridging STEM in a Real World Problem

    ERIC Educational Resources Information Center

    English, Lyn D.; Mousoulides, Nicholas G.

    2015-01-01

    Engineering-based modeling activities provide a rich source of meaningful situations that capitalize on and extend students' routine learning. By integrating such activities within existing curricula, students better appreciate how their school learning in mathematics and science applies to problems in the outside world. Furthermore, modeling…

  8. Teaching Students to Formulate Questions

    ERIC Educational Resources Information Center

    Jensen-Vallin, Jacqueline

    2017-01-01

    As STEM educators, we know it is beneficial to train students to think critically and mathematically during their early mathematical lives. To this end, the author teaches the College Algebra/Precalculus course in a flipped classroom version of an inquiry-based learning style. However, the techniques described in this paper can be applied to a…

  9. Shape Up: An Eye-Tracking Study of Preschoolers' Shape Name Processing and Spatial Development

    ERIC Educational Resources Information Center

    Verdine, Brian N.; Bunger, Ann; Athanasopoulou, Angeliki; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy

    2017-01-01

    Learning the names of geometric shapes is at the intersection of early spatial, mathematical, and language skills, all important for school-readiness and predictors of later abilities in science, technology, engineering, and mathematics (STEM). We investigated whether socioeconomic status (SES) influenced children's processing of shape names and…

  10. Stirring the Pot: Supporting and Challenging General Education Science, Technology, Engineering, and Mathematics Faculty to Change Teaching and Assessment Practice

    ERIC Educational Resources Information Center

    Stieha, Vicki; Shadle, Susan E.; Paterson, Sharon

    2016-01-01

    Evidence-based instructional practices (ebips) have been associated with positive student outcomes; however, institutions struggle to catalyze widespread adoption of these practices in general education science, technology, engineering, and mathematics (stem) courses. Further, linking ebips with integrated learning assessment is rarely discussed…

  11. Engineering in K-12 Education: Understanding the Status and Improving the Prospects

    ERIC Educational Resources Information Center

    Katehi, Linda, Ed.; Pearson, Greg, Ed.; Feder, Michael, Ed.

    2009-01-01

    Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects--science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work…

  12. Computational Literacy and "The Big Picture" Concerning Computers in Mathematics Education

    ERIC Educational Resources Information Center

    diSessa, Andrea A.

    2018-01-01

    This article develops some ideas concerning the "big picture" of how using computers might fundamentally change learning, with an emphasis on mathematics (and, more generally, STEM education). I develop the big-picture model of "computation as a new literacy" in some detail and with concrete examples of sixth grade students…

  13. Factors That Influence Middle School Mathematics Teachers' Willingness to Collaborate with School Librarians

    ERIC Educational Resources Information Center

    Schnabel, Stephanie L.

    2017-01-01

    Collaboration between school libraries and classroom teachers can have a powerful impact on student learning. School librarians routinely collaborate with English language arts and social studies curriculum and less frequently with areas in STEM education. This research examines middle school mathematics teachers' extent of or willingness to…

  14. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops

    ERIC Educational Resources Information Center

    Nielsen, Natalie

    2011-01-01

    Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science…

  15. Facilitating Classroom Innovation in the Geosciences Through the NSF Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) Program

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2012-12-01

    The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.

  16. Foreign Language Learning: Strategies in the Context of STEM Education (Estrategias de Aprendizaje de Lenguas Extranjeras en el Contexto de la Educación STEM)

    ERIC Educational Resources Information Center

    Han, Turgay

    2015-01-01

    This study aims at providing an insightful evaluation of the EFL strategies used by first-year STEM (science, technology, engineering, and mathematics) students, and their perceptions of their own use of strategies. The 147 participants were undergraduate level, first-year engineering students at a state university in Turkey. Their ages ranged…

  17. Developing and applying quantitative skills maps for STEM curricula, with a focus on different modes of learning

    NASA Astrophysics Data System (ADS)

    Reid, Jackie; Wilkes, Janelle

    2016-08-01

    Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional university that offers both on-campus and distance modes of study. Key elements of the mapping project included the identification of key graduate quantitative skills, the development of curriculum mapping tools to record in which unit(s) and at what level of attainment each quantitative skill is taught, practised and assessed, and identification of differences in the way quantitative skills are developed for on-campus and distance students. Particular attention is given to the differences that are associated with intensive schools, which consist of concentrated periods of face-to-face learning over a three-four day period, and are available to distance education students enrolled in STEM units. The detailed quantitative skills mapping process has had an impact on the review of first-year mathematics units, resulted in crucial changes to the curriculum in a number of courses, and contributed to a more integrated approach, and a collective responsibility, to the development of students' quantitative skills for both face-to-face and online modes of learning.

  18. Profile of Pre-Service Science Teachers Based on STEM Career Interest Survey

    NASA Astrophysics Data System (ADS)

    Winarno, N.; Widodo, A.; Rusdiana, D.; Rochintaniawati, D.; Afifah, R. M. A.

    2017-09-01

    This study aims to investigate the profile of pre-service science teachers based on STEM (Science, Technology, Engineering, and Mathematics) Career Interest Survey. The study uses descriptive survey method as the research design. Samples collected from 66 preservice science teachers in a university located in Bandung, Indonesia. The results of the study are the profile of pre-service science teachers based on STEM Career Interest Survey shows that the average number of career interest in the field of technology is 4.08, in science 3.80, mathematics 3.39 and engineering 3.30. Pre-service science teachers are found to have interests in the STEM career fields. This research is necessary as there are many instances of people choosing majors or studies that are not in accordance with their interests and talents. The recommendation of this study is to develop learning in pre-service science teachers by using STEM approach.

  19. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  20. Is "Learning by Doing" Important? A Study of Doing-Based Learning

    ERIC Educational Resources Information Center

    Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.

    2014-01-01

    This is the second in a series of articles discussing the "Doing-Based Learning" study. The purpose of this study is to determine the extent to which U.S. public school elementary and secondary education science, technology, engineering, and mathematics (STEM) students are doing activities in their classrooms. The first article (Moye,…

  1. High-Achieving Black Students, Biculturalism, and Out-of-School STEM Learning Experiences: Exploring Some Unintended Consequences

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    In this article, the author discusses the complex challenges of high-achieving Black students who are successful in becoming immersed in predominately White STEM (science, technology, engineering, and mathematics) spaces and how such immersion can exacerbate their experiences of racial stereotyping and other forms of racial bias. The author…

  2. Inspiring Careers in STEM and Healthcare Fields through Medical Simulation Embedded in High School Science Education

    ERIC Educational Resources Information Center

    Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell; Oriol, Nancy E.

    2014-01-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school…

  3. Investigating the Views of Pre-Service Science Teachers on STEM Education Practices

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim; Ciftci, Ayse

    2017-01-01

    It has given importance to the development of 21st century skills in every aspect of life. STEM (Science, Technology, Engineering, and Mathematics) education has played an important role to improve these skills and teachers are expected to be able to organize learning environments accordingly. The purpose of this research is to examine the…

  4. Two-Year Community: Increasing Science Knowledge among High-Risk Student Populations through a Community College Honors/Service-Learning Program

    ERIC Educational Resources Information Center

    Ellerton, Sharon; Carmona, Naydu; Tsimounis, Areti

    2016-01-01

    There is an urgent need to increase K-12 science knowledge and STEM (science, technology, engineering, and mathematics) preparedness for college. State and national data suggest a strong correlation between student performance in STEM subjects and student socioeconomic status, race, and ethnicity. Queensborough Community College (QCC) is situated…

  5. STEM Learning and Transfer in a Children's Museum and Beyond

    ERIC Educational Resources Information Center

    Marcus, Maria; Haden, Catherine A.; Uttal, David H.

    2017-01-01

    This study addressed whether providing mothers and children with engineering information would promote science, technology, engineering, and mathematics (STEM) talk during interactions in a building-construction exhibit and later when remembering the experience at home. A total of 40 mothers and their 5- to 6-year-old children (M = 5.87) were…

  6. The Baltimore City Schools Middle School STEM Summer Program with VEX Robotics

    ERIC Educational Resources Information Center

    Mac Iver, Martha Abele; Mac Iver, Douglas J.

    2015-01-01

    In 2011 Baltimore City Schools submitted a successful proposal for an Investing in Innovations (i3) grant to offer a three year (2012-2014) summer program designed to expose rising sixth through eighth grade students to VEX robotics. The i3-funded Middle School Science, Technology, Engineering and Mathematics (STEM) Summer Learning Program was…

  7. Standards for Technological Literacy and STEM Education Delivery through Career and Technical Education Programs

    ERIC Educational Resources Information Center

    Asunda, Paul A.

    2012-01-01

    At a minimum, employers rely on career and technical education (CTE) and workforce training systems to supply workers able to perform in their jobs. In CTE classes that seek to integrate science, technology, engineering, and mathematics (STEM) concepts, it falls to the instructors to design and sequence the learning experiences that will promote…

  8. Retrospective Perceptions of Graduates of a Self-Contained Program in Taiwan for High School Students Talented in STEM

    ERIC Educational Resources Information Center

    Jen, Enyi; Moon, Sidney M.

    2015-01-01

    This retrospective qualitative study was designed to investigate perceptions of the learning experiences of STEM (science, technology, engineering, and mathematics)-talented male students who were in a self-contained, single-gender, gifted program in a selective high school in Taiwan. Twenty-four graduates of the high school's gifted program…

  9. Mobile Technology and Mathematics Learning in the Early Grades. Interactive STEM Research + Practice Brief

    ERIC Educational Resources Information Center

    Presser, Ashley Lewis; Busey, Amy

    2016-01-01

    This research brief describes the value of using mobile technologies in and out of elementary mathematics classrooms, and investigates the view that teachers may not be getting the guidance they need to best leverage those technologies. The authors explore three areas of concern: How can teachers use technology in developmentally appropriate ways…

  10. Socioeconomic Status and Preschoolers' Mathematical Knowledge: The Contribution of Home Activities and Parent Beliefs

    ERIC Educational Resources Information Center

    DeFlorio, Lydia; Beliakoff, Amber

    2015-01-01

    Research Findings: Children from families of lower socioeconomic status (SES) enter kindergarten with less developed mathematical knowledge compared to children from middle SES families. This discrepancy is present at age 3 years and likely stems from differences in the home learning environment. This study reports SES-related differences both in…

  11. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    ERIC Educational Resources Information Center

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  12. An Emerging Research Framework for Studying Informal Learning and Schools

    ERIC Educational Resources Information Center

    Martin, Laura M. W.

    2004-01-01

    In recognition of the fact that science centers and other informal educational institutions can play a role in the reform of science, technology, engineering, and mathematics (STEM) education, several major research and professional programs are currently underway. This article discusses one such effort, the Center for Informal Learning and…

  13. Identifying Key Components of Teaching and Learning in a STEM School

    ERIC Educational Resources Information Center

    Morrison, Judith; Roth McDuffie, Amy; French, Brian

    2015-01-01

    This study was conducted at an innovative science, technology, engineering, and mathematics high school, providing a rich contextual description of the teaching and learning at the school, specifically focusing on problem solving and inquiry approaches, and students' motivation, social interactions, and collaborative work. Data were collected…

  14. Learn Better by Doing Study: Fourth-Year Results

    ERIC Educational Resources Information Center

    Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.

    2017-01-01

    The purpose of the "Learn Better by Doing Study" was to determine the extent to which U.S. public elementary, middle, and high school students were doing hands-on activities in their science, technology, engineering, and mathematics (STEM) classrooms. The International Technology and Engineering Educators Association's (ITEEA's)…

  15. Laptop Use, Interactive Science Software, and Science Learning among At-Risk Students

    ERIC Educational Resources Information Center

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-01-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in…

  16. Active learning increases student performance in science, engineering, and mathematics.

    PubMed

    Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-06-10

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

  17. Active learning increases student performance in science, engineering, and mathematics

    PubMed Central

    Freeman, Scott; Eddy, Sarah L.; McDonough, Miles; Smith, Michelle K.; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-01-01

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms. PMID:24821756

  18. Motivating Young Native American Students to Pursue STEM Learning Through a Culturally Relevant Science Program

    NASA Astrophysics Data System (ADS)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-12-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.

  19. Cognitive and Motivational Factors that Inspire Hispanic Female Students to Pursue STEM-Related Academic Programs that Lead to Careers in Science, Technology, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    Morel-Baker, Sonaliz

    Hispanics, and women in particular, continue to be underrepresented in the fields of science, technology, engineering, and mathematics (STEM). The purpose of this study was to analyze cognitive and motivational factors that inspired Hispanic female college students to major in STEM programs and aspire to academic success. This mixed methods study was conducted using both quantitative and qualitative data collection and analysis techniques in a sequential phase. Quantitative data were collected through the use of the 80-item Honey and Mumford Learning Styles Questionnaire, which was focused on the students' learning styles and how they impact Hispanic female students upon engaging in a STEM-related curriculum. Qualitative data were collected during interviews focusing on factors that led students to select, participate in, and make a commitment to some aspect of a STEM-related program. The questions that were asked during the interviews were intended to examine whether the existence of role models and STEM initiatives motivate Hispanic female students to major in STEM-related academic programs and aspire to academic success. The participants in this study were undergraduate Hispanic female students majoring in STEM-related academic programs and at a four-year university. The results indicate that the majority of the participants (88%) identified as reflectors, 4% as activists, 4% as theorists, and 4% as pragmatists. The results from the interviews suggested that the existence of role models (family members, educators, or STEM professionals) was a factor that motivated Hispanic females to major in STEM-related subjects and that exposure to STEM initiatives during K-12 education motivated Hispanic females to pursue a career in STEM.

  20. Integration of Innovative Technologies for Enhancing Students' Motivation for Science Learning and Career

    NASA Astrophysics Data System (ADS)

    Xie, Yichun; Reider, David

    2014-06-01

    This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor's Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to stimulate students' interests in science, technology, engineering, and mathematics (STEM) career pathways and learning opportunities among high schools in underserved communities of the City of Detroit. Pre- and post-surveys demonstrated that the MYTC students showed growth in nearly every area covered in the surveys, including dispositions about STEM career and learning. A STEM career goal measure showed that overall interest in having a career in STEM increased 9 % throughout the program, with an additional 10 % for those who participated in an internship experience, the capstone of the MYTC project.

  1. The Effects of Self-Explanation and Metacognitive Instruction on Undergraduate Students' Learning of Statistics Materials Containing Multiple External Representations in a Web-Based Environment

    ERIC Educational Resources Information Center

    Hsu, Yu-Chang

    2009-01-01

    Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…

  2. NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Erickson, Kristen

    2018-01-01

    The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.

  3. Tour Through the Solar System: A Hands-On Planetary Geology Course for High School Students

    NASA Astrophysics Data System (ADS)

    Sherman, S. B.; Gillis-Davis, J. J.

    2011-09-01

    We have developed a course in planetary geology for high school students, the primary goals of which are to help students learn how to learn, to reduce the fear and anxiety associated with learning science and math, and to encourage an interest in science, technology, engineering, and mathematics (STEM) fields. Our emphasis in this course is on active learning in a learner-centered environment. All students scored significantly higher on the post-knowledge survey compared with the pre-knowledge survey, and there is a good correlation between the post-knowledge survey and the final exam. Student evaluations showed an increased interest in STEM fields as a result of this course.

  4. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    ERIC Educational Resources Information Center

    Quigley, Cassie F.; Herro, Dani

    2016-01-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and…

  5. Making Hands-On Science Learning Accessible for Students Who Are Blind or Have Low Vision

    ERIC Educational Resources Information Center

    Supalo, Cary; Isaacson, Mick D.; Lombardi, Michael V.

    2014-01-01

    The 2011 National Federation of the Blind Youth Slam event at Towson University enabled a large group of blind youth to participate in a five day long science, technology, engineering, and mathematics (STEM) academy. Enrichment experiences such as this one may generate interest in STEM subjects for students with visual impairments. For decades,…

  6. Strategies, Use, and Impact of Social Media for Supporting Teacher Community within Professional Development: The Case of One Urban STEM Program

    ERIC Educational Resources Information Center

    Rosenberg, Joshua M.; Greenhalgh, Spencer P.; Wolf, Leigh Graves; Koehler, Matthew J.

    2017-01-01

    This paper examines the use of social media to foster community connections within the MSU Urban Science, Technology, Engineering, and Mathematics (STEM) program. We describe the strategies employed by the program and the technologies employed by instructors to provide support, build community, and showcase learning. We highlight three particular…

  7. The Science of Enhanced Student Engagement and Employability: Introducing the Psychology Stream of the Inaugural HEA STEM Conference

    ERIC Educational Resources Information Center

    Hulme, Julie; Taylor, Jacqui; Davies, Mark N. O.; Banister, Peter

    2012-01-01

    The Higher Education Academy (HEA) is committed to enhancing the quality of learning and teaching for all university students in the UK, and the inaugural conference for the Science, Technology, Engineering and Mathematics (STEM) subjects, held in April 2012 at Imperial College, London, aimed to showcase research and evidence-based educational…

  8. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    ERIC Educational Resources Information Center

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-01-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or…

  9. Exploring the Educational Potential of Three-Dimensional Multi-User Virtual Worlds for STEM Education: A Mixed-Method Systematic Literature Review

    ERIC Educational Resources Information Center

    Pellas, Nikolaos; Kazanidis, Ioannis; Konstantinou, Nikolaos; Georgiou, Georgia

    2017-01-01

    The present literature review builds on the results of 50 research articles published from 2000 until 2016. All these studies have successfully accomplished various learning tasks in the domain of Science, Technology, Engineering, and Mathematics (STEM) education using three-dimensional (3-D) multi-user virtual worlds for Primary, Secondary and…

  10. Where Are the Women? Campus Climate and the Degree Aspirations of Women in Science, Technology, Engineering and Mathematics Programs

    ERIC Educational Resources Information Center

    Schulz, Phyllis

    2014-01-01

    Women remain underrepresented in science, technology, engineering, and mathematics (STEM) at all levels of higher education, which has become a concern in the competitive global marketplace. Using both quantitative and qualitative analysis, this dissertation sought to learn more about how the campus climate and self-concept influence the degree…

  11. A Research-Informed Dialogic-Teaching Approach to Early Secondary School Mathematics and Science: The Pedagogical Design and Field Trial of the"epiSTEMe" Intervention

    ERIC Educational Resources Information Center

    Ruthven, Kenneth; Mercer, Neil; Taber, Keith S.; Guardia, Paula; Hofmann, Riikka; Ilie, Sonia; Luthman, Stefanie; Riga, Fran

    2017-01-01

    The "Effecting Principled Improvement in STEM Education" ["epiSTEMe"] project undertook pedagogical research aimed at improving pupil engagement and learning in early secondary school physical science and mathematics. Using principles identified as effective in the research literature and drawing on a range of existing…

  12. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    NASA Astrophysics Data System (ADS)

    Hughes, Christina W.

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a midsized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy, and focused on innovative classroom resources, hands-on learning and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February, 2017, and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  13. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    NASA Astrophysics Data System (ADS)

    Hardrict-Ewing, Gloria

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a mid-sized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy, and focused on innovative classroom resources, hands-on learning and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February, 2017, and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  14. The Enactive Roots of STEM: Rethinking Educational Design in Mathematics

    ERIC Educational Resources Information Center

    Hutto, Daniel D.; Kirchhoff, Michael D.; Abrahamson, Dor

    2015-01-01

    New and radically reformative thinking about the enactive and embodied basis of cognition holds out the promise of moving forward age-old debates about whether we learn and how we learn. The radical enactive, embodied view of cognition (REC) poses a direct, and unmitigated, challenge to the trademark assumptions of traditional cognitivist theories…

  15. The Roles of Working Memory and Cognitive Load in Geoscience Learning

    ERIC Educational Resources Information Center

    Jaeger, Allison J.; Shipley, Thomas F.; Reynolds, Stephen J.

    2017-01-01

    Working memory is a cognitive system that allows for the simultaneous storage and processing of active information. While working memory has been implicated as an important element for success in many science, technology, engineering, and mathematics (STEM) fields, its specific role in geoscience learning is not fully understood. The major goal of…

  16. A Mixed-Methods Investigation of Clicker Implementation Styles in STEM

    ERIC Educational Resources Information Center

    Solomon, Erin D.; Repice, Michelle D.; Mutambuki, Jacinta M.; Leonard, Denise A.; Cohen, Cheryl A.; Luo, Jia; Frey, Regina F.

    2018-01-01

    Active learning with clickers is a common approach in high-enrollment, lecture-based courses in science, technology, engineering, and mathematics. In this study, we describe the procedures that faculty at one institution used when implementing clicker-based active learning, and how they situated these activities in their class sessions. Using a…

  17. The Impact of Project-Based Learning on Pre-Service Teachers' Technology Attitudes and Skills

    ERIC Educational Resources Information Center

    Alexander, Curby; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Bull, Glen

    2014-01-01

    Researchers in this study looked at the effect of content-specific, technology-rich project-based learning activities on EC-8 pre-service teachers' competencies and skills, as well as pre-service teacher's attitudes toward science, technology, engineering and mathematics (STEM). Researchers employed a quantitative design involving participants in…

  18. Learn Better by Doing Study--Third-Year Results

    ERIC Educational Resources Information Center

    Moye, Johnny; Dugger, William E., Jr.; Starkweather, Kendall N.

    2016-01-01

    The purpose of the "Learn Better by Doing" study is to determine the extent to which U.S. public school students are doing hands-on activities in their classrooms. The study asks elementary and secondary (middle and high school) science, technology, engineering, and mathematics (STEM) teachers to respond to 13 statements concerning…

  19. "Learn by Doing" Research: Introduction

    ERIC Educational Resources Information Center

    Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.

    2014-01-01

    The research in this "Learning by Doing" study focuses on a special type of doing that applies to science, technology, engineering, and mathematics (STEM) education. In the early stages of humankind, the act of doing was essential for survival and drove the evolution of technology. As was true in ancient times, knowledge and the ability…

  20. Real Integration--Where the Rubber Meets the Road

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2011-01-01

    Integration of core academics into career and technical education (CTE) is not new. Putting core academics into context, CTE courses provide an excellent platform for students to learn the relevance of science, technology, engineering, and mathematics (STEM) as well as literature, arts, and social studies. Students learn to use this information by…

  1. Creating Hybrid Learning Experiences in Robotics: Implications for Supporting Teaching and Learning

    ERIC Educational Resources Information Center

    Frerichs, Saundra Wever; Barker, Bradley; Morgan, Kathy; Patent-Nygren, Megan; Rezac, Micaela

    2012-01-01

    Geospatial and Robotics Technologies for the 21st Century (GEAR-Tech-21), teaches science, technology, engineering and mathematics (STEM) through robotics, global positioning systems (GPS), and geographic information systems (GIS) activities for youth in grades 5-8. Participants use a robotics kit, handheld GPS devices, and GIS technology to…

  2. Transforming Classrooms through Game-Based Learning: A Feasibility Study in a Developing Country

    ERIC Educational Resources Information Center

    Vate-U-Lan, Poonsri

    2015-01-01

    This article reports an exploratory study which investigated attitudes towards the practice of game-based learning in teaching STEM (science, technology, engineering and mathematics) within a Thai educational context. This self-administered Internet-based survey yielded 169 responses from a snowball sampling technique. Three fifths of respondents…

  3. Opening the Classroom Door: Professional Learning Communities in the Math and Science Partnership Program

    ERIC Educational Resources Information Center

    Hamos, James E.; Bergin, Kathleen B.; Maki, Daniel P.; Perez, Lance C.; Prival, Joan T.; Rainey, Daphne Y.; Rowell, Ginger H.; VanderPutten, Elizabeth

    2009-01-01

    This article looks at how professional learning communities (PLCs) have become an operational approach for professional development with potential to de-isolate the teaching experience in the fields of science, technology, engineering, and mathematics (STEM). The authors offer a short synopsis of the intellectual origins of PLCs, provide multiple…

  4. Student Reactions to Learning Theory Based Curriculum Materials in Linear Algebra--A Survey Analysis

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff

    2016-01-01

    In this report we examine students' perceptions of the implementation of carefully designed curriculum materials (called modules) in linear algebra courses at three different universities. The curricular materials were produced collaboratively by STEM and mathematics education faculty as members of a professional learning community (PLC) over…

  5. Sketching by Design: Teaching Sketching to Young Learners

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Sung, Euisuk

    2017-01-01

    Recent science educational reforms in the United States have prompted increased efforts to teach engineering design as an approach to improve STEM (Science, Technology, Engineering, and Mathematics) learning in K-12 classrooms. Teaching design in early grades is a new endeavor for teachers in the United States. Much can be learned from design…

  6. How to Assess Creative Thinking Skill in Making Products of Liquid Pressure?

    NASA Astrophysics Data System (ADS)

    Chasanah, L.; Kaniawati, I.; Hernani, H.

    2017-09-01

    The primary skills that must be possessed in the 21st century curriculum are learning and innovation skills. One of the learning strategies that can train students to innovate and improve creative thinking skills is by applying Science, Technology, Engineering and Mathematics (STEM) in learning. Based on an interview to one of the science teachers that learning that aims to train learning and innovation skills has not been applied to learning in the classroom because there is not enough time, learning materials and assessment instruments used. This study aims to determine the results of the implementation of performance assessment of creative thinking skills on STEM-based learning in junior high school for the material of liquid pressure. This research uses descriptive method. Participants in this study were junior high school students 8th in Kudus area. The research instrument consists of observation sheet, performance assessment and documentation. The result showed that creative thinking skills performance assessment can assess student’s creativity in making products of STEM-based learning for junior high school.

  7. Females and STEM: Determining the K-12 Experiences that Influenced Women to Pursue STEM Fields

    NASA Astrophysics Data System (ADS)

    Petersen, Anne Marie

    In the United States, careers in the fields of Science, Technology, Engineering, and Mathematics (STEM) are increasing yet there are not enough trained personnel to meet this demand. In addition, of those that seek to pursue STEM fields in the United States, only 26% are female. In order to increase the number of women seeking STEM based bachelor's degrees, K-12 education must provide a foundation that prepares students for entry into these fields. The purpose of this phenomenological study was to determine the perceived K-12 experiences that influenced females to pursue a STEM field. Twelve college juniors or seniors seeking a degree in Biology, Mathematics, or Physics were interviewed concerning their K-12 experiences. These interviews were analyzed and six themes emerged. Teacher passion and classroom characteristics such as incorporating challenging activities played a significant role in the females' decisions to enter STEM fields. Extra-curricular activities such as volunteer and mentor opportunities and the females' need to benefit others also influenced females in their career choice. Both the formal (within the school) and informal (outside of the traditional classroom) pipeline opportunities that these students encountered helped develop a sense of self-efficacy in science and mathematics; this self-efficacy enabled them to persist in pursuing these career fields. Several participants cited barriers that they encountered in K-12 education, but these barriers were primarily internal as they struggled with overcoming self-imposed obstacles in learning and being competitive in the mathematics and science classrooms. The experiences from these female students can be used by K-12 educators to prepare and encourage current female students to enter STEM occupations.

  8. Where are the women? Campus climate and the degree aspirations of women in science, technology, engineering and mathematics programs

    NASA Astrophysics Data System (ADS)

    Schulz, Phyllis

    Women remain underrepresented in science, technology, engineering, and mathematics (STEM) at all levels of higher education, which has become a concern in the competitive global marketplace. Using both quantitative and qualitative analysis, this dissertation sought to learn more about how the campus climate and self-concept influence the degree aspirations of female undergraduate students majoring in STEM programs. Using the Beginning Post-Secondary dataset, regression analyses showed that a student's initial degree aspirations, SAT scores, and interactions with faculty were all positively related to their degree aspirations three years later. Interviews with seven current STEM undergraduates confirmed the importance of interaction with faculty and suggested undergraduate research and classroom experiences also play a role in the degree aspirations of STEM students. Three of the seven students interviewed began their undergraduate educations as non-STEM majors, suggesting that the traditional STEM pipeline may no longer be the norm. These findings suggest that both future research and current practitioners should focus on undergraduate STEM classroom and research experiences. Additionally, the characteristics of students who switch into STEM majors should be explored so that we may continue to expand the number of students pursuing STEM degrees.

  9. Classroom Learning Environment and Gender: Do They Explain Math Self-Efficacy, Math Outcome Expectations, and Math Interest during Early Adolescence?

    ERIC Educational Resources Information Center

    Deacon, Mary M.

    2011-01-01

    Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…

  10. STEM contents in pre-service teacher curriculum: Case study at physics faculty

    NASA Astrophysics Data System (ADS)

    Linh, Nguyen Quang; Suong, Huynh Thi Hong; Khoa, Cao Tien

    2018-01-01

    STEM education; the encompassment of the four fields including science, technology, engineering, and mathematics; is introduced to provide students with chances to confront and solve real world problems and situations. Literature has evidence that this approach has positive impacts on students' learning motivation, learning engagement, learning achievements, and participation in STEM subjects and careers. This further lead to assurance of enough qualified STEM staffs for cross economic and mixed cultural working environment of the 21st century world. Our paper explores STEM factors underneath what is considered as traditional ways of teaching in a specific subject in pre-service teacher curriculum at Physics Faculty, Thai Nguyen University of Education, Vietnam. Data of the research were collected from a variety of sources including field notes, observation notes, analyzing of the course syllabus and students' final products. Data were analyzed based on the STS approach and SWOT analysis. The research reveals different kinds of STEM factors and manifestations that has been organized and introduced to the students. The research implications propose further research and directions to take the available advantages to benefit and ease the integration of STEM programs into specific educational context in Vietnam.

  11. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    NASA Astrophysics Data System (ADS)

    Young-El, Christopher M.

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a midsized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy and focused on innovative classroom resources, hands-on learning, and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February 2017 and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with Academic Analysis of a STEM Education Professional Development Conference STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  12. Development of Teacher Beliefs through Online Instruction: A One-Year Study of Middle School Science and Mathematics Teachers' Beliefs about Teaching and Learning

    ERIC Educational Resources Information Center

    Wong, Sissy S.

    2016-01-01

    Understanding teachers' beliefs is important because beliefs influence teacher decisions. In science, teacher beliefs have an impact on how science curriculum is interpreted and implemented in the classroom. With the push for science, technology, engineering, and mathematics (STEM) education in the United States, it is also critical to examine the…

  13. Apprenticeship of Immersion: College Access for High School Students Interested in Teaching Mathematics or Science

    ERIC Educational Resources Information Center

    Harkness, Shelly Sheats; Johnson, Iris DeLoach; Hensley, Billy; Stallworth, James A.

    2011-01-01

    Issues related to college access and the need for a pipeline of STEM teachers, provided the impetus for the Ohio Board of Regents (OBR) to issue a call for Ohio universities to design pre-college experiences for high school students with three major goals in mind: (a) improvement in mathematics, science, or foreign language learning; (b) increased…

  14. Selected South African Grade 10 Learners' Perceptions of Two Learning Areas: Mathematical Literacy and Life Orientation

    ERIC Educational Resources Information Center

    Geldenhuys, J. L.; Kruger, C.; Moss, J.

    2013-01-01

    In 2006, Mathematical Literacy (ML) and Life Orientation (LO) were introduced into South Africa's Grade 10 national curriculum. The implementation of the ML programme in schools stemmed from a need to improve the level of numeracy of the general population of South Africa, while LO was introduced to equip learners to solve problems and to make…

  15. Montgomery Blair Science, Mathematics and Computer Science Magnet Program: A Successful Model for Meeting the Needs of Highly Able STEM Learners

    ERIC Educational Resources Information Center

    Stein, David; Ostrander, Peter; Lee, G. Maie

    2016-01-01

    The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…

  16. Teaching Image-Processing Concepts in Junior High School: Boys' and Girls' Achievements and Attitudes towards Technology

    ERIC Educational Resources Information Center

    Barak, Moshe; Asad, Khaled

    2012-01-01

    Background: This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose: The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these…

  17. Is It the Intervention or the Students? Using Linear Regression to Control for Student Characteristics in Undergraduate STEM Education Research

    ERIC Educational Resources Information Center

    Theobald, Roddy; Freeman, Scott

    2014-01-01

    Although researchers in undergraduate science, technology, engineering, and mathematics education are currently using several methods to analyze learning gains from pre- and posttest data, the most commonly used approaches have significant shortcomings. Chief among these is the inability to distinguish whether differences in learning gains are due…

  18. Comparison of Normalized Gain and Cohen's "d" for Analyzing Gains on Concept Inventories

    ERIC Educational Resources Information Center

    Nissen, Jayson M.; Talbot, Robert M.; Thompson, Amreen Nasim; Van Dusen, Ben

    2018-01-01

    Measuring student learning is a complicated but necessary task for understanding the effectiveness of instruction and issues of equity in college science, technology, engineering, and mathematics (STEM) courses. Our investigation focused on the implications on claims about student learning that result from choosing between one of two commonly used…

  19. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning

    PubMed Central

    Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. PMID:29054921

  20. An early start to STEM education among year 1 primary students through project-based inquiry learning in the context of a magnet

    NASA Astrophysics Data System (ADS)

    Safiee, N.; Jusoh, Z. M.; Noor, A. M. H. M.; Tek, O. E.; Salleh, S. M.

    2018-01-01

    For the needs of the 21st century, the Government of Malaysia has conceptualized the Malaysia Education Blueprint 2013-2025 which embodies 11 strategic and operational shifts. In Shift 1, it is emphasized that the quality of Science, Technology, Engineering, and Mathematics (STEM) Education will be enhanced. This study employed the mixed-method approach using the “one-group pre-test and post-test design”. Accordingly, this paper describes the pedagogical practice of Project-based Inquiry Learning (PIL) which promotes STEM Education among Year 1 students in the move to progress in tandem with Shift 1. Specifically, using the context of a magnet which has been stipulated in the Primary School Standard Curriculum, Year 1 students experienced the STEM Education through the STEM Pedagogy in which they raised questions upon the presentation of a relevant stimulus (Inquiry Phase), explored the ways in which a train carriage or coach could be assembled by means of recycled materials and magnets (Exploration Phase), designed a train carriage (Design Phase), and ultimately reflected on their inventions (Reflection Phase). The cognitive and affective impacts through the use of this Project-based Inquiry Learning are presented. Implications for the teaching and learning of science are discussed within the context of STEM Education.

  1. Improving student learning in calculus through applications

    NASA Astrophysics Data System (ADS)

    Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.

    2011-07-01

    Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.

  2. STEM-based science learning implementation to identify student’s personal intelligences profiles

    NASA Astrophysics Data System (ADS)

    Wiguna, B. J. P. K.; Suwarma, I. R.; Liliawati, W.

    2018-05-01

    Science and technology are rapidly developing needs to be balanced with the human resources that have the qualified ability. Not only cognitive ability, but also have the soft skills that support 21st century skills. Science, Technology, Engineering, and Mathematics (STEM) Education is a solution to improve the quality of learning and prepare students may be able to trained 21st century skills. This study aims to analyse the implementation of STEM-based science learning on Newton’s law of motion by identifying the personal intelligences profile junior high school students. The method used in this research is pre experiment with the design of the study one group pre-test post-test. Samples in this study were 26 junior high school students taken using Convenience Sampling. Students personal intelligences profile after learning STEM-based science uses two instruments, self-assessment and peer assessment. Intrapersonal intelligence profile based self-assessment and peer assessment are respectively 69.38; and 64.08. As for interpersonal intelligence for self-assessment instrument is 73 and the peer assessment is 60.23.

  3. The bench vs. the blackboard: learning to teach during graduate school.

    PubMed

    Ciaccia, Laura

    2011-09-01

    Many science, technology, engineering, and mathematics (STEM) graduate students travel through the academic career pipeline without ever learning how to teach effectively, an oversight that negatively affects the quality of undergraduate science education and cheats trainees of valuable professional development. This article argues that all STEM graduate students and postdoctoral fellows should undergo training in teaching to strengthen their resumes, polish their oral presentation skills, and improve STEM teaching at the undergraduate level. Though this may seem like a large undertaking, the author outlines a three-step process that allows busy scientists to fit pedagogical training into their research schedules in order to make a significant investment both in their academic career and in the continuing improvement of science education. Copyright © 2011.

  4. Middle School Engagement with Mathematics Software and Later Interest and Self-Efficacy for STEM Careers

    NASA Astrophysics Data System (ADS)

    Ocumpaugh, Jaclyn; San Pedro, Maria Ofelia; Lai, Huei-yi; Baker, Ryan S.; Borgen, Fred

    2016-12-01

    Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student's vocational self-efficacy and interest are related to his or her middle school behavioral and affective engagement. Measures of vocational self-efficacy and interest are drawn from STEM-related scales in CAPAExplore, while measures of middle school performance and engagement in mathematics are drawn from several previously validated automated indicators extracted from logs of student interaction with ASSISTments, an online learning platform. Results indicate that vocational self-efficacy correlates negatively with confusion, but positively with engaged concentration and carelessness. Interest, which also correlates negatively with confusion, correlates positively with correctness and carelessness. Other disengaged behaviors, such as gaming the system, were not correlated with vocational self-efficacy or interest, despite previous studies indicating that they are associated with future college attendance. We discuss implications for these findings, which have the potential to assist educators or counselors in developing strategies to sustain students' interest in STEM-related careers.

  5. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    NASA Astrophysics Data System (ADS)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its programmes to schools and organisations in their particular areas, mainly through the STEM Ambassador Programme (see below) and the Schools STEM Advisory Network.In support of its vision - `To increase young people's choice and chances through science, technology, engineering, and mathematics ' - STEMNET seeks to be a recognised leader in enabling all young people to achieve their potential in STEM by:

  6. Problem-Based Learning and Assessment in Hydrology Courses: Can Non-Traditional Assessment Better Reflect Intended Learning Outcomes?

    ERIC Educational Resources Information Center

    Lyon, Steve W.; Teutschbein, Claudia

    2011-01-01

    Hydrology has at its core a focus on real-world applications and problems stemming from the importance of water for society and natural systems. While hydrology is firmly founded in traditional "hard" sciences like physics and mathematics, much of the innovation and excitement in current and future research-oriented hydrology comes…

  7. Studying Teachers' Degree of Classroom Implementation, Teachers' Implementation Practices, and Students' Learning as Outcomes of K-12 STEM Professional Development

    ERIC Educational Resources Information Center

    Lin, Peiyi

    2013-01-01

    With a growing demand for an enhanced K-12 education for strengthening students' conceptual learning, interest, and career awareness in science, technology, engineering, and mathematics, teacher professional development projects have been viewed as an efficient approach. However, a variety of external and teacher factors may prevent such projects…

  8. Small group gender ratios impact biology class performance and peer evaluations.

    PubMed

    Sullivan, Lauren L; Ballen, Cissy J; Cotner, Sehoya

    2018-01-01

    Women are underrepresented in science, technology, engineering, and mathematics (STEM) disciplines. Evidence suggests the microclimate of the classroom is an important factor influencing female course grades and interest, which encourages retention of women in STEM fields. Here, we test whether the gender composition of small (8-9 person) learning groups impacts course performance, sense of social belonging, and intragroup peer evaluations of intellectual contributions. Across two undergraduate active learning courses in introductory biology, we manipulated the classroom microclimate by varying the gender ratios of learning groups, ranging from 0% female to 100% female. We found that as the percent of women in groups increased, so did overall course performance for all students, regardless of gender. Additionally, women assigned higher peer- evaluations in groups with more women than groups with less women. Our work demonstrates an added benefit of the retention of women in STEM: increased performance for all, and positive peer perceptions for women.

  9. Grounded and embodied mathematical cognition: Promoting mathematical insight and proof using action and language.

    PubMed

    Nathan, Mitchell J; Walkington, Candace

    2017-01-01

    We develop a theory of grounded and embodied mathematical cognition (GEMC) that draws on action-cognition transduction for advancing understanding of how the body can support mathematical reasoning. GEMC proposes that participants' actions serve as inputs capable of driving the cognition-action system toward associated cognitive states. This occurs through a process of transduction that promotes valuable mathematical insights by eliciting dynamic depictive gestures that enact spatio-temporal properties of mathematical entities. Our focus here is on pre-college geometry proof production. GEMC suggests that action alone can foster insight but is insufficient for valid proof production if action is not coordinated with language systems for propositionalizing general properties of objects and space. GEMC guides the design of a video game-based learning environment intended to promote students' mathematical insights and informal proofs by eliciting dynamic gestures through in-game directed actions. GEMC generates several hypotheses that contribute to theories of embodied cognition and to the design of science, technology, engineering, and mathematics (STEM) education interventions. Pilot study results with a prototype video game tentatively support theory-based predictions regarding the role of dynamic gestures for fostering insight and proof-with-insight, and for the role of action coupled with language to promote proof-with-insight. But the pilot yields mixed results for deriving in-game interventions intended to elicit dynamic gesture production. Although our central purpose is an explication of GEMC theory and the role of action-cognition transduction, the theory-based video game design reveals the potential of GEMC to improve STEM education, and highlights the complex challenges of connecting embodiment research to education practices and learning environment design.

  10. Creating Next Generation Teacher Preparation Programs to Support Implementation of the Next Generation Science Standards and Common Core State Standards in K-12 Schools: An Opportunity for the Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Egger, A. E.; Julin, S.; Ronca, R.; Vokos, S.; Ebert, E.; Clark-Blickenstaff, J.; Nollmeyer, G.

    2015-12-01

    A consortium of two and four year Washington State Colleges and Universities in partnership with Washington's Office of the Superintendent of Public Instruction (OSPI), the Teachers of Teachers of Science, and Teachers of Teachers of Mathematics, and other key stakeholders, is currently working to improve science and mathematics learning for all Washington State students by creating a new vision for STEM teacher preparation in Washington State aligned with the Next Generation Science Standards (NGSS) and the Common Core State Standards (CCSS) in Mathematics and Language Arts. Specific objectives include: (1) strengthening elementary and secondary STEM Teacher Preparation courses and curricula, (2) alignment of STEM teacher preparation programs across Washington State with the NGSS and CCSS, (3) development of action plans to support implementation of STEM Teacher Preparation program improvement at Higher Education Institutions (HEIs) across the state, (4) stronger collaborations between HEIs, K-12 schools, government agencies, Non-Governmental Organizations, and STEM businesses, involved in the preparation of preservice STEM teachers, (5) new teacher endorsements in Computer Science and Engineering, and (6) development of a proto-type model for rapid, adaptable, and continuous improvement of STEM teacher preparation programs. A 2015 NGSS gap analysis of teacher preparation programs across Washington State indicates relatively good alignment of courses and curricula with NGSS Disciplinary Core Ideas and Scientific practices, but minimal alignment with NGSS Engineering practices and Cross Cutting Concepts. Likewise, Computer Science and Sustainability ideas and practices are not well represented in current courses and curricula. During the coming year teams of STEM faculty, education faculty and administrators will work collaboratively to develop unique action plans for aligning and improving STEM teacher preparation courses and curricula at their institutions.

  11. Integrative Approach for a Transformative Freshman-Level STEM Curriculum

    PubMed Central

    Curran, Kathleen L.; Olsen, Paul E.; Nwogbaga, Agashi P.; Stotts, Stephanie

    2016-01-01

    In 2014 Wesley College adopted a unified undergraduate program of evidence-based high-impact teaching practices. Through foundation and federal and state grant support, the college completely revised its academic core curriculum and strengthened its academic support structures by including a comprehensive early alert system for at-risk students. In this core, science, technology, engineering, and mathematics (STEM) faculty developed fresh manifestations of integrated concept-based introductory courses and revised upper-division STEM courses around student-centered learning. STEM majors can participate in specifically designed paid undergraduate research experiences in directed research elective courses. Such a college-wide multi-tiered approach results in institutional cultural change. PMID:27064213

  12. WebGURU: The Web-Based Guide to Research for Undergraduates

    ERIC Educational Resources Information Center

    Mabrouk, Patricia; McIntyre, Ryan; Virrankoski, Milena; Jeliffe, Kirsten

    2007-01-01

    Undergraduate research (UR) is widely promoted by faculty, administrators, institutions of higher learning, government laboratories, private industry, professional associations, and funding agencies as an effective method of training college students pursuing careers in science, technology, engineering, and mathematics (STEM) disciplines at…

  13. Relationships between High School Chemistry Students' Perceptions of a Constructivist Learning Environment and their STEM Career Expectations

    NASA Astrophysics Data System (ADS)

    Wild, Andrew

    2015-09-01

    Considerable attention has been devoted to factors affecting the persistence of women and historically underrepresented ethnic groups in their science education trajectories. The literature has focused more on structural factors that affect longitudinal outcomes rather than classroom experiences. This exploratory survey study described relationships among high school chemistry students' perceptions of a constructivist learning environment (CLE) and STEM career expectations. The sample included 693 students from 7 public high schools within the San Francisco Bay Area. Students' perceptions of a CLE predicted their expectations of entering a science career, but not engineering, computer, health, or mathematics-related careers. When all groups of students perceived the learning environment as more constructivist, they were more likely to expect science careers.

  14. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    PubMed

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Beliefs and Attitudes about Science and Mathematics in Pre-Service Elementary Teachers, STEM, and Non-STEM Majors in Undergraduate Physics Courses

    NASA Astrophysics Data System (ADS)

    Michaluk, Lynnette; Stoiko, Rachel; Stewart, Gay; Stewart, John

    2018-04-01

    Elementary teachers often hold inaccurate beliefs about the Nature of Science (NoS) and have negative attitudes toward science and mathematics. Using a pre-post design, the current study examined beliefs about the NoS, attitudes toward science and mathematics, and beliefs about the teaching of mathematics and science in a large sample study ( N = 343) of pre-service teachers receiving a curriculum-wide intervention to improve these factors in comparison with Science, Technology, Engineering, and Mathematics (STEM) and non-STEM majors in other physics courses ( N = 6697) who did not receive the intervention, over a 10-year period. Pre-service teachers evidenced initially more negative attitudes about mathematics and science than STEM majors and slightly more positive attitudes than non-STEM majors. Their attitudes toward mathematics and science and beliefs about the NoS were more similar to non-STEM than STEM majors. Pre-service teachers initially evidenced more positive beliefs about the teaching of mathematics and science, and their beliefs even increased slightly over the course of the semester, while these beliefs in other groups remained the same. Beliefs about the NoS and the teaching of mathematics and science were significantly negatively correlated for STEM and non-STEM majors, but were not significantly correlated for pre-service teachers. Beliefs about the NoS and attitudes toward mathematics and science were significantly positively correlated for both pre-service teachers and STEM students pursing the most mathematically demanding STEM majors. Attitudes toward science and mathematics were significantly positively correlated with accurate beliefs about the teaching of mathematics and science for all student groups.

  16. Hispanic students' mathematics achievement in the context of their high school types as STEM and non-STEM schools

    NASA Astrophysics Data System (ADS)

    Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.

    2018-07-01

    The purpose of this paper is to demonstrate Hispanic students' mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students' mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies and 14 of which were matched non-STEM schools, were included in this study. A hierarchical linear modelling method was conducted. The result of the present study revealed that there was no difference in Hispanic students' mathematics achievement growth rate in T-STEM academies compared to Hispanic students' mathematics achievement growth rate in comparison schools. However, in terms of gender, the results indicated that female Hispanic students in T-STEM academies outperformed female Hispanic students in comparison schools in their mathematics growth rate.

  17. Building an Undergraduate STEM Team Using Team-Based Learning Leading to the Production of a Storyboard Appropriate for Elementary Students

    ERIC Educational Resources Information Center

    Cutright, Teresa J.; Evans, Edward; Brantner, Justin S.

    2014-01-01

    A unique undergraduate team that spans five different engineering disciplines, chemistry, biology, and mathematics was formed. The team was formed to promote cross-disciplinary learning, to improve retention, and to prepare the students for the kind of problems they will face in their careers. This paper describes the variety of activities used…

  18. Department of Defense Science, Technology, Engineering, and Mathematics (STEM) Education Workshop on Computing Education

    DTIC Science & Technology

    2010-10-18

    August 2010 was building the right game “ – World of Warcraft has 30% women (according to womengamers.com) Conclusion: – We don’t really understand why...Report of the National Academies on Informal Learning • Infancy - late adulthood: Learn about the world & develop important skills for science...Education With Rigor and Vigor – Excitement, interest, and motivation to learn about phenomena in the natural and physical world . – Generate

  19. Perceptions of Constructivist Pedagogy in Project Lead the Way

    NASA Astrophysics Data System (ADS)

    Capers, Gesa Maria

    In 2016, six of six American Nobel Prize winners in science were immigrants. The numbers of U.S. educated graduates who enter the Science, Technology, Engineering, and Mathematics (STEM) fields have been on the decline, and policymakers and educators have continually sought new policies and programs to try resolve this problem with long-term solutions. In recent years, several Alabama schools have implemented Project Lead the Way (PLTW), a program that is aimed toward promoting students' interest in STEM. The purpose of this qualitative multiple case study was to explore how Alabama's educators perceived the use of constructivist pedagogy in PLTW on student learning behaviors and student interests in science and mathematics. Piaget's developmental theory and Vygotsky's social developmental theory provided the theoretical framework for this study. The data collection procedure for this multiple case study included one-on-one interviews with 23 educators in four Alabama PLTW schools. Themes that emerged from the study included motivation and enthusiasm, critical thinking and problem solving, career awareness, student interest in science and math, collaboration, hands-on learning, confidence and engagement, perceived problems, and satisfaction with PLTW. All interviewees perceived that with PLTW's emphasis on constructivist pedagogy, students were excited, engaged, practiced critical thinking and problem solving skills, and that participation in PLTW had a positive effect on the students' learning behaviors and interests in science and mathematics.

  20. Strengthening STEM performance and persistence: Influence of undergraduate teaching assistants on entry-level STEM students

    NASA Astrophysics Data System (ADS)

    Philipp, Stephanie B.

    Increasing retention of students in science, technology, engineering, or mathematics (STEM) programs of study is a priority for many colleges and universities. This study examines an undergraduate teaching assistant (UTA) program implemented in a general chemistry course for STEM majors to provide peer learning assistance to entrylevel students. This study measured the content knowledge growth of UTAs compared to traditional graduate teaching assistants (GTAs) over the semester, and described the development of peer learning assistance skills of the UTAs as an outcome of semesterlong training and support from both science education and STEM faculty. Impact of the UTA program on final exam grades, persistence of students to enroll in the next chemistry course required by their intended major, and STEM identity of students were estimated. The study sample comprised 284 students in 14 general chemistry recitation sections led by six UTAs and 310 students in 15 general chemistry recitation sections led by three traditional GTAs for comparison. Results suggested that both UTAs and GTAs made significant learning gains in general chemistry content knowledge, and there was no significant difference in content knowledge between UTA and GTA groups. Student evaluations, researcher observations, and chemistry faculty comments confirm UTAs were using the learning strategies discussed in the semester-long training program. UTA-led students rated their TAs significantly higher in teaching quality and student care and encouragement, which correlated with stronger STEM recognition by those students. The results of hierarchical linear model (HLM) analysis showed little variance in final exam grades explained by section-level variables; most variance was explained by student-level variables: mathematics ACT score, college GPA, and intention to enroll in the next general chemistry course. Students having higher college GPAs were helped more by having a UTA. Results from logistic regression of persistence outcome variable showed that students are three times more likely to persist to CHEM 202 if they had a UTA in CHEM 201. Other positive predictors of retention included having strong college grades, and having strong ACT math scores. Coupled with HLM analysis result that UTAs were more effective at helping students with higher college GPAs achieve higher grades, the stronger persistence of UTA-led students showed that the UTA program is an effective program for retention of introductory-level students in STEM majors.

  1. The Thinking Body in/of Multimodal Engineering Literacy

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2017-01-01

    Studies show that engineering is particularly suited for students traditionally experiencing difficulties in science, technology, engineering, and mathematics (STEM) subjects--including those marked learning disabled--because it supports literacy in its different manifestations (i.e., across modes). This article addresses this topic, building on…

  2. Technology Education Teacher Supply and Demand--A Critical Situation

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics…

  3. Social and Environmental Justice in the Chemistry Classroom

    ERIC Educational Resources Information Center

    Lasker, Grace A.; Mellor, Karolina E.; Mullins, Melissa L.; Nesmith, Suzanne M.; Simcox, Nancy J.

    2017-01-01

    Despite advances in active learning pedagogy and other methods designed to increase student engagement in the chemistry classroom, retention and engagement issues still persist, particularly with respect to women and minorities underrepresented in STEM (science, technology, engineering, and mathematics) programs. Relevancy also remains elusive in…

  4. Grounded understanding of abstract concepts: The case of STEM learning.

    PubMed

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  5. Hispanic Students' Mathematics Achievement in the Context of Their High School Types as STEM and Non-STEM Schools

    ERIC Educational Resources Information Center

    Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.

    2018-01-01

    The purpose of this paper is to demonstrate Hispanic students' mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students' mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies…

  6. Federal STEM Policy and Politics and Their Impact on Astronomy EPO: Reflections and Provocations

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Storksdieck, M.; Canright, S.

    2015-11-01

    The federal government invests more than $3 billion each year across its various units in supporting STEM education and outreach. Efforts in recent years to understand and better coordinate these investments have resulted in considerable pushback, particularly those efforts that aimed at consolidation and elimination of programs deemed ineffective or duplicative. While initial plans to streamline federal STEM education were defeated, many agencies nonetheless saw cuts and elimination, and a high-level effort to coordinate STEM education at the cross-agency level is now gaining steam (CoSTEM: Committee on Science, Technology, Engineering, and Mathematics Education). What do all of these developments mean for education and public outreach in astronomy and related fields? How should this community operate within the opportunities and threats that CoSTEM might pose? Former director of the National Academy of Science's Board on Science Education, and now director of the Center for Research on Lifelong STEM Learning, Martin Storksdieck, reflected on past and recent developments from the perspective of a close observer, and from the perspective of someone who has been involved in astronomy education research and evaluation for nearly 20 years. Shelley Canright, Senior Advisor for Education Integration at the NASA Office of Education, shared her insights and perspectives with respect to CoSTEM and EPO, in particular from co-chairing the Federal Coordination in Science, Technology, Engineering, and Mathematics Education (FC-STEM) group.

  7. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    Belichesky, Jennifer

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational Living Learning Community (LLC) model on female persistence. This study employed a mixed-methods approach that was grounded in standpoint methodology. The qualitative data were collected through focus groups and one-on-one interviews with the female participants and was analyzed through a critical feminist lens utilizing standpoint methodology and coded utilizing inductive analysis. The quantitative data were collected and analyzed utilizing a simple statistical analysis of key academic variables indicative of student success: cumulative high school GPAs, SAT scores, first year cumulative GPAs, freshman persistence patterns in the intended major, and freshman retention patterns at the university. The findings of this study illustrated that the co-educational LLC model created an inclusive academic and social environment that positively impacted the female participants' experiences and persistence in STEM. The findings also found the inclusion of men in the community aided in the demystification of male superiority in the sciences for the female participants. This study also highlighted the significance of social identity in the decision making process to join a science LLC.

  8. Integrating Rapid Prototyping into Graphic Communications

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  9. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    ERIC Educational Resources Information Center

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  10. This Act of Cultural Vandalism

    ERIC Educational Resources Information Center

    Cushman, Mike

    2010-01-01

    Science, technology, engineering and mathematics are vital areas of learning and research. The loss of physics, chemistry and engineering departments in many British universities has been pitiful to observe. But the recent announcement of funding for universities highlights the disastrous effects of the decision to prioritise these "STEM"…

  11. Evaluating Discipline-Based Education Research for Promotion and Tenure

    ERIC Educational Resources Information Center

    Dolan, Erin L.; Elliott, Samantha L.; Henderson, Charles; Curran-Everett, Douglas; St. John, Kristen; Ortiz, Phillip A.

    2018-01-01

    Discipline-based education research (DBER) is an emergent, interdisciplinary field of scholarship aimed at understanding and improving discipline-specific teaching and learning. The number of DBER faculty members in science, technology, engineering, and mathematics (STEM) departments has grown rapidly in recent years. Because the interdisciplinary…

  12. Program Development for Disadvantaged High-Ability Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon; Cross, Jennifer; Cross, Tracy

    2017-01-01

    Examining lessons learned through 4 years of experience of hosting Camp Launch, a university-based residential science, technology, engineering, and mathematics (STEM) enrichment program for low-income, high-ability, middle school students, this article explores components of the program and offers suggestions for implementing programs that serve…

  13. Recommendations to Support Computational Thinking in the Elementary Classroom

    ERIC Educational Resources Information Center

    Estapa, Anne; Hutchison, Amy; Nadolny, Larysa

    2018-01-01

    Computational thinking is an important and necessary way of thinking for computer programmers and other professionals in science, technology, engineering, and mathematics (STEM). Research on emerging practices around computational thinking that is developed through coding initiatives in schools reports that elementary children typically learn how…

  14. Acquisition and Retention of STEM Concepts through Inquiry Based Learning

    NASA Astrophysics Data System (ADS)

    Lombardi, Candice

    This study explores the integration of STEM (science, technology, engineering, and mathematics) concepts through inquiry based learning. Students are exposed to a constructivist style learning environment where they create understanding for themselves. This way of learning lets students plan and justify their ideas and beliefs while discussing and examining the ideas of their classmates. Students are engaged in solving a scientific problem in a meaningful, inquiry-based manner through hypothesis testing, experimentation, and investigation. This mode of learning introduces students to real life, authentic science experiences within the confines of a typical classroom. The focus of the unit is for the students to create connections and understanding about geography and the globe in order to ultimately identify the exact latitude and longitude of 10 mystery sites. The students learn about latitude and longitude and apply their knowledge through a set of clues to determine where their Mystery Class is located. Journey North provides an internationally accessed game of hide-and-seek called Mystery Class Seasons Challenge. Throughout this challenge, over the course of eleven weeks, students will record, graph, interpret and analysis data and research to ultimate identify the location of ten mystery locations. Students will track seasonal changes in sunlight while investigating, examining and researching clues to find these ten secret sites around the world. My research was done to prove the success of students' ability to learn new mathematics, science, technology and engineering concepts through inquiry based design.

  15. Designing an American Sign Language Avatar for Learning Computer Science Concepts for Deaf or Hard-of-Hearing Students and Deaf Interpreters

    ERIC Educational Resources Information Center

    Andrei, Stefan; Osborne, Lawrence; Smith, Zanthia

    2013-01-01

    The current learning process of Deaf or Hard of Hearing (D/HH) students taking Science, Technology, Engineering, and Mathematics (STEM) courses needs, in general, a sign interpreter for the translation of English text into American Sign Language (ASL) signs. This method is at best impractical due to the lack of availability of a specialized sign…

  16. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    PubMed Central

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors. PMID:27810872

  17. Project Kaleidoscope: Advancing What Works in Undergraduate STEM Education

    NASA Astrophysics Data System (ADS)

    Elrod, S.

    2011-12-01

    In 1989, Project Kaleidoscope (PKAL) published its first report, What Works: Building Natural Science Communities, on reforming undergraduate STEM (science, technology, engineering and mathematics) education. Since then, PKAL has grown into a national organization comprised of a diverse group of over 6500 STEM educators who are committed to advancing "what works." The PKAL mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics). Specifically, PKAL's strategic goals are to: 1) Promote the development and wider use of evidence-based teaching, learning and assessment approaches, 2) Build individual and organizational capacity to lead change in STEM education, and 3) Engage the broader community of external stakeholders - professional and disciplinary societies, business and industry groups, accreditation organizations, educational associations, governmental agencies, philanthropic organizations - in achieving our mission. PKAL achieves these goals by serving as the nexus of an interconnected and multidisciplinary web of people, ideas, strategies, evidence and resources focused on systemic change in undergraduate STEM education. PKAL also provides resources on critical issues, such as teaching using pedagogies of engagement, and engages interested faculty, campuses and professional societies in national projects and programs focused on cutting edge issues in STEM education. One of these projects - Mobilizing Disciplinary Societies for a Sustainable Future - is engaging eleven disciplinary societies, including the National Association of Geoscience Teachers, in defining specific resources, faculty development programs and goals focused on promoting undergraduate STEM courses that: 1) provide more knowledge about real-world issues; 2) connect these real-world issues to the concepts of sustainability; 3) offer students opportunities to analyze and implement choices that can help solve societal problems so they are better able to act on their choices both immediately and as future citizens and professionals. PKAL has also been offering leadership institutes for STEM faculty members to develop their knowledge and skills as change agents who have the capacity to lead educational reform at their institutions. Since 1996, over 200 faculty members from across the STEM disciplines have attended the institutes. An analysis of leadership alumni indicates that nearly 40% have moved on to administrative leadership positions. Alumni of these institutes are now leading regional STEM reform networks in five locations around the U.S. Since 2007, PKAL networks have engaged nearly 650 STEM faculty and campus leaders from over 100 diverse institutions in professional development workshops focused on STEM reform teaching and learning to effect a wider reach of STEM education transformation on campuses where it matters most. Network expertise and resources are disseminated on PKAL's website and national meetings. These programs illustrate PKAL's efforts to build community and disseminate resources that have a national impact on advancing undergraduate STEM teaching, learning and success for all students.

  18. Pursuit of stem enrollment in high school and higher education for Latino and Caucasian students with disabilities

    NASA Astrophysics Data System (ADS)

    White, Laurel Ann

    This study examined course enrollments for female and male Latino and Caucasian students with disabilities (SWD) in Science, Technology, Engineering, and Math (STEM) to establish baseline data in one region of the state of Washington. The study analyzed five academic years of STEM course enrollment in one high school Career and Technical Education (CTE) program and one comprehensive community college. The study uncovered the following findings: (a) Latino and Caucasian SWD STEM enrollment percentages were not significantly different in the high school CTE program, but were significantly different in the STEM program in the comprehensive community college; (b) more females enrolled in Science and males in Engineering than anticipated, (c) Mathematics had the smallest enrollment pattern by ethnicity and gender in both settings, and (d) more males than females enrolled in Technology courses in the comprehensive community college. This research suggests the use of universal design of learning, theory of mind, and the ecological learning theory to encourage STEM enrollment for students with disabilities. Keywords: Career and Technical Education (CTE), Caucasian, comprehensive community college, disability, enrollment, female, high school, Latino, male, STEM, student enrollment, and students with disabilities.

  19. Small group gender ratios impact biology class performance and peer evaluations

    PubMed Central

    Cotner, Sehoya

    2018-01-01

    Women are underrepresented in science, technology, engineering, and mathematics (STEM) disciplines. Evidence suggests the microclimate of the classroom is an important factor influencing female course grades and interest, which encourages retention of women in STEM fields. Here, we test whether the gender composition of small (8–9 person) learning groups impacts course performance, sense of social belonging, and intragroup peer evaluations of intellectual contributions. Across two undergraduate active learning courses in introductory biology, we manipulated the classroom microclimate by varying the gender ratios of learning groups, ranging from 0% female to 100% female. We found that as the percent of women in groups increased, so did overall course performance for all students, regardless of gender. Additionally, women assigned higher peer- evaluations in groups with more women than groups with less women. Our work demonstrates an added benefit of the retention of women in STEM: increased performance for all, and positive peer perceptions for women. PMID:29614091

  20. Geoscience Education Research, Development, and Practice at Arizona State University

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional development for STEM teachers; Design and evaluation of innovative transdisciplinary and online curricula; and Visitor cognition of geologic time and basic principles in Southwestern National Parks.

  1. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning

    ERIC Educational Resources Information Center

    Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning…

  2. Gifted & Green: Sustainability/Environmental Science Investigations That Promote Gifted Children's Learning

    ERIC Educational Resources Information Center

    Schroth, Stephen T.; Helfer, Jason A.

    2017-01-01

    Environmental studies provide an ideal opportunity for gifted children of any age to build critical and creative-thinking skills while also building skills in science, technology, engineering, and mathematics (STEM) areas. Exploring issues related to sustainability and environmental concerns permits gifted learners to identify problems, develop…

  3. External Feedback for Educational Research: What Should We Ask?

    ERIC Educational Resources Information Center

    Sutton, John T.; Mitchell, Arlene; Callow-Heusser, Catherine; Culbertson, Michael J.; Espel, Emma; Weston-Sementelli, Jennifer

    2016-01-01

    This paper provides insights into the evaluation of educational research in order to strengthen research projects and increase the quality of evidence about what works to improve student learning from the lens of science, technology, engineering, and mathematics (STEM) education. In particular, TEAMS hopes this publication will increase the…

  4. Science Learning Centres Roundup

    ERIC Educational Resources Information Center

    Baker, Yvonne

    2013-01-01

    A recent YouGov poll indicated that almost half of eight to 18-year-olds aspire to a career in science. The latest Association of Colleges enrolment survey indicates a large increase in uptake of science, technology, engineering and mathematics (STEM) at further education (FE) colleges. These reports, along with other findings that suggest an…

  5. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    ERIC Educational Resources Information Center

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…

  6. Successful STEM Education: A Workshop Summary

    ERIC Educational Resources Information Center

    Beatty, Alexandra

    2011-01-01

    What students learn about the science disciplines, technology, engineering, and mathematics during their K-12 schooling shapes their intellectual development, opportunities for future study and work, and choices of career, as well as their capacity to make informed decisions about political and civic issues and about their own lives. Most people…

  7. HTA educational outreach program and change the equation participation

    NASA Astrophysics Data System (ADS)

    Gordon, Robert

    2013-05-01

    In this presentation, Hitachi High Technologies America (HTA) introduces its Educational Outreach Program and explains it's involvement with Change The Equation (CTEq), a nonprofit, nonpartisan, CEO-led initiative that is mobilizing the business community to improve the quality of science, technology, engineering and mathematics (STEM) learning in the United States.

  8. Physics First: Impact on SAT Math Scores

    ERIC Educational Resources Information Center

    Bouma, Craig E.

    2013-01-01

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…

  9. Student Learning and Perceptions in a Flipped Linear Algebra Course

    ERIC Educational Resources Information Center

    Love, Betty; Hodge, Angie; Grandgenett, Neal; Swift, Andrew W.

    2014-01-01

    The traditional lecture style of teaching has long been the norm in college science, technology, engineering, and mathematics (STEM) courses, but an innovative teaching model, facilitated by recent advances in technology, is gaining popularity across college campuses. This new model inverts or "flips" the usual classroom paradigm, in…

  10. Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change

    ERIC Educational Resources Information Center

    McCright, Aaron M.

    2012-01-01

    Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…

  11. Learning, Teaching and Scholarship: Fundamental Tensions of Undergraduate Research

    ERIC Educational Resources Information Center

    Laursen, Sandra; Seymour, Elaine; Hunter, Anne-Barrie

    2012-01-01

    Each year, thousands of undergraduates in the science, technology, engineering, and mathematics (STEM) fields conduct research in US university and college laboratories. Such undergraduate research (UR) experiences are common practice in US higher education, with nearly a century of history at research universities and liberal arts colleges.…

  12. "Now" We Have an App for That

    ERIC Educational Resources Information Center

    Schaen, Richard J.; Hayden, Garry; Zydney, Janet M.

    2016-01-01

    The best Science, Technology, Engineering, and Mathematics (STEM) design challenges are student centered, with students themselves making the key decisions. But with young children who are still learning basic academic and social skills, implementing projects where they truly take the lead can be quite challenging. To give students at one…

  13. Students Learn Programming Faster through Robotic Simulation

    ERIC Educational Resources Information Center

    Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin

    2013-01-01

    Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…

  14. The Diagnosis Dilemma: Dyslexia and Visual-Spatial Ability

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna; Zambrzycka, Joanna; Makosz, Samantha; Asdrubolini, Emma; Babic, Jovana; Best, Olivia; Bines, Tara; Cook, Samantha; Farrell, Natalie; Gisondi, Victoria; Scott, Meghan; Siderius, Christina; Smith, Dyoni

    2017-01-01

    Visual-spatial ability is important for mathematics learning but also for future STEM participation. Some studies report children with dyslexia have superior visual-spatial skills and other studies report a deficit. We sought to further explore the relationship between children formally identified as having dyslexia and visual-spatial ability.…

  15. Approaching Undergraduate Research with Students Who Are Deaf and Hard-of-Hearing

    ERIC Educational Resources Information Center

    Gehret, Austin U.; Trussell, Jessica W.; Michel, Lea V.

    2017-01-01

    An undergraduate research experience can provide a unique opportunity for students to learn and grow as scientists; when positive, this experience is often transformative and motivates students to pursue science, technology, engineering and mathematics (STEM) graduate degrees or careers. Conversely, negative research experiences can sour a…

  16. The Factors That Affect Science Teachers' Participation in Professional Development

    ERIC Educational Resources Information Center

    Roux, Judi Ann

    2013-01-01

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science…

  17. Mathematical Modeling: A Bridge to STEM Education

    ERIC Educational Resources Information Center

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…

  18. Writing-to-learn in undergraduate science education: a community-based, conceptually driven approach.

    PubMed

    Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.

  19. Learning mathematics in two dimensions: a review and look ahead at teaching and learning early childhood mathematics with children's literature.

    PubMed

    Flevares, Lucia M; Schiff, Jamie R

    2014-01-01

    In the past 25 years an identifiable interest in using children's literature in mathematics learning emerged (Clyne and Griffiths, 1991; Welchman-Tischler, 1992; Hong, 1996; Hellwig etal., 2000; Haury, 2001). We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children's mathematics learning and interest have been documented (Hong, 1996; O'Neill etal., 2004; Young-Loveridge, 2004). For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children's understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (van den Heuvel-Panhuizen and van den Boogaard, 2008; Skoumpourdi and Mpakopoulou, 2011) and shapes as gestalt wholes or prototypes (van Hiele, 1986; Clements etal., 1999; Hannibal, 1999). We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000), Schiro (1997), Hunsader (2004), and van den Heuvel-Panhuizen and Elia (2012). Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Clements and Sarama, 2000; Chard etal., 2008) which lead to misconceptions (Oberdorf and Taylor-Cox, 1999; Inan and Dogan-Temur, 2010). Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children's literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children's books in mathematics activities and for teacher training.

  20. Implementation of STEAM Education to Improve Mastery Concept

    NASA Astrophysics Data System (ADS)

    Liliawati, W.; Rusnayati, H.; Purwanto; Aristantia, G.

    2018-01-01

    Science Technology Engineering, Art, Mathematics (STEAM) is an integration of art into Science Technology Engineering, Mathematics (STEM). Connecting art to science makes learning more effective and innovative. This study aims to determine the increase in mastery of the concept of high school students after the application of STEAM education in learning with the theme of Water and Us. The research method used is one group Pretest-posttest design with students of class VII (n = 37) junior high school. The instrument used in the form of question of mastery of concepts in the form of multiple choices amounted to 20 questions and observation sheet of learning implementation. The results of the study show that there is an increase in conceptualization on the theme of Water and Us which is categorized as medium (=0, 46) after the application of the STEAM approach. The conclusion obtained that by applying STEAM approach in learning can improve the mastery of concept

  1. After-school enrichment and the activity theory: How can a management service organization assist schools with reducing the achievement gap among minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours?

    NASA Astrophysics Data System (ADS)

    Flowers, Reagan D.

    The primary purpose of this study was to investigate how a management service organization can assist schools with reducing the achievement gap between minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours. Developing a strategic plan through creating a program that provides support services for the implementation of hands-on activities in STEM for children during the after-school hours was central to this purpose. This Project Demonstrating Excellence (PDE), a social action project, also presents historical and current after-school program developments in the nation. The study is quantitative and qualitative in nature. Surveys were utilized to quantitatively capture the opinions of participants in the social action project on three specific education related issues: (1) disparity in academic motivation of students to participate in after-school STEM enrichment programs; (2) whether teachers and school administrators saw a need for STEM after-school enrichment; and (3) developing STEM after-school programs that were centered on problem-solving and higher-order thinking skills to develop students' interest in STEM careers. The sample consisted of 50 participants comprised of students, teachers, and administrators. The focus groups and interviews provided the qualitative data for the study. The qualitative sample consisted of 14 participants comprised of students, parents and teachers, administrators, an education consultant, and a corporate sponsor. The empirical data obtained from the study survey, focus groups, and interviews provided a comprehensive profile on the current views and future expectations of STEM after-school enrichment, student and school needs, and community partnerships with STEM companies. Results of the study and review of the implementation of the social action project, C-STEM (communication, science, technology, engineering, and mathematics) Teacher and Student Support Services, Inc., revealed the need and focus for STEM after-school enrichment programs in Houston, Texas. This result, along with requirements of STEM Research and Special Programs Administrations and a multiyear and multilevel strategic plan inspired by this study, led to the conceptualization, development, and implementation of C-STEM Teacher and Student Support Services, Inc. at multiple schools in Houston, Texas. The purpose of C-STEM Teacher and Student Support Services, Inc. is to provide hands-on support services that encourage schools, organizations and families to improve academic achievement and socioemotional development through project-based learning in communication, science, technology, engineering, and mathematics (CSTEM) in grades 4-12.

  2. The Impact of STEM Outreach Programs in Addressing Teacher Efficacy and Broader Issues in STEM Education

    NASA Astrophysics Data System (ADS)

    Myszkal, Philip Ian

    This study explores the potential of the Outreach Workshops in STEM (OWS) to affect Science, Technology, Engineering, and Mathematics (STEM) teachers' content knowledge, self-efficacy, and pedagogical approaches, as well as its viability as a potential form of professional development (PD). The data for the thesis is taken from a larger longitudinal study looking at the potential of OWS to influence middle school students' and teachers' attitudes and beliefs around STEM. The study employs a mixed-methods design, utilizing surveys, open-ended questions, interviews, and observations. The findings show that there were no significant changes in teachers' content knowledge, confidence, or pedagogical approaches. However, the majority of participants reported that they learned new teaching ideas and considered the workshops to be an effective PD opportunity.

  3. Rethinking construction: inclusion of slow learners as taker-off in quantity surveying practice

    NASA Astrophysics Data System (ADS)

    Majid, Masidah Abdul; Ashaari, Norul Izzati M.; @ Suhana Kamarudin Nurul Aini Osman, Suhaida; Suhaimi, Mohamad Saifulnizam Mohd

    2017-11-01

    The objective of this paper is to present the preliminary findings regarding the participation of OKU with learning disability in Science Technology, Engineering and Mathematics (STEM) sectors. Review of the works of past researchers suggested that OKU is a potential workforce in STEM sectors but still under-represented due to lack of efforts from stakeholders and learning institutions in providing information on the opportunities that are available. A research has been initiated to explore the potential of slow learners to become workforce in the construction industry as a taker off - part of work of a Quantity Surveyor. Against the findings from the literature review, the modest attempt to attract slow learners to become taker off in the construction industry require the formulation of appropriate learning environment and strong support from the respective key players and stakeholders.

  4. Learning from our global competitors: A comparative analysis of science, technology, engineering and mathematics (STEM) education pipelines in the United States, Mainland China and Taiwan

    NASA Astrophysics Data System (ADS)

    Chow, Christina M.

    Maintaining a competitive edge within the 21st century is dependent on the cultivation of human capital, producing qualified and innovative employees capable of competing within the new global marketplace. Technological advancements in communications technology as well as large scale, infrastructure development has led to a leveled playing field where students in the U.S. will ultimately be competing for jobs with not only local, but also international, peers. Thus, the ability to understand and learn from our global competitors, starting with the examination of innovative education systems and best practice strategies, is tantamount to the economic development, and ultimate survival, of the U.S. as a whole. The purpose of this study was to investigate the current state of science, technology, engineering and mathematics (STEM) education and workforce pipelines in the U.S., China, and Taiwan. Two broad research questions examined STEM workforce production in terms of a) structural differences in primary and secondary school systems, including analysis of minimum high school graduation requirements and assessments as well as b) organizational differences in tertiary education and trends in STEM undergraduate and graduate degrees awarded in each region of interest. While each of the systems studied had their relative strengths and weaknesses, each of the Asian economies studied had valuable insights that can be categorized broadly in terms of STEM capacity, STEM interest and a greater understanding of global prospects that led to heightened STEM awareness. In China and Taiwan, STEM capacity was built via both traditional and vocational school systems. Focused and structured curriculum during the primary and early secondary school years built solid mathematics and science skills that translated into higher performance on international assessments and competitions. Differentiated secondary school options, including vocational high school and technical colleges and programs beginning shortly after junior high produced a greater number of alternatives for producing STEM capable students. A heightened interest in the STEM fields was built upon standardized academic core curriculum that ultimately yielded a greater percentage of qualified and interested Asian students pursuing bachelor's and advanced STEM degrees both in their native country and abroad. Rewards and incentives built into school systems, expansion of tertiary degree-granting programs, as well as the development of multiple university entrance pathways has served to heighten interest and perception of STEM careers as well as recruit top students into STEM fields. Further, foreign language classes, starting from either the first or third year of primary school, coupled with information technology and other experimental science and research themed classes, resulted in students who were more aware of global market demands. Analysis of longitudinal data shows that over a nine-year period, this combination of increased STEM capacity, interest and awareness resulted in a far greater percentage of 9th graders who eventually became STEM certificate, bachelor's, and advanced degree holders capable of competing in the global marketplace.

  5. Peer-Led Team Learning Helps Minority Students Succeed

    PubMed Central

    Snyder, Julia J.; Sloane, Jeremy D.; Dunk, Ryan D. P.; Wiles, Jason R.

    2016-01-01

    Active learning methods have been shown to be superior to traditional lecture in terms of student achievement, and our findings on the use of Peer-Led Team Learning (PLTL) concur. Students in our introductory biology course performed significantly better if they engaged in PLTL. There was also a drastic reduction in the failure rate for underrepresented minority (URM) students with PLTL, which further resulted in closing the achievement gap between URM and non-URM students. With such compelling findings, we strongly encourage the adoption of Peer-Led Team Learning in undergraduate Science, Technology, Engineering, and Mathematics (STEM) courses. PMID:26959826

  6. Peer-Led Team Learning Helps Minority Students Succeed.

    PubMed

    Snyder, Julia J; Sloane, Jeremy D; Dunk, Ryan D P; Wiles, Jason R

    2016-03-01

    Active learning methods have been shown to be superior to traditional lecture in terms of student achievement, and our findings on the use of Peer-Led Team Learning (PLTL) concur. Students in our introductory biology course performed significantly better if they engaged in PLTL. There was also a drastic reduction in the failure rate for underrepresented minority (URM) students with PLTL, which further resulted in closing the achievement gap between URM and non-URM students. With such compelling findings, we strongly encourage the adoption of Peer-Led Team Learning in undergraduate Science, Technology, Engineering, and Mathematics (STEM) courses.

  7. Pen-Enabled, Real-Time Student Engagement for Teaching in STEM Subjects

    ERIC Educational Resources Information Center

    Urban, Sylvia

    2017-01-01

    The introduction of pen-enabling devices has been demonstrated to increase a student's ability to solve problems, communicate, and learn during note taking. For the science, technology, engineering, and mathematics subjects that are considered to be symbolic in nature, pen interfaces are better suited for visual-spatial content and also provide a…

  8. Surveying the Landscape of Professional Development Research: Suggestions for New Perspectives in Design and Research

    ERIC Educational Resources Information Center

    Manduca, Cathryn A.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) higher education is in need of improved teaching methods to increase learning for all students. Faculty professional development programs are a widespread strategy for fostering this improvement. Studies of faculty development programs have focused on program design and the impact of…

  9. Co-Calculus: Integrating the Academic and the Social

    ERIC Educational Resources Information Center

    Reinholz, Daniel L.

    2017-01-01

    Being part of a cohesive learning community supports retention and success in early mathematics courses. Yet, large, unwelcoming lectures stand in opposition to this goal, isolating students and pushing them away from STEM. This paper offers a comparative analysis of three efforts to build community amongst students, all situated within a single…

  10. Impact of Instructor Teaching Style and Content Course on Mathematics Anxiety of Preservice Teachers

    ERIC Educational Resources Information Center

    Van der Sandt, Suriza; O'Brien, Steve

    2017-01-01

    Integrative-STEM methodologies entail integrating multiple disciplines with active design-centric teaching and learning methods. If math anxiety is prevalent, for teachers or students, then both the level of integration and design thinking may be limited. This quantitative study of 160 preservice teachers investigated how math anxiety was impacted…

  11. After-School Spaces: Looking for Learning in All the Right Places

    ERIC Educational Resources Information Center

    Schnittka, Christine G.; Evans, Michael A.; Won, Samantha G. L.; Drape, Tiffany A.

    2016-01-01

    After-school settings provide youth with homework support, social outlets and fun activities, and help build self-confidence. They are safe places for forming relationships with caring adults. More after-school settings are starting to integrate Science, Technology, Engineering, and Mathematics (STEM) topics. What science skills and concepts might…

  12. "Kahua A'o"--A Learning Foundation: Using Hawaiian Language Newspaper Articles for Earth Science Professional Development

    ERIC Educational Resources Information Center

    Chinn, Pauline W. U; Businger, Steven; Lance, Kelly; Ellinwood, Jason K.; Stone, J. Kapomaika'i; Spencer, Lindsey; McCoy, Floyd W.; Nogelmeier, M. Puakea; Rowland, Scott K.

    2014-01-01

    "Kahua A'o," a National Science Foundation Opportunities for Enhancing Diversity in the Geosciences project, seeks to prepare educators to address issues of underrepresentation of Native Hawaiian students in Earth and Space Science (ESS) and science, technology, engineering, and mathematics (STEM) fields. An interdisciplinary team…

  13. Culturally Relevant Science Instruction of K-8 Teachers of American Indian Children

    ERIC Educational Resources Information Center

    Cloud, Karen L.

    2017-01-01

    American Indian/Alaska Native students are at the bottom of educational achievement, particularly in science where few American Indians enter into science, technology, engineering, and mathematics (STEM) careers. To meet the needs of American Indian students, teachers must understand the sociocultural nature of learning as it relates to students'…

  14. A Pre-Engineering Program Using Robots to Attract Underrepresented High School and Community College Students

    ERIC Educational Resources Information Center

    Mosley, Pauline Helen; Liu, Yun; Hargrove, S. Keith; Doswell, Jayfus T.

    2010-01-01

    This paper gives an overview of a new pre-engineering program--Robotics Technician Curriculum--that uses robots to solicit underrepresented students pursuing careers in science, technology, engineering, and mathematics (STEM). The curriculum uses a project-based learning environment, which consists of part lecture and part laboratory. This program…

  15. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  16. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    NASA Astrophysics Data System (ADS)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self-efficacy for instructional strategies and a positive learning environment. It is correlated to GTA perception of teaching training and university GTA training. The K-12 teaching experience, GTA perception of teaching training, and facilitating factors in the departmental climate predict STEM GTA teaching self-efficacy. Hours of GTA training and supervision are fully mediated by perception of GTA training. Implications for research and training of STEM GTAs are discussed.

  17. STEM Education: What Does Mathematics Have to Offer?

    ERIC Educational Resources Information Center

    Fitzallen, Noleine

    2015-01-01

    The emphasis on science, technology, engineering, and mathematics (STEM) education in recent times could be perceived as business as usual or as an opportunity for innovation and change in mathematics classrooms. Either option presents challenges for mathematics educators who are expected to contribute to the foundations of a STEM literate…

  18. 1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.

    PubMed

    Jones, Amanda L; Stapleton, Mary K

    2017-05-01

    In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.

  19. Classroom sound can be used to classify teaching practices in college science courses.

    PubMed

    Owens, Melinda T; Seidel, Shannon B; Wong, Mike; Bejines, Travis E; Lietz, Susanne; Perez, Joseph R; Sit, Shangheng; Subedar, Zahur-Saleh; Acker, Gigi N; Akana, Susan F; Balukjian, Brad; Benton, Hilary P; Blair, J R; Boaz, Segal M; Boyer, Katharyn E; Bram, Jason B; Burrus, Laura W; Byrd, Dana T; Caporale, Natalia; Carpenter, Edward J; Chan, Yee-Hung Mark; Chen, Lily; Chovnick, Amy; Chu, Diana S; Clarkson, Bryan K; Cooper, Sara E; Creech, Catherine; Crow, Karen D; de la Torre, José R; Denetclaw, Wilfred F; Duncan, Kathleen E; Edwards, Amy S; Erickson, Karen L; Fuse, Megumi; Gorga, Joseph J; Govindan, Brinda; Green, L Jeanette; Hankamp, Paul Z; Harris, Holly E; He, Zheng-Hui; Ingalls, Stephen; Ingmire, Peter D; Jacobs, J Rebecca; Kamakea, Mark; Kimpo, Rhea R; Knight, Jonathan D; Krause, Sara K; Krueger, Lori E; Light, Terrye L; Lund, Lance; Márquez-Magaña, Leticia M; McCarthy, Briana K; McPheron, Linda J; Miller-Sims, Vanessa C; Moffatt, Christopher A; Muick, Pamela C; Nagami, Paul H; Nusse, Gloria L; Okimura, Kristine M; Pasion, Sally G; Patterson, Robert; Pennings, Pleuni S; Riggs, Blake; Romeo, Joseph; Roy, Scott W; Russo-Tait, Tatiane; Schultheis, Lisa M; Sengupta, Lakshmikanta; Small, Rachel; Spicer, Greg S; Stillman, Jonathon H; Swei, Andrea; Wade, Jennifer M; Waters, Steven B; Weinstein, Steven L; Willsie, Julia K; Wright, Diana W; Harrison, Colin D; Kelley, Loretta A; Trujillo, Gloriana; Domingo, Carmen R; Schinske, Jeffrey N; Tanner, Kimberly D

    2017-03-21

    Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.

  20. Preparing Students for Middle School Through After-School STEM Activities

    NASA Astrophysics Data System (ADS)

    Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.

    2016-12-01

    The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or mathematics curricula. This study investigates the effectiveness of an engineering-integrated STEM curriculum designed for use in an after-school environment. The inquiry-based activities comprising the unit, Think Like an Astronaut, were intended to introduce students to STEM careers—specifically engineering and aerospace engineering—and enhance their skills and knowledge applicable related to typical middle school science objectives. Results of a field test with a diverse population of 5th grade students in nine schools revealed that Think Like an Astronaut lessons are appropriate for an after-school environment, and may potentially help increase students' STEM-related content knowledge and skills.

  1. Evaluating Earth and Space Sciences STEM Research Communication in 7th-12th Grade Rural Mississippi Classrooms and Resulting Student Attitudinal Impacts

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.

    2013-05-01

    Observation and evaluation of STEM graduate students from Mississippi State University communicating their research of the Earth and Space Sciences in rural 7th-12th grade classrooms participating in the Initiating New Science Partnerships in Rural Education (INSPIRE) NSF GK-12 project. The methods they utilize to communicate their STEM research includes introducing new technologies and inquiry based learning experiences. These communication experiences have been observed and evaluated using two observational systems, the Mathematics Science Classroom Observational Profile System (M-SCOPS) and the Presentation Skills Protocol (PSP). M-SCOPS has been used over the first three years of the project to evaluate what Earth and Space research the STEM graduate students communicate in classroom activities along with how they are introducing STEM research through a variety of communication methods and levels of understanding. PSP, which INSPIRE began using this year, evaluates and provides feedback to the STEM graduate students on their communication during these classroom experiences using a rubric covering a range of skills for successful communication. PSP also allows the participating INSPIRE teacher partners to provide feedback to the STEM graduate students about development of their communication skills over the course of the year. In addition to feedback from the INSPIRE project and participating teachers, the STEM graduate students have the opportunity to evaluate their personal communication skills through video documentation to determine specific skills they would like to improve. Another area of research to be discussed is how the STEM graduate students communicating Earth and Space sciences research in the participating classrooms is impacting student attitudes about science and mathematics over the last three years. Student Attitudinal Surveys (SAS) are administered as a pre-evaluation tool in the fall when the STEM graduate students first enter into their partner classrooms and again each spring for post-evaluation before the STEM graduate students depart from the classrooms. An evaluation of graduate communication effectiveness will be related to the 7th-12th grade student attitudes about science and mathematics.

  2. Developing and Sustaining a Science and Technology Center Education Program: "Inquiry" as a Means for Organizational Change and Institutional Legitimacy

    NASA Astrophysics Data System (ADS)

    Ball, T.; Hunter, L.

    2010-12-01

    Formal organizations have become ubiquitous in contemporary society and since so many of us spend so much of our daily lives working, learning, and socializing in them it is important to understand not only how they govern our interactions but also how we can incite (and sustain) organizational change. This is especially true for STEM education; learning about science, technology, engineering or mathematics rarely occurs outside of formal settings and educators need to be aware of how learning goals, priorities and practices are permeable to the institutional processes that structure sponsoring organizations. Adopting a historical perspective, this paper reports on organizational changes at the Center for Adaptive Optics in relation to an emerging emphasis on inquiry learning. The results of our analysis show how the inquiry model functioned as a boundary object and was instrumental in transforming members' expectations and assumptions about educational practice in STEM while securing the institutional legitimacy of the CfAO as a whole. Our findings can inform the advancement of educational initiatives within the STEM research community and are particularly useful in relation to concerns around accommodating and integrating individuals from non-dominant backgrounds.

  3. Innovations in science education: infusing social emotional principles into early STEM learning

    NASA Astrophysics Data System (ADS)

    Garner, Pamela W.; Gabitova, Nuria; Gupta, Anuradha; Wood, Thomas

    2017-10-01

    We report on the development of an after-school and summer-based science, technology, engineering, and mathematics curriculum infused with the arts and social emotional learning content (STEAM SEL). Its design was motivated by theory and research that suggest that STEM education is well-suited for teaching empathy and other emotion-related skills. In this paper, we describe the activities associated with the development and design of the program and the curriculum. We provide expert-ratings of the STEAM and social emotional elements of the program and present instructor and participant feedback about the program's content and its delivery. Our results revealed that infusing the arts and social emotional learning content into science education created a holistic STEM-related curriculum that holds potential for enhancing young children's interest in and appreciation for science and its applications. The data also suggested that the program was well-developed and, generally well-executed. However, experts rated the STEAM elements of the program more positively than the SEL elements, especially with regard to sequencing of lessons and integration among the lessons and hands-on activities, indicating that program revisions are warranted.

  4. Lessons learned using a values-engaged approach to attend to culture, diversity, and equity in a STEM program evaluation.

    PubMed

    Boyce, Ayesha S

    2017-10-01

    Evaluation must attend meaningfully and respectfully to issues of culture, race, diversity, power, and equity. This attention is especially critical within the evaluation of science, technology, engineering, and mathematics (STEM) educational programming, which has an explicit agenda of broadening participation. The purpose of this article is to report lessons learned from the implementation of a values-engaged, educative (Greene et al., 2006) evaluation within a multi-year STEM education program setting. This meta-evaluation employed a case study design using data from evaluator weekly systematic reflections, review of evaluation and program artifacts, stakeholder interviews, and peer review and assessment. The main findings from this study are (a) explicit attention to culture, diversity, and equity was initially challenged by organizational culture and under-developed evaluator-stakeholder professional relationship and (b) evidence of successful engagement of culture, diversity, and equity emerged in formal evaluation criteria and documents, and informal dialogue and discussion with stakeholders. The paper concludes with lessons learned and implications for practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. STEM(ming) from Where? A Philosophical Analysis of U.S. Mathematics Education Policies

    ERIC Educational Resources Information Center

    Chesky, Nataly Z.

    2013-01-01

    Much attention has been placed on mathematics education in U.S. education policy reform discourses. Most recently, the emphasis has been on connecting mathematics with science, technology, and engineering, termed The STEM Initiative. Although a great deal of research has been conducted to understand how to meet the objectives of STEM, studies are…

  6. Communication and Shared Practices are Bringing NASA STEM Resources to Camp Youth

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shaner, A.; Shipp, S.; Garst, B.; Bialeschki, M. D.; Netting, R.; Erickson, K.

    2015-11-01

    In 2012, NASA and the American Camp Association (ACA) entered into an alliance to further both organizations' goals and objectives with regard to science, technology, engineering, and mathematics (STEM) education. This alliance is providing camp staff—and their young audiences—access to NASA's resources. NASA disseminates resources (e.g., pathways for requesting guest presenters, informal learning lesson plans), conducts ACA professional development (online and at ACA conferences), and coordinates efforts around key events (e.g., spacecraft launches). ACA promotes awareness of NASA resources through their communications and services. Together, the organizations are working to inspire a new generation of scientists, engineers, explorers, educators, and innovators to pursue STEM careers.

  7. Development, Implementation, and Outcomes of an Equitable Computer Science After-School Program: Findings from Middle-School Students

    ERIC Educational Resources Information Center

    Mouza, Chrystalla; Marzocchi, Alison; Pan, Yi-Cheng; Pollock, Lori

    2016-01-01

    Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the…

  8. Computing the Average Square: An Agent-Based Introduction to Aspects of Current Psychometric Practice

    ERIC Educational Resources Information Center

    Stroup, Walter M.; Hills, Thomas; Carmona, Guadalupe

    2011-01-01

    This paper summarizes an approach to helping future educators to engage with key issues related to the application of measurement-related statistics to learning and teaching, especially in the contexts of science, mathematics, technology and engineering (STEM) education. The approach we outline has two major elements. First, students are asked to…

  9. Fundamental Computer Science Conceptual Understandings for High School Students Using Original Computer Game Design

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    In 2009, the North Carolina Virtual Public Schools worked with researchers at the William and Ida Friday Institute to produce and evaluate the use of game creation by secondary students as a means for learning content related to career awareness in Science, Technology, Engineering and Mathematics (STEM) disciplines, with particular emphasis in…

  10. Simulation-Visualization and Self-Assessment Modules' Capabilities in Structural Analysis Course Including Survey Analysis Results

    ERIC Educational Resources Information Center

    Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.

    2010-01-01

    In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…

  11. Content Delivery Using Augmented Reality to Enhance Students' Performance in a Building Design and Assembly Project

    ERIC Educational Resources Information Center

    Shirazi, Arezoo; Behzadan, Amir H.

    2015-01-01

    Recent studies suggest that the number of students pursuing science, technology, engineering, and mathematics (STEM) degrees has been generally decreasing. An extensive body of research cites the lack of motivation and engagement in the learning process as a major underlying reason of this decline. It has been discussed that if properly…

  12. A Simple Simulator to Teach Enzyme Kinetics Dynamics. Application in a Problem-Solving Exercise

    ERIC Educational Resources Information Center

    Torres, Néstor; Santos, Guido

    2017-01-01

    Enzyme kinetics is an essential part of biochemistry programs, which have been gaining importance in recent years for their applications in biotechnology and biomedicine. The teaching and learning of these issues has been traditionally hampered by difficulties that stem mainly from the dynamic and mathematical nature of the topic and the…

  13. Computational Thinking in K-12: A Review of the State of the Field

    ERIC Educational Resources Information Center

    Grover, Shuchi; Pea, Roy

    2013-01-01

    Jeannette Wing's influential article on computational thinking 6 years ago argued for adding this new competency to every child's analytical ability as a vital ingredient of science, technology, engineering, and mathematics (STEM) learning. What is computational thinking? Why did this article resonate with so many and serve as a rallying cry for…

  14. Increasing the Number of Canadian Indigenous Students in STEM at the University of Regina, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    St-Jacques, J. M.; McGee, S.; Janze, R.; Longman, M.; Pete, S.; Starblanket, N.

    2016-12-01

    Canadian Indigenous people are an extremely poorly represented group in STEM today due to major barriers in obtaining a high school and then a university education. Approximately 10% of the undergraduate student population out of a total 12,600 students at the University of Regina, Regina, Saskatchewan, is First Nations, Métis or Inuit. The university is located in a catchment region where 30% of the population is First Nations or Métis. Approximately 100 students majoring in the sciences, mathematics and engineering have self-declared themselves to be Indigenous. For the past two years, we have been running a pilot project, the Initiative to Support and Increase the Number of Indigenous Students in the Sciences, Mathematics and Engineering at the Aboriginal Student Centre, with financial support from the Deans of Science and Engineering. We provide student networking lunches, Indigenous scientist and engineer speakers and mentors and supplemental tutoring. Our program is actively supported and guided by Elder Noel Starblanket, former president of the National Indian Brotherhood (now the Assembly of First Nations). Our students are greatly interested in the health and environmental sciences (particularly water quality), with a sprinkling of physics, mathematics and engineering majors. Our students have gone on to graduate work with prestigious scholarships and a paid internship in engineering. We report here on various lessons learned: the involvement of elders is key, as is the acceptance of non-traditional academic paths, and any STEM support program must respect Indigenous culture. There is great interest in science and engineering on the part of these students, if scientists and engineers are willing to listen and learn to talk with these students on their own terms.

  15. Persistence of deaf students in science, technology, engineering, and mathematics undergraduate programs

    NASA Astrophysics Data System (ADS)

    Marchut, Amber E.

    Diversifying the student population and workforce under science, technology, engineering, and mathematics (STEM) is a necessity if innovations and creativity are to expand. There has not been a lot of literature regarding Deaf students in STEM especially regarding understanding how they persist in STEM undergraduate programs to successfully become STEM Bachelor of Science degree recipients. This study addresses the literature gap by investigating six students' experiences as they navigate their STEM undergraduate programs. The investigation uses narrative inquiry methodology and grounded theory method through the lens of Critical Race Theory and Critical Deaf Theory. Using videotaped interviews and observations, their experiences are highlighted using narratives portraying them as individuals surviving in a society that tends to perceive being deaf as a deficit that needs to be treated or cured. The data analysis also resulted in a conceptual model providing a description of how they persist. The crucial aspect of the conceptual model is the participants learned how to manage being deaf in a hearing-dominated society so they can reach their aspirations. The essential blocks for the persistence and managing their identities as deaf undergraduate STEMs include working harder, relying on familial support, and affirming themselves. Through the narratives and conceptual model of the six Deaf STEM undergraduates, the goal is to contribute to literature to promote a better understanding of the persistence of Deaf students, members of a marginalized group, as they pursue their dreams.

  16. Uncovering the lived experiences of junior and senior undergraduate female science majors

    NASA Astrophysics Data System (ADS)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  17. Engineering design in the primary school: applying stem concepts to build an optical instrument

    NASA Astrophysics Data System (ADS)

    King, Donna; English, Lyn D.

    2016-12-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts. As such, this study examined the learning that occurred when fifth-grade students completed an optical engineering activity using an iterative engineering design model. Through a qualitative methodology using a case study design, we analysed multiple data sources including students' design sketches from eight focus groups. Three key findings emerged: first, the collaborative process of the first design sketch enabled students to apply core STEM concepts to model construction; second, during the construction stage students used experimentation for the positioning of lenses, mirrors and tubes resulting in a simpler 'working' model; and third, the redesign process enabled students to apply structural changes to their design. The engineering design model was useful for structuring stages of design, construction and redesign; however, we suggest a more flexible approach for advanced applications of STEM concepts in the future.

  18. Writing-to-Learn in Undergraduate Science Education: A Community-Based, Conceptually Driven Approach

    PubMed Central

    Reynolds, Julie A.; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J.

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement. PMID:22383613

  19. STEM in England: meanings and motivations in the policy arena

    NASA Astrophysics Data System (ADS)

    Wong, Vicky; Dillon, Justin; King, Heather

    2016-10-01

    STEM, an acronym for Science, Technology, Engineering and Mathematics, is widely used in science education. There is confusion, however, as to its provenance and meaning which is potentially problematic. This study examines the purpose of STEM practice in education in England and asks if there are differences in perceptions of STEM between science and mathematics educator stakeholders. The study's contribution to the literature is its unusual focus on those who were responsible for making and enacting national STEM policy. A two-phase qualitative approach was followed comprising an analysis of government documentation together with semi-structured interviews with key contributors to the science and mathematics education discourse. Findings suggest that there is a disconnect between the interpretations of the science and mathematics educators with a danger-advantage dichotomy to participation in STEM being perceived by the mathematics educators. Early aims of the STEM agenda, including increasing diversity, gave way to a focus on numbers of post-16 physics and mathematics students. We conclude that if the term STEM is to continue to be used then there is a need for greater clarity about what it represents in educational terms and a wider debate about its compatibility with the aims of science education for all.

  20. Mathematical Practices and Arts Integration in an Activity-Based Projective Geometry Course

    NASA Astrophysics Data System (ADS)

    Ernest, Jessica Brooke

    It is a general assumption that the mathematical activity of students in school should, at least to some degree, parallel the practices of professional mathematicians (Brown, Collins, Duguid, 1989; Moschkovich, 2013). This assumption is reflected in the Common Core State Standards (CCSSI, 2010) and National Council of Teachers of Mathematics (NCTM, 2000) standards documents. However, the practices included in these standards documents, while developed to reflect the practices of professional mathematicians, may be idealized versions of what mathematicians actually do (Moschkovich, 2013). This might lead us to question then: "What is it that mathematicians do, and what practices are not being represented in the standards documents?" In general, the creative work of mathematicians is absent from the standards and, in turn, from school mathematics curricula, much to the dismay of some mathematicians and researchers (Lockhart, 2009; Rogers, 1999). As a result, creativity is not typically being fostered in mathematics students. As a response to this lack of focus on fostering creativity (in each of the science, technology, engineering, and mathematics disciplines--the STEM disciplines), a movement to integrate the arts emerged. This movement, called the STEAM movement--introducing the letter A into the acronym STEM to signify incorporating the arts--has been gaining momentum, yet limited research has been carried out on the efficacy of integrating the arts into mathematics courses. My experiences as the co-instructor for an activity-based course focused on projective geometry led me to consider the course as a setting for investigating both mathematical practices and arts integration. In this work, I explored the mathematical practices in which students engaged while working to develop an understanding of projective geometry through group activities. Furthermore, I explored the way in which students' learning experiences were enriched through artistic engagement in the course. I discuss mathematical play and acts of imagination--two mathematical practices in which students engaged, and which emerged from a grounded theory approach to analysis of the classroom data. In addition, I discuss particular ways in which artistic engagement, including creating two mathematically inspired artistic pieces, enriched students' learning experiences in the course. The six themes I address are artistic engagement (a) fostering mathematical play, (b) giving students the opportunity to make sense of pop-up topics, (c) providing students with the opportunity to develop coordination of mathematical tools, (d) allowing students to weave their personal experiences with mathematics, (e) contributing to students' notions of the connections between mathematics and art, and (f) changing students' relationships with art.

  1. Virginia Demonstration Project Encouraging Middle School Students in Pursuing STEM Careers

    NASA Technical Reports Server (NTRS)

    Bachman, Jane T.; Kota, Dena H.; Kota, Aaron J.

    2011-01-01

    Encouraging students at all grade levels to consider pursuing a career in Science, Technology, Engineering, and Mathematics (STEM) fields i s a national focus. In 2005, the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), a Department of Defense laboratory located in Da hlgren, Virginia, began work on the Virginia Demonstration Project (VDP) with the goal of increasing more student interest in STEM educatio n and pursuing STEM careers. This goal continues as the program enters its sixth year. This project has been successful through the partici pation of NSWCDD's scientists and engineers who are trained as mentor s to work in local middle school classrooms throughout the school year, As an extension of the in-class activities, several STEM summer aca demies have been conducted at NSWCDD, These academies are supported by the Navy through the VDP and the STEM Learning Module Project. These projects are part of more extensive outreach efforts offered by the National Defense Education Program (NDEP), sponsored by the Director, Defense Research and Engineering. The focus of this paper is on the types of activities conducted at the summer academy, an overview of the academy planning process, and recommendations to help support a nati onal plan of integrating modeling and simulation-based engineering and science into all grade levels. based upon the lessons learned

  2. Learning mathematics in two dimensions: a review and look ahead at teaching and learning early childhood mathematics with children’s literature

    PubMed Central

    Flevares, Lucia M.; Schiff, Jamie R.

    2014-01-01

    In the past 25 years an identifiable interest in using children’s literature in mathematics learning emerged (Clyne and Griffiths, 1991; Welchman-Tischler, 1992; Hong, 1996; Hellwig etal., 2000; Haury, 2001). We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children’s mathematics learning and interest have been documented (Hong, 1996; O’Neill etal., 2004; Young-Loveridge, 2004). For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children’s understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (van den Heuvel-Panhuizen and van den Boogaard, 2008; Skoumpourdi and Mpakopoulou, 2011) and shapes as gestalt wholes or prototypes (van Hiele, 1986; Clements etal., 1999; Hannibal, 1999). We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000), Schiro (1997), Hunsader (2004), and van den Heuvel-Panhuizen and Elia (2012). Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Clements and Sarama, 2000; Chard etal., 2008) which lead to misconceptions (Oberdorf and Taylor-Cox, 1999; Inan and Dogan-Temur, 2010). Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children’s literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children’s books in mathematics activities and for teacher training. PMID:24904475

  3. Experiences of African American Young Women in Science, Technology, Engineering, and Mathematics (STEM) Education

    NASA Astrophysics Data System (ADS)

    Kolo, Yovonda Ingram

    African American women are underrepresented in science, technology, engineering, and mathematics (STEM) fields throughout the United States. As the need for STEM professionals in the United States increases, it is important to ensure that African American women are among those professionals making valuable contributions to society. The purpose of this phenomenological study was to describe the experiences of African American young women in relation to STEM education. The research question for this study examined how experiences with STEM in K-10 education influenced African American young women's academic choices in their final years in high school. The theory of multicontextuality was used to provide the conceptual framework. The primary data source was interviews. The sample was composed of 11 African American young women in their junior or senior year in high school. Data were analyzed through the process of open coding, categorizing, and identifying emerging themes. Ten themes emerged from the answers to research questions. The themes were (a) high teacher expectations, (b) participation in extra-curricular activities, (c) engagement in group-work, (d) learning from lectures, (e) strong parental involvement, (f) helping others, (g) self-efficacy, (h) gender empowerment, (i) race empowerment, and (j) strategic recruitment practices. This study may lead to positive social change by adding to the understanding of the experiences of African American young women in STEM. By doing so, these findings might motivate other African American young women to pursue advanced STEM classes. These findings may also provide guidance to parents and educators to help increase the number of African American women in STEM.

  4. The Classroom Observation Protocol for Undergraduate STEM (COPUS): a new instrument to characterize university STEM classroom practices.

    PubMed

    Smith, Michelle K; Jones, Francis H M; Gilbert, Sarah L; Wieman, Carl E

    2013-01-01

    Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS. This protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom. We present the protocol, discuss how it differs from existing classroom observation protocols, and describe the process by which it was developed and validated. We also discuss how the observation data can be used to guide individual and institutional change.

  5. The Classroom Observation Protocol for Undergraduate STEM (COPUS): A New Instrument to Characterize University STEM Classroom Practices

    PubMed Central

    Smith, Michelle K.; Jones, Francis H. M.; Gilbert, Sarah L.; Wieman, Carl E.

    2013-01-01

    Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS. This protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom. We present the protocol, discuss how it differs from existing classroom observation protocols, and describe the process by which it was developed and validated. We also discuss how the observation data can be used to guide individual and institutional change. PMID:24297289

  6. 78 FR 22841 - Defense Federal Acquisition Regulation Supplement: Encouragement of Science, Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ..., Engineering, and Mathematics (STEM) Programs (DFARS Case 2012-D027); Withdrawal AGENCY: Defense Acquisition... mathematics (STEM) programs. FOR FURTHER INFORMATION CONTACT: Mr. Dustin Pitsch: telephone 571-372- 6090... develop science, technology, engineering, and mathematics (STEM) programs. The purpose of this Notice is...

  7. The Single Sex Debate for Girls in Science: a Comparison Between Two Informal Science Programs on Middle School Students' STEM Identity Formation

    NASA Astrophysics Data System (ADS)

    Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.

    2013-10-01

    Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many science, technology, engineering, and mathematics (STEM) related fields. Research points to adolescence as the age where this sense of marginalization begins to develop. As a result, policy responses have utilized various frameworks such as: increased access for women, changing pedagogy to address women's learning styles, changing the language and culture of science to prevent marginalization of stigmatized groups, and finally exploring the role that individual identity plays in the marginalization of women. This study adds to the policy debate as it applies to single sex education by comparing middle school participants' STEM identity formation during two informal science learning environments (an all girls' STEM camp and a co-educational STEM camp). Additionally, this study focuses on the influence of camp activities within two informal science education programs: particularly the provision of role models and authentic STEM research activities, as means to improve STEM identity and make these fields relevant to the lives of middle school students. The results indicate that both camps improved girls' STEM identities. These findings suggest that the single sex environment is not as important to STEM identity as the pedagogy used within the program.

  8. "It's What We Use as a Community": Exploring Students' STEM Characterizations In Two Montessori Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Szostkowski, Alaina Hopkins

    Integrated science, technology, engineering, and mathematics (STEM) education promises to enhance elementary students' engagement in science and related fields and to cultivate their problem-solving abilities. While STEM has become an increasingly popular reform initiative, it is still developing within the Montessori education community. There is limited research on STEM teaching and learning in Montessori classrooms, particularly from student perspectives. Previous studies suggest productive connections between reform-based pedagogies in mainstream science education and the Montessori method. Greater knowledge of this complementarity, and student perspectives on STEM, may benefit both Montessori and non-Montessori educators. This instrumental case study of two elementary classrooms documented student characterizations of aspects of STEM in the context of integrated STEM instruction over three months in the 2016-2017 school year. Findings show that the Montessori environment played an important role, and that students characterized STEM in inclusive, agentive, connected, helpful, creative, and increasingly critical ways. Implications for teaching and future research offer avenues to envision STEM education more holistically by leveraging the moral and humanistic aspects of Montessori philosophy.

  9. Differences in students' perceived classroom experiences by instructor gender, student gender, and persistence in STEM courses

    NASA Astrophysics Data System (ADS)

    Fowlkes, Carol

    Science, technology, engineering, and mathematics (STEM) fields are growing and have lucrative job opportunities for college graduates. However, the number of students in STEM majors and the number of those who persist in those majors is declining; there is also a growing gender gap in STEM graduates. This study investigated three perceived classroom experiences in STEM courses and the nature of differences in these experiences by student gender, instructor gender, and by those who persisted or did not persist in STEM majors. A factorial MANOVA was the statistical method by which the differences were explored. The statistical analysis revealed non-significant mean differences in three-way interaction, all two-way interactions, and all main effects. There were not gendered differences in students' perceptions of the opportunities for hands-on learning, the instructor cares about students' success, and the instructor encourages students' contributions. Further research is proposed to continue examination of this topic with a larger data set that is consistent with the literature regarding the population of STEM students and the number of STEM persisters, and the male-gendered nature of STEM fields.

  10. Mathematically precocious and female: Self-efficacy and STEM course choices among high achieving middle grade students

    NASA Astrophysics Data System (ADS)

    Burt, Stacey M.

    The problem addressed in this project is the lack of mathematically gifted females choosing to pursue advanced science, technology, engineering, and mathematics (STEM) courses in secondary education due to deficiencies in self-efficacy. The purpose of this project was to study the effects of a child-guided robotics program as it relates to the self-efficacy of mathematically gifted 6th grade female students and their future course choices in the advanced STEM content areas. This mixed-model study utilized a STEM attitude survey, artifacts, interviews, field notes, and standardized tests as measurement tools. Significance was found between genders in the treatment group for the standardized science scores, indicating closure in the achievement gap. Research suggests that STEM enrichment is beneficial for mathematically gifted females.

  11. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  12. Classroom sound can be used to classify teaching practices in college science courses

    PubMed Central

    Seidel, Shannon B.; Wong, Mike; Bejines, Travis E.; Lietz, Susanne; Perez, Joseph R.; Sit, Shangheng; Subedar, Zahur-Saleh; Acker, Gigi N.; Akana, Susan F.; Balukjian, Brad; Benton, Hilary P.; Blair, J. R.; Boaz, Segal M.; Boyer, Katharyn E.; Bram, Jason B.; Burrus, Laura W.; Byrd, Dana T.; Caporale, Natalia; Carpenter, Edward J.; Chan, Yee-Hung Mark; Chen, Lily; Chovnick, Amy; Chu, Diana S.; Clarkson, Bryan K.; Cooper, Sara E.; Creech, Catherine; Crow, Karen D.; de la Torre, José R.; Denetclaw, Wilfred F.; Duncan, Kathleen E.; Edwards, Amy S.; Erickson, Karen L.; Fuse, Megumi; Gorga, Joseph J.; Govindan, Brinda; Green, L. Jeanette; Hankamp, Paul Z.; Harris, Holly E.; He, Zheng-Hui; Ingalls, Stephen; Ingmire, Peter D.; Jacobs, J. Rebecca; Kamakea, Mark; Kimpo, Rhea R.; Knight, Jonathan D.; Krause, Sara K.; Krueger, Lori E.; Light, Terrye L.; Lund, Lance; Márquez-Magaña, Leticia M.; McCarthy, Briana K.; McPheron, Linda J.; Miller-Sims, Vanessa C.; Moffatt, Christopher A.; Muick, Pamela C.; Nagami, Paul H.; Nusse, Gloria L.; Okimura, Kristine M.; Pasion, Sally G.; Patterson, Robert; Riggs, Blake; Romeo, Joseph; Roy, Scott W.; Russo-Tait, Tatiane; Schultheis, Lisa M.; Sengupta, Lakshmikanta; Small, Rachel; Spicer, Greg S.; Stillman, Jonathon H.; Swei, Andrea; Wade, Jennifer M.; Waters, Steven B.; Weinstein, Steven L.; Willsie, Julia K.; Wright, Diana W.; Harrison, Colin D.; Kelley, Loretta A.; Trujillo, Gloriana; Domingo, Carmen R.; Schinske, Jeffrey N.; Tanner, Kimberly D.

    2017-01-01

    Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning–derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort. PMID:28265087

  13. Using Inquiry-Based Instructional Strategies to Increase Student Achievement in 3rd Grade Social Studies

    ERIC Educational Resources Information Center

    McRae-Jones, Wanda Joycelyn

    2017-01-01

    21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…

  14. Using Arts Integration to Make Science Learning Memorable in the Upper Elementary Grades: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Graham, Nicholas James; Brouillette, Liane

    2016-01-01

    The Next Generation Science Standards (NGSS) have brought a stronger emphasis on engineering into K-12 STEM (science, technology, engineering and mathematics) instruction. Introducing the design process used in engineering into science classrooms simulated a dialogue among some educators about adding the arts to the mix. This led to proposals for…

  15. Robotics in the Early Childhood Classroom: Learning Outcomes from an 8-Week Robotics Curriculum in Pre-Kindergarten through Second Grade

    ERIC Educational Resources Information Center

    Sullivan, Amanda; Bers, Marina Umaschi

    2016-01-01

    In recent years there has been an increasing focus on the missing "T" of technology and "E" of engineering in early childhood STEM (science, technology, engineering, mathematics) curricula. Robotics offers a playful and tangible way for children to engage with both T and E concepts during their foundational early childhood…

  16. 2010 NRL Review: Power, Energy, Synergy

    DTIC Science & Technology

    2010-01-01

    scientific, technical, engineering, and mathematics (STEM) fields. To this end, NRL has brought 399 students on board as employees, tutored another...Employees — Recent Ph.D., Faculty Member, and College Graduate Programs, Professional Appointments, and College and High School Student Programs 278...information with higher-level cognitive reasoning; gesture recognition for shoulder-to- shoulder human-robot interaction; and anticipation and learning on a

  17. STEM Learning Opportunities Providing Equity (SLOPE): An Investing in Innovation (i3) Grant. Final Evaluation Report

    ERIC Educational Resources Information Center

    Gallagher, Carole; Huang, Kevin; Van Matre, Joseph

    2015-01-01

    This five-year evaluation examined the effectiveness of a promising middle-school mathematics intervention funded through an Investing in Innovation (i3) development grant. Evaluation objectives were to: (1) study the impact of an intervention aimed at increasing the academic achievement of students in Algebra I--a gate-keeping course--as measured…

  18. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    ERIC Educational Resources Information Center

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  19. Seeds and Sparks: Cultivating Children's Interest in Physics through Public Outreach

    NASA Astrophysics Data System (ADS)

    Clark, Jessica

    2006-11-01

    The National Academies' ``Rising above the Gathering Storm'' report names the improvement of K-12 science and mathematics education as its highest priority recommendation. This recommendation includes enlarging the pipeline of students preparing to study STEM subjects at university by increasing the number of students who take (and pass) advanced high school level science courses. To this end, the American Physical Society's Public Outreach department offers PhysicsQuest, a free program designed to engage middle school science students in a learning adventure. The core idea of the program is to provide a fun and exciting way for students to encounter physics, thereby eliminating some of the fear often associated with the subject and making them more likely to take high school physics courses. In the end, the students do learn some physics, but, more importantly, they have a fun experience with physics. This talk further describes the PhysicsQuest program, including feedback and results from the 2005 project, and also gives an overview of other K-12 programs offered by APS Public Outreach. The report can be read online at http://www.nap.edu/catalog/11463.html#toc. STEM = Science, Technology, Engineering, Mathematics

  20. The Role of STEM High Schools in Reducing Gaps in Science and Mathematics Coursetaking: Evidence from North Carolina. Research Report. RTI Press Publication RR-0025-1603

    ERIC Educational Resources Information Center

    Glennie, Elizabeth; Mason, Marcinda; Dalton, Ben

    2016-01-01

    Some states have created science, technology, engineering, and mathematics (STEM) schools to encourage student interest and enhance student proficiency in STEM subjects. We examined a set of STEM schools serving disadvantaged students to see whether these students were more likely to take and pass advanced science and mathematics classes than…

  1. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)

    DTIC Science & Technology

    2013-08-29

    educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology

  2. A Study of the Correlation between STEM Career Knowledge, Mathematics Self-Efficacy, Career Interests, and Career Activities on the Likelihood of Pursuing a STEM Career among Middle School Students

    ERIC Educational Resources Information Center

    Blotnicky, Karen A.; Franz-Odendaal, Tamara; French, Frederick; Joy, Phillip

    2018-01-01

    Background: A sample of 1448 students in grades 7 and 9 was drawn from public schools in Atlantic Canada to explore students' knowledge of science and mathematics requirements for science, technology, engineering, and mathematics (STEM) careers. Also explored were their mathematics self-efficacy (MSE), their future career interests, their…

  3. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning.

    PubMed

    Ballen, Cissy J; Wieman, Carl; Salehi, Shima; Searle, Jeremy B; Zamudio, Kelly R

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Ethnographic case study of a high school science classroom: Strategies in stem education

    NASA Astrophysics Data System (ADS)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a holistic and sustainable model for development and implementation. This approach brings together the researcher and practitioner to design effective and specific programs tailored to student needs. The implication of using an effective team model to plan and coordinate individualized STEM initiatives is a long-term commitment to overall STEM literacy, thereby fostering increased access to STEM careers for all learners.

  5. STEM and Model-Eliciting Activities: Responsive Professional Development for K-8 Mathematics Coaches

    ERIC Educational Resources Information Center

    Baker, Courtney; Galanti, Terrie; Birkhead, Sara

    2017-01-01

    This research highlights a university-school division collaboration to pilot a professional development framework for integrating STEM in K-8 mathematics classrooms. The university researchers worked with mathematics coaches to construct a realistic and reasonable vision of STEM integration built upon the design principles of model-eliciting…

  6. Team-Based Introductory Research Experiences in Mathematics

    ERIC Educational Resources Information Center

    Baum, Brittany Smith; Rowell, Ginger Holmes; Green, Lisa; Yantz, Jennifer; Beck, Jesse; Cheatham, Thomas; Stephens, D. Christopher; Nelson, Donald

    2017-01-01

    As part of Middle Tennessee State University's (MTSU's) initiative to improve retention of at-risk STEM majors, they recruit first-time, full-time freshman STEM majors with mathematics ACT scores of 19 to 23 to participate in MTSU's "Mathematics as a FirstSTEP to Success in STEM" project (FirstSTEP). This article overviews MTSU's…

  7. Utilizing the Scientist as Teacher Through the Initiating New Science Partnerships in Rural Education (INSPIRE) Program

    NASA Astrophysics Data System (ADS)

    Pierce, D.; McNeal, K. S.; Radencic, S.

    2011-12-01

    The presence of a scientist or other STEM expert in secondary school science classroom can provide fresh new ideas for student learning. Through the Initiating New Science Partnerships in Rural Education (INSPIRE) program sponsored by NSF Graduate STEM Fellows in K-12 Education (GK-12), scientists and engineers at Mississippi State University work together with graduate students and area teachers to provide hands-on inquiry-based learning to middle school and high school students. Competitively selected graduate fellows from geosciences, physics, chemistry, and engineering spend ten hours per week in participating classrooms for an entire school year, working as a team with their assigned teacher to provide outstanding instruction in science and mathematics and to serve as positive role models for the students. We are currently in the second year of our five-year program, and we have already made significant achievements in science and mathematics instruction. We successfully hosted GIS Day on the Mississippi State University campus, allowing participating students to design an emergency response to a simulated flooding of the Mississippi Delta. We have also developed new laboratory exercises for high school physics classrooms, including a 3-D electric field mapping exercise, and the complete development of a robotics design course. Many of the activities developed by the fellows and teachers are written into formal lesson plans that are made publicly available as free downloads through our project website. All participants in this program channel aspects of their research interests and methods into classroom learning, thus providing students with the real-world applications of STEM principles. In return, participants enhance their own communication and scientific inquiry skills by employing lesson design techniques that are similar to defining their own research questions.

  8. Examination of factors predicting secondary students' interest in tertiary STEM education

    NASA Astrophysics Data System (ADS)

    Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina

    2016-02-01

    Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of 2458 secondary public school students in the fifth-largest Israeli city indicate that STEM learning experience positively associates with students' interest in pursuing STEM fields in tertiary education as opposed to non-STEM fields. Moreover, studying advanced science courses at the secondary school level decreases (but does not eliminate) the gender gap and eliminates the effect of family background on students' interest in pursuing STEM fields in the future. Findings regarding outcome expectations and self-efficacy beliefs only partially support the SCCT model. Outcome expectations and self-efficacy beliefs positively correlate with students' entering tertiary education but did not differentiate between their interests in the fields of study.

  9. Building Better Bridges into STEM: A Synthesis of 25 Years of Literature on STEM Summer Bridge Programs

    PubMed Central

    Ashley, Michael; Cooper, Katelyn M.; Cala, Jacqueline M.; Brownell, Sara E.

    2017-01-01

    Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to our knowledge, a comprehensive review of STEM summer bridge programs does not exist. To provide a resource for bridge program developers, we conducted a systematic review of the literature on STEM summer bridge programs. We identified 46 published reports on 30 unique STEM bridge programs that have been published over the past 25 years. In this review, we report the goals of each bridge program and whether the program was successful in meeting these goals. We identify 14 distinct bridge program goals that can be organized into three categories: academic success goals, psychosocial goals, and department-level goals. Building on the findings of published bridge reports, we present a set of recommendations for STEM bridge programs in hopes of developing better bridges into college. PMID:29146667

  10. Operation STEM: Increasing Success and Improving Retention among Mathematically Underprepared Students in STEM

    ERIC Educational Resources Information Center

    Carver, Susan D.; Van Sickle, Jenna; Holcomb, John P.; Jackson, Debbie K.; Resnick, Andrew H.; Duffy, Stephen F.; Sridhar, Nigamanth; Marquard, Antoinette M.; Quinn, Candice M.

    2017-01-01

    In 2012, Cleveland State University implemented a comprehensive program, called Operation STEM (OpSTEM), funded by two National Science Foundation grants, federal work study, and Cleveland State University. Its goal is to increase retention and graduation rates among Science, Technology, Engineering, and Mathematics (STEM) students by helping them…

  11. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  12. Aural mapping of STEM concepts using literature mining

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Venkatesh

    Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.

  13. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    ERIC Educational Resources Information Center

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  14. Integrating STEM in Elementary Classrooms Using Model-Eliciting Activities: Responsive Professional Development for Mathematics Coaches and Teachers

    ERIC Educational Resources Information Center

    Baker, Courtney K.; Galanti, Terrie M.

    2017-01-01

    Background: This research highlights a school-university collaboration to pilot a professional development framework for integrating STEM in K-6 mathematics classrooms in a mid-Atlantic suburban school division. Because mathematics within STEM integration is often characterized as the calculations or the data representations in science classrooms,…

  15. Mathematics and Science Teachers' Use of and Confidence in Empirical Reasoning: Implications for STEM Teacher Preparation

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.; Rossi, Dara

    2015-01-01

    The recent trend to unite mathematically related disciplines (science, technology, engineering, and mathematics) under the broader umbrella of STEM education has advantages. In this new educational context of integration, however, STEM teachers need to be able to distinguish between sufficient proof and reasoning across different disciplines,…

  16. Assessing Critical-Analytical Listening Skills in Math and Engineering Students: An Exploratory Inquiry of How Analytical Listening Skills Can Positively Impact Learning

    ERIC Educational Resources Information Center

    Ferrari-Bridgers, Franca; Stroumbakis, Kostas; Drini, Merlinda; Lynch, Barbara; Vogel, Rosanne

    2017-01-01

    In this article, the researchers discuss the implementation of the Ferrari, Lynch, and Vogel Listening Test (FLVLT) to two STEM areas: Mathematics and Computer Science. The goal of the present study was to assess the improvement in students' mastery of critical listening skills and how listening can help students to retain information. After…

  17. NSF-OEDG Manoomin Science Camp Project: A Model for Engaging American Indian Students in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Dalbotten, Diana; Ito, Emi; Myrbo, Amy; Pellerin, Holly; Greensky, Lowana; Howes, Thomas; Wold, Andrew; Breckenridge, Rachel; Drake, Christa; Bucar, Leslie; Kowalczak, Courtney; Lindner, Cameron; Olson, Carolyn; Ray, T. J.; Rhodes, Richard; Woods, Philip; Yellowman, Tom

    2014-01-01

    The Manoomin ''wild rice'' Science Camp program, a partnership between the University of Minnesota, the Fond du Lac Tribal and Community College, and the Fond du Lac Band of Lake Superior Chippewa is an example of how a community-based participatory research project can become the catalyst for STEM learning for an entire community, providing…

  18. Research and Teaching: Methods for Creating and Evaluating 3D Tactile Images to Teach STEM Courses to the Visually Impaired

    ERIC Educational Resources Information Center

    Hasper, Eric; Windhorst, Rogier; Hedgpeth, Terri; Van Tuyl, Leanne; Gonzales, Ashleigh; Martinez, Britta; Yu, Hongyu; Farkas, Zolton; Baluch, Debra P.

    2015-01-01

    Project 3D IMAGINE or 3D Image Arrays to Graphically Implement New Education is a pilot study that researches the effectiveness of incorporating 3D tactile images, which are critical for learning science, technology, engineering, and mathematics, into entry-level lab courses. The focus of this project is to increase the participation and…

  19. Examining the Impact of Using the Science Writing Heuristic Approach in Learning Science: A Cluster Randomized Study

    ERIC Educational Resources Information Center

    Hand, Brian; Therrien, William; Shelley, Mack

    2013-01-01

    The U.S. began a new national standards movement in the area of K-12 science education curriculum reform in the 1980s known as "Science for All" to develop a population that is literate in economic and democratic agendas for a global market focused on science, technology, engineering, and mathematics (STEM) (Duschl, 2008). The National…

  20. Learning from Our Global Competitors: A Comparative Analysis of Science, Technology, Engineering and Mathematics (STEM) Education Pipelines in the United States, Mainland China and Taiwan

    ERIC Educational Resources Information Center

    Chow, Christina M.

    2011-01-01

    Maintaining a competitive edge within the 21st century is dependent on the cultivation of human capital, producing qualified and innovative employees capable of competing within the new global marketplace. Technological advancements in communications technology as well as large scale, infrastructure development has led to a leveled playing field…

  1. Public Views on the Gendering of Mathematics and Related Careers: International Comparisons

    ERIC Educational Resources Information Center

    Forgasz, Helen; Leder, Gilah; Tan, Hazel

    2014-01-01

    Mathematics continues to be an enabling discipline for Science, Technology, Engineering, and Mathematics (STEM)-based university studies and related careers. Explanatory models for females' underrepresentation in higher level mathematics and STEM-based courses comprise learner-related and environmental variables--including societal beliefs. Using…

  2. RETHINKING ACTIVE LEARNING AS A PARADIGM OF OUR TIMES: TOWARDS POETICIZING AND HUMANIZING NATURAL SCIENCES IN THE AGE OF STEM

    PubMed Central

    Uskoković, Vuk

    2018-01-01

    Though practiced since ancient times, active learning has emerged as the dominant educational paradigm in the 1990s. Methodologically, it is more suitable to teach critical thinking skills compared to the classical lecturing approach. On the other hand, most university settings, including those focusing heavily on STEM (Science-Engineering-Technology-Mathematics), have embraced it unreservedly, offering no forums to analyze its pros and cons and thus provide conditions for its progress. This constitutes a fundamental paradox. In this essay, specific drawbacks associated with the practical applications of this educational paradigm are discussed. They include the promotion of mediocrity through classroom “democratization”; the suppression of solitary reflections and introspectiveness, along with the creative potentials associated therewith; the inhibition of extraordinariness through excessive teamwork; and the incompatibility with the dominant learning assessment strategies. It is argued that the absorption of ideas stemming from domains distant from pedagogy and one’s field of research are needed to revitalize the current state of active learning practice. Proposed solutions include the revival of the magic of live lecturing through training teachers in spoken poetry and performance arts; integrating research projects into teaching time; and restructuring the concept of the classroom toward a space and context more reflective of life and more conducive to the learning experience. Continued discussion over the weaknesses of active learning practices are needed to ensure the unhindered progress of this teaching methodology that is currently unrivaled in its popularity and prospect. PMID:29899595

  3. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  4. Estuarine Ecosystems: Using T & E Signature Approaches to Support STEM Integration

    ERIC Educational Resources Information Center

    McCulloch, Allison W.; Ernst, Jeremy V.

    2012-01-01

    STEM-based understandings and experiences that prepare learners beyond the classroom are of imminent need, as today's STEM education students are tomorrow's leaders in science, technology, engineering, mathematics, and education (Prabhu, 2009). Integrative STEM education signifies the intentional integration of science and mathematics with the…

  5. Views of Science and Mathematics Pre-Service Teachers Regarding STEM

    ERIC Educational Resources Information Center

    Cinar, Sinan; Pirasa, Nimet; Sadoglu, Gunay Palic

    2016-01-01

    STEM education is an integrated approach that combines science, technology, engineering and mathematics disciplines with different subjects in real life situations, together and simultaneously. The views of pre-service teachers introduced to STEM by means of workshops that presented information and scales on STEM education regarding the subject…

  6. STEM: Science Technology Engineering Mathematics. State-Level Analysis

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    The science, technology, engineering, and mathematics (STEM) state-level analysis provides policymakers, educators, state government officials, and others with details on the projections of STEM jobs through 2018. This report delivers a state-by-state snapshot of the demand for STEM jobs, including: (1) The number of forecast net new and…

  7. Enhancing Mathematics (STEM) Teacher Education in Regional Australia: Pedagogical Interactions and Affect

    ERIC Educational Resources Information Center

    Woolcott, Geoff; Yeigh, Tony

    2015-01-01

    This article reports on initial findings, including the mathematics components, of a multi-institutional Science, Technology, Engineering, and Mathematics (STEM) project, "It's part of my life: Engaging university and community to enhance science and mathematics education." This project is focussed on improving the scientific and…

  8. The Federal Science, Technology, Engineering, and Mathematics (STEM) Education Portfolio. A Report from the Federal Inventory of STEM Education Fast-Track Action Committee Committee on STEM Education National Science and Technology Council

    ERIC Educational Resources Information Center

    Executive Office of the President, 2011

    2011-01-01

    The National Science and Technology Council (NSTC) Committee on STEM Education (CoSTEM) coordinates Federal programs and activities in support of STEM (science, technology, engineering and mathematics) education pursuant to the requirements of Sec. 101 of the America COMPETES (Creating Opportunities to Meaningfully Promote Excellence in Technology…

  9. Cool Astronomy: Education and Public Outreach for the WISE mission

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.

    2011-01-01

    The Education and Public Outreach (E/PO) program of the Wide-field Infrared Survey Explorer (WISE) aims to educate and engage students, teachers, and the general public in the endeavor of science. We bring a collection of accomplished professionals in formal and informal astronomy education from around the nation to create learning materials and experiences that appeal to broad audiences. Our E/PO program trains teachers in science, technology, engineering, and mathematics (STEM) topics related to WISE; creates standards-based classroom resources and lessons using WISE data and WISE-related STEM topics; develops interactive programming for museums and science centers; and inspires the public with WISE science and images.

  10. Design Steps for Physic STEM Education Learning in Secondary School

    NASA Astrophysics Data System (ADS)

    Teevasuthonsakul, C.; Yuvanatheeme, V.; Sriput, V.; Suwandecha, S.

    2017-09-01

    This study aimed to develop the process of STEM Education activity design used in Physics subjects in the Thai secondary schools. The researchers have conducted the study by reviewing the literature and related works, interviewing Physics experts, designing and revising the process accordingly, and experimenting the designed process in actual classrooms. This brought about the five-step process of STEM Education activity design which Physics teachers applied to their actual teaching context. The results from the after-class evaluation revealed that the students’ satisfaction level toward Physics subject and critical thinking skill was found higher statistically significant at p < .05. Moreover, teachers were advised to integrate the principles of science, mathematics, technology, and engineering design process as the foundation when creating case study of problems and solutions.

  11. Think 500, not 50! A scalable approach to student success in STEM.

    PubMed

    LaCourse, William R; Sutphin, Kathy Lee; Ott, Laura E; Maton, Kenneth I; McDermott, Patrice; Bieberich, Charles; Farabaugh, Philip; Rous, Philip

    2017-01-01

    UMBC, a diverse public research university, "builds" upon its reputation in producing highly capable undergraduate scholars to create a comprehensive new model, STEM BUILD at UMBC. This program is designed to help more students develop the skills, experience and motivation to excel in science, technology, engineering, and mathematics (STEM). This article provides an in-depth description of STEM BUILD at UMBC and provides the context of this initiative within UMBC's vision and mission. The STEM BUILD model targets promising STEM students who enter as freshmen or transfer students and do not qualify for significant university or other scholarship support. Of primary importance to this initiative are capacity, scalability, and institutional sustainability, as we distill the advantages and opportunities of UMBC's successful scholars programs and expand their application to more students. The general approach is to infuse the mentoring and training process into the fabric of the undergraduate experience while fostering community, scientific identity, and resilience. At the heart of STEM BUILD at UMBC is the development of BUILD Group Research (BGR), a sequence of experiences designed to overcome the challenges that undergraduates without programmatic support often encounter (e.g., limited internship opportunities, mentorships, and research positions for which top STEM students are favored). BUILD Training Program (BTP) Trainees serve as pioneers in this initiative, which is potentially a national model for universities as they address the call to retain and graduate more students in STEM disciplines - especially those from underrepresented groups. As such, BTP is a research study using random assignment trial methodology that focuses on the scalability and eventual incorporation of successful measures into the traditional format of the academy. Critical measures to transform institutional culture include establishing an extensive STEM Living and Learning Community to increase undergraduate retention, expanding the adoption of "active learning" pedagogies to increase the efficiency of learning, and developing programs to train researchers to effectively mentor a greater portion of the student population. The overarching goal of STEM BUILD at UMBC is to retain students in STEM majors and better prepare them for post baccalaureate, graduate, or professional programs as well as careers in biomedical and behavioral research.

  12. Accomplishment in Science, Technology, Engineering, and Mathematics (STEM) and Its Relation to STEM Educational Dose: A 25-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Wai, Jonathan; Lubinski, David; Benbow, Camilla P.; Steiger, James H.

    2010-01-01

    Two studies examined the relationship between precollegiate advanced/enriched educational experiences and adult accomplishments in science, technology, engineering, and mathematics (STEM). In Study 1, 1,467 13-year-olds were identified as mathematically talented on the basis of scores [greater than or equal to] 500 (top 0.5%) on the math section…

  13. STEM Images Revealing STEM Conceptions of Pre-Service Chemistry and Mathematics Teachers

    ERIC Educational Resources Information Center

    Akaygun, Sevil; Aslan-Tutak, Fatma

    2016-01-01

    Science, technology, engineering, and mathematics (STEM) education has been an integral part of many countries' educational policies. In last decade, various practices have been implemented to make STEM areas valuable for 21st century generation. These actions require reconsideration of both pre- and in-service teacher education because those who…

  14. National Survey of STEM High Schools' Curricular and Instructional Strategies and Practices

    ERIC Educational Resources Information Center

    Forman, Jennifer; Gubbins, Elizabeth Jean; Villanueva, Merzili; Massicotte, Cindy; Callahan, Carolyn; Tofel-Grehl, Colby

    2015-01-01

    A limited number of highly selective high schools specializing in science, technology, engineering and mathematics (STEM) education have existed for many decades, encouraging youth with identified STEM talent to pursue careers as STEM leaders and innovators. As members of the National Consortium for Specialized Secondary Schools of Mathematics,…

  15. Utility-Value Intervention with Parents Increases Students' STEM Preparation and Career Pursuit

    ERIC Educational Resources Information Center

    Rozek, Christopher S.; Svoboda, Ryan C.; Harackiewicz, Judith M.; Hulleman, Christopher S.; Hyde, Janet S.

    2017-01-01

    During high school, developing competence in science, technology, engineering, and mathematics (STEM) is critically important as preparation to pursue STEM careers, yet students in the United States lag behind other countries, ranking 35th in mathematics and 27th in science achievement internationally. Given the importance of STEM careers as…

  16. Redefining Science, Technology, Engineering, and Mathematics (STEM) Educational Opportunities for Underserved and Underrepresented Students at NASA

    ERIC Educational Resources Information Center

    Hackler, Amanda Smith

    2011-01-01

    Underserved and underrepresented students consistently leave science, technology, engineering, and mathematics (STEM) degree fields to pursue less demanding majors. This perpetual problem slowed the growth in STEM degree fields (United States Department of Labor, 2007). Declining enrollment in STEM degree fields among underserved and…

  17. Integrated STEM Assessment Model

    ERIC Educational Resources Information Center

    Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.

    2017-01-01

    Previous research identified a strong correlation between mathematics and science performance albeit for small samples of students. Even though there was a high correlation between mathematics and science performance, researchers examining students' STEM achievement investigated mathematics and science achievement separately. The present study…

  18. Development of a Short-Form Measure of Science and Technology Self-efficacy Using Rasch Analysis

    NASA Astrophysics Data System (ADS)

    Lamb, Richard L.; Vallett, David; Annetta, Leonard

    2014-10-01

    Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today's students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in Thinking constructively about science, technology, and society education. State University of New York, Albany, 1992; Enyedy and Goldberg 2004; Mandinach and Lewis 2006). In addition, despite considerable pressure to promote the placement of students into STEM career fields, U.S. placement is relatively low (Sadler et al. in Sci Educ 96(3):411-427, 2012; Subotnik et al. in Identifying and developing talent in science, technology, engineering, and mathematics (STEM): an agenda for research, policy and practice. International handbook, part XII, pp 1313-1326, 2009). One explanation for the decline of STEM career placement in the U.S. rests with low student affect concerning STEM concepts and related content, especially in terms of self-efficacy. Researchers define self-efficacy as the internal belief that a student can succeed in learning, and that understanding student success lies in students' externalized actions or behaviors (Bandura in Psychol Rev 84(2):191-215, 1977). Evidence suggests that high self-efficacy in STEM can result in student selection of STEM in later educational endeavors, culminating in STEM career selection (Zeldin et al. in J Res Sci Teach 45(9):1036-1058, 2007). However, other factors such as proficiency play a role as well. The lack of appropriate measures of self-efficacy can greatly affect STEM career selection due to inadequate targeting of this affective trait and loss of opportunity for early intervention by educators. Lack of early intervention decreases selection of STEM courses and careers (Valla and Williams in J Women Minor Sci Eng 18(1), 2012; Lent et al. in J Couns Psychol 38(4), 1991). Therefore, this study developed a short-form measure of self-efficacy to help identify students in need of intervention.

  19. Utility-value intervention with parents increases students' STEM preparation and career pursuit.

    PubMed

    Rozek, Christopher S; Svoboda, Ryan C; Harackiewicz, Judith M; Hulleman, Chris S; Hyde, Janet S

    2017-01-31

    During high school, developing competence in science, technology, engineering, and mathematics (STEM) is critically important as preparation to pursue STEM careers, yet students in the United States lag behind other countries, ranking 35th in mathematics and 27th in science achievement internationally. Given the importance of STEM careers as drivers of modern economies, this deficiency in preparation for STEM careers threatens the United States' continued economic progress. In the present study, we evaluated the long-term effects of a theory-based intervention designed to help parents convey the importance of mathematics and science courses to their high-school-aged children. A prior report on this intervention showed that it promoted STEM course-taking in high school; in the current follow-up study, we found that the intervention improved mathematics and science standardized test scores on a college preparatory examination (ACT) for adolescents by 12 percentile points. Greater high-school STEM preparation (STEM course-taking and ACT scores) was associated with increased STEM career pursuit (i.e., STEM career interest, the number of college STEM courses, and students' attitudes toward STEM) 5 y after the intervention. These results suggest that the intervention can affect STEM career pursuit indirectly by increasing high-school STEM preparation. This finding underscores the importance of targeting high-school STEM preparation to increase STEM career pursuit. Overall, these findings demonstrate that a motivational intervention with parents can have important effects on STEM preparation in high school, as well as downstream effects on STEM career pursuit 5 y later.

  20. Utility-value intervention with parents increases students’ STEM preparation and career pursuit

    PubMed Central

    Rozek, Christopher S.; Svoboda, Ryan C.; Harackiewicz, Judith M.; Hulleman, Chris S.; Hyde, Janet S.

    2017-01-01

    During high school, developing competence in science, technology, engineering, and mathematics (STEM) is critically important as preparation to pursue STEM careers, yet students in the United States lag behind other countries, ranking 35th in mathematics and 27th in science achievement internationally. Given the importance of STEM careers as drivers of modern economies, this deficiency in preparation for STEM careers threatens the United States’ continued economic progress. In the present study, we evaluated the long-term effects of a theory-based intervention designed to help parents convey the importance of mathematics and science courses to their high-school–aged children. A prior report on this intervention showed that it promoted STEM course-taking in high school; in the current follow-up study, we found that the intervention improved mathematics and science standardized test scores on a college preparatory examination (ACT) for adolescents by 12 percentile points. Greater high-school STEM preparation (STEM course-taking and ACT scores) was associated with increased STEM career pursuit (i.e., STEM career interest, the number of college STEM courses, and students’ attitudes toward STEM) 5 y after the intervention. These results suggest that the intervention can affect STEM career pursuit indirectly by increasing high-school STEM preparation. This finding underscores the importance of targeting high-school STEM preparation to increase STEM career pursuit. Overall, these findings demonstrate that a motivational intervention with parents can have important effects on STEM preparation in high school, as well as downstream effects on STEM career pursuit 5 y later. PMID:28096393

  1. Comparison of normalized gain and Cohen's d for analyzing gains on concept inventories

    NASA Astrophysics Data System (ADS)

    Nissen, Jayson M.; Talbot, Robert M.; Nasim Thompson, Amreen; Van Dusen, Ben

    2018-06-01

    Measuring student learning is a complicated but necessary task for understanding the effectiveness of instruction and issues of equity in college science, technology, engineering, and mathematics (STEM) courses. Our investigation focused on the implications on claims about student learning that result from choosing between one of two commonly used metrics for analyzing shifts in concept inventories. The metrics are normalized gain (g ), which is the most common method used in physics education research and other discipline based education research fields, and Cohen's d , which is broadly used in education research and many other fields. Data for the analyses came from the Learning About STEM Student Outcomes (LASSO) database and included test scores from 4551 students on physics, chemistry, biology, and math concept inventories from 89 courses at 17 institutions from across the United States. We compared the two metrics across all the concept inventories. The results showed that the two metrics lead to different inferences about student learning and equity due to the finding that g is biased in favor of high pretest populations. We discuss recommendations for the analysis and reporting of findings on student learning data.

  2. Principles and Practices Fostering Inclusive Excellence: Lessons from the Howard Hughes Medical Institute’s Capstone Institutions

    PubMed Central

    DiBartolo, Patricia Marten; Gregg-Jolly, Leslie; Gross, Deborah; Manduca, Cathryn A.; Iverson, Ellen; Cooke, David B.; Davis, Gregory K.; Davidson, Cameron; Hertz, Paul E.; Hibbard, Lisa; Ireland, Shubha K.; Mader, Catherine; Pai, Aditi; Raps, Shirley; Siwicki, Kathleen; Swartz, Jim E.

    2016-01-01

    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute’s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others’ efforts to increase access to and persistence in STEM in higher education. PMID:27562960

  3. Implementation of Performance Assessment in STEM (Science, Technology, Engineering, Mathematics) Education to Detect Science Process Skill

    NASA Astrophysics Data System (ADS)

    Septiani, A.; Rustaman, N. Y.

    2017-02-01

    A descriptive study about the implementation of performance assessment in STEM based instruction was carried out to investigate the tenth grade of Vocational school students’ science process skills during the teaching learning processes. A number of tenth grade agriculture students was involved as research subjects selected through cluster random sampling technique (n=35). Performance assessment was planned on skills during the teaching learning process through observation and on product resulted from their engineering practice design. The procedure conducted in this study included thinking phase (identifying problem and sharing idea), designing phase, construction phase, and evaluation phase. Data was collected through the use of science process skills (SPS) test, observation sheet on student activity, as well as tasks and rubrics for performance assessment during the instruction. Research findings show that the implementation of performance assessment in STEM education in planting media could detect students science process skills better from the observation individually compared through SPS test. It was also found that the result of performance assessment was diverse when it was correlated to each indicator of SPS (strong and positive; weak and positive).

  4. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  5. Discoveries and Breakthroughs Inside Science:Informal Education for STEM and AGU Related Sciences

    NASA Astrophysics Data System (ADS)

    Lorditch, E.

    2007-12-01

    As a primary source of news, more people rely on local TV news than any other medium for their news and information. As a result, The American Geophysical Union has partnered with the American Institute of Physics in their production of Discoveries and Breakthroughs Inside Science (DBIS). DBIS is syndicated science news service that distributes 12, 90-second science news segments to over 90 local TV stations throughout the USA each month. While the segments cover a wide range of STEM (science, technology, engineering, and mathematics)topics, approximately 4 of these segments each month focus on research topics of interest to AGU members. Meet DBIS's senior science editor and learn about DBIS. Find out how you can participate in a DBIS segment, help with DBIS production, learn how DBIS segment topics are chosen, and hear why the AGU got involved with DBIS and how they work with the program.

  6. Department of Everything: Department of Defense Spending That Has Little to Do With National Security

    DTIC Science & Technology

    2012-11-01

    and Mathematics (STEM) programs that duplicate the work of the Department of Education and local school districts ($10.7 billion). The Department of...of science, technology, engineering, and mathematics (STEM).16 The Pentagon recently joined the cooking show craze by partnering with the...of DOD Science, Technology, Engineering, and Mathematics (STEM) Programs,” 2010. 17 The Pentagon Channel, “The Grill Sergeants,” http

  7. Academic Success of Urban African American Elementary Students in Title I Schools

    ERIC Educational Resources Information Center

    Anderson, James Sebastian

    2017-01-01

    The researcher investigated the achievement of third- and fifth-grade urban African American students who attended science, technology, engineering, and mathematics (STEM), Non-STEM, and Theme Title I schools in science and mathematics on the 2015 Georgia Milestones Assessment. The researcher used data from 29 Non-STEM, 14 STEM, and 10 Theme…

  8. Progress Report on Coordinating Federal Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Executive Office of the President, 2016

    2016-01-01

    As called for in the America COMPETES Reauthorization Act of 2010, the National Science and Technology Council's (NSTC) Committee on STEM Education (CoSTEM) released, in May of 2013, the Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5- Year Strategic Plan (Strategic Plan). As required by the Act, this report includes…

  9. Involvement of African-American Girls in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Nkere, Nsidi

    2016-01-01

    A qualitative case study was conducted by examining the perceptions of fifth-grade African American girls about their experiences with science, technology, engineering and mathematics (STEM) education and potential for STEM as a future career. As the United States suffers from waning participation across all demographics in STEM and a high level…

  10. Science, Technology, Engineering, Mathematics (STEM): Catalyzing Change Amid the Confusion

    ERIC Educational Resources Information Center

    Barakos, Lynn; Lujan, Vanessa; Strang, Craig

    2012-01-01

    Over the past eight years or so, educators have struggled to make sense of the many views and definitions of science, technology, engineering, and mathematics (STEM) education and what constitutes quality in STEM practices. The multitude of recent STEM funding opportunities has done little to create a common understanding about how to best engage…

  11. How to Motivate US Students to Pursue STEM (Science, Technology, Engineering and Mathematics) Careers

    ERIC Educational Resources Information Center

    Hossain, Md. Mokter; G. Robinson, Michael

    2012-01-01

    STEM (science, technology, engineering and mathematics) has been a powerful engine of prosperity in the US since World War II. Currently, American students' performances and enthusiasm in STEM education are inadequate for the US to maintain its leadership in STEM professions unless the government takes more actions to motivate a new generation of…

  12. The Impact of an Authentic Science Experience on STEM Identity: A Preliminary Analysis of YouthAstroNet and MicroObservatory Telescope Network Participant Data

    NASA Astrophysics Data System (ADS)

    Dussault, Mary E.; Wright, Erika A.; Sadler, Philip; Sonnert, Gerhard; ITEAMS II Team

    2018-01-01

    Encouraging students to pursue careers in science, technology, engineering, and mathematics (STEM) is a high priority for national K-12 education improvement initiatives in the United States. Many educators have claimed that a promising strategy for nurturing early student interest in STEM is to engage them in authentic inquiry experiences. “Authentic” refers to investigations in which the questions are of genuine interest and importance to students, and the inquiry more closely resembles the way real science is done. Science education researchers and practitioners at the Harvard-Smithsonian Center for Astrophysics have put this theory into action with the development of YouthAstroNet, a nationwide online learning community of middle-school aged students, educators, and STEM professionals that features the MicroObservatory Robotic Telescope Network, professional image analysis software, and complementary curricula for use in a variety of learning settings. This preliminary study examines factors that influence YouthAstroNet participants' Science Affinity, STEM Identity, and STEM Career Interest, using the matched pre/post survey results of 261 participants as the data source. The pre/post surveys included some 40 items measuring affinity, identity, knowledge, and career interest. In addition, the post intervention instrument included a number of items in which students reported the instructional strategies they experienced as part of the program. A simple analysis of pre-post changes in affinity and interest revealed very little significant change, and for those items where a small pre-post effect was observed, the average change was most often negative. However, after accounting for students' different program treatment experiences and for their prior attitudes and interests, a predictor of significant student gains in Affinity, STEM Identity, Computer/Math Identity, and STEM Career Interest could be identified. This was the degree to which students reported using and experiencing the primary "authentic" learning activities of the YouthAstroNet program.

  13. Science, Technology, Engineering, and Mathematics (STEM) Curriculum and Seventh Grade Mathematics and Science Achievement

    ERIC Educational Resources Information Center

    James, Jamie Smith

    2014-01-01

    The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…

  14. Developing Mentors: Adult participation, practices, and learning in an out-of-school time STEM program

    NASA Astrophysics Data System (ADS)

    Scipio, Deana Aeolani

    This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In the conclusion, I offer a set of design principles for mentor learning gleaned from empirical findings from the last two empirical chapters on how mentors can productively support the science learning of youth. The findings from this dissertation offer implications for designers of learning environments seeking to leverage experts for mentoring while engaging youth in contemporary science practices in order to broaden participation for youth and adult participants from non-dominant communities in STEM disciplines.

  15. Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit.

    PubMed

    Ellis, Jessica; Fosdick, Bailey K; Rasmussen, Chris

    2016-01-01

    The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%.

  16. Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit

    PubMed Central

    Ellis, Jessica; Fosdick, Bailey K.; Rasmussen, Chris

    2016-01-01

    The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%. PMID:27410262

  17. Do Biology Majors Really Differ from Non–STEM Majors?

    PubMed Central

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students—including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences—if any exist—between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non–STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non–STEM majors are not unilaterally science averse; non–STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non–STEM majors are less likely than biology majors to see science as personally relevant; and non–STEM majors populations are likely to be more diverse—with respect to incoming knowledge, perceptions, backgrounds, and skills—than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. PMID:28798210

  18. Indigenous cultural contexts for STEM experiences: snow snakes' impact on students and the community

    NASA Astrophysics Data System (ADS)

    Miller, Brant G.; Roehrig, Gillian

    2018-03-01

    Opportunities for American Indian youth to meaningfully engage in school-based science, technology, engineering, and mathematics (STEM) experiences have historically been inadequate. As a consequence, American Indian students perform lower on standardized assessments of science education than their peers. In this article we describe the emergence of meaning for students—as well as their community—resulting from Indigenous culturally-based STEM curriculum that used an American Indian tradition as a focal context. Specifically, the game of snow snakes ( Gooneginebig in Ojibwe) afforded an opportunity for STEM and culturally-based resources to work in unison. A case study research design was used with the bounded case represented by the community associated with the snow snake project. The research question guiding this study was: What forms of culturally relevant meaning do students and the community form as a result of the snow snake game? Results indicate evidence of increased student and community engagement through culturally-based STEM experiences in the form of active participation and the rejuvenation of a traditional game. Implications are discussed for using culturally-based contexts for STEM learning.

  19. Examining the Effects of Integrated Science, Engineering, and Nonfiction Literature on Student Learning in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama

    In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning in all three of the content areas. These results suggest that integrating nonfiction literature with science or science and engineering instruction can be an effective strategy in improving student learning in elementary classrooms.

  20. Ready, Aim, Fire Your Cannons!

    ERIC Educational Resources Information Center

    Enderson, Mary C.

    2015-01-01

    This article presents a science, technology, engineering, and mathematics (STEM) activity, building an air cannon, in a mathematics classroom. It describes an investigation grounded in STEM concepts that elementary and middle school teachers carried out to think about ways of implementing STEM activities into their instruction. This particular…

  1. Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college

    NASA Astrophysics Data System (ADS)

    LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.

    2012-04-01

    Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.

  2. Volunteer Educators' Influence on Youth Participation and Learning in 4-H STEM Learning by Design Programs

    NASA Astrophysics Data System (ADS)

    Worker, Steven Michael

    The purpose of this study was to describe the co-construction of three 4-H STEM (science, technology, engineering, and mathematics) learning by design programs by volunteer educators and youth participants in the 4-H Youth Development Program. The programs advanced STEM learning through design, a pedagogical approach to support youth in planning, designing, and making shareable artifacts. This pedagogical approach is a special case of project-based learning, related to the practices found in the science learning through design literature as well as the making and tinkering movements. Specifically, I explored adult volunteer educators' roles and pedagogical strategies implementing the 4-H Junk Drawer Robotics curriculum (Mahacek, Worker, and Mahacek, 2011) and how that, in turn, afforded and constrained opportunities for youth to display or report engagement in design practices; learning of STEM content; strengthening tool competencies; dispositions of resilience, reciprocity, and playfulness; and psychological ownership. The curriculum targeted middle school youth with a sequence of science inquiry activities and engineering design challenges. This study employed naturalist and multiple-case study methodology relying on participant observations and video, interviews with educators, and focus groups with youth within three 4-H educational robotics programs organized by adult 4-H volunteer educators. Data collection took place in 2014 and 2015 at Santa Clara with an educator and seven youth; Solano with three educators and eight youth; and Alameda with an educator and seven youth. Data analysis revealed six discrete categories of pedagogy and interactions that I labeled as participation structures that included lecture, demonstration, learning activity, group sharing, scripted build, and design & build. These participation structures were related to the observed pedagogical practices employed by the educators. There was evidence of youth engagement in design practices, STEM content learning, strengthening of tool competencies, learning dispositions, and psychological ownership - however, their expression, manifestation, and opportunities were afforded and/or constrained by the various participation structures. Furthermore, conflicts were evidenced in the use of participation structures; emphasis of educators on formal reasoning and planning versus youth preference for hands-on tinkering; and tensions amongst youth peers while engaging in design teams. Two themes emerged regarding the educators' pedagogy: adaptations in response to structural and curricular constraints and pedagogical approach influenced by self-identification with a professional field of engineering. This study contributes to our understanding of STEM learning through design in out-of-school time. This research helps clarify the tensions among major co-actors, youth, educator, and curriculum, as the learning environment was co-constructed and how that, in turn, afforded opportunities for youth to learn and develop. This study illuminated the complex negotiations between these co-actors and explored questions about who can and does decide the nature of the activity structures. These co-actors were not without conflict, thus suggesting that these spaces and pedagogies do not exemplify STEM teaching on their own, but neither do they preclude practices that deepen young people's interest and motivation for STEM learning.

  3. Can Parents Influence Children's Mathematics Achievement and Persistence in STEM Careers?

    ERIC Educational Resources Information Center

    Ing, Marsha

    2014-01-01

    This study explores the relationship between parental motivational practices, Children's mathematics achievement trajectories, and persistence in science, technology, engineering, and mathematics (STEM) careers. Nationally representative longitudinal survey data were analyzed using latent growth curve analysis. Findings indicate that…

  4. The Field-tested Learning Assessment Guide (FLAG): A Community Repository of Proven Alternative Assessment Instruments for STEM Education

    NASA Astrophysics Data System (ADS)

    Zeilik, M.; Garvin-Doxas, K.

    2003-12-01

    FLAG, the Field-tested Learning Assessment Guide (http://www.flaguide.org/) is a NSF funded website that offers broadly-applicable, self-contained modular classroom assessment techniques (CATs) and discipline-specific tools for STEM instructors creating new approaches to evaluate student learning, attitudes and performance. In particular, the FLAG contains proven techniques for alterative assessments---those needed for reformed, innovative STEM courses. Each tool has been developed, tested and refined in real classrooms at colleges and universities. The FLAG also contains an assessment primer, a section to help you select the most appropriate assessment technique(s) for your course goals, and other resources. In addition to references on instrument development and field-tested instruments on attitudes towards science, the FLAG also includes discipline-specific tools in Physics, Astronomy, Biology, and Mathematics. Building of the Geoscience collection is currently under way with the development of an instrument for detecting misconceptions of incoming freshmen on Space Science, which is being developed with the help of the Committee on Space Science and Astronomy of the American Association of Physics Teachers. Additional field-tested resources from the Geosciences are solicited from the community. Contributions should be sent to Michael Zeilik, zeilik@la.unm.edu. This work has been supported in part by NSF grant DUE 99-81155.

  5. Hierarchical Mentoring: A Transformative Strategy for Improving Diversity and Retention in Undergraduate STEM Disciplines

    NASA Astrophysics Data System (ADS)

    Wilson, Zakiya S.; Holmes, Lakenya; Degravelles, Karin; Sylvain, Monica R.; Batiste, Lisa; Johnson, Misty; McGuire, Saundra Y.; Pang, Su Seng; Warner, Isiah M.

    2012-02-01

    In the United States, less than half of the students who enter into science, technology, engineering, and mathematics (STEM) undergraduate curricula as freshmen will actually graduate with a STEM degree. There is even greater disparity in the national STEM graduation rates of students from underrepresented groups with approximately three-fourths of minority students leaving STEM disciplines at the undergraduate level. A host of programs have been designed and implemented to model best practices in retaining students in STEM disciplines. The Howard Hughes Medical Institute (HHMI) Professors Program at Louisiana State University, under leadership of HHMI Professor Isiah M. Warner, represents one of these programs and reports on a mentoring model that addresses the key factors that impact STEM student attrition at the undergraduate level. By integrating mentoring and strategic academic interventions into a structured research program, an innovative model has been developed to guide STEM undergraduate majors in adopting the metacognitive strategies that allow them to excel in their programs of study, as they learn to appreciate and understand science more completely. Comparisons of the persistence of participants and nonparticipants in STEM curricular, at the host university and with other national universities and colleges, show the impact of the model's salient features on improving STEM retention through graduation for all students, particularly those from underrepresented groups.

  6. Persistence in STEM: An investigation of the relationship between high school experiences in science and mathematics and college degree completion in STEM fields

    NASA Astrophysics Data System (ADS)

    Maltese, Adam V.

    While the number of Bachelor's degrees awarded annually has nearly tripled over the past 40 years (NSF, 2008), the same cannot be said for degrees in the STEM (science, technology, engineering and mathematics) fields. The Bureau of Labor Statistics projects that by the year 2014 the combination of new positions and retirements will lead to 2 million job openings in STEM (BLS, 2005). Thus, the research questions I sought to answer with this study were: (1)What are the most common enrollment patterns for students who enter into and exit from the STEM pipeline during high school and college? (2) Controlling for differences in student background and early interest in STEM careers, what are the high school science and mathematics classroom experiences that characterize student completion of a college major in STEM? Using data from NELS:88 I analyzed descriptive statistics and completed logistic regressions to gain an understanding of factors related to student persistence in STEM. Approximately 4700 students with transcript records and who participated in all survey rounds were included in the analyses. The results of the descriptive analysis demonstrated that most students who went on to complete majors in STEM completed at least three or four years of STEM courses during high school, and enrolled in advanced high school mathematics and science courses at higher rates. At almost every pipeline checkpoint indicators of the level of coursework and achievement were significant in predicting student completion of a STEM degree. The results also support previous research that showed demographic variables have little effect on persistence once the sample is limited to those who have the intrinsic ability and desire to complete a college degree. The most significant finding is that measures of student interest and engagement in science and mathematics were significant in predicting completion of a STEM degree, above and beyond the effects of course enrollment and performance. A final analysis, which involved the comparison of descriptive statistics for students who switched into and out of the STEM pipeline during high school, suggested that attitudes toward mathematics and science play a major role in choices regarding pipeline persistence.

  7. Development of an Instrument to Assess Attitudes toward Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Harwell, Michael; Moore, Tamara

    2014-01-01

    There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4-6)…

  8. Astronomy4Kids: Extending STEM learning to the youngest student through an online educational outreach program

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Astronomy4Kids is an online video series aimed at filling the void of effective and engaging education tools within early childhood learning. Much discussion and research has been conducted on the significance of early learning, with general trends showing significant benefits to early introductions to language, mathematics, and general science concepts. Ultimately, when ideas are introduced to a child at a young age, that child is better prepared for when the concept is re-introduced in its entirety later. National agencies—such as the AAS and NSF—have implemented Science, Technology, Engineering, and Math (STEM) initiatives to expand learning in these areas. However, despite these many resources, the education outreach available to the youngest learners (under the age of 8 or those from pre-school to about 2nd-grade) is seriously lacking. Astronomy4Kids was created to bridge this gap and provide succinct, creative-learning videos following the principles of Fred Rogers, the founder of preschool education video. We present ways to incorporate the freely accessible YouTube videos within various classroom ages and discuss how to use simple activities to promote physics, astronomy, and math learning. Current development, video statistics, and future work will be discussed. The freely accessible videos can be found at www.astronomy4kids.net.

  9. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    NASA Astrophysics Data System (ADS)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  10. Identifying and Nurturing Future Innovators in Science, Technology, Engineering, and Mathematics: A Review of Findings from the Study of Mathematically Precocious Youth

    ERIC Educational Resources Information Center

    Benbow, Camilla Persson

    2012-01-01

    Calls to strengthen education in science, technology, engineering, and mathematics (STEM) are underscored by employment trends and the importance of STEM innovation for the economy. The Study of Mathematically Precocious Youth (SMPY) has been tracking over 5,000 talented individuals longitudinally for 40 years, throwing light on critical questions…

  11. Facilitating Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields in Program Development

    ERIC Educational Resources Information Center

    Ejiwale, James A.

    2014-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  12. A STEM Exploration with Gears

    ERIC Educational Resources Information Center

    Deis, Timothy; Julius, Julie

    2017-01-01

    Science, engineering, and mathematics are fields that many students see as separate entities. But if these fields are combined with technology, they become STEM. This investigation provides a context and allows students to explore mathematics, science, and engineering within that context. It requires students to model with mathematics and find…

  13. Comparative Analyses of Discourse in Specialized STEM School Classes

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Callahan, Carolyn M.; Nadelson, Louis S.

    2017-01-01

    The authors detail the discourse patterns observed within mathematics and science classes at specialized STEM (science, technology, engineering, and mathematics) high schools. Analyses reveal that teachers in mathematics classes tended to engage their students in authoritative discourse while teachers in science classes tended to engage students…

  14. CTE's Role in Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    Hyslop, Alisha

    2010-01-01

    For the last several years, concern has been brewing about America's underinvestment and underperformance in science, technology, engineering and mathematics--the fields collectively known as STEM. STEM can be described as an initiative for securing America's leadership in science, technology, engineering and mathematics fields and identifying…

  15. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    DTIC Science & Technology

    2015-08-03

    in the fields of science and engineering. Certified by the Space Foundation educational program, FOGE has afterschool programs, summer camps and... educators enjoyed the science center learning extremely well and 20% stated they enjoyed the science centers quite well. 90% of the participants felt...extremely satisfied about the science inspiration presented within the STEMShip. 10% felt quite satisfied and inspired. 70% of the educators felt the

  16. The effectiveness of a head-heart-hands model for natural and environmental science learning in urban schools.

    PubMed

    Jagannathan, Radha; Camasso, Michael J; Delacalle, Maia

    2018-02-01

    We describe an environmental and natural science program called Nurture thru Nature (NtN) that seeks to improve mathematics and science performance of students in disadvantaged communities, and to increase student interest in Science, Technology, Engineering and Mathematics (STEM) careers. The program draws conceptual guidance from the Head-Heart-Hands model that informs the current educational movement to foster environmental understanding and sustainability. Employing an experimental design and data from seven cohorts of students, we find some promising, albeit preliminary, indications that the program can increase students' science knowledge and grades in mathematics, science and language arts. We discuss the special adaptations that environmental and sustainability education programs need to incorporate if they are to be successful in today's resource depleted urban schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. STEM: Science Technology Engineering Mathematics

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    The generative economic power and social influence of Science, Technology, Engineering, and Mathematics (STEM) has made the production of a capable science and engineering workforce a priority among business and policy leaders. They are rightly concerned that without a robust STEM workforce, the nation will become less competitive in the global…

  18. Research and Teaching: Project-Based Instruction with Future STEM Educators--An Interdisciplinary Approach

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2014-01-01

    This study documented the means by which STEM (science, technology, engineering, and mathematics) educators experienced the mathematics and science associated with understanding lunar phenomena. The article reports how well STEM education graduate students interacted with projectbased materials as they engaged in interdisciplinary teaching and…

  19. Perceived Mathematical Ability under Challenge: A Longitudinal Perspective on Sex Segregation among STEM Degree Fields

    ERIC Educational Resources Information Center

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite…

  20. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    ERIC Educational Resources Information Center

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  1. Mathematics, Engineering Science Achievement (MESA). Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Growing Science, Technology, Education, and Mathematics (STEM) talent Washington MESA--Mathematics Engineering Science Achievement--helps under-represented community college students excel in school and ultimately earn STEM bachelor's degrees. MESA has two key programs: one for K-12 students, and the other for community and technical college…

  2. Outcomes for engineering students delivering a STEM education and outreach programme

    NASA Astrophysics Data System (ADS)

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-11-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention, however, is given to what university students delivering the programmes gain from the experience. This paper seeks to illustrate the benefits of engineering students delivering STEM outreach programmes in schools. It reports on a qualitative case study of the experiences of two STEM Education and Outreach team members from a regional university in Australia. Content analysis of interview data highlighted not only the participants' motivations and perceived benefits of being involved in the STEM programme but also revealed the skills and attributes honed throughout the experience. Involvement in the STEM outreach programme resulted in the development of social and personal responsibility generic graduate attribute skills, evidenced through their motivations to be involved, the demonstration of understanding of teaching and learning, and application of science communication skills. This study demonstrates that designing and delivering STEM outreach programmes assists in the development of skills that will be beneficial when pursuing careers in engineering in the future.

  3. College Students' Persistence and Degree Completion in Science, Technology, Engineering, and Mathematics (STEM): The Role of Non-Cognitive Attributes of Self-Efficacy, Outcome Expectations, and Interest

    ERIC Educational Resources Information Center

    Aryee, Michael

    2017-01-01

    The lack of students' persistence (or student's effort to continue their academic studies until degree completion) in Science, Technology, Engineering, and Mathematics (STEM) and the attrition of STEM students as well as the shortage of STEM workers have gathered much attention from policy makers, governmental agencies, higher education…

  4. Helping All Students Become Einstein's Using Bibliotherapy When Teaching Mathematics to Prepare Students for a STEM World

    ERIC Educational Resources Information Center

    Furner, Joseph M.

    2017-01-01

    Today, being confident and having a sound understanding of mathematics is critical in an age of STEM. Teachers must play in important role in seeing that all students display their confidence in their ability to do mathematics. This paper explains the process of using bibliotherapy when teaching mathematics to address both the math anxious or the…

  5. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields.

    PubMed

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.

  6. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields

    PubMed Central

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees. PMID:26113823

  7. Science Technology Engineering and Math (STEM) Education MUST Begin in Early Childhood Education: A Systematic Analysis of Washington State Guidelines Used to Gauge the Development and Learning of Young Learners

    NASA Astrophysics Data System (ADS)

    Briseno, Luis Miguel

    This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.

  8. Applied Physics Education: PER focused on Physics-Intensive Careers

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin

    2017-01-01

    Physics education research is moving beyond classroom learning to study the application of physics education within STEM jobs and PhD-level research. Workforce-related PER is vital to supporting physics departments as they educate students for a diverse range of careers. Results from an on-going study involving interviews with entry-level employees, academic researchers, and supervisors in STEM jobs describe the ways that mathematics, physics, and communication are needed for workplace success. Math and physics are often used for solving ill-structured problems that involve data analysis, computational modeling, or hands-on work. Communication and collaboration are utilized in leadership, sales, and as way to transfer information capital throughout the organization through documentation, emails, memos, and face-to-face discussions. While managers and advisors think a physics degree typically establishes technical competency, communication skills are vetted through interviews and developed on the job. Significant learning continues after graduation, showing the importance of cultivating self-directed learning habits and the critical role of employers as educators of specialized technical abilities through on-the-job training. Supported by NSF DGE-1432578.

  9. Expanding girls' horizons in physics and other sciences: A successful strategy since 1976

    NASA Astrophysics Data System (ADS)

    Spencer, Cherrill M.

    2015-12-01

    To start on the path to a career in science, technology, engineering, or mathematics (STEM), girls must take appropriate prerequisite-to-college mathematics and science courses when they are 15 to 18 years old. The Expanding Your Horizons in Science, Engineering, and Mathematics (EYH) conferences are one-day conferences for girls aged 12 to 18, designed to encourage girls towards a STEM career. These conferences engage schoolgirls in enjoyable hands-on STEM activities, created and led by women STEM professionals. This paper describes the history of EYH conferences, what happens at one, the impact of an EYH conference on the girls, and how to start one.

  10. Adaptation of the Science, Technology, Engineering, and Mathematics Career Interest Survey (STEM-CIS) into Turkish

    ERIC Educational Resources Information Center

    Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli

    2016-01-01

    Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…

  11. The Need for an Effective Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields for a Meaningful Technological Development in Nigeria

    ERIC Educational Resources Information Center

    Haruna, Umar Ibrahim

    2015-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  12. Women of Color in Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Johnson, Dawn R.

    2011-01-01

    Scholars have theorized and examined women's underrepresentation in science, technology, engineering and mathematics (STEM) fields for well over thirty years. However, much of this research has paid little attention to issues of racial and ethnic diversity among women, suggesting that all women have the same experiences in STEM. Women of color…

  13. STEM Education and Leadership: A Mathematics and Science Partnership Approach

    ERIC Educational Resources Information Center

    Merrill, Chris; Daugherty, Jenny

    2010-01-01

    The issue of attracting more young people to choose careers in science, technology, engineering, and mathematics (STEM) has become critical for the United States. Recent studies by businesses, associations, and education have all agreed that the United States' performance in the STEM disciplines have placed the nation in grave risk of…

  14. Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors

    ERIC Educational Resources Information Center

    Watkins, Jessica; Mazur, Eric

    2013-01-01

    In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…

  15. Strategies to Increase Representation of Students with Disabilities in Science, Technology, Engineering and Mathematics (STEM)

    ERIC Educational Resources Information Center

    White, Jeffry L.; Massiha, G. H.

    2015-01-01

    As a nation wrestles with the need to train more professionals, persons with disabilities are undereducated and underrepresented in science, technology, engineering, and mathematics (STEM). The following project was proposed to increase representation of students with disabilities in the STEM disciplines. The program emphasizes an integrated…

  16. Science and Mathematics Advanced Placement Exams: Growth and Achievement over Time

    ERIC Educational Resources Information Center

    Judson, Eugene

    2017-01-01

    Rapid growth of Advanced Placement (AP) exams in the last 2 decades has been paralleled by national enthusiasm to promote availability and rigor of science, technology, engineering, and mathematics (STEM). Trends were examined in STEM AP to evaluate and compare growth and achievement. Analysis included individual STEM subjects and disaggregation…

  17. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  18. Transforming Teacher Preparation to Ensure Long-Term Improvement in STEM Teaching

    ERIC Educational Resources Information Center

    Hiebert, James

    2013-01-01

    An alternative mathematics preparation program for K-8 teachers is described as an existence proof that steadily increasing effectiveness of STEM (science, technology, engineering, and mathematics) preparation is possible. The program is based on treating every lesson in each of five mathematics content and methods courses as objects of study.…

  19. A Norwegian Out-of-School Mathematics Project's Influence on Secondary Students' STEM Motivation

    ERIC Educational Resources Information Center

    Jensen, Fredrik; Sjaastad, Jørgen

    2013-01-01

    Considerable resources are spent on initiatives aiming to increase achievement and participation in science, technology, engineering, and mathematics (STEM). Drawing on focus group interviews and a questionnaire study with participants in ENT3R, a Norwegian out-of-school mathematics program, we investigated why participants attended and stayed in…

  20. Bioinformatics education in high school: implications for promoting science, technology, engineering, and mathematics careers.

    PubMed

    Kovarik, Dina N; Patterson, Davis G; Cohen, Carolyn; Sanders, Elizabeth A; Peterson, Karen A; Porter, Sandra G; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre-post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.

  1. Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees

    PubMed Central

    Rodenbusch, Stacia E.; Hernandez, Paul R.; Simmons, Sarah L.; Dolan, Erin L.

    2016-01-01

    National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score–matching to control for student-level differences, we tested the effect of participating in FRI on students’ probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students’ GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research. PMID:27252296

  2. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    PubMed Central

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre–post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers. PMID:24006393

  3. Teacher Characteristics and School-Based Professional Development in Inclusive STEM-focused High Schools: A Cross-case Analysis

    NASA Astrophysics Data System (ADS)

    Spillane, Nancy Kay

    Within successful Inclusive Science, Technology, Engineering, and Mathematics (STEM)-focused High Schools (ISHSs), it is not only the students who are learning. Teachers, with diverse backgrounds, training, and experience, share and develop their knowledge through rich, embedded professional development to continuously shape their craft, improve their teaching, and support student success. This study of four exemplars of ISHSs (identified by experts in STEM education as highly successful in preparing students underrepresented in STEM for STEM majors in college and future STEM careers) provides a rich description of the relationships among the characteristics of STEM teachers, their professional development, and the school cultures that allow teachers to develop professionally and serve the needs of students. By providing a framework for the development of teaching staffs in ISHSs and contributing to the better understanding of STEM teaching in any school, this study offers valuable insight, implications, and information for states and school districts as they begin planning improvements to STEM education programs. A thorough examination of an existing data set that included site visits to four ISHSs along with pre- and post-visit data, provided the resource for this multiple case study with cross-case analysis of the teachers and their teacher professional development experiences. Administrators in these ISHSs had the autonomy to hire teachers with strong content backgrounds, philosophical alignment with the school missions, and a willingness to work collaboratively toward achieving the schools' goals. Ongoing teacher professional development began before school started and continued throughout the school day and year through intense and sustained, formal and informal, active learning experiences. Flexible professional development systems varied, but aligned with targeted school reforms and teacher and student needs. Importantly, collaborative teacher learning occurred within a school-wide culture of collaboration. Teachers were guided in establishing open lines of communication that supported regular engagement with others and the free flow of ideas, practices, and concerns. As a result of this collaboration, in conjunction with intentional pathways to teacher leadership, teacher professionalization was deliberately and successfully fostered creating an environment of shared mission and mutual trust, and a shared sense of responsibility for school-wide decision-making and school outcomes.

  4. SENSE IT: Student Enabled Network of Sensors for the Environment using Innovative Technology

    NASA Astrophysics Data System (ADS)

    Hotaling, L. A.; Stolkin, R.; Kirkey, W.; Bonner, J. S.; Lowes, S.; Lin, P.; Ojo, T.

    2010-12-01

    SENSE IT is a project funded by the National Science Foundation (NSF) which strives to enrich science, technology, engineering and mathematics (STEM) education by providing teacher professional development and classroom projects in which high school students build from first principles, program, test and deploy sensors for water quality monitoring. Sensor development is a broad and interdisciplinary area, providing motivating scenarios in which to teach a multitude of STEM subjects, from mathematics and physics to biology and environmental science, while engaging students with hands on problems that reinforce conventional classroom learning by re-presenting theory as practical tools for building real-life working devices. The SENSE IT program is currently developing and implementing a set of high school educational modules which teach environmental science and basic engineering through the lens of fundamental STEM principles, at the same time introducing students to a new set of technologies that are increasingly important in the world of environmental research. Specifically, the project provides students with the opportunity to learn the engineering design process through the design, construction, programming and testing of a student-implemented water monitoring network in the Hudson and St. Lawrence Rivers in New York. These educational modules are aligned to state and national technology and science content standards and are designed to be compatible with standard classroom curricula to support a variety of core science, technology and mathematics classroom material. For example, while designing, programming and calibrating the sensors, the students are led through a series of tasks in which they must use core mathematics and physics theory to solve the real problems of making their sensors work. In later modules, students can explore environmental science and environmental engineering curricula while deploying and monitoring their sensors in local rivers. This presentation will provide an overview of the educational modules. A variety of sensors will be described, which are suitably simple for design and construction from first principles by high school students while being accurate enough for students to make meaningful environmental measurements. The presentation will also describe how the sensor building activities can be tied to core curricula classroom theory, enabling the modules to be utilized in regular classes by mathematics, science and computing teachers without disrupting their semester’s teaching goals. Furthermore, the presentation will address of the first two years of the SENSE IT project, during which 39 teachers have been equipped, trained on these materials, and have implemented the modules with around approximately 2,000 high school students.

  5. STEM Education: An Incongruous Approach A Proposed Reform Model for a Large Suburban High School

    NASA Astrophysics Data System (ADS)

    Hughes, Patricia A.

    It is unknown how the school can best influence the variables that determine pursuance of science study and career choice to bring about greater opportunity to learn challenging science curriculum for all students and promote Science Technology Engineering and Mathematics (STEM) education. Student decisions regarding the type of science class to elect in early secondary school years can impact their progression and academic success in subsequent rigorous and challenging offerings. Parents, counselors, peers, gender, socio-economic status and individual experience in previous coursework are variables of consideration. The purpose of this study is to examine these variables in a large suburban New Jersey School District aligned to STEM and Advanced Placement level course choice by students. Information regarding the influence of the variables can lead to a reform of the approach toward STEM education currently in place. The study will include a historical reflection of the approach to curriculum revision in the district. Increasing student enrollment in science courses beyond the required number stipulated for high school completion will open opportunities for entrance into STEM related careers or continued post secondary science study.

  6. STEM development: A study of 6th--12th grade girls' interest and confidence in mathematics and science

    NASA Astrophysics Data System (ADS)

    Heaverlo, Carol Ann

    Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.

  7. 78 FR 37590 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ...: Program Evaluation of the Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM... Mathematics (S-STEM) Program, which operates within NSF's Division of Undergraduate Education. The evaluation...

  8. Solar cell and photonics outreach for middle school students and teachers

    NASA Astrophysics Data System (ADS)

    Gilchrist, Pamela O.; Alexander, Alonzo B.

    2017-08-01

    This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students' urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.

  9. Teaching image-processing concepts in junior high school: boys' and girls' achievements and attitudes towards technology

    NASA Astrophysics Data System (ADS)

    Barak, Moshe; Asad, Khaled

    2012-04-01

    Background : This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose : The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these subjects to the children's world and to the digital culture characterizing society today. Sample : The participants were 60 junior high-school students (9th grade). Design and method : Data collection included observations in the classes, administering an attitude questionnaire before and after the course, giving an achievement exam and analyzing the students' final projects. Results and conclusions : The findings indicated that boys' and girls' achievements were similar throughout the course, and all managed to handle the mathematical knowledge without any particular difficulties. Learners' motivation to engage in the subject was high in the project-based learning part of the course in which they dealt, for instance, with editing their own pictures and experimenting with a facial recognition method. However, the students were less interested in learning the theory at the beginning of the course. The course increased the girls', more than the boys', interest in learning scientific-technological subjects in school, and the gender gap in this regard was bridged.

  10. Informal STEM Education in Antarctica

    NASA Astrophysics Data System (ADS)

    Chell, K.

    2010-12-01

    Tourism in Antarctica has increased dramatically with tens of thousands of tourists visiting the White Continent each year. Tourism cruises to Antarctica offer a unique educational experience for lay people through informal science-technology-engineering-mathematics (STEM) education. Passengers attend numerous scientific lectures that cover topics such as the geology of Antarctica, plate tectonics, glaciology, and climate change. Furthermore, tourists experience the geology and glaciology first hand during shore excursions. Currently, the grand challenges facing our global society are closely connected to the Earth sciences. Issues such as energy, climate change, water security, and natural hazards, are consistently on the legislative docket of policymakers around the world. However, the majority of the world’s population is uninformed about the role Earth sciences play in their everyday lives. Tourism in Antarctica provides opportunities for informal STEM learning and, as a result, tourists leave with a better understanding and greater appreciation for both Antarctica and Earth sciences.

  11. New educational tools to encourage high-school students' activity in stem

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera; Grishko, Dmitriy; Leonov, Victor

    2018-01-01

    Many students have to choose their future profession during their last years in the high school and therefore to choose a university where they will get proper education. That choice may define their professional life for many years ahead or probably for the rest of their lives. Bauman Moscow State Technical University conducts various events to introduce future professions to high-school students. Such activity helps them to pick specialization in line with their interests and motivates them to study key scientific subjects. The paper focuses on newly developed educational tools to encourage high school students' interest in STEM disciplines. These tools include laboratory courses developed in the fields of physics, information technologies and mathematics. More than 2000 high school students already participated in these experimental courses. These activities are aimed at increasing the quality of STEM disciplines learning which will result in higher quality of training of future engineers.

  12. Seeking congruity between goals and roles: a new look at why women opt out of science, technology, engineering, and mathematics careers.

    PubMed

    Diekman, Amanda B; Brown, Elizabeth R; Johnston, Amanda M; Clark, Emily K

    2010-08-01

    Although women have nearly attained equality with men in several formerly male-dominated fields, they remain underrepresented in the fields of science, technology, engineering, and mathematics (STEM). We argue that one important reason for this discrepancy is that STEM careers are perceived as less likely than careers in other fields to fulfill communal goals (e.g., working with or helping other people). Such perceptions might disproportionately affect women's career decisions, because women tend to endorse communal goals more than men. As predicted, we found that STEM careers, relative to other careers, were perceived to impede communal goals. Moreover, communal-goal endorsement negatively predicted interest in STEM careers, even when controlling for past experience and self-efficacy in science and mathematics. Understanding how communal goals influence people's interest in STEM fields thus provides a new perspective on the issue of women's representation in STEM careers.

  13. The Role of Academic Preparation and Interest on STEM Success. ACT Research Report Series

    ERIC Educational Resources Information Center

    Radunzel, Justine; Mattern, Krista; Westrick, Paul

    2016-01-01

    Research has shown that science, technology, engineering, and mathematics (STEM) majors who are more academically prepared--especially in terms of their mathematics and science test scores--are more likely to be successful across a variety of outcomes: cumulative grade point average (GPA), persistence in a STEM major, and ultimately earning a STEM…

  14. The M in Stem via the M in Epidemiology

    ERIC Educational Resources Information Center

    Griffiths, Martin

    2011-01-01

    It is the case that some activities claiming to reside under the STEM umbrella do not, in fact, give participants the opportunity to engage in anything other than routine mathematics. With this in mind, we explore here the potential for developing and then delivering STEM activities based on the discipline of mathematical epidemiology. We argue…

  15. Motivating Children to Develop Their Science, Technology, Engineering, and Mathematics (STEM) Talent

    ERIC Educational Resources Information Center

    Andersen, Lori

    2013-01-01

    Motivation in mathematics and science appears to be more important to STEM occupational choice than ability. Using the expectancy value model, parents may be able to recognize potential barriers to children's selection of a STEM occupation and take actions to help facilitate talent development. These are especially important for parents of…

  16. Relationship between High School Mathematical Achievement and Quantitative GPA

    ERIC Educational Resources Information Center

    Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald

    2015-01-01

    The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…

  17. Kinks in the STEM Pipeline: Tracking STEM Graduation Rates Using Science and Mathematics Performance

    ERIC Educational Resources Information Center

    Redmond-Sanogo, Adrienne; Angle, Julie; Davis, Evan

    2016-01-01

    In an effort to maintain the global competitiveness of the United States, ensuring a strong Science, Technology, Engineering and Mathematics (STEM) workforce is essential. The purpose of this study was to identify high school courses that serve as predictors of success in college level gatekeeper courses, which in turn led to the successful…

  18. STEM Education: A Review of the Contribution of the Disciplines of Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    McDonald, Christine V.

    2016-01-01

    Recent global educational initiatives and reforms have focused on increasing the number of students pursuing STEM subjects, and ensuring students are well-prepared, and suitably qualified to engage in STEM careers. This paper examines the contributions of the four disciplines--Science, Technology, Engineering and Mathematics--to the field of STEM…

  19. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    National Academies Press, 2011

    2011-01-01

    Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's…

  20. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities.

    PubMed

    Mulnix, Amy B

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors. © 2016 A. B. Mulnix. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Top