Sample records for mathematics technology engineering

  1. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)

    DTIC Science & Technology

    2013-08-29

    educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology

  2. CTE's Role in Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    Hyslop, Alisha

    2010-01-01

    For the last several years, concern has been brewing about America's underinvestment and underperformance in science, technology, engineering and mathematics--the fields collectively known as STEM. STEM can be described as an initiative for securing America's leadership in science, technology, engineering and mathematics fields and identifying…

  3. Measurement System for Energetic Materials Decomposition

    DTIC Science & Technology

    2015-01-05

    scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated during this period and...will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields

  4. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    ERIC Educational Resources Information Center

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  5. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  6. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    ERIC Educational Resources Information Center

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  7. A Study to Determine the Basic Science and Mathematics Topics Most Needed by Engineering Technology Graduates of Wake Technical Institute in Performing Job Duties.

    ERIC Educational Resources Information Center

    Edwards, Timothy I.; Roberson, Clarence E., Jr.

    A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…

  8. A Novel Supercritical Fluid-Assisted Fabrication Technique for Producing Transparent Nanocomposites

    DTIC Science & Technology

    2013-10-03

    period with a degree in science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated...during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: Number of...fellowships for further studies in science, mathematics, engineering or technology fields: 1.00 0.00 1.00 0.00 0.00 0.00

  9. Open Campus: Strategic Plan

    DTIC Science & Technology

    2016-05-01

    The formal and informal interactions among scientists, engineers, and business and technology specialists fostered by this environment will lead...pathways for highly trained graduates of science, technology, engineering, and mathematics (STEM) academic programs, and help academic institutions...engineering and mathematics (STEM) disciplines relevant to ARL science and technology programs. Under EPAs, visiting students and professors

  10. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  11. Development of a Leadership, Policy, and Change Course for Science, Technology, Engineering, and Mathematics Graduate Students

    ERIC Educational Resources Information Center

    Cox, Monica F.; Berry, Carlotta A.; Smith, Karl A.

    2009-01-01

    This paper describes a graduate level engineering education course, "Leadership, Policy, and Change in Science, Technology, Engineering, and Mathematics (STEM) Education." Offered for the first time in 2007, the course integrated the perspectives of three instructors representing disciplines of engineering, education, and engineering education.…

  12. The Federal Investment in Science, Mathematics, Engineering, and Technology Education: Where Now? What Next? Report of the Expert Panel for the Review of Federal Education Programs in Science, Mathematics, Engineering, and Technology.

    ERIC Educational Resources Information Center

    Federal Coordinating Council for Science, Engineering and Technology, Washington, DC.

    Despite efforts to improve the quality and equity of science, mathematics, engineering, and technology (SMET) education at all educational levels, the nation remains at risk of losing its competitive edge. This report presents the findings of a special panel convened for two purposes: (1) to review federal programs in SMET education at all levels;…

  13. 76 FR 21715 - Notice of Submission for OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ...: Revision. Title of Collection: Hispanic-Serving Institutions Science Technology Engineering, Mathematics... Technology Engineering, Mathematics and Articulation Program, authorized under section 371 of Part F of the...

  14. Science, Technology, Engineering, and Mathematics (STEM) Curriculum and Seventh Grade Mathematics and Science Achievement

    ERIC Educational Resources Information Center

    James, Jamie Smith

    2014-01-01

    The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…

  15. Mathematics in Technology & Engineering Education: Judgments of Grade-Level Appropriateness

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, Mary Annette

    2014-01-01

    Technology and engineering (TE) educators have long championed the infusion of mathematics into technology curriculum, especially to enhance TE learning goals and demonstrate "connections between technology and other fields of study." There is a need for curriculum development and professional development initiatives to purposefully…

  16. 78 FR 22841 - Defense Federal Acquisition Regulation Supplement: Encouragement of Science, Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ..., Engineering, and Mathematics (STEM) Programs (DFARS Case 2012-D027); Withdrawal AGENCY: Defense Acquisition... mathematics (STEM) programs. FOR FURTHER INFORMATION CONTACT: Mr. Dustin Pitsch: telephone 571-372- 6090... develop science, technology, engineering, and mathematics (STEM) programs. The purpose of this Notice is...

  17. Australian Enrolment Trends in Technology and Engineering: Putting the T and E Back into School STEM

    ERIC Educational Resources Information Center

    Kennedy, JohnPaul; Quinn, Frances; Lyons, Terry

    2018-01-01

    There has been much political and educational focus on Science, Technology, Engineering and Mathematics (STEM) in Australian schools in recent years and while there has been significant research examining science and mathematics enrolments in senior high school, little is known about the corresponding trends in Technologies and engineering.…

  18. iSTEM: Learning Mathematics through Minecraft

    ERIC Educational Resources Information Center

    Bos, Beth; Wilder, Lucy; Cook, Marcelina; O'Donnell, Ryan

    2014-01-01

    The Common Core State Standards can be taught with Minecraft, an interactive creative Lego®-like game. Integrating Science, Technology, Engineering, and Mathematics (iSTEM) authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K-grade 6 classrooms.

  19. Identifying and Nurturing Future Innovators in Science, Technology, Engineering, and Mathematics: A Review of Findings from the Study of Mathematically Precocious Youth

    ERIC Educational Resources Information Center

    Benbow, Camilla Persson

    2012-01-01

    Calls to strengthen education in science, technology, engineering, and mathematics (STEM) are underscored by employment trends and the importance of STEM innovation for the economy. The Study of Mathematically Precocious Youth (SMPY) has been tracking over 5,000 talented individuals longitudinally for 40 years, throwing light on critical questions…

  20. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    NASA Astrophysics Data System (ADS)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  1. A Review of Multi-Sensory Technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) Classroom

    ERIC Educational Resources Information Center

    Taljaard, Johann

    2016-01-01

    This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…

  2. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  3. STEM: Science Technology Engineering Mathematics

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    The generative economic power and social influence of Science, Technology, Engineering, and Mathematics (STEM) has made the production of a capable science and engineering workforce a priority among business and policy leaders. They are rightly concerned that without a robust STEM workforce, the nation will become less competitive in the global…

  4. Shaking up Pre-Calculus: Incorporating Engineering into K-12 Curricula

    ERIC Educational Resources Information Center

    Sabo, Chelsea; Burrows, Andrea; Childers, Lois

    2014-01-01

    Projects highlighting Science, Technology, Engineering, and Mathematics (STEM) education in high schools have promoted student interest in engineering-related fields and enhanced student understanding of mathematics and science concepts. The Science and Technology Enhancement Program (Project STEP), funded by a NSF GK-12 grant at the University of…

  5. STEM - Science, Technology, Engineering, & Mathematics Career Expo

    Science.gov Websites

    Search STEM - Science, Technology, Engineering, & Mathematics Career Expo Come to Fermilab to meet Career Expo on April 18, 2018! Here's your guide to the event. Meet scientists, engineers, & ; technicians Ask career questions of the experts Ask experts about educational pathways leading to specific

  6. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  7. Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth

    2012-01-01

    On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…

  8. A Synthesis of Technology-Mediated Mathematics Interventions for Students with or at Risk for Mathematics Learning Disabilities

    ERIC Educational Resources Information Center

    Kiru, Elisheba W.; Doabler, Christian T.; Sorrells, Audrey M.; Cooc, North A.

    2018-01-01

    With the increasing availability of technology and the emphasis on science, technology, engineering, and mathematics education, there is an urgent need to understand the impact of technology-mediated mathematics (TMM) interventions on student mathematics outcomes. The purpose of this study was to review studies on TMM interventions that target the…

  9. K-12 Bolsters Ties to Engineering

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2013-01-01

    When science, technology, engineering and mathematics (STEM) education is discussed in the K-12 sphere, it often seems like shorthand for mathematics and science, with perhaps a nod to technology and even less, if any, real attention to engineering. But recent developments signal that the "e" in STEM may be gaining a firmer foothold at…

  10. 75 FR 20007 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Foundation's science, technology, engineering, and mathematics (STEM) education and human resources... Broadening Participation--Undergraduate Science, Technology, Engineering & Mathematics (STEM). III. Discussion of Graduate Education/Career Development Programs. IV. Collaborations with the Department of...

  11. Persistence Factors Associated with First-Year Engineering Technology Learners

    ERIC Educational Resources Information Center

    Christe, Barbara

    2015-01-01

    Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…

  12. The Need for an Effective Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields for a Meaningful Technological Development in Nigeria

    ERIC Educational Resources Information Center

    Haruna, Umar Ibrahim

    2015-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  13. Influences on Visual Spatial Rotation: Science, Technology, Engineering, and Mathematics (STEM) Experiences, Age, and Gender

    ERIC Educational Resources Information Center

    Perry, Paula Christine

    2013-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that instructs…

  14. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    ERIC Educational Resources Information Center

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  15. How to Motivate US Students to Pursue STEM (Science, Technology, Engineering and Mathematics) Careers

    ERIC Educational Resources Information Center

    Hossain, Md. Mokter; G. Robinson, Michael

    2012-01-01

    STEM (science, technology, engineering and mathematics) has been a powerful engine of prosperity in the US since World War II. Currently, American students' performances and enthusiasm in STEM education are inadequate for the US to maintain its leadership in STEM professions unless the government takes more actions to motivate a new generation of…

  16. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  17. On the Role of Engineering in Mathematical Development

    ERIC Educational Resources Information Center

    Fernandez, Isabel; Pacheco, Jose

    2005-01-01

    It is customary for engineering syllabuses to include a substantial amount of mathematics, a fact traditionally justified through their usefulness in the analysis and resolution of many technological problems. In other words, usually the role of mathematics in engineering is emphasized. Nevertheless, the opposite viewpoint could be considered as…

  18. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  19. Progress Report on Coordinating Federal Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Executive Office of the President, 2016

    2016-01-01

    As called for in the America COMPETES Reauthorization Act of 2010, the National Science and Technology Council's (NSTC) Committee on STEM Education (CoSTEM) released, in May of 2013, the Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5- Year Strategic Plan (Strategic Plan). As required by the Act, this report includes…

  20. Accomplishment in Science, Technology, Engineering, and Mathematics (STEM) and Its Relation to STEM Educational Dose: A 25-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Wai, Jonathan; Lubinski, David; Benbow, Camilla P.; Steiger, James H.

    2010-01-01

    Two studies examined the relationship between precollegiate advanced/enriched educational experiences and adult accomplishments in science, technology, engineering, and mathematics (STEM). In Study 1, 1,467 13-year-olds were identified as mathematically talented on the basis of scores [greater than or equal to] 500 (top 0.5%) on the math section…

  1. Facilitating Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields in Program Development

    ERIC Educational Resources Information Center

    Ejiwale, James A.

    2014-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  2. The Development of STEAM Educational Policy to Promote Student Creativity and Social Empowerment

    ERIC Educational Resources Information Center

    Allina, Babette

    2018-01-01

    The Science, Technology, Engineering, Arts, and Mathematics (STEAM) movement argues that broad-based education that promotes creativity recognizes student learning diversity, increases student engagement and can potentially enhance Science, Technology, Engineering, and Mathematics (STEM) learning by embracing cross-cutting translational skills…

  3. Theorizing the Nexus of STEAM Practice

    ERIC Educational Resources Information Center

    Peppler, Kylie; Wohlwend, Karen

    2018-01-01

    Recent advances in arts education policy, as outlined in the latest National Core Arts Standards, advocate for bringing digital media into the arts education classroom. The promise of such Science, Technology, Engineering, Arts, and Mathematics (STEAM)-based approaches is that, by coupling Science, Technology, Engineering, and Mathematics (STEM)…

  4. Gendered Microaggressions in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Yang, Yang; Carroll, Doris Wright

    2018-01-01

    Women remain underrepresented in both science, technology, engineering, and mathematics (STEM) workforce and academia. In this quantitative study, we focused on female faculty across STEM disciplines and their experiences in higher educational institutions through the lens of microaggressions theory. Two questions were addressed: (a) whether and…

  5. Development of a Multidisciplinary Middle School Mathematics Infusion Model

    ERIC Educational Resources Information Center

    Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura

    2011-01-01

    The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…

  6. Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum

    NASA Technical Reports Server (NTRS)

    Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.

    2008-01-01

    The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.

  7. The Federal Science, Technology, Engineering, and Mathematics (STEM) Education Portfolio. A Report from the Federal Inventory of STEM Education Fast-Track Action Committee Committee on STEM Education National Science and Technology Council

    ERIC Educational Resources Information Center

    Executive Office of the President, 2011

    2011-01-01

    The National Science and Technology Council (NSTC) Committee on STEM Education (CoSTEM) coordinates Federal programs and activities in support of STEM (science, technology, engineering and mathematics) education pursuant to the requirements of Sec. 101 of the America COMPETES (Creating Opportunities to Meaningfully Promote Excellence in Technology…

  8. Focusing on Challenging Content and Practical Applications in Science, Technology, Engineering and Mathematics (STEM) Studies in Middle Grades Schools, High Schools and Technology Centers.

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2012

    2012-01-01

    Schools that give students access to STEM (science, technology, engineering and mathematics) studies are accomplishing several objectives: introducing students to higher-level academic and career studies, expanding project-based learning in the curriculum, enticing students to remain in school until graduation, and preparing students for…

  9. Department of Everything: Department of Defense Spending That Has Little to Do With National Security

    DTIC Science & Technology

    2012-11-01

    and Mathematics (STEM) programs that duplicate the work of the Department of Education and local school districts ($10.7 billion). The Department of...of science, technology, engineering, and mathematics (STEM).16 The Pentagon recently joined the cooking show craze by partnering with the...of DOD Science, Technology, Engineering, and Mathematics (STEM) Programs,” 2010. 17 The Pentagon Channel, “The Grill Sergeants,” http

  10. Students' Attitude towards STEM Education

    ERIC Educational Resources Information Center

    Popa, Roxana-Alexandra; Ciascai, Liliana

    2017-01-01

    STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…

  11. Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context

    ERIC Educational Resources Information Center

    Stage, Frances K.; Kinzie, Jillian

    2009-01-01

    This article reports the results of a series of site visits examining modifications to science, technology, engineering, and mathematics (STEM) teaching and learning based on reform on three differing campuses. Innovations in stem classrooms included collaborative approaches to learning; incorporation of active learning, authentic contexts, peer…

  12. Community Colleges Giving Students a Framework for STEM Careers

    ERIC Educational Resources Information Center

    Musante, Susan

    2012-01-01

    Over the coming decade, America will need one million more science, technology, engineering, and mathematics (STEM) professionals than was originally projected. This is the conclusion of a February 2012 report, "Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics".…

  13. "Project NEO": A Video Game to Promote STEM Competency for Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Van Eck, Richard N.; Guy, Mark; Young, Timothy; Winger, Austin T.; Brewster, Scott

    2015-01-01

    The need for science, technology, engineering, and mathematics majors for our future workforce is growing, yet fewer students are choosing to major in science, technology, engineering, and mathematics areas, and many are underprepared, in part because elementary school preservice teachers are also underprepared. This National Science…

  14. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    ERIC Educational Resources Information Center

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  15. STEM: Science Technology Engineering Mathematics. State-Level Analysis

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    The science, technology, engineering, and mathematics (STEM) state-level analysis provides policymakers, educators, state government officials, and others with details on the projections of STEM jobs through 2018. This report delivers a state-by-state snapshot of the demand for STEM jobs, including: (1) The number of forecast net new and…

  16. Leadership Training in Science, Technology, Engineering and Mathematics Education in Bulgaria

    ERIC Educational Resources Information Center

    Bairaktarova, Diana; Cox, Monica F.; Evangelou, Demetra

    2011-01-01

    This synthesis paper explores current leadership training in science, technology, engineering and mathematics (STEM) education in Bulgaria. The analysis begins with discussion of global factors influencing the implementation of leadership training in STEM education in general and then presents information about the current status of leadership…

  17. STEAM by Another Name: Transdisciplinary Practice in Art and Design Education

    ERIC Educational Resources Information Center

    Costantino, Tracie

    2018-01-01

    The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union…

  18. Artistic Ways of Knowing in Gifted Education: Encouraging Every Student to Think Like an Artist

    ERIC Educational Resources Information Center

    Haroutounian, Joanne

    2017-01-01

    After decades of fluctuating presence in gifted education, the arts are surprisingly establishing themselves in academic classrooms, spurred by arts integration with science, technology, engineering, and mathematics (STEM) curricula or science, technology, engineering, art, and mathematics (STEAM). This renewed interest provides the opportunity to…

  19. Psycho-Social Determinants of Gender Prejudice in Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    Nnachi, N. O.; Okpube, M. N.

    2015-01-01

    This work focused on the "Psycho-social Determinants of Gender Prejudice in Science, Technology, Engineering and Mathematics (STEM)". The females were found to be underrepresented in STEM fields. The under-representation results from gender stereotype, differences in spatial skills, hierarchical and territorial segregations and…

  20. Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities

    ERIC Educational Resources Information Center

    Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.

    2018-01-01

    Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…

  1. A Study of Mathematics Infusion in Middle School Technology Education Classes

    ERIC Educational Resources Information Center

    Burghardt, M. David; Hecht, Deborah; Russo, Maria; Lauckhardt, James; Hacker, Michael

    2010-01-01

    The present study examined the impact of introducing a mathematics infused engineering/technology education (ETE) curriculum on students' mathematics content knowledge and attitudes toward mathematics. The purpose of the present study was to: (a) compare the effects of a mathematics infused ETE curriculum and a control curriculum on student…

  2. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

    ERIC Educational Resources Information Center

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-01-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

  3. Relationship between Students' Diagnostic Assessment and Achievement in a Pre-University Mathematics Course

    ERIC Educational Resources Information Center

    Shim, George Tan Geok; Shakawi, Abang Mohammad Hudzaifah Abang; Azizan, Farah Liyana

    2017-01-01

    Educators have always highlighted the importance of mathematics mastery in education for many years. With the current emphasis of Science, Technology, Engineering and Mathematics (STEMs) education, mathematics mastery is even more vital because it supports the learning and mastery of science fields such as engineering and science. Furthermore, in…

  4. Engineering in K-12 Education: Understanding the Status and Improving the Prospects

    ERIC Educational Resources Information Center

    Katehi, Linda, Ed.; Pearson, Greg, Ed.; Feder, Michael, Ed.

    2009-01-01

    Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects--science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work…

  5. Adaptation of the Science, Technology, Engineering, and Mathematics Career Interest Survey (STEM-CIS) into Turkish

    ERIC Educational Resources Information Center

    Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli

    2016-01-01

    Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…

  6. Science, Technology, Engineering, and Mathematics (STEM) Participation among College Students with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose

    2013-01-01

    Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…

  7. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    ERIC Educational Resources Information Center

    Lee, Sang Eun

    2017-01-01

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…

  8. Five Women in Science, Technology, Engineering, and Mathematics Majors: A Portraiture of Their Lived Experiences

    ERIC Educational Resources Information Center

    Torcivia, Patrice Prusko

    2012-01-01

    Numerous studies have addressed science, technology, engineering and mathematics (STEM) and their relation to education and gender ranging from elementary school pedagogy to career choices for traditional-aged college students. Little research has addressed nontraditional female students returning to the university to in the STEM fields. This…

  9. Women of Color in Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Johnson, Dawn R.

    2011-01-01

    Scholars have theorized and examined women's underrepresentation in science, technology, engineering and mathematics (STEM) fields for well over thirty years. However, much of this research has paid little attention to issues of racial and ethnic diversity among women, suggesting that all women have the same experiences in STEM. Women of color…

  10. Gender Equality in Public Higher Education Institutions of Ethiopia: The Case of Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Egne, Robsan Margo

    2014-01-01

    Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…

  11. McNair Scholars' Science, Technology, Engineering, and Mathematics (STEM) Graduate Experience: A Pilot Study

    ERIC Educational Resources Information Center

    Bancroft, Senetta F.; Benson, Susan Kushner; Johnson-Whitt, Eugenia

    2016-01-01

    Nationally, racial and gender disparities persist in science, technology, engineering, and mathematics (STEM) disciplines. These disparities are most notable at the doctoral level and are also found in the doctoral outcomes of Ronald E. McNair Postbaccalaureate Achievement Program participants (Scholars) despite opportunities designed to promote…

  12. Diversifying Science, Technology, Engineering, and Mathematics (STEM): An Inquiry into Successful Approaches in Chemistry

    ERIC Educational Resources Information Center

    Wilson, Zakiya S.; McGuire, Saundra Y.; Limbach, Patrick A.; Doyle, Michael P.; Marzilli, Luigi G.; Warner, Isiah M.

    2014-01-01

    For many years, the U.S. has underutilized its human resources, as evidenced by the pervasive underrepresentation of several racial and ethnic groups within academia in general and the science, technology, engineering, and mathematics (STEM) disciplines, in particular. To address this underutilization, academic departments within U.S. universities…

  13. AccessSTEM: Building Capacity to Include Students with Disabilities in Science, Technology, Engineering, and Mathematics Fields

    ERIC Educational Resources Information Center

    DO-IT, 2007

    2007-01-01

    A series of activities were undertaken to understand the underrepresentation and increase the participation of people with disabilities in science, technology, engineering, and mathematics (STEM) careers. These activities were funded by the Research in Disabilities Education (RDE) program of the National Science Foundation (NSF). They were…

  14. Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors

    ERIC Educational Resources Information Center

    Watkins, Jessica; Mazur, Eric

    2013-01-01

    In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…

  15. Stirring the Pot: Supporting and Challenging General Education Science, Technology, Engineering, and Mathematics Faculty to Change Teaching and Assessment Practice

    ERIC Educational Resources Information Center

    Stieha, Vicki; Shadle, Susan E.; Paterson, Sharon

    2016-01-01

    Evidence-based instructional practices (ebips) have been associated with positive student outcomes; however, institutions struggle to catalyze widespread adoption of these practices in general education science, technology, engineering, and mathematics (stem) courses. Further, linking ebips with integrated learning assessment is rarely discussed…

  16. Strategies to Increase Representation of Students with Disabilities in Science, Technology, Engineering and Mathematics (STEM)

    ERIC Educational Resources Information Center

    White, Jeffry L.; Massiha, G. H.

    2015-01-01

    As a nation wrestles with the need to train more professionals, persons with disabilities are undereducated and underrepresented in science, technology, engineering, and mathematics (STEM). The following project was proposed to increase representation of students with disabilities in the STEM disciplines. The program emphasizes an integrated…

  17. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  18. Science, Technology, Engineering, and Mathematics (STEM) Participation among College Students with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Wei, Xin; Christiano, Elizabeth R.; Yu, Jennifer W.; Blackorby, Jose; Shattuck, Paul; Newman, Lynn A.

    2014-01-01

    Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…

  19. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    ERIC Educational Resources Information Center

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…

  20. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops

    ERIC Educational Resources Information Center

    Nielsen, Natalie

    2011-01-01

    Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science…

  1. Assisting Students with High-Incidence Disabilities to Pursue Careers in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Dunn, Cari; Rabren, Karen S.; Taylor, Stephanie L.; Dotson, Courtney K.

    2012-01-01

    Persons with disabilities have been underrepresented in the science, technology, engineering, and mathematics (STEM) fields for many years. Reasons for this include low expectations for students with disabilities, limited exposure to prerequisite courses, lack of role models, and lack of access to individualized supports. This article identifies…

  2. Redefining Science, Technology, Engineering, and Mathematics (STEM) Educational Opportunities for Underserved and Underrepresented Students at NASA

    ERIC Educational Resources Information Center

    Hackler, Amanda Smith

    2011-01-01

    Underserved and underrepresented students consistently leave science, technology, engineering, and mathematics (STEM) degree fields to pursue less demanding majors. This perpetual problem slowed the growth in STEM degree fields (United States Department of Labor, 2007). Declining enrollment in STEM degree fields among underserved and…

  3. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Iannelli, Joe; Sirinterlikci, Arif; Semich, George; Bernauer, James

    2012-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  4. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    ERIC Educational Resources Information Center

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  5. A STEM Exploration with Gears

    ERIC Educational Resources Information Center

    Deis, Timothy; Julius, Julie

    2017-01-01

    Science, engineering, and mathematics are fields that many students see as separate entities. But if these fields are combined with technology, they become STEM. This investigation provides a context and allows students to explore mathematics, science, and engineering within that context. It requires students to model with mathematics and find…

  6. Is Computer Science Compatible with Technological Literacy?

    ERIC Educational Resources Information Center

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  7. Attitudes towards Science, Technology, Engineering and Mathematics (STEM) in a Project-Based Learning (PjBL) Environment

    ERIC Educational Resources Information Center

    Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Chen, Wen-Ping

    2013-01-01

    Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview…

  8. Learning Scientific Reasoning Skills May Be Key to Retention in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Jensen, Jamie L.; Neeley, Shannon; Hatch, Jordan B.; Piorczynski, Ted

    2017-01-01

    The United States produces too few Science, Technology, Engineering, and Mathematics (STEM) graduates to meet demand. We investigated scientific reasoning ability as a possible factor in STEM retention. To do this, we classified students in introductory biology courses at a large private university as either declared STEM or non-STEM majors and…

  9. Women's Leadership in Science, Technology, Engineering and Mathematics: Barriers to Participation

    ERIC Educational Resources Information Center

    McCullough, Laura

    2011-01-01

    Despite gains overall, women are still under-represented in leadership positions in science, technology, engineering, and mathematics (STEM) fields. Data in the US suggest around one-quarter of deans and department heads are women; in science this drops to nearly 1 in 20. Part of this problem of under-representation stems from the population pool:…

  10. Activities in Support of Two-Year College Science, Engineering, Technology, and Mathematics Education, Fiscal Year 1993. Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…

  11. How Well Does the SAT and GPA Predict the Retention of Science, Technology, Engineering, Mathematics, and Business Students

    ERIC Educational Resources Information Center

    Rohr, Samuel L.

    2013-01-01

    This study examined the relationship between various admissions selection criteria utilized by a small, Liberal Arts College in Indiana. More specifically, the study examined if a higher college preparatory GPA and a higher aggregate score on the SAT helped predict the retention of science, technology, engineering, mathematics, and business…

  12. Early Childhood Teachers' Beliefs about Readiness for Teaching Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Park, Mi-Hwa; Dimitrov, Dimiter M.; Patterson, Lynn G.; Park, Do-Yong

    2017-01-01

    The purpose of this study was to examine beliefs of early childhood teachers about their readiness for teaching science, technology, engineering, and mathematics, with a focus on testing for heterogeneity of such beliefs and differential effects of teacher-related factors. The results from latent class analysis of survey data revealed two latent…

  13. Does Personality Matter? Applying Holland's Typology to Analyze Students' Self-Selection into Science, Technology, Engineering, and Mathematics Majors

    ERIC Educational Resources Information Center

    Chen, P. Daniel; Simpson, Patricia A.

    2015-01-01

    This study utilized John Holland's personality typology and the Social Cognitive Career Theory (SCCT) to examine the factors that may affect students' self-selection into science, technology, engineering, and mathematics (STEM) majors. Results indicated that gender, race/ethnicity, high school achievement, and personality type were statistically…

  14. Using Citation Analysis Methods to Assess the Influence of Science, Technology, Engineering, and Mathematics Education Evaluations

    ERIC Educational Resources Information Center

    Greenseid, Lija O.; Lawrenz, Frances

    2011-01-01

    This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…

  15. STEM Education: A Review of the Contribution of the Disciplines of Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    McDonald, Christine V.

    2016-01-01

    Recent global educational initiatives and reforms have focused on increasing the number of students pursuing STEM subjects, and ensuring students are well-prepared, and suitably qualified to engage in STEM careers. This paper examines the contributions of the four disciplines--Science, Technology, Engineering and Mathematics--to the field of STEM…

  16. A "Great Way to Get On"? The Early Career Destinations of Science, Technology, Engineering and Mathematics Graduates

    ERIC Educational Resources Information Center

    Smith, Emma; White, Patrick

    2017-01-01

    Concerns about a shortage of highly skilled workers in the science, technology, engineering and mathematics (STEM) sector have been expressed frequently since the late 1940s. Although these claims have been challenged as being insufficiently grounded in evidence, they have formed the basis of policies directing considerable resources to STEM…

  17. Documenting the Impact of Multisite Evaluations on the Science, Technology, Engineering, and Mathematics Field

    ERIC Educational Resources Information Center

    Roseland, Denise; Greenseid, Lija O.; Volkov, Boris B.; Lawrenz, Frances

    2011-01-01

    This chapter discusses the impact that four multisite National Science Foundation (NSF) evaluations had on the broader field of science, technology, engineering, and mathematics education and evaluation. Three approaches were used to investigate the broader impact of these evaluations on the field: (a) a citation analysis, (b) an on-line survey,…

  18. Examining the Academic Success of Latino Students in Science Technology Engineering and Mathematics (STEM) Majors

    ERIC Educational Resources Information Center

    Cole, Darnell; Espinoza, Araceli

    2008-01-01

    Using a longitudinal sample of 146 Latino students' in science, technology, engineering, and mathematics majors, the purpose of the study was to examine factors that affect their academic performance. The main premise supporting this study suggested that Latino students perform better academically when they have cultural congruity within their…

  19. Involvement of African-American Girls in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Nkere, Nsidi

    2016-01-01

    A qualitative case study was conducted by examining the perceptions of fifth-grade African American girls about their experiences with science, technology, engineering and mathematics (STEM) education and potential for STEM as a future career. As the United States suffers from waning participation across all demographics in STEM and a high level…

  20. Mapping Beliefs about Teaching to Patterns of Instruction within Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Allendoerfer, Cheryl; Wilson, Denise; Kim, Mee Joo; Burpee, Elizabeth

    2014-01-01

    In this paper, we identify beliefs about teaching and patterns of instruction valued and emphasized by science, technology, engineering, and mathematics faculty in higher education in the USA. Drawing on the notion that effective teaching is student-centered rather than teacher-centered and must include a balance of knowledge-, learner-,…

  1. Implementing "Big Ideas" to Advance the Teaching and Learning of Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Chalmers, Christina; Carter, Merilyn; Cooper, Tom; Nason, Rod

    2017-01-01

    Although education experts are increasingly advocating the incorporation of integrated Science, Technology, Engineering, and Mathematics (STEM) curriculum units to address limitations in much current STEM teaching and learning, a review of the literature reveals that more often than not such curriculum units are not mediating the construction of…

  2. Science, Technology, Engineering, Mathematics (STEM): Catalyzing Change Amid the Confusion

    ERIC Educational Resources Information Center

    Barakos, Lynn; Lujan, Vanessa; Strang, Craig

    2012-01-01

    Over the past eight years or so, educators have struggled to make sense of the many views and definitions of science, technology, engineering, and mathematics (STEM) education and what constitutes quality in STEM practices. The multitude of recent STEM funding opportunities has done little to create a common understanding about how to best engage…

  3. Using Food Science Demonstrations to Engage Students of All Ages in Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.

    2012-01-01

    The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…

  4. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    National Academies Press, 2011

    2011-01-01

    Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's…

  5. Increasing Access of Female Students in Science Technology, Engineering and Mathematics (STEM), in the University of Malawi (UNIMA)

    ERIC Educational Resources Information Center

    Mbano, Nellie; Nolan, Kathleen

    2017-01-01

    In Malawi, in spite of a number of gender equity policies and initiatives that encourage females to pursue careers within the fields of science, technology, engineering, and mathematics (STEM), research indicates that they are under-represented in these fields. One initiative recommended to address the factors contributing to this…

  6. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Belichesky, Jennifer

    2013-01-01

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational…

  7. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    ERIC Educational Resources Information Center

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  8. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  9. Mathematics, Engineering Science Achievement (MESA). Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Growing Science, Technology, Education, and Mathematics (STEM) talent Washington MESA--Mathematics Engineering Science Achievement--helps under-represented community college students excel in school and ultimately earn STEM bachelor's degrees. MESA has two key programs: one for K-12 students, and the other for community and technical college…

  10. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant--Part II

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Sirinterlikci, Arif

    2015-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  11. Aequilibrium prudentis: on the necessity for ethics and policy studies in the scientific and technological education of medical professionals.

    PubMed

    Anderson, Misti Ault; Giordano, James

    2013-04-23

    The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine - as profession and practice - can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture.

  12. An interdisciplinary collaboration between computer engineering and mathematics/bilingual education to develop a curriculum for underrepresented middle school students

    NASA Astrophysics Data System (ADS)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-12-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.

  13. Higher Education: Science, Technology, Engineering, and Mathematics Trends and the Role of Federal Programs. Testimony before the Committee on Education and the Workforce, House of Representatives. GAO-06-702T

    ERIC Educational Resources Information Center

    Ashby, Cornelia M.

    2006-01-01

    The United States is a world leader in scientific and technological innovation. To help maintain this advantage, the federal government has spent billions of dollars on education programs in the science, technology, engineering, and mathematics (STEM) fields for many years. However, concerns have been raised about the nation's ability to maintain…

  14. Coordinating Federal Science, Technology, Engineering, and Mathematics (STEM) Education Investments: Progress Report. A Report from the Federal Coordination in STEM Education Task Force Committee on STEM Education National Science and Technology Council: In Response to the Requirements of the America COMPETES Reauthorization Act of 2010

    ERIC Educational Resources Information Center

    Executive Office of the President, 2012

    2012-01-01

    The America COMPETES Reauthorization Act of 2013 directs the Office of Science and Technology Policy (OSTP) to create an interagency committee under the National Science and Technology Council (NSTC) to develop a 5-year Federal science, technology, engineering, and mathematics (STEM) education strategic plan that includes: (1) annual and long-term…

  15. What Works! Encouraging Diversity in Science, Mathematics, Engineering, and Technology through Effective Mentoring. A 5-Year Overview of the Research Careers for Minority Scholars Program.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Directorate for Education and Human Resources.

    The National Science Foundation's (NSF) Research Careers for Minority Scholars (RCMS) program was initiated to encourage individuals from underrepresented groups in science, mathematics, engineering and technology (SMET) disciplines to complete undergraduate degree programs and matriculate to SMET graduate degree programs. This report describes…

  16. An Investigation of Science, Technology, Engineering and Mathematics (STEM) Focused High Schools in the U.S.

    ERIC Educational Resources Information Center

    Scott, Catherine

    2012-01-01

    This study examined the characteristics of 10 science, technology, engineering and mathematics (STEM) focused high schools that were selected from various regions across the United States. In an effort to better prepare students for careers in STEM fields, many schools have been designed and are currently operational, while even more are in the…

  17. What Does the Literature Say about the Persistence of Women with Career Goals in Physical Science, Technology, Engineering, and Mathematics?

    ERIC Educational Resources Information Center

    Kondrick, Linda C.

    The under-representation of women in physical science, technology, engineering, and mathematics (PSTEM) career fields is a persistent problem. This paper summarizes an extensive review of the literature pertaining to the many issues that surround this problem. The review revealed a wide range of viewpoints and a broad spectrum of research…

  18. A Research about the Placement of the Top Thousand Students in STEM Fields in Turkey between 2000 and 2014

    ERIC Educational Resources Information Center

    Akgunduz, Devrim

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics), one of the mostly emphasized concepts in the world, is a paradigm that creates interdisciplinary learning and provides achievement of the outcomes of science, mathematics, engineering and technology while doing this. This research was carried out to investigate the STEM fields' placement of…

  19. Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. Stats in Brief. NCES 2009-161

    ERIC Educational Resources Information Center

    Chen, Xianglei

    2009-01-01

    Rising concern about America's ability to maintain its competitive position in the global economy has renewed interest in science, technology, engineering and mathematics (STEM) education. To understand who enters into and completes undergraduate programs in STEM fields, this report examined data from three major national studies: the 1995-96…

  20. Where Are the Women? Campus Climate and the Degree Aspirations of Women in Science, Technology, Engineering and Mathematics Programs

    ERIC Educational Resources Information Center

    Schulz, Phyllis

    2014-01-01

    Women remain underrepresented in science, technology, engineering, and mathematics (STEM) at all levels of higher education, which has become a concern in the competitive global marketplace. Using both quantitative and qualitative analysis, this dissertation sought to learn more about how the campus climate and self-concept influence the degree…

  1. 13th Annual Systems Engineering Conference: Tues- Wed

    DTIC Science & Technology

    2010-10-28

    greater understanding/documentation of lessons learned – Promotes SE within the organization • Justification for continued funding of SE Infrastructure...educational process – Addresses the development of innovative learning tools, strategies, and teacher training • Research and Development – Promotes ...technology, and mathematics • More commitment to engaging young students in science, engineering, technology and mathematics • More rigor in defining

  2. How Do Science, Technology, Engineering, and Mathematics Minority Faculty Members Describe Their Experiences of Graduate Student and Faculty Socialization?

    ERIC Educational Resources Information Center

    Johnson, Ayana M.

    2012-01-01

    To remain globally competitive in science, technology, engineering, and mathematics (STEM), we must increase our number of underrepresented minority scientists (URMs) as our country's population becomes more diverse. For URMs to move up the educational and professional ranks, they need to be properly socialized as graduate students and…

  3. African-American Women's Experiences in Graduate Science, Technology, Engineering, and Mathematics Education at a Predominantly White University: A Qualitative Investigation

    ERIC Educational Resources Information Center

    Alexander, Quentin R.; Hermann, Mary A.

    2016-01-01

    In this phenomenological investigation we used qualitative research methodology to examine the experiences of 8 African American women in science, technology, engineering, and mathematics (STEM) graduate programs at 1 predominantly White university (PWU) in the South. Much of the current research in this area uses quantitative methods and only…

  4. Science, Technology, Engineering, and Mathematics Education: Strategic Planning Needed to Better Manage Overlapping Programs across Multiple Agencies. Report to Congressional Requesters. GAO-12-108

    ERIC Educational Resources Information Center

    Scott, George A.

    2012-01-01

    Science, technology, engineering, and mathematics (STEM) education programs help to enhance the nation's global competitiveness. Many federal agencies have been involved in administering these programs. Concerns have been raised about the overall effectiveness and efficiency of STEM education programs. GAO examined (1) the number of federal…

  5. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema

    None

    2017-12-09

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  6. Is it Really a Man's World? Black Men in Science, Technology, Engineering, and Mathematics at Historically Black Colleges and Universities

    ERIC Educational Resources Information Center

    Lundy-Wagner, Valerie C.

    2013-01-01

    Efforts to improve the Black science, technology, engineering and mathematics (STEM) pipeline have focused on historically Black colleges and universities (HBCUs); however, this work generally fails to acknowledge men. This article characterized Black male receipts of bachelor's degrees from HBCUs in STEM fields between 1981 and 2009 using a…

  7. National STEM School Education Strategy: A Comprehensive Plan for Science, Technology, Engineering and Mathematics Education in Australia

    ERIC Educational Resources Information Center

    Education Council, 2015

    2015-01-01

    There are many factors that affect student engagement in science, technology, engineering and mathematics (STEM). Underlying this are the views of the broader community--and parents in particular--about the relevance of STEM, and the approach to the teaching and learning of STEM from the early years and continuing throughout schooling. Connected…

  8. Development of an Instrument to Assess Attitudes toward Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Harwell, Michael; Moore, Tamara

    2014-01-01

    There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4-6)…

  9. Integrating Science, Technology, Engineering, and Mathematics: Issues, Reflections, and Ways Forward. Teaching and Learning in Science Series

    ERIC Educational Resources Information Center

    Rennie, Leonie, Ed.; Venville, Grady, Ed.; Wallace, John, Ed.

    2012-01-01

    How can curriculum integration of school science with the related disciplines of technology, engineering and mathematics (STEM) enhance students' skills and their ability to link what they learn in school with the world outside the classroom? Featuring actual case studies of teachers' attempts to integrate their curriculum, their reasons for doing…

  10. Gender Gap in Science, Technology, Engineering, and Mathematics (STEM): Current Knowledge, Implications for Practice, Policy, and Future Directions

    ERIC Educational Resources Information Center

    Wang, Ming-Te; Degol, Jessica L.

    2017-01-01

    Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences…

  11. Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This is the final report of an intensive review of the state of undergraduate education in science, mathematics, engineering and technology (SME&T) in America. It was conducted by a committee of the Advisory Committee to the Education and Human Resources Directorate of the National Science Foundation (NSF). The year-long review has revealed…

  12. Idaho Science, Technology, Engineering and Mathematics Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P

    2011-02-11

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  13. Which Techno-Mathematical Literacies Are Essential for Future Engineers?

    ERIC Educational Resources Information Center

    van der Wal, Nathalie J.; Bakker, Arthur; Drijvers, Paul

    2017-01-01

    Due to increased use of technology, the workplace practices of engineers have changed. So-called techno-mathematical literacies (TmL) are necessary for engineers of the 21st century. Because it is still unknown which TmL engineers actually use in their professional practices, the purpose of this study was to identify these TmL. Fourteen…

  14. Choosing STEM College Majors: Exploring the Role of Pre-College Engineering Courses

    ERIC Educational Resources Information Center

    Phelps, L. Allen; Camburn, Eric M.; Min, Sookweon

    2018-01-01

    Despite the recent policy proclamations urging state and local educators to implement integrated science, technology, engineering, and mathematics (STEM) curricula, relatively little is known about the role and impact of pre-college engineering courses within these initiatives. When combined with appropriate mathematics and science courses, high…

  15. Summary of Funded Race to the Top Applications: Science, Technology, Engineering, and Mathematics Activities in Eleven States and the District of Columbia

    ERIC Educational Resources Information Center

    Mattson, Beverly

    2011-01-01

    One of the competitive priorities of the U.S. Department of Education's Race to the Top applications addressed science, technology, engineering, and mathematics (STEM). States that applied were required to submit plans that addressed rigorous courses of study, cooperative partnerships to prepare and assist teachers in STEM content, and prepare…

  16. From the NSF: The National Science Foundation's Investments in Broadening Participation in Science, Technology, Engineering, and Mathematics Education through Research and Capacity Building

    ERIC Educational Resources Information Center

    James, Sylvia M.; Singer, Susan R.

    2016-01-01

    The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been…

  17. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  18. College Students' Persistence and Degree Completion in Science, Technology, Engineering, and Mathematics (STEM): The Role of Non-Cognitive Attributes of Self-Efficacy, Outcome Expectations, and Interest

    ERIC Educational Resources Information Center

    Aryee, Michael

    2017-01-01

    The lack of students' persistence (or student's effort to continue their academic studies until degree completion) in Science, Technology, Engineering, and Mathematics (STEM) and the attrition of STEM students as well as the shortage of STEM workers have gathered much attention from policy makers, governmental agencies, higher education…

  19. Factors That Female Higher Education Faculty in Select Science, Technology, Engineering, and Mathematics (STEM) Fields Perceive as Being Influential to Their Success and Persistence in Their Chosen Professions

    ERIC Educational Resources Information Center

    Opare, Phyllis Bernice

    2012-01-01

    The purpose of this study was to determine factors female higher education faculty in select science, technology, engineering, and mathematics (STEM) fields perceived as influential to their success and persistence in their chosen professions. Females are underrepresented in STEM professions including academia, despite the fact that female…

  20. Engineering Encounters: Catch Me if You Can!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Wallin, Mark; Roghaar, Deborah; Price, Tyson

    2013-01-01

    A science, technology, engineering, and math (STEM) activity is any activity that integrates the use of science, technology, engineering, and mathematics to solve a problem. Traditionally, STEM activities are highly engaging and may involve competition among student teams. Young children are natural engineers and often times spontaneously build…

  1. The MESA Study

    ERIC Educational Resources Information Center

    Denson, Cameron D.

    2017-01-01

    This article examines the Mathematics, Engineering, Science Achievement (MESA) program and investigates its impact on underrepresented student populations. MESA was started in California during the 1970s to provide pathways to science, technology, engineering, and mathematics careers for underrepresented students and represents an exemplar model…

  2. Blended Learning, E-Learning and Mobile Learning in Mathematics Education

    ERIC Educational Resources Information Center

    Borba, Marcelo C.; Askar, Petek; Engelbrecht, Johann; Gadanidis, George; Llinares, Salvador; Aguilar, Mario Sánchez

    2016-01-01

    In this literature survey we focus on identifying recent advances in research on digital technology in the field of mathematics education. To conduct the survey we have used internet search engines with keywords related to mathematics education and digital technology and have reviewed some of the main international journals, including the ones in…

  3. The Study of the Effectiveness of Scholarship Grant Program on Low-Income Engineering Technology Students

    ERIC Educational Resources Information Center

    Ononye, Lawretta C.; Bong, Sabel

    2018-01-01

    This paper investigates the effectiveness of a National Science Foundation Scholarship in Science, Technology, Engineering, and Mathematics (NSF S-STEM) program named "Scholarship for Engineering Technology (SET)" at the State University of New York in Canton (SUNY Canton). The authors seek to answer the following question: To what…

  4. Development of Analytical Thinking Ability and Attitudes towards Science Learning of Grade-11 Students through Science Technology Engineering and Mathematics (STEM Education) in the Study of Stoichiometry

    ERIC Educational Resources Information Center

    Chonkaew, Patcharee; Sukhummek, Boonnak; Faikhamta, Chatree

    2016-01-01

    The purpose of this study was to investigate the analytical thinking abilities and attitudes towards science learning of grade-11 students through science, technology, engineering, and mathematics (STEM) education integrated with a problem-based learning in the study of stoichiometry. The research tools consisted of a pre- and post-analytical…

  5. Cognitive and Motivational Factors That Inspire Hispanic Female Students to Pursue STEM-Related Academic Programs That Lead to Careers in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Morel-Baker, Sonaliz

    2017-01-01

    Hispanics, and women in particular, continue to be underrepresented in the fields of science, technology, engineering, and mathematics (STEM). The purpose of this study was to analyze cognitive and motivational factors that inspired Hispanic female college students to major in STEM programs and aspire to academic success. This mixed methods study…

  6. Examining Thai high school students' developing STEM projects

    NASA Astrophysics Data System (ADS)

    Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.

  7. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    ERIC Educational Resources Information Center

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  8. Who Is Doing the Engineering, the Student or the Teacher? The Development and Use of a Rubric to Categorize Level of Design for the Elementary Classroom

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Pfiester, Joshua; Callahan, Janet; Pyke, Patricia

    2015-01-01

    Science, technology, engineering, and mathematics (STEM) professional development for K-5 teachers often includes engineering design as a focus. Because engineering applications provide perspective to both teachers and their students in terms of how mathematic and scientific principles are employed to solve real-world problems (Baine, 2004; Roden,…

  9. Aequilibrium prudentis: on the necessity for ethics and policy studies in the scientific and technological education of medical professionals

    PubMed Central

    2013-01-01

    Background The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. Discussion In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine – as profession and practice – can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. Summary We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture. PMID:23617840

  10. Trajectories of Mathematics and Technology Education Pointing to Engineering Design

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.; Reese, George C.; Merrill, Chris

    2010-01-01

    A brief examination and comparison of mathematics and technology education provides the background for a discussion of integration. In particular, members of each field have responded to the increasing pressures to better prepare students for the technologically rich, globally competitive future. Approaches based within each discipline are varied…

  11. Increasing Interest of Young Women in Engineering

    ERIC Educational Resources Information Center

    Hinterlong, Diane; Lawrence, Branson; DeVol, Purva

    2014-01-01

    The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential…

  12. Evaluation of Engineering and Technology Activities in Primary Schools in Terms of Learning Environment, Attitudes and Understanding

    ERIC Educational Resources Information Center

    Koul, Rekha B.; Fraser, Barry J.; Maynard, Nicoleta; Tade, Moses

    2018-01-01

    Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools.…

  13. A Case Study of an Academia-Industry Partnership to Meet the Education and Training Needs in a Science, Technology, Engineering & Mathematics (STEM) Field

    ERIC Educational Resources Information Center

    Richardson, Joseph Carl

    2013-01-01

    The purpose of this case study is to provide a description of the characteristics of an academia-industry partnership that works together with industry to meet the education and training needs in a Science, Technology, Engineering, and Mathematics (STEM) field. After the launch of Sputnik in 1957, U.S. pursued efforts to compete in STEM fields on…

  14. Using Aviation to Change Math Attitudes

    ERIC Educational Resources Information Center

    Wood, Jerra

    2013-01-01

    Mathematics teachers are constantly looking for real-world applications of mathematics. Aerospace education provides an incredible context for teaching and learning important STEM concepts, inspiring young people to pursue careers in science, technology, engineering, and mathematics. Teaching mathematics within the context of aerospace generates…

  15. Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience

    ERIC Educational Resources Information Center

    Charpin, J. P. F.; O'Hara, S.; Mackey, D.

    2013-01-01

    In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…

  16. How Well Do Engineering Students Retain Core Mathematical Knowledge after a Series of High Threshold Online Mathematics Tests?

    ERIC Educational Resources Information Center

    Carr, Michael; Prendergast, Mark; Breen, Cormac; Faulkner, Fiona

    2017-01-01

    In the Dublin Institute of Technology, high threshold core skills assessments are run in mathematics for third-year engineering students. Such tests require students to reach a threshold of 90% on a multiple choice test based on a randomized question bank. The material covered by the test consists of the more important aspects of undergraduate…

  17. Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching

    ERIC Educational Resources Information Center

    Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.

    2017-01-01

    Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…

  18. 34 CFR 691.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...

  19. 34 CFR 691.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...

  20. 34 CFR 691.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...

  1. 34 CFR 691.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...

  2. Why Do Spatial Abilities Predict Mathematical Performance?

    ERIC Educational Resources Information Center

    Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-01-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…

  3. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Astrophysics Data System (ADS)

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  4. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  5. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  6. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  7. Advancing the "E" in K-12 STEM Education

    ERIC Educational Resources Information Center

    Rockland, Ronald; Bloom, Diane S.; Carpinelli, John; Burr-Alexander, Levelle; Hirsch, Linda S.; Kimmel, Howard

    2010-01-01

    Technological fields, like engineering, are in desperate need of more qualified workers, yet not enough students are pursuing studies in science, technology, engineering, or mathematics (STEM) that would prepare them for technical careers. Unfortunately, many students have no interest in STEM careers, particularly engineering, because they are not…

  8. Optimization, an Important Stage of Engineering Design

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2010-01-01

    A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…

  9. Developing Professional Skills in Undergraduate Engineering Students through Cocurricular Involvement

    ERIC Educational Resources Information Center

    Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay

    2017-01-01

    As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…

  10. Leading Practice in Space Education: Successful Approaches by Specialist Schools

    ERIC Educational Resources Information Center

    Schools Network, 2010

    2010-01-01

    The aim of the Government's Science, Technology, Engineering and Mathematics (STEM) programme is to ensure Britain's future success as a major centre for science, engineering and innovation. Specialist science, technology, engineering and maths & computing colleges help to drive this programme by becoming centres of excellence in STEM…

  11. Teachers from Instructors to Designers of Inquiry-Based Science, Technology, Engineering, and Mathematics Education: How Effective Inquiry-Based Science Education Implementation Can Result in Innovative Teachers and Students

    ERIC Educational Resources Information Center

    Filippi, Alyssa; Agarwal, Dipali

    2017-01-01

    There is a need for individuals in science, technology, engineering, and mathematics (STEM) careers to drive the innovation and research potential of Europe. Yet, there is expected to be a decrease in the number of STEM professionals, as there is less student interest in STEM fields of the study. Studies show that STEM classes that focus on…

  12. Meyerhoff Scholars Program: a strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics.

    PubMed

    Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.

  13. A study of competence in mathematics and mechanics in an engineering curriculum

    NASA Astrophysics Data System (ADS)

    Munns, Andrew

    2017-11-01

    Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as 'The Mathematics Problem', with students not demonstrating understanding of the subject. This paper will suggest that students are constructing different concept images in engineering and mathematics, based on their perception of either the use or exchange-value for the topics. Using a mixed methods approach, the paper compares 10 different types of concept image constructed by students, which suggests that familiar procedural images are preferred in mathematics. In contrast strategic and conceptual images develop for mechanics throughout the years of the programme, implying that different forms of competence are being constructed by students between the two subjects. The paper argues that this difference is attributed to the perceived use-value of mechanics in the career of the engineer, compared to the exchange-value associated with mathematics. Questions are raised about the relevance of current definitions of competence given that some routine mathematical operations previously performed by engineers are now being replaced by technology, in the new world of work.

  14. Transforming attitudes and lives: Liberating African-American elementary and middle school students in out-of-school time STEM education

    NASA Astrophysics Data System (ADS)

    Smith, Charisse F.

    Statistically, African-Americans, women, and the disabled are underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). Historically, these underrepresented students, are described as being unrecognized and underdeveloped in the American STEM circuit. Many experience deficient and inadequate educational resources, are not encouraged to pursue STEM education and careers, and are confronted with copious obstructions. In this quantitative study, the researcher collected pretest and posttest survey data from a group of 4th, 5th, and 6th-grade African-American students in Title I funded schools. The reseacher used quantitative analysis to determine any significant differences in the science related attitudes between and within groups who participated in Out of School-Time Science, Technology, Engineering, and Mathematics programs and those who did not. Results revealed no significant differences in the science related attitudes between the groups of the students who participated in the Out of School Time-Science, Technology, Engineering, and Mathematics programs and those who did not. Results also revealed no significant differences in the science related attitudes within the groups of students who participated in the Out of School Time-Science, Technology, Engineering, and Mathematics programs and those who did not.

  15. An Intersectional Analysis of Latin@ College Women's Counter-Stories in Mathematics

    ERIC Educational Resources Information Center

    Leyva, Luis A.

    2016-01-01

    In this article, the author discusses the intersectionality of mathematics experiences for two Latin@ college women pursuing mathematics-intensive STEM (science, technology, engineering, and mathematics) majors at a large, predominantly White university. The author employs intersectionality and poststructural theories to explore and make meaning…

  16. Transitioning to Secondary School: The Case of Mathematics

    ERIC Educational Resources Information Center

    Carmichael, Colin

    2015-01-01

    At a time when Australia's international competitiveness is compromised by a shortage of skilled workers in Science, Technology, Engineering and Mathematics (STEM) related careers, reports suggest a decline in Australian secondary school students' performances in international tests of mathematics. This study focuses on the mathematics performance…

  17. Public Views on the Gendering of Mathematics and Related Careers: International Comparisons

    ERIC Educational Resources Information Center

    Forgasz, Helen; Leder, Gilah; Tan, Hazel

    2014-01-01

    Mathematics continues to be an enabling discipline for Science, Technology, Engineering, and Mathematics (STEM)-based university studies and related careers. Explanatory models for females' underrepresentation in higher level mathematics and STEM-based courses comprise learner-related and environmental variables--including societal beliefs. Using…

  18. Educational Technologies for Precollege Engineering Education

    ERIC Educational Resources Information Center

    Riojas, M.; Lysecky, S.; Rozenblit, J.

    2012-01-01

    Numerous efforts seek to increase awareness, interest, and participation in scientific and technological fields at the precollege level. Studies have shown these students are at a critical age where exposure to engineering and other related fields such as science, mathematics, and technology greatly impact their career goals. A variety of advanced…

  19. The Use of Mathematical Modelling for Improving the Tissue Engineering of Organs and Stem Cell Therapy.

    PubMed

    Lemon, Greg; Sjoqvist, Sebastian; Lim, Mei Ling; Feliu, Neus; Firsova, Alexandra B; Amin, Risul; Gustafsson, Ylva; Stuewer, Annika; Gubareva, Elena; Haag, Johannes; Jungebluth, Philipp; Macchiarini, Paolo

    2016-01-01

    Regenerative medicine is a multidisciplinary field where continued progress relies on the incorporation of a diverse set of technologies from a wide range of disciplines within medicine, science and engineering. This review describes how one such technique, mathematical modelling, can be utilised to improve the tissue engineering of organs and stem cell therapy. Several case studies, taken from research carried out by our group, ACTREM, demonstrate the utility of mechanistic mathematical models to help aid the design and optimisation of protocols in regenerative medicine.

  20. Effects of single-gender mathematics classrooms on self-perception of mathematical ability and post secondary engineering paths: an Australian case study

    NASA Astrophysics Data System (ADS)

    Tully, D.; Jacobs, B.

    2010-08-01

    This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.

  1. Growing a National Learning Environments and Resources Network for Science, Mathematics, Engineering, and Technology Education: Current Issues and Opportunities for the NSDL Program; Open Linking in the Scholarly Information Environment Using the OpenURL Framework; The HeadLine Personal Information Environment: Evaluation Phase One.

    ERIC Educational Resources Information Center

    Zia, Lee L.; Van de Sompel, Herbert; Beit-Arie, Oren; Gambles, Anne

    2001-01-01

    Includes three articles that discuss the National Science Foundation's National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) program; the OpenURL framework for open reference linking in the Web-based scholarly information environment; and HeadLine (Hybrid Electronic Access and Delivery in the Library Networked…

  2. Financial Literacy: Mathematics and Money Improving Student Engagement

    ERIC Educational Resources Information Center

    Attard, Catherine

    2018-01-01

    The low levels of student engagement with mathematics has been of significant concern in Australia for some time (Attard, 2013). This is a particularly important issue in mathematics education given the current attention to science, technology, engineering and mathematics (STEM) education to ensure "the continued prosperity of Australia on…

  3. Enhancing Mathematics (STEM) Teacher Education in Regional Australia: Pedagogical Interactions and Affect

    ERIC Educational Resources Information Center

    Woolcott, Geoff; Yeigh, Tony

    2015-01-01

    This article reports on initial findings, including the mathematics components, of a multi-institutional Science, Technology, Engineering, and Mathematics (STEM) project, "It's part of my life: Engaging university and community to enhance science and mathematics education." This project is focussed on improving the scientific and…

  4. STEM Education: What Does Mathematics Have to Offer?

    ERIC Educational Resources Information Center

    Fitzallen, Noleine

    2015-01-01

    The emphasis on science, technology, engineering, and mathematics (STEM) education in recent times could be perceived as business as usual or as an opportunity for innovation and change in mathematics classrooms. Either option presents challenges for mathematics educators who are expected to contribute to the foundations of a STEM literate…

  5. Exploring an Integrative Lens of Identity for a High School Mathematics Teacher

    ERIC Educational Resources Information Center

    Wilson, Kimi

    2016-01-01

    Driven largely by societal discourse regarding the underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions, it becomes salient to understand how African American males experience mathematics in K-12 public schools in relation to their mathematics identity…

  6. Cross-National Patterns of Gender Differences in Mathematics: A Meta-Analysis

    ERIC Educational Resources Information Center

    Else-Quest, Nicole M.; Hyde, Janet Shibley; Linn, Marcia C.

    2010-01-01

    A gender gap in mathematics achievement persists in some nations but not in others. In light of the underrepresentation of women in careers in science, technology, mathematics, and engineering, increasing research attention is being devoted to understanding gender differences in mathematics achievement, attitudes, and affect. The gender…

  7. An Introduction to the Standards for Preparation and Professional Development for Teachers of Engineering

    ERIC Educational Resources Information Center

    Reimers, Jackson E.; Farmer, Cheryl L.; Klein-Gardner, Stacy S.

    2015-01-01

    The past 30 years have yielded a mature body of research regarding effective professional development for teachers of science and mathematics, leading to a robust selection of professional development programs for these teachers. The current emphasis on connections among science, technology, engineering, and mathematics underscores the need for…

  8. A Case Study of Coaching in Science, Technology, Engineering, and Math Professional Development

    ERIC Educational Resources Information Center

    DeChenne, Sue Ellen; Nugent, Gwen; Kunz, Gina; Luo, Linlin; Berry, Brandi; Craven, Katherine; Riggs, April

    2012-01-01

    A professional development experience for science and mathematics teachers that included coaches was provided for ten science and math teachers. This professional development experience had the teachers develop a lesson that utilized the engineering context to teach a science or mathematics concept through guided inquiry as an instructional…

  9. Gender Differences in Interest, Perceived Personal Capacity, and Participation in STEM-Related Activities

    ERIC Educational Resources Information Center

    Weber, Katherine

    2012-01-01

    Today, more women than in the past obtain degrees in science and engineering. However, women still remain underrepresented in science, technology, engineering, and mathematics (STEM). This study identifies whether the Engagement, Capacity, and Continuity (ECC) Trilogy could be utilized by teachers in technology and engineering program setting to…

  10. 75 FR 81650 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-United Negro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... activities that advance the state-of-the-art as well as the scientific, technology, engineering and... utilizing science, technology, engineering and mathematics; (c) to increase the competitiveness of..., UNCFSP-RDC, in care of Engineering and Management Executive, Inc. (EME), 101 South Whiting Street, Suite...

  11. Preparing the Future Workforce: Science, Technology, Engineering and Math (STEM) Policy in K-12 Education

    ERIC Educational Resources Information Center

    Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob

    2009-01-01

    Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in…

  12. 78 FR 5837 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... science, technology, engineering, and mathematics (STEM) education, this clearance request pertains to the... feedback forms for the NASA Great Moonbuggy Race. This vehicular engineering experience connects classroom... respondents, including automated collection techniques or the use of other forms of information technology...

  13. Careers in STEM Begin with Elementary Student Interest in Mathematics

    ERIC Educational Resources Information Center

    Brimmer, Linda Ertrachter

    2017-01-01

    I investigated why math capable students are not entering science, technology, engineering, and math (STEM) careers. To research the problem, I explored how highly effective elementary math teachers (HEMT) create student interest in mathematics using the self- efficacy (SE) theory and information and communication technology (ICT). The purpose of…

  14. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  15. Electrochemical Positioning of Ordered Nanostructures

    DTIC Science & Technology

    2016-04-26

    or technology fields : Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting period The...funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields : The number of...engineering, or technology fields :...... ...... ...... ...... ...... PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: PERCENT_SUPPORTEDNAME FTE

  16. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  17. Computer-Based Mathematics Instructions for Engineering Students

    NASA Technical Reports Server (NTRS)

    Khan, Mustaq A.; Wall, Curtiss E.

    1996-01-01

    Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

  18. Computing and Engineering in Elementary School: The Effect of Year-Long Training on Elementary Teacher Self-Efficacy and Beliefs about Teaching Computing and Engineering

    ERIC Educational Resources Information Center

    Rich, Peter Jacob; Jones, Brian; Belikov, Olga; Yoshikawa, Emily; Perkins, McKay

    2017-01-01

    STEM, the integration of Science, Technology, Engineering, and Mathematics is increasingly being promoted in elementary education. However, elementary educators are largely untrained in the 21st century skills of computing (a subset of technology) and engineering. The purpose of this study was to better understand elementary teachers'…

  19. Catalysts of Women's Talent Development in STEM: A Systematic Review

    ERIC Educational Resources Information Center

    Mullet, Dianna R.; Rinn, Anne N.; Kettler, Todd

    2017-01-01

    Numbers of women in the physical sciences, mathematics, and engineering are growing, yet women are still far outnumbered by men at upper levels of those fields. The purpose of the study is to review the literature on academic women who develop exceptional talent in science, technology, engineering, and mathematics (STEM). Data sources included 18…

  20. Addressing Continuing Mathematical Deficiencies with Advanced Mathematical Diagnostic Testing

    ERIC Educational Resources Information Center

    Carr, Michael; Murphy, Eoin; Bowe, Brian; Ni Fhloinn, Eabhnat

    2013-01-01

    Dublin Institute of Technology offers students a number of different routes into engineering, allowing many non-standard entrants the opportunity to study the discipline provided they fulfil certain criteria. The final aim of many of these students is to achieve an Honours Degree in Engineering, which takes a minimum of 4 years. Apart from the…

  1. I See What You Are Doing: Student Views on Lecturer Use of Tablet PCs in the Engineering Mathematics Classroom

    ERIC Educational Resources Information Center

    Maclaren, Peter; Wilson, David; Klymchuk, Sergiy

    2017-01-01

    Mathematically intensive engineering subjects at a tertiary level have traditionally been taught in classroom environments using whiteboards or blackboards. This paper reports on student views of the effectiveness of board and alternative technologies used within existing classroom contexts. Students in this study revealed a strong preference for…

  2. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students

    ERIC Educational Resources Information Center

    Marshall, Matthew M.; Carrano, Andres L.; Dannels, Wendy A.

    2016-01-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and…

  3. Tenth-Grade High School Students' Mathematical Self-Efficacy, Mathematics Anxiety, Attitudes toward Mathematics, and Performance on the New York State Integrated Algebra Regents Examination

    ERIC Educational Resources Information Center

    Catapano, Michael

    2013-01-01

    Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…

  4. Can Parents Influence Children's Mathematics Achievement and Persistence in STEM Careers?

    ERIC Educational Resources Information Center

    Ing, Marsha

    2014-01-01

    This study explores the relationship between parental motivational practices, Children's mathematics achievement trajectories, and persistence in science, technology, engineering, and mathematics (STEM) careers. Nationally representative longitudinal survey data were analyzed using latent growth curve analysis. Findings indicate that…

  5. Connecting Mathematics Learning through Spatial Reasoning

    ERIC Educational Resources Information Center

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-01-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…

  6. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  7. Why STEM?

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  8. Designing STEM Pathways through Early College: Ohio's Metro Early College High School

    ERIC Educational Resources Information Center

    North, Charlotte

    2011-01-01

    Calls for improved outcomes in U.S. science, technology, engineering, and mathematics education are frequent and insistent. In 2009, the Commission on Mathematics and Science Education, convened by the Institute for Advanced Study and Carnegie Corporation of New York, concluded that: "Knowledge and skills from science, technology, engineering…

  9. Participation in Science and Technology: Young People's Achievement-Related Choices in Late-Modern Societies

    ERIC Educational Resources Information Center

    Boe, Maria Vetleseter; Henriksen, Ellen Karoline; Lyons, Terry; Schreiner, Camilla

    2011-01-01

    Young people's participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about…

  10. Student Perceptions of a Summer Ventures in Science and Mathematics Camp Experience

    ERIC Educational Resources Information Center

    Binns, Ian C.; Polly, Drew; Conrad, James; Algozzine, Bob

    2016-01-01

    "As the world becomes increasingly technological, the value of (the ideas and skills of its population) will be determined in no small measure by the effectiveness of science, technology, engineering, and mathematics (STEM) education in the United States" and "STEM education will determine whether the United States will remain a…

  11. Designing Technology Activities that Teach Mathematics

    ERIC Educational Resources Information Center

    Silk, Eli M.; Higashi, Ross; Shoop, Robin; Schunn, Christian D.

    2010-01-01

    Over the past three years, the authors have conducted research in middle and high school classrooms in an effort to improve the effectiveness of robotics to teach science, technology, engineering, and mathematics (STEM) education--their focus has been on math. The authors have found that subtle changes in the design and setup of the lesson make a…

  12. Using the CAE technologies of engineering analysis for designing steam turbines at ZAO Ural Turbine Works

    NASA Astrophysics Data System (ADS)

    Goloshumova, V. N.; Kortenko, V. V.; Pokhoriler, V. L.; Kultyshev, A. Yu.; Ivanovskii, A. A.

    2008-08-01

    We describe the experience ZAO Ural Turbine Works specialists gained from mastering the series of CAD/CAE/CAM/PDM technologies, which are modern software tools of computer-aided engineering. We also present the results obtained from mathematical simulation of the process through which high-and intermediate-pressure rotors are heated for revealing the most thermally stressed zones, as well as the results from mathematical simulation of a new design of turbine cylinder shells for improving the maneuverability of these turbines.

  13. 78 FR 37590 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ...: Program Evaluation of the Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM... Mathematics (S-STEM) Program, which operates within NSF's Division of Undergraduate Education. The evaluation...

  14. Core Skills Assessment to Improve Mathematical Competency

    ERIC Educational Resources Information Center

    Carr, Michael; Bowe, Brian; Ní Fhloinn, Eabhnat

    2013-01-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these…

  15. Comparative Analyses of Discourse in Specialized STEM School Classes

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Callahan, Carolyn M.; Nadelson, Louis S.

    2017-01-01

    The authors detail the discourse patterns observed within mathematics and science classes at specialized STEM (science, technology, engineering, and mathematics) high schools. Analyses reveal that teachers in mathematics classes tended to engage their students in authoritative discourse while teachers in science classes tended to engage students…

  16. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  17. Similarities and Differences in Classroom Interaction between Remedial and College Mathematics Courses in a Community College

    ERIC Educational Resources Information Center

    Mesa, V.

    2011-01-01

    Through an analysis of instruction in mathematics classrooms at a community college, the author describes the nature of the interaction and the complexity of the mathematical activities evident in two types of courses: remedial and science, technology, engineering, and mathematics (STEM) college preparatory courses. Although both types of courses…

  18. Math Is All around Us: Exploring the Teaching, Learning, and Professional Development of Three Urban Mathematics Teachers

    ERIC Educational Resources Information Center

    Cosby, Missy; Horton, Akesha; Berzina-Pitcher, Inese

    2017-01-01

    The MSUrbanSTEM fellowship program aims to support science, technology, engineering, and mathematics (STEM) educators teaching in an urban context. In this chapter, we used a multiple case studies methodology to examine the qualitatively different ways three urban mathematics educators implemented a yearlong project in their mathematics classrooms…

  19. Hispanic Students' Mathematics Achievement in the Context of Their High School Types as STEM and Non-STEM Schools

    ERIC Educational Resources Information Center

    Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.

    2018-01-01

    The purpose of this paper is to demonstrate Hispanic students' mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students' mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies…

  20. Employment of an Informal Educational Mathematical Facility to Lower Math Anxiety and Improve Teacher and Student Attitudes Towards Understanding Mathematics

    ERIC Educational Resources Information Center

    Adams, Vicki

    2012-01-01

    Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…

  1. Perceived Mathematical Ability under Challenge: A Longitudinal Perspective on Sex Segregation among STEM Degree Fields

    ERIC Educational Resources Information Center

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite…

  2. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    ERIC Educational Resources Information Center

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  3. The Use of Design Practice to Teach Mathematics and Science

    ERIC Educational Resources Information Center

    Norton, Stephen John

    2008-01-01

    Relatively low participation in the hard sciences (mathematics, science, engineering and technology) has become a concern with respect to the capacity of Australia to meet critical infrastructure projects. This problem has its roots in poor student attitudes towards and perceptions about the study of prerequisite subjects including mathematics and…

  4. 75 FR 21621 - National Assessment Governing Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Mathematics Achievement Levels Descriptions for Grade 12 and the Technology and Engineering Literacy... closed session to review NAEP mathematics items for grades 4 and 8 for the 2011 operational assessment... performance results for 12th grade NAEP mathematics items administered in 2009. The Committee will also get an...

  5. Why? Why? Why?: Future Teachers Discover Mathematical Depth

    ERIC Educational Resources Information Center

    Myers, Perla

    2007-01-01

    In mathematics, it is not just the "how," the procedures for solving problems, that is important, but the "why," the underlying concepts, Perla Myers explains. A good mathematical foundation is becoming crucial for a large number of careers in science, engineering, medicine, technology, and even business. However, the applications of mathematics…

  6. 77 FR 24933 - Notice of Proposed Information Collection Requests; Office of the Secretary; Race to the Top...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... on their progress in the four core education reform areas and in Science, Technology, Engineering..., and ensuring student preparation for success in college and careers; and implementing ambitious plans... reform areas and in Science, Technology, Engineering, and Mathematics. This reporting includes narrative...

  7. 75 FR 73050 - Office of Elementary and Secondary Education Overview Information; College Assistance Migrant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... priority is an invitational priority for applications that promote science, technology, engineering, and... Priority 1--Science, Technology, Engineering and Mathematics (STEM) Education: Projects that are designed... prepared for postsecondary or graduate study and careers in STEM, with a specific focus on an increase in...

  8. Long Term Benefits for Women in a Science, Technology, Engineering, and Mathematics Living-Learning Community

    ERIC Educational Resources Information Center

    Maltby, Jennifer L.; Brooks, Christopher; Horton, Marjorie; Morgan, Helen

    2016-01-01

    Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation…

  9. An Engineering Mentor's Take on "FIRST" Robotics

    ERIC Educational Resources Information Center

    Jackson, Jim

    2013-01-01

    In this article, the author describes a program that he says has "made being smart cool." "FIRST" (For Inspiration and Recognition of Science and Technology) Robotics has made a significant contribution toward progress in advancing science, technology, engineering, and mathematics (STEM) courses and STEM careers with young people. "FIRST" Robotics…

  10. Learn Better by Doing Study: Fourth-Year Results

    ERIC Educational Resources Information Center

    Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.

    2017-01-01

    The purpose of the "Learn Better by Doing Study" was to determine the extent to which U.S. public elementary, middle, and high school students were doing hands-on activities in their science, technology, engineering, and mathematics (STEM) classrooms. The International Technology and Engineering Educators Association's (ITEEA's)…

  11. Science Learning with Information Technologies as a Tool for "Scientific Thinking" in Engineering Education

    ERIC Educational Resources Information Center

    Smirnov, Eugeny; Bogun, Vitali

    2011-01-01

    New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…

  12. Making Recycled Paper: An Engineering Design Challenge

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) educators are facing the challenge of attracting more students. The disparity between the need for engineers and the enrollment of engineering students is growing (Genalo, Bruning, & Adams, 2000), and career aspirations of high school students are inconsistent with the employment…

  13. Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives through Embodiment in Mathematics Education

    ERIC Educational Resources Information Center

    Sung, Woonhee; Ahn, Junghyun; Black, John B.

    2017-01-01

    A science, technology, engineering, and mathematics-influenced classroom requires learning activities that provide hands-on experiences with technological tools to encourage problem-solving skills (Brophy et al. in "J Eng Educ" 97(3):369-387, 2008; Mataric et al. in "AAAI spring symposium on robots and robot venues: resources for AI…

  14. The Science-Technology-Engineering-Mathematics (STEM) Initiative at Stephen F Austin State University

    ERIC Educational Resources Information Center

    Gruebel, Robert W.; Childs, Kimberly

    2013-01-01

    The Texas statewide assessment of academic skills in 1997 indicated that >55 % of the student population failed to master the mathematics objectives set by the test criteria and 42 % of the mathematics teachers at the secondary level in the East Texas region were categorized as underqualified to teach mathematics at that level. The issue of…

  15. Incorporating Engineering Design Challenges into STEM Courses

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  16. Mathematics and engineering in real life through mathematical competitions

    NASA Astrophysics Data System (ADS)

    More, M.

    2018-02-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.

  17. Experiences of high school Hispanic girls in pursuit of science, technology, engineering, and mathematics-related coursework and careers

    NASA Astrophysics Data System (ADS)

    Vijil, Veronica G.

    2011-12-01

    An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.

  18. 78 FR 38957 - Agency Information Collection Activities; Comment Request; Trends in International Mathematics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... not in 2008. Because of the current strong policy interest in preparedness for college and for careers in science, technology, engineering, and mathematics (STEM) fields, the U.S. plans to participate in...

  19. Evaluating a technical university's placement test using the Rasch measurement model

    NASA Astrophysics Data System (ADS)

    Salleh, Tuan Salwani; Bakri, Norhayati; Zin, Zalhan Mohd

    2016-10-01

    This study discusses the process of validating a mathematics placement test at a technical university. The main objective is to produce a valid and reliable test to measure students' prerequisite knowledge to learn engineering technology mathematics. It is crucial to have a valid and reliable test as the results will be used in a critical decision making to assign students into different groups of Technical Mathematics 1. The placement test which consists of 50 mathematics questions were tested on 82 new diplomas in engineering technology students at a technical university. This study employed rasch measurement model to analyze the data through the Winsteps software. The results revealed that there are ten test questions lower than less able students' ability. Nevertheless, all the ten questions satisfied infit and outfit standard values. Thus, all the questions can be reused in the future placement test at the technical university.

  20. When Do Faculty Inputs Matter? A Panel Study of Racial/Ethnic Differences in Engineering Bachelor's Degree Production

    ERIC Educational Resources Information Center

    Ransom, Tafaya

    2013-01-01

    Science, technology, engineering and mathematics (STEM) fields are widely credited as the primary drivers of economic growth through innovation, with engineering universally identified as especially critical. Yet as other nations have strengthened their engineering talent pools, the United States has struggled to cultivate an engineering workforce…

  1. Transforming Teacher Preparation to Ensure Long-Term Improvement in STEM Teaching

    ERIC Educational Resources Information Center

    Hiebert, James

    2013-01-01

    An alternative mathematics preparation program for K-8 teachers is described as an existence proof that steadily increasing effectiveness of STEM (science, technology, engineering, and mathematics) preparation is possible. The program is based on treating every lesson in each of five mathematics content and methods courses as objects of study.…

  2. Learners' Performance in Mathematics: A Case Study of Public High Schools, South Africa

    ERIC Educational Resources Information Center

    Mapaire, Lawrence

    2016-01-01

    Mathematics is fundamental to national prosperity in providing tools for understanding science, technology, engineering and economics. It is essential in public decision-making and for participation in the knowledge economy. Mathematics equips pupils with uniquely powerful ways to describe, analyse and change the world. It can stimulate moments of…

  3. A Comparison between a Traditional and an Accelerated, Online, Adaptive Approach to Developmental Mathematics

    ERIC Educational Resources Information Center

    McGee, Daniel; Vasquez, Pedro; Cajigas, Jesus

    2014-01-01

    The University of Puerto Rico in Mayaguez (UPRM) has found that there are disadvantages to a semester long remedial mathematics course that is administered during the freshmen year to students with mathematics deficiencies in STEM (Science, Technology, Engineering and Math) programs. Correspondingly, the UPRM designed and implemented an…

  4. Strategies to Recruit and Retain Students in Physical Science and Mathematics on a Diverse College Campus

    ERIC Educational Resources Information Center

    Chang, Jen-Mei; Kwon, Chuhee; Stevens, Lora; Buonora, Paul

    2016-01-01

    This article presents implementation details and findings of a National Science Foundation Scholarship in Science, Technology, Engineering, and Mathematics Program (S-STEM) consisting of many high-impact practices to recruit and retain students in the physical sciences and mathematics programs, particularly first-generation and underrepresented…

  5. Spatial Reasoning in Undergraduate Mathematics: A Case Study

    ERIC Educational Resources Information Center

    Prugh, Lindsay A.

    2012-01-01

    The need for spatial thinkers is evident in the growing concerns regarding the performance of U.S. students in mathematics and the lack of interest in spatially-driven fields such as science, technology, engineering, and mathematics. Although the focus on spatial research has fluctuated over decades of educational reform, a platform has been…

  6. A Norwegian Out-of-School Mathematics Project's Influence on Secondary Students' STEM Motivation

    ERIC Educational Resources Information Center

    Jensen, Fredrik; Sjaastad, Jørgen

    2013-01-01

    Considerable resources are spent on initiatives aiming to increase achievement and participation in science, technology, engineering, and mathematics (STEM). Drawing on focus group interviews and a questionnaire study with participants in ENT3R, a Norwegian out-of-school mathematics program, we investigated why participants attended and stayed in…

  7. Factors Affecting the Performance of Students in University Remedial Mathematics Courses

    ERIC Educational Resources Information Center

    Aoude, Solange G.

    2013-01-01

    The importance of mathematics is growing in all scientific and technological fields. Lebanese universities, in particular Notre Dame University-Louaize, require students to take a pool of mathematics courses in their scientific and engineering programs. Based on their scores on the university entrance exam, students accepted to the university…

  8. 76 FR 63666 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Advancement of Women in Academic Science and Engineering Careers Committee discussion of EHR collaborations...'s science, technology, engineering, and mathematics (STEM) education and human resources programming...

  9. Iteration in Early-Elementary Engineering Design

    ERIC Educational Resources Information Center

    McFarland Kendall, Amber Leigh

    2017-01-01

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…

  10. An Engineer Does What Now?

    ERIC Educational Resources Information Center

    Gilbert, Amy; Wade, Katherine

    2014-01-01

    For an introductory engineering class at an all-girls urban high school in the Southeast, the authors planned an experience that would align with the engineering aspects of the "Next Generation Science Standards" (NGSS Lead States 2013). The goal was to better relate science, technology, engineering, and mathematics (STEM) to everyday…

  11. Approaches to Integrating Engineering in STEM Units and Student Achievement Gains

    ERIC Educational Resources Information Center

    Crotty, Elizabeth A.; Guzey, Selcen S.; Roehrig, Gillian H.; Glancy, Aran W.; Ring-Whalen, Elizabeth A.

    2017-01-01

    This study examined different approaches to integrating engineering practices in science, technology, engineering, and mathematics (STEM) curriculum units. These various approaches were correlated with student outcomes on engineering assessment items. There are numerous reform documents in the USA and around the world that emphasize the need to…

  12. Strategic Future Directions for Developing STEM Education in Higher Education in Egypt as a Driver of Innovation Economy

    ERIC Educational Resources Information Center

    Ahmed, Hanaa Ouda Khadri

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…

  13. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  14. A Photovoltaics Module for Incoming Science, Technology, Engineering and Mathematics Undergraduates

    ERIC Educational Resources Information Center

    Dark, Marta L.

    2011-01-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and…

  15. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  16. A Randomized Trial of a Science, Technology, Engineering, and Mathematics Mentoring Program

    ERIC Educational Resources Information Center

    Sowers, Jo-Ann; Powers, Laurie; Schmidt, Jessica; Keller, Thomas E.; Turner, Alison; Salazar, Amy; Swank, Paul R.

    2017-01-01

    Individuals with disabilities are underrepresented in science, technology, engineering, and math (STEM) fields. The purpose of this study was to experimentally evaluate the impact of a STEM mentor intervention and differences between students matched with mentors with or without disabilities on career planning outcomes. An independent groups ×…

  17. Building a Science, Technology, Engineering, and Math Education Agenda: An Update of State Actions

    ERIC Educational Resources Information Center

    Thomasian, John

    2011-01-01

    STEM--science, technology, engineering, and mathematics--is critical to and supportive of many education reforms being undertaken today, from adoption of common internationally benchmarked standards to better teacher preparation to enhanced coordination across the entire K-20 education system. In fact, STEM is not a separate reform movement at…

  18. Technology Education Teacher Supply and Demand--A Critical Situation

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics…

  19. Education for Professional Engineering Practice

    ERIC Educational Resources Information Center

    Bramhall, Mike D.; Short, Chris

    2014-01-01

    This paper reports on a funded collaborative large-scale curriculum innovation and enhancement project undertaken as part of a UK National Higher Education Science, Technology Engineering and Mathematics (STEM) programme. Its aim was to develop undergraduate curricula to teach appropriate skills for professional engineering practice more…

  20. Creating the next generation of transportation professionals.

    DOT National Transportation Integrated Search

    2011-11-01

    "The transportation industry, like every other profession that relies heavily on the science, technology, : engineering, and mathematics (STEM) fields, faces a growing shortage of professional engineers. The : purpose of this project was to investiga...

  1. The Thinking Body in/of Multimodal Engineering Literacy

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2017-01-01

    Studies show that engineering is particularly suited for students traditionally experiencing difficulties in science, technology, engineering, and mathematics (STEM) subjects--including those marked learning disabled--because it supports literacy in its different manifestations (i.e., across modes). This article addresses this topic, building on…

  2. The Impact of Engineering Identification and Stereotypes on Undergraduate Women's Achievement and Persistence in Engineering

    ERIC Educational Resources Information Center

    Jones, Brett D.; Ruff, Chloe; Paretti, Marie C.

    2013-01-01

    Women almost always comprise a minority in engineering programs and a smaller percentage of women pursue engineering than other science and technology majors. The culture of engineering departments and negative stereotypes of women's engineering and mathematical ability have been identified as factors that inhibit women's entry into…

  3. Mathematics: A Powerful Pre- and Post-Admission Variable to Predict Success in Engineering Programmes at a University of Technology

    ERIC Educational Resources Information Center

    van Wyk, Barend; Hofman, Wiecher; Louw, Cecilia

    2013-01-01

    Although student attrition and retention are researched all over the world, there is no final formula available to ensure academic success for selected students. The purpose is to share research undertaken at the Tshwane University of Technology (TUT) in order to investigate the role of mathematics in student achievement and retention in National…

  4. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  5. Students in Rural Schools Have Limited Access to Advanced Mathematics Courses. Issue Brief No. 7

    ERIC Educational Resources Information Center

    Graham, Suzanne E.

    2009-01-01

    This Carsey brief reveals that students in rural areas and small towns have less access to higher-level mathematics courses than students in urban settings, which results in serious educational consequences, including lower scores on assessment tests and fewer qualified students entering science, technology, engineering, and mathematics (STEM) job…

  6. STEM(ming) from Where? A Philosophical Analysis of U.S. Mathematics Education Policies

    ERIC Educational Resources Information Center

    Chesky, Nataly Z.

    2013-01-01

    Much attention has been placed on mathematics education in U.S. education policy reform discourses. Most recently, the emphasis has been on connecting mathematics with science, technology, and engineering, termed The STEM Initiative. Although a great deal of research has been conducted to understand how to meet the objectives of STEM, studies are…

  7. Parental Characteristics and the Achievement Gap in Mathematics: Hierarchical Linear Modeling Analysis of Longitudinal Study of American Youth (LSAY)

    ERIC Educational Resources Information Center

    Shoraka, Mohammad; Arnold, Robert; Kim, Eun Sook; Salinitri, Geri; Kromrey, Jeffrey

    2015-01-01

    One of the most salient problems in education is the achievement gap. The researchers investigated the effects of parental education and parental occupations in science, technology, engineering, mathematics, or medical professions (STEMM) on the achievement gap in mathematics. Because students were nested within schools, two-level Hierarchical…

  8. And Still I See No Changes: Enduring Views of Students of Color in Science and Mathematics Education Policy Reports

    ERIC Educational Resources Information Center

    Basile, Vincent; Lopez, Enrique

    2015-01-01

    Federal education policy reports in science and mathematics education have treated Students of Color consistently over the past two decades, addressing the underrepresentation of minorities in science, technology, engineering, and mathematics (STEM) fields with little regard to actual issues of race and ethnicity. We examine how 17 federal…

  9. Opting in and Creating Demand: Why Young People Choose to Teach Mathematics to Each Other

    ERIC Educational Resources Information Center

    Tucker-Raymond, Eli; Lewis, Naama; Moses, Maisha; Milner, Chad

    2016-01-01

    Access to science, technology, engineering, and mathematics fields serves as a key entry point to economic mobility and civic enfranchisement. Such access must take seriously the intellectual power of the knowledge and practices of non-dominant youth. In our case, this has meant to shift epistemic authority in mathematics from academic…

  10. Mathematics and Science Teachers' Use of and Confidence in Empirical Reasoning: Implications for STEM Teacher Preparation

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.; Rossi, Dara

    2015-01-01

    The recent trend to unite mathematically related disciplines (science, technology, engineering, and mathematics) under the broader umbrella of STEM education has advantages. In this new educational context of integration, however, STEM teachers need to be able to distinguish between sufficient proof and reasoning across different disciplines,…

  11. Meteorology Meets Engineering: An Interdisciplinary STEM Module for Middle and Early Secondary School Students

    ERIC Educational Resources Information Center

    Barrett, Bradford S.; Moran, Angela L.; Woods, John E.

    2014-01-01

    Background: Given the continued need to educate the public on both the meteorological and engineering hazards posed by the severe winds of a tornado, an interdisciplinary science, technology, engineering, and mathematics (STEM) module designed by the faculty from the Oceanography and Mechanical Engineering Departments at the United States Naval…

  12. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    ERIC Educational Resources Information Center

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  13. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…

  14. A Glance at Performance Management in Departments for Preparation of Secondary Mathematics, Engineering, Technology and Science Teachers in France

    ERIC Educational Resources Information Center

    Tchibozo, Guy

    2005-01-01

    In France, secondary teachers are public sector employees. Becoming a STEM (Science, Technology, Engineering, and Math) teacher in secondary education is subject to passing public competitive entry examinations. Preparation for these examinations is provided in College Departments, which are essentially assessed on the basis of their success…

  15. Assessing the Impact of a Research-Based STEM Program on STEM Majors' Attitudes and Beliefs

    ERIC Educational Resources Information Center

    Huziak-Clark, Tracy; Sondergeld, Toni; Staaden, Moira; Knaggs, Christine; Bullerjahn, Anne

    2015-01-01

    The Science, Engineering, and Technology Gateway of Ohio (SETGO) program has a three-pronged approach to meeting the needs at different levels of students in the science, technology, engineering, and mathematics (STEM) pipeline. The SETGO program was an extensive collaboration between a two-year community college and a nearby four-year…

  16. Supporting the STEM Pipeline: Linking Applied STEM Course-Taking in High School to Declaring a STEM Major in College

    ERIC Educational Resources Information Center

    Gottfried, Michael A.; Bozick, Robert

    2016-01-01

    Recently, through the support from the Obama administration, the traditional STEM curricula (science, technology, engineering, and mathematics) in high schools are being updated with integrated, applied STEM courses (e.g., technology and engineering) in order to enhance the "real world" applicability of scientific fields and ultimately…

  17. Measuring the Teaching Self-Efficacy of Science, Technology, Engineering, and Math Graduate Teaching Assistants

    ERIC Educational Resources Information Center

    DeChenne, Sue Ellen; Enochs, Larry

    2010-01-01

    An instrument to measure the teaching self-efficacy of science, technology, engineering, and mathematics (STEM) GTAs is adapted from a general college teaching instrument (Prieto Navarro, 2005) for the specific teaching environment of the STEM GTAs. The construct and content validity and reliability of the final instrument are indicated. The final…

  18. Meeting the STEM Workforce Challenge: Leveraging Higher Education's Untapped Potential to Prepare Tomorrow's STEM Workforce. BHEF Policy Brief

    ERIC Educational Resources Information Center

    Business-Higher Education Forum (NJ1), 2011

    2011-01-01

    Innovations in science and engineering have driven economic growth in the United States over the last five decades. More recently, technology has risen to become a defining driver of productivity in business and industry. In that context, college graduates in science, technology, engineering, and mathematics (STEM) disciplines provide critical…

  19. The Transformative Potential of Engaging in Science Inquiry-Based Challenges: The ATSE Wonder of Science Challenge

    ERIC Educational Resources Information Center

    Tomas, Louisa; Jackson, Cliff; Carlisle, Karen

    2014-01-01

    In 2012, the Australian Academy of Technological Sciences and Engineering (ATSE) piloted the "Wonder of Science Challenge" with a view to enhance school students' interest in Science, Technology, Engineering and Mathematics (STEM). Students in 15 schools across northern Queensland were provided with an inquiry-based research problem and…

  20. Success Factors of Black Science, Technology, Engineering and Mathematics Faculty at Predominantly White Institutions

    ERIC Educational Resources Information Center

    Currie, Michelle A.

    2012-01-01

    Black faculty at predominantly White institutions (PWIs) have historically been underrepresented and made to endure with academic isolation, scholarship marginalization and other challenges to the tenure process. When it comes to science, technology, engineering and math, also known as STEM, as it relates to race and success, little is known of…

  1. A Study of the Correlation between STEM Career Knowledge, Mathematics Self-Efficacy, Career Interests, and Career Activities on the Likelihood of Pursuing a STEM Career among Middle School Students

    ERIC Educational Resources Information Center

    Blotnicky, Karen A.; Franz-Odendaal, Tamara; French, Frederick; Joy, Phillip

    2018-01-01

    Background: A sample of 1448 students in grades 7 and 9 was drawn from public schools in Atlantic Canada to explore students' knowledge of science and mathematics requirements for science, technology, engineering, and mathematics (STEM) careers. Also explored were their mathematics self-efficacy (MSE), their future career interests, their…

  2. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Science, Engineering, Mathematics and Aerospace Academy (SEMAA) was established in September, 1993, by Cuyahoga Community College and the NASA Lewis Research Center. Funding for SEMAA was provided by NASA Headquarters' Office of Equal Employment Opportunities. SEMAA brought together five preexisting youth programs at Cuyahoga Community College. All the programs shared the common goals of 1) Increasing the participation of underrepresented/underserved groups in science, mathematics and engineering and technology careers. 2) Increasing "success" rates of all students interested in science and mathematics. 3) Developing partnerships to recognize and support students interested in these fields. 4) Supporting continued success of highly successful students. The framework for each preexisting program allowed SEMAA to have a student population ranging from kindergarten through the twelfth-grade. This connectivness was the foundation for the many decisions which would make SEMAA a truly innovative program.

  3. Low-Income Engineering Students: Considering Financial Aid and Differential Tuition

    ERIC Educational Resources Information Center

    George-Jackson, Casey E.; Rincon, Blanca; Martinez, Mariana G.

    2012-01-01

    This paper explores the relationship between tuition differentials and low-income students in Engineering fields at two public, research-intensive universities. Although current reports indicate the need for increased participation within the Science, Technology, Engineering, and Mathematics (STEM) fields, rising tuition prices at the university…

  4. Would Increasing Engineering Literacies Enable Untapped Opportunities for STEM Education?

    ERIC Educational Resources Information Center

    Redman, Christine

    2017-01-01

    The main focus here is to examine the benefits of defining and developing an engineering curriculum for elementary schools. Like many other international educational systems, Australian educational settings have been seeking to effectively implement science, technology, engineering, and mathematics (STEM) education. However, current assumptions…

  5. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  6. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  7. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  8. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  9. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  10. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  11. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  12. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  13. Facilitating Classroom Innovation in the Geosciences Through the NSF Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) Program

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2012-12-01

    The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.

  14. A study of female students enrollment in engineering technology stem programs

    NASA Astrophysics Data System (ADS)

    Habib, Ihab S.

    The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).

  15. 78 FR 62315 - International Day of the Girl, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... careers in science, technology, engineering, and mathematics--fields that will allow them to drive... the world to pursue careers in science and technology. And because child marriage is a threat to...

  16. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  17. Space education in the context of U.S. government multiagency efforts in science and mathematics education

    NASA Technical Reports Server (NTRS)

    Finarelli, Margaret G.; Brown, Robert W.; Owens, Frank C.

    1992-01-01

    The educational activities of NASA which is one of 16 agencies on the Federal Coordinating Council for Science, Engineering and Technology is discussed. NASA's education mission is to utilize its unique facilities and its specialized workforce to conduct and to leverage externally conducted science, mathematics, and technology education programs and activities. These efforts aimed at meeting the national education goals should help to preserve U.S. leadership in aeronautics, space science, and technology.

  18. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  19. Exploring Young Children's Understanding about the Concept of Volume through Engineering Design in a STEM Activity: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mi-Hwa; Bates, Alan B.

    2018-01-01

    This case study explores young children's understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education…

  20. Undergraduate Engineers and Teachers: Can Students Be Both?

    ERIC Educational Resources Information Center

    Zarske, Malinda S.; Vadeen, Maia L.; Tsai, Janet Y.; Sullivan, Jacquelyn F.; Carlson, Denise W.

    2017-01-01

    Today's college-aged students are graduating into a world that relies on multidisciplinary talents to succeed. Engineering college majors are more likely to find jobs after college that are outside of STEM (science, technology, engineering, and mathematics) fields, including jobs in healthcare, management, and social services. A survey of…

  1. Voices from the Past: Messages for a STEM Future

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2012-01-01

    The current emphasis in K-12 education on science, technology, engineering, and mathematics (STEM) (Douglas, Iversen, & Kalyandurg, 2004; Sanders, 2009) creates many ways to partner engineering education with these fields. Therefore, it is appropriate to examine the commonalities these fields have with engineering education. Though much of the…

  2. Ready, Aim, Fire Your Cannons!

    ERIC Educational Resources Information Center

    Enderson, Mary C.

    2015-01-01

    This article presents a science, technology, engineering, and mathematics (STEM) activity, building an air cannon, in a mathematics classroom. It describes an investigation grounded in STEM concepts that elementary and middle school teachers carried out to think about ways of implementing STEM activities into their instruction. This particular…

  3. Making STEM Real

    ERIC Educational Resources Information Center

    Hoachlander, Gary; Yanofsky, Dave

    2011-01-01

    In too many schools, science and mathematics are taught separately with little or no attention to technology and engineering. Also, science and mathematics tend to function in isolation from other core subjects. In California, Linked Learning: Pathways to College and Career Success connects core academics to challenging professional and technical…

  4. Cultivating Early STEM Learners: An Analysis of Mastery Classroom Instructional Practices, Motivation, and Mathematics Achievement in Young Children

    ERIC Educational Resources Information Center

    Ricks, Elizabeth Danielle

    2012-01-01

    According to the 2006 Program for International Assessment (PISA), the United States is behind their international counterparts in the areas of mathematics and science. (Darling-Hammond, 2010). The Unites States is at a critical point in developing future leaders in Science, Technology, Engineering, and Mathematics. In preparing students for a…

  5. The Relationships among High School STEM Learning Experiences, Expectations, and Mathematics and Science Efficacy and the Likelihood of Majoring in STEM in College

    ERIC Educational Resources Information Center

    Sahin, Alpaslan; Ekmekci, Adem; Waxman, Hersh C.

    2017-01-01

    This study examines college students' science, technology, engineering, and mathematics (STEM) choices as they relate to high school experiences, parent, teacher, and self-expectations, and mathematics and science efficacy. Participants were 2246 graduates of a STEM-focused public Harmony Public Schools in Texas, Harmony Public Schools (HPS).…

  6. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    ERIC Educational Resources Information Center

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  7. Gender Differences in the Effects of a Utility-Value Intervention to Help Parents Motivate Adolescents in Mathematics and Science

    ERIC Educational Resources Information Center

    Rozek, Christopher S.; Hyde, Janet S.; Svoboda, Ryan C.; Hulleman, Chris S.; Harackiewicz, Judith M.

    2015-01-01

    A foundation in science, technology, engineering, and mathematics (STEM) education is critical for students' college and career advancement, but many U.S. students fail to take advanced mathematics and science classes in high school. Research has neglected the potential role of parents in enhancing students' motivation for pursuing STEM courses.…

  8. Mathematics Formative Assessment System--Common Core State Standards: A Randomized Field Trial in Kindergarten and First Grade

    ERIC Educational Resources Information Center

    Lang, Laura B.; Schoen, Robert R.; LaVenia, Mark; Oberlin, Maureen

    2014-01-01

    The Florida Center for Research in Science, Technology, Engineering and Mathematics (FCR-STEM) was awarded a grant by the Florida Department of Education to develop a Mathematics Formative Assessment System (MFAS) aligned with the Common Core State Standards (CCSS). Intended for both teachers and students, formative assessment is a process that…

  9. Advancing STEM Career and Learning through Civic Engagement

    ERIC Educational Resources Information Center

    Xie, Yichun

    2014-01-01

    The Mayor's Youth Technology Corps (MYTC)--Creating Safe Communities through Information Technology Training in Homeland Security Applications (2008-2012)--offered a collaboration of resources, supports, and opportunities for strengthening science, technology, engineering, and mathematics (STEM) education efforts in an underserved community, the…

  10. Applied Problems and Use of Technology in an Aligned Way in Basic Courses in Probability and Statistics for Engineering Students--A Way to Enhance Understanding and Increase Motivation

    ERIC Educational Resources Information Center

    Zetterqvist, Lena

    2017-01-01

    Researchers and teachers often recommend motivating exercises and use of mathematics or statistics software for the teaching of basic courses in probability and statistics. Our courses are given to large groups of engineering students at Lund Institute of Technology. We found that the mere existence of real-life data and technology in a course…

  11. The Investigation of STEM Self-Efficacy and Professional Commitment to Engineering among Female High School Students

    ERIC Educational Resources Information Center

    Liu, Yi-hui; Lou, Shi-jer; Shih, Ru-chu

    2014-01-01

    This study employed social cognitive theory and social cognitive career theory (SCCT) as foundations to explore the influence of high school students' beliefs about female gender roles and female engineer role models on science, technology, engineering, and mathematics (STEM) self-efficacy and professional commitment to engineering. A total of 88…

  12. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  13. Refueling the U.S. Innovation Economy: Fresh Approaches to Science, Technology, Engineering and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Atkinson, Robert D.; Mayo, Merrilea

    2010-01-01

    Is the United States getting it wrong when it comes to educating tomorrow's innovators in critical fields? It has been known for years that the only way to compete globally in information technology, engineering, nanotechnology, robotics and other fields is to give students the best educational opportunities possible. But do individuals have a…

  14. Beneath the Numbers: A Review of Gender Disparities in Undergraduate Education across Science, Technology, Engineering, and Math Disciplines

    ERIC Educational Resources Information Center

    Eddy, Sarah L.; Brownell, Sara E.

    2016-01-01

    This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…

  15. Robotics in the Early Childhood Classroom: Learning Outcomes from an 8-Week Robotics Curriculum in Pre-Kindergarten through Second Grade

    ERIC Educational Resources Information Center

    Sullivan, Amanda; Bers, Marina Umaschi

    2016-01-01

    In recent years there has been an increasing focus on the missing "T" of technology and "E" of engineering in early childhood STEM (science, technology, engineering, mathematics) curricula. Robotics offers a playful and tangible way for children to engage with both T and E concepts during their foundational early childhood…

  16. Reported Ideal Traits of a Mentor as Viewed by African American Students in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Smith, Mary L.

    2017-01-01

    The purpose of this study was to examine undergraduate students majoring in science, technology, engineering, and math disciplines perception of traits an ideal mentor should possess, and to determine if these traits had positive results on their identification with science. With a large number of workers in STEM disciplines retiring, there is a…

  17. Use of Dynamic Visualizations for Engineering Technology, Industrial Technology, and Science Education Students: Implications on Ability to Correctly Create a Sectional View Sketch

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Dickerson, Daniel; Jovanovic, Vukica; Jones, Mildred V.

    2016-01-01

    Spatial abilities, specifically visualization, play a significant role in the achievement in a wide array of professions including, but not limited to, engineering, technical, mathematical, and scientific professions. However, there is little correlation between the advantages of spatial ability as measured through the creation of a sectional-view…

  18. Utilization of Information and Communication Technologies in Mathematics Learning

    ERIC Educational Resources Information Center

    Saadati, Farzaneh; Tarmizi, Rohani Ahmad; Ayub, Ahmad Fauzi Mohd

    2014-01-01

    Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students' perception regarding the use of Information and Communication Technologies (ICT)…

  19. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    NASA Astrophysics Data System (ADS)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its programmes to schools and organisations in their particular areas, mainly through the STEM Ambassador Programme (see below) and the Schools STEM Advisory Network.In support of its vision - `To increase young people's choice and chances through science, technology, engineering, and mathematics ' - STEMNET seeks to be a recognised leader in enabling all young people to achieve their potential in STEM by:

  20. The Top STEM Degree Producers

    ERIC Educational Resources Information Center

    Diverse: Issues in Higher Education, 2012

    2012-01-01

    This article presents a list of the top Science, Technology, Engineering, and Mathematics (STEM) degree producers in the U.S. This list is broken down into seven categories: (1) Total Minority Research/Scholarship and Other Doctoral: Mathematics and Statistics; (2) Total Minority Bachelors: Biological and Biomedical Sciences; (3) Total Minority…

  1. Improving Math Success in Higher Education Institutions

    ERIC Educational Resources Information Center

    Bisk, Richard

    2013-01-01

    Many students begin higher education unprepared for college-level work in mathematics and must take non-credit developmental courses. Furthermore, many are "math-phobic" and avoid courses, majors and careers that involve quantitative work. Yet science, technology, engineering and mathematics (STEM) fields are among the few job-growth…

  2. Focus on Fractions to Scaffold Algebra

    ERIC Educational Resources Information Center

    Ooten, Cheryl Thomas

    2013-01-01

    Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…

  3. Identifying Comprehensive Public Institutions that Develop Minority Scientists

    ERIC Educational Resources Information Center

    Hubbard, Steven M.; Stage, Frances K.

    2010-01-01

    The ratio of minority students earning baccalaureate degrees in science, technology, engineering, and mathematics (STEM) continues to decline. In the past three decades, research on students of color in the mathematics/science pipeline has rapidly expanded. Many government agencies and nonprofit organizations have supported research and…

  4. Uncertainties in Engineering Design. Mathematical Theory and Numerical Experience.

    DTIC Science & Technology

    1985-08-01

    Theoretical Mannual, Noetic Technologies Corpora- tion, St. Louis, Missouri, 1985. F :.5,. "V. .. " ,9.., 25 . - 5* 5 .° . . . . .. ,koA ’FIGURES...international center of study and research for foreign students in numerical mathematics who are supported by foreign govern- ments or exchange agencies

  5. STEM Symposium

    NASA Image and Video Library

    2012-02-28

    Carl Wieman, Associate Director, Office of Science and Technology Policy, The White House, speaks at the Symposium on Supporting Underrepresented Minority Males in Science, Technology, Engineering and Mathematics (STEM), Tuesday, February 28, 2012 at NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  6. Building a Mentorship-Based Research Program Focused on Individual Interests, Curiosity, and Professional Skills at the North Carolina School of Science and Mathematics

    ERIC Educational Resources Information Center

    Shoemaker, Sarah E.; Thomas, Christopher; Roberts, Todd; Boltz, Robin

    2016-01-01

    The North Carolina School of Science and Mathematics (NCSSM) offers students a wide variety of real-world opportunities to develop skills and talent critical for students to gain the essential professional and personal skills that lead to success in science, technology, engineering, and mathematics (STEM) careers. One of the key avenues available…

  7. Queer in STEM: Workplace Experiences Reported in a National Survey of LGBTQA Individuals in Science, Technology, Engineering, and Mathematics Careers.

    PubMed

    Yoder, Jeremy B; Mattheis, Allison

    2016-01-01

    A survey of individuals working in science, technology, engineering, and mathematics (STEM) fields who identify as lesbian, gay, bisexual, trans*, queer, or asexual (LGTBQA) was administered online in 2013. Participants completed a 58-item questionnaire to report their professional areas of expertise, levels of education, geographic location, and gender and sexual identities and rated their work and social communities as welcoming or hostile to queer identities. An analysis of 1,427 responses to this survey provided the first broad portrait of this population, and it revealed trends related to workplace practices that can inform efforts to improve queer inclusivity in STEM workplaces.

  8. Development of Science and Mathematics Education System Including Teaching Experience of Students in Local Area

    NASA Astrophysics Data System (ADS)

    Kage, Hiroyuki

    New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.

  9. Economically Disadvantaged Minority Girls' Knowledge and Perceptions of Science and Engineering and Related Careers

    ERIC Educational Resources Information Center

    Wang, Hui-Hui; Billington, Barbara L.

    2016-01-01

    This article addresses economically disadvantaged minority girls' knowledge and perceptions of science and engineering and the influence of their experiences with science, technology, engineering, and mathematics (STEM) on their choices for future careers. We interviewed three girls who participated in a 4-H-led gender-inclusive STEM program. Our…

  10. A Pre-Engineering Program Using Robots to Attract Underrepresented High School and Community College Students

    ERIC Educational Resources Information Center

    Mosley, Pauline Helen; Liu, Yun; Hargrove, S. Keith; Doswell, Jayfus T.

    2010-01-01

    This paper gives an overview of a new pre-engineering program--Robotics Technician Curriculum--that uses robots to solicit underrepresented students pursuing careers in science, technology, engineering, and mathematics (STEM). The curriculum uses a project-based learning environment, which consists of part lecture and part laboratory. This program…

  11. STEM Teachers' Planned and Enacted Attempts at Implementing Engineering Design-Based Instruction

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Rupp, Madeline

    2014-01-01

    This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design-based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education.…

  12. Engineering Curriculum in the Preschool Classroom: The Teacher's Experience

    ERIC Educational Resources Information Center

    Bagiati, Aikaterini; Evangelou, Demetra

    2015-01-01

    The study presented here focuses on the development of an early education Science, Technology, Engineering and Mathematics (STEM) curriculum with emphasis on engineering. This article presents the teacher's experience as she undertook the task of familiarising herself with the new content and using the curriculum in a university based…

  13. Dedicated to Their Degrees: Adult Transfer Students in Engineering Baccalaureate Programs

    ERIC Educational Resources Information Center

    Allen, Taryn Ozuna; Zhang, Yi

    2016-01-01

    Objective: Increasing degree completion in science, technology, engineering, and mathematics (STEM) fields, particularly engineering, is a national priority. With an aspiration to increase the number of STEM graduates by one million in the next 10 years, more research is needed to understand the role of community colleges in achieving this…

  14. Teaching Engineering at the K-12 Level: Two Perspectives

    ERIC Educational Resources Information Center

    Smith, Kenneth L.; Burghardt, David

    2007-01-01

    In this article, the authors share their own perspectives regarding engineering education at the K-12 level. Smith believes that there must be a more direct infusion of appropriate mathematics and science with the unique technological content (tools, machines, materials, processes) for an effective engineering education program to exist. He thinks…

  15. Becoming an Engineer in Public Universities: Pathways for Women and Minorities. Palgrave Studies in Urban Education

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; Tyson, Will, Ed.; Halperin, Rhoda H., Ed.

    2010-01-01

    Based on research conducted in a three-year, mixed-method, multi-site National Science Foundation, Science, Technology, Engineering and Mathematics Talent Expansion Program (STEP) Project, this book offers a comprehensive look into how engineering department culture and climate impacts the successful retention of female and under-represented…

  16. Standards for K-12 Engineering Education?

    ERIC Educational Resources Information Center

    National Academies Press, 2010

    2010-01-01

    The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education--science, technology, and mathematic--but not for engineering. To date, a small but growing number of K-12…

  17. Seeking congruity between goals and roles: a new look at why women opt out of science, technology, engineering, and mathematics careers.

    PubMed

    Diekman, Amanda B; Brown, Elizabeth R; Johnston, Amanda M; Clark, Emily K

    2010-08-01

    Although women have nearly attained equality with men in several formerly male-dominated fields, they remain underrepresented in the fields of science, technology, engineering, and mathematics (STEM). We argue that one important reason for this discrepancy is that STEM careers are perceived as less likely than careers in other fields to fulfill communal goals (e.g., working with or helping other people). Such perceptions might disproportionately affect women's career decisions, because women tend to endorse communal goals more than men. As predicted, we found that STEM careers, relative to other careers, were perceived to impede communal goals. Moreover, communal-goal endorsement negatively predicted interest in STEM careers, even when controlling for past experience and self-efficacy in science and mathematics. Understanding how communal goals influence people's interest in STEM fields thus provides a new perspective on the issue of women's representation in STEM careers.

  18. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    PubMed

    Stoet, Gijsbert; Geary, David C

    2018-04-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths and pursuit of STEM degrees rose with increases in national gender equality. The gap between boys' science achievement and girls' reading achievement relative to their mean academic performance was near universal. These sex differences in academic strengths and attitudes toward science correlated with the STEM graduation gap. A mediation analysis suggested that life-quality pressures in less gender-equal countries promote girls' and women's engagement with STEM subjects.

  19. Negotiating Identity: A Look at the Educational Experiences of Black Undergraduates in Stem Disciplines

    ERIC Educational Resources Information Center

    McClain, Oren L.

    2014-01-01

    The purpose of this qualitative study is to investigate the mathematics educational experiences of Black undergraduate students majoring in science, technology, engineering, and mathematics disciplines at the University of Virginia. Using Murrell's (2009) situated-mediated identity theory as the theoretical framework, this study examines factors…

  20. Estuarine Ecosystems: Using T & E Signature Approaches to Support STEM Integration

    ERIC Educational Resources Information Center

    McCulloch, Allison W.; Ernst, Jeremy V.

    2012-01-01

    STEM-based understandings and experiences that prepare learners beyond the classroom are of imminent need, as today's STEM education students are tomorrow's leaders in science, technology, engineering, mathematics, and education (Prabhu, 2009). Integrative STEM education signifies the intentional integration of science and mathematics with the…

  1. Can't Do Maths--Understanding Students' Maths Anxiety

    ERIC Educational Resources Information Center

    Metje, N.; Frank, H. L.; Croft, P.

    2007-01-01

    The number of students continuing with their mathematics education post GCSE level has declined in recent years and hence students entering Engineering degrees are reducing. The University of Birmingham recognized this problem and introduced the Suite of Technology programme (STP) which no longer requires students to have A-level mathematics.…

  2. Exploring Teachers' Perceptions of STEAM Teaching through Professional Development: Implications for Teacher Educators

    ERIC Educational Resources Information Center

    Herro, Danielle; Quigley, Cassie

    2017-01-01

    This research involves a multi-year study examining the perspectives and classroom practices of 21 middle school mathematics and science teachers, in the southeastern United States, participating in professional development (PD) exploring science, technology, engineering, art and mathematics (STEAM) literacies. This study sought to understand…

  3. Getting into Gear

    ERIC Educational Resources Information Center

    Cobbs, Georgia A.; Cranor-Buck, Edith

    2011-01-01

    This article describes a particular activity, the Motorized Toy unit, which supports science, technology, engineering, and mathematics (STEM) goals and teaches students the basic concept of ratio. The unit addresses both mathematics and science standards and is part of a team-teaching activity. The unit comes from a curriculum titled A World In…

  4. Characteristics of Schools Successful in STEM: Evidence from Two States' Longitudinal Data

    ERIC Educational Resources Information Center

    Hansen, Michael

    2014-01-01

    Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels…

  5. Views of Science and Mathematics Pre-Service Teachers Regarding STEM

    ERIC Educational Resources Information Center

    Cinar, Sinan; Pirasa, Nimet; Sadoglu, Gunay Palic

    2016-01-01

    STEM education is an integrated approach that combines science, technology, engineering and mathematics disciplines with different subjects in real life situations, together and simultaneously. The views of pre-service teachers introduced to STEM by means of workshops that presented information and scales on STEM education regarding the subject…

  6. Community Partnerships for Fostering Student Interest and Engagement in STEM

    ERIC Educational Resources Information Center

    Watters, James J.; Diezmann, Carmel M.

    2013-01-01

    The foundations of Science, Technology, Engineering and Mathematics (STEM) education begins in the early years of schooling when students encounter formal learning experiences primarily in mathematics and science. Politicians, economists and industrialists recognise the importance of STEM in society, and therefore a number of strategies have been…

  7. Robotics: Assessing Its Role in Improving Mathematics Skills for Grades 4 to 5

    ERIC Educational Resources Information Center

    Laughlin, Sara Rose

    2013-01-01

    Inspiring and motivating students to pursue science, technology, engineering, and mathematics education continues to be an important educational focus in the United States. Robotics programs are one strategy developed to accomplish this goal. This causal comparative study focused on investigating whether a causal relationship exists between…

  8. TIMMS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    It is critical for countries to ensure that capable secondary school students receive further preparation in advanced mathematics and science, so that they are ready to enter challenging university-level studies that prepare them for careers in science, technology, engineering, and mathematics (STEM) fields. This group of students will become the…

  9. Research and Teaching: Project-Based Instruction with Future STEM Educators--An Interdisciplinary Approach

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2014-01-01

    This study documented the means by which STEM (science, technology, engineering, and mathematics) educators experienced the mathematics and science associated with understanding lunar phenomena. The article reports how well STEM education graduate students interacted with projectbased materials as they engaged in interdisciplinary teaching and…

  10. Conflicts in Developing an Elementary STEM Magnet School

    ERIC Educational Resources Information Center

    Sikma, Lynn; Osborne, Margery

    2014-01-01

    Elementary schools in the United States have been the terrain of a highly politicized push for improved reading and mathematics attainment, as well as calls for increased importance to be given to science, technology, engineering, and mathematics (STEM). With priorities placed on basic skills, however, instructional time in subjects such as…

  11. Career Aspirations of Undergraduate Mathematics Majors: An Exploratory Study

    ERIC Educational Resources Information Center

    Piotrowski, Chris; Hemasinha, Rohan

    2012-01-01

    There has been much research attention on ability level, motivation, and self-efficacy of students at schools of science, technology, engineering and mathematics (STEM). However, there is scant research on vocational choice, career development and aspirations of these students. The current study addresses this gap in the literature by asking…

  12. The STEAM behind the Scenes

    ERIC Educational Resources Information Center

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  13. Navigating the Science, Technology, Engineering, and Mathematics Pipeline: How Social Capital Impacts the Educational Attainment of College-Bound Female Students

    ERIC Educational Resources Information Center

    Lee, Rebecca Elizabeth

    2011-01-01

    Despite the proliferation of women in higher education and the workforce, they have yet to achieve parity with men in many of the science, technology, engineering, and math (STEM) majors and careers. The gap is even greater in the representation of women from lower socioeconomic backgrounds. This study examined pre-college intervention strategies…

  14. Symposium Promotes Technological Literacy through STEM

    ERIC Educational Resources Information Center

    Havice, Bill; Marshall, Jerry

    2009-01-01

    This article describes a symposium which promotes technological literacy through science, technology, engineering, and mathematics (STEM). The three-day symposium titled, "The Anderson, Oconee, Pickens Symposium on Teaching and Learning STEM Standards for the 21st Century," was held August 4-6, 2008 at the Tri-County Technical College…

  15. MentorLinks: Advancing Technological Education. Project Brief. AACC-PB-04-01

    ERIC Educational Resources Information Center

    Hause, Ellen

    2004-01-01

    The American Association of Community Colleges with support from the National Science Foundation created the "MentorLinks" Advancing Technological Education program to help community colleges develop or strengthen technician training programs in the science, technology, engineering, and mathematics fields. The program works with…

  16. Expanding girls' horizons in physics and other sciences: A successful strategy since 1976

    NASA Astrophysics Data System (ADS)

    Spencer, Cherrill M.

    2015-12-01

    To start on the path to a career in science, technology, engineering, or mathematics (STEM), girls must take appropriate prerequisite-to-college mathematics and science courses when they are 15 to 18 years old. The Expanding Your Horizons in Science, Engineering, and Mathematics (EYH) conferences are one-day conferences for girls aged 12 to 18, designed to encourage girls towards a STEM career. These conferences engage schoolgirls in enjoyable hands-on STEM activities, created and led by women STEM professionals. This paper describes the history of EYH conferences, what happens at one, the impact of an EYH conference on the girls, and how to start one.

  17. Evaluating the Effectiveness of the 2003-2004 NASA CONNECT(trademark)Program

    NASA Technical Reports Server (NTRS)

    Caton, Randall H.; Pinelli, Thomas E.; Giersch, Christopher E.; Holmes, Ellen B.; Lambert, Matthew A.

    2005-01-01

    NASA CONNECT is an Emmy-award-winning series of instructional (distance learning) programs for grades 6-8. Produced by the NASA Center for Distance Learning, the nine programs in the 2003-2004 NASA CONNECT series are research-, inquiry-, standards-, teacher-, and technology-based and include a 30-minute program, an educator guide containing a hands-on activity, and a web-based component. The 1,500 randomly selected NASA CONNECT registered users were invited to complete an electronic (self-reported) survey that employed a 5-point Likert-type scale. Regarding NASA CONNECT, respondents reported that the programs (1) enhance the teaching of mathematics, science, and technology (4.53); (2) are aligned with the national mathematics, science, and technology standards (4.52); (3) raise student awareness of careers requiring mathematics, science, and technology (4.48); (4) demonstrate the application of mathematics, science, and technology (4.47); and (5) present women and minorities performing challenging engineering and science tasks (4.50).

  18. Making STEM Connections

    ERIC Educational Resources Information Center

    Stump, Sheryl L.; Bryan, Joel A.; McConnell, Tom J.

    2016-01-01

    Integrated approaches to education in science, technology, engineering, and mathematics (STEM), especially those set in the context of real-world situations, can motivate and deepen students' learning of the STEM subjects (National Academy of Engineering and National Research Council 2014). This article describes two integrated investigations used…

  19. Gimme an "E"!

    ERIC Educational Resources Information Center

    Hoisington, Cynthia; Winokur, Jeff

    2015-01-01

    Early childhood educators have long debated how science should be introduced and taught to preschoolers. In the current Science, Technology, Engineering, and Mathematics (STEM) education climate, this conversation has expanded to include the role of engineering in the preschool curriculum. Instructors and coaches in the professional development…

  20. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  1. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  2. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  3. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  4. 78 FR 66074 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... photographs for (Science, Technology, Engineering, and Mathematics) STEM educational purposes. The gathered materials would be used to create lesson plans about Antarctic Exploration that focus on science, technology...

  5. STEM and Technology Education: International State-of-the-Art

    ERIC Educational Resources Information Center

    Ritz, John M.; Fan, Szu-Chun

    2015-01-01

    This paper reports the perceptions of 20 international technology education scholars on their country's involvement in science, technology, engineering, and mathematics (STEM) education. Survey research was used to obtain data. It was found that the concept of STEM education is being discussed differently by nations. Some consider STEM education…

  6. Secondary Teacher Self-Efficacy and Technology Integration

    ERIC Educational Resources Information Center

    Hale, James Lee

    2013-01-01

    This dissertation is based on a conceptual framework founded in the plight of the United States in the critical areas of science, technology, engineering, and mathematics, such as student performance, global economy, job opportunities, and technological innovation. Subpar performance can be traced to, among other things, education and specifically…

  7. Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college

    NASA Astrophysics Data System (ADS)

    LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.

    2012-04-01

    Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.

  8. A Systems Engineering Process for Selecting Technologies to Mitigate the Risk of Operating Rotorcraft in Degraded Visual Environments

    DTIC Science & Technology

    2013-09-30

    combining their know-how into a mathematical framework that properly captures their intent. Leveraging this framework is the final step by which all...into quantifiable and measureable concepts. The prior phase identified the capability gaps as the highest level goals and a series of DVE mitigation...gapy and s, is the level of satisfaction of said function as mathematically defined below. Similarly, the relationship between technology and

  9. The Role of STEM High Schools in Reducing Gaps in Science and Mathematics Coursetaking: Evidence from North Carolina. Research Report. RTI Press Publication RR-0025-1603

    ERIC Educational Resources Information Center

    Glennie, Elizabeth; Mason, Marcinda; Dalton, Ben

    2016-01-01

    Some states have created science, technology, engineering, and mathematics (STEM) schools to encourage student interest and enhance student proficiency in STEM subjects. We examined a set of STEM schools serving disadvantaged students to see whether these students were more likely to take and pass advanced science and mathematics classes than…

  10. Persistence of Undergraduate Women in STEM Fields

    ERIC Educational Resources Information Center

    Pedone, Maggie Helene

    2016-01-01

    The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in…

  11. 4 Schools for WIE. Evaluation Report

    ERIC Educational Resources Information Center

    Erkut, Sumru; Marx, Fern

    2005-01-01

    With funding from the National Science Foundation, engineering schools at Northeastern University, Tufts University, Worcester Polytechnic Institute, and Boston University joined forces in an effort to increase the number of girls who develop an interest in science, technology, engineering, and mathematics (STEM) fields during the middle school…

  12. Elementary Teacher Self-Efficacy in Engineering and Student Achievement in Math and Science

    ERIC Educational Resources Information Center

    Gorena, Jacquelyn L.

    2015-01-01

    STEM education is a national priority, and more schools are implementing STEM K-12. Elementary teachers are prepared to teach science, mathematics, and technology, but teachers may not feel as prepared to teach engineering. Engineering is a new genre for elementary schools, and it is not typically a content area included in teacher preparation…

  13. Science and Engineering Graphics I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Craig, Jerry; Stapleton, Jerry

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…

  14. A Ten-Year Assessment of a Biomedical Engineering Summer Research Internship within a Comprehensive Cancer Center

    ERIC Educational Resources Information Center

    Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.

    2007-01-01

    A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…

  15. The Use of Physical and Virtual Manipulatives in an Undergraduate Mechanical Engineering (Dynamics) Course

    ERIC Educational Resources Information Center

    Pan, Edward A.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…

  16. Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines

    ERIC Educational Resources Information Center

    English, Lyn D.; Hudson, Peter; Dawes, Les

    2013-01-01

    Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…

  17. Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument

    ERIC Educational Resources Information Center

    King, Donna; English, Lyn D.

    2016-01-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts.…

  18. A Critical Discourse Analysis of Engineering Course Syllabi and Recommendations for Increasing Engagement among Women in STEM

    ERIC Educational Resources Information Center

    Savaria, Michael; Monteiro, Kristina

    2017-01-01

    Men outnumber women in the enrollment of science, technology, engineering, and mathematics (STEM) undergraduate majors. Course syllabi are distributed to students during open enrollment and provide key insights into the courses. A critical discourse analysis of introductory engineering syllabi at a 4-year public university revealed limited to no…

  19. A Framework for Quality K-12 Engineering Education: Research and Development

    ERIC Educational Resources Information Center

    Moore, Tamara J.; Glancy, Aran W.; Tank, Kristina M.; Kersten, Jennifer A.; Smith, Karl A.; Stohlmann, Micah S.

    2014-01-01

    Recent U.S. national documents have laid the foundation for highlighting the connection between science, technology, engineering and mathematics at the K-12 level. However, there is not a clear definition or a well-established tradition of what constitutes a quality engineering education at the K-12 level. The purpose of the current work has been…

  20. The Physics of Living in Space: A Physicist's Attempt to Provide Science and Engineering Education for Non-Science Students.

    ERIC Educational Resources Information Center

    Holbrow, C. H.

    1983-01-01

    A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)

  1. A case study of pedagogy of mathematics support tutors without a background in mathematics education

    NASA Astrophysics Data System (ADS)

    Walsh, Richard

    2017-01-01

    This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to these tutors' provision of mathematics support to first and second year undergraduate engineering students and second year undergraduate science students. It was found that tutors are lacking in various pedagogical skills which are needed for high-quality learning amongst service mathematics students (e.g. engineering/science/technology students), a demographic which have low levels of mathematics upon entering university. Tutors teach their support classes in a very fast didactic way with minimal opportunities for students to ask questions or to attempt problems. It was also found that this teaching method is even more so exaggerated in mandatory departmental mathematics tutorials that students take as part of their mathematics studies at tertiary level. The implications of the findings on mathematics tutor training at tertiary level are also discussed.

  2. Operation STEM: Increasing Success and Improving Retention among Mathematically Underprepared Students in STEM

    ERIC Educational Resources Information Center

    Carver, Susan D.; Van Sickle, Jenna; Holcomb, John P.; Jackson, Debbie K.; Resnick, Andrew H.; Duffy, Stephen F.; Sridhar, Nigamanth; Marquard, Antoinette M.; Quinn, Candice M.

    2017-01-01

    In 2012, Cleveland State University implemented a comprehensive program, called Operation STEM (OpSTEM), funded by two National Science Foundation grants, federal work study, and Cleveland State University. Its goal is to increase retention and graduation rates among Science, Technology, Engineering, and Mathematics (STEM) students by helping them…

  3. Shape Up: An Eye-Tracking Study of Preschoolers' Shape Name Processing and Spatial Development

    ERIC Educational Resources Information Center

    Verdine, Brian N.; Bunger, Ann; Athanasopoulou, Angeliki; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy

    2017-01-01

    Learning the names of geometric shapes is at the intersection of early spatial, mathematical, and language skills, all important for school-readiness and predictors of later abilities in science, technology, engineering, and mathematics (STEM). We investigated whether socioeconomic status (SES) influenced children's processing of shape names and…

  4. Undergraduate Course and Curriculum Development Program and Calculus and the Bridge to Calculus Program: 1993 Awards.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Undergraduate Education.

    The Undergraduate Course and Curriculum Development Program of the National Science Foundation supports the development of courses in all disciplines to improve the quality of undergraduate courses and curricula in science, mathematics, engineering, and technology. The purpose of the program in Curriculum Development in Mathematics: Calculus and…

  5. Speedometry: A Vehicle for Promoting Interest and Engagement through Integrated STEM Instruction

    ERIC Educational Resources Information Center

    Sinatra, Gale M.; Mukhopadhyay, Ananya; Allbright, Taylor N.; Marsh, Julie A.; Polikoff, Morgan S.

    2017-01-01

    The curriculum, Hot Wheels Speedometry (Mattel, El Segundo, CA, USA), was designed to align with the Next Generation Science Standards for science and the Common Core State Standards for mathematics. Our objective was to develop, implement, and evaluate the impact of this integrated science, technology, engineering, and mathematics (STEM)…

  6. Is Knowing Another Language as Important as Knowing "Core" Subjects Like Mathematics or Science

    ERIC Educational Resources Information Center

    Kouritzin, Sandra G.

    2012-01-01

    This article explores, through interview data with 125 respondents in Canada, whether the study of foreign languages can be considered as important as the study of the "core" STEMM (science, technology, engineering, mathematics, medicine) subjects in school and university curricula. Five categories of interviewees, including those…

  7. Qualified, but Not Choosing STEM at University: Unconscious Influences on Choice of Study

    ERIC Educational Resources Information Center

    Rodd, Melissa; Reiss, Michael; Mujtaba, Tamjid

    2014-01-01

    This article offers explanations as to why good candidates for mathematics or physics degrees might opt to study subjects other than STEM (science, technology, engineering, mathematics) subjects at university. Results come from analysis, informed by psychoanalytic theory and practice, of narrative-style interviews conducted with first-year…

  8. Math Path: Encouraging Female Students in Mathematics through Project-Based Learning

    ERIC Educational Resources Information Center

    Evans, Riley; Friedman, Jane; McGrath, Lynn; Myers, Perla; Ruiz, Amanda

    2018-01-01

    Although the number of bachelor's degrees in the U.S. awarded to women has gone up, engagement of women in science, technology, engineering, and mathematics (STEM) continues to be low. This paper presents a project-based learning program, informed by education research best practices, designed to provide research experiences to female students…

  9. STEM Education and Leadership: A Mathematics and Science Partnership Approach

    ERIC Educational Resources Information Center

    Merrill, Chris; Daugherty, Jenny

    2010-01-01

    The issue of attracting more young people to choose careers in science, technology, engineering, and mathematics (STEM) has become critical for the United States. Recent studies by businesses, associations, and education have all agreed that the United States' performance in the STEM disciplines have placed the nation in grave risk of…

  10. STEM Images Revealing STEM Conceptions of Pre-Service Chemistry and Mathematics Teachers

    ERIC Educational Resources Information Center

    Akaygun, Sevil; Aslan-Tutak, Fatma

    2016-01-01

    Science, technology, engineering, and mathematics (STEM) education has been an integral part of many countries' educational policies. In last decade, various practices have been implemented to make STEM areas valuable for 21st century generation. These actions require reconsideration of both pre- and in-service teacher education because those who…

  11. Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery

    ERIC Educational Resources Information Center

    Preininger, Anita M.

    2017-01-01

    There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before…

  12. Stereotype Threat in Mathematics: Female High School Students in All-Girl and Coeducation Schools

    ERIC Educational Resources Information Center

    Cruz-Duran, Emma

    2009-01-01

    Although great strides have been made in the number of women who are now employed, there are still many professions that continue to experience a dearth of female employees (Bandura, Barbaranelli, Caprara, & Pastorelli, 2001; Steele, 2003). Science, technology, engineering, and applied mathematic domains (commonly referred to as STEM) have…

  13. National Survey of STEM High Schools' Curricular and Instructional Strategies and Practices

    ERIC Educational Resources Information Center

    Forman, Jennifer; Gubbins, Elizabeth Jean; Villanueva, Merzili; Massicotte, Cindy; Callahan, Carolyn; Tofel-Grehl, Colby

    2015-01-01

    A limited number of highly selective high schools specializing in science, technology, engineering and mathematics (STEM) education have existed for many decades, encouraging youth with identified STEM talent to pursue careers as STEM leaders and innovators. As members of the National Consortium for Specialized Secondary Schools of Mathematics,…

  14. What Motivates Females and Males to Pursue Careers in Mathematics and Science?

    ERIC Educational Resources Information Center

    Eccles, Jacquelynne S.; Wang, Ming-Te

    2016-01-01

    Drawing on Eccles' expectancy-value model of achievement-related choices, we examined the personal aptitudes and motivational beliefs at 12th grade that move individuals toward or away from science, technology, engineering, and mathematics (STEM) occupations at age 29. In the first set of analyses, occupational and lifestyle values, math ability…

  15. Science and Mathematics Advanced Placement Exams: Growth and Achievement over Time

    ERIC Educational Resources Information Center

    Judson, Eugene

    2017-01-01

    Rapid growth of Advanced Placement (AP) exams in the last 2 decades has been paralleled by national enthusiasm to promote availability and rigor of science, technology, engineering, and mathematics (STEM). Trends were examined in STEM AP to evaluate and compare growth and achievement. Analysis included individual STEM subjects and disaggregation…

  16. Utility-Value Intervention with Parents Increases Students' STEM Preparation and Career Pursuit

    ERIC Educational Resources Information Center

    Rozek, Christopher S.; Svoboda, Ryan C.; Harackiewicz, Judith M.; Hulleman, Christopher S.; Hyde, Janet S.

    2017-01-01

    During high school, developing competence in science, technology, engineering, and mathematics (STEM) is critically important as preparation to pursue STEM careers, yet students in the United States lag behind other countries, ranking 35th in mathematics and 27th in science achievement internationally. Given the importance of STEM careers as…

  17. Using Learning Stories to Capture "Gifted" and "Hard Worker" Mindsets within a NYC Specialized High School for the Sciences

    ERIC Educational Resources Information Center

    Pride, Leah D.

    2014-01-01

    All science, technology, engineering, and mathematics (STEM) educators working in urban public school systems are expected to provide opportunities for students to develop foundational scientific literacy skills in mathematics and science learning. However, the demands on STEM educators teaching the "gifted" or…

  18. Examining the Relationships among Classroom Climate, Self-Efficacy, and Achievement in Undergraduate Mathematics: A Multi-Level Analysis

    ERIC Educational Resources Information Center

    Peters, Michelle L.

    2013-01-01

    For nearly 50 years, leaders in American industry, military, education, and politics have focused considerable attention on STEM (science, technology, engineering, and mathematics) education. Given the increased societal demand for STEM careers, the relationships among classroom climate, self-efficacy, and achievement in undergraduate mathematics…

  19. Leadership training in science, technology, engineering and mathematics education in Bulgaria

    NASA Astrophysics Data System (ADS)

    Bairaktarova, Diana; Cox, Monica F.; Evangelou, Demetra

    2011-12-01

    This synthesis paper explores current leadership training in science, technology, engineering and mathematics (STEM) education in Bulgaria. The analysis begins with discussion of global factors influencing the implementation of leadership training in STEM education in general and then presents information about the current status of leadership training in Bulgaria with emphases on the country's economics, politics and geographical location as specific factors influencing leadership education. A short background of Bulgaria is presented with regard to population, gross domestic product, educational system, engineering force and possible need for leaders in industry in Bulgaria and the European Union. The paper provides an overall view about the current status of leadership training in all Bulgarian universities offering STEM education and concentrates specifically on two major universities by examining their currently offered programmes. As part of the discussion, similar training elements in other European countries and the USA are presented.

  20. Building a Network to Support Girls and Women in Science, Technology, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    Spears, Jacqueline D.; Dyer, Ruth A.; Franks, Suzanne E.; Montelone, Beth A.

    Women today constitute over half of the U.S. population and almost half of its overall workforce, yet they make up less than a quarter of the science and engineering workforce. Many historical and social factors contribute to this discrepancy, and numerous individual, institutional, and governmental attempts have been made to redress it. However, many of the efforts to promote, include, and engage girls and women in science, technology, engineering, and mathematics (STEM) education and professions have been made in isolation. At Kansas State University, the authors have begun a systemic effort to increase the participation of girls and women in STEM. This article describes the creation and initial activities of a network of partners that includes universities, school districts, corporations, governmental agencies, and nonprofit organizations, assembled under the aegis of a project supported by funding from the National Science Foundation.

  1. Technology-Supported Science Instruction through Integrated STEM Guitar Building: The Case for STEM and Non-STEM Instructor Success

    ERIC Educational Resources Information Center

    Hauze, Sean; French, Debbie

    2017-01-01

    With a national emphasis on integrated science, technology, engineering, and mathematics (STEM) education in K-16 courses, incorporating technology in a meaningful way is critical. This research examines whether STEM and non-STEM teachers were able to incorporate technology in STEM courses successfully with sufficient professional development. The…

  2. Applying Laser Cutting Techniques through Horology for Teaching Effective STEM in Design and Technology

    ERIC Educational Resources Information Center

    Jones, Lewis C. R.; Tyrer, John R.; Zanker, Nigel P.

    2013-01-01

    This paper explores the pedagogy underpinning the use of laser manufacturing methods for the teaching of science, technology, engineering and mathematics (STEM) at key stage 3 design and technology. Clock making (horology) has been a popular project in design and technology (D&T) found in many schools, typically it focuses on aesthetical…

  3. Unemployed and STEM

    NASA Astrophysics Data System (ADS)

    Jackson, Penny

    2015-05-01

    Despite widely reported skills shortages in science, technology, engineering and mathematics, some graduates in these disciplines are finding the job hunt anything but easy. Penny Jackson shares her experiences.

  4. Science, Technology, Engineering, and Mathematics (STEM) Participation Among College Students with an Autism Spectrum Disorder

    PubMed Central

    Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose

    2012-01-01

    Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed. PMID:23114569

  5. A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates

    NASA Astrophysics Data System (ADS)

    Dark, Marta L.

    2011-05-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.

  6. Science, technology, engineering, and mathematics (STEM) participation among college students with an autism spectrum disorder.

    PubMed

    Wei, Xin; Yu, Jennifer W; Shattuck, Paul; McCracken, Mary; Blackorby, Jose

    2013-07-01

    Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed.

  7. Core skills assessment to improve mathematical competency

    NASA Astrophysics Data System (ADS)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  8. Towards a Unified Theory of Engineering Education

    ERIC Educational Resources Information Center

    Salcedo Orozco, Oscar H.

    2017-01-01

    STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons and activities as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling STEM literacy (Tsupros, Kohler and…

  9. Try This: Construct a Water Catchment

    ERIC Educational Resources Information Center

    Teaching Science, 2017

    2017-01-01

    EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article describes a project designed to teach middle school students how to construct a water catchment system. Water…

  10. Constructing a Waterwheel

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article provides a sample of one of the middle school activities in the program. The history of water wheels, and their use…

  11. This Act of Cultural Vandalism

    ERIC Educational Resources Information Center

    Cushman, Mike

    2010-01-01

    Science, technology, engineering and mathematics are vital areas of learning and research. The loss of physics, chemistry and engineering departments in many British universities has been pitiful to observe. But the recent announcement of funding for universities highlights the disastrous effects of the decision to prioritise these "STEM"…

  12. Psychosocial Factors Impacting STEM Career Selection

    ERIC Educational Resources Information Center

    Lamb, Richard; Annetta, Leonard; Vallett, David; Firestone, Jonah; Schmitter-Edgecombe, Maureen; Walker, Heather; Deviller, Nicole; Hoston, Douglas

    2018-01-01

    Attention on P-20 science, technology, engineering, and mathematics (STEM) education has increased tremendously in recent years. Many efforts are underway to promote STEM major and career selection across the nation; specifically, in engineering and computer science. The authors' purpose was to examine an underlying profile combinations of latent…

  13. Search and Rescue!

    ERIC Educational Resources Information Center

    Sharland, Hannah

    2011-01-01

    The author believes that to truly engage children in learning, an imaginative approach with purposeful activities is very important. One way that this can be implemented is through simple "engineering projects" where science, design and technology (D&T), mathematics and information and communication technology (ICT) are combined,…

  14. iSTEM: Tinkering with Buoyancy

    ERIC Educational Resources Information Center

    Lee, Mi Yeon

    2014-01-01

    In the technology-rich twenty-first century, students are required to actively construct their knowledge and collaboratively engage in problem solving by using such skills as adaptability, communication, self-management, and systematic thinking. In accordance with this necessity, science, technology, engineering, and mathematics (STEM) education…

  15. The Impact of Project-Based Learning on Pre-Service Teachers' Technology Attitudes and Skills

    ERIC Educational Resources Information Center

    Alexander, Curby; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Bull, Glen

    2014-01-01

    Researchers in this study looked at the effect of content-specific, technology-rich project-based learning activities on EC-8 pre-service teachers' competencies and skills, as well as pre-service teacher's attitudes toward science, technology, engineering and mathematics (STEM). Researchers employed a quantitative design involving participants in…

  16. How Technology and Collaboration Promote Formative Feedback: A Role for CSCL Research in Active Learning Interventions

    ERIC Educational Resources Information Center

    Wu, Sally P. W.; Rau, Martina A.

    2017-01-01

    Recent evidence for the effectiveness of active learning interventions has led educators to advocate for widespread adoption of active learning in undergraduate science, technology, engineering, and mathematics courses. Active learning interventions implement technology and collaboration to engage students actively with the content. Yet, it is…

  17. Institutionalization and Sustainability of the National Science Foundation's Advanced Technological Education Program.

    ERIC Educational Resources Information Center

    Bailey, Thomas R.; Matsuzuka, Yukari; Jacobs, James; Morest, Vanessa Smith; Hughes, Katherine L.

    This document reports on a study conducted by the National Science Foundation (NSF) that examines the Advanced Technological Education (ATE) program. ATE aims to promote systemic reform of the nation's science, technology, engineering, and mathematics (STEM) education. The study analyzed the influence of the ATE program on the nature of STEM…

  18. Future Workforce: NSF's Advanced Technological Education Program Celebrates 20 Years of Connecting Students with STEM Careers

    ERIC Educational Resources Information Center

    Patton, Madeline

    2014-01-01

    With the leadership of community college educators and their industry partners, the National Science Foundation's Advanced Technological Education (ATE) program has achieved an impressive record of incubating innovative science, technology, engineering, and mathematics (STEM) programs. ATE's mission to increase the quality of technicians working…

  19. Creating Hybrid Learning Experiences in Robotics: Implications for Supporting Teaching and Learning

    ERIC Educational Resources Information Center

    Frerichs, Saundra Wever; Barker, Bradley; Morgan, Kathy; Patent-Nygren, Megan; Rezac, Micaela

    2012-01-01

    Geospatial and Robotics Technologies for the 21st Century (GEAR-Tech-21), teaches science, technology, engineering and mathematics (STEM) through robotics, global positioning systems (GPS), and geographic information systems (GIS) activities for youth in grades 5-8. Participants use a robotics kit, handheld GPS devices, and GIS technology to…

  20. The Foundations of Technology Course: Teachers Like It!

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2009-01-01

    Over the past several decades there has been a call to raise student technological literacy. To take such an abstract concept and produce a program that will increase student science, technology, engineering, and mathematics (STEM) literacy was not an easy task. However, it was accomplished. During the past two years many United States school…

  1. Development of a Short-Form Measure of Science and Technology Self-Efficacy Using Rasch Analysis

    ERIC Educational Resources Information Center

    Lamb, Richard L.; Vallett, David; Annetta, Leonard

    2014-01-01

    Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today's students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in "Thinking constructively about science, technology, and society education." State University of New…

  2. Education Program for Ph.D. Course to Cultivate Literacy and Competency

    NASA Astrophysics Data System (ADS)

    Yokono, Yasuyuki; Mitsuishi, Mamoru

    The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.

  3. Using Arts Integration to Make Science Learning Memorable in the Upper Elementary Grades: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Graham, Nicholas James; Brouillette, Liane

    2016-01-01

    The Next Generation Science Standards (NGSS) have brought a stronger emphasis on engineering into K-12 STEM (science, technology, engineering and mathematics) instruction. Introducing the design process used in engineering into science classrooms simulated a dialogue among some educators about adding the arts to the mix. This led to proposals for…

  4. Solving the Equation: The Variables for Women's Success in Engineering and Computing

    ERIC Educational Resources Information Center

    Corbett, Christianne; Hill, Catherine

    2015-01-01

    During the 2014 White House Science Fair, President Barack Obama used a sports metaphor to explain why we must address the shortage of women in science, technology, engineering, and mathematics (STEM), particularly in the engineering and computing fields: "Half our team, we're not even putting on the field. We've got to change those…

  5. Solving the Equation: The Variables for Women's Success in Engineering and Computing. Executive Summary

    ERIC Educational Resources Information Center

    Corbett, Christianne; Hill, Catherine

    2015-01-01

    During the 2014 White House Science Fair, President Barack Obama used a sports metaphor to explain why we must address the shortage of women in science, technology, engineering, and mathematics (STEM), particularly in the engineering and computing fields: "Half our team, we're not even putting on the field. We've got to change those…

  6. 1400289

    NASA Image and Video Library

    2014-04-17

    Marshall Center Director Patrick Scheuermann and Dr. Lisa Watson-Morgan talk to news media at the April 17 Marshall 2014 Update. Watson-Morgan, the first woman to be named the center's chief engineer, answered questions about progress on the Space Launch System and other projects, and spoke about the importance of attracting young people to science, technology, engineering and mathematics education to maintain a "pipeline" of future engineers.

  7. Packing Up for the Moon: Human Exploration Project Engineering Design Challenge. Design, Build and Evaluate. A Standards-Based Middle School Unit Guide. Engineering By Design: Advancing Technological Literacy--A Standards-Based Program Series

    ERIC Educational Resources Information Center

    NASA Educator Resource Center at Marshall Space Flight Center, 2007

    2007-01-01

    The Human Exploration Project (HEP) units have several common characteristics. All units: (1) Are based upon the Technological Literacy standards (ITEA, 2000/2002); (2) Coordinate with Science (AAAS, 1993) and Mathematics standards (NCTM, 2000); (3) Utilize a standards-based development approach (ITEA, 2005); (4) Stand alone and coordinate with…

  8. Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems

    DTIC Science & Technology

    2007-03-01

    mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications

  9. Outcomes for Engineering Students Delivering a STEM Education and Outreach Programme

    ERIC Educational Resources Information Center

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-01-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention,…

  10. Engineering Education Must Get Real

    ERIC Educational Resources Information Center

    Gordon, Bernard M.

    2007-01-01

    Today, academics spend a great deal of time--and money--fretting over the state of "STEM" education. STEM--a clever acronym for science, technology, engineering and mathematics--attempts, wrongly in the author's view, to tightly associate educational enterprises that should be distinctly delineated. To be sure, STEM aims to promote study in areas…

  11. Science & Engineering Indicators--1993.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This report provides policymakers in both the public and private sectors with a broad base of quantitative information about U.S. science and engineering (S&E) research and education and U.S. technology in a global context. Chapter 1, "Elementary and Secondary Science and Mathematics Education," discusses the student's achievement, interest,…

  12. The Burden of Being "Model": Racialized Experiences of Asian STEM College Students

    ERIC Educational Resources Information Center

    McGee, Ebony O.; Thakore, Bhoomi K.; LaBlance, Sandra S.

    2017-01-01

    This qualitative study used narrative methodology to investigate what becoming a scientist or engineer entails for Asian and Asian American college students stereotyped as "model minorities." We present the narratives of 23 high-achieving science, technology, engineering, and mathematics (STEM) college students who self-identified as…

  13. STEM Education Policies and Their Impact on the Labour Market in Latvia

    ERIC Educational Resources Information Center

    Kiselova, Rita; Gravite, Aija

    2017-01-01

    This paper explores the results of implementing the state education policy aimed at satisfying the labour market demand for engineering and medicine specialists via strengthening STEM (science, technology, engineering, mathematics) education both in schools and higher education. [For the complete Volume 15 proceedings, see ED574185.

  14. Examining Department Climate for Women in Engineering: The Role of STEM Interventions

    ERIC Educational Resources Information Center

    Rincón, Blanca E.; George-Jackson, Casey E.

    2016-01-01

    Women comprise over half of the total undergraduate population in the United States (National Center for Education Statistics, 2014), yet remain underrepresented in a number of science, technology, engineering, and mathematics (STEM) fields (National Science Foundation [NSF], 2014). Although women have steadily increased their representation in…

  15. Understanding Initial Undergraduate Expectations and Identity in Computing Studies

    ERIC Educational Resources Information Center

    Kinnunen, Päivi; Butler, Matthew; Morgan, Michael; Nylen, Aletta; Peters, Anne-Kathrin; Sinclair, Jane; Kalvala, Sara; Pesonen, Erkki

    2018-01-01

    There is growing appreciation of the importance of understanding the student perspective in Higher Education (HE) at both institutional and international levels. This is particularly important in Science, Technology, Engineering and Mathematics subjects such as Computer Science (CS) and Engineering in which industry needs are high but so are…

  16. Going beyond Fun in STEM

    ERIC Educational Resources Information Center

    Pittinsky, Todd L.; Diamante, Nicole

    2015-01-01

    The United States education system must improve its ability to produce scientists, engineers, and programmers. Despite numerous national, state, and local efforts to make the study of STEM (science, technology, engineering, and mathematics) subjects more fun in K-12, initial interest in those subjects drops off precipitously in middle and later…

  17. The Role of Feedback in Young People's Academic Choices

    ERIC Educational Resources Information Center

    Skipper, Yvonne; Leman, Patrick J.

    2017-01-01

    Women are underrepresented in Science, Technology, Engineering and Mathematics subjects with more girls leaving these subjects at every stage in education. The current research used a scenario methodology to examine the impact of teacher feedback on girls' and boys' choices to study a specific science subject, engineering. British participants…

  18. The Engineering Design Process as a Model for STEM Curriculum Design

    ERIC Educational Resources Information Center

    Corbett, Krystal Sno

    2012-01-01

    Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…

  19. 75 FR 73054 - Office of Elementary and Secondary Education; Overview Information; High School Equivalency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ...' participation in training on intensive science teaching techniques presented by a professionally credentialed...)). The third priority is an invitational priority for applications that promote science, technology... priorities are: Invitational Priority 1--Science, Technology, Engineering and Mathematics (STEM) Education...

  20. Assessing Second Phase High School Learners' Attitudes towards Technology in Addressing the Technological Skills Shortage in the South African Context

    ERIC Educational Resources Information Center

    Muller, H.; Gumbo, M. T.; Tholo, J. A. T.; Sedupane, S. M.

    2014-01-01

    This article argues the case that the decline in the numbers of school leavers entering science, technology, engineering and mathematics study courses worldwide and in South Africa in particular, is linked to negative attitudes towards Technology. The issue is regarded as critical since a negative trend in new entrants into the technology sector…

  1. Mathematics and Science Teachers Professional Development with Local Businesses to Introduce Middle and High School Students to Opportunities in STEM Careers

    ERIC Educational Resources Information Center

    Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore

    2015-01-01

    TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…

  2. Exploration of the Alignment of State Data and Infrastructure to Mathematics and Science Success Indicators

    ERIC Educational Resources Information Center

    Mandinach, Ellen B.; Hauk, Shandy

    2017-01-01

    A range of education initiatives in the U.S. are focusing on ways to improve curriculum, instruction, teacher development, and student assessment related to science, technology, engineering, and mathematics (STEM) education. Key indicators to monitor the quality of STEM education have been proposed by the National Research Council. This paper is…

  3. Integration of Digital Technology and Innovative Strategies for Learning and Teaching Large Classes: A Calculus Case Study

    ERIC Educational Resources Information Center

    Vajravelu, Kuppalapalle; Muhs, Tammy

    2016-01-01

    Successful science and engineering programs require proficiency and dynamics in mathematics classes to enhance the learning of complex subject matter with a sufficient amount of practical problem solving. Improving student performance and retention in mathematics classes requires inventive approaches. At the University of Central Florida (UCF) the…

  4. The Role of Academic Preparation and Interest on STEM Success. ACT Research Report Series

    ERIC Educational Resources Information Center

    Radunzel, Justine; Mattern, Krista; Westrick, Paul

    2016-01-01

    Research has shown that science, technology, engineering, and mathematics (STEM) majors who are more academically prepared--especially in terms of their mathematics and science test scores--are more likely to be successful across a variety of outcomes: cumulative grade point average (GPA), persistence in a STEM major, and ultimately earning a STEM…

  5. Expanding Talent Search Procedures by Including Measures of Spatial Ability: CTY's Spatial Test Battery

    ERIC Educational Resources Information Center

    Stumpf, Heinrich; Mills, Carol J.; Brody, Linda E.; Baxley, Philip G.

    2013-01-01

    The importance of spatial ability for success in a variety of domains, particularly in science, technology, engineering, and mathematics (STEM), is widely acknowledged. Yet, students with high spatial ability are rarely identified, as Talent Searches for academically talented students focus on identifying high mathematical and verbal abilities.…

  6. Investigating the Differences between Girls and Boys Regarding the Factors of Frustration, Boredom and Insecurity They Experience during Science Lessons

    ERIC Educational Resources Information Center

    Wegner, Claas; Strehlke, Friederike; Weber, Phillip

    2014-01-01

    Science, technology, engineering and mathematics (STEM) are subjects comprising knowledge whose schooling is essential for every country striving after long-term economic success. Despite the already existing shortage of skilled labour within the mathematic-technical-scientific professional field, men still dominate the respective subjects and…

  7. STEM Development: A Study of 6th-12th Grade Girls' Interest and Confidence in Mathematics and Science

    ERIC Educational Resources Information Center

    Heaverlo, Carol Ann

    2011-01-01

    Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the…

  8. Motivating Children to Develop Their Science, Technology, Engineering, and Mathematics (STEM) Talent

    ERIC Educational Resources Information Center

    Andersen, Lori

    2013-01-01

    Motivation in mathematics and science appears to be more important to STEM occupational choice than ability. Using the expectancy value model, parents may be able to recognize potential barriers to children's selection of a STEM occupation and take actions to help facilitate talent development. These are especially important for parents of…

  9. Sex Differences in Mathematics and Science Achievement: A Meta-Analysis of National Assessment of Educational Progress Assessments

    ERIC Educational Resources Information Center

    Reilly, David; Neumann, David L.; Andrews, Glenda

    2015-01-01

    Gender gaps in the development of mathematical and scientific literacy have important implications for the general public's understanding of scientific issues and for the underrepresentation of women in science, technology, engineering, and math. We subjected data from the National Assessment of Educational Progress to a meta-analysis to examine…

  10. Academic Success of Urban African American Elementary Students in Title I Schools

    ERIC Educational Resources Information Center

    Anderson, James Sebastian

    2017-01-01

    The researcher investigated the achievement of third- and fifth-grade urban African American students who attended science, technology, engineering, and mathematics (STEM), Non-STEM, and Theme Title I schools in science and mathematics on the 2015 Georgia Milestones Assessment. The researcher used data from 29 Non-STEM, 14 STEM, and 10 Theme…

  11. Gendered Patterns in High Achievement in Mathematics for Grades 4, 6, and 8

    ERIC Educational Resources Information Center

    Falvey, Laura J.

    2012-01-01

    The issue of underrepresentation of women in science, technology, engineering, and mathematics (STEM) careers is especially important to the future of the United States in current times when STEM careers play an increasingly important role in the global economy (Toulmin & Groome, 2007; United States Department of Labor, 2007). The pool of…

  12. Kinks in the STEM Pipeline: Tracking STEM Graduation Rates Using Science and Mathematics Performance

    ERIC Educational Resources Information Center

    Redmond-Sanogo, Adrienne; Angle, Julie; Davis, Evan

    2016-01-01

    In an effort to maintain the global competitiveness of the United States, ensuring a strong Science, Technology, Engineering and Mathematics (STEM) workforce is essential. The purpose of this study was to identify high school courses that serve as predictors of success in college level gatekeeper courses, which in turn led to the successful…

  13. Missing the Mark: Students Gain Little from Mandating Extra Math and Science Courses. ACT Policy Brief

    ERIC Educational Resources Information Center

    Buddin, Richard; Croft, Michelle

    2014-01-01

    For several decades, policymakers have embraced the goal of preparing students for college and careers, particularly for careers in the area of mathematics and science. The recent emphasis on these STEM (science, technology, engineering, and mathematics) subjects is due to the growth of STEM occupations and the perceived shortage of qualified…

  14. Assessment of Creativity in Arts and STEM Integrated Pedagogy by Pre-Service Elementary Teachers

    ERIC Educational Resources Information Center

    Tillman, Daniel A.; An, Song A.; Boren, Rachel L.

    2015-01-01

    In education, mathematics and science are often taught in a manner that lacks opportunities for students to engage in creativity, and the arts are allotted less time with fewer resources. This study focused on integrating STEM (science, technology, engineering, and mathematics) lessons with arts-themed activities to create interdisciplinary STEAM…

  15. Community, Inquiry, Leadership: Exploring Early Career Opportunities That Support STEM Teacher Growth and Sustainability

    ERIC Educational Resources Information Center

    Galosy, Jodie A.; Gillespie, Nicole M.

    2013-01-01

    Much has been written about the need for high-quality science, technology, engineering, and mathematics (STEM) teachers and their role in U.S. educational reform. In this article we provide evidence that beginning science and mathematics teachers need a blend of three mutually reinforcing learning opportunities for growth and sustainability:…

  16. Middle School Engagement with Mathematics Software and Later Interest and Self-Efficacy for STEM Careers

    ERIC Educational Resources Information Center

    Ocumpaugh, Jaclyn; San Pedro, Maria Ofelia; Lai, Huei-yi; Baker, Ryan S.; Borgen, Fred

    2016-01-01

    Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student's vocational self-efficacy and interest are related to his or her middle…

  17. Gender and Achievement in English Language Arts, Science and Mathematics in Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Etim, James S.; Etim, Alice S.; Heilman, George; Mathiyalakan, S.; Ntukidem, Eno

    2016-01-01

    The education of girls and women in the areas of Science, Technology, Engineering and Mathematics (STEM) has long been thought of as very crucial for national development. This study investigated whether gender differences might occur in scores attained by Nigerian students on standard subject matter examinations for English Language, Mathematics…

  18. The Use of Technology in a Model of Formative Assessment

    ERIC Educational Resources Information Center

    García López, Alfonsa; García Mazarío, Francisco

    2016-01-01

    This work describes a formative assessment model for a Mathematical Analysis course taken by engineering students. It includes online quizzes with feedback, a portfolio with weekly assignments, exams involving the use of mathematical software and a project to be completed in small groups of two or three students. The model has been perfected since…

  19. Connecting mathematics learning through spatial reasoning

    NASA Astrophysics Data System (ADS)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  20. The Development of the STEM Career Interest Survey (STEM-CIS)

    NASA Astrophysics Data System (ADS)

    Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.

    2014-06-01

    Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.

  1. Not lack of ability but more choice: individual and gender differences in choice of careers in science, technology, engineering, and mathematics.

    PubMed

    Wang, Ming-Te; Eccles, Jacquelynne S; Kenny, Sarah

    2013-05-01

    The pattern of gender differences in math and verbal ability may result in females having a wider choice of careers, in both science, technology, engineering, and mathematics (STEM) and non-STEM fields, compared with males. The current study tested whether individuals with high math and high verbal ability in 12th grade were more or less likely to choose STEM occupations than those with high math and moderate verbal ability. The 1,490 subjects participated in two waves of a national longitudinal study; one wave was when the subjects were in 12th grade, and the other was when they were 33 years old. Results revealed that mathematically capable individuals who also had high verbal skills were less likely to pursue STEM careers than were individuals who had high math skills but moderate verbal skills. One notable finding was that the group with high math and high verbal ability included more females than males.

  2. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    NASA Astrophysics Data System (ADS)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  3. Integrating Rapid Prototyping into Graphic Communications

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  4. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    ERIC Educational Resources Information Center

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  5. Female Participation in ATE-Funded Programs: A Ten-Year Trend

    ERIC Educational Resources Information Center

    Westine, Carl D.; Gullickson, Arlen R.; Wingate, Lori A.

    2010-01-01

    It is widely known that women are generally underrepresented in STEM disciplines (science, technology, engineering, and mathematics). The National Science Foundation (NSF) Advanced Technological Education (ATE) program has persistently worked to reduce this disparity. For example, the 2000 solicitation specified "increasing the participation of…

  6. Window to the World

    ERIC Educational Resources Information Center

    Cannon, Kama

    2018-01-01

    Although formal papers are typical, sometimes posters or other visual presentations are more useful tools for sharing visual-spatial information. By incorporating creativity and technology into the study of geographical science, STEM (the study of Science, Technology Engineering, and Mathematics) is changed to STEAM (the A stands for ART)! The…

  7. 76 FR 6395 - Request for Comments on the Strategy for American Innovation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... national priority areas, including clean energy, biotechnology, nanotechnology, educational and health... important is catalyzing greater interest and training in science, technology, engineering and mathematics...

  8. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    ERIC Educational Resources Information Center

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  9. Gender Equality in Preschool STEM Programs as a Factor Determining Russia's Successful Technological Development

    ERIC Educational Resources Information Center

    Savinskaya, O. B.

    2017-01-01

    The article discusses the importance of introducing training programs for preschool children that allow them to master basic knowledge in science, technology, engineering, and mathematics (STEM subjects) as an academic basis for the technological transition that is currently taking place in the modern world. It is shown that when preschool…

  10. Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes

    ERIC Educational Resources Information Center

    Nugent, Gwen; Barker, Bradley; Grandgenett, Neal; Adamchuk, Viacheslav I.

    2010-01-01

    This study examined the impact of robotics and geospatial technologies interventions on middle school youth's learning of and attitudes toward science, technology, engineering, and mathematics (STEM). Two interventions were tested. The first was a 40-hour intensive robotics/GPS/GIS summer camp; the second was a 3-hour event modeled on the camp…

  11. Four Cases of a Sociocultural Approach to Mobile Learning in "La Clase Mágica," an Afterschool Technology Club

    ERIC Educational Resources Information Center

    Prieto, Linda; Arreguín-Anderson, María G.; Yuen, Timothy T.; Ek, Lucila D.; Sánchez, Patricia; Machado-Casas, Margarita; García, Adriana

    2016-01-01

    This paper presents four projects in which mobile devices are used to support authentic learning in an afterschool technology club, "La Clase Mágica" (LCM@UTSA), designed to motivate underrepresented elementary school children in science, technology, engineering, and mathematics. The implementation of mobile devices into our LCM@UTSA is…

  12. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    ERIC Educational Resources Information Center

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  13. Enrichment Experiences in Engineering (E[superscript 3]) for Teachers Summer Research Program: An Examination of Mixed-Method Evaluation Findings on High School Teacher Implementation of Engineering Content in High School STEM Classrooms

    ERIC Educational Resources Information Center

    Page, Cheryl A.; Lewis, Chance W.; Autenrieth, Robin L.; Butler-Purry, Karen L.

    2013-01-01

    Ongoing efforts across the U.S. to encourage K-12 students to consider science, technology, engineering and mathematics (STEM) careers have been motivated by concerns that the STEM pipeline is shrinking because of declining student enrollment and increasing rates of retirement in industry. The Enrichment Experiences in Engineering (E[superscript…

  14. The Retention of Women in Science, Technology, Engineering, and Mathematics: A Framework for Persistence

    ERIC Educational Resources Information Center

    White, Jeffry L.; Massiha, G. H.

    2016-01-01

    Women make up 47% of the total U.S. workforce, but are less represented in engineering, computer sciences, and the physical sciences. In addition, race and ethnicity are salient factors and minority women comprise fewer than 1 in 10 scientist or engineer. In this paper, a review of the literature is under taken that explores the many challenges…

  15. 76 FR 77559 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... system. The Noyce Program encourages talented science, technology, engineering, and mathematics (STEM... introduction to a possible career in teaching. Under the NSF Teaching Fellowship and Master Teaching Fellowship...

  16. NASA Tech Briefs, March 1993. Volume 17, No. 3

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  17. 76 FR 2081 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... careers in science, technology, engineering, and mathematics (STEM) fields. To receive funding, nominated... received, NIST will announce competitions under these two programs in February 2011, applications will be...

  18. Early Experiences and Integration in the Persistence of First-Generation College Students in STEM and Non-STEM Majors

    ERIC Educational Resources Information Center

    Dika, Sandra L.; D'Amico, Mark M.

    2016-01-01

    Representation of diverse groups in science, technology, engineering, and mathematics (STEM) fields is a persistent concern in the United States. Although there have been some strides toward more diverse representation, significant problems of underrepresentation remain in particular STEM fields: physical sciences, engineering, math, and computer…

  19. Do High School STEM Courses Prepare Non-College Bound Youth for Jobs in the STEM Economy?

    ERIC Educational Resources Information Center

    Bozick, Robert; Srinivasan, Sinduja; Gottfried, Michael

    2017-01-01

    Our study assesses whether high school science, technology, engineering, and mathematics (STEM) courses provide non-college bound youth with the skills and training necessary to successfully transition from high school into the STEM economy. Specifically, our study estimates the effects that advanced math, advanced science, engineering, and…

  20. Professional Role Confidence and Gendered Persistence in Engineering

    ERIC Educational Resources Information Center

    Cech, Erin; Rubineau, Brian; Silbey, Susan; Seron, Caroll

    2011-01-01

    Social psychological research on gendered persistence in science, technology, engineering, and mathematics (STEM) professions is dominated by two explanations: women leave because they perceive their family plans to be at odds with demands of STEM careers, and women leave due to low self-assessment of their skills in STEM's intellectual tasks, net…

  1. Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships

    ERIC Educational Resources Information Center

    Paknejad, Mohammad R.

    2016-01-01

    Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…

  2. Career-Life Balance for Women of Color: Experiences in Science and Engineering Academia

    ERIC Educational Resources Information Center

    Kachchaf, Rachel; Ko, Lily; Hodari, Apriel; Ong, Maria

    2015-01-01

    The National Science Foundation recently recognized that career-life balance in science, technology, engineering, and mathematics (STEM) may present some unique challenges for women of color compared with their White and/or male counterparts, thus negatively impacting retention and advancement for a minority demographic that has long been…

  3. Evaluation in STEM Online Graduate Degree Programs in Agricultural Sciences and Engineering

    ERIC Educational Resources Information Center

    Downs, Holly A.

    2014-01-01

    Demands for online graduate degrees have increased pressure on universities to launch web degrees quickly and, at times, without attending to their quality. Scarce research exists identifying what evaluation activities are being done by science, technology, engineering, and mathematics (STEM) online graduate degree programs that are accustomed to…

  4. Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering

    ERIC Educational Resources Information Center

    Burrows, Andrea; Lockwood, Meghan; Borowczak, Mike; Janak, Edward; Barber, Brian

    2018-01-01

    This article showcases STEM as an interdisciplinary field in which the disciplines strengthen and support each other (not as separate science, technology, engineering, and mathematics disciplines). The authors focus on an open-ended, complex problem--water quality--as the primary teaching and learning task. The participants, middle school female…

  5. Undergraduate Research Participation and STEM Graduate Degree Aspirations among Students of Color

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L.

    2010-01-01

    Increasing the number of students who complete advanced degrees in science, technology, engineering, and mathematics (STEM) fields is a compelling national interest. Although college science and engineering degree completion rates have improved considerably over the past few decades, significant gaps persist among women and students of color. Gaps…

  6. Development and Evaluation of a Mass Conservation Laboratory Module in a Microfluidics Environment

    ERIC Educational Resources Information Center

    King, Andrew C.; Hidrovo, Carlos H.

    2015-01-01

    Laboratory-based instruction is a powerful educational tool that engages students in Science, Technology, Engineering and Mathematics (STEM) disciplines beyond textbook theory. This is true in mechanical engineering education and is often used to provide collegiate-level students a hands-on alternative to course theory. Module-based laboratory…

  7. Professional Development for the Integration of Engineering in High School STEM Classrooms

    ERIC Educational Resources Information Center

    Singer, Jonathan E.; Ross, Julia M.; Jackson-Lee, Yvette

    2016-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education in the U.S. is in transition. The recently published "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" as well as the "Next Generation Science Standards" are responsive to this call and clearly articulate a vision that…

  8. Making Sense of Curriculum--The Transition into Science and Engineering University Programmes

    ERIC Educational Resources Information Center

    Ulriksen, Lars; Holmegaard, Henriette T.; Madsen, Lene Møller

    2017-01-01

    Research on students' transition, retention and experiences in science, technology, engineering and mathematics (STEM) has increasingly focused on identity formation and on students' integration in the study programmes. However, studies focusing on the role of the curriculum in this process at the level of higher education are scarce. The present…

  9. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    ERIC Educational Resources Information Center

    Eddy, Sarah L.; Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large…

  10. Employment and Earnings of International Science and Engineering Graduates of U.S. Universities: A Comparative Perspective

    ERIC Educational Resources Information Center

    Campbell, Throy A.; Adamuti-Trache, Maria; Bista, Krishna

    2018-01-01

    International students represent a large percentage of the student population in science, technology, engineering, and mathematics (STEM) programs at American colleges and universities. Although graduates of these programs are identified as having high employability, productivity, and earnings in the 21st-century job market, there is limited…

  11. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    ERIC Educational Resources Information Center

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  12. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  13. Moving beyond Frontiers: How Institutional Context Affects Degree Production and Student Aspirations in STEM

    ERIC Educational Resources Information Center

    Eagan, Mark Kevin, Jr.

    2010-01-01

    Colleges and universities in the U.S. face increasing pressure from policymakers and corporate leaders to increase their production of undergraduate degrees in science, technology, engineering, and mathematics (STEM). These pressures stem from a need to maintain the country's global economic competitiveness in science and engineering innovation.…

  14. Sketching by Design: Teaching Sketching to Young Learners

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Sung, Euisuk

    2017-01-01

    Recent science educational reforms in the United States have prompted increased efforts to teach engineering design as an approach to improve STEM (Science, Technology, Engineering, and Mathematics) learning in K-12 classrooms. Teaching design in early grades is a new endeavor for teachers in the United States. Much can be learned from design…

  15. ICT-Aided Engineering Courses: A Multi-Campus Course Management

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry; Kidron, Ivy; Komar, Meir; Steiner, Joseph

    2006-01-01

    Jerusalem College of Technology (JCT) is a multi-campus institution with identical syllabi for courses in every campus. Moreover, learning at JCT requires at the same time synchronous and asynchronous learning and teaching. For some introductory courses in Mathematics for Engineering students, websites have been built and now upgraded in order to…

  16. Pathways to the Geosciences Summer High School Program: A Ten-Year Evaluation

    ERIC Educational Resources Information Center

    Carrick, Tina L.; Miller, Kate C.; Hagedorn, Eric A.; Smith-Konter, Bridget R.; Velasco, Aaron A.

    2016-01-01

    The high demand for scientists and engineers in the workforce means that there is a continuing need for more strategies to increase student completion in science, technology, engineering, and mathematics (STEM) majors. The challenge lies in finding and enacting effective strategies to increase students' completion of STEM degrees and in recruiting…

  17. A Place for Art and Design Education in the STEM Conversation

    ERIC Educational Resources Information Center

    Bequette, James W.; Bequette, Marjorie Bullitt

    2012-01-01

    The recent push for STEM (Science, Technology, Engineering, and Mathematics) education introduces (through the emphasis on engineering) a "design process" to science classrooms; some educators have also pushed for the "artistic or creative process" becoming a part of STEM education. In certain cases, this might be an opportunity for greater…

  18. Changes in Science Teachers' Conceptions and Connections of STEM Concepts and Earthquake Engineering

    ERIC Educational Resources Information Center

    Cavlazoglu, Baki; Stuessy, Carol

    2017-01-01

    The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors…

  19. Sex Differences in the Right Tail of Cognitive Abilities: A 30 Year Examination

    ERIC Educational Resources Information Center

    Wai, Jonathan; Cacchio, Megan; Putallaz, Martha; Makel, Matthew C.

    2010-01-01

    One factor in the debate surrounding the underrepresentation of women in science technology, engineering and mathematics (STEM) involves male-female mathematical ability differences in the extreme right tail (top 1% in ability). The present study provides male-female ability ratios from over 1.6 million 7th grade students in the right tail (top 5%…

  20. Influence of Computer-Aided Assessment on Ways of Working with Mathematics

    ERIC Educational Resources Information Center

    Rønning, Frode

    2017-01-01

    This paper is based on an on-going project for modernizing the basic education in mathematics for engineers at the Norwegian University of Science and Technology. One of the components in the project is using a computer-aided assessment system (Maple T.A.) for handling students' weekly hand-ins. Successful completion of a certain number of problem…

Top