Sample records for mating group size

  1. Social structure affects mating competition in a damselfish

    NASA Astrophysics Data System (ADS)

    Wacker, Sebastian; Ness, Miriam Horstad; Östlund-Nilsson, Sara; Amundsen, Trond

    2017-12-01

    The strength of mating competition and sexual selection varies over space and time in many animals. Such variation is typically driven by ecological and demographic factors, including adult sex ratio and consequent availability of mates. The spatial scale at which demographic factors affect mating competition and sexual selection may vary but is not often investigated. Here, we analyse variation in size and sex ratio of social groups, and how group structure affects mating competition, in the site-attached damselfish Chrysiptera cyanea. Site-attached reef fishes are known to show extensive intraspecific variation in social structure. Previous work has focused on species for which the size and dynamics of social groups are constrained by habitat, whereas species with group structure unconstrained by habitat have received little attention. Chrysiptera cyanea is such a species, with individuals occurring in spatial clusters that varied widely in size and sex ratio. Typically, only one male defended a nest in multi-male groups. Nest-holding males were frequently visited by mate-searching females, with more visits in groups with more females, suggesting that courtship and mating mostly occur within groups and that male mating success depends on the number of females in the group. Male-male aggression was frequent in multi-male groups but absent in single-male groups. These findings demonstrate that groups are distinct social units. In consequence, the dynamics of mating and reproduction are mainly a result of group structure, largely unaffected short term by overall population demography which would be important in open social systems. Future studies of the C. cyanea model system should analyse longer-term dynamics, including how groups are formed, how they vary in relation to density and time of season and how social structure affects sexual selection.

  2. Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster

    PubMed Central

    Morimoto, Juliano; Pizzari, Tommaso; Wigby, Stuart

    2016-01-01

    The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates. PMID:27167120

  3. Infrapopulations of Gyliauchen volubilis Nagaty, 1956 (Trematoda: Gyliauchenidae) in the rabbitfish Siganus rivulatus (Teleostei: Siganidae) from the Saudi coast of the Red Sea.

    PubMed

    Al-Jahdali, M O

    2012-08-01

    In hermaphroditic helminth parasites, infrapopulation size or mating group size mostly affects some processes acting within the infrapopulation. Here, 30 natural infrapopulations (12-154 individuals) of the intestinal trematode Gyliauchen volubilis Nagaty, 1956 from the fish Siganus rivulatus consisting of newly excysted juveniles, immature and mature worms were found distributed in a well-defined fundamental niche (anterior 40% of the intestine). In small infrapopulations, all stages of the parasite were alive. In larger infrapopulations, differential mortality was only and consistently observed among newly excysted juveniles, and gradually increased to include most or all juveniles in the largest infrapopulations. Among mature worms, the mean worm length seemed unaffected by the infrapopulation size. However, the ratio mean testis size-mean ovary size, a reliable indicator of resource allocation to the male function and of opportunities for cross fertilization, significantly increased with mating group size. In small infrapopulations, all stages of the parasite were scattered along the niche, and never seen in mating pairs (possibly reproduced by self-fertilization). In larger infrapopulations, newly excysted juveniles and immature worms were scattered along the anterior two thirds of the niche, while mature worms were constantly found aggregated in its posterior third (narrow microhabitat), where some were arranged in mating pairs. The probability of mating reciprocally or unilaterally was dependent on body size. The mean number of uterine eggs per worm significantly decreased and their mean sizes significantly increased with mating group size. The results are statistically significant and suggest that infrapopulation self-regulation is greatly associated with its size.

  4. Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).

    PubMed

    Hazlitt, S L; Sigg, D P; Eldridge, M D B; Goldizen, A W

    2006-09-01

    Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.

  5. Multiple mating and its relationship to brood size in pregnant fishes versus pregnant mammals and other viviparous vertebrates

    PubMed Central

    Avise, John C.; Liu, Jin-Xian

    2011-01-01

    We summarize the literature on rates of multiple paternity and sire numbers per clutch in viviparous fishes vs. mammals, two vertebrate groups in which pregnancy is common but entails very different numbers of embryos (for species surveyed, piscine broods averaged >10-fold larger than mammalian litters). As deduced from genetic parentage analyses, multiple mating by the pregnant sex proved to be common in assayed species but averaged significantly higher in fish than mammals. However, within either of these groups we found no significant correlations between brood size and genetically deduced incidence of multiple mating by females. Overall, these findings offer little support for the hypothesis that clutch size in pregnant species predicts the outcome of selection for multiple mating by brooders. Instead, whatever factors promote multiple mating by members of the gestating sex seem to do so in surprisingly similar ways in live-bearing vertebrates otherwise as different as fish and mammals. Similar conclusions emerged when we extended the survey to viviparous amphibians and reptiles. One notion consistent with these empirical observations is that although several fitness benefits probably accrue from multiple mating, logistical constraints on mate-encounter rates routinely truncate multiple mating far below levels that otherwise could be accommodated, especially in species with larger broods. We develop this concept into a “logistical constraint hypothesis” that may help to explain these mating outcomes in viviparous vertebrates. Under the logistical constraint hypothesis, propensities for multiple mating in each species register a balance between near-universal fitness benefits from multiple mating and species-idiosyncratic logistical limits on polygamy. PMID:21482777

  6. Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats.

    PubMed

    Webber, Quinn M R; Fletcher, Quinn E; Willis, Craig K R

    2017-12-01

    Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.

  7. Early social isolation impairs development, mate choice and grouping behaviour of predatory mites

    PubMed Central

    Schausberger, Peter; Gratzer, Marian; Strodl, Markus A.

    2017-01-01

    The social environment early in life is a key determinant of developmental, physiological and behavioural trajectories across vertebrate and invertebrate animals. One crucial variable is the presence/absence of conspecifics. For animals usually reared in groups, social isolation after birth or hatching can be a highly stressful circumstance, with potentially long-lasting consequences. Here, we assessed the effects of social deprivation (isolation) early in life, that is, absence of conspecifics, versus social enrichment, that is, presence of conspecifics, on developmental time, body size at maturity, mating behaviour and group-living in the plant-inhabiting predatory mite Phytoseiulus persimilis. Socially deprived protonymphs developed more slowly and were less socially competent in grouping behaviour than socially enriched protonymphs. Compromised social competence in grouping behaviour was evident in decreased activity, fewer mutual encounters and larger interindividual distances, all of which may entail severe fitness costs. In female choice/male competition, socially deprived males mated earlier than socially enriched males; in male choice/female competition, socially deprived females were more likely to mate than socially enriched females. In neither mate choice situation did mating duration or body size at maturity differ between socially deprived and enriched mating opponents. Social isolation-induced shifts in mating behaviour may be interpreted as increased attractiveness or competitiveness or, more likely, as hastiness and reduced ability to assess mate quality. Overall, many of the social isolation-induced behavioural changes in P. persimilis are analogous to those observed in other animals such as cockroaches, fruit flies, fishes or rodents. We argue that, due to their profound and persistent effects, early social deprivation or enrichment may be important determinants in shaping animal personalities. PMID:28502987

  8. Early social isolation impairs development, mate choice and grouping behaviour of predatory mites.

    PubMed

    Schausberger, Peter; Gratzer, Marian; Strodl, Markus A

    2017-05-01

    The social environment early in life is a key determinant of developmental, physiological and behavioural trajectories across vertebrate and invertebrate animals. One crucial variable is the presence/absence of conspecifics. For animals usually reared in groups, social isolation after birth or hatching can be a highly stressful circumstance, with potentially long-lasting consequences. Here, we assessed the effects of social deprivation (isolation) early in life, that is, absence of conspecifics, versus social enrichment, that is, presence of conspecifics, on developmental time, body size at maturity, mating behaviour and group-living in the plant-inhabiting predatory mite Phytoseiulus persimilis . Socially deprived protonymphs developed more slowly and were less socially competent in grouping behaviour than socially enriched protonymphs. Compromised social competence in grouping behaviour was evident in decreased activity, fewer mutual encounters and larger interindividual distances, all of which may entail severe fitness costs. In female choice/male competition, socially deprived males mated earlier than socially enriched males; in male choice/female competition, socially deprived females were more likely to mate than socially enriched females. In neither mate choice situation did mating duration or body size at maturity differ between socially deprived and enriched mating opponents. Social isolation-induced shifts in mating behaviour may be interpreted as increased attractiveness or competitiveness or, more likely, as hastiness and reduced ability to assess mate quality. Overall, many of the social isolation-induced behavioural changes in P. persimilis are analogous to those observed in other animals such as cockroaches, fruit flies, fishes or rodents. We argue that, due to their profound and persistent effects, early social deprivation or enrichment may be important determinants in shaping animal personalities.

  9. The provision of clearances accuracy in piston - cylinder mating

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Shalay, V. V.

    2017-08-01

    The paper is aimed at increasing the quality of the pumping equipment in oil and gas industry. The main purpose of the study is to stabilize maximum values of productivity and durability of the pumping equipment based on the selective assembly of the cylinder-piston kinematic mating by optimization criterion. It is shown that the minimum clearance in the piston-cylinder mating is formed by maximum material dimensions. It is proved that maximum material dimensions are characterized by their own laws of distribution within the tolerance limits for the diameters of the cylinder internal mirror and the outer cylindrical surface of the piston. At that, their dispersion zones should be divided into size groups with a group tolerance equal to half the tolerance for the minimum clearance. The techniques for measuring the material dimensions - the smallest cylinder diameter and the largest piston diameter according to the envelope condition - are developed for sorting them into size groups. Reliable control of the dimensions precision ensures optimal minimum clearances of the piston-cylinder mating in all the size groups of the pumping equipment, necessary for increasing the equipment productivity and durability during the production, operation and repair processes.

  10. Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range.

    PubMed

    Edwards, Mark A; Derocher, Andrew E

    2015-02-01

    In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The effect of post-mating hCG or progesterone administration on reproductive performance of Afshari × Booroola-Merino crossbred ewes.

    PubMed

    Rostami, Behnam; Hajizadeh, Rahman; Shahir, Mohammad-Hossein; Aliyari, Davood

    2017-02-01

    To investigate the efficiency of hCG/CIDR after breeding to increase the reproductive performance, 35 synchronized ewes were mated with fertile rams and were assigned to three treatment groups. Ewes in hCG group (n = 12) received 400 IU hCG on day 11 post-mating, and ewes in CIDR group (n = 11) received CIDR from day 7 until day 19 post-mating. Ewes in the control group (n = 12) did not receive any treatment. Blood samples were collected on days 7, 12, 17, and 22 post-mating. Plasma P 4 concentrations were higher on days 12 and 17 post-mating in hCG- and CIDR-treated groups (P < 0.05). However, the concentrations of P 4 on day 22 post-mating in hCG and control groups were higher than that in CIDR group (P < 0.05). Ewes in hCG group produced more quadruplets (P < 0.05) and triplets, and as a result, they had a larger litter size (P < 0.05). The lamb mortality rate by weaning in hCG group (3.6%) was less than that in control (11.8%; P < 0.05) and CIDR (9.1%; P > 0.05) groups. Post-mating administration of hCG or CIDR did not affect the lamb birth weight in single and quadruplet births (P > 0.05), but the birth weight of twin lambs was higher in the hCG and CIDR groups (P < 0.05). Weaning weights of twin lambs were higher in the hCG and CIDR groups (P < 0.05). In conclusion, hCG/CIDR administration post-mating increased the maternal P 4 concentrations and enhanced reproductive performance.

  12. Social living mitigates the costs of a chronic illness in a cooperative carnivore

    USGS Publications Warehouse

    Almberg, Emily S.; Cross, Paul C.; Dobson, Andrew P.; Smith, Douglas W.; Metz, Matthew C; Stahler, Daniel R.; Hudson, Peter J.

    2015-01-01

    Infection risk is assumed to increase with social group size, and thus be a cost of group living. We assess infection risk and costs with respect to group size using data from an epidemic of sarcoptic mange (Sarcoptes scabiei) among grey wolves (Canis lupus). We demonstrate that group size does not predict infection risk and that individual costs of infection, in terms of reduced survival, can be entirely offset by having sufficient numbers of pack-mates. Infected individuals experience increased mortality hazards with increasing proportions of infected pack-mates, but healthy individuals remain unaffected. The social support of group hunting and territory defence are two possible mechanisms mediating infection costs. This is likely a common phenomenon among other social species and chronic infections, but difficult to detect in systems where infection status cannot be measured continuously over time.

  13. Social living mitigates the costs of a chronic illness in a cooperative carnivore.

    PubMed

    Almberg, E S; Cross, P C; Dobson, A P; Smith, D W; Metz, M C; Stahler, D R; Hudson, P J

    2015-07-01

    Infection risk is assumed to increase with social group size, and thus be a cost of group living. We assess infection risk and costs with respect to group size using data from an epidemic of sarcoptic mange (Sarcoptes scabiei) among grey wolves (Canis lupus). We demonstrate that group size does not predict infection risk and that individual costs of infection, in terms of reduced survival, can be entirely offset by having sufficient numbers of pack-mates. Infected individuals experience increased mortality hazards with increasing proportions of infected pack-mates, but healthy individuals remain unaffected. The social support of group hunting and territory defence are two possible mechanisms mediating infection costs. This is likely a common phenomenon among other social species and chronic infections, but difficult to detect in systems where infection status cannot be measured continuously over time. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  14. Influences of Mating Group Composition on the Behavioral Time-Budget of Male and Female Alpine Ibex (Capra ibex) during the Rut

    PubMed Central

    Tettamanti, Federico; Viblanc, Vincent A.

    2014-01-01

    During the rut, polygynous ungulates gather in mixed groups of individuals of different sex and age. Group social composition, which may vary on a daily basis, is likely to have strong influences on individual’s time-budget, with emerging properties at the group-level. To date, few studies have considered the influence of group composition on male and female behavioral time budget in mating groups. Focusing on a wild population of Alpine ibex, we investigated the influence of group composition (adult sex ratio, the proportion of dominant to subordinate males, and group size) on three behavioral axes obtained by Principal Components Analysis, describing male and female group time-budget. For both sexes, the first behavioral axis discerned a trade-off between grazing and standing/vigilance behavior. In females, group vigilance behavior increased with increasingly male-biased sex ratio, whereas in males, the effect of adult sex ratio on standing/vigilance behavior depended on the relative proportion of dominant males in the mating group. The second axis characterized courtship and male-male agonistic behavior in males, and moving and male-directed agonistic behavior in females. Mating group composition did not substantially influence this axis in males. However, moving and male-directed agonistic behavior increased at highly biased sex ratios (quadratic effect) in females. Finally, the third axis highlighted a trade-off between moving and lying behavior in males, and distinguished moving and female-female agonistic behavior from lying behavior in females. For males, those behaviors were influenced by a complex interaction between group size and adult sex ratio, whereas in females, moving and female-female agonistic behaviors increased in a quadratic fashion at highly biased sex ratios, and also increased with increasing group size. Our results reveal complex behavioral trade-offs depending on group composition in the Alpine ibex, and emphasize the importance of social factors in influencing behavioral time-budgets of wild ungulates during the rut. PMID:24416453

  15. Long-Term Dietary Supplementation with Yerba Mate Ameliorates Diet-Induced Obesity and Metabolic Disorders in Mice by Regulating Energy Expenditure and Lipid Metabolism.

    PubMed

    Choi, Myung-Sook; Park, Hyo Jin; Kim, Sang Ryong; Kim, Do Yeon; Jung, Un Ju

    2017-12-01

    This study evaluated whether long-term supplementation with dietary yerba mate has beneficial effects on adiposity and its related metabolic dysfunctions in diet-induced obese mice. C57BL/6J mice were randomly divided into two groups and fed their respective experimental diets for 16 weeks as follows: (1) control group fed with high-fat diet (HFD) and (2) mate group fed with HFD plus yerba mate. Dietary yerba mate increased energy expenditure and thermogenic gene mRNA expression in white adipose tissue (WAT) and decreased fatty acid synthase (FAS) mRNA expression in WAT, which may be linked to observed decreases in body weight, WAT weight, epididymal adipocyte size, and plasma leptin level. Yerba mate also decreased levels of plasma lipids (free fatty acids, triglycerides, and total cholesterol) and liver aminotransferase enzymes, as well as the accumulation of hepatic lipid droplets and lipid content by inhibiting the activities of hepatic lipogenic enzymes, such as FAS and phosphatidate phosphohydrolase, and increasing fecal lipid excretion. Moreover, yerba mate decreased the levels of plasma insulin as well as the homeostasis model assessment of insulin resistance, and improved glucose tolerance. Circulating levels of gastric inhibitory polypeptide and resistin were also decreased in the mate group. These findings suggest that long-term supplementation of dietary yerba mate may be beneficial for improving diet-induced adiposity, insulin resistance, dyslipidemia, and hepatic steatosis.

  16. Size, sounds and sex: interactions between body size and harmonic convergence signals determine mating success in Aedes aegypti.

    PubMed

    Cator, Lauren J; Zanti, Zacharo

    2016-12-01

    Several new mosquito control strategies will involve the release of laboratory reared males which will be required to compete with wild males for mates. Currently, the determinants of male mating success remain unclear. The presence of convergence between male and female harmonic flight tone frequencies during a mating attempt have been found to increase male mating success in the yellow fever mosquito, Aedes aegypti. Size has also been implicated as a factor in male mating success. Here, we investigated the relationships among body size, harmonic convergence signalling, and mating success. We predicted that harmonic convergence would be an important determinant of mating success and that large individuals would be more likely to converge. We used diet to manipulate male and female body size and then measured acoustic interactions during mating attempts between pairs of different body sizes. Additionally, we used playback experiments to measure the direct effect of size on signalling performance. In live pair interactions, harmonic convergence was found to be a significant predictor of copula formation. However, we also found interactions between harmonic convergence behaviour and body size. The probability that a given male successfully formed a copula was a consequence of his size, the size of the female encountered, and whether or not they converged. While convergence appears to be predictive of mating success regardless of size, the positive effect of convergence was modulated by size combinations. In playbacks, adult body size did not affect the probability of harmonic convergence responses. Both body size and harmonic convergence signalling were found to be determinants of male mating success. Our results suggest that in addition to measuring convergence ability of mass release lines that the size distribution of released males may need to be adjusted to complement the size distribution of females. We also found that diet amount alone cannot be used to increase male mating success or convergence probability. A clearer understanding of convergence behaviours, their relationship to mating success, and factors influencing convergence ability would provide the groundwork for improving the mating performance of laboratory reared lines.

  17. Simulated spaceflight effects on mating and pregnancy of rats

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.; Chetirkin, P. V.; Howard, R. M.

    1981-01-01

    The mating of rats was studied to determine the effects of: simulated reentry stresses at known stages of pregnancy, and full flight simulation, consisting of sequential launch stresses, group housing, mating opportunity, diet, simulated reentry, and postreentry isolation of male and female rats. Uterine contents, adrenal mass and abdominal fat as a proportion of body mass, duration of pregnancy, and number and sex of offspring were studied. It is found that: (1) parturition following full flight simulation was delayed relative to that of controls; (2) litter size was reduced and resorptions increased compared with previous matings in the same group of animals; and (3) abdominal fat was highly elevated in animals that were fed the Soviet paste diet. It is suggested that the combined effects of diet, stress, spacecraft environment, and weightlessness decreased the probability of mating or of viable pregnancies in the Cosmos 1129 flight and control animals.

  18. Size and competitive mating success in the yeast Saccharomyces cerevisiae.

    PubMed

    Smith, Carl; Pomiankowski, Andrew; Greig, Duncan

    2014-03-01

    In unicellular organisms like yeast, mating with the right partner is critical to future fitness because each individual can only mate once. Because cell size is important for viability, mating with a partner of the right size could be a significant advantage. To investigate this idea, we manipulated the size of unmated yeast cells and showed that their viability depended on environmental conditions; large cells do better on rich medium and small cells do better on poor medium. We also found that the fitness of offspring is determined by the size of their parents. Finally, we demonstrated that when a focal cell of one mating type was placed with a large and a small cell of the opposite mating type, it was more likely to mate with the cell that was closer to the optimum size for growth in a given environment. This pattern was not generated by differences in passive mating efficiency of large and small cells across environments but by competitive mating behavior, mate preference, or both. We conclude that the most likely mechanism underlying this interesting behavior is that yeast cells compete for mates by producing pheromone signals advertising their viability, and cells with the opportunity to choose prefer to mate with stronger signalers because such matings produce more viable offspring.

  19. Sea turtle symbiosis facilitates social monogamy in oceanic crabs via refuge size.

    PubMed

    Pfaller, Joseph B; Gil, Michael A

    2016-09-01

    The capacity for resource monopolization by individuals often dictates the size and composition of animal groups, and ultimately, the adoption of mating strategies. For refuge-dwelling animals, the ability (or inability) of individuals to monopolize refuges should depend on the relative size of the refuge. In theory, groups should be larger and more inclusive when refuges are large, and smaller and more exclusive when refuges are small, regardless of refuge type. We test this prediction by comparing the size and composition of groups of oceanic crabs (Planes minutus) living on plastic flotsam and loggerhead sea turtles. We found that (i) surface area of refuges (barnacle colonies on flotsam and supracaudal space on turtles) is a better predictor of crab number than total surface area and (ii) flotsam and turtles with similar refuge surface area host a similar number (1-2) and composition (adult male-female pairs) of crabs. These results indicate that group size and composition of refuge-dwelling animals are modulated by refuge size and the capacity for refuge monopolization. Moreover, these results suggest that sea turtle symbiosis facilitates social monogamy in oceanic crabs, providing insights into how symbiosis can promote specific mating strategies. © 2016 The Author(s).

  20. Sea turtle symbiosis facilitates social monogamy in oceanic crabs via refuge size

    PubMed Central

    Gil, Michael A.

    2016-01-01

    The capacity for resource monopolization by individuals often dictates the size and composition of animal groups, and ultimately, the adoption of mating strategies. For refuge-dwelling animals, the ability (or inability) of individuals to monopolize refuges should depend on the relative size of the refuge. In theory, groups should be larger and more inclusive when refuges are large, and smaller and more exclusive when refuges are small, regardless of refuge type. We test this prediction by comparing the size and composition of groups of oceanic crabs (Planes minutus) living on plastic flotsam and loggerhead sea turtles. We found that (i) surface area of refuges (barnacle colonies on flotsam and supracaudal space on turtles) is a better predictor of crab number than total surface area and (ii) flotsam and turtles with similar refuge surface area host a similar number (1–2) and composition (adult male–female pairs) of crabs. These results indicate that group size and composition of refuge-dwelling animals are modulated by refuge size and the capacity for refuge monopolization. Moreover, these results suggest that sea turtle symbiosis facilitates social monogamy in oceanic crabs, providing insights into how symbiosis can promote specific mating strategies. PMID:27651538

  1. Size-assortative mating and sexual size dimorphism are predictable from simple mechanics of mate-grasping behavior

    PubMed Central

    2010-01-01

    Background A major challenge in evolutionary biology is to understand the typically complex interactions between diverse counter-balancing factors of Darwinian selection for size assortative mating and sexual size dimorphism. It appears that rarely a simple mechanism could provide a major explanation of these phenomena. Mechanics of behaviors can predict animal morphology, such like adaptations to locomotion in animals from various of taxa, but its potential to predict size-assortative mating and its evolutionary consequences has been less explored. Mate-grasping by males, using specialized adaptive morphologies of their forelegs, midlegs or even antennae wrapped around female body at specific locations, is a general mating strategy of many animals, but the contribution of the mechanics of this wide-spread behavior to the evolution of mating behavior and sexual size dimorphism has been largely ignored. Results Here, we explore the consequences of a simple, and previously ignored, fact that in a grasping posture the position of the male's grasping appendages relative to the female's body is often a function of body size difference between the sexes. Using an approach taken from robot mechanics we model coercive grasping of females by water strider Gerris gracilicornis males during mating initiation struggles. We determine that the male optimal size (relative to the female size), which gives the males the highest grasping force, properly predicts the experimentally measured highest mating success. Through field sampling and simulation modeling of a natural population we determine that the simple mechanical model, which ignores most of the other hypothetical counter-balancing selection pressures on body size, is sufficient to account for size-assortative mating pattern as well as species-specific sexual dimorphism in body size of G. gracilicornis. Conclusion The results indicate how a simple and previously overlooked physical mechanism common in many taxa is sufficient to account for, or importantly contribute to, size-assortative mating and its consequences for the evolution of sexual size dimorphism. PMID:21092131

  2. The evolution of genital complexity and mating rates in sexually size dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Cheng, Ren-Chung; Kralj-Fišer, Simona; Liao, Chen-Pan; Schneider, Jutta M; Elgar, Mark A

    2016-11-09

    Genital diversity may arise through sexual conflict over polyandry, where male genital features function to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is consistent with this view, but a link between genital complexity and mating rates remains to be established. In sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism, relate to the evolution of mating systems. Using a combination of comparative tests, we show that male genital complexity negatively correlates with female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals. These results are consistent with the predictions from sexual conflict theory, although sexual conflict may not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and sexual cannibalism by females coincides with monogyny.

  3. Size-assortative mating and effect of maternal body size on the reproductive output of the nassariid Buccinanops globulosus

    NASA Astrophysics Data System (ADS)

    Avaca, María Soledad; Narvarte, Maite; Martín, Pablo

    2012-04-01

    Size- assortative mating is usually present in populations where there is a positive relationship between female size and reproductive output. In this study, we tested for the presence of sexual size dimorphism, size-assortative mating and the effects of female size on reproductive output in a wild population of Buccinanops globulosus, an endemic nassariid of the Southwestern Atlantic Ocean with direct development. The results showed that: 1) females were larger than males, indicating sexual size dimorphism; 2) mate sizes were significantly correlated, indicating a component of size-assortative mating; 3) males of medium and large size classes were paired with larger females than small-sized males; 4) larger females were paired with large males; 5) maternal body size was positively related to some proxies of reproductive success (number of nurse eggs per egg capsule, egg capsular area and total length at hatching). Our results suggest that larger females may be favored as mates over smaller ones owing to their higher investment per offspring and consequently a larger initial juvenile size as juvenile.

  4. Toward responsible stock enhancement: broadcast spawning dynamics and adaptive genetic management in white seabass aquaculture.

    PubMed

    Gruenthal, Kristen M; Drawbridge, Mark A

    2012-06-01

    The evolutionary effects captive-bred individuals that can have on wild conspecifics are necessary considerations for stock enhancement programs, but breeding protocols are often developed without the knowledge of realized reproductive behavior. To help fill that gap, parentage was assigned to offspring produced by a freely mating group of 50 white seabass (Atractoscion nobilis), a representative broadcast spawning marine finfish cultured for conservation. Similar to the well-known and closely related red drum (Sciaenops ocellatus), A. nobilis exhibited large variation in reproductive success. More males contributed and contributed more equally than females within and among spawns in a mating system best described as lottery polygyny. Two females produced 27% of the seasonal offspring pool and female breeding effective size averaged 1.85 per spawn and 12.38 seasonally, whereas male breeding effective size was higher (6.42 and 20.87, respectively), with every male contributing 1-7% of offspring. Further, females batch spawned every 1-5 weeks, while males displayed continuous reproductive readiness. Sex-specific mating strategies resulted in multiple successful mate pairings and a breeding effective to census size ratio of ≥0.62. Understanding a depleted species' mating system allowed management to more effectively utilize parental genetic variability for culture, but the fitness consequences of long-term stocking can be difficult to address.

  5. Brain size evolution in pipefishes and seahorses: the role of feeding ecology, life history and sexual selection.

    PubMed

    Tsuboi, M; Lim, A C O; Ooi, B L; Yip, M Y; Chong, V C; Ahnesjö, I; Kolm, N

    2017-01-01

    Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  6. Usability testing and requirements derivation for EMU-compatible electrical connectors

    NASA Technical Reports Server (NTRS)

    Reaux, Ray A.; Griffin, Thomas J.; Lewis, Ruthan

    1989-01-01

    On-orbit servicing of payloads is simplified when a spacecraft has been designed for serviceability. A key design criterion for a serviceable spaceraft is standardization of electrical connectors. This paper investigates the effects of extravehicular mobility unit (EMU) glove size, connector size, and connector type on usability of electrical connectors. An experiment was conducted exploring participants' ability to mate and demate connectors in an evacuated glovebox. Independent variables were two EMU glove-sizes, five connector size groups, and seven connector types. Significant differences in performance times and heart rate changes during mate and demate operations were found. Subjective assessments of connectors were collected from participants with a usability questionnaire. The data were used to derive design recommendations for a NASA-recommended EMU-compatible electrical connector.

  7. Marriage-Market Constraints and Mate-Selection Behavior: Racial, Ethnic, and Gender Differences in Intermarriage

    PubMed Central

    Choi, Kate H.; Tienda, Marta

    2016-01-01

    Despite theoretical consensus that marriage markets constrain mate selection behavior, few studies directly evaluate how local marriage market conditions influence intermarriage patterns. Using data from the American Community Survey, we examine what aspects of marriage markets influence mate selection; assess whether the associations between marriage market conditions and intermarriage are uniform by gender and across pan-ethnic groups; and investigate the extent to which marriage market conditions account for group differences in intermarriage patterns. Relative group size is the most salient and consistent determinant of intermarriage patterns across pan-ethnic groups and by gender. Marriage market constraints typically explain a larger share of pan-ethnic differences in intermarriage rates than individual traits, suggesting that scarcity of co-ethnic partners is a key reason behind decisions to intermarry. When faced with market constraints, men are more willing or more successful than women in crossing racial and ethnic boundaries in marriage. PMID:28579638

  8. Inferred Paternity and Male Reproductive Success in a Killer Whale (Orcinus orca) Population.

    PubMed

    Ford, Michael J; Hanson, M Bradley; Hempelmann, Jennifer A; Ayres, Katherine L; Emmons, Candice K; Schorr, Gregory S; Baird, Robin W; Balcomb, Kenneth C; Wasser, Samuel K; Parsons, Kim M; Balcomb-Bartok, Kelly

    2011-01-01

    We used data from 78 individuals at 26 microsatellite loci to infer parental and sibling relationships within a community of fish-eating ("resident") eastern North Pacific killer whales (Orcinus orca). Paternity analysis involving 15 mother/calf pairs and 8 potential fathers and whole-pedigree analysis of the entire sample produced consistent results. The variance in male reproductive success was greater than expected by chance and similar to that of other aquatic mammals. Although the number of confirmed paternities was small, reproductive success appeared to increase with male age and size. We found no evidence that males from outside this small population sired any of the sampled individuals. In contrast to previous results in a different population, many offspring were the result of matings within the same "pod" (long-term social group). Despite this pattern of breeding within social groups, we found no evidence of offspring produced by matings between close relatives, and the average internal relatedness of individuals was significantly less than expected if mating were random. The population's estimated effective size was <30 or about 1/3 of the current census size. Patterns of allele frequency variation were consistent with a population bottleneck.

  9. Assortative mating and fragmentation within dog breeds.

    PubMed

    Björnerfeldt, Susanne; Hailer, Frank; Nord, Maria; Vilà, Carles

    2008-01-28

    There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same processes which have historically created dog breeds are still ongoing, and create further subdivision within current dog breeds.

  10. Assortative mating and fragmentation within dog breeds

    PubMed Central

    2008-01-01

    Background There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Results Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. Conclusion The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same processes which have historically created dog breeds are still ongoing, and create further subdivision within current dog breeds. PMID:18226210

  11. Non-random pairing in American kestrels: mate choice versus intra-sexual competition

    USGS Publications Warehouse

    Bortolotti, Gary R.; Iko, William M.

    1992-01-01

    Natural selection may influence the arrangement of individuals into mated pairs through either inter-sexual (mate choice) or intra-sexual selection (competition). A study of the American kestrel, Falco sparverius, in northern Saskatchewan distinguished between these two processes using size as a measure of the bird's competitive ability, and condition (mass scaled to body size) as an index of quality. Both sexes arrive on the study area after spring migration in equal numbers and males establish territories. Males and females that moved among territories at the time of pair formation were not different in size or condition from those that did not move, suggesting that birds were not being displaced by superior competitors, and that females moved to encounter potential mates. Within mated pairs, there was no relationship between a bird's size and the condition of its mate for either sex as would be predicted if intra-sexual competitition explained mating patterns. Instead, there was positive assortative mating by condition, suggesting that both sexes used quality as the criterion in choosing mates. There was no correlation between the sizes of males and females in mated paird. Because there were no differences in size or condition of breeding and non-breeding males, factors other than physical attributes, such as prior experience with the area, may determine a male's success in obtaining a territory. Because females that did not obtain mates were in poorer condition than those that did, males may have rejected poor quality females. The results suggest that intra-sexual competition was not important for pair formation, and that kestrels chose mates on the basis of quality.

  12. Impact of hot temperature on end-face geometry of LC/UPC connectors

    NASA Astrophysics Data System (ADS)

    Thongdaeng, Rutsuda; Worasucheepb, Duangrudee; Wangsan, Sathit; Chaichok, Wansan

    2014-09-01

    The fiber withdrawal of Group 4 (mated-thermal cycle) was observed up to 100 nm as in previous work1. We predict that this withdrawal is mainly caused by the impact of hot temperature (at 75ºC) based on GR-3262 thermal cycle test profile repeated 21 cycles over 7 days; and thus, it was studies here for the purpose of reducing test time. All connectors were separated into four groups: 1) unmated-stored at room temperature, 2) mated-stored at room temperature, 3) unmated-stored at hot temperature, and 4) mated-stored at hot temperature. The hot temperature test was performed on Groups 3 and 4 for 1 hour, while Groups 1 and 2 was left at room temperature. The sample size of each group is 28 LC/UPC connectors. Radius of curvature, fiber height and apex offset were measured before and after that 1 hour. The fiber withdrawal up to 100 nm is found in Group 4 (mated-hot temperature), but no changes are observed in Groups 1-3. These results confirm the impact of hot temperature on fiber height, same as the thermal cycle test in previous work1. Afterward, Group 1-4 were unmated at room temperature for 1 day, 1 week, and 1 month. No significant change in fiber height is found. On the contrary, when Group 1-4 were re-tested as being mated at hot temperature for 1 hour, the fiber withdrawal up to 100 nm is now found in Group 1-3. However, the additional withdrawal up to 50 nm is still observed in Group 4.

  13. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice.

    PubMed

    Thünken, Timo; Meuthen, Denis; Bakker, Theo C M; Baldauf, Sebastian A

    2012-08-07

    Mating preferences for genetic compatibility strictly depend on the interplay of the genotypes of potential partners and are therein fundamentally different from directional preferences for ornamental secondary sexual traits. Thus, the most compatible partner is on average not the one with most pronounced ornaments and vice versa. Hence, mating preferences may often conflict. Here, we present a solution to this problem while investigating the interplay of mating preferences for relatedness (a compatibility criterion) and large body size (an ornamental or quality trait). In previous experiments, both sexes of Pelvicachromis taeniatus, a cichlid fish with mutual mate choice, showed preferences for kin and large partners when these criteria were tested separately. In the present study, test fish were given a conflicting choice between two potential mating partners differing in relatedness as well as in body size in such a way that preferences for both criteria could not simultaneously be satisfied. We show that a sex-specific trade-off occurs between mating preferences for body size and relatedness. For females, relatedness gained greater importance than body size, whereas the opposite was true for males. We discuss the potential role of the interplay between mating preferences for relatedness and body size for the evolution of inbreeding preference.

  14. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice

    PubMed Central

    Thünken, Timo; Meuthen, Denis; Bakker, Theo C. M.; Baldauf, Sebastian A.

    2012-01-01

    Mating preferences for genetic compatibility strictly depend on the interplay of the genotypes of potential partners and are therein fundamentally different from directional preferences for ornamental secondary sexual traits. Thus, the most compatible partner is on average not the one with most pronounced ornaments and vice versa. Hence, mating preferences may often conflict. Here, we present a solution to this problem while investigating the interplay of mating preferences for relatedness (a compatibility criterion) and large body size (an ornamental or quality trait). In previous experiments, both sexes of Pelvicachromis taeniatus, a cichlid fish with mutual mate choice, showed preferences for kin and large partners when these criteria were tested separately. In the present study, test fish were given a conflicting choice between two potential mating partners differing in relatedness as well as in body size in such a way that preferences for both criteria could not simultaneously be satisfied. We show that a sex-specific trade-off occurs between mating preferences for body size and relatedness. For females, relatedness gained greater importance than body size, whereas the opposite was true for males. We discuss the potential role of the interplay between mating preferences for relatedness and body size for the evolution of inbreeding preference. PMID:22513859

  15. How universal are human mate choices? Size does not matter when Hadza foragers are choosing a mate

    PubMed Central

    Sear, Rebecca; Marlowe, Frank W.

    2009-01-01

    It has been argued that size matters on the human mate market: both stated preferences and mate choices have been found to be non-random with respect to height and weight. But how universal are these patterns? Most of the literature on human mating patterns is based on post-industrial societies. Much less is known about mating behaviour in more traditional societies. Here we investigate mate choice by analysing whether there is any evidence for non-random mating with respect to size and strength in a forager community, the Hadza of Tanzania. We test whether couples assort for height, weight, body mass index (BMI), per cent fat and grip strength. We test whether there is a male-taller norm. Finally, we test for an association between anthropometric variables and number of marriages. Our results show no evidence for assortative mating for height, weight, BMI or per cent fat; no evidence for a male-taller norm and no evidence that number of marriages is associated with our size variables. Hadza couples may assort positively for grip strength, but grip strength does not affect the number of marriages. Overall we conclude that, in contrast to post-industrial societies, mating appears to be random with respect to size in the Hadza. PMID:19570778

  16. Genetic diversity confers colony-level benefits due to individual immunity

    USDA-ARS?s Scientific Manuscript database

    Several costs and benefits arise as a consequence of eusociality and group-living. With increasing group size, spread of disease among nest-mates poses selective pressure on both individual immunity and group-level mechanisms of disease resistance (social immunity). Another factor known to influence...

  17. Low level of polyandry constrains phenotypic plasticity of male body size in mites.

    PubMed

    Schausberger, Peter; Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size.

  18. Low level of polyandry constrains phenotypic plasticity of male body size in mites

    PubMed Central

    Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size. PMID:29190832

  19. Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider.

    PubMed

    Foellmer, Matthias W; Fairbairn, Daphne J

    2005-02-01

    Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.

  20. Cross-species correlation between queen mating numbers and worker ovary sizes suggests kin conflict may influence ovary size evolution in honeybees

    NASA Astrophysics Data System (ADS)

    Rueppell, Olav; Phaincharoen, Mananya; Kuster, Ryan; Tingek, Salim

    2011-09-01

    During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.

  1. Temporal variation in size-assortative mating and male mate choice in a spider with amphisexual care

    NASA Astrophysics Data System (ADS)

    Moura, Rafael R.; Gonzaga, Marcelo O.

    2017-04-01

    Males should be more selective when they have a high investment in reproduction, especially in species with biparental or paternal care. In this context, male mate choice can promote size-assortative mating (SAM) when (1) large males win intrasexual disputes, (2) large females are more fecund, and (3) males prefer larger females to smaller ones. In the spider Manogea porracea, males exhibit high reproductive investment by building their webs above those of females and exhibiting extended care of offspring in the absence of females. Under these circumstances, we expect the occurrence of SAM and male preference for large females. Herein, we performed observations and experiments in the field to evaluate the hypotheses that (1) M. porracea mates assortatively by size and (2) SAM is influenced by male mate choice. Furthermore, we measured variables that could affect mating patterns, the sex ratios, and densities of both sexes. Pairing in M. porracea was positively size-assortative in 2012, but not in 2013. Large males won most disputes for mates and preferred larger females, which produced more eggs. The inconsistency in detection of SAM was due to population dynamics, namely variations in sex ratio and population density across the breeding season. Furthermore, we found that the significance of male mate choice on sexual selection of body size in M. porracea strongly depends on the competition intensity for mating opportunities. The traditional sexual selection hypothesis of SAM needs to be reviewed and must include measures of competition intensity.

  2. Male lifetime mating success in relation to body size in Diabrotica barberi

    USDA-ARS?s Scientific Manuscript database

    Body size is often an important component of male lifetime mating success in insects, especially when males are capable of mating several times over their lifespan. We paired either a large or small male northern corn rootworm with a female of random size and noted copulation success. We observed co...

  3. Effective Size of Nonrandom Mating Populations

    PubMed Central

    Caballero, A.; Hill, W. G.

    1992-01-01

    Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, N(e), which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also incorrect. In this paper, a corrected form of these equations is derived and checked by stochastic simulation. For the case of stable census number, N, and equal progeny distributions for each sex, the equation is & where S(k)(2) is the variance of family size and α is the departure from Hardy-Weinberg proportions. For a Poisson distribution of family size (S(k)(2) = 2), it reduces to N(e) = N/(1 + α), as when inbreeding is due to selfing. When nonrandom mating occurs because there is a specified system of partial inbreeding every generation, α can be substituted by Wright's F(IS) statistic, to give the effective size as a function of the proportion of inbred mates. PMID:1582565

  4. Does large body size in males evolve to facilitate forcible insemination? A study on garter snakes.

    PubMed

    Shine, Richard; Mason, Robert T

    2005-11-01

    A trend for larger males to obtain a disproportionately high number of matings, as occurs in many animal populations, typically is attributed either to female choice or success in male-male rivalry; an alternative mechanism, that larger males are better able to coercively inseminate females, has received much less attention. For example, previous studies on garter snakes (Thamnophis sirtalis parietalis) at communal dens in Manitoba have shown that the mating benefit to larger body size in males is due to size-dependent advantages in male-male rivalry. However, this previous work ignored the possibility that larger males may obtain more matings because of male-female interactions. In staged trials within outdoor arenas, larger body size enhanced male mating success regardless of whether a rival male was present. The mechanism involved was coercion rather than female choice, because mating occurred most often (and soonest) in females that were least able to resist courtship-induced hypoxic stress. Males do physically displace rivals from optimal positions in the mating ball, and larger males are better able to resist such displacement. Nonetheless, larger body size enhances male mating success even in the absence of such male-male interactions. Thus, even in mating systems where males compete physically and where larger body size confers a significant advantage in male-male competition, the actual selective force for larger body size in males may relate to forcible insemination of unreceptive females. Experimental studies are needed to determine whether the same situation occurs in other organisms in which body-size advantages have been attributed to male-male rather than male-female interactions.

  5. Social and behavioral barriers to pathogen transmission in wild animal populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.S.

    Disease and pathogens have been studied as regulators of animal populations but not really as selective forces. The authors propose that pathogens can be major selective forces influencing social behaviors when these are successful at reducing disease transmission. The behaviors whose evolution could have been influenced by pathogen effects include group size, group isolation, mixed species flocking, migration, seasonal sociality, social avoidance, and dominance behaviors. Mate choice, mating system, and sexual selection are put in a new light when examined in terms of disease transmission. It is concluded that pathogen avoidance is a more powerful selective force than has heretoforemore » been recognized.« less

  6. Mating Success, Longevity, and Fertility of Diabrotica virgifera virgifera LeConte (Chrysomelidae: Coleoptera) in Relation to Body Size and Cry3Bb1-Resistant and Cry3Bb1-Susceptible Genotypes

    PubMed Central

    French, Bryan Wade; Hammack, Leslie; Tallamy, Douglas W.

    2015-01-01

    Insect resistance to population control methodologies is a widespread problem. The development of effective resistance management programs is often dependent on detailed knowledge regarding the biology of individual species and changes in that biology associated with resistance evolution. This study examined the reproductive behavior and biology of western corn rootworm beetles of known body size from lines resistant and susceptible to the Cry3Bb1 protein toxin expressed in transgenic Bacillus thuringiensis maize. In crosses between, and within, the resistant and susceptible genotypes, no differences occurred in mating frequency, copulation duration, courtship duration, or fertility; however, females mated with resistant males showed reduced longevity. Body size did not vary with genotype. Larger males and females were not more likely to mate than smaller males and females, but larger females laid more eggs. Moderately strong, positive correlation occurred between the body sizes of successfully mated males and females; however, weak correlation also existed for pairs that did not mate. Our study provided only limited evidence for fitness costs associated with the Cry3Bb1-resistant genotype that might reduce the persistence in populations of the resistant genotype but provided additional evidence for size-based, assortative mating, which could favor the persistence of resistant genotypes affecting body size. PMID:26569315

  7. Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Cornman, Robert S.; Kenneth L. Jones,; Fike, Jennifer

    2015-01-01

    Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The πZ/πA ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that NeZ/NeA in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.

  8. Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds.

    PubMed

    Oyler-McCance, S J; Cornman, R S; Jones, K L; Fike, J A

    2015-11-01

    Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The π(Z)/π(A) ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that N(eZ)/N(eA) in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.

  9. Potential fitness benefits from mate selection in the Atlantic cod (Gadus morhua).

    PubMed

    Rudolfsen, G; Figenschou, L; Folstad, I; Nordeide, J T; Søreng, E

    2005-01-01

    Little evidence of benefits from female mate choice has been found when males provide no parental care or resources. Yet, good genes models of sexual selection suggest that elaborated male sexual characters are reliable signals of mate quality and that the offspring of males with elaborate sexual ornaments will perform better than those of males with less elaborate ornaments. We used cod (Gadus morhua L.), an externally fertilizing species where males provide nothing but sperm, to examine the potential of optimal mate selection with respect to offspring survival. By applying in vitro fertilizations, we crossed eight females with nine males in all possible combinations and reared each of the 72 sib groups. We found that offspring survival was dependent on which female was mated with which male and that optimal mate selection has the potential to increase mean offspring survival from 31.9 to 55.6% (a 74% increase). However, the size of the male sexual ornaments and sperm quality (i.e. sperm velocity and sperm density) could not predict offspring survival. Thus, even if there may be large fitness benefits of mate selection, we might not yet have identified the male characteristics generating high offspring survival.

  10. Nutrition quality, body size and two components of mating behavior in Drosophila melanogaster.

    PubMed

    Pavković-Lucić, Sofija; Kekić, Vladimir

    2010-01-01

    Two components of mating behavior, mating latency and duration of copulation, were investigated in Drosophila melanogaster males from three different "nutritional" strains, reared for more than 35 generations on banana, tomato and cornmeal-agar-yeast substrates. Males from different strains did not differ according to mating latency and duration of copulation. Also, the sizes of males from different strains did not contribute to these behavioral traits.

  11. Spatial distribution and male mating success of Anopheles gambiae swarms

    PubMed Central

    2011-01-01

    Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition. PMID:21711542

  12. Multiple mating and clutch size in invertebrate brooders versus pregnant vertebrates

    PubMed Central

    Avise, John C.; Tatarenkov, Andrey; Liu, Jin-Xian

    2011-01-01

    We summarize the genetic literature on polygamy rates and sire numbers per clutch in invertebrate animals that brood their offspring and then compare findings with analogous data previously compiled for vertebrate species displaying viviparity or other pregnancy-like syndromes. As deduced from molecular parentage analyses of several thousand broods from more than 100 “pregnant” species, invertebrate brooders had significantly higher mean incidences of multiple mating than pregnant vertebrates, a finding generally consistent with the postulate that clutch size constrains successful mate numbers in species with extended parental care. However, we uncovered no significant correlation in invertebrates between brood size and genetically deduced rates of multiple mating by the incubating sex. Instead, in embryo-gestating animals otherwise as different as mammals and mollusks, polygamy rates and histograms of successful mates per brooder proved to be strikingly similar. Most previous studies have sought to understand why gestating parents have so many mates and such high incidences of successful multiple mating; an alternative perspective based on logistical constraints turns the issue on its head by asking why mate numbers and polygamy rates are much lower than they theoretically could be, given the parentage-resolving power of molecular markers and the huge sizes of many invertebrate broods. PMID:21709247

  13. Sympatric speciation as a consequence of male pregnancy in seahorses

    PubMed Central

    Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.

    2003-01-01

    The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712

  14. Urinary C-peptide levels in male bonobos (Pan paniscus) are related to party size and rank but not to mate competition.

    PubMed

    Surbeck, Martin; Deschner, Tobias; Behringer, Verena; Hohmann, Gottfried

    2015-05-01

    Within- and between-species variation in male mating strategies has been attributed to a multitude of factors including male competitive ability and the distribution of fertile females across space and time. Differences in energy balance across and within males allow for the identification of some of the trade-offs associated with certain social and mating strategies. Bonobos live in groups with a high degree of fission-fusion dynamics, there is co-dominance between the sexes and a linear dominance hierarchy among males. Males compete over access to females, breeding is aseasonal, and females exhibit sexual swellings over extended time periods. In this study we use urinary C-peptide (UCP) levels in male bonobos (Pan paniscus) obtained from 260 urine samples from a wild bonobo community, to quantify male energy balance during mate competition and levels of gregariousness in the species. Although high ranking males are more aggressive, spend more time in proximity to maximally tumescent females, and have higher mating frequencies, we found no indication that mate guarding or mate competition affected male energy balance. Our results showed a positive correlation between monthly mean UCP levels and mean party size. When traveling in large parties, high ranking males had higher UCP levels than those of the low ranking males. These results support the hypothesis that patterns of fission-fusion dynamics in bonobos are either linked to energy availability in the environment or to the energetic costs of foraging. The finding of a rank-bias in UCP levels in larger parties could also reflect an increase in contest competition among males over access to food. Copyright © 2015. Published by Elsevier Inc.

  15. Effect of porcine parvovirus serostatus on the reproductive performance of mated gilts in an infected herd.

    PubMed

    Cutler, R S; Molitor, T W; Leman, A D; Sauber, T E

    1982-06-01

    Gifts from 2 commercial swine operations (farm A and farm B) that were bred each week were tested for porcine parvovirus antibody. On farm A, 21.9% (weekly, 2% to 35%) of the 657 gilts tested over a 16-week period were seronegative within 1 week of mating. On farm B, 17.7% (weekly, o to 40%) of the 164 gilts tested over a 10 week period were seronegative within 1 week of mating. Eighty-one gilts from farm A which were seronegative at time of mating were retested at the end of the gestation. Of the 81 gilts, 4 1 had developed antibody titers. The litter size decreased by 1.3 live pigs/litter. The percentage of small litters (less than or equal to 6 born alive) in the group that seroconverted was 36.6% compared with 10% in the gilts that remained seronegative throughout gestation.

  16. Sex ratio and gamete size across eastern North America in Dictyostelium discoideum, a social amoeba with three sexes.

    PubMed

    Douglas, T E; Strassmann, J E; Queller, D C

    2016-07-01

    Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency-dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  17. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.

    PubMed

    Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z

    2017-01-01

    Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.

  18. Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish

    NASA Astrophysics Data System (ADS)

    Hart, M. K.; Svoboda, A.; Mancilla Cortez, D.

    2011-06-01

    Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.

  19. The role of sexual selection and conflict in mediating among-population variation in mating strategies and sexually dimorphic traits in Sepsis punctum.

    PubMed

    Dmitriew, Caitlin; Blanckenhorn, Wolf U

    2012-01-01

    The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment.

  20. Comparison of the effect of natural mating, LH, and GnRH on interval to ovulation and luteal function in llamas.

    PubMed

    Ratto, Marcelo; Huanca, Wilfredo; Singh, Jaswant; Adams, Gregg P

    2006-02-01

    Gonadotropins and GnRH have been used to electively induce ovulation in llamas and alpacas, but critical evaluation of the natural interval to ovulation after mating has not been performed nor has a direct comparison of the effects of natural mating versus hormone treatments on this interval and subsequent luteal development. The objectives of this study were to compare the effects of hormonal treatments and natural mating on ovulation induction, interval to ovulation, and luteal development in llamas. The ovaries of llamas were examined by transrectal ultrasonography once daily. Llamas with a large follicle were assigned randomly to be: (1) mated with an intact male (mated; n=10); (2) given 5 mg of LH im (LH; n=11); or (3) 50 microg of GnRH im (GnRH; n=10). Ultrasound examinations were performed every 4h from treatment (day 0) to ovulation and thereafter once daily for 15 consecutive days to monitor CL growth and regression (n=5 per group). Plasma progesterone concentrations were measured at days 0, 3, 6, 9, and 12 after treatment to evaluate CL function. The size of the largest preovulatory follicle at the time of treatment did not differ among groups (11+/-0.6, 10.5+/-0.8, 11.8+/-0.9 mm, for mated, LH, and GnRH groups, respectively; P=0.6). No differences were detected among groups (mated, LH, and GnRH) in ovulation rate (80%, 91%, 80%, respectively; P=0.6), or interval from treatment to ovulation (30.0+/-0.5, 29.3+/-0.6, 29.3+/-0.7h, respectively; P=0.9). Similarly, no differences were detected among groups (mated, LH, and GnRH) in maximum CL diameter (14.2+/-0.3, 13.2+/-0.5, and 13.0+/-0.7 mm, respectively; P=0.5), the day of maximum CL diameter (7.6+/-0.2, 7.6+/-0.2, and 7.4+/-0.4 mm, respectively; P=0.6), or the day on which the CL began to regress (12.3+/-0.3 [non-pregnant, n=3], 11.8+/-0.6, 12.2+/-0.4, respectively; P=0.4). The diameter of the CL and plasma progesterone concentrations changed over days (P<0.0001) but the profiles did not differ among groups. In summary, ovulation rate, interval to ovulation, and luteal development were similar among llamas that were mated naturally or treated with LH or GnRH. We conclude that both hormonal preparations are equally reliable for inducing ovulation and suitable for synchronization for artificial insemination or embryo transfer program.

  1. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    PubMed

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  2. Postnatal nutrition influences male attractiveness and promotes plasticity in male mating preferences

    NASA Astrophysics Data System (ADS)

    Noguera, José C.; Metcalfe, Neil B.; Monaghan, Pat

    2017-12-01

    Poor early-life nutrition could reduce adult reproductive success by negatively affecting traits linked to sexual attractiveness such as song complexity. If so, this might favor strategic mate choice, allowing males with less complex songs to tailor their mating tactics to maximize the reproductive benefits. However, this possibility has been ignored in theoretical and empirical studies. By manipulating the micronutrient content of the diet (e.g., low or high) during the postnatal period of male zebra finches, we show for the first time (1) that males reared on a poor (low) micronutrient diet had less complex songs as adults; (2) that these males, in contrast to the high micronutrient diet group, were more selective in their mating strategies, discriminating against those females most likely to reduce their clutch size when paired with males having less complex songs; and (3) that by following different mating strategies, males reared on the contrasting diets obtained similar reproductive benefits. These results suggest that early-life dietary conditions can induce multiple and long-lasting effects on male and female reproductive traits. Moreover, the results seem to reflect a previously unreported case of adaptive plasticity in mate choice in response to a nutritionally mediated reduction in sexual attractiveness.

  3. Limited genomic consequences of mixed mating in the recently derived sister species pair, Collinsia concolor and Collinsia parryi.

    PubMed

    Salcedo, A; Kalisz, S; Wright, S I

    2014-07-01

    Highly selfing species often show reduced effective population sizes and reduced selection efficacy. Whether mixed mating species, which produce both self and outcross progeny, show similar patterns of diversity and selection remains less clear. Examination of patterns of molecular evolution and levels of diversity in species with mixed mating systems can be particularly useful for investigating the relative importance of linked selection and demographic effects on diversity and the efficacy of selection, as the effects of linked selection should be minimal in mixed mating populations, although severe bottlenecks tied to founder events could still be frequent. To begin to address this gap, we assembled and analysed the transcriptomes of individuals from a recently diverged mixed mating sister species pair in the self-compatible genus, Collinsia. The de novo assembly of 52 and 37 Mbp C. concolor and C. parryi transcriptomes resulted in ~40 000 and ~55 000 contigs, respectively, both with an average contig size ~945. We observed a high ratio of shared polymorphisms to fixed differences in the species pair and minimal differences between species in the ratio of synonymous to replacement substitutions or codon usage bias implying comparable effective population sizes throughout species divergence. Our results suggest that differences in effective population size and selection efficacy in mixed mating taxa shortly after their divergence may be minimal and are likely influenced by fluctuating mating systems and population sizes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. Pleiotropic Effects of DDT Resistance on Male Size and Behaviour.

    PubMed

    Rostant, Wayne G; Bowyer, Jemima; Coupland, Jack; Facey, James; Hosken, David J; Wedell, Nina

    2017-07-01

    Understanding the evolution and spread of insecticide resistance requires knowing the relative fitness of resistant organisms. In the absence of insecticides, resistance is predicted to be costly. The Drosophila melanogaster DDT resistance allele (DDT-R) is associated with a male mating cost. This could be because resistant males are generally smaller, but DDT-R may also alter courtship behaviours. Here we tested for body size and courtship effects of DDT-R on mating success in competitive and non-competitive mating trials respectively. We also assessed relative aggression in resistant and susceptible males because aggression can also influence mating success. While the effect of DDT-R on male size partly contributed to reduced mating success, resistant males also had lower rates of courtship and were less aggressive than susceptible males. These differences contribute to the observed DDT-R mating costs. Additionally, these pleiotropic effects of DDT-R are consistent with the history and spread of resistance alleles in nature.

  5. Mate choice theory and the mode of selection in sexual populations.

    PubMed

    Carson, Hampton L

    2003-05-27

    Indirect new data imply that mate and/or gamete choice are major selective forces driving genetic change in sexual populations. The system dictates nonrandom mating, an evolutionary process requiring both revised genetic theory and new data on heritability of characters underlying Darwinian fitness. Successfully reproducing individuals represent rare selections from among vigorous, competing survivors of preadult natural selection. Nonrandom mating has correlated demographic effects: reduced effective population size, inbreeding, low gene flow, and emphasis on deme structure. Characters involved in choice behavior at reproduction appear based on quantitative trait loci. This variability serves selection for fitness within the population, having only an incidental relationship to the origin of genetically based reproductive isolation between populations. The claim that extensive hybridization experiments with Drosophila indicate that selection favors a gradual progression of "isolating mechanisms" is flawed, because intra-group random mating is assumed. Over deep time, local sexual populations are strong, independent genetic systems that use rich fields of variable polygenic components of fitness. The sexual reproduction system thus particularizes, in small subspecific populations, the genetic basis of the grand adaptive sweep of selective evolutionary change, much as Darwin proposed.

  6. Intra- and Trans-Generational Costs of Reduced Female Body Size Caused by Food Limitation Early in Life in Mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Background Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Methodology/Principal Findings Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Conclusions/Significance Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism – females are the larger sex and thus more strongly affected by maternal stress than the smaller males – and to sexually selected lower plasticity of male body size. PMID:24265745

  7. Reproductive performance of gilts according to growth rate and backfat thickness at mating.

    PubMed

    Amaral Filha, W S; Bernardi, M L; Wentz, I; Bortolozzo, F P

    2010-08-01

    The study evaluated the influence of growth rate (GR) and backfat thickness (BF), at first mating of gilts, on the reproductive performance until the first farrowing and on the variation in birth weight of piglets. Gilts were categorized into three groups according to GR from birth until the first mating: GRI (600-700 g/d; n = 345), GRII (701-770 g/d; n = 710) and GRIII (771-870 g/d; n = 366). Analyses were also performed considering three groups formed according to BF (mm) at mating: BFI (10-15 mm; n = 405); BFII (16-17 mm; n = 649)and BFIII (18-23 mm; n = 367). There were no differences in farrowing rate and return to estrus rate among BF or GR groups (P > 0.05). GRII and GRIII females had larger litter size compared to GRI gilts (P < 0.05), respectively, 0.5 and 0.9 more piglets, but a greater percentage of intra-partum stillborns (P < 0.05) was observed in GRIII than in GRI and GRII females. Moreover GRIII females had more piglets (P < 0.05) weighing less than 1,200 g, litters with a greater coefficient of variation for birth weight and a greater percentage of litters with a coefficient of variation above 20% (P < 0.05) than GRI females. More total born and born alive piglets were observed in BFII compared with BFI females (P < 0.05). There were no differences among BF groups in number of stillborn neither in variables concerning the birth weight of piglets (P > 0.05). These results show that there is no advantage, in terms of farrowing rate and number of born alive, in performing the first mating of gilts with GR> 770 g/d and BF > 17 mm.

  8. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  9. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    PubMed

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  10. Influence of trophy hunting and horn size on mating behavior and survivorship of mountain sheep

    USGS Publications Warehouse

    Singer, F.J.; Zeigenfuss, L.C.

    2002-01-01

    We conducted a study of the effects of horn sizes and trophy hunting on mating behavior and survival of rams in hunted and unhunted populations of Dall sheep (Ovis dalli), Rocky Mountain bighorn (O. canadensis canadensis), and desert bighorn (O. c. nelsoni) sheep. Mating success was positively correlated with horn size in Dall sheep (P = 0.03) and Rocky Mountain bighorns (P = 0.05), but not in the desert bighorn (P > 0.05) taxa. Group sizes, rams per rut group, and competition between rams were lowest in desert bighorn sheep. There were indications of greater harassment of ewes by young rams in trophy-hunted populations. In hunted populations, compared with unhunted, ewes ran away more often from approaching rams, ewes moved farther away from courting young rams (P = 0.003), younger rams performed fewer courtship displays (P = 0.042) and more aggressive displays to ewes, and sheep interacted 27% more of the time. Ram-to-ewe interaction times per individual ewe did not differ for any of the taxa (P > 0.05), and, apparently as a consequence of this, we found no discernable effects of trophy hunting on survivorship of ewes, ewe fecundity, or recruitment of young (P > 0.05). There were greater energy expenditures by young rams in the heavily hunted Dall sheep population versus the paired Dall sheep unhunted population, but not in the lightly hunted Rocky Mountain and desert bighorn populations when compared with unhunted populations. This was consistent with evidence for depressed survivorship of rams too young or too small to be hunted (approximately ages 4–6) in the heavily hunted Dall sheep population (P = 0.0001), but not in the bighorn sheep populations (P > 0.05).

  11. Impact of male condition on his spermatophore and consequences for female reproductive performance in the Glanville fritillary butterfly.

    PubMed

    Duplouy, Anne; Woestmann, Luisa; Gallego Zamorano, Juan; Saastamoinen, Marjo

    2018-04-01

    In butterflies, male reproductive success is highly related to the quality and the size of the spermatophore transferred to the female. The spermatophore is a capsule produced by the male during copulation, which in many species contains sperm in addition to a nuptial gift, and which is digested by the female after copulation. The nuptial gift may contribute to egg production and offspring quality, and in some cases also to female body maintenance. The production of the spermatophore, however, represents a cost for the male and, in polyandrous species, ejaculates are sometimes allocated adaptively across matings. Nonetheless, although the ecological factors affecting the reproductive success of female butterflies have been the topic of numerous studies, little information exists on the factors affecting males' contribution to reproduction, and the indirect impacts on female fecundity and fitness. We used the Glanville fritillary butterfly, Melitaea cinxia (Linnaeus, 1758) (Nymphalidae), in order to assess variation in male allocation to matings. In this species, smaller males produce smaller spermatophores, but variation in spermatophore size is not correlated with female reproductive success. We show that spermatophore size increases with male age at first mating, decreases with mating frequency and adult food-deprivation, and is not influenced by developmental food-limitation. The length of copulation period does not influence the spermatophore size nor influences the polyandrous mating behavior in this species. Male contribution to his spermatophore size is clearly influenced by his condition and adult-resource at the time of mating. Despite this variation, spermatophore size does not seem to have a direct impact on female reproductive output or mating behavior. © 2016 The Authors Insect Science published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

  12. Female brain size affects the assessment of male attractiveness during mate choice.

    PubMed

    Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas

    2017-03-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.

  13. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites.

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2015-02-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male-male competition in P. persimilis than N. californicus . Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis ; medium level in N. californicus ). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus , consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male-male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive ('Napoleon complex') in male-male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour.

  14. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2015-01-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male–male competition in P. persimilis than N. californicus. Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis; medium level in N. californicus). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus, consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male–male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive (‘Napoleon complex’) in male–male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour. PMID:25673881

  15. Sexual selection and the risk of extinction in birds.

    PubMed Central

    Morrow, Edward H; Pitcher, Trevor E

    2003-01-01

    The relationship between sexual selection and extinction risk has rarely been investigated. This is unfortunate because extinction plays a key role in determining the patterns of species richness seen in extant clades, which form the basis of comparative studies into the role that sexual selection may play in promoting speciation. We investigate the extent to which the perceived risk of extinction relates to four different estimates of sexual selection in 1030 species of birds. We find no evidence that the number of threatened species is distributed unevenly according to a social mating system, and neither of our two measures of pre-mating sexual selection (sexual dimorphism and dichromatism) was related to extinction risk, after controlling for phylogenetic inertia. However, threatened species apparently experience more intense post-mating sexual selection, measured as testis size, than non-threatened species. These results persisted after including body size as a covariate in the analysis, and became even stronger after controlling for clutch size (two known correlates of extinction risk). Sexual selection may therefore be a double-edged process-promoting speciation on one hand but promoting extinction on the other. Furthermore, we suggest that it is post-mating sexual selection, in particular, that is responsible for the negative effect of sexual selection on clade size. Why this might be is unclear, but the mean population fitness of species with high intensities of post-mating sexual selection may be especially low if costs associated with multiple mating are high or if the selection load imposed by post-mating selection is higher relative to that of pre-mating sexual selection. PMID:12964981

  16. Female Choice or Male Sex Drive? The Advantages of Male Body Size during Mating in Drosophila Melanogaster.

    PubMed

    Jagadeeshan, Santosh; Shah, Ushma; Chakrabarti, Debarti; Singh, Rama S

    2015-01-01

    The mating success of larger male Drosophila melanogaster in the laboratory and the wild has been traditionally been explained by female choice, even though the reasons are generally hard to reconcile. Female choice can explain this success by virtue of females taking less time to mate with preferred males, but so can the more aggressive or persistent courtships efforts of large males. Since mating is a negotiation between the two sexes, the behaviors of both are likely to interact and influence mating outcomes. Using a series of assays, we explored these negotiations by testing for the relative influence of male behaviors and its effect on influencing female courtship arousal threshold, which is the time taken for females to accept copulation. Our results show that large males indeed have higher copulation success compared to smaller males. Competition between two males or an increasing number of males had no influence on female sexual arousal threshold;-females therefore may have a relatively fixed 'arousal threshold' that must be reached before they are ready to mate, and larger males appear to be able to manipulate this threshold sooner. On the other hand, the females' physiological and behavioral state drastically influences mating; once females have crossed the courtship arousal threshold they take less time to mate and mate indiscriminately with large and small males. Mating quicker with larger males may be misconstrued to be due to female choice; our results suggest that the mating advantage of larger males may be more a result of heightened male activity and relatively less of female choice. Body size per se may not be a trait under selection by female choice, but size likely amplifies male activity and signal outputs in courtship, allowing them to influence female arousal threshold faster.

  17. Sex-specific participation in inter-group conflicts within a multilevel society: the first evidence at the individual level.

    PubMed

    Zhao, Dapeng; Chen, Zhuoyue; Li, Baoguo; Romero, Teresa

    2013-12-01

    Inter-group conflicts are common among many group-living animals and involve potentially complex motivations and interactions. Mammals living in multilevel societies offer a good opportunity to study inter-group conflicts. This study is the first to explore the function of sex-specific participation during inter-group conflicts within a multilevel society at the individual level. The Sichuan snub-nosed monkey (Rhinopithecus roxellana) is an endangered seasonal breeding species living in a multilevel society. From Sep 2007 to May 2008 we recorded 290 inter-group conflicts of a free-ranging provisioned band of R. roxellana in the Qinling Mountains of China to investigate the function of individual aggression during inter-group encounters. Our findings show that adult males were the main participants in inter-group conflicts, while females took part in them only occasionally. The male participation rate during the mating season, when adult females were estrous, was significantly higher than that during the non-mating season. Furthermore, males directed their aggression to other males, and directed more intense aggression towards bachelor males than towards other resident males. For both sexes, the participation rate as initiators was higher in the winter than that in the spring; and there was a significant positive correlation between group size and the participation rate as initiators. Our results suggest that inter-group aggression in Sichuan snub-nosed monkeys is linked to both mate defense and resource defense. © 2013 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  18. The Role of Body Size in Mate Selection among African American Young Adults

    PubMed Central

    Simons, Leslie G.; Simons, Ronald L.

    2016-01-01

    A profusion of studies have demonstrated that body size is a major factor in mate selection for both men and women. The particular role played by weight, however, has been subject to some debate, particularly with respect to the types of body sizes deemed most attractive, and scholars have questioned the degree to which body size preferences are constant across groups. In this paper, we drew from two perspectives on this issue, Sexual Strategies Theory and what we termed the cultural variability perspective, and used survey data to examine how body size was associated with both casual dating and serious romantic relationships. We used a United States sample of 386 African American adolescents and young adults between ages 16 and 21, living in the Midwest and Southeast, and who were enrolled in either high school or college. Results showed that overweight women were more likely to report casually dating than women in the thinnest weight category. Body size was not related to dating status among men. Among women, the results suggest stronger support for the cultural variability argument than for Sexual Strategies Theory. Potential explanations for these findings are discussed. PMID:26973377

  19. Worthless and Nutritive Nuptial Gifts: Mating Duration, Sperm Stored and Potential Female Decisions in Spiders

    PubMed Central

    Albo, Maria J.; Peretti, Alfredo V.

    2015-01-01

    In nuptial gift-giving species females sometimes select their potential mates based on the presence and size of the gift. But in some species, such as the Neotropical polyandrous spider Paratrechalea ornate male gifts vary in quality, from nutritive to worthless, and this male strategy can be in conflict with female nutritional benefits. In this species, males without gifts experience a reduction in mating success and duration, while males that offer worthless or genuine nutritive gifts mate with similar frequencies and durations. The female apparently controls the duration of copulation. Thus, there is scope for females to favour males offering gifts and further if these are nutritious, via post-copulatory processes. We first tested whether females differentially store sperm from males that offer the highest nutritional benefits by experimentally presenting females with males that offer either nutritive or worthless gifts (uninterrupted matings). Second, we carried out another set of experiments to examine whether females can select sperm based only on gift presence. This time we interrupted matings after the first pedipalp insertion, thus matching number of insertions and mating duration for males that: offered and did not offer gift. Our results showed that the amount of sperm stored is positive related to mating duration in all groups, except in matings with worthless gifts. Gift presence itself did not affect the sperm stored by females, while they store similar number of sperm in matings with males offering either nutritive or worthless gifts. We discuss whether females prefer males with gifts regardless, if content, because it represents an attractive and/or reliable signal. Or alternatively, they prefer nutritive nuptial gifts, as they are an important source of food supply and/or signal of male donor ability. PMID:26107397

  20. Effects of short-term feeding of different sources of fatty acids in pre-mating diets on reproductive performance and blood metabolites of fat-tailed Iranian Afshari ewes.

    PubMed

    Mirzaei-Alamouti, H; Mohammadi, Z; Shahir, M H; Vazirigohar, M; Mansouryar, M

    2018-06-01

    The effects of dietary omega-3 and omega-6 fatty acids (FAs) in pre-mating diets on reproductive performances and metabolic status of ewes have not been well investigated. Therefore, this study investigated the effect of supplementing different source of FAs on different aspects of reproductive performance of fat-tailed Iranian Afshari ewes. Thirty-two cycling, multiparous Afshari ewes were divided into four groups and fed one of the isocaloric and isonitrogenous diets supplemented with Sunflower oil (SFO), Fish oil (FO), calcium salt of palm oil (CaPO) and/or an equal mixture of SFO + FO (SFOFO). One day after the start of the flushing, the estrous cycles of all ewes were synchronized using 12-day CIDRs. After detecting signs of estrous, all ewes were mated with rams for 2 days. The examination of ovarian follicles was done by a transrectal ultrasonography. After counting all visible follicles, they were classified into 3 classes based on their diameters: small (≤3 mm), medium (3-4 mm) and large (≥4 mm). The results showed that fat sources had no impact on dry matter intake (DMI) and body condition score (BCS) of animals (P > 0.05). Plasma glucose, total cholesterol, and albumin concentrations also were not significantly affected by supplemental fat sources (P > 0.05). Plasma insulin levels were higher at the end of the flushing (on the day of CIDR removal) and the day of mating for ewes on CaPO diet (P < 0.05). Plasma estradiol-17β concentration was greater on the day of mating for ewes fed FO (P < 0.05). Progesterone levels in pregnant ewes fed FO were higher 30 d after mating (11.02 ng/mL; P < 0.05). Dietary treatments had no significant effect on number of small, medium and total follicles as well as the average size of small and medium follicles at the end of the flushing and the day of mating. The number of medium follicles on the day of oestrus (mating) were significantly higher for the ewes fed FO or SFO diets (P < 0.05). Likewise, the mean number and size of large follicles at the end of flushing and the day of oestrus were higher in ewes on FO diet (P < 0.05). Lambing rate and twinning rate increased (P < 0.05) in ewes fed FO or SFO, respectively. In conclusion, supplementation of n-3 PUFA rich FA especially FO in pre-mating diets showed beneficial effects on some indices of reproductive performance of Afshari ewes including lambing and twining rate due to higher number of medium sized follicles and size of the ovulatory (large) follicles at the day of oestrus and increased plasma progesterone levels in pregnant ewes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Why do female Callosobruchus maculatus kick their mates?

    PubMed

    van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W

    2014-01-01

    Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other's matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings.

  2. Reproductive ecology of lampreys

    USGS Publications Warehouse

    Johnson, Nicholas S.; Buchinger, Tyler J.; Li, Weiming

    2014-01-01

    Lampreys typically spawn in riffle habitats during the spring. Spawning activity and diel (i.e., during daylight and at night) behavioral patterns are initiated when spring water temperatures increase to levels that coincide with optimal embryologic development. Nests are constructed in gravel substrate using the oral disc to move stones and the tail to fan sediment out of the nest. Spawning habitat used by individual species is generally a function of adult size, where small-bodied species construct nests in shallower water with slower flow and smaller gravel than large-bodied species. The mating system of lampreys is primarily polygynandrous (i.e., where multiple males mate with multiple females). Lamprey species with adult total length less than 30 cm generally spawn communally, where a nest may contain 20 or more individuals of both sexes. Lamprey species with adult sizes greater than 35 cm generally spawn in groups of two to four. Operational sex ratios of lampreys are highly variable across species, populations, and time, but are generally male biased. The act of spawning typically starts with the male attaching with his oral disc to the back of the female’s head; the male and female then entwine and simultaneously release gametes. However, alternative mating behaviors (e.g., release of gametes without paired courtship and sneaker males) have been observed. Future research should determine how multiple modalities of communication among lampreys (including mating pheromones) are integrated to inform species recognition and mate choice. Such research could inform both sea lamprey control strategies and provide insight into possible evolution of reproductive isolation mechanisms between paired lamprey species in sympatry.

  3. Inbreeding Avoidance Drives Consistent Variation of Fine-Scale Genetic Structure Caused by Dispersal in the Seasonal Mating System of Brandt’s Voles

    PubMed Central

    Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin

    2013-01-01

    Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435

  4. LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakizako, Tsukasa; Tanaka, Yoshiki; Hipolito, Christopher J.

    A V. cholerae MATE transporter was crystallized using the lipidic cubic phase (LCP) method. X-ray diffraction data sets were collected from single crystals obtained in a sandwich plate and a sitting-drop plate to resolutions of 2.5 and 2.2 Å, respectively. Multidrug and toxic compound extrusion (MATE) transporters, one of the multidrug exporter families, efflux xenobiotics towards the extracellular side of the membrane. Since MATE transporters expressed in bacterial pathogens contribute to multidrug resistance, they are important therapeutic targets. Here, a MATE-transporter homologue from Vibrio cholerae, VcmN, was overexpressed in Escherichia coli, purified and crystallized in lipidic cubic phase (LCP). X-raymore » diffraction data were collected to 2.5 Å resolution from a single crystal obtained in a sandwich plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.3, b = 93.7, c = 100.2 Å. As a result of further LCP crystallization trials, crystals of larger size were obtained using sitting-drop plates. X-ray diffraction data were collected to 2.2 Å resolution from a single crystal obtained in a sitting-drop plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.9, b = 91.8, c = 100.9 Å. The present work provides valuable insights into the atomic resolution structure determination of membrane transporters.« less

  5. Genetic structure and breeding system in a social wasp and its social parasite

    PubMed Central

    2008-01-01

    Background Social insects dominate ecological communities because of their sophisticated group behaviors. However, the intricate behaviors of social insects may be exploited by social parasites, which manipulate insect societies for their own benefit. Interactions between social parasites and their hosts lead to unusual coevolutionary dynamics that ultimately affect the breeding systems and population structures of both species. This study represents one of the first attempts to understand the population and colony genetic structure of a parasite and its host in a social wasp system. Results We used DNA microsatellite markers to investigate gene flow, genetic variation, and mating behavior of the facultative social parasite Vespula squamosa and its primary host, V. maculifrons. Our analyses of genetic variability uncovered that both species possessed similar amounts of genetic variation and failed to show genetic structure over the sampling area. Our analysis of mating system of V. maculifrons and V. squamosa revealed high levels of polyandry and no evidence for inbreeding in the two species. Moreover, we found no significant differences between estimates of worker relatedness in this study and a previous investigation conducted over two decades ago, suggesting that the selective pressures operating on queen mate number have remained constant. Finally, the distribution of queen mate number in both species deviated from simple expectations suggesting that mate number may be under stabilizing selection. Conclusion The general biology of V. squamosa has not changed substantially from that of a typical, nonparasitic Vespula wasp. For example, population sizes of the host and its parasite appear to be similar, in contrast to other social parasites, which often display lower population sizes than their hosts. In addition, parasitism has not caused the mating behavior of V. squamosa queens to deviate from the high levels of multiple mating that typify Vespula wasps. This stands in contrast to some socially parasitic ants, which revert to mating with few males. Overall, the general similarity of the genetic structure of V. maculifrons and V. squamosa presumably reflects the fact that V. squamosa is still capable of independent colony founding and thus reflects an intermediate stage in the evolution of social parasitism. PMID:18715511

  6. The influence of mare numbers, ejaculation frequency and month on the fertility of Thoroughbred stallions.

    PubMed

    Allen, W R; Wilsher, S

    2012-09-01

    Although considerable variation in per cycle pregnancy rates exists between Thoroughbred (TB) stallions, there is little information on factors that may influence this figure. To assess the influence of month, mare numbers and mating frequency on the fertility of TB stallions standing on studfarms in East Anglia, England. The daily breeding records of 31 TB stallions mating 3034 mares on 4851 occasions during the 2010 season were surveyed and related to first scan pregnancy rates. The influences of mare book size, month, number of matings per day and mating frequency or abstinence on per mating pregnancy rates were analysed. The overall per mating pregnancy rate for all the stallions was 59.6%, but for individual stallions the figures ranged from 19.0% to 80.1%. The first mating occurred on 9 February and the last on 24 July and the per mating pregnancy rate per month was significantly reduced in June and July. The number of mares mated by individual stallions ranged from 15 to 161, giving a mean overall workload of 160 matings per 100 mares. The per mating pregnancy rate was not related to book size, the number of matings in the season or the mating frequency per day. However, some stallions showed differences in per mating pregnancy rate related to month or the number of ejaculations in the preceding 3 days. The majority of TB stallions are able to maintain good fertility despite large books of mares. However, 5 of the 31 stallions surveyed showed a per mating pregnancy rate of ≤50%. This survey has identified wide differences between the per mating pregnancy rate in TB stallions. Identification of the factors involved through more comprehensive surveys would provide useful information for mare and stallion owners. © 2011 EVJ Ltd.

  7. Demography, environmental uncertainty, and the evolution of mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.

    1986-01-01

    The Snail Kite (Rostrhamus sociabilis), an endangered hawk, has a unique mating system in Florida (Beissinger and Snyder 1987): when food is abundant, males or females desert their mates at nearly equal frequency (ambisexual mate desertion) in the midst of a nesting cycle. I examined the demographic and environmental constraints selecting for a clutch size that permits one parent to desert, yet optimizes the number of offspring produced by each parent. Demographic studies, conducted from 1979-1983, indicated that kites have (1) a very high nest failure rate (?= 68%) due most often to unstable nest sites and predation, (2) a variable nesting season (5-10 mo/yr), (3) an early age of first reproduction for a bird this size (10 mo), (4) a high degree of iteroparity (double and potentially triple clutching within a season), and (5) unstable populations. Both nesting success and population size were directly related to Everglades water levels and resultant snail densities. Kites responded to large annual changes in food abundance, not by adjusting clutch size but by deserting their mates and presumably attempting to renest. Kite demographic traits appear to be adaptations to or results of an uncertain environment. Based on 67 yr of Everglades water levels, environmental predictability, measured by spectral analysis and Colwell's (1974) index, was low and influenced by water management regimes: (1) water levels were lowered, (2) annual variation in levels increased and annual cycles became stronger, (3) the period length of long-term drought-flood cycles shifted from 10 or more yr toward 5 yr, and (4) levels became a less predictive cue for favorable nesting conditions. A potential evolutionary pathway from biparental care to mate desertion in Snail Kites is proposed. It is unlikely that mate desertion evolved solely from a context of conflict between the sexes, because kite nesting success is so low that it is probably maladaptive for a parent to desert and jeopardize the survival of any of its first brood. Instead, mate desertion behavior probably evolved in response to a smaller average clutch size; this would allow females to be highly iteroparous and avoid the costs of overinvestment, and should be strongly favored in a highly uncertain environment. Analysis of clutches in museum collections suggests that an apparent decline in clutch size may have occurred in Florida during the past century. The potential for ambisexual mate desertion to occur in other vertebrates is during the past century. The potential for ambisexual mate desertion to occur in other vertebrates is examined.

  8. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds

    PubMed Central

    Thomas, Gavin H; Freckleton, Robert P; Székely, Tamás

    2006-01-01

    Phenotypic diversity is not evenly distributed across lineages. Here, we describe and apply a maximum-likelihood phylogenetic comparative method to test for different rates of phenotypic evolution between groups of the avian order Charadriiformes (shorebirds, gulls and alcids) to test the influence of a binary trait (offspring demand; semi-precocial or precocial) on rates of evolution of parental care, mating systems and secondary sexual traits. In semi-precocial species, chicks are reliant on the parents for feeding, but in precocial species the chicks feed themselves. Thus, where the parents are emancipated from feeding the young, we predict that there is an increased potential for brood desertion, and consequently for the divergence of mating systems. In addition, secondary sexual traits are predicted to evolve faster in groups with less demanding young. We found that precocial development not only allows rapid divergence of parental care and mating behaviours, but also promotes the rapid diversification of secondary sexual characters, most notably sexual size dimorphism (SSD) in body mass. Thus, less demanding offspring appear to facilitate rapid evolution of breeding systems and some sexually selected traits. PMID:16769632

  9. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds.

    PubMed

    Thomas, Gavin H; Freckleton, Robert P; Székely, Tamás

    2006-07-07

    Phenotypic diversity is not evenly distributed across lineages. Here, we describe and apply a maximum-likelihood phylogenetic comparative method to test for different rates of phenotypic evolution between groups of the avian order Charadriiformes (shorebirds, gulls and alcids) to test the influence of a binary trait (offspring demand; semi-precocial or precocial) on rates of evolution of parental care, mating systems and secondary sexual traits. In semi-precocial species, chicks are reliant on the parents for feeding, but in precocial species the chicks feed themselves. Thus, where the parents are emancipated from feeding the young, we predict that there is an increased potential for brood desertion, and consequently for the divergence of mating systems. In addition, secondary sexual traits are predicted to evolve faster in groups with less demanding young. We found that precocial development not only allows rapid divergence of parental care and mating behaviours, but also promotes the rapid diversification of secondary sexual characters, most notably sexual size dimorphism (SSD) in body mass. Thus, less demanding offspring appear to facilitate rapid evolution of breeding systems and some sexually selected traits.

  10. Short amplexus duration in a territorial anuran: a possible adaptation in response to male-male competition.

    PubMed

    Chuang, Ming-Feng; Bee, Mark A; Kam, Yeong-Choy

    2013-01-01

    Mating duration is a reproductive behaviour that can impact fertilization efficiency and offspring number. Previous studies of factors influencing the evolution of mating duration have focused on the potential role of internal sperm competition as an underlying source of selection; most of these studies have been on invertebrates. For vertebrates with external fertilization, such as fishes and frogs, the sources of selection acting on mating duration remain largely unknown due, in part, to the difficulty of observing complete mating behaviours in natural conditions. In this field study, we monitored breeding activity in a population of the territorial olive frog, Rana adenopleura, to identify factors that affect the duration of amplexus. Compared with most other frogs, amplexus was short, lasting less than 11 min on average, which included about 8 min of pre-oviposition activity followed by 3 min of oviposition. We evaluated the relationship between amplexus duration and seven variables: male body size, male condition, operational sex ratio (OSR), population size, clutch size, territory size, and the coverage of submerged vegetation in a male's territory. We also investigated the influence of these same variables, along with amplexus duration, on fertilization rate. Amplexus duration was positively related with clutch size and the degree of male-bias in the nightly OSR. Fertilization rate was directly related to male body size and inversely related to amplexus duration. Agonistic interactions between males in amplexus and intruding, unpaired males were frequent. These interactions often resulted in mating failure, prolonged amplexus duration, and reduced fertilization rates. Together, the pattern of our findings indicates short amplexus duration in this species may be an adaptive reproductive strategy whereby males attempt to reduce the risks of mating and fertilization failures and territory loss resulting from male-male competition.

  11. Why Do Female Callosobruchus maculatus Kick Their Mates?

    PubMed Central

    van Lieshout, Emile; McNamara, Kathryn B.; Simmons, Leigh W.

    2014-01-01

    Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other’s matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings. PMID:24752530

  12. Effective size of density-dependent two-sex populations: the effect of mating systems.

    PubMed

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  13. Density-Dependent Effects on Group Size Are Sex-Specific in a Gregarious Ungulate

    PubMed Central

    Vander Wal, Eric; van Beest, Floris M.; Brook, Ryan K.

    2013-01-01

    Density dependence can have marked effects on social behaviors such as group size. We tested whether changes in population density of a large herbivore (elk, Cervus canadensis) affected sex-specific group size and whether the response was density- or frequency-dependent. We quantified the probability and strength of changes in group sizes and dispersion as population density changed for each sex. We used group size data from a population of elk in Manitoba, Canada, that was experimentally reduced from 1.20 to 0.67 elk/km2 between 2002 and 2009. Our results indicated that functional responses of group size to population density are sex-specific. Females showed a positive density-dependent response in group size at population densities ≥0.70 elk/km2 and we found evidence for a minimum group size at population density ≤0.70 elk/km2. Changes in male group size were also density-dependent; however, the strength of the relationship was lower than for females. Density dependence in male group size was predominantly a result of fusion of solitary males into larger groups, rather than fusion among existing groups. Our study revealed that density affects group size of a large herbivore differently between males and females, which has important implications for the benefits e.g., alleviating predation risk, and costs of social behaviors e.g., competition for resources and mates, and intra-specific pathogen transmission. PMID:23326502

  14. Reproductive strategies in snakes.

    PubMed Central

    Shine, Richard

    2003-01-01

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies. PMID:12803888

  15. Reproductive strategies in snakes.

    PubMed

    Shine, Richard

    2003-05-22

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.

  16. Methyl farnesoate levels in male spider crabs exhibiting active reproductive behavior.

    PubMed

    Sagi, A; Ahl, J S; Danaee, H; Laufer, H

    1994-09-01

    The concentration of methyl farnesoate (MF) in the hemolymph and its synthesis by the mandibular organs (MOs) were investigated to determine whether this compound is related to the differences in the size of the reproductive system and the mating behavior among male morphotypes of the spider crab, Libinia emarginata. Large-claw abraded males displayed mating behavior under competitive conditions. They have the largest reproductive systems, their MOs synthesize large amounts of MF in vitro, and the concentration of MF in their hemolymph is high. Small-claw abraded males displayed mating behavior with receptive females only when isolated. These smaller crabs have intermediate-sized reproductive systems, their MOs synthesize the most MF, and they have the highest circulating level of MF relative to their body size. The unabraded males did not display mating behavior; their reproductive systems are smaller; their MO activity is low, as is their circulating level of MF. The strong relationship between MF levels and the intensity of reproductive behavior suggests that MF may be one of the driving forces behind mating behavior in Crustacea.

  17. Effects of Reproductive Status, Social Rank, Sex and Group Size on Vigilance Patterns in Przewalski's Gazelle

    PubMed Central

    Li, Chunlin; Jiang, Zhigang; Li, Linlin; Li, Zhongqiu; Fang, Hongxia; Li, Chunwang; Beauchamp, Guy

    2012-01-01

    Background Quantifying vigilance and exploring the underlying mechanisms has been the subject of numerous studies. Less attention has focused on the complex interplay between contributing factors such as reproductive status, social rank, sex and group size. Reproductive status and social rank are of particular interest due to their association with mating behavior. Mating activities in rutting season may interfere with typical patterns of vigilance and possibly interact with social rank. In addition, balancing the tradeoff between vigilance and life maintenance may represent a challenge for gregarious ungulate species rutting under harsh winter conditions. We studied vigilance patterns in the endangered Przewalski's gazelle (Procapra przewalskii) during both the rutting and non-rutting seasons to examine these issues. Methodology/Principal Findings Field observations were carried out with focal sampling during rutting and non-rutting season in 2008–2009. Results indicated a complex interplay between reproductive status, social rank, sex and group size in determining vigilance in this species. Vigilance decreased with group size in female but not in male gazelles. Males scanned more frequently and thus spent more time vigilant than females. Compared to non-rutting season, gazelles increased time spent scanning at the expense of bedding in rutting season. During the rutting season, territorial males spent a large proportion of time on rutting activities and were less vigilant than non-territorial males. Although territorial males may share collective risk detection with harem females, we suggest that they are probably more vulnerable to predation because they seemed reluctant to leave rut stands under threats. Conclusions/Significance Vigilance behavior in Przewalski's gazelle was significantly affected by reproductive status, social rank, sex, group size and their complex interactions. These findings shed light on the mechanisms underlying vigilance patterns and the tradeoff between vigilance and other crucial activities. PMID:22389714

  18. The sex lives of parasites: investigating the mating system and mechanisms of sexual selection of the human pathogen Schistosoma mansoni.

    PubMed

    Steinauer, Michelle L

    2009-08-01

    The mating systems of internal parasites are inherently difficult to investigate although they have important implications for the evolutionary biology of the species, disease epidemiology, and are important considerations for control measures. Using parentage analyses, three topics concerning the mating biology of Schistosoma mansoni were investigated: the number of mates per adult male and female, variance in reproductive success among individuals, and the potential role for sexual selection on male body size and also mate choice for genetically dissimilar individuals. Results indicated that schistosomes were mostly monogamous, and evidence of only one mate change occurred over a period of 5-6 weeks. One male was polygynous and contained two females in its gynecophoral canal although offspring were only detected for one of the females. Even though they were primarily monogamous and the sex ratio near even, reproductive success was highly variable, indicating a potential role for sexual selection. Male body size was positively related to reproductive success, consistent with sexual selection via male-male competition and female choice for large males. However, relatedness of pairs was not associated with their reproductive success. Finally, genetically identical individuals differed significantly in their reproductive output and identical males in their body size, indicating important partner and environmental effects on these traits.

  19. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis.

    PubMed

    Booksmythe, Isobel; Mautz, Brian; Davis, Jacqueline; Nakagawa, Shinichi; Jennions, Michael D

    2017-02-01

    Females can benefit from mate choice for male traits (e.g. sexual ornaments or body condition) that reliably signal the effect that mating will have on mean offspring fitness. These male-derived benefits can be due to material and/or genetic effects. The latter include an increase in the attractiveness, hence likely mating success, of sons. Females can potentially enhance any sex-biased benefits of mating with certain males by adjusting the offspring sex ratio depending on their mate's phenotype. One hypothesis is that females should produce mainly sons when mating with more attractive or higher quality males. Here we perform a meta-analysis of the empirical literature that has accumulated to test this hypothesis. The mean effect size was small (r = 0.064-0.095; i.e. explaining <1% of variation in offspring sex ratios) but statistically significant in the predicted direction. It was, however, not robust to correction for an apparent publication bias towards significantly positive results. We also examined the strength of the relationship using different indices of male attractiveness/quality that have been invoked by researchers (ornaments, behavioural displays, female preference scores, body condition, male age, body size, and whether a male is a within-pair or extra-pair mate). Only ornamentation and body size significantly predicted the proportion of sons produced. We obtained similar results regardless of whether we ran a standard random-effects meta-analysis, or a multi-level, Bayesian model that included a correction for phylogenetic non-independence. A moderate proportion of the variance in effect sizes (51.6-56.2%) was due to variation that was not attributable to sampling error (i.e. sample size). Much of this non-sampling error variance was not attributable to phylogenetic effects or high repeatability of effect sizes among species. It was approximately equally attributable to differences (occurring for unknown reasons) in effect sizes among and within studies (25.3, 22.9% of the total variance). There were no significant effects of year of publication or two aspects of study design (experimental/observational or field/laboratory) on reported effect sizes. We discuss various practical reasons and theoretical arguments as to why small effect sizes should be expected, and why there might be relatively high variation among studies. Currently, there are no species where replicated, experimental studies show that mothers adjust the offspring sex ratio in response to a generally preferred male phenotype. Ultimately, we need more experimental studies that test directly whether females produce more sons when mated to relatively more attractive males, and that provide the requisite evidence that their sons have higher mean fitness than their daughters. © 2015 Cambridge Philosophical Society.

  20. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes.

    PubMed

    Erisman, Brad E; Petersen, Christopher W; Hastings, Philip A; Warner, Robert R

    2013-10-01

    Hermaphroditism is taxonomically widespread among teleost fishes and takes on many forms including simultaneous, protogynous, and protandrous hermaphroditism, bidirectional sex change, and androdioecy. The proximate mechanisms that influence the timing, incidence, and forms of hermaphroditism in fishes are supported by numerous theoretical and empirical studies on their mating systems and sexual patterns, but few have examined aspects of sex-allocation theory or the evolution of hermaphroditism for this group within a strict phylogenetic context. Fortunately, species-level phylogenetic reconstructions of the evolutionary history of many lineages of fishes have emerged, providing opportunities for understanding fine-scale evolutionary pathways and transformations of sex allocation. Examinations of several families of fishes with adequate data on phylogeny, patterns of sex allocation, mating systems, and with some form of hermaphroditism reveal that the evolution and expression of protogyny and other forms of sex allocation show little evidence of phylogenetic inertia within specific lineages but rather are associated with particular mating systems in accordance with prevalent theories about sex allocation. Transformations from protogyny to gonochorism in groupers (Epinephelidae), seabasses (Serranidae), and wrasses and parrotfishes (Labridae) are associated with equivalent transformations in the structure of mating groups from spawning of pairs to group spawning and related increases in sperm competition. Similarly, patterns of protandry, androdioecy, simultaneous hermaphroditism, and bidirectional sex change in other lineages (Aulopiformes, Gobiidae, and Pomacentridae) match well with particular mating systems in accordance with sex-allocation theory. Unlike other animals and plants, we did not find evidence that transitions between hermaphroditism and gonochorism required functional intermediates. Two instances in which our general conclusions might not hold include the expression of protandry in the Sparidae and the distribution of simultaneous hermaphroditism. In the Sparidae, the association of hypothesized mating systems and patterns of sex allocation were not always consistent with the size-advantage model (SAM), in that certain protandric sparids show evidence of intense sperm competition that should favor the expression of gonochorism. In the other case, simultaneous hermaphroditism does not occur in some groups of monogamous fishes, which are similar in ecology to the hermaphroditic serranines, suggesting that this form of sex allocation may be more limited by phylogenetic inertia. Overall, this work strongly supports sexual lability within teleost fishes and confirms evolutionary theories of sex allocation in this group of vertebrates.

  1. Genetic tests in mice of caffeine alone and in combination with mutagens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, P.S.; Kensler, C.J.

    1973-06-01

    The possible mutagenicity of caffeine was studied in mice by the dominant-lethal method, in three experiments. Male mice were given caffeine in drinking water for 8 weeks at 3.6, 13.4, 49, and 122 mg/kg/day (comparable to human consumption of 2.8 to 95 cups of coffee per day). Subsequent mating of each of six males from each group to five females per week for 8 weeks showed no significant increase in dominant-lethal mutations (embryonic deaths) whether expressed as early deaths per pregnant female or as mutation index. Although males consuming the two higher levels of caffeine produced fewer pregnancies, litter sizesmore » of females giving birth were not reduced. Single ip injections of caffeine (15 mg/kg) were given to groups of male mice prior to, subsequent to, and immediately at the time of receiving x-rays (100 R). Each of five males from each group was mated to five females per week for 7 weeks. Embryonic deaths did not show any enhancing effect of caffeine on the mutagenicity produced by the irradiation. Three groups of male mice ingested caffeine in water for 16 weeks at levels of 0, 4, and 13 mg/kg/day. Subgroups of five from each group were given either: no further treatment, a single dose of triethylene melamine at 0.2 mg/kg, or 100 R of x ray, and mated for 7 weeks as above. Fertility and litter size were not affected by the caffeine pretreatment, nor did it modify the induction of dominant-lethal mutations by triethylene melamine or x rays. Litter sizes showed no significant preimplantation losses in any experiment. Thus, under the conditions described herein and at the doses employed (higher than human exposure), there was no evidence for the mutagenicity of caffeine or the inhibition of DNA repair mechanisms in these mammalian systems. (auth)« less

  2. Ficus platyphylla promotes fertility in female Rattus norvegicus Wistar strain: a preliminary study.

    PubMed

    Ugwah-Oguejiofor, Chinenye J; Bello, Shaibu O; Okolo, Raymond U; Etuk, Emmanuel U; Ugwah, Michael O; Igbokwe, Vincent U

    2011-11-02

    Ficus platyphylla Delile (family-Moracea) commonly called gutta percha tree is a deciduous plant found in savannah areas. It grows widely in the Northern part of Nigeria, up to 60 ft. high and is known as 'gamji' by the Hausas. The seeds, bark and leaves have been used traditionally in combination to promote fertility. Scientifically, the plant has been shown to have analgesic, anti-inflammatory and CNS effects. The present study was to validate the use of this plant to promote fertility in female Rattus norvegicus Wistar strain using various fertility parameters. Female Rattus norvegicus Wistar strain weighing between 150-180 g were randomly selected and divided into two major groups. Each group was subdivided into 5 treatment groups of 100, 200, 400 mg/kg BW of aqueous extract of F. platyphylla and a control group of 5 ml/kg of distilled water. A positive control of clomiphene citrate was used. Treatment of the first group was discontinued after 15 days prior to mating (pre-mating treatment group), while the other was treated continuously till delivery (continuous treatment group). At the 10th day, females were sacrificed and implantation sites were checked and embryos counted. Upon delivery, litter sizes were determined and the pups weighed and checked for deformities. Other reproductive indices were calculated. Data were analyzed by one-way analysis of variance and students T-test. Proportions were analysed by Chi square. Statistical evaluations were performed using STATS programs and Graphpad prism, and a difference was considered statistically significant at P < 0.05. There was a significant reduction in the percentage post implantation losses of both the pre-treatment and the continuous treatment groups when compared to their distil water controls. The litter size of the pre-treatment group was similar to the distil water group while at 400 mg/kg, the continuous treatment group showed an increase in the litter size similar to that of the clomiphene group. There were no observed external deformities in the pups. Administration of aqueous extract of F. platyphylla promotes fertility by reducing post implantation loss and by increasing litter size in female Rattus norvegicus Wistar strain.

  3. Mate choice and genetic monogamy in a biparental, colonial fish.

    PubMed

    Schaedelin, Franziska C; van Dongen, Wouter F D; Wagner, Richard H

    2015-01-01

    In socially monogamous species, in which both sexes provide essential parental care, males as well as females are expected to be choosy. Whereas hundreds of studies have examined monogamy in biparental birds, only several such studies exist in fish. We examined mate choice in the biparental, colonial cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika, Zambia. We genotyped more than 350 individuals at 11 microsatellite loci to investigate their mating system. We found no extrapair paternity, identifying this biparental fish as genetically monogamous. Breeders paired randomly according to their genetic similarity, suggesting a lack of selection against inbreeding avoidance. We further found that breeders paired assortatively by body size, a criterion of quality in fish, suggesting mutual mate choice. In a subsequent mate preference test in an aquarium setup, females showed a strong preference for male size by laying eggs near the larger of 2 males in 13 of 14 trials.

  4. Mate choice and genetic monogamy in a biparental, colonial fish

    PubMed Central

    van Dongen, Wouter F.D.; Wagner, Richard H.

    2015-01-01

    In socially monogamous species, in which both sexes provide essential parental care, males as well as females are expected to be choosy. Whereas hundreds of studies have examined monogamy in biparental birds, only several such studies exist in fish. We examined mate choice in the biparental, colonial cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika, Zambia. We genotyped more than 350 individuals at 11 microsatellite loci to investigate their mating system. We found no extrapair paternity, identifying this biparental fish as genetically monogamous. Breeders paired randomly according to their genetic similarity, suggesting a lack of selection against inbreeding avoidance. We further found that breeders paired assortatively by body size, a criterion of quality in fish, suggesting mutual mate choice. In a subsequent mate preference test in an aquarium setup, females showed a strong preference for male size by laying eggs near the larger of 2 males in 13 of 14 trials. PMID:26023276

  5. Fertility after ovarian follicular wave synchronization and fixed-time natural mating compared to random natural mating in dromedary camels (Camelus dromedarius).

    PubMed

    Nagy, P; Juhasz, J

    2012-06-01

    The objective of the study was to compare the efficiency of two ovarian follicular wave synchronization protocols coupled with fixed-time natural mating with that of random mating in dromedary camels. Dromedaries were assigned randomly to one of the three treatment groups. Group 1 animals (RM; n = 46) were mated randomly. Group 2 camels (1×GnRH-FTM; n = 46) were given a GnRH analog (Buserelin, 20 μg/animal, i.v.; Receptal, Intervet, Holland) at random, then were mated 14 days later. In Group 3 animals (2×GnRH-FTM; n = 41), random GnRH analog was followed by repeated GnRH injection 14 days later and fixed-time natural mating on Day 28. Transrectal examination and ultrasonography were performed at weekly intervals to evaluate ovarian follicular status, diagnose ovulation and pregnancy. Blood samples were collected for progesterone determination by ELISA to confirm ovulation and pregnancy. All female dromedaries were assigned randomly to one of thirteen fertile bulls and were bred once on Days 1, 14 and 28 in Groups 1-3, respectively. Ovarian follicular status and ovulation rate was similar among groups at the start of the study. Seventy-five of the 133 dromedaries (56.4%) ovulated after random natural mating or random GnRH treatment. Mean length of mating was 386 ± 17.8 (±SEM) seconds. There was no significant difference in mating time among groups and in pregnancy rate among dromedary bulls. In Group 3 (2×GnRH-FTM), ovarian follicular status before mating (P < 0.05), ovulation rate (n = 37, 90.2%, P < 0.001) and pregnancy rate at 21 and 60 days (PR 21 days n = 22, 53.7% and PR 60 days n = 19, 46.3%, P < 0.05) were greater compared to random natural mating (Group 1: OR n = 25, 54.3%, PR 21 days n = 13, 28.3% and PR 60 days n = 12, 26.1%). In Group 2 dromedaries (1×GnRH-FTM), treatment tended to improve follicular status before mating, ovulation rate (n = 34, 73.9%) and pregnancy rate at 21 and 60 days (PR 21 days n = 21, 45.7% and PR 60 days n = 16, 34.8%), but the effect was not significant compared to random natural mating. In conclusion, this is the first study demonstrating that favorable pregnancy rate can be achieved following ovarian follicular wave synchronization with repeated GnRH analog and fixed-time natural mating at 14 days intervals in dromedary camels. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Personality differentially affects individual mate choice decisions in female and male Western mosquitofish (Gambusia affinis).

    PubMed

    Chen, Bo-Jian; Liu, Kai; Zhou, Lin-Jun; Gomes-Silva, Guilherme; Sommer-Trembo, Carolin; Plath, Martin

    2018-01-01

    Consistent individual differences in behavioral tendencies (animal personality) can affect individual mate choice decisions. We asked whether personality traits affect male and female mate choice decisions similarly and whether potential personality effects are consistent across different mate choice situations. Using western mosquitofish (Gambusia affinis) as our study organism, we characterized focal individuals (males and females) twice for boldness, activity, and sociability/shoaling and found high and significant behavioral repeatability. Additionally, each focal individual was tested in two different dichotomous mate choice tests in which it could choose between computer-animated stimulus fish of the opposite sex that differed in body size and activity levels, respectively. Personality had different effects on female and male mate choice: females that were larger than average showed stronger preferences for large-bodied males with increasing levels of boldness/activity (i.e., towards more proactive personality types). Males that were larger than average and had higher shoaling tendencies showed stronger preferences for actively swimming females. Size-dependent effects of personality on the strength of preferences for distinct phenotypes of potential mating partners may reflect effects of age/experience (especially in females) and social dominance (especially in males). Previous studies found evidence for assortative mate choice based on personality types or hypothesized the existence of behavioral syndromes of individuals' choosiness across mate choice criteria, possibly including other personality traits. Our present study exemplifies that far more complex patterns of personality-dependent mate choice can emerge in natural systems.

  7. Highly Competitive Reindeer Males Control Female Behavior during the Rut

    PubMed Central

    Body, Guillaume; Weladji, Robert B.; Holand, Øystein; Nieminen, Mauri

    2014-01-01

    During the rut, female ungulates move among harems or territories, either to sample mates or to avoid harassment. Females may be herded by a male, may stay with a preferred male, or aggregate near a dominant male to avoid harassment from other males. In fission-fusion group dynamics, female movement is best described by the group’s fission probability, instead of inter-harem movement. In this study, we tested whether male herding ability, female mate choice or harassment avoidance influence fission probability. We recorded group dynamics in a herd of reindeer Rangifer tarandus equipped with GPS collars with activity sensors. We found no evidence that the harassment level in the group affected fission probability, or that females sought high rank (i.e. highly competitive and hence successful) males. However, the behavior of high ranked males decreased fission probability. Male herding activity was synchronous with the decrease of fission probability observed during the rut. We concluded that male herding behavior stabilized groups, thereby increasing average group size and consequently the opportunity for sexual selection. PMID:24759701

  8. Male wing color properties predict the size of nuptial gifts given during mating in the Pipevine Swallowtail butterfly ( Battus philenor)

    NASA Astrophysics Data System (ADS)

    Rajyaguru, Parth K.; Pegram, Kimberly V.; Kingston, Alexandra C. N.; Rutowski, Ronald L.

    2013-06-01

    In many animals, males bear bright ornamental color patches that may signal both the direct and indirect benefits that a female might accrue from mating with him. Here we test whether male coloration in the Pipevine Swallowtail butterfly, Battus philenor, predicts two potential direct benefits for females: brief copulation duration and the quantity of materials the male passes to the female during mating. In this species, males have a bright iridescent blue field on the dorsal hindwing surface, while females have little or no dorsal iridescence. Females preferentially mate with males who display a bright and highly chromatic blue field on their dorsal hindwing. In this study, we show that the chroma of the blue field on the male dorsal hindwing and male body size (forewing length) significantly predict the mass of material or spermatophore that a male forms within the female's copulatory sac during mating. We also found that spermatophore mass correlated negatively with copulation duration, but that color variables did not significantly predict this potential direct benefit. These results suggest that females may enhance the material benefits they receive during mating by mating with males based on the coloration of their dorsal hindwing.

  9. Virgin queen attraction toward males in honey bees.

    PubMed

    Bastin, Florian; Cholé, Hanna; Lafon, Grégory; Sandoz, Jean-Christophe

    2017-07-24

    Although the honeybee is a crucial agricultural agent and a prominent scientific model organism, crucial aspects of its reproductive behaviour are still unknown. During the mating season, honeybee males, the drones, gather in congregations 10-40 m above ground. Converging evidence suggests that drones emit a pheromone that can attract other drones, thereby increasing the size of the congregation. Virgin queens join the vicinity of the congregation after it has formed, and mate with as many as 20 males in mid-air. It is still unclear which sensory cues help virgin queens find drone congregations in the first place. Beside visual cues for long-range orientation, queens may use olfactory cues. We thus tested virgin queens' olfactory orientation on a walking simulator in which they have full control over odour stimulation. We show that sexually-mature virgin queens are attracted to the odour bouquet from a group of living drones. They are not attracted to the bouquet from a group of workers. In addition, non-sexually receptive females (workers) of the same age are not attracted to the drone odour bouquet. Interpreted in the context of mating, these results may suggest that virgin queens use volatile olfactory cues from the drones to find the congregations.

  10. Size-Dependent Realized Fecundity in Two Lepidopteran Capital Breeders.

    PubMed

    Rhainds, Marc

    2015-08-01

    Body size is correlated with potential fecundity in capital breeders, but size-dependent functions of realized fecundity may be impacted by reproductive losses due to mating failure or oviposition time limitations (number of eggs remaining in the abdomen of females at death). Post-mortem assessment of adults collected in the field after natural death represents a sound approach to quantify how body size affects realized fecundity. This approach is used here for two Lepidoptera for which replicated field data are available, the spruce budworm Choristoneura fumiferana Clemens (Tortricidae) and bagworm Metisa plana Walker (Psychidae). Dead female budworms were collected on drop trays placed beneath tree canopies at four locations. Most females had mated during their lifetime (presence of a spermatophore in spermatheca), and body size did not influence mating failure. Oviposition time limitation was the major factor restricting realized fecundity of females, and its incidence was independent of body size at three of the four locations. Both realized and potential fecundity of female budworms increased linearly with body size. Female bagworms are neotenous and reproduce within a bag; hence, parameters related to realized fecundity are unusually tractable. For each of five consecutive generations of bagworms, mating probability increased with body size, so that virgin-dead females were predominantly small, least fecund individuals. The implication of size-dependent reproductive losses are compared for the two organisms in terms of life history theory and population dynamics, with an emphasis on how differential female motility affects the evolutionary and ecological consequences of size-dependent realized fecundity. © Crown copyright 2015.

  11. Sexual signals and mating patterns in Syngnathidae.

    PubMed

    Rosenqvist, G; Berglund, A

    2011-06-01

    Male pregnancy in the family Syngnathidae (pipefishes, seahorses and seadragons) predisposes males to limit female reproductive success; sexual selection may then operate more strongly on females and female sexual signals may evolve (sex-role reversal). A bewildering array of female signals has evolved in Syngnathids, e.g. skin folds, large body size, colouration, markings on the body and elaborate courtship. These female sexual signals do not seem quantitatively or qualitatively different from those that evolve in males in species with conventional sex roles where males provide females or offspring with direct benefits. In several syngnathid species, males also evolve ornaments, females are choosy in addition to being competitive and males compete as well as choosing partners. Thus, sex roles form a continuum, spanning from conventional to reversed within this group of fishes. Cases are presented here suggesting that stronger sexual selection on females may be most extreme in species showing classical polyandry (one male mates with several females, such as many species where males brood their eggs on the trunk), intermediate in polygynandrous species (males and females both mate with more than one partner, as in many species where males brood their eggs on the tail) and least extreme, even exhibiting conventional sex roles, in monogamous species (one male mates solely with one female, as in many seahorses and tropical pipefishes). At the same time caution is needed before unanimously establishing this pattern: first, the connection between mating patterns, strength of sexual selection, sex roles and ornament expression is far from simple and straightforward, and second, knowledge of the actual morphology, ecology and behaviour of most syngnathid species is scanty. Basically only a few Nerophis, Syngnathus and Hippocampus species have been studied in any detail. It is known, however, that this group of fishes exhibits a remarkable variation in sex roles and ornamentation, making them an ideal group for the study of mating patterns, sexual selection and sexually selected signals. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  12. Inferences on mating and sexual systems of two Pacific Cinetorhynchus shrimps (Decapoda, Rhynchocinetidae) based on sexual dimorphism in body size and cheliped weaponry.

    PubMed

    Bauer, Raymond T; Okuno, Junji; Thiel, Martin

    2014-01-01

    Sexual dimorphism in body size and weaponry was examined in two Cinetorhynchus shrimp species in order to formulate hypotheses on their sexual and mating systems. Collections of Cinetorhynchus sp. A and Cinetorhynchus sp. B were made in March, 2011 on Coconut Island, Hawaii, by hand dipnetting and minnow traps in coral rubble bottom in shallow water. Although there is overlap in male and female size, some males are much larger than females. The major (pereopod 1) chelipeds of males are significantly larger and longer than those of females. In these two Cinetorhynchus species, males and females have third maxillipeds of similar relative size, i.e., those of males are not hypertrophied and probably not used as spear-like weapons as in some other rhynchocinetid (Rhynchocinetes) species. Major chelae of males vary with size, changing from typical female-like chelae tipped with black corneous stout setae to subchelate or prehensile appendages in larger males. Puncture wounds or regenerating major chelipeds were observed in 26.1 % of males examined (N = 38 including both species). We interpret this evidence on sexual dimorphism as an indication of a temporary male mate guarding or "neighborhoods of dominance" mating system, in which larger dominant robustus males defend females and have greater mating success than smaller males. Fecundity of females increased with female size, as in most caridean species (500-800 in Cinetorhynchus sp. A; 300-3800 in Cinetorhynchus sp. B). Based on the sample examined, we conclude that these two species have a gonochoric sexual system (separate sexes) like most but not all other rhynchocinetid species in which the sexual system has been investigated.

  13. Differential investment in pre- vs. post-copulatory sexual selection reinforces a cross-continental reversal of sexual size dimorphism in Sepsis punctum (Diptera: Sepsidae).

    PubMed

    Puniamoorthy, Nalini; Blanckenhorn, W U; Schäfer, M A

    2012-11-01

    Theory predicts that males have a limited amount of resources to invest in reproduction, suggesting a trade-off between traits that enhance mate acquisition and those that enhance fertilization success. Here, we investigate the relationship between pre- and post-copulatory investment by comparing the mating behaviour and reproductive morphology of four European and five North American populations of the dung fly Sepsis punctum (Diptera) that display a reversal of sexual size dimorphism (SSD). We show that the geographic reversal in SSD between the continents (male biased in Europe, female biased in North America) is accompanied by differential investment in pre- vs. post-copulatory traits. We find higher remating rates in European populations, where larger males acquire more matings and consequently have evolved relatively larger testes and steeper hyper-allometry with body size. American populations, in sharp contrast, display much reduced, if any, effect of body size on those traits. Instead, North American males demonstrate an increased investment in mate acquisition prior to copulation, with more mounting attempts and a distinctive abdominal courtship display that is completely absent in Europe. When controlling for body size, relative female spermathecal size is similar on both continents, so we find no direct evidence for the co-evolution of male and female internal reproductive morphology. By comparing allopatric populations of the same species that apparently have evolved different mating systems and consequently SSD, we thus indirectly demonstrate differential investment in pre- vs. post-copulatory mechanisms increasing reproductive success. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  14. Sexual display and mate choice in an energetically costly environment.

    PubMed

    Head, Megan L; Wong, Bob B M; Brooks, Robert

    2010-12-09

    Sexual displays and mate choice often take place under the same set of environmental conditions and, as a consequence, may be exposed to the same set of environmental constraints. Surprisingly, however, very few studies consider the effects of environmental costs on sexual displays and mate choice simultaneously. We conducted an experiment, manipulating water flow in large flume tanks, to examine how an energetically costly environment might affect the sexual display and mate choice behavior of male and female guppies, Poecilia reticulata. We found that male guppies performed fewer sexual displays and became less choosy, with respect to female size, in the presence of a water current compared to those tested in still water. In contrast to males, female responsive to male displays did not differ between the water current treatments and females exhibited no mate preferences with respect to male size or coloration in either treatment. The results of our study underscore the importance of considering the simultaneous effects of environmental costs on the sexual behaviors of both sexes.

  15. Timing of mating and ovarian response in llamas (Lama glama) treated with pFSH.

    PubMed

    Ratto, M H; Gatica, R; Correa, J E

    1997-08-01

    The effect of the timing of mating on ovarian response in llamas was evaluated using 20 adult llamas weighing 90-120 kg which had been in oestrus for 5 days and were treated with 20 mg pFSH every 12 h for the following 5 days (total dose: 200 mg of FSH-NIH-P1). They were randomly allocated to Group A (N = 10) and mated immediately at the end of pFSH treatment or to Group B (n = 10) and mated 36 h after the end of pFSH treatment. Llamas of both groups were given hCG (750 iu, i.m.) immediately after mating. A second mating was allowed 12 h later. Ova and embryos were recovered by non-surgical uterine flushing 7 days after the first mating. Ovarian response was immediately evaluated afterwards via laparoscopy. The mean ovulation rate of 4.5 corpora lutea for Group A was significantly lower (P < 0.01) than the mean of 13.8 observed for Group B. The total ovarian response (number of corpora lutea + follicles > 10 mm) was also significantly higher (P < 0.01) in Group B than in Group A. Twenty-seven ova were recovered in each group, corresponding to 60% and 20% (P < 0.01) of the corpora lutea observed in Groups A and B, respectively; however, no significant difference (P > 0.05) in fertilisation rate was observed. The results show that pFSH induces superovulation in llamas treated during oestrus and that a 36-h interval between the end of FSH treatment and mating increases ovulation rate and the total ovarian response but does not affect the number of ova/embryos recovered.

  16. Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. II. Variance in male mating success and effective population size.

    PubMed

    Storz, J F; Bhat, H R; Kunz, T H

    2001-06-01

    Variance in reproductive success is a primary determinant of genetically effective population size (Ne), and thus has important implications for the role of genetic drift in the evolutionary dynamics of animal taxa characterized by polygynous mating systems. Here we report the results of a study designed to test the hypothesis that polygynous mating results in significantly reduced Ne in an age-structured population. This hypothesis was tested in a natural population of a harem-forming fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The influence of the mating system on the ratio of variance Ne to adult census number (N) was assessed using a mathematical model designed for age-structured populations that incorporated demographic and genetic data. Male mating success was assessed by means of direct and indirect paternity analysis using 10-locus microsatellite genotypes of adults and progeny from two consecutive breeding periods (n = 431 individually marked bats). Combined results from both analyses were used to infer the effective number of male parents in each breeding period. The relative proportion of successfully reproducing males and the size distribution of paternal sibships comprising each offspring cohort revealed an extremely high within-season variance in male mating success (up to 9.2 times higher than Poisson expectation). The resultant estimate of Ne/N for the C. sphinx study population was 0.42. As a result of polygynous mating, the predicted rate of drift (1/2Ne per generation) was 17.6% higher than expected from a Poisson distribution of male mating success. However, the estimated Ne/N was well within the 0.25-0.75 range expected for age-structured populations under normal demographic conditions. The life-history schedule of C. sphinx is characterized by a disproportionately short sexual maturation period scaled to adult life span. Consequently, the influence of polygynous mating on Ne/N is mitigated by the extensive overlap of generations. In C. sphinx, turnover of breeding males between seasons ensures a broader sampling of the adult male gamete pool than expected from the variance in mating success within a single breeding period.

  17. High temperatures disrupt Artemia franciscana mating patterns and impact sexual selection intensity

    NASA Astrophysics Data System (ADS)

    Santos, Maria R.; Vieira, Natividade; Monteiro, Nuno M.

    2018-07-01

    Temperature plays a critical role in survival and reproduction, especially in ectotherms. Therefore, it is important to understand the mechanisms influencing life history traits and reproductive behaviours in order to predict climate change impacts on species' occurrence and performance. Here, we used the crustacean Artemia franciscana to investigate the potential impacts of temperature on life history traits, mating patterns and intensity of sexual selection. We reared A. franciscana at three temperatures 20 °C, 25 °C, and 30 °C and measured life history traits such as growth, mortality or development of sexual traits. Our observations confirmed a clear link between life history traits and temperature, with advanced sexual maturity and increased mortality rates following temperature rises. Also, we found that mating is size assortative close to the ideal developmental temperature. Nevertheless, when temperatures deviate from the optimum, mating patterns were altered. Although selection intensity for females remained similar at all tested temperatures, as males preferentially mated with the larger females, size assortative mating disappeared at the highest temperature. Overall, our results highlight the potential for a temperature-dependent disruption of A. franciscana mating patterns. This disruption is especially pronounced under high temperatures as reproduction becomes progressively more random, thus entailing a relaxation of sexual selection intensity.

  18. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship

    USGS Publications Warehouse

    Buchinger, Tyler J.; Bussy, Ugo; Buchinger, Ethan G.; Fissette, Skye D.; Li, Weiming; Johnson, Nicholas

    2017-01-01

    Male body size affects access to mates in many animals. Attributes of sexual signals often correlate with body size due to physiological constraints on signal production. Larger males generally produce larger signals, but costs of being large or compensation by small males can result in smaller males producing signals of equal or greater magnitude. Female choice following multiple male traits with different relationships to size might further complicate the effect of male body size on access to mates. We report the relationship between male body size and pheromone signaling, and the effects on female mate search and courtship in the sea lamprey (Petromyzon marinus). We predicted that pheromone production in the liver and the liver mass to body mass ratio would remain constant across sizes, resulting in similar mass-adjusted pheromone release rates across sizes but a positive relationship between absolute pheromone release and body mass. Our results confirmed positive relationships between body mass and liver mass, and liver mass and the magnitude of the pheromone signal. Surprisingly, decreasing body mass was correlated with higher pheromone concentrations in the liver, liver mass to body mass ratios, and mass-adjusted pheromone release rates. In a natural stream, females more often entered nests treated with small versus large male odors. However, close-proximity courtship behaviors were similar in nests treated with small or large male odors. We conclude that small males exhibit increased release of the main pheromone component, but female discrimination of male pheromones follows several axes of variation with different relationships to size.

  19. Male resource defense mating system in primates? An experimental test in wild capuchin monkeys.

    PubMed

    Tiddi, Barbara; Heistermann, Michael; Fahy, Martin K; Wheeler, Brandon C

    2018-01-01

    Ecological models of mating systems provide a theoretical framework to predict the effect of the defendability of both breeding resources and mating partners on mating patterns. In resource-based mating systems, male control over breeding resources is tightly linked to female mating preference. To date, few field studies have experimentally investigated the relationship between male resource control and female mating preference in mammals due to difficulties in manipulating ecological factors (e.g., food contestability). We tested the within-group male resource defense hypothesis experimentally in a wild population of black capuchin monkeys (Sapajus nigritus) in Iguazú National Park, Argentina. Sapajus spp. represent an ideal study model as, in contrast to most primates, they have been previously argued to be characterized by female mate choice and a resource-based mating system in which within-group resource monopolization by high-ranking males drives female mating preference for those males. Here, we examined whether females (N = 12) showed a weaker preference for alpha males during mating seasons in which food distribution was experimentally manipulated to be less defendable relative to those in which it was highly defendable. Results did not support the within-group male resource defense hypothesis, as female sexual preferences for alpha males did not vary based on food defendability. We discuss possible reasons for our results, including the possibility of other direct and indirect benefits females receive in exercising mate choice, the potential lack of tolerance over food directed towards females by alpha males, and phylogenetic constraints.

  20. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans

    PubMed Central

    2011-01-01

    Background Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. Results We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. Conclusions We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits. PMID:21492473

  1. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans.

    PubMed

    Murray, Rosalind L; Kozlowska, Joanna L; Cutter, Asher D

    2011-04-14

    Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.

  2. Paternal care and male mate-attraction effort in the European starling is adjusted to clutch size.

    PubMed

    Komdeur, Jan; Wiersma, Popko; Magrath, Michael

    2002-06-22

    In facultative polygynous birds with biparental care, a trade-off may occur between male parental care and attraction of additional mates. If there is a cost associated with reduced male parental care, the relative benefit of mate attraction may be predicted to decrease as the size of a male's clutch or brood increases. We tested this prediction in monogamous pairs of facultatively polygynous European starlings (Sturnus vulgaris). The larger the clutch, the more time the male spent incubating and the less time he spent attracting an additional female (i.e. singing near and carrying green nesting material into adjacent empty nest-boxes). Reduced paternal incubation resulted in lower overall incubation (the female did not compensate) and lower hatching success. Immediately after experimental reduction of clutches, males spent significantly less time incubating and more time singing and carrying greenery, and vice versa for experimentally enlarged clutches. Males with experimentally reduced clutches attracted a second female more often than males with experimentally enlarged clutches. This is the first study, to our knowledge, to provide experimental evidence for an adjustment of paternal care and male mate-attraction effort to clutch size. However, a trade-off between paternal nestling provisioning and mate attraction was not revealed, probably due to the absence of unpaired females by that time in the breeding season. Experiments showed that the relative contribution of the male and female to nestling provisioning was unrelated to brood size.

  3. Phenology of Scramble Polygyny in a Wild Population of Chrysolemid Beetles: The Opportunity for and the Strength of Sexual Selection

    PubMed Central

    Baena, Martha Lucía; Macías-Ordóñez, Rogelio

    2012-01-01

    Recent debate has highlighted the importance of estimating both the strength of sexual selection on phenotypic traits, and the opportunity for sexual selection. We describe seasonal fluctuations in mating dynamics of Leptinotarsa undecimlineata (Coleoptera: Chrysomelidae). We compared several estimates of the opportunity for, and the strength of, sexual selection and male precopulatory competition over the reproductive season. First, using a null model, we suggest that the ratio between observed values of the opportunity for sexual selections and their expected value under random mating results in unbiased estimates of the actual nonrandom mating behavior of the population. Second, we found that estimates for the whole reproductive season often misrepresent the actual value at any given time period. Third, mating differentials on male size and mobility, frequency of male fighting and three estimates of the opportunity for sexual selection provide contrasting but complementary information. More intense sexual selection associated to male mobility, but not to male size, was observed in periods with high opportunity for sexual selection and high frequency of male fights. Fourth, based on parameters of spatial and temporal aggregation of female receptivity, we describe the mating system of L. undecimlineata as a scramble mating polygyny in which the opportunity for sexual selection varies widely throughout the season, but the strength of sexual selection on male size remains fairly weak, while male mobility inversely covaries with mating success. We suggest that different estimates for the opportunity for, and intensity of, sexual selection should be applied in order to discriminate how different behavioral and demographic factors shape the reproductive dynamic of populations. PMID:22761675

  4. Banded mongooses avoid inbreeding when mating with members of the same natal group.

    PubMed

    Sanderson, Jennifer L; Wang, Jinliang; Vitikainen, Emma I K; Cant, Michael A; Nichols, Hazel J

    2015-07-01

    Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard-female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate-guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited. © 2015 John Wiley & Sons Ltd.

  5. Effective size of two feral domestic cat populations (Felis catus L): effect of the mating system.

    PubMed

    Kaeuffer, R; Pontier, D; Devillard, S; Perrin, N

    2004-02-01

    A variety of behavioural traits have substantial effects on the gene dynamics and genetic structure of local populations. The mating system is a plastic trait that varies with environmental conditions in the domestic cat (Felis catus) allowing an intraspecific comparison of the impact of this feature on genetic characteristics of the population. To assess the potential effect of the heterogenity of males' contribution to the next generation on variance effective size, we applied the ecological approach of Nunney & Elam (1994) based upon a demographic and behavioural study, and the genetic 'temporal methods' of Waples (1989) and Berthier et al. (2002) using microsatellite markers. The two cat populations studied were nearly closed, similar in size and survival parameters, but differed in their mating system. Immigration appeared extremely restricted in both cases due to environmental and social constraints. As expected, the ratio of effective size to census number (Ne/N) was higher in the promiscuous cat population (harmonic mean = 42%) than in the polygynous one (33%), when Ne was calculated from the ecological method. Only the genetic results based on Waples' estimator were consistent with the ecological results, but failed to evidence an effect of the mating system. Results based on the estimation of Berthier et al. (2002) were extremely variable, with Ne sometimes exceeding census size. Such low reliability in the genetic results should retain attention for conservation purposes.

  6. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles)

    PubMed Central

    Annavi, G; Newman, C; Dugdale, H L; Buesching, C D; Sin, Y W; Burke, T; Macdonald, D W

    2014-01-01

    Extra-group paternity (EGP) occurs commonly among group-living mammals and plays an important role in mating systems and the dynamics of sexual selection; however, socio-ecological and genetic correlates of EGP have been underexplored. We use 23 years of demographic and genetic data from a high-density European badger (Meles meles) population, to investigate the relationship between the rate of EGP in litters and mate availability, mate incompatibility and mate quality (heterozygosity). Relatedness between within-group assigned mothers and candidate fathers had a negative quadratic effect on EGP, whereas the number of neighbouring-group candidate fathers had a linear positive effect. We detected no effect of mean or maximum heterozygosity of within-group candidate fathers on EGP. Consequently, EGP was associated primarily with mate availability, subject to within-group genetic effects, potentially to mitigate mate incompatibility and inbreeding. In badgers, cryptic female choice, facilitated by superfecundation, superfoetation and delayed implantation, prevents males from monopolizing within-group females. This resonates with a meta-analysis in group-living mammals, which proposed that higher rates of EGP occur when within-group males cannot monopolize within-group females. In contrast to the positive meta-analytic association, however, we found that EGP associated negatively with the number of within-group assigned mothers and the number of within-group candidate fathers; potentially a strategy to counter within-group males committing infanticide. The relationship between the rate of EGP and socio-ecological or genetic factors can therefore be intricate, and the potential for cryptic female choice must be accounted for in comparative studies. PMID:25234113

  7. Penis size interacts with body shape and height to influence male attractiveness.

    PubMed

    Mautz, Brian S; Wong, Bob B M; Peters, Richard A; Jennions, Michael D

    2013-04-23

    Compelling evidence from many animal taxa indicates that male genitalia are often under postcopulatory sexual selection for characteristics that increase a male's relative fertilization success. There could, however, also be direct precopulatory female mate choice based on male genital traits. Before clothing, the nonretractable human penis would have been conspicuous to potential mates. This observation has generated suggestions that human penis size partly evolved because of female choice. Here we show, based upon female assessment of digitally projected life-size, computer-generated images, that penis size interacts with body shape and height to determine male sexual attractiveness. Positive linear selection was detected for penis size, but the marginal increase in attractiveness eventually declined with greater penis size (i.e., quadratic selection). Penis size had a stronger effect on attractiveness in taller men than in shorter men. There was a similar increase in the positive effect of penis size on attractiveness with a more masculine body shape (i.e., greater shoulder-to-hip ratio). Surprisingly, larger penis size and greater height had almost equivalent positive effects on male attractiveness. Our results support the hypothesis that female mate choice could have driven the evolution of larger penises in humans. More broadly, our results show that precopulatory sexual selection can play a role in the evolution of genital traits.

  8. Penis size interacts with body shape and height to influence male attractiveness

    PubMed Central

    Mautz, Brian S.; Wong, Bob B. M.; Peters, Richard A.; Jennions, Michael D.

    2013-01-01

    Compelling evidence from many animal taxa indicates that male genitalia are often under postcopulatory sexual selection for characteristics that increase a male’s relative fertilization success. There could, however, also be direct precopulatory female mate choice based on male genital traits. Before clothing, the nonretractable human penis would have been conspicuous to potential mates. This observation has generated suggestions that human penis size partly evolved because of female choice. Here we show, based upon female assessment of digitally projected life-size, computer-generated images, that penis size interacts with body shape and height to determine male sexual attractiveness. Positive linear selection was detected for penis size, but the marginal increase in attractiveness eventually declined with greater penis size (i.e., quadratic selection). Penis size had a stronger effect on attractiveness in taller men than in shorter men. There was a similar increase in the positive effect of penis size on attractiveness with a more masculine body shape (i.e., greater shoulder-to-hip ratio). Surprisingly, larger penis size and greater height had almost equivalent positive effects on male attractiveness. Our results support the hypothesis that female mate choice could have driven the evolution of larger penises in humans. More broadly, our results show that precopulatory sexual selection can play a role in the evolution of genital traits. PMID:23569234

  9. Female mating strategy in an enclosed group of Japanese macaques.

    PubMed

    Soltis, J; Mitsunaga, F; Shimizu, K; Yanagihara, Y; Nozaki, M

    1999-01-01

    Female Japanese macaques (Macaca fuscata) are noted for mating with multiple males and for their ability to exert mate choice. In a captive group of Japanese macaques housed at the Primate Research Institute of Kyoto University, Japan, behavioral and endocrine data were combined to examine female mating strategies. During one breeding season, daily behavioral observations were conducted on females who exhibited copulatory behavior. Blood was collected from females twice weekly and their ovulatory periods estimated by analyzing hormone profiles. Females began mating shortly before ovulation, peaked at ovulation, and continued receiving ejaculations for up to ten weeks after conception. Females were more responsible than males for inbreeding avoidance with matrilineal kin. Males sometimes approached females from their own matriline, but females avoided such males and expressed mate choice behavior preferentially toward non-matrilineal males. Over the entire mating season, females did not choose non-matrilineal males on the basis of displays, dominance rank, age, weight, or weight change during the mating season. When females were likely to conceive, however, they expressed mate choice behavior toward males who displayed most frequently. Female mating strategy may include both mate choice at ovulation and other, non-procreative functions.

  10. Male traits, mating tactics and reproductive success in the buff-breasted sandpiper, Tryngites subruficollis

    USGS Publications Warehouse

    Lanctot, Richard B.; Weatherhead, Patrick J.; Kempenaers, Bart; Scribner, Kim T.

    1998-01-01

    Buff-breasted sandpipers use a variety of mating tactics to acquire mates, including remaining at a single lek for most of the breeding season, attending multiple leks during the season, displaying solitarily or displaying both on leks and solitarily. We found that differences in body size, body condition, fluctuating asymmetry scores, wing coloration, territory location and behaviour (attraction, solicitation and agonistic) did not explain the observed variation in mating tactics used by males. Which males abandoned versus returned to leks was also not related to morphology or behaviour, and there was no tendency for males to join leks that were larger or smaller than the lek they abandoned. These results suggest that male desertion of leks was not dependent on a male's characteristics nor on the size of the lek he was presently attending. Males did join leks with larger males than their previous lek, perhaps to mate with females attracted to these larger 'hotshot' males. Males at both leks and solitary sites successfully mated. Lek tenure did not affect mating success, although lekking males appeared to mate more frequently than solitary males. Courtship disruption and to a lesser extent, female mimicry, were effective at preventing females from mating at leks, and may offer a partial explanation for female mating off leks. Our analysis that combined all males together within a year (regardless of mating tactic) indicated that males that attended leks for longer periods of time and that had fewer wing spots were significantly more likely to mate. Given some evidence that wing spotting declines with age, and that females inspect male underwings during courtship, the latter result suggests that female choice may play some role in determining male success. We suggest that male buff-breasted sandpipers may use alternative mating tactics more readily than males in other 'classic' lek-breeding species because: (1) unpredictable breeding conditions in this species' high arctic breeding range leads to low lek stability, which in turn hinders mate selection mechanisms mediated by male dominance and female choice; and (2) males are not constrained by morphological markings that indicate status or sex. Both characteristics may reduce the reproductive benefits associated with males adopting one mating tactic and result in a sort of scramble competition in which males switch between tactics as local conditions change.

  11. [Experiences with cage combinations for guinea pigs].

    PubMed

    von Zychlinski, J

    1989-01-01

    Special cage units described in 1982 for guinea pigs have been used either as cages for small groups of breeding animals or for caging of growing animals. By using these cages the following advantages have been noted; the cage size can be adapted to number, age and body weight of the animals; aggression and panic are avoided by corners, walls and tunnels; economic use of breeding males by mating with more females.

  12. When genes move farther than offspring: gene flow by male gamete dispersal in the highly philopatric bat species Thyroptera tricolor.

    PubMed

    Buchalski, M R; Chaverri, G; Vonhof, M J

    2014-02-01

    For species characterized by philopatry of both sexes, mate selection represents an important behaviour for inbreeding avoidance, yet the implications for gene flow are rarely quantified. Here, we present evidence of male gamete-mediated gene flow resulting from extra-group mating in Spix's disc-winged bat, Thyroptera tricolor, a species which demonstrates all-offspring philopatry. We used microsatellite and capture-recapture data to characterize social group structure and the distribution of mated pairs at two sites in southwestern Costa Rica over four breeding seasons. Relatedness and genetic spatial autocorrelation analyses indicated strong kinship within groups and over short distances (<50 m), resulting from matrilineal group structure and small roosting home ranges (~0.2 ha). Despite high relatedness among-group members, observed inbreeding coefficients were low (FIS  = 0.010 and 0.037). Parentage analysis indicated mothers and offspring belonged to the same social group, while fathers belonged to different groups, separated by large distances (~500 m) when compared to roosting home ranges. Simulated random mating indicated mate choice was not based on intermediate levels of relatedness, and mated pairs were less related than adults within social groups on average. Isolation-by-distance (IBD) models of genetic neighbourhood area based on father-offspring distances provided direct estimates of mean gamete dispersal distances (r^) > 10 roosting home range equivalents. Indirect estimates based on genetic distance provided even larger estimates of r^, indicating direct estimates were biased low. These results suggest extra-group mating reduces the incidence of inbreeding in T. tricolor, and male gamete dispersal facilitates gene flow in lieu of natal dispersal of young. © 2013 John Wiley & Sons Ltd.

  13. Affairs happen—to whom? A study on extrapair paternity in common nightingales

    PubMed Central

    Wilhelm, Kerstin; Wirth, Jutta; Weiss, Michael; Kipper, Silke

    2017-01-01

    Abstract Most birds engage in extrapair copulations despite great differences across and within species. Besides cost and benefit considerations of the two sex environmental factors have been found to alter mating strategies within or between populations and/or over time. For socially monogamous species, the main advantage that females might gain from mating with multiple males is probably increasing their offspring’s genetic fitness. Since male (genetic) quality is mostly not directly measurable for female birds, (extrapair) mate choice is based on male secondary traits. In passerines male song is such a sexual ornament indicating male phenotypic and/or genetic quality and song repertoires seem to affect female mate choice in a number of species. Yet their role in extrapair mating behavior is not well understood. In this study, we investigated the proportion of extrapair paternity (EPP) in a population of common nightingales Luscinia megarhynchos. We found that EPP rate was rather high (21.5% of all offspring tested) for a species without sexual dimorphism and high levels of paternal care. Furthermore, the occurrence of EPP was strongly related to the spatial distribution of male territories with males settling in densely occupied areas having higher proportions of extrapair young within their own brood. Also, song repertoire size affected EPP: here larger repertoires of social mates were negatively related to the probability of being cuckolded. When directly comparing repertoires sizes of social and extrapair mates, extrapair mates tended to have larger repertoires. We finally discuss our results as a hint for a flexible mating strategy in nightingales where several factors—including ecological as well as male song features—need to be considered when studying reproductive behavior in monogamous species with complex song. PMID:29492002

  14. Effects of stress on human mating preferences: stressed individuals prefer dissimilar mates

    PubMed Central

    Lass-Hennemann, Johanna; Deuter, Christian E.; Kuehl, Linn K.; Schulz, André; Blumenthal, Terry D.; Schachinger, Hartmut

    2010-01-01

    Although humans usually prefer mates that resemble themselves, mating preferences can vary with context. Stress has been shown to alter mating preferences in animals, but the effects of stress on human mating preferences are unknown. Here, we investigated whether stress alters men's preference for self-resembling mates. Participants first underwent a cold-pressor test (stress induction) or a control procedure. Then, participants viewed either neutral pictures or pictures of erotic female nudes whose facial characteristics were computer-modified to resemble either the participant or another participant, or were not modified, while startle eyeblink responses were elicited by noise probes. Erotic pictures were rated as being pleasant, and reduced startle magnitude compared with neutral pictures. In the control group, startle magnitude was smaller during foreground presentation of photographs of self-resembling female nudes compared with other-resembling female nudes and non-manipulated female nudes, indicating a higher approach motivation to self-resembling mates. In the stress group, startle magnitude was larger during foreground presentation of self-resembling female nudes compared with other-resembling female nudes and non-manipulated female nudes, indicating a higher approach motivation to dissimilar mates. Our findings show that stress affects human mating preferences: unstressed individuals showed the expected preference for similar mates, but stressed individuals seem to prefer dissimilar mates. PMID:20219732

  15. Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species

    PubMed Central

    Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes

    2013-01-01

    Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals. PMID:23460896

  16. An integrative mating system assessment of a nonmodel, economically important Pacific rockfish (Sebastes melanops) reveals nonterritorial polygamy and conservation implications for a large species flock.

    PubMed

    Karageorge, Kurt W; Wilson, Raymond R

    2017-12-01

    Characterizing the mating systems of long-lived, economically important Pacific rockfishes comprising the viviparous Sebastes species flock is crucial for their conservation. However, direct assignment of mating success to sires is precluded by open, offshore populations and high female fecundity. We addressed this challenge by integrating paternity-assigned mating success of females with the adult sex ratio (ASR) of the population, male evolutionary responses to receptive females, and reproductive life history traits-in the framework of sexual selection theory-to assess the mating system of Sebastes melanops . Microsatellite parentage analysis of 17 pregnant females, 1,256 of their progeny, and 106 adults from the population yielded one to four sires per brood, a mean of two sires, and a female mate frequency distribution with a truncated normal (random) pattern. The 11 multiple paternity broods all contained higher median allele richness than the six single paternity broods (Wilcoxon test: W  = 0, p  < .001), despite similar levels of average heterozygosity. By sampling sperm and alleles from different males, polyandrous females gain opportunities to enhance their sperm supply and to lower the cost of mating with genetically incompatible males through reproductive compensation. A mean of two mates per mated female with a variance of one, an ASR = 1.2 females per male, and the expected population mean of 2.4 mates for mated males (and the estimated 35 unavailable sires), fits polygamous male mate frequency distributions that distinguish polygynandry and polyandrogyny mating systems, that is, variations of polygamy, but not polyandry. Inference for polygamy is consistent with weak premating sexual selection on males, expected in mid-water, schooling S. melanops , owing to polyandrous mating, moderately aggregated receptive females, an even ASR, and no territories and nests used for reproduction. Each of these characteristics facilitates more mating males and erodes conspicuous sexual dimorphism. Evaluation of male evolutionary responses of demersal congeners that express reproductively territorial behavior revealed they have more potential mechanisms for producing premating sexual selection, greater variation in reproductive success, and a reduced breeding effective population size of adults and annual effective size of a cohort, compared to S. melanops modeled with two mates per adult. Such divergence in behavior and mating system by territorial species may differentially lower their per capita birth rates, subsequent population growth, and slow their recovery from exploitation.

  17. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  18. Safety assessment of dietary diacylglycerol oil: a two-generation reproductive toxicity study in rats.

    PubMed

    Morita, Osamu; Knapp, John F; Tamaki, Yasushi; Nemec, Mark D; Varsho, Bennett J; Stump, Donald G

    2008-09-01

    Diacylglycerol (DAG) oil is a novel edible oil with similar taste and usability characteristics as conventional edible oils. Recent studies suggest that DAG oil may be helpful in the prevention and management of obesity. The objective of the present two-generation study was to evaluate potential adverse effects of DAG oil on reproductive processes. DAG oil was administered via gavage to rats (30/sex/group) for at least 70 days prior to mating, at dose levels of 0, 1.25, 2.5 or 5.0 ml/kg/day (0, 1160, 2320 and 4630 mg/kg/day). An additional group received a triacylglycerol (TAG) oil with a similar fatty acid composition to DAG oil. The rats were treated throughout the mating, gestation and lactation periods. Administration of DAG or TAG oil did not reveal any toxicologically significant effects on reproductive performance (mating, fertility and copulation/conception indices). DAG oil did not affect mean gestation lengths, the process of parturition, spermatogenic parameters, organ weights, histopathologic findings, mean numbers of pups born, implantation sites and unaccounted sites. F1 and F2 pup viability, live litter sizes, body weights, mean age of attainment of balanopreputial separation and vaginal patency were similar to those in the control group. Based on the results of this study, a dose level of 5.0 ml/kg (4630 mg/kg/day) was considered as the no-observed-adverse-effect level for reproductive and systemic toxicity, and neonatal toxicity.

  19. Mating success of males with and without wing patch in Drosophila biarmipes.

    PubMed

    Hegde, S N; Chethan, B K; Krishna, M S

    2005-10-01

    Some males of D. biarmipes--synonym of D. rajasekari and D. raychaudhuri have a black patch on the wing. The patch extends from the apical margin of wing to the third longitudinal vein. Field and laboratory studies have been carried out in D. biarmipes to study role of male's wing patch in mating success. The field study shows that nature favors D. biarmipes males with patch. Although males without patch mated, males with patch have higher mating success suggesting the role of wing patch during courtship. Further, among mating males, males with patch had longer wings than males without patch. During courtship, males with patch oriented and mated faster; performed courtship acts such as tapping, scissoring, vibration, licking and twist dance more times than males without patch in both competitive and non-competitive situations. The results indicate that there is a casual relationship between the presence of wing patch, mating speed and success. Also there is a correlation between presence of wing patch, size of the flies and mating success.

  20. Evolution of body size in Galapagos marine iguanas.

    PubMed

    Wikelski, Martin

    2005-10-07

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward ('pasture') heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better understand selection pressures on individual body size.

  1. Evolution of body size in Galapagos marine iguanas

    PubMed Central

    Wikelski, Martin

    2005-01-01

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000 g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward (‘pasture’) heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better understand selection pressures on individual body size. PMID:16191607

  2. EVOLUTION, PHYLOGENY, SEXUAL DIMORPHISM AND MATING SYSTEM IN THE GRACKLES (QUISCALUS SPP.: ICTERINAE).

    PubMed

    Björklund, Mats

    1991-05-01

    According to theory, two consequences of sexual selection are sexual dimorphism in size and secondary sexual characteristics, due to either intra- or intersexual selection. In this paper I suggest three criteria for the test of an evolutionary hypothesis involving quantitative morphological characters. First, the postulated change must be shown to have occurred in evolutionary time. Second, this change must be positively correlated with a change in the proposed selective agent. Third, given two taxa with different degrees of sexual size dimorphism and different mating system, the possible influence of drift must be rejected. If the hypothesis is not rejected by these three criteria, then we still have no proof of causality, but we can at least be more confident about its plausibility. This is applied to the particular hypothesis that sexual dimorphism in the Boat-tailed and Great-tailed grackles (Quiscalus spp; Icterinae; Aves) is caused by the highly polygynous mating system in these species. In relation to an outgroup, both species have increased disproportionately in male tarsus and tail size, creating an increased sexual dimorphism. This has cooccurred with the evolution of their particular mating system. However, the variance among species in male tarsus size can be accounted for by drift, and need not be a result of selection for increased size. In contrast, the variance among species in male tail size was much larger than expected under a null model of drift, indicating directional selection for long tails. The variance in female tail size was not larger than expected by drift, whereas the variance in female tarsus size was in fact lower than expected by drift, indicating stabilizing selection. The data are consistent with the hypothesis with regard to tail size, but not with regard to body size. © 1991 The Society for the Study of Evolution.

  3. Functional pleiotropy and mating system evolution in plants: frequency-independent mating.

    PubMed

    Jordan, Crispin Y; Otto, Sarah P

    2012-04-01

    Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...

  5. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...

  6. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...

  7. Parallel evolution of sexual isolation in sticklebacks.

    PubMed

    Boughman, Janette Wenrick; Rundle, Howard D; Schluter, Dolph

    2005-02-01

    Mechanisms of speciation are not well understood, despite decades of study. Recent work has focused on how natural and sexual selection cause sexual isolation. Here, we investigate the roles of divergent natural and sexual selection in the evolution of sexual isolation between sympatric species of threespine sticklebacks. We test the importance of morphological and behavioral traits in conferring sexual isolation and examine to what extent these traits have diverged in parallel between multiple, independently evolved species pairs. We use the patterns of evolution in ecological and mating traits to infer the likely nature of selection on sexual isolation. Strong parallel evolution implicates ecologically based divergent natural and/or sexual selection, whereas arbitrary directionality implicates nonecological sexual selection or drift. In multiple pairs we find that sexual isolation arises in the same way: assortative mating on body size and asymmetric isolation due to male nuptial color. Body size and color have diverged in a strongly parallel manner, similar to ecological traits. The data implicate ecologically based divergent natural and sexual selection as engines of speciation in this group.

  8. Genetic considerations in human sex-mate selection: partners share human leukocyte antigen but not short-tandem-repeat identity markers.

    PubMed

    Israeli, Moshe; Kristt, Don; Nardi, Yuval; Klein, Tirza

    2014-05-01

    Previous studies support a role for MHC on mating preference, yet it remains unsettled as to whether mating occurs preferentially between individuals sharing human leukocyte antigen (HLA) determinants or not. Investigating sex-mate preferences in the contemporary Israeli population is of further curiosity being a population with distinct genetic characteristics, where multifaceted cultural considerations influence mate selection. Pairs of male-female sex partners were evaluated in three groups. Two groups represented unmarried (n = 1002) or married (n = 308) couples and a control group of fictitious male-female couples. HLA and short-tandem-repeat (STR) genetic identification markers were assessed for the frequency of shared antigens and alleles. Human leukocyte antigen results showed that Class I and/ or Class II single antigen as well as double antigen sharing was more common in sex partners than in control group couples (P < 0.001). Married versus unmarried pairs were not distinguishable. In contrast, STR-DNA markers failed to differentiate between sex-mates and controls (P = 0.78). Sex partnerships shared HLA determinants more frequently than randomly constituted male-female pairs. The observed phenomenon does not reflect a syngenetic background between sex-mates as STR markers were not selectively shared. Thus, sex-mate selection in man may contravene the evolutionary pressure for genetic diversity in regard to HLA. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Poeciliid male mate preference is influenced by female size but not by fecundity

    PubMed Central

    Schlupp, Ingo

    2013-01-01

    While female mate preference is very well studied, male preference has only recently begun to receive significant attention. Its existence is found in numerous taxa, but empirical research has mostly been limited to a descriptive level and does not fully address the factors influencing its evolution. We attempted to address this issue using preference functions by comparing the strength of male preference for females of different sizes in nine populations of four poeciliid species. Due to environmental constraints (water toxicity and surface versus cave habitat), females from these populations vary in the degree to which their size is correlated to their fecundity. Hence, they vary in how their size signals their quality as mates. Since female size is strongly correlated with fecundity in this subfamily, males were sequentially presented with conspecific females of three different size categories and the strength of their preference for each was measured. Males preferred larger females in all populations, as predicted. However, the degree to which males preferred each size category, as measured by association time, was not correlated with its fecundity. In addition, cave males discriminated against smaller females more than surface males. Assuming that male preference is correlated with female fitness, these results suggest that factors other than fecundity have a strong influence on female fitness in these species. PMID:24010018

  10. Sexual conflict over mating in Gnatocerus cornutus? Females prefer lovers not fighters.

    PubMed

    Okada, Kensuke; Katsuki, Masako; Sharma, Manmohan D; House, Clarissa M; Hosken, David J

    2014-06-22

    Female mate choice and male-male competition are the typical mechanisms of sexual selection. However, these two mechanisms do not always favour the same males. Furthermore, it has recently become clear that female choice can sometimes benefit males that reduce female fitness. So whether male-male competition and female choice favour the same or different males, and whether or not females benefit from mate choice, remain open questions. In the horned beetle, Gnatocerus cornutus, males have enlarged mandibles used to fight rivals, and larger mandibles provide a mating advantage when there is direct male-male competition for mates. However, it is not clear whether females prefer these highly competitive males. Here, we show that female choice targets male courtship rather than mandible size, and these two characters are not phenotypically or genetically correlated. Mating with attractive, highly courting males provided indirect benefits to females but only via the heritability of male attractiveness. However, mating with attractive males avoids the indirect costs to daughters that are generated by mating with competitive males. Our results suggest that male-male competition may constrain female mate choice, possibly reducing female fitness and generating sexual conflict over mating.

  11. Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations of Acacia woodmaniorum (Fabaceae), a rare banded iron formation endemic.

    PubMed

    Millar, Melissa A; Coates, David J; Byrne, Margaret

    2014-10-01

    Understanding patterns of pollen dispersal and variation in mating systems provides insights into the evolutionary potential of plant species and how historically rare species with small disjunct populations persist over long time frames. This study aims to quantify the role of pollen dispersal and the mating system in maintaining contemporary levels of connectivity and facilitating persistence of small populations of the historically rare Acacia woodmaniorum. Progeny arrays of A. woodmaniorum were genotyped with nine polymorphic microsatellite markers. A low number of fathers contributed to seed within single pods; therefore, sampling to remove bias of correlated paternity was implemented for further analysis. Pollen immigration and mating system parameters were then assessed in eight populations of varying size and degree of isolation. Pollen immigration into small disjunct populations was extensive (mean minimum estimate 40 % and mean maximum estimate 57 % of progeny) and dispersal occurred over large distances (≤1870m). Pollen immigration resulted in large effective population sizes and was sufficient to ensure adaptive and inbreeding connectivity in small disjunct populations. High outcrossing (mean tm = 0·975) and a lack of apparent inbreeding suggested that a self-incompatibility mechanism is operating. Population parameters, including size and degree of geographic disjunction, were not useful predictors of pollen dispersal or components of the mating system. Extensive long-distance pollen dispersal and a highly outcrossed mating system are likely to play a key role in maintaining genetic diversity and limiting negative genetic effects of inbreeding and drift in small disjunct populations of A. woodmaniorum. It is proposed that maintenance of genetic connectivity through habitat and pollinator conservation will be a key factor in the persistence of this and other historically rare species with similar extensive long-distance pollen dispersal and highly outcrossed mating systems. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Body Size, Fecundity, and Sexual Size Dimorphism in the Neotropical Cricket Macroanaxipha macilenta (Saussure) (Orthoptera: Gryllidae).

    PubMed

    Cueva Del Castillo, R

    2015-04-01

    Body size is directly or indirectly correlated with fitness. Body size, which conveys maximal fitness, often differs between sexes. Sexual size dimorphism (SSD) evolves because body size tends to be related to reproductive success through different pathways in males and females. In general, female insects are larger than males, suggesting that natural selection for high female fecundity could be stronger than sexual selection in males. I assessed the role of body size and fecundity in SSD in the Neotropical cricket Macroanaxipha macilenta (Saussure). This species shows a SSD bias toward males. Females did not present a correlation between number of eggs and body size. Nonetheless, there were fluctuations in the number of eggs carried by females during the sampling period, and the size of females that were collected carrying eggs was larger than that of females collected with no eggs. Since mating induces vitellogenesis in some cricket species, differences in female body size might suggest male mate choice. Sexual selection in the body size of males of M. macilenta may possibly be stronger than the selection of female fecundity. Even so, no mating behavior was observed during the field observations, including audible male calling or courtship songs, yet males may produce ultrasonic calls due to their size. If female body size in M. macilenta is not directly related to fecundity, the lack of a correlated response to selection on female body size could represent an alternate evolutionary pathway in the evolution of body size and SSD in insects.

  13. Sexually selected lip colour indicates male group-holding status in the mating season in a multi-level primate society

    PubMed Central

    Grueter, Cyril C.; Zhu, Pingfen; Allen, William L.; Higham, James P.; Ren, Baoping; Li, Ming

    2015-01-01

    Sexual selection typically produces ornaments in response to mate choice, and armaments in response to male–male competition. Unusually among mammals, many primates exhibit colour signals that may be related to one or both processes. Here, we document for the first time correlates of facial coloration in one of the more brightly coloured primates, the black-and-white snub-nosed monkey (Rhinopithecus bieti). Snub-nosed monkeys have a one-male unit (OMU) based social organization, but these units aggregate semi-permanently into larger bands. This form of mating system causes many males to become associated with bachelor groups. We quantified redness of the prominent lower lip in 15 males (eight bachelors, seven OMU holders) in a group at Xiangguqing, China. Using mixed models, our results show that lip redness increases with age. More interestingly, there is a significant effect of the interaction of group-holding status and mating season on redness; that is, lip colour of OMU males undergoes reddening in the mating season, whereas the lips of subadult and juvenile bachelor males become paler at that time of year. These results indicate that lip coloration is a badge of (group-holding) status during the mating season, with non-adults undergoing facial differentiation, perhaps to avoid the costs of reproductive competition. Future research should investigate whether lip coloration is a product of male–male competition, and/or female mate choice. PMID:27019735

  14. Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle

    PubMed Central

    House, Clarissa M.; Sharma, M. D.; Okada, Kensuke; Hosken, David J.

    2016-01-01

    Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male–male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male–male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. PMID:27371390

  15. Female choice in the red mason bee, Osmia rufa (L.) (Megachilidae).

    PubMed

    Conrad, Taina; Paxton, Robert J; Barth, Friedrich G; Francke, Wittko; Ayasse, Manfred

    2010-12-01

    Females are often thought to use several cues and more than one modality in selection of a mate, possibly because they offer complementary information on a mate's suitability. In the red mason bee, Osmia rufa, we investigated the criteria a female uses to choose a mating partner. We hypothesized that the female uses male thorax vibrations and size as signs of male viability and male odor for kin discrimination and assessment of genetic relatedness. We therefore compared males that had been accepted by a female for copulation with those rejected, in terms of their size, their immediate precopulatory vibrations (using laser vibrometry), the genetic relatedness of unmated and mated pairs (using microsatellite markers) and emitted volatiles (using chemical analyses). Females showed a preference for intermediate-sized males that were slightly larger than the modal male size. Furthermore, male precopulatory vibration burst duration was significantly longer in males accepted for copulation compared with rejected males. Vibrations may indicate vigor and assure that males selected by females are metabolically active and healthy. Females preferentially copulated with males that were genetically more closely related, possibly to avoid outbreeding depression. Volatiles of the cuticular surface differed significantly between accepted and rejected males in the relative amounts of certain hydrocarbons, although the relationship between male odor and female preference was complex. Females may therefore also use differences in odor bouquet to select among males. Our investigations show that O. rufa females appear to use multiple cues in selecting a male. Future investigations are needed to demonstrate whether odor plays a role in kin recognition and how the multiple cues are integrated in mate choice by females.

  16. Protective effect of yerba mate intake on the cardiovascular system: a post hoc analysis study in postmenopausal women.

    PubMed

    da Veiga, D T A; Bringhenti, R; Copes, R; Tatsch, E; Moresco, R N; Comim, F V; Premaor, M O

    2018-01-01

    The prevalence of cardiovascular and metabolic diseases is increased in postmenopausal women, which contributes to the burden of illnesses in this period of life. Yerba mate (Ilex paraguariensis) is a native bush from Southern South America. Its leaves are rich in phenolic components, which may have antioxidant, vasodilating, hypocholesterolemic, and hypoglycemic proprieties. This post hoc analysis of the case-control study nested in the Obesity and Bone Fracture Cohort evaluated the consumption of yerba mate and the prevalence of hypertension, dyslipidemia, and coronary diseases in postmenopausal women. Ninety-five postmenopausal women were included in this analysis. A questionnaire was applied to evaluate the risk factors and diagnosis of cardiovascular diseases and consumption of yerba mate infusion. Student's t-test and chi-square test were used to assess significant differences between groups. The group that consumed more than 1 L/day of mate infusion had significantly fewer diagnoses of coronary disease, dyslipidemia, and hypertension (P<0.049, P<0.048, and P<0.016, respectively). Furthermore, the serum levels of glucose were lower in the group with a higher consumption of yerba mate infusion (P<0.013). The serum levels of total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides were similar between the groups. This pragmatic study points out the benefits of yerba mate consumption for the cardiovascular and metabolic systems. The ingestion of more than 1 L/day of mate infusion was associated with fewer self-reported cardiovascular diseases and lower serum levels of glucose. Longitudinal studies are needed to evaluate the association between yerba mate infusion and reduction of cardiovascular diseases in postmenopausal women.

  17. Protective effect of yerba mate intake on the cardiovascular system: a post hoc analysis study in postmenopausal women

    PubMed Central

    da Veiga, D.T.A.; Bringhenti, R.; Copes, R.; Tatsch, E.; Moresco, R.N.; Comim, F.V.; Premaor, M.O.

    2018-01-01

    The prevalence of cardiovascular and metabolic diseases is increased in postmenopausal women, which contributes to the burden of illnesses in this period of life. Yerba mate (Ilex paraguariensis) is a native bush from Southern South America. Its leaves are rich in phenolic components, which may have antioxidant, vasodilating, hypocholesterolemic, and hypoglycemic proprieties. This post hoc analysis of the case-control study nested in the Obesity and Bone Fracture Cohort evaluated the consumption of yerba mate and the prevalence of hypertension, dyslipidemia, and coronary diseases in postmenopausal women. Ninety-five postmenopausal women were included in this analysis. A questionnaire was applied to evaluate the risk factors and diagnosis of cardiovascular diseases and consumption of yerba mate infusion. Student's t-test and chi-square test were used to assess significant differences between groups. The group that consumed more than 1 L/day of mate infusion had significantly fewer diagnoses of coronary disease, dyslipidemia, and hypertension (P<0.049, P<0.048, and P<0.016, respectively). Furthermore, the serum levels of glucose were lower in the group with a higher consumption of yerba mate infusion (P<0.013). The serum levels of total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides were similar between the groups. This pragmatic study points out the benefits of yerba mate consumption for the cardiovascular and metabolic systems. The ingestion of more than 1 L/day of mate infusion was associated with fewer self-reported cardiovascular diseases and lower serum levels of glucose. Longitudinal studies are needed to evaluate the association between yerba mate infusion and reduction of cardiovascular diseases in postmenopausal women. PMID:29694507

  18. Inbreeding avoidance through non-random mating in sticklebacks

    PubMed Central

    Frommen, Joachim G; Bakker, Theo C.M

    2006-01-01

    Negative effects of inbreeding are well documented in a wide range of animal taxa. Hatching success and survival of inbred offspring is reduced in many species and inbred progeny are often less attractive to potential mates. Thus, individuals should avoid mating with close kin. However, experimental evidence for inbreeding avoidance through non-random mating in vertebrates is scarce. Here, we show that gravid female three-spined sticklebacks (Gasterosteus aculeatus) when given the choice between a courting familiar brother and a courting unfamiliar non-sib prefer to mate with the non-sib and thus avoid the disadvantages of incest. We controlled for differences in males' body size and red intensity of nuptial coloration. Thus, females adjust their courting behaviour to the risk of inbreeding. PMID:17148370

  19. Inbreeding avoidance through non-random mating in sticklebacks.

    PubMed

    Frommen, Joachim G; Bakker, Theo C M

    2006-06-22

    Negative effects of inbreeding are well documented in a wide range of animal taxa. Hatching success and survival of inbred offspring is reduced in many species and inbred progeny are often less attractive to potential mates. Thus, individuals should avoid mating with close kin. However, experimental evidence for inbreeding avoidance through non-random mating in vertebrates is scarce. Here, we show that gravid female three-spined sticklebacks (Gasterosteus aculeatus) when given the choice between a courting familiar brother and a courting unfamiliar non-sib prefer to mate with the non-sib and thus avoid the disadvantages of incest. We controlled for differences in males' body size and red intensity of nuptial coloration. Thus, females adjust their courting behaviour to the risk of inbreeding.

  20. Optimal numbers of matings: the conditional balance between benefits and costs of mating for females of a nuptial gift-giving spider.

    PubMed

    Toft, S; Albo, M J

    2015-02-01

    In species where females gain a nutritious nuptial gift during mating, the balance between benefits and costs of mating may depend on access to food. This means that there is not one optimal number of matings for the female but a range of optimal mating numbers. With increasing food availability, the optimal number of matings for a female should vary from the number necessary only for fertilization of her eggs to the number needed also for producing these eggs. In three experimental series, the average number of matings for females of the nuptial gift-giving spider Pisaura mirabilis before egg sac construction varied from 2 to 16 with food-limited females generally accepting more matings than well-fed females. Minimal level of optimal mating number for females at satiation feeding conditions was predicted to be 2-3; in an experimental test, the median number was 2 (range 0-4). Multiple mating gave benefits in terms of increased fecundity and increased egg hatching success up to the third mating, and it had costs in terms of reduced fecundity, reduced egg hatching success after the third mating, and lower offspring size. The level of polyandry seems to vary with the female optimum, regulated by a satiation-dependent resistance to mating, potentially leaving satiated females in lifelong virginity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  1. No evidence of inbreeding avoidance in a polygynous ungulate: the reindeer (Rangifer tarandus).

    PubMed

    Holand, Oystein; Askim, Kjartan R; Røed, Knut H; Weladji, Robert B; Gjøstein, Hallvard; Nieminen, Mauri

    2007-02-22

    In polygynous species, mate choice is an integrated part of sexual selection. However, whether mate choice occurs independently of the genetic relatedness among mating pairs has received little attention, although inbreeding may have fitness consequences. We studied whether genetic relatedness influenced females' choice of partner in a highly polygynous ungulate--the reindeer (Rangifer tarandus)--in an experimental herd during two consecutive rutting seasons; the herd consisting of 75 females in 1999 and 74 females in 2000 was exposed to three 4.5-year-old adults and three 1.5-year-old young males, respectively. The females' distribution during peak rut was not influenced by their genetic relatedness with the dominant males of the mating groups. Further, genetic relatedness did not influence the actual choice of mating partner. We conclude that inbreeding avoidance through mating group choice as well as choice of mating partner, two interconnected processes of female mate choice operating at two different scales in space and time, in such a highly female-biased reindeer populations with low level of inbreeding may not occur.

  2. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    PubMed

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  3. The evolution of sex differences in mate searching when females benefit: new theory and a comparative test.

    PubMed

    McCartney, J; Kokko, H; Heller, K-G; Gwynne, D T

    2012-03-22

    Sexual selection is thought to have led to searching as a profitable, but risky way of males obtaining mates. While there is great variation in which sex searches, previous theory has not considered search evolution when both males and females benefit from multiple mating. We present new theory and link it with data to bridge this gap. Two different search protocols exist between species in the bush-cricket genus Poecilimon (Orthoptera): females search for calling males, or males search for calling females. Poecilimon males also transfer a costly nuptial food gift to their mates during mating. We relate variations in searching protocols to variation in nuptial gift size among 32 Poecilimon taxa. As predicted, taxa where females search produce significantly larger nuptial gifts than those where males search. Our model and results show that search roles can reverse when multiple mating brings about sufficiently strong material benefits to females.

  4. PARTIAL REPRODUCTIVE ISOLATION OF A RECENTLY DERIVED RESIDENT-FRESHWATER POPULATION OF THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) FROM ITS PUTATIVE ANADROMOUS ANCESTOR

    PubMed Central

    Furin, Christoff G.; Von Hippel, Frank A.; Bell, Michael A.

    2012-01-01

    We used no-choice mating trials to test for assortative mating between a newly derived resident-freshwater population (8 – 22 generations since founding) of threespine stickleback (Gasterosteus aculeatus) in Loberg Lake, Alaska and its putative anadromous ancestor as well as a morphologically convergent but distantly related resident-freshwater population. Partial reproductive isolation has evolved between the Loberg Lake population and its ancestor within a remarkably short time period. However, Loberg stickleback readily mate with morphologically similar, but distantly related resident-freshwater stickleback. Partial pre-mating isolation is asymmetrical; anadromous females and smaller, resident-freshwater males from Loberg Lake readily mate, but the anadromous males and smaller Loberg females do not. Our results indicate that pre-mating isolation can begin to evolve in allopatry within a few generations after isolation as a correlated effect of evolution of reduced body size. PMID:23025615

  5. AlphaMate: a program for optimising selection, maintenance of diversity, and mate allocation in breeding programs.

    PubMed

    Gorjanc, Gregor; Hickey, John M

    2018-05-02

    AlphaMate is a flexible program that optimises selection, maintenance of genetic diversity, and mate allocation in breeding programs. It can be used in animal and cross- and self-pollinating plant populations. These populations can be subject to selective breeding or conservation management. The problem is formulated as a multi-objective optimisation of a valid mating plan that is solved with an evolutionary algorithm. A valid mating plan is defined by a combination of mating constraints (the number of matings, the maximal number of parents, the minimal/equal/maximal number of contributions per parent, or allowance for selfing) that are gender specific or generic. The optimisation can maximize genetic gain, minimize group coancestry, minimize inbreeding of individual matings, or maximize genetic gain for a given increase in group coancestry or inbreeding. Users provide a list of candidate individuals with associated gender and selection criteria information (if applicable) and coancestry matrix. Selection criteria and coancestry matrix can be based on pedigree or genome-wide markers. Additional individual or mating specific information can be included to enrich optimisation objectives. An example of rapid recurrent genomic selection in wheat demonstrates how AlphaMate can double the efficiency of converting genetic diversity into genetic gain compared to truncation selection. Another example demonstrates the use of genome editing to expand the gain-diversity frontier. Executable versions of AlphaMate for Windows, Mac, and Linux platforms are available at http://www.AlphaGenes.roslin.ed.ac.uk/AlphaMate. gregor.gorjanc@roslin.ed.ack.uk.

  6. Mating System and Effective Population Size of the Overexploited Neotropical Tree (Myroxylon peruiferum L.f.) and Their Impact on Seedling Production.

    PubMed

    Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada

    2018-03-16

    The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.

  7. Exaggerated sexual swellings and male mate choice in primates: testing the reliable indicator hypothesis in the Amboseli baboons.

    PubMed

    Fitzpatrick, Courtney L; Altmann, Jeanne; Alberts, Susan C

    2015-06-01

    The paradigm of competitive males vying to influence female mate choice has been repeatedly upheld, but, increasingly, studies also report competitive females and choosy males. One female trait that is commonly proposed to influence male mate choice is the exaggerated sexual swelling displayed by females of many Old World primate species. The reliable indicator hypothesis posits that females use the exaggerated swellings to compete for access to mates, and that the swellings advertise variation in female fitness. We tested the two main predictions of this hypothesis in a wild population of baboons ( Papio cynocephalus) . First, we examined the effect of swelling size on the probability of mate-guarding ('consortship') by the highest-ranking male and the behavior of those males that trailed consorshipts ('follower males'). Second, we asked whether a female's swelling size predicted several fitness measures. We found that high-ranking males do not prefer females with larger swellings (when controlling for cycle number and conception) and that females with larger swellings did not have higher reproductive success. Our study-the only complete test of the reliable indicator hypothesis in a primate population-rejects the idea that female baboons compete for mates by advertising heritable fitness differences. Furthermore, we found unambiguous evidence that males biased their mating decisions in favor of females who had experienced more sexual cycles since their most recent pregnancy. Thus, rather than tracking the potential differences in fitness between females, male baboons appear to track and target the potential for a given reproductive opportunity to result in fertilization.

  8. Exaggerated sexual swellings and male mate choice in primates: testing the reliable indicator hypothesis in the Amboseli baboons

    PubMed Central

    Fitzpatrick, Courtney L.; Altmann, Jeanne; Alberts, Susan C.

    2015-01-01

    The paradigm of competitive males vying to influence female mate choice has been repeatedly upheld, but, increasingly, studies also report competitive females and choosy males. One female trait that is commonly proposed to influence male mate choice is the exaggerated sexual swelling displayed by females of many Old World primate species. The reliable indicator hypothesis posits that females use the exaggerated swellings to compete for access to mates, and that the swellings advertise variation in female fitness. We tested the two main predictions of this hypothesis in a wild population of baboons (Papio cynocephalus). First, we examined the effect of swelling size on the probability of mate-guarding (‘consortship’) by the highest-ranking male and the behavior of those males that trailed consorshipts (‘follower males’). Second, we asked whether a female’s swelling size predicted several fitness measures. We found that high-ranking males do not prefer females with larger swellings (when controlling for cycle number and conception) and that females with larger swellings did not have higher reproductive success. Our study—the only complete test of the reliable indicator hypothesis in a primate population—rejects the idea that female baboons compete for mates by advertising heritable fitness differences. Furthermore, we found unambiguous evidence that males biased their mating decisions in favor of females who had experienced more sexual cycles since their most recent pregnancy. Thus, rather than tracking the potential differences in fitness between females, male baboons appear to track and target the potential for a given reproductive opportunity to result in fertilization. PMID:26752790

  9. Host social organization and mating system shape parasite transmission opportunities in three European bat species.

    PubMed

    van Schaik, J; Kerth, G

    2017-02-01

    For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.

  10. Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird.

    PubMed

    Juola, Frans A; Dearborn, Donald C

    2012-01-07

    The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.

  11. A molecular analysis of African lion (Panthera leo) mating structure and extra-group paternity in Etosha National Park.

    PubMed

    Lyke, M M; Dubach, J; Briggs, M B

    2013-05-01

    The recent incorporation of molecular methods into analyses of social and mating systems has provided evidence that mating patterns often differ from those predicted by group social organization. Based on field studies and paternity analyses at a limited number of sites, African lions are predicted to exhibit a strict within-pride mating system. Extra-group paternity has not been previously reported in African lions; however, observations of extra-group associations among lions inhabiting Etosha National Park in Namibia suggest deviation from the predicted within-pride mating pattern. We analysed variation in 14 microsatellite loci in a population of 164 African lions in Etosha National Park. Genetic analysis was coupled with demographic and observational data to examine pride structure, relatedness and extra-group paternity (EGP). EGP was found to occur in 57% of prides where paternity was analysed (n = 7), and the overall rate of EGP in this population was 41% (n = 34). Group sex ratio had a significant effect on the occurrence of EGP (P < 0.05), indicating that variation in pride-level social structure may explain intergroup variation in EGP. Prides with a lower male-to-female ratio were significantly more likely to experience EGP in this population. The results of this study challenge the current models of African lion mating systems and provide evidence that social structure may not reflect breeding structure in some social mammals. © 2013 Blackwell Publishing Ltd.

  12. Reproductive performance and fertility testing in strain 13 and Hartley guinea pigs.

    PubMed

    Doyle, R E; Sharp, G C; Irvin, W S; Berck, K

    1976-08-01

    A study to test the effects of certain experimental manipulation on the reproductive capacity of male guinea pigs required verifying the fertility of the male guinea pigs before and after manipulation. Methods of testing fertility were evaluated, and normal reproductive data from preexperimental and control groups were tabulated and analyzed. No data from the actual experiments were included. Virgin and proven fertile males were mated with 1 (1:1) or 2 (2:1) virgin or proven fertile females. Inbred (13/N Umm) and conventional (Mfi:CFDH-ML (DH) ) guinea pigs were used. Ninety-five percent of both groups of males were fertile. Eighty-four percent of both groups of females were fertile. Male guinea pigs previously proven fertile had the same subsequent fertility rate as virgin males. Over one-third of the conceptions did not take place during the first estrus cycle (16 da) during which the males and females were mated. Strain 13 and Hartley females had litters of approximately the same size (3.1 vs 3.0), but the neonatal mortality was statistically lower (P less than 0.001) in the Hartley stock (9.3%) than in the Strain 13 guinea pigs (28.4%).

  13. The Effect of Yerba Mate (Ilex paraguarensis) Supplementation on the Productive Performance of Dorper Ewes and Their Progeny

    PubMed Central

    Po, Eleonora; Xu, Ziqian; Celi, Pietro

    2012-01-01

    Yerba Mate (Ilex paraguariensis), a tea known for its high antioxidant content, was supplemented to 30 of 60 ewes for 13 wks to assess its effect on their productive performance. A 2.5% inclusion rate of Yerba Mate (YM) in a pelleted concentrate diet decreased feed intake and live weight (LW) during the first few weeks post partum (p<0.001). Overall, the YM group ate less (2,092±78 g/d) pellet than the control (CTRL) one (2,434±83 g/d); similarly, LW was lower in the YM group compared to the CTRL one, 64.9±1.6 kg and 67.3±1.4 kg, respectively. Lambs’ birth weight and growth rates were not affected. At birth, lambs’ LW were similar between the Yerba Mate and control groups (4.2±0.5 kg and 4.1±0.4 kg, respectively. At the end of the trial, Yerba Mate lambs weighed 15.7±0.4 kg while CTRL lambs weighed 16.1±0.4 kg. Average daily growth rate was similar between the two groups and ranged from 176±19 to 234 ±24 g/d. The inclusion of Yerba Mate in a pelleted diet increased milk fat, protein and total solids content while it decreased milk lactose content. Further work is required to investigate the mechanisms by which Yerba Mate supplementation affects feed intake and milk composition. PMID:25049648

  14. The MATE1 rs2289669 polymorphism affects the renal clearance of metformin following ranitidine treatment.

    PubMed

    Cho, Sung Kweon; Chung, Jae-Yong

    2016-04-01

    Human multidrug and toxin extrusion member 1 (MATE1, SLC47A1) and Organic Cation Transporter 2 (OCT2, SLC22A2) play important roles in the renal elimination of various pharmacologic agents, including the anti-diabetic drug metformin. The goal of this study was to determine the association between metformin's pharmacokinetics and pharmacodynamics and the genetic variants of MATE1 (rs2289669) and OCT2 (rs316019) before and after treatment with the potential MATE inhibitor, ranitidine. We recruited 26 healthy Koreans balanced across the OCT2 and MATE1 genetic variants, and conducted a prospective clinical trial to investigate their effects on metformin's pharmacokinetics and pharmacodynamics before and after ranitidine treatment. Neither MATE1 rs2289669 nor OCT2 rs316019 affected metformin's pharmacokinetics and pharmacodynamics before ranitidine treatment. However, the renal clearance of metformin was significantly higher (15.2%) after ranitidine treatment in the MATE1 GG group compared with the MATE1 GA + AA group. Only the effect of MATE1 on the renal clearance of metformin after ranitidine treatment was significant (b = -0.465, p ≤ 0.05) after including demographic data and the OCT2 genotype in the model. Our study suggests that MATE1 rs2289669 may be a significant determinant in the renal clearance of metformin in the case of transporter-mediated drug interactions.

  15. Fitness consequences of female multiple mating: A direct test of indirect benefits

    PubMed Central

    2012-01-01

    Background The observation that females mate multiply when males provide nothing but sperm - which sexual selection theory suggests is unlikely to be limiting - continues to puzzle evolutionary biologists. Here we test the hypothesis that multiple mating is prevalent under such circumstances because it enhances female fitness. We do this by allowing female Trinidadian guppies to mate with either a single male or with multiple males, and then tracking the consequences of these matings across two generations. Results Overall, multiply mated females produced 67% more F2 grand-offspring than singly mated females. These offspring, however, did not grow or mature faster, nor were they larger at birth, than F2 grand-offspring of singly mated females. Our results, however, show that multiple mating yields benefits to females in the form of an increase in the production of F1. The higher fecundity among multiply mated mothers was driven by greater production of sons but not daughters. However, contrary to expectation, individually, the offspring of multiply mated females do not grow at different rates than offspring of singly mated females, nor do any indirect fitness benefits or costs accrue to second-generation offspring. Conclusions The study provides strong evidence that multiple mating is advantageous to females, even when males contribute only sperm. This benefit is achieved through an increase in fecundity in the first generation, rather than through other fitness correlates such as size at birth, growth rate, time to sexual maturation and survival. Considered alongside previous work that female guppies can choose to mate with multiple partners, our results provide compelling evidence that direct fitness benefits underpin these mating decisions. PMID:22978442

  16. Mate choice screening in captive solitary carnivores: The role of male behavior and cues on mate preference and paternity in females of a model species, American mink (Neovison vison).

    PubMed

    Noer, Christina Lehmkuhl; Balsby, Thorsten Johannes Skovbjerg; Anistoroaei, Razvan; Stelvig, Mikkel; Dabelsteen, Torben

    2017-12-01

    Mate choice studies suggest that choosy females benefit from increased fecundity, litter size, and offspring survival. Thus, providing females with the opportunity to choose among potential mates, deemed genetically suitable based on studbook data, might improve breeding management in production and zoo animals and thereby the sustainability of captive populations. Investigating mate preference via odor from potential mates before animal transfer is a proposed strategy for incorporating mate choice into breeding management. In this study, we test whether olfactory cues and signals from males can be used to assess and measure female mate preference in American mink. Eighteen females were subjected to a 4-day stimulus test in which females showed a preference for one of two males' urine and feces. Subsequently, each female was subjected to a 10-day mate preference test involving the same two males of the first test. Paternity tests revealed that 13 females had offspring, which could be assigned to only one male, suggesting that these females performed a mate choice. In nine of these females preference during the stimulus test was directed toward the male that fathered their offspring. Our results suggest that even though there was a preference difference in scent stimulus trials from potential mates this preference was not predictive of eventual mate preference or paternity. Other factors such as aspects of male behavior seem to play a role, when the mates are introduced. Our study supports that mate preference and mate choice are complex matters influenced by multiple cues and signals. © 2017 Wiley Periodicals, Inc.

  17. The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis.

    PubMed

    Banks, S C; Ward, S J; Lindenmayer, D B; Finlayson, G R; Lawson, S J; Taylor, A C

    2005-05-01

    Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.

  18. Social induction of maturation and sex determination in a coral reef fish.

    PubMed Central

    Hobbs, Jean-Paul A.; Munday, Philip L.; Jones, Geoffrey P.

    2004-01-01

    Labile maturation and sex determination should be advantageous where the probability of finding a mating partner is unpredictable. Here we tested the hypothesis that the presence of a potential mating partner induces maturation and sex determination in a coral-dwelling fish, Gobiodon erythrospilus. In natural populations at Lizard Island (Great Barrier Reef), single individuals were less likely to be mature than paired individuals and they matured at a larger size, indicating plasticity in the timing of maturation. By manipulating group structure we demonstrated that both the timing of maturation and the sex of maturing individuals are socially controlled. Single juveniles did not mature, but maturation was rapidly induced by the presence of an adult partner. In addition, sex determination was found to be labile, with juveniles maturing into the opposite sex of the partner encountered. To our knowledge, this is the first experimental demonstration of social induction of maturation in conjunction with labile sex determination at maturation in vertebrates. This flexibility enables individuals to maximize their reproductive success in an environment where the timing of mate acquisition and the sex of their future partner are unpredictable. PMID:15475329

  19. Testing for post-copulatory selection for major histocompatibility complex genotype in a semi-free-ranging primate population.

    PubMed

    Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A

    2013-10-01

    A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.

  20. Effect of season on reproductive behaviors and fertilization success in cavies (Cavia aperea).

    PubMed

    Hribal, Romy; Rübensam, Kathrin; Bernhardt, Sandra; Jewgenow, Katarina; Guenther, Anja

    2018-04-05

    Finding the optimal timing for breeding is crucial for small mammals to ensure survival and maximize lifetime reproductive success. Species living in temperate regions therefore often restrict breeding to seasons with favorable food and weather conditions. Although caviomorph rodents such as guinea pigs are described as non-seasonal breeders, a series of recent publications has shown seasonal adaptations in litter size, offspring birth mass and maternal investment. Here, we aim to test if seasonal patterns of litter size variation found in earlier studies, are mediated by seasonal differences in female estrus length, fertilization rate and mating behavior. The female estrus period was longer in fall compared to all other seasons (p < 0.001), frequently lasting 7-9 days while estrus in spring usually lasted less than 2 days. In fall, females mated later during estrus (p < 0.001), resulting in reduced fertilization rates (p < 0.001). Fertilization rate was well above 95% in summer while it dropped to less than 85% in fall and winter. While none of the male mating characteristics such as number and duration of copulations differed across seasons, the number of mating bouts was reduced in fall (p = 0.04). Finally, the developmental stages of flushed embryos were more diverse in spring and summer compared to fall and winter. These results suggest that seasonal differences in fertilization rate and quality of implanted embryos are mediated by female estrus length and timing and intensity of mating behavior. Together, these effects contribute to the observed differences in litter size across seasons. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Reproductive performance of cows after fixed-time artificial insemination with ovulation synchronisation and re-synchrony in southern Australian dairy herds.

    PubMed

    Izzo, M M; Humphris, M; Pryor, L; Perry, A; Morton, J M

    2018-04-01

    To describe reproductive performance of lactating dairy cows after fixed-time artificial insemination (FTAI) with ovulation synchronisation and re-synchrony in Australian dairy herds, and to compare reproductive outcomes with those of conventional mating programs. The study was conducted in two seasonally calving dairy herds in which lactating dairy cows (n = 675) were enrolled into three treatment groups: group 1, oestrus detection and AI for 34 days followed by a natural service period; group 2, FTAI on day 1 followed by re-synchrony of all cows prior to ultrasound pregnancy diagnosis at day 31 and FTAI of cows diagnosed not pregnant at day 34, then a natural service period; group 3, FTAI on day 1 followed by oestrus detection and AI for 34 days, then a natural service period. First-service conception rate (FSCR), 6-week in-calf (6WIC) rate and proportions pregnant at the end of mating were compared using logistic regression with farm fitted as a fixed effect. Times from mating start date to conception were described using survival analysis with Kaplan-Meier failure functions. FSCRs (45.3%, 49.1% and 45.6% for groups 1, 2 and 3, respectively) and proportions pregnant at the end of mating (77.6%, 76.0% and 76.8% for groups 1, 2 and 3, respectively) were similar for all groups. The 6WIC rate in group 2 was similar to that in group 3 (70.4% vs. 67.2%; P = 0.486), but tended to be higher than in group 1 (70.4% vs. 62.0%, P = 0.066). The median days to pregnancy for cows that conceived was 1 day in groups 2 and 3 and 10 days in group 1. Mating plans that use FTAI with ovulation synchronisation and re-synchrony during the AI period can achieve comparable reproductive performance to conventional mating programs in seasonally calving dairy herds. © 2018 Australian Veterinary Association.

  2. Reproductive biology of the Panama graysby Cephalopholis panamensis (Teleostei: Epinephelidae).

    PubMed

    Erisman, B E; Craig, M T; Hastings, P A

    2010-04-01

    The reproductive biology of the Panama graysby Cephalopholis panamensis was studied from collections and behavioural observations made in the Gulf of California from 2001 to 2006. Histological examinations, particularly the identification of gonads undergoing sexual transition, confirmed a protogynous hermaphroditic sexual pattern. The population structure and mating behaviour provided further support for protogyny. Size and age distributions by sex were bimodal, with males larger and older than females and sex ratios biased towards females. Mating groups consisted of a large male and several smaller females, and courtship occurred in pairs during the evening. Results on spawning periodicity and seasonality were incomplete, but histological data, monthly gonado-somatic indices (I(G)) and behavioural observations suggest that adults spawned around the full moon from May to September. Certain aspects of their reproductive biology (e.g. protogyny and low egg production) indicate that C. panamensis is particularly vulnerable to fishing and would benefit from a management policy in Mexico.

  3. Mobility and Navigation among the Yucatec Maya: Sex Differences Reflect Parental Investment, Not Mating Competition.

    PubMed

    Cashdan, Elizabeth; Kramer, Karen L; Davis, Helen E; Padilla, Lace; Greaves, Russell D

    2016-03-01

    Sex differences in range size and navigation are widely reported, with males traveling farther than females, being less spatially anxious, and in many studies navigating more effectively. One explanation holds that these differences are the result of sexual selection, with larger ranges conferring mating benefits on males, while another explanation focuses on greater parenting costs that large ranges impose on reproductive-aged females. We evaluated these arguments with data from a community of highly monogamous Maya farmers. Maya men and women do not differ in distance traveled over the region during the mate-seeking years, suggesting that mating competition does not affect range size in this monogamous population. However, men's regional and daily travel increases after marriage, apparently in pursuit of resources that benefit families, whereas women reduce their daily travel after marriage. This suggests that parental effort is more important than mating effort in this population. Despite the relatively modest overall sex difference in mobility, Maya men were less spatially anxious than women, thought themselves to be better navigators, and pointed more accurately to distant locations. A structural equation model showed that the sex by marital status interaction had a direct effect on mobility, with a weaker indirect effect of sex on mobility mediated by navigational ability.

  4. When sexual meets apomict: genome size, ploidy level and reproductive mode variation of Sorbus aria s.l. and S. austriaca (Rosaceae) in Bosnia and Herzegovina

    PubMed Central

    Hajrudinović, Alma; Siljak-Yakovlev, Sonja; Brown, Spencer C.; Pustahija, Fatima; Bourge, Mickael; Ballian, Dalibor; Bogunić, Faruk

    2015-01-01

    Background and Aims Allopolyploidy and intraspecific heteroploid crosses are associated, in certain groups, with changes in the mating system. The genus Sorbus represents an appropriate model to study the relationships between ploidy and reproductive mode variations. Diploid S. aria and tetraploid apomictic S. austriaca were screened for ploidy and mating system variations within pure and sympatric populations in order to gain insights into their putative causalities. Methods Flow cytometry was used to assess genome size and ploidy level among 380 S. aria s.l. and S. austriaca individuals from Bosnia and Herzegovina, with 303 single-seed flow cytometric seed screenings being performed to identify their mating system. Pollen viability and seed set were also determined. Key Results Flow cytometry confirmed the presence of di-, tri- and tetraploid cytotype mixtures in mixed-ploidy populations of S. aria and S. austriaca. No ploidy variation was detected in single-species populations. Diploid S. aria mother plants always produced sexually originated seeds, whereas tetraploid S. austriaca as well as triploid S. aria were obligate apomicts. Tetraploid S. aria preserved sexuality in a low portion of plants. A tendency towards a balanced 2m : 1p parental genome contribution to the endosperm was shared by diploids and tetraploids, regardless of their sexual or asexual origin. In contrast, most triploids apparently tolerated endosperm imbalance. Conclusions Coexistence of apomictic tetraploids and sexual diploids drives the production of novel polyploid cytotypes with predominantly apomictic reproductive modes. The data suggest that processes governing cytotype diversity and mating system variation in Sorbus from Bosnia and Herzegovina are probably parallel to those in other diversity hotspots of this genus. The results represent a solid contribution to knowledge of the reproduction of Sorbus and will inform future investigations of the molecular and genetic mechanisms involved in triggering and regulating cytotype diversity and alteration of reproductive modes. PMID:26113635

  5. A character demonstrating the occurrence of mating in male Cactoblastis cactorum (Lepidoptera: Pyralidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marti, O.G.; Carpenter, J.E.

    The reproductive system of adult male Cactoblastis cactorum, the cactus moth, was examined to determine whether the mating status of males could be ascertained. In unmated males, the posterior portion of the primary ductus ejaculatorius simplex is opaque yellow in color and contains many small football-shaped hyaline granules 3-5 x 5-10 {mu}m in size. In mated males, the posterior simplex is clear and contains no granules. The presence or absence of these characters was found to be highly reliable and should be of value in determining mating status in marked-recaptured males of this species in a sterile insect release programmore » directed against Cactoblastis. (author)« less

  6. Effect of GnRH treatment on ovarian activity and reproductive performance of low-prolific Rahmani ewes.

    PubMed

    Hashem, N M; El-Azrak, K M; Nour El-Din, A N M; Taha, T A; Salem, M H

    2015-01-15

    This study was designed to evaluate the effect of GnRH treatment during different times of the reproductive cycle on ovarian activity, progesterone (P4) concentration, and subsequent fertility of low-prolific, subtropical, Rahmani ewes during breeding season. Forty-five ewes were synchronized for estrus using a double injection of 0.5 mL of PGF2α agonist (125-μg cloprostenol), 11 days apart. Ewes showing estrus (Day 0) were treated with 1 mL of GnRH agonist (4-μg buserelin) on the day of estrus (GnRH0, n = 12) or 7 days post-mating (GnRH7, n = 10) or on both days (GnRH0+7, n = 11) or not (control, n = 12). Ovarian response to the treatment and diagnosis of pregnancy were ultrasonographically monitored. Also, serum P4 concentration was determined weekly throughout 28 days post-mating. Results showed that neither total number of follicles nor their populations were changed on Day 0 or 7 days post-mating by the GnRH treatment. GnRH treatment on Day 0 or Day 7 post-mating or both days did not enhance ovulation rate compared with the control. The mean numbers of accessory CL increased (P < 0.05) in the GnRH7 group than those in the control and GnRH0 groups, whereas it was intermediate in the GnRH0+7 group. The greatest (P < 0.05) overall mean of serum P4 concentration was for the GnRH7 and GnRH0+7 groups, followed by the GnRH0 and control groups. Serum P4 concentration increased (P < 0.05) on Day 14 post-mating and continued higher (P < 0.05) until Day 28 post-mating in the GnRH7 and GnRH0+7 groups compared with the control. Regardless of the time of GnRH administration, GnRH treatment reduced (P < 0.05) pregnancy loss from Day 40 post-mating to parturition and tended to enhance (P < 0.20) lambing rate compared with the control. In conclusion, a single dose of GnRH at the time of estrus or 7 days post-mating could be used as an effective protocol to decrease pregnancy loss from Day 40 after mating to parturition in low-prolific Rahmani ewes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Sport participation influences perceptions of mate characteristics.

    PubMed

    Schulte-Hostedde, Albrecht I; Eys, Mark A; Emond, Michael; Buzdon, Michael

    2012-02-22

    Sport provides a context in which mate choice can be facilitated by the display of athletic prowess. Previous work has shown that, for females, team sport athletes are more desirable as mates than individual sport athletes and non-participants. In the present study, the perceptions of males and females were examined regarding potential mates based on sport participation. It was predicted that team sport athletes would be more positively perceived than individual sport athletes and non-participants by both males and females. A questionnaire, a photograph, and manipulated descriptions were used to gauge perceptual differences with respect to team sport athletes, individual sport athletes, and extra-curricular club participants for 125 females and 119 males from a Canadian university. Both team and individual sport athletes were perceived as being less lazy, more competitive, and healthier than non-participants by both males and females. Interestingly, females perceived male athletes as more promiscuous than non-athletes, which upholds predictions based on previous research indicating (a) athletes have more sexual partners than non-athletes, and (b) females find athletes more desirable as partners than non-participants. Surprisingly, only males perceived female team sport athletes as more dependable than non-participants, and both team and individual sport athletes as more ambitious. This raises questions regarding the initial hypothesis that male team athletes would be perceived positively by females because of qualities such as the ability to cooperate, likeability, and the acceptance of responsibilities necessary for group functioning. Future studies should examine similar questions with a larger sample size that encompasses multiple contexts, taking into account the role of the social profile of sport in relation to mate choice and perception.

  8. Intrinsic Fluctuations and Driven Response of Insect Swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-09-01

    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data.

  9. Sexual selection and the opportunity cost of free mate choice.

    PubMed

    Apostolou, Menelaos

    2016-06-01

    The model of sexual selection under parental choice has been proposed to account for the control that parents exercise over their children's mating decisions. The present paper attempts to formalize and advance this model with the purpose of providing a better understanding of how parental choice mandates the course of sexual selection. In particular, in the proposed formulation, free mate choice involves an opportunity cost which motivates parents to place their children's mate choices under their control. When they succeed in doing so, they become a significant sexual selection force, as traits that appeal to parents in an in-law are selected and increase in frequency in the population. The degree of parental control over mating, and thus the strength of sexual selection under parental choice, is positively predicted by the size of the opportunity cost of free mate choice. The primary factors that affect the level of opportunity cost vary between society types, affecting the strength of parental choice as a sexual selection force.

  10. No evidence of an MHC-based female mating preference in great reed warblers.

    PubMed

    Westerdahl, Helena

    2004-08-01

    Female mate-choice based on genetic compatibility is an area of growing interest. The major histocompatibility complex (MHC) genes are likely candidates for such mate-choice since these highly polymorphic genes may both increase offspring viability and also provide direct cues for mate-choice. In great reed warblers, females actively choose a breeding partner out of a handful of males that they visit and evaluate; thus, female preference for compatible or heterozygous MHC genes could have evolved. Here, I investigate whether great reed warbler females preferentially mate with males with dissimilar MHC class I alleles or with males that are heterozygous at MHC class I. Despite favourable conditions, a thorough screening method and a large sample size, there was no evidence of an MHC-based female mating preference based on either genetic compatibility or heterozygosity in this population. Power analyses of the data sets revealed that relatively small differences (15% and 8%, respectively) between true and random pairs should have been detected. Copyright 2004 Blackwell Publishing Ltd

  11. Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle.

    PubMed

    House, Clarissa M; Sharma, M D; Okada, Kensuke; Hosken, David J

    2016-10-01

    Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male-male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male-male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

  12. Weighing costs and benefits of mating in bushcrickets (Insecta: Orthoptera: Tettigoniidae), with an emphasis on nuptial gifts, protandry and mate density

    PubMed Central

    2012-01-01

    Sexual selection is a major force driving evolution and is intertwined with ecological factors. Differential allocation of limited resources has a central role in the cost of reproduction. In this paper, I review the costs and benefits of mating in tettigoniids, focussing on nuptial gifts, their trade-off with male calling songs, protandry and how mate density influences mate choice. Tettigoniids have been widely used as model systems for studies of mating costs and benefits; they can provide useful general insights. The production and exchange of large nuptial gifts by males for mating is an important reproductive strategy in tettigoniids. As predicted by sexual selection theory spermatophylax size is condition dependent and is constrained by the need to invest in calling to attract mates also. Under some circumstances, females benefit directly from the nuptial gifts by an increase in reproductive output. However, compounds in the nuptial gift can also benefit the male by prolonging the period before the female remates. There is also a trade-off between adult male maturation and mating success. Where males mature before females (protandry) the level of protandry varies in the direction predicted by sperm competition theory; namely, early male maturation is correlated with a high level of first inseminations being reproductively successful. Lastly, mate density in bushcrickets is an important environmental factor influencing the behavioural decisions of individuals. Where mates are abundant, individuals are more choosey of mates; when they are scarce, individuals are less choosey. This review reinforces the view that tettigoniids provide excellent models to test and understand the economics of matings in both sexes. PMID:22894685

  13. Evolution of the Bipolar Mating System of the Mushroom Coprinellus disseminatus From Its Tetrapolar Ancestors Involves Loss of Mating-Type-Specific Pheromone Receptor Function

    PubMed Central

    James, Timothy Y.; Srivilai, Prayook; Kües, Ursula; Vilgalys, Rytas

    2006-01-01

    Mating incompatibility in mushroom fungi is controlled by the mating-type loci. In tetrapolar species, two unlinked mating-type loci exist (A and B), whereas in bipolar species there is only one locus. The A and B mating-type loci encode homeodomain transcription factors and pheromones and pheromone receptors, respectively. Most mushroom species have a tetrapolar mating system, but numerous transitions to bipolar mating systems have occurred. Here we determined the genes controlling mating type in the bipolar mushroom Coprinellus disseminatus. Through positional cloning and degenerate PCR, we sequenced both the transcription factor and pheromone receptor mating-type gene homologs from C. disseminatus. Only the transcription factor genes segregate with mating type, discounting the hypothesis of genetic linkage between the A and B mating-type loci as the causal origin of bipolar mating behavior. The mating-type locus of C. disseminatus is similar to the A mating-type locus of the model species Coprinopsis cinerea and encodes two tightly linked pairs of homeodomain transcription factor genes. When transformed into C. cinerea, the C. disseminatus A and B homologs elicited sexual reactions like native mating-type genes. Although mating type in C. disseminatus is controlled by only the transcription factor genes, cellular functions appear to be conserved for both groups of genes. PMID:16461425

  14. Pest persistence and eradication conditions in a deterministic model for sterile insect release.

    PubMed

    Gordillo, Luis F

    2015-01-01

    The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.

  15. Effects of diets supplemented by fish oil on sex ratio of pups in bitch.

    PubMed

    Gharagozlou, Faramarz; Youssefi, Reza; Akbarinejad, Vahid

    2016-01-01

    The present study was conducted to evaluate the effect of fish oil supplementation prior to mating on secondary sex ratio of pups (the proportion of males at birth) in bitches. Sixty five bitches (German Shepherd, n = 35; Husky, n = 30) were enrolled in the study. Bitches (140-150 days post-estrus) were given 2% per dry matter intake palm oil and fish oil in the control (n = 33) and treatment (n = 32) groups, respectively. To induce estrus, bitches were received equine chorionic gonadotropin (eCG) administration (50 IU kg(-1)) 30 days after nutritional supplementation followed by human chorionic gonadotropin (hCG) administration (500 IU per dog) seven days later. Bitches were introduced to dogs of the same breed after hCG administration. The weight of bitches was increased over time (p < 0.05), but their weight change was not different between two groups (p > 0.05). The mating rate, pregnancy rate and litter size were not influenced by treatment and breed. Secondary sex ratio was higher in the treatment (105/164; 64.00%) than in the control (68/147; 46.30%) group (p < 0.05; adjusted odds ratio = 2.068). Moreover, secondary sex ratio was higher in Husky bitches (88/141; 62.40%) compared to German Shepherd (85/170; 50.00%; p < 0.05; adjusted odds ratio = 1.661). In conclusion, the present study showed that inclusion of fish oil in the diet of bitches prior to mating could increase the proportion of male pups at birth. In addition, it appears that there might be variation among dog breeds with regard to the sex ratio of offspring.

  16. Effects of diets supplemented by fish oil on sex ratio of pups in bitch

    PubMed Central

    Gharagozlou, Faramarz; Youssefi, Reza; Akbarinejad, Vahid

    2016-01-01

    The present study was conducted to evaluate the effect of fish oil supplementation prior to mating on secondary sex ratio of pups (the proportion of males at birth) in bitches. Sixty five bitches (German Shepherd, n = 35; Husky, n = 30) were enrolled in the study. Bitches (140-150 days post-estrus) were given 2% per dry matter intake palm oil and fish oil in the control (n = 33) and treatment (n = 32) groups, respectively. To induce estrus, bitches were received equine chorionic gonadotropin (eCG) administration (50 IU kg-1) 30 days after nutritional supplementation followed by human chorionic gonadotropin (hCG) administration (500 IU per dog) seven days later. Bitches were introduced to dogs of the same breed after hCG administration. The weight of bitches was increased over time (p < 0.05), but their weight change was not different between two groups (p > 0.05). The mating rate, pregnancy rate and litter size were not influenced by treatment and breed. Secondary sex ratio was higher in the treatment (105/164; 64.00%) than in the control (68/147; 46.30%) group (p < 0.05; adjusted odds ratio = 2.068). Moreover, secondary sex ratio was higher in Husky bitches (88/141; 62.40%) compared to German Shepherd (85/170; 50.00%; p < 0.05; adjusted odds ratio = 1.661). In conclusion, the present study showed that inclusion of fish oil in the diet of bitches prior to mating could increase the proportion of male pups at birth. In addition, it appears that there might be variation among dog breeds with regard to the sex ratio of offspring. PMID:27482354

  17. Reproductive biology of the great capricorn beetle, Cerambyx cerdo (Coleoptera: Cerambycidae): a protected but occasionally harmful species.

    PubMed

    Torres-Vila, L M

    2017-12-01

    Cerambyx cerdo (Cc) is a protected saproxylic beetle in Europe, although it is increasingly reported as an oak 'pest'. Cc ecological features are relatively well known, but, its reproductive biology is still poorly understood. Hence, we investigated the reproductive traits of Cc under laboratory conditions. In females, body length was 44.1 ± 0.9 mm, 28-53 (mean ± SE, range); fecundity 143 ± 11 eggs, 33-347; fertility 78 ± 1%, 65-93; oviposition period 44 ± 3 days, 13-128 and longevity 59 ± 5 days, 16-157. Fecundity was positively correlated with female size, longevity and oviposition period. Daily fecundity was 3.5 ± 0.2 eggs/day, 0.9-6.5 showing a fluctuating synovigenic pattern with a slight decreasing trend over time. Egg length was 3.74 ± 0.01 mm, 2.3-6.0 and egg volume 5.45 ± 0.04 mm3, 2.4-9.6. Egg size was correlated with female size, but, the relative size of eggs was larger in smaller females. Incubation time was 13.5 ± 0.1 days, 7-28. Hatching was superior in larger eggs and neonate size was positively correlated to egg volume. Females were polyandrous (up to 19 matings), but, multiple mating did not enhance fecundity or fertility. In males, body length was 41.8 ± 0.8 mm, 29-53 and longevity 49 ± 3 days, 9-124. Male longevity was unrelated to body size. Males were polygynous (up to 16 matings) and mating number did not affect male longevity. Overall, females were larger and lived longer than males. Cc reproductive traits are compared with those other Cerambycidae, especially with the congeneric pest Cerambyx welensii. Our data may be valuable to improve the protection/management measures of Cc in dehesa woodlands and other oak forests.

  18. Control of social monogamy through aggression in a hermaphroditic shrimp

    PubMed Central

    2011-01-01

    Introduction Sex allocation theory predicts that in small mating groups simultaneous hermaphroditism is the optimal form of gender expression. Under these conditions, male allocation is predicted to be very low and overall per-capita reproductive output maximal. This is particularly true for individuals that live in pairs, but monogamy is highly susceptible to cheating by both partners. However, certain conditions favour social monogamy in hermaphrodites. This study addresses the influence of group size on group stability and moulting cycles in singles, pairs, triplets and quartets of the socially monogamous shrimp Lysmata amboinensis, a protandric simultaneous hermaphrodite. Results The effect of group size was very strong: Exactly one individual in each triplet and exactly two individuals in each quartet were killed in aggressive interactions, resulting in group sizes of two individuals. All killed individuals had just moulted. No mortality occurred in single and pair treatments. The number of moults in the surviving shrimp increased significantly after changing from triplets and quartets to pairs. Conclusion Social monogamy in L. amboinensis is reinforced by aggressive expulsion of supernumerous individuals. We suggest that the high risk of mortality in triplets and quartets results in suppression of moulting in groups larger than two individuals and that the feeding ecology of L. amboinensis favours social monogamy. PMID:22078746

  19. Control of social monogamy through aggression in a hermaphroditic shrimp.

    PubMed

    Wong, Janine Wy; Michiels, Nico K

    2011-11-11

    Sex allocation theory predicts that in small mating groups simultaneous hermaphroditism is the optimal form of gender expression. Under these conditions, male allocation is predicted to be very low and overall per-capita reproductive output maximal. This is particularly true for individuals that live in pairs, but monogamy is highly susceptible to cheating by both partners. However, certain conditions favour social monogamy in hermaphrodites. This study addresses the influence of group size on group stability and moulting cycles in singles, pairs, triplets and quartets of the socially monogamous shrimp Lysmata amboinensis, a protandric simultaneous hermaphrodite. The effect of group size was very strong: Exactly one individual in each triplet and exactly two individuals in each quartet were killed in aggressive interactions, resulting in group sizes of two individuals. All killed individuals had just moulted. No mortality occurred in single and pair treatments. The number of moults in the surviving shrimp increased significantly after changing from triplets and quartets to pairs. Social monogamy in L. amboinensis is reinforced by aggressive expulsion of supernumerous individuals. We suggest that the high risk of mortality in triplets and quartets results in suppression of moulting in groups larger than two individuals and that the feeding ecology of L. amboinensis favours social monogamy.

  20. Plasma Testosterone Levels Increase with Expression of Male Ornaments During Mating, but not Incubation, in Japanese Barn Swallows.

    PubMed

    Hasegawa, Masaru; Arai, Emi; Sato, Megumi; Sakai, Hidetsugu

    2017-08-01

    Recent experimental studies involving the manipulation of sexual traits have demonstrated that sexual trait expression feeds back to testosterone levels, perhaps via social interactions, reinforcing the linkage between sexual trait expression and testosterone levels during the mating period. However, information on this reinforcement under the natural variation of sexual traits remains limited. Using Japanese barn swallows, Hirundo rustica gutturalis, in which extra-pair paternity is quite rare (< 3%), we studied the relationship between plasma testosterone level and a male sexual trait, throat patch size, during the mating and incubation periods. Given the importance of social interaction, we predicted that this relationship should be intense during the mating period, but not the incubation period, due to reduced social interaction during the latter. We found low plasma testosterone levels during the incubation period compared with those in the mating period, and plasma testosterone levels were significantly positively related to throat patch area during the mating period, but not the incubation period. Similar relationships were found in another sexual trait, the size of white tail spots. During the incubation period, body condition, instead of male sexual trait expression, was negatively related to plasma testosterone level, indicating that an intrinsic link, rather than reinforcement, is important during this period. These relationships are consistent with the hypothesis that social interaction reinforces the relationship between sexual traits and plasma testosterone levels. The current study provides evidence for a highly variable relationship between testosterone and ornamentation across breeding periods in the natural variation of sexual traits.

  1. Benefits of Group Living Include Increased Feeding Efficiency and Lower Mass Loss during Desiccation in the Social and Inbreeding Spider Stegodyphus dumicola

    PubMed Central

    Vanthournout, Bram; Greve, Michelle; Bruun, Anne; Bechsgaard, Jesper; Overgaard, Johannes; Bilde, Trine

    2016-01-01

    Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment, and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments. PMID:26869936

  2. The food processing contaminant glyoxal promotes tumour growth in the multiple intestinal neoplasia (Min) mouse model.

    PubMed

    Svendsen, Camilla; Høie, Anja Hortemo; Alexander, Jan; Murkovic, Michael; Husøy, Trine

    2016-08-01

    Glyoxal is formed endogenously and at a higher rate in the case of hyperglycemia. Glyoxal is also a food processing contaminant and has been shown to be mutagenic and genotoxic in vitro. The tumourigenic potential of glyoxal was investigated using the multiple intestinal neoplasia (Min) mouse model, which spontaneously develops intestinal tumours and is susceptible to intestinal carcinogens. C57BL/6J females were mated with Min males. Four days after mating and throughout gestation and lactation, the pregnant dams were exposed to glyoxal through drinking water (0.0125%, 0.025%, 0.05%, 0.1%) or regular tap water. Female and male offspring were housed separately from PND21 and continued with the same treatment. One group were only exposed to 0.1% glyoxal from postnatal day (PND) 21. There was no difference in the number of intestinal tumours between control and treatment groups. However, exposure to 0.1% glyoxal starting in utero and at PND21 caused a significant increase in tumour size in the small intestine for male and female mice in comparison with respective control groups. This study suggests that glyoxal has tumour growth promoting properties in the small intestine in Min mice. Copyright © 2016 Norwegian Institute of Public Health. Published by Elsevier Ltd.. All rights reserved.

  3. International migration and educational assortative mating in Mexico and the United States.

    PubMed

    Choi, Kate H; Mare, Robert D

    2012-05-01

    This paper examines the relationship between migration and marriage by describing how the distributions of marital statuses and assortative mating patterns vary by individual and community experiences of migration. In Mexico, migrants and those living in areas with high levels of out-migration are more likely to be in heterogamous unions. This is because migration increases the relative attractiveness of single return migrants while disproportionately reducing the number of marriageable men in local marriage markets. In the United States, the odds of homogamy are lower for migrants compared with nonmigrants; however, they do not vary depending on the volume of migration in communities. Migrants are more likely than nonmigrants to "marry up" educationally because the relatively small size of this group compels them to expand their pool of potential spouses to include nonmigrants, who tend to be better educated than they are. Among migrants, the odds of marrying outside of one's education group increase the most among the least educated. In Mexican communities with high rates of out-migration, the odds of marrying outside of one's education group are highest among those with the highest level of education. These findings suggest that migration disrupts preferences and opportunities for homogamy by changing social arrangements and normative climates.

  4. International Migration and Educational Assortative Mating in Mexico and the United States

    PubMed Central

    Mare, Robert D.

    2014-01-01

    This paper examines the relationship between migration and marriage by describing how the distributions of marital statuses and assortative mating patterns vary by individual and community experiences of migration. In Mexico, migrants and those living in areas with high levels of out-migration are more likely to be in heterogamous unions. This is because migration increases the relative attractiveness of single return migrants while disproportionately reducing the number of marriageable men in local marriage markets. In the United States, the odds of homogamy are lower for migrants compared with nonmigrants; however, they do not vary depending on the volume of migration in communities. Migrants are more likely than nonmigrants to “marry up” educationally because the relatively small size of this group compels them to expand their pool of potential spouses to include nonmigrants, who tend to be better educated than they are. Among migrants, the odds of marrying outside of one’s education group increase the most among the least educated. In Mexican communities with high rates of out-migration, the odds of marrying outside of one’s education group are highest among those with the highest level of education. These findings suggest that migration disrupts preferences and opportunities for homogamy by changing social arrangements and normative climates. PMID:22419447

  5. Population size and relatedness affect fitness of a self-incompatible invasive plant.

    PubMed

    Elam, Diane R; Ridley, Caroline E; Goodell, Karen; Ellstrand, Norman C

    2007-01-09

    One of the lingering paradoxes in invasion biology is how founder populations of an introduced species are able to overcome the limitations of small size and, in a "reversal of fortune," proliferate in a new habitat. The transition from colonist to invader is especially enigmatic for self-incompatible species, which must find a mate to reproduce. In small populations, the inability to find a mate can result in the Allee effect, a positive relationship between individual fitness and population size or density. Theoretically, the Allee effect should be common in founder populations of self-incompatible colonizing species and may account for the high rate of failed introductions, but little supporting evidence exists. We created a field experiment to test whether the Allee effect affects the maternal fitness of a self-incompatible invasive species, wild radish (Raphanus sativus). We created populations of varying size and relatedness. We measured maternal fitness in terms of both fruit set per flower and seed number per fruit. We found that both population size and the level of genetic relatedness among individuals influence maternal reproductive success. Our results explicitly define an ecological genetic obstacle faced by populations of an exotic species on its way to becoming invasive. Such a mechanistic understanding of the invasions of species that require a mate can and should be exploited for both controlling current outbreaks and reducing their frequency in the future.

  6. Estrus synchronization in sheep with synthetic progestagens.

    PubMed

    Awel, Hayatu; Eshetu, Lisanework; Tadesse, Gebrehiwot; Birhanu, Alemselam; Khar, S K

    2009-10-01

    Sixteen female sheep of Degua breed were assigned to receive either the full dose of norgestomet ear implant and injectable solution containing norgestomet and estradiol valerate (n = 8) or half the dose (n = 8). The ear implants were removed in both groups on day 12. All ewes received an intramuscular administration of 500 IU PMSG at implant withdrawal. Synchronized ewes were individually hand mated twice at 48 and 60 hours after implant removal. One ewe in each group however refused mating on both occasions. Pregnancy diagnosis was conducted by bimanual external palpation 90 to 100 days post mating. The conception rates (3/7, 42.85%) and (5/7, 71.42%) were recorded in the two treatment groups, respectively. All eight ewes lambed between 145 to 153 days post mating. In group I ewes carried only singletons (prolificity rate 1.0) whereas in group II two ewes delivered twins, producing 7 lambs with prolificity rate of 1.4 (N.S). From this preliminary investigation it appears that the lower dose of norgestomet ear implants offers better option for estrus synchronization accompanied by higher fertility.

  7. Validation of Bateman's principles: a genetic study of sexual selection and mating patterns in the rough-skinned newt.

    PubMed Central

    Jones, Adam G; Arguello, J Roman; Arnold, Stevan J

    2002-01-01

    Few studies have influenced thought on the nature of sexual selection to the extent of the classic paper of A. J. Bateman on mating patterns in Drosophila. However, interpretation of his study remains controversial, and a lack of modern empirical evidence prevents a consensus with respect to the perceived utility of Bateman's principles in the study of sexual selection. Here, we use a genetic study of natural mating patterns in the rough-skinned newt, Taricha granulosa, to investigate the concordance between Bateman's principles and the intensity of sexual selection. We found that males experienced strong sexual selection on tail height and body size, while sexual selection was undetectable in females. This direct quantification of sexual selection agreed perfectly with inferences that are based on Bateman's principles. Specifically, males (in comparison with females) exhibited greater standardized variances in reproductive and mating success, as well as a stronger relationship between mating success and reproductive success. Overall, our results illustrate that Bateman's principles provide the only quantitative measures of the mating system with explicit connections to formal selection theory and should be the central focus of studies of mating patterns in natural populations. PMID:12573067

  8. Sexual selection and mating chronology of Lesser Prairie-Chickens

    USGS Publications Warehouse

    Behney, Adam C.; Grisham, Blake A.; Boal, Clint W.; Whitlaw, Heather A.; Haukos, David A.

    2012-01-01

    Little is known about mate selection and lek dynamics of Lesser Prairie-Chickens (Tympanuchus pallidicinctus). We collected data on male territory size and location on leks, behavior, and morphological characteristics and assessed the importance of these variables on male Lesser Prairie-Chicken mating success during spring 2008 and 2009 in the Texas Southern High Plains. We used discrete choice models and found that males that were less idle were chosen more often for mating. Our results also suggest that males with smaller territories obtained more copulations. Morphological characteristics were weaker predictors of male mating success. Peak female attendance at leks occurred during the 1-week interval starting 13 April during both years of study. Male prairie-chickens appear to make exploratory movements to, and from, leks early in the lekking season; 13 of 19 males banded early (23 Feb–13 Mar) in the lekking season departed the lek of capture and were not reobserved (11 yearlings, 2 adults). Thirty-three percent (range  =  26–51%) of males on a lek mated (yearlings  =  44%, adults  =  20%) and males that were more active experienced greater mating success.

  9. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding.

    PubMed

    Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu

    Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition.

  10. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding

    PubMed Central

    Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu

    2016-01-01

    Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition. PMID:27655156

  11. Impact of cold ischemia time on the outcomes of kidneys with Kidney Donor Profile Index ≥85%: mate kidney analysis - a retrospective study.

    PubMed

    Sampaio, Marcelo S; Chopra, Bhavna; Tang, Amy; Sureshkumar, Kalathil K

    2018-07-01

    The new kidney allocation system recommends local and regional sharing of deceased donor kidneys (DDK) with 86-100% Kidney Donor Profile Index (KDPI) to minimize discard. Regional sharing can increase cold ischemia time (CIT) which may negatively impact transplant outcomes. Using a same donor mate kidney model, we aimed to define a CIT that should be targeted to optimize outcomes. Using Organ Procurement and Transplant Network/United Network for Organ Sharing database, we identified recipients of DDK from 2000 to 2013 with ≥85% KDPI. From this cohort, three groups of mate kidney recipients were identified based on CIT: group 1 (≥24 vs. ≥12 to <24 h), group 2 (≥24 vs. <12 h), and group 3 (≥12 to <24 vs. <12 h). Adjusted delayed graft function (DGF), and graft and patient survivals were compared for mate kidneys. DGF risk was significantly lower for patients with CIT <12 vs. ≥24 h in group 2 (adjusted OR: 0.25, 95% CI: 0.12-0.57, P < 0.001) while trending lower for CIT ≥12 to <24 vs. ≥24 h in group 1 (adjusted OR: 0.78, 95% CI: 0.59-1.03, P = 0.08) and CIT <12 vs. ≥12 to <24 h in group 3 (adjusted OR: 0.74, 95% CI: 0.55-1.0, P = 0.05). Adjusted graft and patient survivals were similar between mate kidneys in all groups. Minimizing CIT improves outcomes with regional sharing of marginal kidneys. © 2018 Steunstichting ESOT.

  12. Effect of pregnancy and embryonic mortality on milk production in dromedary camels (Camelus dromedarius).

    PubMed

    Nagy, P; Faigl, V; Reiczigel, J; Juhasz, J

    2015-02-01

    The main objective of the present study was to compare milk production in pregnant versus nonpregnant dromedary camels. In addition, we described the effect of embryonic mortality on lactation and measured serum progesterone levels until d 60 to 90 of gestation. Twenty-five multiparous camels were selected in midlactation for 2 studies in consecutive years. Camels were mated naturally when the size of the dominant follicle reached 1.2 to 1.5cm. Pregnancy was diagnosed by ultrasonography and progesterone determination. In the first experiment (Exp 1), 8 of 11 animals conceived at 284±21.5d postpartum. Three pregnant dromedaries were given PGF2α to induce luteolysis and pregnancy loss on d 62 and spontaneous embryonic loss was detected in 2 camels (on d 27 and 60). Animals were allotted to 3 groups retrospectively: nonpregnant camels (group 1, n=4), pregnant camels (group 2; n=3), and camels with embryonic loss after d 55 (group 3; n=4). In the second study (Exp 2), 14 dromedaries were mated during midlactation. Seven of them failed to conceive (group 1) and 7 became pregnant (group 2). No embryonic loss was detected in Exp 2. Turning points in milk production were identified by change point analysis. In nonpregnant dromedaries (group 1), milk decreased slowly over time without significant change point. In pregnant camels (group 2), a gradual decline until 4 wk after mating was followed by a sudden drop, and the change point model resulted in one breakpoint at d 28±7 and 35±3 of gestation in Exp 1 and Exp 2, respectively. In camels with embryonic mortality (group 3, Exp 1), milk yield started to decline similarly as in pregnant animals, but milk production increased gradually after embryonic loss and reached similar levels as in their nonpregnant herdmates. Change point analysis for group 3 resulted in 2 turning points at 30±4 and 48±4d after conception. Mean length of lactation was shorter by 230 (34.2%) and by 249d (37.6%) and mean total lactation production was decreased by 1,532 (31.6%) and 2,151 kg (44.3%) in pregnant compared with nonpregnant camels in Exp 1 and Exp 2, respectively. We concluded that the calving interval can be shortened by mating during midlactation. However, pregnancy has a strong negative effect on milk production as dromedaries stop lactating by the fourth month of gestation. Following embryonic mortality within 3mo of conception, milk production is restored. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Competitive growth, energy allocation, and host modification in the acanthocephalan Acanthocephalus dirus: field data.

    PubMed

    Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C

    2017-01-01

    The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.

  14. Heterozygous Inverdale ewes show increased ovulation rate sensitivity to pre-mating nutrition.

    PubMed

    Demmers, K J; Smaill, B; Davis, G H; Dodds, K G; Juengel, J L

    2011-01-01

    This study aimed to determine whether ewes heterozygous (I+) for the Inverdale mutation of the bone morphogenetic protein-15 (BMP15) gene with high natural ovulation rate (OR) show similar sensitivity to nutritional manipulation as non-carriers (++). Increasing pre-mating nutrition results in OR increases in sheep, but whether this effect occurs in ewes with naturally high OR is unknown. Over 2 years, I+ or ++ ewes were given high (ad libitum) or control (maintenance) pasture allowances for 6 weeks prior to mating at a synchronised oestrus, with OR measured 8 days later. The high group increased in weight compared with controls (+5.84kg; P<0.01), accompanied by increased OR (+19%; P<0.01). As well as having higher OR (+45%; P<0.01), I+ ewes responded to increased feed with a larger proportional increase in OR (+27%; P<0.01) compared with the response in ++ ewes (+11%; P<0.05), suggesting an interaction between BMP15 levels and nutritional signals in the follicle to control OR. Although litter size increases only tended to significance (+12%; P=0.06), extra feed resulted in over 50% of I+ ewes giving birth to more than three lambs, compared with 20-31% of I+ ewes on maintenance rations. This information can guide feed management of prolific Inverdale ewes prior to breeding.

  15. Male but not female olfaction is crucial for intermolt mating in European lobsters (Homarus gammarus L.).

    PubMed

    Skog, Malin

    2009-02-01

    Chemical signals are common in most crustacean social interactions and are often perceived via chemosensory (olfactory) organs on the first antenna. Intermolt courtship behaviors and mating were investigated in size-matched pairs of intermolt European lobsters (Homarus gammarus) where the olfactory receptors of either the male or the female were lesioned with distilled water (olfactory ablation) or seawater (control). Matings or advanced male courtship behaviors (mounting and turning) were common in seawater controls and olfactory-ablated females. In contrast, when male olfaction was ablated with distilled water, there was not a single mating, and the only male courtship behaviors seen were a few very brief and unsuccessful mounting attempts. Individual females mated up to 5 times with different males, showing that previously inseminated females were still attractive to males. Thus, male but not female olfaction is crucial for intermolt mating in H. gammarus, indicating the presence of a female sex pheromone during the entire female molt cycle, not only at the time of molting. Female sex discrimination may be based on other cues from the male in combination with typical male behaviors.

  16. Plasma concentrations of cortisol and PGF2α metabolite in Danish sows during mating, and intrauterine and conventional insemination

    PubMed Central

    Norrby, Mattias; Madsen, Mads T; Alexandersen, Charlotte Borg; Kindahl, Hans; Madej, Andrzej

    2007-01-01

    Background The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Methods Thirty three crossbred sows (Danish Landrace × Danish Large White) were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group) and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Results Cortisol concentrations increased in all groups but Boar-group (n = 8) had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8). In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8) showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively) had a 2.5-fold increase in PG-metabolite 15 minutes after service. Conclusion In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating. PMID:18053237

  17. Plasma concentrations of cortisol and PGF2alpha metabolite in Danish sows during mating, and intrauterine and conventional insemination.

    PubMed

    Norrby, Mattias; Madsen, Mads T; Alexandersen, Charlotte Borg; Kindahl, Hans; Madej, Andrzej

    2007-12-05

    The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Thirty three crossbred sows (Danish Landrace x Danish Large White) were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group) and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Cortisol concentrations increased in all groups but Boar-group (n = 8) had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8). In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8) showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively) had a 2.5-fold increase in PG-metabolite 15 minutes after service. In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating.

  18. Variation in pre- and post-copulatory sexual selection on male genital size in two species of lygaeid bug.

    PubMed

    Dougherty, Liam R; Shuker, David M

    Sexual selection has been shown to be the driving force behind the evolution of the sometimes extreme and elaborate genitalia of many species. Sexual selection may arise before and/or after mating, or vary according to other factors such as the social environment. However, bouts of selection are typically considered in isolation. We measured the strength and pattern of selection acting on the length of the male intromittent organ (or processus) in two closely related species of lygaeid seed bug: Lygaeus equestris and Lygaeus simulans . In both species, we measured both pre- and post-copulatory selection. For L. equestris , we also varied the experimental choice design used in mating trials. We found contrasting pre- and post-copulatory selection on processus length in L. equestris . Furthermore, significant pre-copulatory selection was only seen in mating trials in which two males were present. This selection likely arises indirectly due to selection on a correlated trait, as the processus does not interact with the female prior to copulation. In contrast, we were unable to detect significant pre- or post-copulatory selection on processus length in L. simulans . However, a formal meta-analysis of previous estimates of post-copulatory selection on processus length in L. simulans suggests that there is significant stabilising selection across studies, but the strength of selection varies between experiments. Our results emphasise that the strength and direction of sexual selection on genital traits may be multifaceted and can vary across studies, social contexts and different stages of reproduction. Animal genitalia vary greatly in size and complexity across species, and selection acting on genital size and shape can be complex. In this study, we show that the length of the penis in two species of seed bug is subject to complex patterns of selection, varying depending on the social context and whether selection is measured before or after mating. In one of the species, we show unexpectedly that penis length is correlated with male mating success, despite the fact that the penis does not interact with the female prior to mating. Our results highlight the fact that genitalia may be subject to both direct and indirect selection at different stages of mating and that to fully understand the evolution of such traits we should combine estimates of selection arising from these multiple episodes.

  19. Hyla chrysoscelis (Cope’s gray treefrog) x Hyla cinerea (green treefrog): putative natural hybrid

    USGS Publications Warehouse

    Glorioso, Brad M.; Waddle, J. Hardin; Jenkins, Jill A.; Olivier, Heather M.; Layton, Rebekah R.

    2015-01-01

    Naturally–occurring hybrid treefrogs have been occasionally found in the eastern United States. However, these hybrids are almost always between members of the same species group. On 10 Jun 2014, at 2145 h, we located an individual making an unusual advertisement call along Bayou Manual Road in Sherburne Wildlife Management Area in the Atchafalaya Basin of south-central Louisiana, USA, and brought it back to the laboratory for further study. Physically, the treefrog appeared intermediate between a Green Treefrog and a Cope’s Gray Treefrog, which are members of different species groups. Call analysis also showed the individual to be intermediate between the two putative parental species. Flow cytometry was used to estimate the total genome size from nuclei of whole blood cells, and also determined the individual to be intermediate of the putative parental species. Despite vocalizing for mates, the hybrid did not appear to have viable spermatozoa, and was likely the result of an anomalous mis-mating event between a male Cope’s Gray Treefrog and a female Green Treefrog. To our knowledge, natural hybrids between a Cope’s Gray Treefrog and a Green Treefrog have not been previously reported.

  20. Effects of Cyclic Feeding and Starvation, Mating, and Sperm Condition on Egg Production and Fertility in the Common Bed Bug (Hemiptera: Cimicidae).

    PubMed

    Matos, Yvonne K; Osborne, Jason A; Schal, Coby

    2017-11-07

    Bed bugs (Cimex lectularius L.) are now endemic in most major cities, but information regarding their basic biology is still largely based on research done over four decades ago. We investigated the effects of starvation, mating, sperm storage, and female and male age on egg production and hatch. Egg production cycles varied with the number of bloodmeals that females received. Once-mated females fed every 5 d had constant egg production for ∼75 d followed by a monotonic decline to near zero. Percentage egg hatch was high and constant, but declined after ∼30 d to near zero. To determine whether the age of the female, male, or sperm affected these patterns, we mated newly eclosed females to 60-d-old virgin males, 60-d-old mated males, or newly eclosed males. Females produced the most eggs when mated to young males, followed by old mated males, and then old virgin males; percentage hatch followed a similar pattern, suggesting that sperm stored within males for long was deficient. To examine effects of sperm stored within females, we mated newly eclosed females, starved them for 30 or 60 d, then fed them every 5 d. The 60-d starved group produced fewer eggs than the 30-d starved group, and both produced fewer eggs than young females mated to old or young males. Longer periods of sperm storage within females caused lower corresponding percentage hatch. These findings indicate egg production and hatch are governed by complex interactions among female and male age, frequency of feeding and mating, and sperm condition. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Reduced ovulation rate, failure to be mated and fertilization failure/embryo loss are the underlying causes of poor reproductive performance in juvenile ewes.

    PubMed

    Edwards, Sara J; Smaill, Bronwyn; O'Connell, Anne R; Johnstone, Peter D; Stevens, David R; Quirke, Laurel D; Farquhar, Philip A; Juengel, Jennifer L

    2016-04-01

    A ewe that is mated as a juvenile (producing a lamb at 1 year of age) will produce an average of only 0.6 lambs to weaning, compared to an average of 1.2 lambs in adult ewes. Understanding the underlying causes of this low reproductive efficiency and designing methods to improve or mitigate these effects could potentially increase adoption of mating juvenile ewes. In Experiment 1, 2 Cohorts of ewes, born a year apart, were mated in order to lamb at 1 and 2 years of age and the performance of the ewes at each age was compared. Onset of puberty, mating by the fertile ram, ovulation rate, early pregnancy (day 30-35) litter size, number of lambs born and number of lambs weaned were measured. In juvenile ewes, by day 35 of pregnancy, 43% of ova had failed to become a viable embryo and this early loss was the largest contributor to the poor reproductive performance observed. Compared with young adult ewes, ovulation rate was lower (p<0.001), fewer ova were exposed to sperm (p<0.001) and fertilization failure/embryo loss was increased (p<0.001) in juveniles. In Experiment 2, the early pregnancy litter size of juveniles was shown to be greater (p<0.001) in those ewes with a greater ovulation rate (p<0.001). Attaining puberty prior to introduction of the fertile ram was associated with an increased pregnancy rate (p<0.001). In juvenile ewes, failure to mate with the ram, lower ovulation rate and increased fertilisation failure/embryo loss underlie their poor reproductive performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temporal variation in the mating structure of Sanday, Orkney Islands.

    PubMed

    Brennan, E R; Relethford, J H

    1983-01-01

    Pedigree and vital statistics data from the population of Sanday, Orkney Islands, Scotland, were used to assess temporal changes in population structure. Secular trends in patterns of mate choice were analysed for three separate birth cohorts of spouses: 1855-1884, 1885-1924 and 1925-1964. The degree to which mating was random or assortative with respect to both genealogical and geographic distance was determined by comparing average characteristics of all potential mates of married males with those of actual wives. We integrated this procedure, originally developed by Dyke (1971), into a three-fold investigation of population structure: (1) comparison of random and non-random components of relatedness as measured from pedigree data; (2) an analysis of marital distance distributions for actual and potential mates of married males; and (3) the relationship between genealogical relatedness and geographic distance. As population size decreased from 1881 to the present, total kinship and spatial distances between spouses increased. Whereas the random component of relatedness increased over time, consanguinity avoidance was sufficient to decrease the total coefficient of kinship over time. Part of the increase in consanguinity avoidance was associated with isolate breakdown, as distances between island-born spouses, as well as the total amount of off-island migration, increased from the mid-nineteenth century to the present. Mate choice was influenced by geographic distance for all time periods, although this effect diminished over time. Since decreases in population size, concomitant with increases in consanguinity avoidance and community exogamy, have probably occurred quite frequently in small human populations, as well as in rural Western communities in the past century, observed secular trends illustrate the potential for change in population structure characteristic of isolate breakdown.

  3. Assortative mating for human height: A meta‐analysis

    PubMed Central

    Simons, Mirre J.P.; Grasman, Sara; Pollet, Thomas V.

    2016-01-01

    Abstract Objectives The study of assortative mating for height has a rich history in human biology. Although the positive correlation between the stature of spouses has often been noted in western populations, recent papers suggest that mating patterns for stature are not universal. The objective of this paper was to review the published evidence to examine the strength of and universality in assortative mating for height. Methods We conducted an extensive literature review and meta‐analysis. We started with published reviews but also searched through secondary databases. Our search led to 154 correlations of height between partners. We classified the populations as western and non‐western based on geography. These correlations were then analyzed via meta‐analytic techniques. Results 148 of the correlations for partner heights were positive and the overall analysis indicates moderate positive assortative mating (r = .23). Although assortative mating was slightly stronger in countries that can be described as western compared to non‐western, this difference was not statistically significant. We found no evidence for a change in assortative mating for height over time. There was substantial residual heterogeneity in effect sizes and this heterogeneity was most pronounced in western countries. Conclusions Positive assortative mating for height exists in human populations, but is modest in magnitude suggesting that height is not a major factor in mate choice. Future research is necessary to understand the underlying causes of the large amount of heterogeneity observed in the degree of assortative mating across human populations, which may stem from a combination of methodological and ecological differences. PMID:27637175

  4. Trading or coercion? Variation in male mating strategies between two communities of East African chimpanzees.

    PubMed

    Kaburu, Stefano S K; Newton-Fisher, Nicholas E

    2015-06-01

    Across taxa, males employ a variety of mating strategies, including sexual coercion and the provision, or trading, of resources. Biological market theory (BMT) predicts that trading of commodities for mating opportunities should exist only when males cannot monopolize access to females and/or obtain mating by force, in situations where power differentials between males are low; both coercion and trading have been reported for chimpanzees ( Pan troglodytes ). Here, we investigate whether the choice of strategy depends on the variation in male power differentials, using data from two wild communities of East African chimpanzees ( Pan troglodytes schweinfurthii ): the structurally despotic Sonso community (Budongo, Uganda) and the structurally egalitarian M-group (Mahale, Tanzania). We found evidence of sexual coercion by male Sonso chimpanzees, and of trading-of grooming for mating-by M-group males; females traded sex for neither meat nor protection from male aggression. Our results suggest that the despotism-egalitarian axis influences strategy choice: male chimpanzees appear to pursue sexual coercion when power differentials are large and trading when power differentials are small and coercion consequently ineffective. Our findings demonstrate that trading and coercive strategies are not restricted to particular chimpanzee subspecies; instead, their occurrence is consistent with BMT predictions. Our study raises interesting, and as yet unanswered, questions regarding female chimpanzees' willingness to trade sex for grooming, if doing so represents a compromise to their fundamentally promiscuous mating strategy. It highlights the importance of within-species cross-group comparisons and the need for further study of the relationship between mating strategy and dominance steepness.

  5. Female Mate Choice Can Drive the Evolution of High Frequency Echolocation in Bats: A Case Study with Rhinolophus mehelyi

    PubMed Central

    Puechmaille, Sébastien J.; Borissov, Ivailo M.; Zsebok, Sándor; Allegrini, Benjamin; Hizem, Mohammed; Kuenzel, Sven; Schuchmann, Maike; Teeling, Emma C.

    2014-01-01

    Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals. PMID:25075972

  6. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi.

    PubMed

    Puechmaille, Sébastien J; Borissov, Ivailo M; Zsebok, Sándor; Allegrini, Benjamin; Hizem, Mohammed; Kuenzel, Sven; Schuchmann, Maike; Teeling, Emma C; Siemers, Björn M

    2014-01-01

    Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.

  7. Using lod scores to detect sex differences in male-female recombination fractions.

    PubMed

    Feenstra, B; Greenberg, D A; Hodge, S E

    2004-01-01

    Human recombination fraction (RF) can differ between males and females, but investigators do not always know which disease genes are located in genomic areas of large RF sex differences. Knowledge of RF sex differences contributes to our understanding of basic biology and can increase the power of a linkage study, improve gene localization, and provide clues to possible imprinting. One way to detect these differences is to use lod scores. In this study we focused on detecting RF sex differences and answered the following questions, in both phase-known and phase-unknown matings: (1) How large a sample size is needed to detect a RF sex difference? (2) What are "optimal" proportions of paternally vs. maternally informative matings? (3) Does ascertaining nonoptimal proportions of paternally or maternally informative matings lead to ascertainment bias? Our results were as follows: (1) We calculated expected lod scores (ELODs) under two different conditions: "unconstrained," allowing sex-specific RF parameters (theta(female), theta(male)); and "constrained," requiring theta(female) = theta(male). We then examined the DeltaELOD (identical with difference between maximized constrained and unconstrained ELODs) and calculated minimum sample sizes required to achieve statistically significant DeltaELODs. For large RF sex differences, samples as small as 10 to 20 fully informative matings can achieve statistical significance. We give general sample size guidelines for detecting RF differences in informative phase-known and phase-unknown matings. (2) We defined p as the proportion of paternally informative matings in the dataset; and the optimal proportion p(circ) as that value of p that maximizes DeltaELOD. We determined that, surprisingly, p(circ) does not necessarily equal (1/2), although it does fall between approximately 0.4 and 0.6 in most situations. (3) We showed that if p in a sample deviates from its optimal value, no bias is introduced (asymptotically) to the maximum likelihood estimates of theta(female) and theta(male), even though ELOD is reduced (see point 2). This fact is important because often investigators cannot control the proportions of paternally and maternally informative families. In conclusion, it is possible to reliably detect sex differences in recombination fraction. Copyright 2004 S. Karger AG, Basel

  8. Fertility in South Australian commercial Merino flocks: aspects of management.

    PubMed

    Kleemann, David O; Grosser, Timothy I; Walker, Simon K

    2006-05-01

    Wide variation in reproductive performance of commercial Merino flocks in south central Australia is the result of genetic and environmental influences that are both amenable to change through decisions of management. Relationships of reproductive traits (estrus, ovulation, fertility, fecundity, lamb survival, and lambs weaned) with variables that graziers can change or modify (strain of Merino, day or month of exposure of ewes to rams, ram effect or teasing, length of the mating period, ram percentage, days between weaning and next mating, stocking density and flock size at lambing, ewe liveweight, and condition) are reported in this paper, the third in a series. Small differences were observed between medium and strong-wool South Australian Merino strains for reproductive traits. Choosing the time of year that ewes are exposed to rams, between late spring to autumn, may result in reduced ovulation rate during early summer (December) giving a potentially smaller net reproductive efficiency (lambs weaned). The ram effect or teasing, used by about 50% of graziers to synchronise lambing, could be effectively employed to the end of January. The technique was not reproductively advantageous when compared with flocks that were not teased. The percentage of rams mated to ewes varied widely (approximately 1-3%) and did not alter flock fertility, suggesting that a substantial proportion of graziers could safely reduce the number of rams purchased. A positive relationship between incidence of estrus during the first 14 d of the cycle and the number of days from weaning to next mating and a negative relationship of returns to service with the same variable indicates that managers should consider increasing the time allowed for recovery of liveweight and body condition by adjusting age at weaning, length of the mating period, or both. Lamb survival was curvilinearly related to flock size and not stocking intensity, with the optimum size at about 400 ewes. The number of lambs weaned per 100 ewes exposed to rams increased by 1.0 kg(-1) increase in liveweight at mating. We concluded that the major factor controlling net reproductive efficiency is nutritional in origin through its effects on ewe liveweight and condition, and is a factor that can be largely manipulated through management.

  9. Female fecundity variation affects reproducibility of experiments on host plant preference and acceptance in a phytophagous insect

    PubMed Central

    Schäpers, Alexander; Petrén, Hampus; Wheat, Christopher W.; Wiklund, Christer

    2017-01-01

    Reproducibility is a scientific cornerstone. Many recent studies, however, describe a reproducibility crisis and call for assessments of reproducibility across scientific domains. Here, we explore the reproducibility of a classic ecological experiment—that of assessing female host plant preference and acceptance in phytophagous insects, a group in which host specialization is a key driver of diversification. We exposed multiple cohorts of Pieris napi butterflies from the same population to traditional host acceptance and preference tests on three Brassicaceae host species. Whereas the host plant rank order was highly reproducible, the propensity to oviposit on low-ranked hosts varied significantly even among cohorts exposed to similar conditions. Much variation could be attributed to among-cohort variation in female fecundity, a trait strongly correlated both to female size and to the size of the nuptial gift a female receives during mating. Small males provide small spermatophores, and in our experiment small females that mated with small males had a disproportionally low propensity to oviposit on low-ranked hosts. Hence, our results provide empirical support to the theoretical prediction that female host utilization is strongly affected by non-genetic, environmental variation, and that such variation can affect the reproducibility of ecological experiments even under seemingly identical conditions. PMID:28202813

  10. Size‐assortative choice and mate availability influences hybridization between red wolves (Canis rufus) and coyotes (Canis latrans)

    USGS Publications Warehouse

    Hinton, Joseph W.; Gittleman, John L.; van Manen, Frank T.; Chamberlain, Michael J.

    2018-01-01

    Anthropogenic hybridization of historically isolated taxa has become a primary conservation challenge for many imperiled species. Indeed, hybridization between red wolves (Canis rufus) and coyotes (Canis latrans) poses a significant challenge to red wolf recovery. We considered seven hypotheses to assess factors influencing hybridization between red wolves and coyotes via pair‐bonding between the two species. Because long‐term monogamy and defense of all‐purpose territories are core characteristics of both species, mate choice has long‐term consequences. Therefore, red wolves may choose similar‐sized mates to acquire partners that behave similarly to themselves in the use of space and diet. We observed multiple factors influencing breeding pair formation by red wolves and found that most wolves paired with similar‐sized conspecifics and wolves that formed congeneric pairs with nonwolves (coyotes and hybrids) were mostly female wolves, the smaller of the two sexes. Additionally, we observed that lower red wolf abundance relative to nonwolves and the absence of helpers increased the probability that wolves consorted with nonwolves. However, successful pairings between red wolves and nonwolves were associated with wolves that maintained small home ranges. Behaviors associated with territoriality are energetically demanding and behaviors (e.g., aggressive interactions, foraging, and space use) involved in maintaining territories are influenced by body size. Consequently, we propose the hypothesis that size disparities between consorting red wolves and coyotes influence positive assortative mating and may represent a reproductive barrier between the two species. We offer that it may be possible to maintain wild populations of red wolves in the presence of coyotes if management strategies increase red wolf abundance on the landscape by mitigating key threats, such as human‐caused mortality and hybridization with coyotes. Increasing red wolf abundance would likely restore selection pressures that increase mean body and home‐range sizes of red wolves and decrease hybridization rates via reduced occurrence of congeneric pairs.

  11. Ecological correlates of mate fidelity in two Arctic-breeding sandpipers

    USGS Publications Warehouse

    Sandercock, Brett K.; Lank, David B.; Lanctot, Richard B.; Kempenaers, Bart; Cooke, Fred

    2000-01-01

    Monogamous birds exhibit considerable interspecific variation in rates of mate fidelity between years, but the reasons for this variation are still poorly understood. In a 4-year study carried out in western Alaska, mate-fidelity rates in Semipalmated Sandpipers (Calidris pusilla; mate fidelity was 47% among pairs where at least one mate returned and 94% among pairs where both mates returned) were substantially higher than in Western Sandpipers (Calidris mauri; 25 and 67%, respectively), despite the similar breeding biology of these sibling species. Divorce was not a response to nesting failure in Western Sandpipers, and mate change had no effect on the reproductive performance of either species. Nor were mate-fidelity rates related to differential rates of breeding dispersal, because the species did not differ in site fidelity. Reunited pairs and males that changed mates showed strong site tenacity, while females that changed mates moved farther. Differences in local survival rates or habitat are also unlikely to explain mate fidelity, since the two species did not differ in local survival rates, ϕ (Western Sandpipers: ϕ –hat = 0.57 ± 0.05 (mean ± SE), Semipalmated Sandpipers: ϕ –hat = 0.66 ± 0.06), and they bred in the same area, sometimes using the same nest cups. Although we were able to reject the above explanations, it was not possible to determine whether mate retention was lower in Western Sandpipers than in Semipalmated Sandpipers because of interspecific differences in mating tactics, time constraints imposed by migration distance, or a combination of these factors. Western Sandpipers exhibited greater sexual size dimorphism, but also migrated for shorter distances and tended to nest earlier and more asynchronously than Semipalmated Sandpipers. Finally, we show that conventional methods underestimate divorce rates, and interspecific comparisons may be biased if breeding-dispersal and recapture rates are not considered.

  12. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants

    NASA Astrophysics Data System (ADS)

    Evison, Sophie Elizabeth Frances; Hughes, William O. H.

    2011-08-01

    Multiple mating by females with different males (polyandry) is difficult to explain in many taxa because it carries significant costs to females, yet benefits are often hard to identify. Polyandry is a derived trait in social insects, the evolutionary origins of which remain unclear. One of several leading hypotheses for its evolution is that it improves division of labour by increasing intra-colonial genetic diversity. Division of labour is a key player in the ecological success of social insects, and in many successful species of ants is based on morphologically distinct castes of workers, each with their own task specialisations. Atta leaf-cutting ants exhibit one of the most extreme and complicated forms of morphologically specialised worker castes and have been reported to be polyandrous but with relatively low mating frequencies (~2.5 on average). Here, we show for the first time that there is a significant genetic influence on worker size in Atta colombica leaf-cutting ants. We also provide the first estimate of the mating frequency of Atta cephalotes (four matings) and, by analysing much higher within-colony sample sizes, find that Atta are more polyandrous than previously thought (approximately six to seven matings). The results show that high polyandry and a genetic influence on worker caste are present in both genera of leaf-cutting ants and add weight to the hypothesis that division of labour is a potential driver of the evolution of polyandry in this clade of ants.

  13. Cost of reproduction in Callosobruchus maculatus: effects of mating on male longevity and the effect of male mating status on female longevity.

    PubMed

    Paukku, Satu; Kotiaho, Janne S

    2005-11-01

    One of the most studied life-history trade-offs is that resulting from the cost of reproduction: a trade-off arises when reproduction diverts limited resources from other life-history traits. We examine the cost of reproduction in male, and the effect of male mating status on female Callosobruchus maculatus seed beetles. Cost of reproduction for male C. maculatus was manifested as reduced longevity. There was also a positive relationship between male body size and male longevity. Females mated to males that had already copulated twice did not live as long as females mated to males that had copulated once or not at all. The third copulation of males also lasted longer than the two previous ones. We conclude that even though the cost of reproduction for males has been studied much less than that in females, there is growing evidence that male reproductive effort is more complex than has traditionally been thought.

  14. Comparative study on the effect of Eurycoma longifolia and Smilax myosotiflora on male rats fertility

    NASA Astrophysics Data System (ADS)

    Mahmoud, Amal Salem Farag; Noor, Mahanem Mat

    2013-11-01

    The effects of Eurycoma longifolia Jack and Smilax myosotiflora were studied on sperm quality include sperm count, motility, viability and histology of the testis and pregnancy rate after mating with fertile proved females, as well as litter size on Sprague-Dawley (S-D) adult male rats. After dosing them with distilled water group A, group B 150 mg/kg body weight of aqueous extract of E. longifolia roots, group C 150 mg/kg body weight aqueous extract of S. myosotiflora leaf and group D 150 mg/kg body weight of E. longifolia combined with 150 mg/kg S. myosotiflora body weight daily for 14 days of stage (a) and 28 days for stage (b) of treatments. Results exhibited no significant variation (P>0.05) of stage (a),while results showed that E. longifolia Jack increase (P<0.05) the sperm count, motility, viability and histology of the testis and gender (male) of the litter size respectively of stage (b). This study provides evidence that E. longifolia Jack is a potent stimulator of fertility in male rat.

  15. Morphology and ornamentation in male magnificent frigatebirds: variation with age class and mating status.

    PubMed

    Madsen, Vinni; Dabelsteen, Torben; Osorio, Daniel; Osorno, José Luis

    2007-01-01

    Male magnificent frigatebird (Fregata magnificens) ornamentation includes bright iridescent plumage and a red inflatable gular pouch. These signals are displayed during courtship, along with a drumming sound produced through specialized beak clackings resonating in the gular pouch. The extent of white in the plumage identifies three age classes of nonjuvenile male. Here we investigate how morphological and secondary sexual traits correlate with age class and mating status. Even though several age class-related differences in morphology and visual appearance can be identified, the only features that significantly predict mating success are acoustic components of courtship display. Specifically, males that mate drum at lower fundamental frequencies--that is, they have larger gular pouches--and have a quicker and more constant drumming cadence than unsuccessful males. The fundamental frequency decreases with age class, reflecting an increase in gular pouch size. This implies that females prefer older or possibly more experienced or viable males. Drumming cadence speed and stability might reflect male stamina. Apart from the acoustic differences with mating status, there is a nonsignificant tendency for back-feather iridescence to be of shorter reflectance wavelength spectra in mated than in unmated males, which, when combined with acoustic variables, improves prediction of age class and mating status.

  16. Association of mate tea (Ilex paraguariensis) intake and dietary intervention and effects on oxidative stress biomarkers of dyslipidemic subjects.

    PubMed

    Boaventura, Brunna Cristina Bremer; Di Pietro, Patrícia Faria; Stefanuto, Aliny; Klein, Graziela Alessandra; de Morais, Elayne Cristina; de Andrade, Fernanda; Wazlawik, Elisabeth; da Silva, Edson Luiz

    2012-06-01

    To evaluate the effect of long-term ingestion of mate tea, with or without dietary intervention, on the markers of oxidative stress in dyslipidemic individuals. Seventy-four dyslipidemic volunteers participated in this randomized clinical trial. Subjects were divided into three treatment groups: mate tea (MT), dietary intervention (DI), and mate tea with dietary intervention (MD). Biochemical and dietary variables were assessed at the beginning of the study (baseline) and after 20, 40, 60, and 90 d of treatment. Participants in the MT and MD groups consumed 1 L/d of mate tea. Those in the DI and MD groups were instructed to increase their intake of fruit, legumes and vegetables and decrease their consumption of foods rich in cholesterol and saturated and trans-fatty acids. Biomarkers of oxidative stress such as antioxidant capacity of serum (ferric reducing antioxidant potential assay), uric acid, reduced glutathione, paraoxonase-1 enzyme, lipid hydroperoxide (LOOH), and protein carbonyl were analyzed. Participants in the DI group showed a significant decrease in total fat and saturated fatty acid intakes. Those in the DI and MD groups presented a significant increase in vitamin C consumption. For all groups, there was a significant increase in ferric reducing antioxidant potential and reduced glutathione concentrations but no significant changes in LOOH, protein carbonyl, and paraoxonase-1 values. The reduced glutathione concentration was positively correlated with the consumption of monounsaturated fatty acids, fiber, and vitamin C, whereas levels of LOOH were inversely correlated with intakes of vitamin C and fiber. In addition, LOOH correlated positively with low-density lipoprotein cholesterol and inversely with high-density lipoprotein cholesterol, which had a positive association with paraoxonase-1. The ingestion of mate tea independently of the dietary intervention increased plasma and blood antioxidant protection in patients with dyslipidemia. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Canalization of body size matters for lifetime reproductive success of male predatory mites (Acari: Phytoseiidae).

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2014-04-01

    The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus . Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus .

  18. Are body size and volatile blends honest signals in orchid bees?

    PubMed

    Arriaga-Osnaya, Brenda Jessica; Contreras-Garduño, Jorge; Espinosa-García, Francisco Javier; García-Rodríguez, Yolanda Magdalena; Moreno-García, Miguel; Lanz-Mendoza, Humberto; Godínez-Álvarez, Héctor; Cueva Del Castillo, Raúl

    2017-05-01

    Secondary sexual traits may convey reliable information about males' ability to resist pathogens and that females may prefer those traits because their genes for resistance would be passed on to their offspring. In many insect species, large males have high mating success and can canalize more resources to the immune function than smaller males. In other species, males use pheromones to identify and attract conspecific mates, and thus, they might function as an honest indicator of a male's condition. The males of orchid bees do not produce pheromones. They collect and store flower volatiles, which are mixed with the volatile blends from other sources, like fungi, sap and resins. These blends are displayed as perfumes during the courtship. In this study, we explored the relationship between inter-individual variation in body size and blend composition with the males' phenoloxidase (PO) content in Euglossa imperialis . PO content is a common measure of insect immune response because melanine, its derived molecule, encapsulates parasites and pathogens. Body size and blend composition were related to bees' phenolic PO content. The inter-individual variation in body size and tibial contents could indicate differences among males in their skills to gain access to some compounds. The females may evaluate their potential mates through these compounds because some of them are reliable indicators of the males' capacity to resist infections and parasites.

  19. Optimal marker-assisted selection to increase the effective size of small populations.

    PubMed

    Wang, J

    2001-02-01

    An approach to the optimal utilization of marker and pedigree information in minimizing the rates of inbreeding and genetic drift at the average locus of the genome (not just the marked loci) in a small diploid population is proposed, and its efficiency is investigated by stochastic simulations. The approach is based on estimating the expected pedigree of each chromosome by using marker and individual pedigree information and minimizing the average coancestry of selected chromosomes by quadratic integer programming. It is shown that the approach is much more effective and much less computer demanding in implementation than previous ones. For pigs with 10 offspring per mother genotyped for two markers (each with four alleles at equal initial frequency) per chromosome of 100 cM, the approach can increase the average effective size for the whole genome by approximately 40 and 55% if mating ratios (the number of females mated with a male) are 3 and 12, respectively, compared with the corresponding values obtained by optimizing between-family selection using pedigree information only. The efficiency of the marker-assisted selection method increases with increasing amount of marker information (number of markers per chromosome, heterozygosity per marker) and family size, but decreases with increasing genome size. For less prolific species, the approach is still effective if the mating ratio is large so that a high marker-assisted selection pressure on the rarer sex can be maintained.

  20. The effects of genotype, age, and social environment on male ornamentation, mating behavior, and attractiveness.

    PubMed

    Miller, Lisa K; Brooks, Robert

    2005-11-01

    The traits thought to advertise genetic quality are often highly susceptible to environmental variation and prone to change with age. These factors may either undermine or reinforce the potential for advertisement traits to signal quality depending on the magnitude of age-dependent expression, environmental variation, and genotype-age and genotype-environment interaction. Measurements of the magnitude of these effects are thus a necessary step toward assessing the implications of age dependence and environmental variability for the evolution of signals of quality. We conducted a longitudinal study of male guppies (Poecilia reticulata) from 22 full-sibling families. Each fish was assigned at maturity to one of three treatments in order to manipulate his allocation of resources to reproduction: a control in which the male was kept alone, a courtship-only treatment in which he could see and court a female across a clear partition, and a mating treatment in which he interacted freely with a female. We measured each male's size, ornamental color patterns, courtship, attractiveness to females, and mating success at three ages. Size was influenced by treatment and age-treatment interactions, indicating that courtship and mating may impose costs on growth. Tail size and color patterns were influenced by age but not by treatment, suggesting fixed age-dependent trajectories in these advertisement traits. By contrast, display rate and attempted sneak copulation rate differed among treatments but not among ages, suggesting greater plasticity of these behavioral traits. As a result of the different patterns of variation in ornamentation and behavior, male attractiveness and mating success responded to male age, treatment, and the interaction between age and treatment. Neither age nor treatment obscured the presence of genetic variation, and the genetic relationship between male ornamentation and attractiveness remained the same among treatments. Our findings suggest that neither age-dependent variation nor environmentally induced variation in reproductive effort is likely to undermine the reliability of male signaling.

  1. Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns

    PubMed Central

    Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely

    2011-01-01

    Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088

  2. Heart rate patterns during courtship and mating in rams and in estrous and nonestrous ewes ().

    PubMed

    Orihuela, A; Omaña, J C; Ungerfeld, R

    2016-02-01

    The aim of this study was to compare the heart rate (HR) patterns in rams mated with estrous or nonestrous ewes and in mated estrous and nonestrous ewes () during courtship and mating. For this purpose, HR and behavior were recorded using a radio telemetry recording system and a closed-circuit television system with video recording, respectively. Rams were joined with either an estrous ( = 10) or a nonestrous ( = 10) ewe that was restrained in a stanchion by the neck. Data were continuously recorded until each ram performed 3 ejaculations. Eight days later, the HR of the 10 estrous and 10 nonestrous ewes was recorded during mating. Although the time between entrance into the yard and the first ejaculation was similar across rams, rams that mounted estrous ewes were faster at attaining their second (3min5s ± 17 s vs. 5min28s ± 18 s) and third (7min58s ± 45 s vs. 12 min ± 1min14s) ejaculations (all < 0.05). By contrast, no differences in HR were observed between rams that interacted with estrous versus nonestrous ewes. In all cases, HR reached maximum values immediately after each ejaculation and the HR pattern was similar across ejaculations (first, second, and third). Although HR was similar between estrous and nonestrous ewes before mating, nonestrous ewes had higher HR ( < 0.05) during mating. In summary, 1) rams that mated estrous ewes displayed shorter interejaculation periods but HR did not differ between groups of rams during any ejaculation (first, second, or third), 2) HR for both groups of rams peaked shortly after each ejaculation, and 3) HR increased more in nonestrous than in estrous ewes while mating.

  3. Repeatability of number of progeny born to bulls used in group mating of cows

    USDA-ARS?s Scientific Manuscript database

    The group mating of bulls in pasture situations is a management practice that might be more efficient if an individual bull’s ability to sire calves could be predicted. Retrospective data on numbers of progeny born to bulls from 4 populations (Angus and 3 composite breeds) in 4 consecutive years of...

  4. Yerba mate tea and mate saponins prevented azoxymethane-induced inflammation of rat colon through suppression of NF-κB p65ser(311) signaling via IκB-α and GSK-3β reduced phosphorylation.

    PubMed

    Puangpraphant, Sirima; Dia, Vermont P; de Mejia, Elvira Gonzalez; Garcia, Guadalupe; Berhow, Mark A; Wallig, Matthew A

    2013-01-01

    Yerba mate tea (YMT) has a chemopreventive role in a variety of inflammatory diseases. The objective was to determine the capability of YMT and mate saponins to prevent azoxymethane (AOM)-induced colonic inflammation in rats. YMT (2% dry leaves, w/v, as a source of drinking fluid) (n = 15) and mate saponins (0.01% in the diet, at a concentration present in one cup of YMT) (n = 15) were given ad libitum to rats 2 weeks prior to AOM-injection until the end of the study; while control rats (n = 15) received a basal diet and drinking water. After 8-weeks of study, total colonic mucosa was scraped (n = 3 rats/group) and the remaining colons (n =12 rats/group) were cut into three equal sections and aberrant crypt foci (ACF) were analyzed. YMT reduced ACF formation from 113 (control group) to 89 (P < 0.05). YMT and mate saponins reduced the expression of proinflammatory molecules COX-2 and iNOS with concomitant reduction in p-p65 (P < 0.05). Immunohistochemical analysis of the formalin-fixed middle colons showed that YMT and mate saponins reduced the expression of p-p65(ser311) by 45.7% and 43.1%, respectively, in comparison to the control (P < 0.05). In addition, the expression of molecules upstream of NF-κB such as p-IκB-α and p-GSK-3β(Y216) was downregulated by YMT 24.7% and 24.4%, respectively (P < 0.05). Results suggest the mechanism involved in the chemopreventive effect of YMT and mate saponin consumption in AOM induced-colonic inflammation in rats is through inhibition of NF-κB. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  5. Male Mating Rate Is Constrained by Seminal Fluid Availability in Bedbugs, Cimex lectularius

    PubMed Central

    Reinhardt, Klaus; Naylor, Richard; Siva-Jothy, Michael T.

    2011-01-01

    Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition). Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed) this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se. PMID:21779378

  6. Kin encounter rate and inbreeding avoidance in canids

    USGS Publications Warehouse

    Geffen, Eli; Kam, Michael; Hefner, Reuven; Hersteinsson, Pall; Angerbjorn, Anders; Dalen, Love; Fuglei, Eva; Noren, Karin; Adams, Jennifer R.; Vicetich, John; Meier, Thomas J.; Mech, L.D.; VonHoldt, Bridgett M.; Stahler, Daniel R.; Wayne, Robert K.

    2011-01-01

    Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1–8% and 20–22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.

  7. MHC, mate choice and heterozygote advantage in a wild social primate.

    PubMed

    Huchard, Elise; Knapp, Leslie A; Wang, Jinliang; Raymond, Michel; Cowlishaw, Guy

    2010-06-01

    Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene-rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc-DRB and neutral loci. Nevertheless, the age structure of Mhc-DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within-group outbreeding, resulting from group-living and sex-biased dispersal, might weaken selection for MHC-disassortative mate choice.

  8. Kin encounter rate and inbreeding avoidance in canids

    USGS Publications Warehouse

    Geffen, E.; Kam, M.; Hefner, R.; Hersteinsson, P.; Angerbjorn, A.; Dalen, L.; Fuglei, E.; Noren, K.; Adams, J.R.; Vucetich, J.; Meier, T.J.; Mech, L.D.; Vonholdt, B.M.; Stahler, D.R.; Wayne, R.K.

    2011-01-01

    Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk. ?? 2011 Blackwell Publishing Ltd.

  9. Coy Males and Seductive Females in the Sexually Cannibalistic Colonial Spider, Cyrtophora citricola.

    PubMed

    Yip, Eric C; Berner-Aharon, Na'ama; Smith, Deborah R; Lubin, Yael

    2016-01-01

    The abundance of sperm relative to eggs selects for males that maximize their number of mates and for females that choose high quality males. However, in many species, males exercise mate choice, even when they invest little in their offspring. Sexual cannibalism may promote male choosiness by limiting the number of females a male can inseminate and by biasing the sex ratio toward females because, while females can reenter the mating pool, cannibalized males cannot. These effects may be insufficient for male choosiness to evolve, however, if males face low sequential encounter rates with females. We hypothesized that sexual cannibalism should facilitate the evolution of male choosiness in group living species because a male is likely to encounter multiple receptive females simultaneously. We tested this hypothesis in a colonial orb-weaving spider, Cyrtophora citricola, with a high rate of sexual cannibalism. We tested whether mated females would mate with multiple males, and thereby shift the operational sex ratio toward females. We also investigated whether either sex chooses mates based on nutritional state and age, and whether males choose females based on reproductive state. We found that females are readily polyandrous and exhibit no mate choice related to male feeding or age. Males courted more often when the male was older and the female was younger, and males copulated more often with well-fed females. The data show that males are choosier than females for the traits we measured, supporting our hypothesis that group living and sexual cannibalism may together promote the evolution of male mate choice.

  10. Coy Males and Seductive Females in the Sexually Cannibalistic Colonial Spider, Cyrtophora citricola

    PubMed Central

    Yip, Eric C.; Berner-Aharon, Na’ama; Smith, Deborah R.; Lubin, Yael

    2016-01-01

    The abundance of sperm relative to eggs selects for males that maximize their number of mates and for females that choose high quality males. However, in many species, males exercise mate choice, even when they invest little in their offspring. Sexual cannibalism may promote male choosiness by limiting the number of females a male can inseminate and by biasing the sex ratio toward females because, while females can reenter the mating pool, cannibalized males cannot. These effects may be insufficient for male choosiness to evolve, however, if males face low sequential encounter rates with females. We hypothesized that sexual cannibalism should facilitate the evolution of male choosiness in group living species because a male is likely to encounter multiple receptive females simultaneously. We tested this hypothesis in a colonial orb-weaving spider, Cyrtophora citricola, with a high rate of sexual cannibalism. We tested whether mated females would mate with multiple males, and thereby shift the operational sex ratio toward females. We also investigated whether either sex chooses mates based on nutritional state and age, and whether males choose females based on reproductive state. We found that females are readily polyandrous and exhibit no mate choice related to male feeding or age. Males courted more often when the male was older and the female was younger, and males copulated more often with well-fed females. The data show that males are choosier than females for the traits we measured, supporting our hypothesis that group living and sexual cannibalism may together promote the evolution of male mate choice. PMID:27249787

  11. Mate tea (Ilex paraguariensis) improves glycemic and lipid profiles of type 2 diabetes and pre-diabetes individuals: a pilot study.

    PubMed

    Klein, Graziela A; Stefanuto, Aliny; Boaventura, Brunna C B; de Morais, Elayne C; Cavalcante, Luciana da S; de Andrade, Fernanda; Wazlawik, Elisabeth; Di Pietro, Patrícia F; Maraschin, Marcelo; da Silva, Edson L

    2011-10-01

    Yerba mate (Ilex paraguariensis) infusions have been shown to reduce plasma glucose in animals and serum lipids in humans. The aim of this study was to evaluate the effects of roasted mate tea consumption, with or without dietary counseling, on the glycemic and lipid profiles of individuals with type 2 diabetes mellitus (T2DM) or pre-diabetes. Twenty-nine T2DM and 29 pre-diabetes subjects were divided into 3 groups: mate tea, dietary intervention, and mate tea and dietary intervention. Individuals drank 330 mL of roasted mate tea 3 times a day and/or received nutritional counseling over 60 days. Blood samples were collected and food intake was assessed at baseline and after 20, 40, and 60 days of treatments. Mate tea consumption decreased significantly the levels of fasting glucose (25.0 mg/dL), glycated hemoglobin A(1c) (HbA(1c)) (0.85%), and low-density lipoprotein cholesterol (LDL-c) (13.5 mg/dL) of T2DM subjects (p < 0.05); however, it did not change the intake of total energy, protein, carbohydrate, cholesterol, and fiber. In pre-diabetes individuals, mate tea consumption combined with nutritional counseling diminished significantly the levels of LDL-c (11 mg/dL), non-high-density lipoprotein cholesterol (HDL-c) (21.5 mg/dL), and triglycerides (53.0 mg/dL) (p < 0.05). Individuals of this group decreased significantly their consumption of total fat (14%), cholesterol (28%), and saturated (23.8%) and monounsaturated (28.0%) fatty acids, and increased their fiber intake by 35% (p < 0.05). Mate tea consumption improved the glycemic control and lipid profile of T2DM subjects, and mate tea consumption combined with nutritional intervention was highly effective in decreasing serum lipid parameters of pre-diabetes individuals, which may reduce their risk of developing coronary disease.

  12. Female reproductive strategies, paternity and community structure in wild West African chimpanzees.

    PubMed

    Gagneux; Boesch; Woodruff

    1999-01-01

    Although the variability and complexity of chimpanzee behaviour frustrates generalization, it is widely believed that social evolution in this species occurs in the context of the recognizable social group or community. We used a combination of field observations and noninvasive genotyping to study the genetic structure of a habituated community of 55 wild chimpanzees, Pan troglodytes verus, in the Taï Forest, Côte d'Ivoire. Pedigree relationships in that community show that female mate choice strategies are more variable than previously supposed and that the observed social groups are not the exclusive reproductive units. Genetic evidence based on nuclear microsatellite markers and behavioural obser-vations reveal that females in the Taï forest actively seek mating partners outside their social unit; noncommunity males accounted for half the paternities over 5 years. This female mating strategy increases male gene flow between communities despite male philopatry, and negates the predicted higher relatedness among community males. Kin selection seems unlikely to explain the frequent cooperation and sharing observed among group males in this population. Similarly, inbreeding avoidance is probably not the sole cause of permanent adolescent female dispersal as a combination of extragroup mating and avoidance of incest with home group males would allow females to avoid inbreeding without the hazards associated with immigration into a new community. Extragroup mating as part of chimpanzee females' reproductive strategy may allow them to choose from a wider variety and number of males, without losing the resources and support provided by their male social group partners. Copyright 1999 The Association for the Study of Animal Behaviour.

  13. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  14. Sexually selected females in the monogamous Western Australian seahorse.

    PubMed

    Kvarnemo, Charlotta; Moore, Glenn I; Jones, Adam G

    2007-02-22

    Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus, sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species.

  15. Sexually selected females in the monogamous Western Australian seahorse

    PubMed Central

    Kvarnemo, Charlotta; Moore, Glenn I; Jones, Adam G

    2006-01-01

    Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus, sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species. PMID:17476772

  16. How do reproductive skew and founder group size affect genetic diversity in reintroduced populations?

    PubMed

    Miller, K A; Nelson, N J; Smith, H G; Moore, J A

    2009-09-01

    Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara (Sphenodon), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (approximately 10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1-14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.

  17. Exact Markov chains versus diffusion theory for haploid random mating.

    PubMed

    Tyvand, Peder A; Thorvaldsen, Steinar

    2010-05-01

    Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.

  18. When the difference is in the details: a critique of Zentner and Mitura (2012) "Stepping out of the caveman's shadow: Nations' gender gap predicts degree of sex differentiation in mate preferences".

    PubMed

    Schmitt, David P

    2012-10-29

    In a recent 10-nation study, Zentner and Mitura (2012) reported observing smaller sex differences in mate preferences within nations that have higher gender parity. As noted in previous research, and in a re-analysis of Zentner and Mitura's own data, sex differences in some mate preferences (e.g., long-term mate preferences for physical attractiveness) are either unrelated to or actually get larger with higher national gender parity. It is critically important to distinguish among mate preference domains when looking for patterns of sexual differentiation across nations. Indeed, for many psychological domains (e.g., attachment styles, Big Five traits, Dark Triad traits, self-esteem, personal values, depression, emotional expression, crying behavior, intimate partner violence, tested mental abilities, health indicators; see Schmitt, 2012), sex differences are demonstrably larger in nations with higher sociopolitical gender parity. By not distinguishing among mate preferences, Zentner and Mitura committed a form of the ecological fallacy-making false conclusions about individual mate preferences when looking only at associations among groups of mate preferences.

  19. Effect of Mating Status and Age on the Male Mate Choice and Mating Competency in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae).

    PubMed

    Wang, Desen; Wang, Changlu; Singh, Narinderpal; Cooper, Richard; Zha, Chen; Eiden, Amanda L

    2016-04-28

    We investigated male mate choice and mating competency in the common bed bug, Cimex lectularius L., using video tracking for 10 min per experiment. In the male mate choice experiment, when a male was placed with two females of different mating status, males preferred to initiate copulation with the virgin female more quickly than with the mated female, and the mean total copulation duration with virgin females (38.0 ± 3.0 s) was significantly longer than with mated females (14.6 ± 3.0 s). When a male was placed with two females of different age, males initiated copulation more quickly with the old virgin female (29-34 d adult emergence) than with the young virgin one (<7 d adult emergence), and the mean total copulation duration with old virgin females (38.4 ± 4.0 s) was significantly longer than with young virgin females (24.0 ± 3.0 s). In the male mating competency experiment where a female was placed with two males of different mating status or age, the virgin males were more eager to mate than the mated males, and the old virgin males (29-34 d adult emergence) were more eager than the young virgin males (<7 d adult emergence), with eagerness measured by the percentage of first mate selected (first copulation occurred) and the total copulation duration by each group of males. Male mating competency is related to postmating duration (PMD); males mated 1 d earlier were significantly less likely to mate than virgin males. However, males mated 7 d earlier showed no significant difference in mating competency compared to virgin males. In conclusion, mate choice in C. lectularius is associated with both male and female mating status, age, and PMD. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Model of Exploratory Search for Mating Partners by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Hurwitz, Daniel; Bendezu, Felipe; Martin, Sophie; Vavylonis, Dimitrios

    2014-03-01

    During conditions of nitrogen starvation, the model eukaryote S. pombe (fission yeast) undergoes sexual sporulation. Because fission yeast are non-motile, contact between opposite mating types during spore formation is accomplished by polarizing growth, via the Rho GTP-ase Cdc42, in each mating type towards the selected mate, a process known as shmooing. Recent findings showed that cells pick one of their neighboring compatible mates by randomizing the position of the Cdc42 complex about the cell membrane, such that the complex is stabilized near areas of high concentration of the opposite mating type pheromone. We developed Monte Carlo simulations to model partner finding in populations of mating cells and in small cell clusters. We assume that pheromones are secreted at the site of Cdc42 accumulation and that the Cdc42 dwell time increases in response to increasing pheromone concentration. We measured the number of cells that succeed in successful reciprocal pairing, the number of cells that were unable to find a partner, and the number of cells that picked a partner already engaged with another cell. For optimal cell pairing, we find the pheromone concentration decay length is around 1 micron, of order the cell size. We show that non-linear response of Cdc42 dwell time to pheromone concentration improves the number of successful pairs for a given spatial cell distribution. We discuss how these results compare to non-exploratory pairing mechanisms.

  1. Partitioning the effects of mating and nuptial feeding on the microbiome in gift-giving insects.

    PubMed

    Smith, Chad C; Srygley, Robert B; Dietrich, Emma I; Mueller, Ulrich G

    2017-04-01

    Mating is a ubiquitous social interaction with the potential to influence the microbiome by facilitating transmission, modifying host physiology, and in species where males donate nuptial gifts to females, altering diet. We manipulated mating and nuptial gift consumption in two insects that differ in nuptial gift size, the Mormon cricket Anabrus simplex and the decorated cricket Gryllodes sigillatus, with the expectation that larger gifts are more likely to affect the gut microbiome. Surprisingly, mating, but not nuptial gift consumption, affected the structure of bacterial communities in the gut, and only in Mormon crickets. The change in structure was due to a precipitous drop in the abundance of lactic-acid bacteria in unmated females, a taxon known for their beneficial effects on nutrition and immunity. Mating did not affect phenoloxidase or lysozyme-like antibacterial activity in either species, suggesting that any physiological response to mating on host-microbe interactions is decoupled from systemic immunity. Protein supplementation also did not affect the gut microbiome in decorated crickets, suggesting that insensitivity of gut microbes to dietary protein could contribute to the lack of an effect of nuptial gift consumption. Our study provides experimental evidence that sexual interactions can affect the microbiome and suggests mating can promote beneficial gut bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Strong reproductive skew among males in the multiply mated swordtail Xiphophorus multilineatus (Teleostei).

    PubMed

    Luo, J; Sanetra, M; Schartl, M; Meyer, A

    2005-01-01

    Male swordtails in the genus Xiphophorus display a conspicuous ventral elongation of the caudal fin, the sword, which arose through sexual selection due to female preference. Females mate regularly and are able to store sperm for at least 6 months. If multiple mating is frequent, this would raise the intriguing question about the role of female choice and male-male competition in shaping the mating system of these fishes. Size-dependent alternate mating strategies occur in Xiphophorus; one such strategy is courtship with a sigmoid display by large dominant males, while the other is gonopodial thrusting, in which small subordinate males sneak copulations. Using microsatellite markers, we observed a frequency of multiple paternity in wild-caught Xiphophorus multilineatus in 28% of families analyzed, but the actual frequency of multiple mating suggested by the correction factor PrDM was 33%. The number of fathers contributing genetically to the brood ranged from one to three. Compared to other species in the family Poeciliidae, both frequency and degree of multiple paternity were low. Paternity was found to be highly skewed, with one male on average contributing more than 70% to the offspring. Hence in this Xiphophorus mating system, typically one male dominates and sneaker males do not appear to be particularly effective. Postcopulatory mechanisms, however, such as sperm competition, are also indicated by our data, using sex-linked phenotypes among the offspring.

  3. All Features Great and Small-the Potential Roles of the Baculum and Penile Spines in Mammals.

    PubMed

    Orr, Teri J; Brennan, Patricia L R

    2016-10-01

    Mammalian penises are morphologically diverse, including a highly variable and taxonomically informative baculum (os penis), and variable penile spines, both of which are possessed by many-but not all-species. To understand the evolution of genital morphologies, as well as the potential role of both the baculum, and penile spines that directly interact with female reproductive tract, we undertook a comparative study of male penile spines and their relationship with the baculum across all mammalian orders. Specifically, we investigated several factors that may explain the presence or absence of penile spines in mammals, including mating system, risk of sperm competition, female reproductive physiology, presence and width of the baculum, and phylogenetic history. We observed that the presence of both the baculum and penile spines is correlated with residual testes size, suggesting a potential role in sexual selection for these traits. We found no association between the presence of spines and mating system, or with the presence/width of the baculum, although relative testes mass was marginally associated with baculum width. We found no relationship between baculum presence or width and mating system. We also noted that spines presence or absence have an order-level distribution, and clear phylogenetic patterns of distribution across mammals. It is likely that spine morphology and distribution, not just presence, play an important role in genital evolution in mammals, but these features are poorly described in most groups. Quantitative data collection in most mammalian taxa would be useful to further elucidate the evolution of the complex genital morphology of this group. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Mares Prefer the Voices of Highly Fertile Stallions

    PubMed Central

    Lemasson, Alban; Remeuf, Kévin; Trabalon, Marie; Cuir, Frédérique; Hausberger, Martine

    2015-01-01

    We investigated the possibility that stallion whinnies, known to encode caller size, also encoded information about caller arousal and fertility, and the reactions of mares in relation to type of voice. Voice acoustic features are correlated with arousal and reproduction success, the lower-pitched the stallion’s voice, the slower his heart beat and the higher his fertility. Females from three study groups preferred playbacks of low-pitched voices. Hence, females are attracted by frequencies encoding for large male size, calmness and high fertility. More work is needed to explore the relative importance of morpho-physiological features. Assortative mating may be involved as large females preferred voices of larger stallions. Our study contributes to basic and applied ongoing research on mammal reproduction, and questions the mechanisms used by females to detect males’ fertility. PMID:25714814

  5. The significance of multiple mating in the social wasp Vespula maculifrons.

    PubMed

    Goodisman, Michael A D; Kovacs, Jennifer L; Hoffman, Eric A

    2007-09-01

    The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.

  6. Traumatic insemination and female counter-adaptation in Strepsiptera (Insecta)

    PubMed Central

    Peinert, Miriam; Wipfler, Benjamin; Jetschke, Gottfried; Kleinteich, Thomas; Gorb, Stanislav N.; Beutel, Rolf G.; Pohl, Hans

    2016-01-01

    In a few insect groups, males pierce the female’s integument with their penis during copulation to transfer sperm. This so-called traumatic insemination was previously confirmed for Strepsiptera but only in species with free-living females. The more derived endoparasitic groups (Stylopidia) were suggested to exhibit brood canal mating. Further, it was assumed that females mate once and that pheromone production ceases immediately thereafter. Here we examined Stylops ovinae to provide details of the mating behaviour within Stylopidia. By using μCT imaging of Stylops in copula, we observed traumatic insemination and not, as previously suggested, brood canal mating. The penis is inserted in an invagination of the female cephalothorax and perforates its cuticle. Further we show that female Stylops are polyandrous and that males detect the mating status of the females. Compared to other strepsipterans the copulation is distinctly prolonged. This may reduce the competition between sperm of the first mating male with sperm from others. We describe a novel paragenital organ of Stylops females, the cephalothoracic invagination, which we suggest to reduce the cost of injuries. In contrast to previous interpretations we postulate that the original mode of traumatic insemination was maintained after the transition from free-living to endoparasitic strepsipteran females. PMID:27125507

  7. The role of physiological traits in assortment among and within fish shoals

    PubMed Central

    Marras, Stefano

    2017-01-01

    Individuals of gregarious species often group with conspecifics to which they are phenotypically similar. This among-group assortment has been studied for body size, sex and relatedness. However, the role of physiological traits has been largely overlooked. Here, we discuss mechanisms by which physiological traits—particularly those related to metabolism and locomotor performance—may result in phenotypic assortment not only among but also within animal groups. At the among-group level, varying combinations of passive assortment, active assortment, phenotypic plasticity and selective mortality may generate phenotypic differences among groups. Even within groups, however, individual variation in energy requirements, aerobic and anaerobic capacity, neurological lateralization and tolerance to environmental stressors are likely to produce differences in the spatial location of individuals or associations between group-mates with specific physiological phenotypes. Owing to the greater availability of empirical research, we focus on groups of fishes (i.e. shoals and schools). Increased knowledge of physiological mechanisms influencing among- and within-group assortment will enhance our understanding of fundamental concepts regarding optimal group size, predator avoidance, group cohesion, information transfer, life-history strategies and the evolutionary effects of group membership. In a broader perspective, predicting animal responses to environmental change will be impossible without a comprehensive understanding of the physiological basis of the formation and functioning of animal social groups. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673911

  8. High lifetime and reproductive performance of sows on southern European Union commercial farms can be predicted by high numbers of pigs born alive in parity one.

    PubMed

    Iida, R; Piñeiro, C; Koketsu, Y

    2015-05-01

    Our objectives were 1) to compare reproductive performance across parity and lifetime performance in sow groups categorized by the number of pigs born alive (PBA) in parity 1 and 2) to examine the factors associated with more PBA in parity 1. We analyzed 476,816 parity records and 109,373 lifetime records of sows entered into 125 herds from 2008 to 2010. Sows were categorized into 4 groups based on the 10th, 50th, and 90th percentiles of PBA in parity 1 as follows: 7 pigs or fewer, 8 to 11 pigs, 12 to 14 pigs, and 15 pigs or more. Generalized linear models were applied to the data. For reproductive performance across parity, sows that had 15 or more PBA in parity 1 had 0.5 to 1.8 more PBA in any subsequent parity than the other 3 PBA groups ( P< 0.05). In addition, they had 2.8 to 5.4% higher farrowing rates in parities 1 through 3 than sows that had 7 or fewer PBA (P < 0.05). However, there were no differences between the sow PBA groups for weaning-to-first-mating interval in any parity (P ≥ 0.37). For lifetime performance, sows that had 15 or more PBA in parity 1 had 4.4 to 26.1 more lifetime PBA than sows that had 14 or fewer PBA (P < 0.05). Also, for sows that had 14 or fewer PBA in parity 1, those that were first mated at 229 d old (25th percentile) or earlier had 2.9 to 3.3 more lifetime PBA than those first mated at 278 d old (75th percentile) or later (P < 0.05). Factors associated with fewer PBA in parity 1 were summer mating and lower age of gilts at first mating (AFM; P < 0.05) but not reservice occurrences (P = 0.34). Additionally, there was a 2-way interaction between mated month groups and AFM for PBA in parity 1 (P < 0.05); PBA in parity 1 sows mated from July to December increased nonlinearly by 0.3 to 0.4 pigs when AFM increased from 200 to 310 d old (P < 0.05). However, the same rise in AFM had no significant effect on the PBA of sows mated between January and June (P ≥ 0.17). In conclusion, high PBA in parity 1 can be used to predict that a sow will have high reproductive performance and lifetime performance. Also, the data indicate that the upper limit of AFM for mating between July and December should be 278 d old.

  9. Evidence of the Insensitivity of the α-inc Allele to the Function of the Homothallic Genes in Saccharomyces Yeasts

    PubMed Central

    Takano, Isamu; Arima, Kenji

    1979-01-01

    The possible function of the α-inc allele (an α mating-type allele that is insensitive to the function of the homothallic gene system) was investigated by means of protoplast fusion. The fusion of protoplasts prepared from haploid strains of α-inc HO HMα HMa and α ho hmα HMa gave rise mainly to nonmating clones (58 of 64 isolates) and a few clones (six of 64 isolates) showing α mating type. Thirty of the 58 nonmating clones showed the diploid cell size and 28 clones had a larger cell size. Tetrad analysis of the nonmating clones with diploid cell size indicated that they were a/α-inc diploid; the normal α allele in α/α-inc cells was preferentially switched to an a allele. This observation further indicated that the HO/ho HMα/hmα HMa/HMa genotype is effective for the conversion of the α to a and that the inconvertibility of the α-inc allele is due to the insensitivity of the mating-type allele to the functional combination of the homothallic genes. It was suspected that fusion products larger than diploid cells might have been caused by multiple fusion of protoplasts. PMID:17248884

  10. MSeq-CNV: accurate detection of Copy Number Variation from Sequencing of Multiple samples.

    PubMed

    Malekpour, Seyed Amir; Pezeshk, Hamid; Sadeghi, Mehdi

    2018-03-05

    Currently a few tools are capable of detecting genome-wide Copy Number Variations (CNVs) based on sequencing of multiple samples. Although aberrations in mate pair insertion sizes provide additional hints for the CNV detection based on multiple samples, the majority of the current tools rely only on the depth of coverage. Here, we propose a new algorithm (MSeq-CNV) which allows detecting common CNVs across multiple samples. MSeq-CNV applies a mixture density for modeling aberrations in depth of coverage and abnormalities in the mate pair insertion sizes. Each component in this mixture density applies a Binomial distribution for modeling the number of mate pairs with aberration in the insertion size and also a Poisson distribution for emitting the read counts, in each genomic position. MSeq-CNV is applied on simulated data and also on real data of six HapMap individuals with high-coverage sequencing, in 1000 Genomes Project. These individuals include a CEU trio of European ancestry and a YRI trio of Nigerian ethnicity. Ancestry of these individuals is studied by clustering the identified CNVs. MSeq-CNV is also applied for detecting CNVs in two samples with low-coverage sequencing in 1000 Genomes Project and six samples form the Simons Genome Diversity Project.

  11. Universality in a Neutral Evolution Model

    NASA Astrophysics Data System (ADS)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2013-03-01

    Agent-based models are ideal for investigating the complex problems of biodiversity and speciation because they allow for complex interactions between individuals and between individuals and the environment. Presented here is a ``null'' model that investigates three mating types - assortative, bacterial, and random - in phenotype space, as a function of the percentage of random death δ. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (submitted), on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here, in order to achieve an appropriate ``null'' hypothesis, the random death process was changed so each individual, in each generation, has the same probability of death. Results show a continuous nonequilibrium phase transition for the order parameters of the population size and the number of clusters (analogue of species) as δ is varied for three different mutation sizes of the system. The system shows increasing robustness as μ increases. Universality classes and percolation properties of this system are also explored. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation

  12. Signals of vitellogenesis and estrus in female hawksbill turtles.

    PubMed

    Kawazu, Isao; Kino, Masakatsu; Yanagisawa, Makio; Maeda, Konomi; Nakada, Ken; Yamaguchi, Yasuhiro; Sawamukai, Yutaka

    2015-01-01

    This study reports a viable means of identifying the vitellogenic cycle and limited estrus period in hawksbill turtles for the purposes of developing captive breeding program, based on the combination of blood metabolite parameters (triglyceride, total protein, and calcium levels), feeding status, and ovary condition. Follicle size of two focal captive females showed clear seasonal changes, with major development occurring between March and May (19.0-24.4 mm), and exceeding 25 mm between June and September. Triglyceride, total protein, and calcium levels dropped with follicular development and maintenance (March to October), and then began to rise when follicular retraction occurred from October onwards. The two focal turtles reduced food intake during intensive follicular development (April to May). These findings suggest that blood metabolite parameters and feeding conditions are inferred by the vitellogenic cycle. An additional 10 females exhibiting follicular development were mated with a single male for 7-day period between May and June. Follicle size was measured immediately prior to pairing, and a statistically significant difference in follicle size of 10 females was recorded between the seven failed (20.9 mm) and three successful (23.6 mm) mating events. This indicates follicle development is essential to successful mate and monitoring of vitellogenic cycle may help improve the success rates of captive hawksbill breeding programs.

  13. Outbreeding lethality between toxic Group I and nontoxic Group III Alexandrium tamarense spp. isolates: Predominance of heterotypic encystment and implications for mating interactions and biogeography

    NASA Astrophysics Data System (ADS)

    Brosnahan, Michael L.; Kulis, David M.; Solow, Andrew R.; Erdner, Deana L.; Percy, Linda; Lewis, Jane; Anderson, Donald M.

    2010-02-01

    We report the zygotic encystment of geographically dispersed isolates in the dinoflagellate species complex Alexandrium tamarense, in particular, successful mating of toxic Group I and nontoxic Group III isolates. However, hypnozygotes produced in Group I/III co-cultures complete no more than three divisions after germinating. Previous reports have suggested a mate recognition mechanism whereby hypnozygotes produced in co-cultures could arise from either homotypic (inbred) or heterotypic (outbred) gamete pairs. To determine the extent to which each occurs, a nested PCR assay was developed to determine parentage of individual hypnozygotes. The vast majority of hypnozygotes from pairwise Group I/III co-cultures were outbred, so that inviability was a result of hybridization, not inbreeding. These findings support the assertion that complete speciation underlies the phylogenetic structure of the Alexandrium tamarense species complex. Additionally, the ribosomal DNA (rDNA) copy numbers of both hybrid and single ribotype hypnozygotes were reduced substantially from those of haploid motile cells. The destruction of rDNA loci may be crucial for the successful mating of genetically distant conjugants and appears integral to the process of encystment. The inviability of Group I/III hybrids is important for public health because the presence of hybrid cysts may indicate ongoing displacement of a nontoxic population by a toxic one (or vice versa). Hybrid inviability also suggests a bloom control strategy whereby persistent, toxic Group I blooms could be mitigated by introduction of nontoxic Group III cells. The potential for hybridization in nature was investigated by applying the nested PCR assay to hypnozygotes from Belfast Lough, Northern Ireland, a region where Group I and III populations co-occur. Two hybrid cysts were identified in 14 successful assays, demonstrating that Group I and III populations do interbreed in that region. However, an analysis of mating data collected over an 18-year period indicated a leaky pre-mating barrier between ribosomal species (including Groups I and III). Whether the observed selectivity inhibits hybridization in nature is dependent on its mechanism. If the point of selectivity is the induction of gametogenesis, dissimilar ribotypes could interbreed freely, promoting displacement in cases where hybridization is lethal. If instead, selectivity occurs during the adhesion of gamete pairs, it could enable stable co-existence of A. tamarense species. In either case, hybrid inviability may impose a significant obstacle to range expansion. The nested PCR assay developed here is a valuable tool for investigation of interspecies hybridization and its consequences for the global biogeography of these important organisms.

  14. The Effects of Post-Mating Administration of Anti-IL-10 and Anti-TGFß on Conception Rates in Mice

    PubMed Central

    Risvanli, Ali; Godekmerdan, Ahmet

    2015-01-01

    Background In fertility studies, it has been shown that transforming growth factor β (TGFβ) and interlukin 10 (IL-10) play very important roles in implantation, maternal immune tolerance, placentation and fetal development, and the release beginning of release for fetal and postnatal death. The present study aims to determine the effects of the postmating administration of neutralizing antibodies against IL-10 and TGFβ, which significantly impact pregnancy in females and the conception rates in mice via assessments of blood serum and uterine fluid concentrations of IL-2, IL-4, IL-6, IL-10, IL-17, interferon γ (IFNγ), Tumor necrosis factor α (TNFα), and TGFβ. Materials and Methods In this experimental study, 21 BALB/c strain female mice were mated and randomly divided into three groups. The mice in the first group were selected as the control group. The second group of animals was injected with 0.5 mg of anti-IL-10 after mating, while those in the third group were intraperitoneally injected with 0.5 mg of anti-TGFβ. The animals in all groups were decapitated on the 13thday after mating and their blood samples were taken. The uteri were removed to determine pregnancy. The mice’s uterine irrigation fluids were also obtained. We used the multiplex immunoassay technique to determine the cytokine concentrations in uterine fluid and blood serum of the mice. Results We observed no intergroup difference with respect to conception rates. A comparison of the cytokine concentrations in the uterine fluids of pregnant mice revealed higher TGFβ concentrations (p<0.01) in the second group injected with the anti-IL-10 antibody compared with the other groups. There was no difference detected in pregnant animals with regards to both uterine fluid and blood serum concentrations of the other cytokines. Conclusion Post-mating administration of anti-IL-10 and anti-TGFβ antibodies in mice may not have any effect on conception rates. PMID:25918594

  15. Social barriers to pathogen transmission in wild animal populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.

    Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviorsmore » may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.« less

  16. Social biases determine spatiotemporal sparseness of ciliate mating heuristics.

    PubMed

    Clark, Kevin B

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts.

  17. Social biases determine spatiotemporal sparseness of ciliate mating heuristics

    PubMed Central

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts. PMID:22482001

  18. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides.

    PubMed

    Li, Charles H; Cervantes, Maria; Springer, Deborah J; Boekhout, Teun; Ruiz-Vazquez, Rosa M; Torres-Martinez, Santiago R; Heitman, Joseph; Lee, Soo Chan

    2011-06-01

    Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (-) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (-) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex.

  19. Sporangiospore Size Dimorphism Is Linked to Virulence of Mucor circinelloides

    PubMed Central

    Li, Charles H.; Cervantes, Maria; Springer, Deborah J.; Boekhout, Teun; Ruiz-Vazquez, Rosa M.; Torres-Martinez, Santiago R.; Heitman, Joseph; Lee, Soo Chan

    2011-01-01

    Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (−) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (−) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex. PMID:21698218

  20. Costs of mate-guarding in wild male long-tailed macaques (Macaca fascicularis): physiological stress and aggression.

    PubMed

    Girard-Buttoz, Cédric; Heistermann, Michael; Rahmi, Erdiansyah; Agil, Muhammad; Fauzan, Panji Ahmad; Engelhardt, Antje

    2014-09-01

    Mate-guarding is an important determinant of male reproductive success in a number of species. However, it is known to potentially incur costs. The aim of the present study was to assess the effect of mate-guarding on male physiological stress and aggression in long-tailed macaques, a species in which males mate-guard females to a lesser extent than predicted by the Priority of Access model (PoA). The study was carried out during two mating periods on three groups of wild long-tailed macaques in Indonesia by combining behavioral observations with non-invasive measurements of fecal glucocorticoid (fGC) levels. Mate-guarding was associated with a general rise in male stress hormone levels but, from a certain threshold of mate-guarding onwards, increased vigilance time was associated with a decrease in stress hormone output. Mate-guarding also increased male-male aggression rate and male vigilance time. Overall, alpha males were more physiologically stressed than other males independently of mating competition. Increased glucocorticoid levels during mate-guarding are most likely adaptive since it may help males to mobilize extra-energy required for mate-guarding and ultimately maintain a balanced energetic status. However, repeated exposure to high levels of stress over an extended period is potentially deleterious to the immune system and thus may carry costs. This potential physiological cost together with the cost of increased aggression mate-guarding male face may limit the male's ability to mate-guard females, explaining the deviance from the PoA model observed in long-tailed macaques. Comparing our results to previous findings we discuss how ecological factors, reproductive seasonality and rank achievement may modulate the extent to which costs of mate-guarding limit male monopolization abilities. Copyright © 2014. Published by Elsevier Inc.

  1. Revealing life-history traits by contrasting genetic estimations with predictions of effective population size.

    PubMed

    Greenbaum, Gili; Renan, Sharon; Templeton, Alan R; Bouskila, Amos; Saltz, David; Rubenstein, Daniel I; Bar-David, Shirli

    2017-12-22

    Effective population size, a central concept in conservation biology, is now routinely estimated from genetic surveys and can also be theoretically predicted from demographic, life-history, and mating-system data. By evaluating the consistency of theoretical predictions with empirically estimated effective size, insights can be gained regarding life-history characteristics and the relative impact of different life-history traits on genetic drift. These insights can be used to design and inform management strategies aimed at increasing effective population size. We demonstrated this approach by addressing the conservation of a reintroduced population of Asiatic wild ass (Equus hemionus). We estimated the variance effective size (N ev ) from genetic data (N ev =24.3) and formulated predictions for the impacts on N ev of demography, polygyny, female variance in lifetime reproductive success (RS), and heritability of female RS. By contrasting the genetic estimation with theoretical predictions, we found that polygyny was the strongest factor affecting genetic drift because only when accounting for polygyny were predictions consistent with the genetically measured N ev . The comparison of effective-size estimation and predictions indicated that 10.6% of the males mated per generation when heritability of female RS was unaccounted for (polygyny responsible for 81% decrease in N ev ) and 19.5% mated when female RS was accounted for (polygyny responsible for 67% decrease in N ev ). Heritability of female RS also affected N ev ; hf2=0.91 (heritability responsible for 41% decrease in N ev ). The low effective size is of concern, and we suggest that management actions focus on factors identified as strongly affecting Nev, namely, increasing the availability of artificial water sources to increase number of dominant males contributing to the gene pool. This approach, evaluating life-history hypotheses in light of their impact on effective population size, and contrasting predictions with genetic measurements, is a general, applicable strategy that can be used to inform conservation practice. © 2017 Society for Conservation Biology.

  2. Handicap principle implies emergence of dimorphic ornaments

    PubMed Central

    2016-01-01

    Species spanning the animal kingdom have evolved extravagant and costly ornaments to attract mating partners. Zahavi's handicap principle offers an elegant explanation for this: ornaments signal individual quality, and must be costly to ensure honest signalling, making mate selection more efficient. Here, we incorporate the assumptions of the handicap principle into a mathematical model and show that they are sufficient to explain the heretofore puzzling observation of bimodally distributed ornament sizes in a variety of species. PMID:27903876

  3. Alternative Mating Tactics in Male Chameleons (Chamaeleo chamaeleon) Are Evident in Both Long-Term Body Color and Short-Term Courtship Pattern

    PubMed Central

    Keren-Rotem, Tammy; Levy, Noga; Wolf, Lior; Bouskila, Amos; Geffen, Eli

    2016-01-01

    Alternative mating tactics in males of various taxa are associated with body color, body size, and social status. Chameleons are known for their ability to change body color following immediate environmental or social stimuli. In this study, we examined whether the differential appearance of male common chameleon during the breeding season is indeed an expression of alternative mating tactics. We documented body color of males and used computer vision techniques to classify images of individuals into discrete color patterns associated with seasons, individual characteristics, and social contexts. Our findings revealed no differences in body color and color patterns among males during the non-breeding season. However, during the breeding season males appeared in several color displays, which reflected body size, social status, and behavioral patterns. Furthermore, smaller and younger males resembled the appearance of small females. Consequently, we suggest that long-term color change in males during the breeding season reflects male alternative mating tactics. Upon encounter with a receptive female, males rapidly alter their appearance to that of a specific brief courtship display, which reflects their social status. The females, however, copulated indiscriminately in respect to male color patterns. Thus, we suggest that the differential color patterns displayed by males during the breeding season are largely aimed at inter-male signaling. PMID:27409771

  4. Skin lipids of the striped plateau lizard (Sceloporus virgatus) correlate with female receptivity and reproductive quality alongside visual ornaments.

    PubMed

    Goldberg, Jay K; Wallace, Alisa K; Weiss, Stacey L

    2017-09-14

    Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards (Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.

  5. Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.

    PubMed

    van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W

    2014-09-01

    Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  6. Skin lipids of the striped plateau lizard ( Sceloporus virgatus) correlate with female receptivity and reproductive quality alongside visual ornaments

    NASA Astrophysics Data System (ADS)

    Goldberg, Jay K.; Wallace, Alisa K.; Weiss, Stacey L.

    2017-10-01

    Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards ( Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.

  7. Does catch and release affect the mating system and individual reproductive success of wild Atlantic salmon (Salmo salar L.)?

    PubMed

    Richard, Antoine; Dionne, Mélanie; Wang, Jinliang; Bernatchez, Louis

    2013-01-01

    In this study, we documented the breeding system of a wild population of Atlantic salmon (Salmo salar L.) by genetically sampling every returning adult and assessed the determinants of individual fitness. We then quantified the impacts of catch and release (C&R) on mating and reproductive success. Both sexes showed high variance in individual reproductive success, and the estimated standardized variance was higher for males (2.86) than for females (0.73). We found a weak positive relationship between body size and fitness and observed that fitness was positively correlated with the number of mates, especially in males. Mature male parr sired 44% of the analysed offspring. The impact of C&R on the number of offspring was size dependent, as the reproductive success of larger fish was more impaired than smaller ones. Also, there was an interactive negative effect of water temperature and air exposure time on reproductive success of C&R salmon. This study improves our understanding of the complex reproductive biology of the Atlantic salmon and is the first to investigate the impact of C&R on reproductive success. Our study expands the management toolbox of appropriate C&R practices that promote conservation of salmon populations and limit negative impacts on mating and reproductive success. © 2012 Blackwell Publishing Ltd.

  8. Anticipatory flexibility: larval population density in moths determines male investment in antennae, wings and testes.

    PubMed

    Johnson, Tamara L; Symonds, Matthew R E; Elgar, Mark A

    2017-11-15

    Developmental plasticity provides individuals with a distinct advantage when the reproductive environment changes dramatically. Variation in population density, in particular, can have profound effects on male reproductive success. Females may be easier to locate in dense populations, but there may be a greater risk of sperm competition. Thus, males should invest in traits that enhance fertilization success over traits that enhance mate location. Conversely, males in less dense populations should invest more in structures that will facilitate mate location. In Lepidoptera, this may result in the development of larger antennae to increase the likelihood of detecting female sex pheromones, and larger wings to fly more efficiently. We explored the effects of larval density on adult morphology in the gum-leaf skeletonizer moth, Uraba lugens , by manipulating both the number of larvae and the size of the rearing container. This experimental arrangement allowed us to reveal the cues used by larvae to assess whether absolute number or density influences adult responses. Male investment in testes size depended on the number of individuals, while male investment in wings and antennae depended upon larval density. By contrast, the size of female antennae and wings were influenced by an interaction of larval number and container size. This study demonstrates that male larvae are sensitive to cues that may reveal adult population density, and adjust investment in traits associated with fertilization success and mate detection accordingly. © 2017 The Author(s).

  9. Variation in mating system among birds: ecological basis revealed by hierarchical comparative analysis of mate desertion

    PubMed Central

    Owens, I. P. F.; Bennett, P. M.

    1997-01-01

    Since most bird species are socially monogamous, variation among species in social mating systems is determined largely by variation in the frequency of mate desertion. Mate desertion is expected to occur when the benefits, in terms of additional reproductive opportunities, outweigh the costs, in terms of reduced reproductive success from the present brood. However, despite much research, the relative importance of costs and benefits in explaining mating system variation is not well understood. Here, we investigate this problem using a comparative method. We analyse changes in the frequency of mate desertion at different phylogenetic levels. Differences between orders and families in the frequency of desertion are negatively associated with changes in the potential costs of desertion, but are not associated with changes in the potential benefits of desertion. Conversely, differences among genera and species in the frequency of desertion are positively associated with increases in the potential benefits of desertion, but not with changes in the potential costs of desertion. Hence, we suggest that mate desertion in birds originates through a combination of evolutionary predisposition and ecological facilitation. In particular, ancient changes in life-history strategy determine the costs of desertion and predispose certain lineages to polygamy, while contemporary changes in the distribution of resources determine the benefits of desertion and thereby the likelihood that polygamy will be viable within these lineages. Thus, monogamy can arise via two very different evolutionary pathways. Groups such as albatrosses (Procellariidae) are constrained to social monogamy by the high cost to desertion, irrespective of the potential benefits. However, in groups such as the accentors (Prunellidae), which are predisposed to desertion, monogamy occurs only when the benefits of desertion are very limited. These conclusions emphasise the additional power which a hierarchical approach contributes to the modern comparative method.

  10. Consequences of snowy winters on male mating strategies and reproduction in a mountain ungulate.

    PubMed

    Apollonio, Marco; Brivio, Francesca; Rossi, Iva; Bassano, Bruno; Grignolio, Stefano

    2013-09-01

    Alternative mating tactics (AMTs) are intrasexual variants in mating behaviour of several species ranging from arthropods to mammals. Male AMTs coexist between and within populations. In particular, male ungulates rarely adopt just one tactic throughout their lifetime. Tactics commonly change according to internal factors (age, body size, condition) and external conditions (weather, resources, predation, animal density). However, the influence of weather has not yet been investigated in upper vertebrates. Such influence may be relevant in species whose rutting period occurs late in fall or in winter, when environmental conditions and the snow cover in particular may vary considerably. We detected two AMTs in Alpine ibex (Capra ibex) males: older and full-grown males mainly adopted the tending tactic, while younger males usually pursued an alternative one (coursing tactic). Weather was found to influence the use of AMTs by males: in snowy mating seasons, the coursing tactic was no longer used due to difficulties in moving through deep snow. In snowy rutting periods, males appeared to delay or even avoid mating activities and a decrease of births was reported in the second part of the following birth season. Snow cover may have a negative effect on population dynamics by reducing the recruitment and on population genetic variability, as a consequence of poorer mating opportunities. Studies on factors affecting mating behaviour and leading to a reduced availability of mates and a decrease in female productivity are especially relevant in species, like Alpine ibex, whose genetic variability is low. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Flying the nest: male dispersal and multiple paternity enables extrafamilial matings for the invasive bark beetle Dendroctonus micans

    PubMed Central

    Fraser, C I; Brahy, O; Mardulyn, P; Dohet, L; Mayer, F; Grégoire, J-C

    2014-01-01

    There is an evolutionary trade-off between the resources that a species invests in dispersal versus those invested in reproduction. For many insects, reproductive success in patchily-distributed species can be improved by sibling-mating. In many cases, such strategies correspond to sexual dimorphism, with males–whose reproductive activities can take place without dispersal–investing less energy in development of dispersive resources such as large body size and wings. This dimorphism is particularly likely when males have little or no chance of mating outside their place of birth, such as when sperm competition precludes successful fertilisation in females that have already mated. The economically important bark beetle pest species Dendroctonus micans (Coleoptera: Curculionidae, Scolytinae) has been considered to be exclusively sibling-mating, with 90% of females having already mated with their brothers by emergence. The species does not, however, show strong sexual dimorphism; males closely resemble females, and have been observed flying through forests. We hypothesised that this lack of sexual dimorphism indicates that male D. micans are able to mate with unrelated females, and to sire some or all of their offspring, permitting extrafamilial reproduction. Using novel microsatellite markers, we carried out cross-breeding laboratory experiments and conducted paternity analyses of resulting offspring. Our results demonstrate that a second mating with a less-related male can indeed lead to some offspring being sired by the latecomer, but that most are sired by the first, sibling male. We discuss these findings in the context of sperm competition versus possible outbreeding depression. PMID:24736784

  12. Female freshwater crayfish adjust egg and clutch size in relation to multiple male traits

    PubMed Central

    Galeotti, Paolo; Rubolini, Diego; Fea, Gianluca; Ghia, Daniela; Nardi, Pietro A; Gherardi, Francesca; Fasola, Mauro

    2006-01-01

    Females may invest more in reproduction if they acquire mates of high phenotypic quality, because offspring sired by preferred partners may be fitter than offspring sired by non-preferred ones. In this study, we tested the differential maternal allocation hypothesis in the freshwater crayfish, Austropotamobius italicus, by means of a pairing experiment aimed at evaluating the effects of specific male traits (body size, chelae size and chelae asymmetry) on female primary reproductive effort. Our results showed that females laid larger but fewer eggs for relatively small-sized, large-clawed males, and smaller but more numerous eggs for relatively large-sized, small-clawed males. Chelae asymmetry had no effects on female reproductive investment. While the ultimate consequences of this pattern of female allocation remain unclear, females were nevertheless able to adjust their primary reproductive effort in relation to mate characteristics in a species where inter-male competition and sexual coercion may mask or obscure their sexual preferences. In addition, our results suggest that female allocation may differentially affect male characters, thus promoting a trade-off between the expression of different male traits. PMID:16600888

  13. Nutrient intake determines post-maturity molting in the golden orb-web spider Nephila pilipes (Araneae: Araneidae).

    PubMed

    Cheng, Ren-Chung; Zhang, Shichang; Chen, Yu-Chun; Lee, Chia-Yi; Chou, Yi-Ling; Ye, Hui-Ying; Piorkowski, Dakota; Liao, Chen-Pan; Tso, I-Min

    2017-06-15

    While molting occurs in the development of many animals, especially arthropods, post-maturity molting (PMM, organisms continue to molt after sexual maturity) has received little attention. The mechanism of molting has been studied intensively; however, the mechanism of PMM remains unknown although it is suggested to be crucial for the development of body size. In this study, we investigated factors that potentially induce PMM in the golden orb-web spider Nephila pilipes , which has the greatest degree of sexual dimorphism among terrestrial animals. We manipulated the mating history and the nutrient consumption of the females to examine whether they affect PMM. The results showed that female spiders under low nutrition were more likely to molt as adults, and mating had no significant influence on the occurrence of PMM. Moreover, spiders that underwent PMM lived longer than those that did not and their body sizes were significantly increased. Therefore, we concluded that nutritional condition rather than mating history affect PMM. © 2017. Published by The Company of Biologists Ltd.

  14. Conflict and cooperation over sex: the consequences of social and genetic polyandry for reproductive success in dunnocks.

    PubMed

    Santos, Eduardo S A; Santos, Luana L S; Lagisz, Malgorzata; Nakagawa, Shinichi

    2015-11-01

    Conflict and cooperation within and between the sexes are among the driving forces that lead to the evolution of mating systems. Among mating strategies, female genetic polyandry and male reproductive cooperation pose challenging evolutionary questions regarding the maintenance of systems where one sex suffers from reduced fitness. Here, we investigate the consequences of social and genetic polyandry for reproductive success of females and males in a population of the dunnock, Prunella modularis. We show that female multiple mating ameliorates the negative effects of inbreeding. We, however, found little evidence that females engage in extra-group (pair) mating with less related or more heterozygous males. Breeding in socially polyandrous groups reduced the amount of paternity lost to extra-group males, such that, on average, cobreeding and monogamous males fledged a similar number of young. Importantly, c. 30% of cobreeding male dyads were related, suggesting they could gain indirect fitness benefits. Taken together, cobreeding males achieve equivalent reproductive success to monogamous counterparts under most circumstances. Our study has revealed unexpected complexities in the variable mating system of dunnocks in New Zealand. Our results differ from the well-known Cambridge dunnock study and can help our understanding of the evolution and maintenance of various breeding systems in the animal kingdom. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  15. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    PubMed

    Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  16. Interspecific variation of calls in clownfishes: degree of similarity in closely related species.

    PubMed

    Colleye, Orphal; Vandewalle, Pierre; Lanterbecq, Déborah; Lecchini, David; Parmentier, Eric

    2011-12-19

    Clownfishes are colorful coral reef fishes living in groups in association with sea anemones throughout the Indo-Pacific Ocean. Within their small societies, size hierarchy determines which fish have access to reproduction. These fishes are also prolific callers whose aggressive sounds seem to play an important role in the social hierarchy. Agonistic interactions being involved in daily behaviour suggest how acoustic communication might play an important role in clownfish group. Sounds were recorded and compared in fourteen clownfish species (some of which have never been recorded before) to evaluate the potential role of acoustic communication as an evolutionary driving force. Surprisingly, the relationship between fish size and both dominant frequency and pulse duration is not only species-specific; all the specimens of the 14 species are situated on exactly the same slope, which means the size of any Amphiprion can be predicted by both acoustic features. The number of pulses broadly overlaps among species, whereas the pulse period displays the most variation even if it shows overlap among sympatric species. Sound comparisons between three species (A. akallopisos, A. ocellaris and A. frenatus) having different types of teeth and body shape do not show differences neither in the acoustic waveform nor in the power spectrum. Significant overlap in acoustic features demonstrates that the sound-producing mechanism is highly conservative among species. Differences in the calls of some species are due to size dimorphism and the sound variation might be in this case a by-product. This morphological constraint does not permit a consideration of acoustic communication as the main driving force in the diversification of clownfishes. Moreover, calls are not produced to find mate and consequently are less subject to variations due to partner preference, which restricts the constraints of diversification. Calls are produced to reach and defend the competition to mate access. However, differences in the pulse period between cohabiting species show that, in some case, sounds can help to differentiate the species, to prevent competition between cohabiting species and to promote the diversification of taxa.

  17. Interspecific variation of calls in clownfishes: degree of similarity in closely related species

    PubMed Central

    2011-01-01

    Background Clownfishes are colorful coral reef fishes living in groups in association with sea anemones throughout the Indo-Pacific Ocean. Within their small societies, size hierarchy determines which fish have access to reproduction. These fishes are also prolific callers whose aggressive sounds seem to play an important role in the social hierarchy. Agonistic interactions being involved in daily behaviour suggest how acoustic communication might play an important role in clownfish group. Sounds were recorded and compared in fourteen clownfish species (some of which have never been recorded before) to evaluate the potential role of acoustic communication as an evolutionary driving force. Results Surprisingly, the relationship between fish size and both dominant frequency and pulse duration is not only species-specific; all the specimens of the 14 species are situated on exactly the same slope, which means the size of any Amphiprion can be predicted by both acoustic features. The number of pulses broadly overlaps among species, whereas the pulse period displays the most variation even if it shows overlap among sympatric species. Sound comparisons between three species (A. akallopisos, A. ocellaris and A. frenatus) having different types of teeth and body shape do not show differences neither in the acoustic waveform nor in the power spectrum. Conclusion Significant overlap in acoustic features demonstrates that the sound-producing mechanism is highly conservative among species. Differences in the calls of some species are due to size dimorphism and the sound variation might be in this case a by-product. This morphological constraint does not permit a consideration of acoustic communication as the main driving force in the diversification of clownfishes. Moreover, calls are not produced to find mate and consequently are less subject to variations due to partner preference, which restricts the constraints of diversification. Calls are produced to reach and defend the competition to mate access. However, differences in the pulse period between cohabiting species show that, in some case, sounds can help to differentiate the species, to prevent competition between cohabiting species and to promote the diversification of taxa. PMID:22182416

  18. Dual fitness benefits of post-mating sugar meals for female hawkmoths (Hyles lineata).

    PubMed

    von Arx, Martin; Sullivan, Kayleigh A; Raguso, Robert A

    2013-04-01

    The white-lined sphinx moth (Hyles lineata: Sphingidae) is the most widespread and abundant hawkmoth pollinator in North America and plays a major role in the reproductive biology of many plant species. H. lineata visits a wide range of plants, which differ in the quality and quantity (e.g. caloric content, volume) of the nectar reward that they offer in exchange for pollination services. Some of these plants represent a suitable oviposition substrate as well as a profitable nectar source, allowing mated H. lineata females to mix foraging and oviposition bouts. We investigated the effects of post-mating nectar intake on the reproductive success of female H. lineata. While all experimental females had access to a 20% sucrose solution during the pre-mating phase (avg. 2.7 days) we manipulated the post-mating diet, assigning mated females to three experimental groups (sucrose fed, water fed, or unfed). Mated females with access to sucrose lived twice as long and produced more fertile eggs at double the rate of control moths that were starved or water-fed after mating. Thus, the sugar component of floral nectar positively affects the physiology of mated H. lineata at multiple levels, which translates into strong selection for mated females to continue nectar foraging during or between oviposition bouts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. SEXUAL SELECTION THROUGH FEMALE CHOICE IN LAWES' PAROTIA, A LEK-MATING BIRD OF PARADISE.

    PubMed

    Pruett-Jones, S G; Pruett-Jones, M A

    1990-05-01

    We studied sexual selection in Lawes' Parotia, a lek-mating bird of paradise, during 1981-1983 in Papua New Guinea. There was a high variance in mating success among males, with fewer than half of the individuals mating in any one year. This variance was independent of male-male interactions and disruptions. A role of female choice in sexual selection was suggested by the patterns of female visitation to courts and statistical correlations across males between phenotypic traits and mating success. Females repeatedly visited most males in their home ranges and began visiting males up to six weeks before mating. In one or more years, six aspects of male behavior and one morphological variable were positively correlated with mating success, but the probability values were not significant using a simultaneous inference test. Calculation of combined probability values across all three years revealed that one aspect of male display behavior, the probability of display, positively and significantly influenced mating status. The probability of display was also significantly correlated with relative mating success among males. Females showed strong fidelity to mates, both within and between seasons. Display sites of male Lawes' Parotia are variably dispersed, but mating success did not differ for grouped and solitary males. These data confirm an important role of female choice in sexual selection in birds of paradise but also suggest that female choice may be unrelated to the process of lek-initiation in this species. © 1990 The Society for the Study of Evolution.

  20. Clustering and phase transitions on a neutral landscape

    NASA Astrophysics Data System (ADS)

    Scott, Adam D.; King, Dawn M.; Marić, Nevena; Bahar, Sonya

    2013-06-01

    Recent computational studies have shown that speciation can occur under neutral conditions, i.e., when the simulated organisms all have identical fitness. These works bear comparison with mathematical studies of clustering on neutral landscapes in the context of branching and coalescing random walks. Here, we show that sympatric clustering/speciation can occur on a neutral landscape whose dimensions specify only the simulated organisms’ phenotypes. We demonstrate that clustering occurs not only in the case of assortative mating, but also in the case of asexual fission; it is not observed in the control case of random mating. We find that the population size and the number of clusters undergo a second-order non-equilibrium phase transition as the maximum mutation size is varied.

  1. Worthless donations: male deception and female counter play in a nuptial gift-giving spider

    PubMed Central

    2011-01-01

    Background In nuptial gift-giving species, benefits of acquiring a mate may select for male deception by donation of worthless gifts. We investigated the effect of worthless gifts on mating success in the spider Pisaura mirabilis. Males usually offer an insect prey wrapped in silk; however, worthless gifts containing inedible items are reported. We tested male mating success in the following experimental groups: protein enriched fly gift (PG), regular fly gift (FG), worthless gift (WG), or no gift (NG). Results Males that offered worthless gifts acquired similar mating success as males offering nutritional gifts, while males with no gift experienced reduced mating success. The results suggest that strong selection on the nuptial gift-giving trait facilitates male deception by donation of worthless gifts. Females terminated matings faster when males offered worthless donations; this demonstrate a cost of deception for the males as shorter matings lead to reduced sperm transfer and thus give the deceiving males a disadvantage in sperm competition. Conclusion We propose that the gift wrapping trait allows males to exploit female foraging preference by disguising the gift content thus deceiving females into mating without acquiring direct benefits. Female preference for a genuine prey gift combined with control over mating duration, however, counteracts the male deception. PMID:22082300

  2. Worthless donations: male deception and female counter play in a nuptial gift-giving spider.

    PubMed

    Albo, Maria J; Winther, Gudrun; Tuni, Cristina; Toft, Søren; Bilde, Trine

    2011-11-14

    In nuptial gift-giving species, benefits of acquiring a mate may select for male deception by donation of worthless gifts. We investigated the effect of worthless gifts on mating success in the spider Pisaura mirabilis. Males usually offer an insect prey wrapped in silk; however, worthless gifts containing inedible items are reported. We tested male mating success in the following experimental groups: protein enriched fly gift (PG), regular fly gift (FG), worthless gift (WG), or no gift (NG). Males that offered worthless gifts acquired similar mating success as males offering nutritional gifts, while males with no gift experienced reduced mating success. The results suggest that strong selection on the nuptial gift-giving trait facilitates male deception by donation of worthless gifts. Females terminated matings faster when males offered worthless donations; this demonstrate a cost of deception for the males as shorter matings lead to reduced sperm transfer and thus give the deceiving males a disadvantage in sperm competition. We propose that the gift wrapping trait allows males to exploit female foraging preference by disguising the gift content thus deceiving females into mating without acquiring direct benefits. Female preference for a genuine prey gift combined with control over mating duration, however, counteracts the male deception.

  3. A novel method of comparing mating success and survival reveals similar sexual and viability selection for mobility traits in female tree crickets.

    PubMed

    Ercit, K; Gwynne, D T

    2016-06-01

    The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  4. Characterization of CpSte11, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway.

    PubMed

    Park, Jin-Ah; Kim, Jung-Mi; Park, Seung-Moon; Kim, Dae-Hyuk

    2012-04-01

    The gene CpSte11 of Cryphonectria parasitica, which encodes a yeast Ste11 homologue, was cloned and characterized. Gene replacement analysis revealed a high frequency of CpSte11 null mutants. When compared with the wild-type parent strain, CpSte11 null mutants showed no difference in terms of growth rate or pigmentation. However, CpSte11 null mutants showed a marked decrease in both the number and size of stromal pustules on chestnut twigs. The virulence test showed that, in comparison with those of the wild-type and virus-infected hypovirulent strains, CpSte11 null mutants produced necrotic areas of intermediate size. Disruption of the CpSte11 gene also resulted in defects in female fertility. Down-regulation of transcripts for the mating pheromone precursor gene, Mf2/2, and mating response transcription factors, such as cpst12 and pro1, was observed in CpSte11 null mutants. The down-regulation of Mf2/2, cpst12 and pro1 was also observed in the mutant phenotype of Cpmk2, a mating response Fus3-like mitogen-activated protein kinase (MAPK) gene, but not in the mutant of Cpmk1, a high-osmolarity glycerol Hog1-like MAPK gene. These results indicate that the cloned CpSte11 gene is functionally involved in the mating response pathway and acts through downstream targets, including Cpmk2, cpst12, pro1 and Mf2/2. However, the characteristics of the CpSte11 null mutant were fully phenocopied only in the cpst12 null mutant, but not in other studied null mutants of components of the putative mating response pathway. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  5. Origin and occurrence of sexual and mating systems in Crustacea: a progression towards communal living and eusociality.

    PubMed

    Subramoniam, T

    2013-12-01

    Crustaceans are known for their unrivalled diversity of sexual systems, as well as peculiar mating associations to achieve maximum mating success and fertilization accomplishment. Although sexes are separate in most species, various types of hermaphroditism characterize these predominantly aquatic arthropods. A low operational sex ratio between female and male, together with temporally limited receptivity of females towards males, imposes restrictions on the structuring of mating systems in crustaceans. The basic mating systems consist of monogamy, polygamy, mate guarding and pure searching. Understandably, ecological influences may also play a determinative role in the evolution of such sexual and mating systems in crustaceans. An important outcome of the crustacean sexual biology is the development of complex social structures in many aquatic species, in much the same way insects have established them in terrestrial conditions. In addition, groups like isopods and certain families of brachyuran crabs have shown terrestrial adaptation, exhibiting peculiar reproductive modes, sometimes reminiscent of their terrestrial counterparts, insects. Many caridean shrimps, living in symbiotic relationship with other marine invertebrates in the coral reef habitats, have reached pinnacle of complexity in sexuality and peculiar mating behaviours, resulting in communal living and establishing advanced social systems, such as eusociality.

  6. The Size Advantage Model of Sex Allocation in the Protandrous Sex-Changer Crepidula fornicata: Role of the Mating System, Sperm Storage, and Male Mobility.

    PubMed

    Broquet, Thomas; Barranger, Audrey; Billard, Emmanuelle; Bestin, Anastasia; Berger, Rémy; Honnaert, Gaelle; Viard, Frédérique

    2015-09-01

    Sequential hermaphroditism is adaptive when the reproductive value of an individual varies with size or age, and this relationship differs between males and females. In this case, theory shows that the lifetime reproductive output of an individual is increased by changing sex (a hypothesis referred to as the size-advantage model). Sex-linked differences in size-fitness curves can stem from differential costs of reproduction, the mating system, and differences in growth and mortality between sexes. Detailed empirical data is required to disentangle the relative roles of each of these factors within the theory. Quantitative data are also needed to explore the role of sperm storage, which has not yet been considered with sequential hermaphrodites. Using experimental rearing and paternity assignment, we report relationships between size and reproductive success of Crepidula fornicata, a protandrous (male-first) gastropod. Male reproductive success increased with size due to the polygamous system and stacking behavior of the species, but females nonetheless had greater reproductive success than males of the same size, in agreement with the size-advantage theory. Sperm storage appeared to be a critical determinant of success for both sexes, and modeling the effect of sperm storage showed that it could potentially accelerate sex change in protandrous species.

  7. Mating systems, reproductive success, and sexual selection in secretive species: a case study of the western diamond-backed rattlesnake, Crotalus atrox.

    PubMed

    Clark, Rulon W; Schuett, Gordon W; Repp, Roger A; Amarello, Melissa; Smith, Charles F; Herrmann, Hans-Werner

    2014-01-01

    Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa.

  8. Mating Systems, Reproductive Success, and Sexual Selection in Secretive Species: A Case Study of the Western Diamond-Backed Rattlesnake, Crotalus atrox

    PubMed Central

    Clark, Rulon W.; Schuett, Gordon W.; Repp, Roger A.; Amarello, Melissa; Smith, Charles F.; Herrmann, Hans-Werner

    2014-01-01

    Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa. PMID:24598810

  9. Do extra-group fertilizations increase the potential for sexual selection in male mammals?

    PubMed

    Isvaran, Kavita; Sankaran, Sumithra

    2017-10-01

    Fertilizations by males outside the social breeding group (extra-group paternity, EGP) are widespread in birds and mammals. EGP is generally proposed to increase male reproductive skew and thereby increase the potential for sexual selection, but the generality of this relationship is unclear. We extracted data from 27 mammals in seven orders and used phylogenetic comparative methods to investigate the influence of EGP and social mating system on measures of inequality in male fertilization success, which are indices of the potential for sexual selection. We find that EGP and social mating system can predict the potential for sexual selection in mammalian populations, but only when considered jointly and not individually. EGP appears to increase the potential for sexual selection but only when the degree of social polygyny is relatively low. When social polygyny is high, EGP appears to result in a more uniform distribution of reproduction and a decrease in the potential for sexual selection. A possible explanation to be investigated is that the phenotype of extra-group fathers differs systematically across social mating systems. Our findings have implications for the use of EGP and social mating system as indices of sexual selection in comparative analyses of trait evolution under sexual selection. © 2017 The Author(s).

  10. Handicap principle implies emergence of dimorphic ornaments.

    PubMed

    Clifton, Sara M; Braun, Rosemary I; Abrams, Daniel M

    2016-11-30

    Species spanning the animal kingdom have evolved extravagant and costly ornaments to attract mating partners. Zahavi's handicap principle offers an elegant explanation for this: ornaments signal individual quality, and must be costly to ensure honest signalling, making mate selection more efficient. Here, we incorporate the assumptions of the handicap principle into a mathematical model and show that they are sufficient to explain the heretofore puzzling observation of bimodally distributed ornament sizes in a variety of species. © 2016 The Author(s).

  11. Colour bands, mate choice and paternity in the bluethroat.

    PubMed

    Johnsen; Fiske; Amundsen; Lifjeld; Rohde

    2000-01-01

    Studies of several bird species have shown that coloured leg bands may affect a male's success in mate attraction and/or mating competition. From a colour band experiment in the field, we have previously reported that male bluethroats, Luscinia s. svecica, with blue and orange bands (BO males) guarded their mates less intensely at the peak of female fertility, and spent more time advertising for additional mates, than males banded with non-BO colours. These responses indicated that BO males experienced less threat to their paternity than did non-BO males, possibly mediated through an increased attractiveness. Here we present paternity analyses of the broods from the field study and test whether there were differences between the two male groups in within-pair or extrapair paternity. There were no significant differences between the two groups of males in paternity, suggesting effective male protection of paternity. However, extrapair paternity was infrequent in the 2 years of the field experiment; hence, the power in detecting effects on paternity does not allow a definitive conclusion on this issue. We also conducted an aviary experiment in which females were given the choice between a BO male and a non-BO male, to test whether females had preferences for particular colour bands. Females did not associate more with BO males, as would have been expected if these males were more attractive in social mate choice. Our results suggest that the effects of colour bands on social mate choice and paternity are, at best, weak. Copyright 2000 The Association for the Study of Animal Behaviour.

  12. Effects of mating behaviour and the ovarian follicular state of female alpacas on conception.

    PubMed

    Vaughan, J L; Macmillan, K L; Anderson, G A; D'Occhio, M J

    2003-01-01

    To determine relationships between mating behaviour, ovarian follicular state and successful conception in receptive female alpacas. Seventy pen matings were observed at a commercial alpaca stud in south-western Victoria. The behaviours observed included time taken to assume sternal recumbency, mating duration, and evidence of nonreceptive behaviour such as spitting, kicking and vocalisation. Ovarian follicular state was determined by ultrasonography, which was complemented by measuring plasma concentrations of oestradiol and progesterone. Pregnancies were confirmed by transabdominal ultrasonography between days 45 and 80 after mating. There were no significant differences between receptive females that conceived and those that failed to conceive in the time taken to adopt the copulation position of sternal recumbency, mating duration, or maximum follicle diameter. There was no significant relationship between time taken to assume sternal recumbency (log10) and maximum follicle diameter or plasma oestradiol (log10). However, there was a significant quadratic relationship between plasma oestradiol concentration (log10) and follicle diameter, and the probability of pregnancy increased as the plasma concentration of oestradiol (log10) at the time of mating increased. Females were sexually receptive most of the time in the absence of a corpus luteum, and regardless of size of the largest follicle or plasma concentration of oestradiol. Breed (Huacaya vs Suri), site of the dominant follicle (left or right ovary), lactation state, number of matings by the male (1 or 2), or interval between parturition and mating, did not affect pregnancy outcome. Follicles with a diameter less than 7 mm were able to ovulate in response to mating. This was smaller than previously reported. Thirty-four pregnancies (49% pregnancy rate) resulted in 30 (88%) births with a gestation length of 343 days (SEM +/- 2, range 316-367 days). There were 4 (12%) abortions between days 45 and 80 of gestation and full term. It was not possible to correlate mating behaviour and ovarian state with conception. To optimise pregnancy rates in receptive alpacas, matings need to occur in the presence of an oestrogenic follicle that is capable of ovulation in response to mating. A simple method of detecting alpacas with follicles in this state is not currently available and treatments that control ovarian follicular growth should therefore be investigated.

  13. Sexual orientation and shifts in preferences for a partner's body attributes in short-term versus long-term mating contexts.

    PubMed

    Lucas, Margery; Koff, Elissa; Grossmith, Samantha; Migliorini, Robyn

    2011-06-01

    This study assessed the effects of short- and long-term mating contexts on preferences for body characteristics of potential relationship partners in lesbians and heterosexual women. Lesbians (n = 41) rated figure drawings and computer-generated images of women that varied in body fat, waist-to-hip ratio, and breast size; heterosexual women (n = 95) rated computer-generated images of men that varied in muscularity and body fat. Both lesbians and heterosexual women showed a shift in preferences toward more physically attractive partners for shortterm relationships. All body aspects were affected, except that heterosexual women did not show a preference shift for male body fat. The results were interpreted in terms of a mating trade-off strategy in which mate preferences are the consequence of cost/benefit analyses and suggest that preferences for physical attributes of sexual partners may be shared by members of the same sex regardless of sexual orientation.

  14. Effects of lead on the male mouse as investigated by in vitro fertilization and blastocyst culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, L.; Sjoeblom, P.; Wide, M.

    1987-02-01

    Long-term exposure of male mice to inorganic lead (lead chloride, 1 g/liter) in the drinking water reduces their fertility. The cause of this reduction, expressed as a decrease in the number of mated females showing inplantations, was investigated, using an in vivo fertilization method. It was found that spermatozoa from lead-exposed males had a significantly lower ability to fertilize mouse eggs than those from unexposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males, were examined. No morphologically abnormal embryos were found. However, whenmore » cultured in vitro over the implantation period, blastocysts of the group mated with lead-exposed males showed an increased frequency of delayed hatching from the zona pellucida or an inability to hatch. Among blastocysts from this group a decreased frequency of inner cell mass development was also found.« less

  15. Influence of male morphology on male mating status and behavior during interunit encounters in western lowland gorillas.

    PubMed

    Caillaud, Damien; Levréro, Florence; Gatti, Sylvain; Ménard, Nelly; Raymond, Michel

    2008-04-01

    The western lowland gorilla (Gorilla gorilla gorilla) is one of the most sexually dimorphic primate species. Mature males are twice the size of females and have grey fur on their backs and a fibrous, adipose crest on their heads. Such traits are likely to have evolved by sexual selection, either because they confer advantages during male-male fights or because females prefer males with more dimorphic traits. We developed photogrammetric methods for distance collection of morphological data from silverback males frequenting the Lokoué forest clearing in Odzala-Kokoua National Park, Republic of the Congo. Body length, head-crest size, musculature development, and extent of the grey color on the back were assessed in 87 nonbreeding and breeding mature males. Behavioral data were also collected during 312 male-male encounters involving 67 mature males in order to estimate their level of aggressiveness. The number of females belonging to a mature male positively correlated with the male crest size, body length, and musculature. Whereas morphological variables did not significantly affect the intensity of male-male encounters, the number of females attending male-male encounters strongly affected the number of agonistic displays by the two males. We discuss the mechanisms through which males with more exaggerated traits could obtain a mating advantage, namely male-male fights or female mate choice. (c) 2007 Wiley-Liss, Inc.

  16. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    PubMed

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  17. From kissing to belly stridulation: comparative analysis reveals surprising diversity, rapid evolution, and much homoplasy in the mating behaviour of 27 species of sepsid flies (Diptera: Sepsidae).

    PubMed

    Puniamoorthy, N; Ismail, M R B; Tan, D S H; Meier, R

    2009-11-01

    Our understanding of how fast mating behaviour evolves in insects is rather poor due to a lack of comparative studies among insect groups for which phylogenetic relationships are known. Here, we present a detailed study of the mating behaviour of 27 species of Sepsidae (Diptera) for which a well-resolved and supported phylogeny is available. We demonstrate that mating behaviour is extremely diverse in sepsids with each species having its own mating profile. We define 32 behavioural characters and document them with video clips. Based on sister species comparisons, we provide several examples where mating behaviour evolves faster than all sexually dimorphic morphological traits. Mapping the behaviours onto the molecular tree reveals much homoplasy, comparable to that observed for third positions of mitochondrial protein-encoding genes. A partitioned Bremer support (PBS) analysis reveals conflict between the molecular and behavioural data, but behavioural characters have higher PBS values per parsimony-informative character than DNA sequence characters.

  18. Fungal Sex: The Mucoromycota.

    PubMed

    Lee, Soo Chan; Idnurm, Alexander

    2017-03-01

    Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.

  19. Genetic evidence for polygynandry in the black-striped pipefish Syngnathus abaster: a microsatellite-based parentage analysis.

    PubMed

    Hübner, Kerstin; Gonzalez-Wanguemert, Mercedes; Diekmann, Onno E; Serrão, Ester A

    2013-01-01

    Sexual selection theory predicts that, in organisms with reversed sex roles, more polyandrous species exhibit higher levels of sexual dimorphism. In the family Syngnathidae (pipefish, seahorses, and seadragons), males provide all parental care by carrying developing embryos on their ventral surfaces, and females develop secondary sex characters. Syngnathids exhibit a variety of genetic mating patterns, making them an ideal group to test predictions of sexual selection theory. Here, we describe the mating system of the black-striped pipefish Syngnathus abaster, using 4 highly variable microsatellites to analyze parentage of 102 embryos. Results revealed that 1) both sexes mate multiple times over the course of a pregnancy (polygynandrous mating system), 2) eggs are spatially segregated by maternity within each brood pouch, and 3) larger females have higher mating success (Kolmogorov-Smirnov test; P < 0.05). Together with similar studies of other syngnathid species, our results support the hypothesis that the mating system is related to the intensity of sexual dimorphism.

  20. Improved metabolic control and hepatic oxidative biomarkers with the periconception use of Helichrysum plicatum ssp. plicatum.

    PubMed

    Sezik, M; Aslan, M; Orhan, D D; Erdemoglu, E; Pekcan, M; Mungan, T; Sezik, E

    2010-02-01

    Our aim was to investigate the hypoglycaemic and antioxidant effects of the Helichrysum plicatum ssp. plicatum (HPsP) plant extract in the streptozotocin-induced type 1 diabetes rat model during pregnancy. Five groups (n = 8, each) were formed: (1) diabetic non-mated control, (2) non-diabetic mated control, (3) diabetic mated control, (4) diabetic non-mated treatment and (5) diabetic mated treatment. The HPsP extract was administered orally for 15 days (250 mg/kg body weight), beginning 3 days before mating. The extract led to decreased blood glucose, increased serum insulin, and decreased serum triglycerides in pregnant and non-pregnant diabetic animals. Liver thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) measurements in extract-treated diabetics were similar to non-diabetic pregnant controls, indicating probable reversal of increased lipid peroxidation in the liver. The mean pup number tended to increase (p = 0.06) with extract administration. In conclusion, the beneficial effects we encountered with the periconception use of the studied herbal extract warrant further investigation.

  1. Balancing in- and out-breeding by the predatory mite Phytoseiulus persimilis.

    PubMed

    Atalay, Demet; Schausberger, Peter

    2018-02-01

    In- and out-breeding depressions are commonly observed phenomena in sexually reproducing organisms with a patchy distribution pattern, and spatial segmentation and/or isolation of groups. At the genetic level, inbreeding depression is due to increased homozygosity, whereas outbreeding depression is due to inferior genetic compatibility of mates. Optimal outbreeding theory suggests that intermediate levels of mate relatedness should provide for the highest fitness gains. Here, we assessed the fitness consequences of genetic relatedness between mates in plant-inhabiting predatory mites Phytoseiulus persimilis, which are obligatory sexually reproducing but haplo-diploid. Both females and males arise from fertilized eggs but males lose the paternal chromosome set during embryogenesis, dubbed pseudo-arrhenotoky. Phytoseiulus persimilis are highly efficacious in reducing crop-damaging spider mite populations and widely used in biological control. Using iso-female lines of two populations, from Sicily and Greece, we assessed the fecundity of females, and sex ratio of their offspring, that mated with either a sibling, a male from the same population or a male from the other population. Additionally, we recorded mating latency and duration. Females mating with a male from the same population produced more eggs, with a lower female bias, over a longer time than females mating with a sibling or with a male from the other population. Mating latency was unaffected by mate relatedness; mating duration was disproportionally long in sibling couples, likely indicating female reluctance to mate and sub-optimal spermatophore transfer. Our study provides a rare example of in- and out-breeding depression in a haplo-diploid arthropod, supporting the optimal outbreeding theory.

  2. Toxic Potential of Nitroguanidine on Reproduction and Fertility in Rats. Volume 1. Part 1

    DTIC Science & Technology

    1990-05-01

    anitroguanidine dose levels in developmental toxicity studies in ra:.E and rabbits. The diet was fed to the parental males and females star ting at...z: 58 days of age and continued throughout their lives and to t-e Fl a:-.:7 ,generation animals. Parental males and females were paired for M~ating...11,. matings were within the same dose group. The parental males and femaleS :-az did not breed were euthanized after the mating period. Litters weree

  3. Re-mating across years and intralineage polygyny are associated with greater than expected levels of inbreeding in wild red deer

    PubMed Central

    Stopher, K V; Nussey, D H; Clutton-Brock, T H; Guinness, F; Morris, A; Pemberton, J M

    2012-01-01

    The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co-ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co-ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re-mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re-mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems. PMID:23039875

  4. Link!: Potential Field Guidance Algorithm for In-Flight Linking of Multi-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Cooper, John R.; Rothhaar, Paul M.

    2017-01-01

    Link! is a multi-center NASA e ort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a potential field guidance algorithm for a group of multi-rotor vehicles to link to each other during flight. The linking is done in pairs. Each vehicle first selects a mate. Then the potential field is constructed with three rules: move towards the mate, avoid collisions with non-mates, and stay close to the rest of the group. Once a pair links, they are then considered to be a single vehicle. After each pair is linked, the process repeats until there is only one vehicle left. The paper contains simulation results for a system of 16 vehicles.

  5. Aggressions and size-related fecundity of queenless workers in the ant Cataglyphis cursor

    NASA Astrophysics Data System (ADS)

    Clémencet, Johanna; Rome, Quentin; Fédérici, Pierre; Doums, Claudie

    2008-02-01

    In social hymenoptera, the reproductive division of labor is often linked to differences in individual body size with the reproductive caste (the queen) being larger than the workers. Likewise, the reproductive potential may vary with size within the worker caste and could affect the evolution of worker size in social insects. Here, we tested the relationship between worker size and reproductive potential in the facultative parthenogenetic ant Cataglyphis cursor. Colonies are headed by a multiply mated queen, but workers can produce gynes (virgin queens) and workers by thelytokous parthenogenesis after the queen’s death. We observed the behaviour of workers ( n = 357) until the production of gynes (212 h over 3 months) in an orphaned colony (mated queen not present). The size of workers was measured, and their paternal lineage determined using six microsatellite markers, to control for an effect of patriline. Larger workers were more likely to reproduce and lay more eggs indicating that individual level selection could take place. However, paternal lineage had no effect on the reproductive potential and worker size. From the behavioural and genetic data, we also show for the first time in this species, evidence of aggressive interactions among workers and a potential for nepotism to occur in orphaned colonies, as the five gynes produced belonged to a single paternal lineage.

  6. Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni

    PubMed Central

    2008-01-01

    Background Exaggerated male ornaments and displays often evolve in species where males only provide females with ejaculates during reproduction. Although "good genes" arguments are typically invoked to explain this phenomenon, a simpler alternative is possible if variation in male reproductive quality (e.g. sperm number, ejaculate content, mating rate) is an important determinant of female reproductive success. The "phenotype-linked fertility hypothesis" states that female preference for male ornaments or displays has been selected to ensure higher levels of fertility and has driven the evolution of exaggerated male traits. Females of the stalk-eyed fly Teleopsis dalmanni must mate frequently to maintain high levels of fertility and prefer to mate with males exhibiting large eyespan, a condition-dependent sexual ornament. If eyespan indicates male reproductive quality, females could directly increase their reproductive success by mating with males with large eyespan. Here we investigate whether male eyespan indicates accessory gland and testis length, and then ask whether mating with large eyespan males affects female fertility. Results Male eyespan was a better predictor of two key male reproductive traits – accessory gland and testis length – than was body size alone. This positive relationship held true over three levels of increasing environmental stress during the maturation of the adult accessory glands and testes. Furthermore, females housed with a large eyespan male exhibited higher levels of fertility than those with small eyespan males. Conclusion Male eyespan in stalk-eyed flies is subject to strong directional mate preference and is a reliable indicator of male reproductive quality – both because males with larger eyespan have bigger accessory glands and testes, and also as they confer higher fertility on females. Fertility enhancement may have arisen because males with larger eyespan mated more often and/or because they transferred more sperm or other substances per ejaculate. The need to ensure high levels of fertility could thus have been an important selective force in the coevolution of female preference and male eyespan in stalk-eyed flies. Our results support the phenotype-linked fertility hypothesis and suggest that it might be of general importance in explaining the evolution of exaggerated male ornaments and displays in species where males only provide females with ejaculates during reproduction. PMID:18710553

  7. Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni.

    PubMed

    Rogers, David W; Denniff, Matthew; Chapman, Tracey; Fowler, Kevin; Pomiankowski, Andrew

    2008-08-18

    Exaggerated male ornaments and displays often evolve in species where males only provide females with ejaculates during reproduction. Although "good genes" arguments are typically invoked to explain this phenomenon, a simpler alternative is possible if variation in male reproductive quality (e.g. sperm number, ejaculate content, mating rate) is an important determinant of female reproductive success. The "phenotype-linked fertility hypothesis" states that female preference for male ornaments or displays has been selected to ensure higher levels of fertility and has driven the evolution of exaggerated male traits. Females of the stalk-eyed fly Teleopsis dalmanni must mate frequently to maintain high levels of fertility and prefer to mate with males exhibiting large eyespan, a condition-dependent sexual ornament. If eyespan indicates male reproductive quality, females could directly increase their reproductive success by mating with males with large eyespan. Here we investigate whether male eyespan indicates accessory gland and testis length, and then ask whether mating with large eyespan males affects female fertility. Male eyespan was a better predictor of two key male reproductive traits--accessory gland and testis length--than was body size alone. This positive relationship held true over three levels of increasing environmental stress during the maturation of the adult accessory glands and testes. Furthermore, females housed with a large eyespan male exhibited higher levels of fertility than those with small eyespan males. Male eyespan in stalk-eyed flies is subject to strong directional mate preference and is a reliable indicator of male reproductive quality--both because males with larger eyespan have bigger accessory glands and testes, and also as they confer higher fertility on females. Fertility enhancement may have arisen because males with larger eyespan mated more often and/or because they transferred more sperm or other substances per ejaculate. The need to ensure high levels of fertility could thus have been an important selective force in the coevolution of female preference and male eyespan in stalk-eyed flies. Our results support the phenotype-linked fertility hypothesis and suggest that it might be of general importance in explaining the evolution of exaggerated male ornaments and displays in species where males only provide females with ejaculates during reproduction.

  8. 49 CFR Appendix B to Part 564 - Information To Be Submitted for Long Life Replaceable Light Sources of Limited Definition

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for... base in the bulb holder such as tabs, keys, keyways, surface, etc. III. Bulb Holder Interchangeability Dimensions and Tolerances. A. Mating angular locations, diameters, key/keyway sizes, any other...

  9. 49 CFR Appendix B to Part 564 - Information To Be Submitted for Long Life Replaceable Light Sources of Limited Definition

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for... base in the bulb holder such as tabs, keys, keyways, surface, etc. III. Bulb Holder Interchangeability Dimensions and Tolerances. A. Mating angular locations, diameters, key/keyway sizes, any other...

  10. Size, dimorphism, and related characteristics of Ciccaba owls from Guatemala

    Treesearch

    Richard P. Gerhardt; Dawn McAnnis Gerhardt

    1997-01-01

    Tropical owls, being poorly studied, have been excluded from discussions of reversed size dimorphism. As part of a breeding and food habits study, we weighed and measured 20 Mottled Owls (Ciccaba virgata) and a mated pair of Black-and-white Owls (C. nigrolineata) in northern Guatemala. Mottled Owls exhibited pronounced dimorphism...

  11. Alternative reproductive tactics and inverse size-assortment in a high-density fish spawning aggregation.

    PubMed

    Karkarey, Rucha; Zambre, Amod; Isvaran, Kavita; Arthur, Rohan

    2017-02-28

    At high densities, terrestrial and marine species often employ alternate reproductive tactics (ARTs) to maximize reproductive benefits. We describe ARTs in a high-density and unfished spawning aggregation of the squaretail grouper (Plectropomus areolatus) in Lakshadweep, India. As previously reported for this species, territorial males engage in pair-courtship, which is associated with a pair-spawning tactic. Here, we document a previously unreported school-courtship tactic; where territorial males court multiple females in mid-water schools, which appears to culminate in a unique 'school-spawning' tactic. Courtship tactics were conditional on body size, local mate density and habitat, likely associated with changing trade-offs between potential mating opportunities and intra-sexual competition. Counter-intuitively, the aggregation showed a habitat-specific inverse size-assortment: large males courted small females on the reef slope while small males courted equal-sized or larger females on the shelf. These patterns remained stable across two years of observation at high, unfished densities. These unique density-dependent behaviours may disappear from this aggregation as overall densities decline due to increasing commercial fishing pressure, with potentially large consequences for demographics and fitness.

  12. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.

    PubMed

    Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders

    2017-01-01

    Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact between the fish, the best partner was indeed chosen. Hence, the negative effects of reduced water visibility due to algal blooms may be counteracted by the use of other senses in fish.

  13. Body shape ideals across gender, sexual orientation, socioeconomic status, race, and age in personal advertisements.

    PubMed

    Epel, E S; Spanakos, A; Kasl-Godley, J; Brownell, K D

    1996-04-01

    To assess body shape ideals across gender, sexual orientation, race, socio-economic status, and age, An analysis of personal advertisements was conducted across seven different publications which targeted the groups of interest. Women advertised body weight much less often than men, and lesbians reported body shape descriptors significantly less often than heterosexual women. Gay men and African-American men described their body shape significantly more often than did other groups. However, their reported body mass indices (BMI) were significantly different-African-American men reported a higher BMI, and gay men a lower BMI, than Euro-American heterosexual men. Race and sexual orientation may influence the importance of size of body shape ideals for men. For women, however, their advertised weights conformed to the thin ideal across all groups surveyed. Gender roles affecting body shape ideals and mate attraction are discussed.

  14. Why do some animals mate with one partner rather than many? A review of causes and consequences of monogamy.

    PubMed

    Kvarnemo, Charlotta

    2018-04-23

    Why do some animals mate with one partner rather than many? Here, I investigate factors related to (i) spatial constraints (habitat limitation, mate availability), (ii) time constraints (breeding synchrony, length of breeding season), (iii) need for parental care, and (iv) genetic compatibility, to see what support can be found in different taxa regarding the importance of these factors in explaining the occurrence of monogamy, whether shown by one sex (monogyny or monandry) or by both sexes (mutual monogamy). Focusing on reproductive rather than social monogamy whenever possible, I review the empirical literature for birds, mammals and fishes, with occasional examples from other taxa. Each of these factors can explain mating patterns in some taxa, but not in all. In general, there is mixed support for how well the factors listed above predict monogamy. The factor that shows greatest support across taxa is habitat limitation. By contrast, while a need for parental care might explain monogamy in freshwater fishes and birds, there is clear evidence that this is not the case in marine fishes and mammals. Hence, reproductive monogamy does not appear to have a single overriding explanation, but is more taxon specific. Genetic compatibility is a promising avenue for future work likely to improve our understanding of monogamy and other mating patterns. I also discuss eight important consequences of reproductive monogamy: (i) parentage, (ii) parental care, (iii) eusociality and altruism, (iv) infanticide, (v) effective population size, (vi) mate choice before mating, (vii) sexual selection, and (viii) sexual conflict. Of these, eusociality and infanticide have been subject to debate, briefly summarised herein. A common expectation is that monogamy leads to little sexual conflict and no or little sexual selection. However, as reviewed here, sexual selection can be substantial under mutual monogamy, and both sexes can be subject to such selection. Under long-term mutual monogamy, mate quality is obviously more important than mate numbers, which in turn affects the need for pre-mating mate choice. Overall, I conclude that, despite much research on genetic mating patterns, reproductive monogamy is still surprisingly poorly understood and further experimental and comparative work is needed. This review identifies several areas in need of more data and also proposes new hypotheses to test. © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  15. Mate choice for genetic compatibility in the house mouse

    PubMed Central

    Lindholm, Anna K; Musolf, Kerstin; Weidt, Andrea; König, Barbara

    2013-01-01

    In house mice, genetic compatibility is influenced by the t haplotype, a driving selfish genetic element with a recessive lethal allele, imposing fundamental costs on mate choice decisions. Here, we evaluate the cost of genetic incompatibility and its implication for mate choice in a wild house mice population. In laboratory reared mice, we detected no fertility (number of embryos) or fecundity (ability to conceive) costs of the t, and yet we found a high cost of genetic incompatibility: heterozygote crosses produced 40% smaller birth litter sizes because of prenatal mortality. Surprisingly, transmission of t in crosses using +/t males was influenced by female genotype, consistent with postcopulatory female choice for + sperm in +/t females. Analysis of paternity patterns in a wild population of house mice showed that +/t females were more likely than +/+ females to have offspring sired by +/+ males, and unlike +/+ females, paternity of their offspring was not influenced by +/t male frequency, further supporting mate choice for genetic compatibility. As the major histocompatibility complex (MHC) is physically linked to the t, we investigated whether females could potentially use variation at the MHC to identify male genotype at the sperm or individual level. A unique MHC haplotype is linked to the t haplotype. This MHC haplotype could allow the recognition of t and enable pre- and postcopulatory mate choice for genetic compatibility. Alternatively, the MHC itself could be the target of mate choice for genetic compatibility. We predict that mate choice for genetic compatibility will be difficult to find in many systems, as only weak fertilization biases were found despite an exceptionally high cost of genetic incompatibility. PMID:23762510

  16. The efficiency of close inbreeding to reduce genetic adaptation to captivity

    PubMed Central

    Theodorou, K; Couvet, D

    2015-01-01

    Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs. PMID:25052417

  17. Males Can Benefit from Sexual Cannibalism Facilitated by Self-Sacrifice.

    PubMed

    Schwartz, Steven K; Wagner, William E; Hebets, Eileen A

    2016-10-24

    In a number of species, males are cannibalized by females after mating (reviewed in [1, 2]), and some males actually appear to facilitate their own cannibalism (reviewed in [3]). Such self-sacrifice can evolve if being eaten sufficiently enhances either fertilization success (mating effort) or offspring number or fitness (paternal effort). While there is some support for the mating-effort hypothesis, few studies have found support for paternal effort. We used two experiments to test the paternal-effort hypothesis in the dark fishing spider, Dolomedes tenebrosus. Males of this species provide themselves as a material contribution: they spontaneously die during copulation and are subsequently eaten by females. In support of the paternal-effort predictions, when females were allowed to consume their mating partner, we found large and significant increases in (1) the number, (2) the size, and (3) the survivorship of the offspring. Similar benefits were not seen when females were allowed to consume a cricket in lieu of a male, suggesting that it is the consumption of the male's body per se that is responsible for these fitness benefits. Together, our results suggest that D. tenebrosus males can benefit from self-sacrifice behavior through paternal effort. Such behavior may be particularly likely to evolve when high rates of postcopulatory cannibalism trap males into investing in their first mate instead of investing in acquiring additional matings and/or if strong first-male sperm precedence reduces the benefits of both investing in additional matings and paternity protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Overview on the diversity of sounds produced by clownfishes (Pomacentridae): importance of acoustic signals in their peculiar way of life.

    PubMed

    Colleye, Orphal; Parmentier, Eric

    2012-01-01

    Clownfishes (Pomacentridae) are brightly colored coral reef fishes well known for their mutualistic symbiosis with tropical sea anemones. These fishes live in social groups in which there is a size-based dominance hierarchy. In this structure where sex is socially controlled, agonistic interactions are numerous and serve to maintain size differences between individuals adjacent in rank. Clownfishes are also prolific callers whose sounds seem to play an important role in the social hierarchy. Here, we aim to review and to synthesize the diversity of sounds produced by clownfishes in order to emphasize the importance of acoustic signals in their way of life. Recording the different acoustic behaviors indicated that sounds are divided into two main categories: aggressive sounds produced in conjunction with threat postures (charge and chase), and submissive sounds always emitted when fish exhibited head shaking movements (i.e. a submissive posture). Both types of sounds showed size-related intraspecific variation in dominant frequency and pulse duration: smaller individuals produce higher frequency and shorter duration pulses than larger ones, and inversely. Consequently, these sonic features might be useful cues for individual recognition within the group. This observation is of significant importance due to the size-based hierarchy in clownfish group. On the other hand, no acoustic signal was associated with the different reproductive activities. Unlike other pomacentrids, sounds are not produced for mate attraction in clownfishes but to reach and to defend the competition for breeding status, which explains why constraints are not important enough for promoting call diversification in this group.

  19. Male Choice in the Stream-Anadromous Stickleback Complex

    PubMed Central

    McKinnon, Jeffrey S.; Hamele, Nick; Frey, Nicole; Chou, Jennifer; McAleavey, Leia; Greene, Jess; Paulson, Windi

    2012-01-01

    Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size. PMID:22701589

  20. Sexual size dimorphism, canine dimorphism, and male-male competition in primates: where do humans fit in?

    PubMed

    Plavcan, J Michael

    2012-03-01

    Sexual size dimorphism is generally associated with sexual selection via agonistic male competition in nonhuman primates. These primate models play an important role in understanding the origins and evolution of human behavior. Human size dimorphism is often hypothesized to be associated with high rates of male violence and polygyny. This raises the question of whether human dimorphism and patterns of male violence are inherited from a common ancestor with chimpanzees or are uniquely derived. Here I review patterns of, and causal models for, dimorphism in humans and other primates. While dimorphism in primates is associated with agonistic male mate competition, a variety of factors can affect male and female size, and thereby dimorphism. The causes of human sexual size dimorphism are uncertain, and could involve several non-mutually-exclusive mechanisms, such as mate competition, resource competition, intergroup violence, and female choice. A phylogenetic reconstruction of the evolution of dimorphism, including fossil hominins, indicates that the modern human condition is derived. This suggests that at least some behavioral similarities with Pan associated with dimorphism may have arisen independently, and not directly from a common ancestor.

  1. Dating Choices of High School Students

    ERIC Educational Resources Information Center

    Hansen, Sally L.

    1977-01-01

    Dating is experienced by most adolescents in our society as a prelude to mate selection. White and black youth (N=354) were studied to measure their dating-mating choices. Implications for teachers and practitioners, based on racial and gender differences, as well as perceived peer group influences are discussed. (Author)

  2. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus

    PubMed Central

    Lieshout, Emile; Tomkins, Joseph L; Simmons, Leigh W

    2013-01-01

    Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness. PMID:24101978

  3. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus.

    PubMed

    Lieshout, Emile; Tomkins, Joseph L; Simmons, Leigh W

    2013-09-01

    Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness.

  4. Phase Transition Behavior in a Neutral Evolution Model

    NASA Astrophysics Data System (ADS)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  5. Evidence of hermaphroditism and sex ratio distortion in the fungal feeding nematode Bursaphelenchus okinawaensis.

    PubMed

    Shinya, Ryoji; Hasegawa, Koichi; Chen, Anthony; Kanzaki, Natsumi; Sternberg, Paul W

    2014-08-12

    Nematodes have many different reproductive strategies along with their divergent life histories; the ability of hermaphrodite to self- and cross-fertilize is useful for genetic manipulation. Here, we demonstrate the hermaphroditism of the fungal feeding nematode Bursaphelenchus okinawaensis, which was formerly described as a parthenogenetic nematode, and we show its other unique sexual characteristics. To determine that it is hermaphroditic, we performed the following experiments: observation of the pronuclear and chromosome behavior during oogenesis and early embryogenesis; observation of spermatogenesis during the fourth larval stage; investigation of sperm utilization; and investigation of phenotypic segregation after cross-mating using a chemically induced visible mutant. We then investigated the mating preferences and spermatid size difference between males and hermaphrodites. B. okinawaensis males successfully mated only with sperm-depleted old hermaphrodites, and the spermatid sizes of males were almost the same as those of hermaphrodites. Moreover, the sex ratio of cross-fertilized progeny was highly skewed toward hermaphrodites. B. okinawaensis is phylogenetically distant from established model nematodes such as C. elegans and is more closely related to some economically relevant parasitic nematodes. This newly discovered hermaphroditic nematode has great potential for evolutionary and parasitological research. Copyright © 2014 Shinya et al.

  6. Cool Sex? Hibernation and Reproduction Overlap in the Echidna

    PubMed Central

    Morrow, Gemma; Nicol, Stewart C.

    2009-01-01

    During hibernation there is a slowing of all metabolic processes, and thus it is normally considered to be incompatible with reproduction. In Tasmania the egg-laying mammal, the echidna (Tachyglossus aculeatus) hibernates for several months before mating in mid-winter, and in previous studies we observed males with females that were still hibernating. We monitored the reproductive activity of radio-tracked echidnas by swabbing the reproductive tract for sperm while external temperature loggers provided information on the timing of hibernation. Additional information was provided by camera traps and ultrasound imaging. More than a third of the females found in mating groups were torpid, and the majority of these had mated. Some females re-entered deep torpor for extended periods after mating. Ultrasound examination showed a developing egg in the uterus of a female that had repeatedly re-entered torpor. The presence of fresh sperm in cloacal swabs taken from this female on three occasions after her presumed date of fertilization indicated she mated several times after being fertilized. The mating of males with torpid females is the result of extreme competition between promiscuous males, while re-entry into hibernation by pregnant females could improve the possibility of mating with a better quality male. PMID:19562080

  7. Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis

    PubMed Central

    Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.

    2013-01-01

    The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957

  8. Fertilizability of Superovulated Eggs by Estrous Stage-independent PMSG/hCG Treatment in Adult Wistar-Imamichi Rats

    PubMed Central

    Kon, Hiroe; Hokao, Ryoji; Shinoda, Motoo

    2014-01-01

    We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs. PMID:24770643

  9. Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis.

    PubMed

    Oddou-Muratorio, Sylvie; Klein, Etienne K; Austerlitz, Frédéric

    2005-12-01

    Knowing the extent of gene movements from parents to offspring is essential to understand the potential of a species to adapt rapidly to a changing environment, and to design appropriate conservation strategies. In this study, we develop a nonlinear statistical model to jointly estimate the pollen dispersal kernel and the heterogeneity in fecundity among phenotypically or environmentally defined groups of males. This model uses genotype data from a sample of fruiting plants, a sample of seeds harvested on each of these plants, and all males within a circumscribed area. We apply this model to a scattered, entomophilous woody species, Sorbus torminalis (L.) Crantz, within a natural population covering more than 470 ha. We estimate a high heterogeneity in male fecundity among ecological groups, both due to phenotype (size of the trees and flowering intensity) and landscape factors (stand density within the neighbourhood). We also show that fat-tailed kernels are the most appropriate to depict the important abilities of long-distance pollen dispersal for this species. Finally, our results reveal that the spatial position of a male with respect to females affects as much its mating success as ecological determinants of male fecundity. Our study thus stresses the interest to account for the dispersal kernel when estimating heterogeneity in male fecundity, and reciprocally.

  10. Cross-generational effects of sexual harassment on female fitness in the guppy.

    PubMed

    Gasparini, Clelia; Devigili, Alessandro; Pilastro, Andrea

    2012-02-01

    Sexual harassment is a common outcome of sexual conflict over mating rate. A large number of studies have identified several direct costs to females of sexual harassment including energy expenditure and reduced foraging ability. However, the fitness consequences of sexual harassment for descendants have rarely been investigated. Here, we manipulated the level of sexual harassment and mating rate in two groups of female guppies, Poecilia reticulata, a live-bearing fish in which sexual conflict over mating rate is particularly pronounced. Each female was allowed to interact with three males for one day (low sexual harassment, LSH) or for eight days (high sexual harassment, HSH) during each breeding cycle throughout their life. Female lifetime fecundity did not differ between the groups, but we found a strong effect on offspring fitness. HSH females produced (1) daughters with smaller bodies and (2) sons with shorter gonopodia, which were less attractive to females and less successful in coercive matings than their LSH counterparts. Although these results may be influenced by the indirect effects of sex ratio differences between treatments, they suggest that sexual harassment and elevated mating rate can have negative cross-generational fitness effects and more profound evolutionary consequences than currently thought. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  11. Sperm competition games: sperm size (mass) and number under raffle and displacement, and the evolution of P2.

    PubMed

    Parker, G A; Immler, S; Pitnick, S; Birkhead, T R

    2010-06-07

    We examine models for evolution of sperm size (i.e. mass m) and number (s) under three mechanisms of sperm competition at low 'risk' levels: (i) raffle with no constraint on space available for competing sperm, (ii) direct displacement mainly by seminal fluid, and (iii) direct displacement mainly by sperm mass. Increasing sperm mass increases a sperm's 'competitive weight' against rival sperm through a diminishing returns function, r(m). ESS total ejaculate expenditure (the product m(*)s(*)) increases in all three models with sperm competition risk, q. If r(m), or ratio r'(m)/r(m), is independent of ESS sperm numbers, ESS sperm mass remains constant, and the sperm mass/number ratio (m(*)/s(*)) therefore decreases with risk. Dependency of sperm mass on risk can arise if r(m) depends on competing sperm density (sperm number / space available for sperm competition). Such dependencies generate complex relationships between sperm mass and number with risk, depending both on the mechanism and how sperm density affects r(m). While numbers always increase with risk, mass can either increase or decrease, but m(*)/s(*) typically decreases with risk unless sperm density strongly influences r(m). Where there is no extrinsic loading due to mating order, ESS paternity of the second (i.e. last) male to mate (P(2)) under displacement always exceeds 0.5, and increases with risk (in the raffle P(2)=0.5). Caution is needed when seeking evidence for a sperm size-number trade off. Although size and number trade-off independently against effort spent on acquiring matings, their product, m(*)s(*), is invariant or fixed at a given risk level, effectively generating a size-number trade off. However, unless controlled for the effects of risk, the relation between m(*) and s(*) can be either positive or negative (a positive relation is usually taken as evidence against a size-number trade off). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Reproductive and resource benefits to large female body size in a mammal with female-biased sexual size dimorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokidis, H.B., T.S. Risch and T.C. Glenn

    Factors underlying the evolution of female-biased sexual size dimorphism in mammals are poorly understood. In an effort to better understand these factors we tested whether larger female southern flying squirrels, Glaucomys volans, gained reproductive advantages (larger litters or more male mates) and direct resource benefits, such as larger home ranges or access to more food (i.e. mast-producing trees). As dimorphism can vary with age in precocial breeding species, we compared females during their first reproduction and during a subsequent breeding attempt. Females were not significantly larger or heavier than males at first reproduction, but became about 7% heavier and 22%more » larger than males at subsequent breeding. Larger females produced larger litters and had home ranges containing a greater proportion of upland hardwood trees. Female body size was not associated with either multiple male mating or home range size, but females with larger home ranges had higher indexes of body condition. Females in precocial breeding flying squirrels initiate reproduction before sexual size dimorphism is evident, and thus, may be allocating resources to both reproduction and growth simultaneously, or delaying growth entirely. Larger females produce more pups and have access to more food resources. Thus, selection for increased female size may partly explain how female-biased sexual size dimorphism is maintained in this species.« less

  13. Male reproductive strategy explains spatiotemporal segregation in brown bears

    PubMed Central

    Steyaert, Sam MJG; Kindberg, Jonas; Swenson, Jon E; Zedrosser, Andreas

    2013-01-01

    1. Spatiotemporal segregation is often explained by the risk for offspring predation or by differences in physiology, predation risk vulnerability or competitive abilities related to size dimorphism. 2. Most large carnivores are size dimorphic and offspring predation is often intraspecific and related to nonparental infanticide (NPI). NPI can be a foraging strategy, a strategy to reduce competition, or a male reproductive strategy. Spatiotemporal segregation is widespread among large carnivores, but its nature remains poorly understood. 3. We evaluated three hypotheses to explain spatiotemporal segregation in the brown bear, a size-dimorphic large carnivore in which NPI is common; the ‘NPI – foraging/competition hypothesis', i.e. NPI as a foraging strategy or a strategy to reduce competition, the ‘NPI – sexual selection hypothesis’, i.e. infanticide as a male reproductive strategy and the ‘body size hypothesis’, i.e. body-size-related differences in physiology, predation risk vulnerability or competitive ability causes spatiotemporal segregation. To test these hypotheses, we quantified spatiotemporal segregation among adult males, lone adult females and females with cubs-of-the-year, based on GPS-relocation data (2006–2010) and resource selection functions in a Scandinavian population. 4. We found that spatiotemporal segregation was strongest between females with cubs-of-the-year and adult males during the mating season. During the mating season, females with cubs-of-the-year selected their resources, in contrast to adult males, in less rugged landscapes in relative close proximity to certain human-related variables, and in more open habitat types. After the mating season, females with cubs-of-the-year markedly shifted their resource selection towards a pattern more similar to that of their conspecifics. No strong spatiotemporal segregation was apparent between females with cubs-of-the-year and conspecifics during the mating and the postmating season. 5. The ‘NPI – sexual selection hypothesis’ best explained spatiotemporal segregation in our study system. We suggest that females with cubs-of-the-year alter their resource selection to avoid infanticidal males. In species exhibiting NPI as a male reproductive strategy, female avoidance of infanticidal males is probably more common than observed or reported, and may come with a fitness cost if females trade safety for optimal resources. PMID:23461483

  14. The contrasting role of male relatedness in different mechanisms of sexual selection in red junglefowl

    PubMed Central

    Tan, Cedric Kai Wei; Doyle, Philippa; Bagshaw, Emma; Richardson, David S.; Wigby, Stuart; Pizzari, Tommaso

    2017-01-01

    In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection. PMID:27925168

  15. Nasalization by Nasalis larvatus: Larger noses audiovisually advertise conspecifics in proboscis monkeys.

    PubMed

    Koda, Hiroki; Murai, Tadahiro; Tuuga, Augustine; Goossens, Benoit; Nathan, Senthilvel K S S; Stark, Danica J; Ramirez, Diana A R; Sha, John C M; Osman, Ismon; Sipangkui, Rosa; Seino, Satoru; Matsuda, Ikki

    2018-02-01

    Male proboscis monkeys have uniquely enlarged noses that are prominent adornments, which may have evolved through their sexually competitive harem group social system. Nevertheless, the ecological roles of the signals encoded by enlarged noses remain unclear. We found significant correlations among nose, body, and testis sizes and a clear link between nose size and number of harem females. Therefore, there is evidence supporting both male-male competition and female choice as causal factors in the evolution of enlarged male noses. We also observed that nasal enlargement systematically modifies the resonance properties of male vocalizations, which probably encode male quality. Our results indicate that the audiovisual contributions of enlarged male noses serve as advertisements to females in their mate selection. This is the first primate research to evaluate the evolutionary processes involved in linking morphology, acoustics, and socioecology with unique masculine characteristics.

  16. Nasalization by Nasalis larvatus: Larger noses audiovisually advertise conspecifics in proboscis monkeys

    PubMed Central

    Koda, Hiroki; Murai, Tadahiro; Tuuga, Augustine; Goossens, Benoit; Nathan, Senthilvel K.S.S.; Stark, Danica J.; Ramirez, Diana A. R.; Sha, John C. M.; Osman, Ismon; Sipangkui, Rosa; Seino, Satoru; Matsuda, Ikki

    2018-01-01

    Male proboscis monkeys have uniquely enlarged noses that are prominent adornments, which may have evolved through their sexually competitive harem group social system. Nevertheless, the ecological roles of the signals encoded by enlarged noses remain unclear. We found significant correlations among nose, body, and testis sizes and a clear link between nose size and number of harem females. Therefore, there is evidence supporting both male-male competition and female choice as causal factors in the evolution of enlarged male noses. We also observed that nasal enlargement systematically modifies the resonance properties of male vocalizations, which probably encode male quality. Our results indicate that the audiovisual contributions of enlarged male noses serve as advertisements to females in their mate selection. This is the first primate research to evaluate the evolutionary processes involved in linking morphology, acoustics, and socioecology with unique masculine characteristics. PMID:29507881

  17. The Role of Bioacoustic Signals in Koala Sexual Selection: Insights from Seasonal Patterns of Associations Revealed with GPS-Proximity Units.

    PubMed

    Ellis, William; FitzGibbon, Sean; Pye, Geoff; Whipple, Bill; Barth, Ben; Johnston, Stephen; Seddon, Jenny; Melzer, Alistair; Higgins, Damien; Bercovitch, Fred

    2015-01-01

    Despite being a charismatic and well-known species, the social system of the koala (Phascolarctos cinereus--the only extant member of the family Phascolarctidae) is poorly known and much of the koala's sociality and mating behaviors remain un-quantified. We evaluated these using proximity logging-GPS enabled tracking collars on wild koalas and discuss their implications for the mating system of this species. The frequency and duration of male-female encounters increased during the breeding season, with male-male encounters quite uncommon, suggesting little direct mating competition. By comparison, female-female interactions were very common across both seasons. Body mass of males was not correlated with their interactions with females during the breeding season, although male size is associated with a variety of acoustic parameters indicating individuality. We hypothesise that vocal advertising reduces the likelihood of male-male encounters in the breeding season while increasing the rate of male-female encounters. We suggest that male mating-season bellows function to reduce physical confrontations with other males allowing them to space themselves apart, while, at the same time, attracting females. We conclude that indirect male-male competition, female mate choice, and possibly female competition, mediate sexual selection in koalas.

  18. Testing mate choice and overdominance at MH in natural families of Atlantic salmon Salmo salar.

    PubMed

    Tentelier, C; Barroso-Gomila, O; Lepais, O; Manicki, A; Romero-Garmendia, I; Jugo, B M

    2017-04-01

    This study aimed to test mate choice and selection during early life stages on major histocompatibility (MH) genotype in natural families of Atlantic salmon Salmo salar spawners and juveniles, using nine microsatellites to reconstruct families, one microsatellite linked to an MH class I gene and one minisatellite linked to an MH class II gene. MH-based mate choice was only detected for the class I locus on the first year, with lower expected heterozygosity in the offspring of actually mated pairs than predicted under random mating. The genotype frequencies of MH-linked loci observed in the juveniles were compared with frequencies expected from Mendelian inheritance of parental alleles to detect selection during early life stages. No selection was detected on the locus linked to class I gene. For the locus linked to class II gene, observed heterozygosity was higher than expected in the first year and lower in the second year, suggesting overdominance and underdominance, respectively. Within family, juveniles' body size was linked to heterozygosity at the same locus, with longer heterozygotes in the first year and longer homozygotes in the second year. Selection therefore seems to differ from one locus to the other and from year to year. © 2017 The Fisheries Society of the British Isles.

  19. Estimation of effective population size in continuously distributed populations: There goes the neighborhood

    Treesearch

    M. C. Neel; K. McKelvey; N. Ryman; M. W. Lloyd; R. Short Bull; F. W. Allendorf; M. K. Schwartz; R. S. Waples

    2013-01-01

    Use of genetic methods to estimate effective population size (Ne) is rapidly increasing, but all approaches make simplifying assumptions unlikely to be met in real populations. In particular, all assume a single, unstructured population, and none has been evaluated for use with continuously distributed species. We simulated continuous populations with local mating...

  20. Fertility of the male alpaca: effect of daily consecutive breeding.

    PubMed

    Bravo, P W; Solis, P; Ordoñez, C; Alarcon, V

    1997-04-01

    The fertility of the male alpaca under different frequencies of daily consecutive matings was evaluated. Fifteen adult male Huacaya alpacas were divided randomly into three groups of five each to breed lactating female alpacas. The schedule of daily matings was two, four and six consecutive breeding per group and for nine consecutive days. Ovulation was determined by progesterone at seven days after breeding. Pregnancy was determined by ultrasonography at 15 and 30 days after breeding. Two hundred and eighty females were bred with some males not fulfilling their schedule of breeding. There were differences (P < 0.05) in the fertility rate of males breeding two and four times daily (76%) in contrast to 59% for males breeding six times. There were also differences (P < 0.05) in the fertility of individual males. Length of copulation was affected (P < 0.05) by schedule of matings, day of breeding and male. Ovulation was independent of length of copulation. Overall, it seems the fertility of the male alpaca is affected significantly when consecutive matings are over four times a day and for nine consecutive days.

  1. Mate value and self-esteem: evidence from eight cultural groups.

    PubMed

    Goodwin, Robin; Marshall, Tara; Fülöp, Marta; Adonu, Joseph; Spiewak, Slawomir; Neto, Felix; Hernandez Plaza, Sonia

    2012-01-01

    This paper explores self-perceived mate value (SPMV), and its association with self-esteem, in eight cultures. 1066 participants, from 8 cultural groups in 7 countries, rated themselves on 24 SPMVs and completed a measure of self-esteem. Consistent with evolutionary theory, women were more likely to emphasise their caring and passionate romantic nature. In line with previous cross-cultural research, characteristics indicating passion and romance and social attractiveness were stressed more by respondents from individualistic cultures, and those higher on self-expression (rather than survival) values; characteristics indicative of maturity and confidence were more likely to be mentioned by those from Traditional, rather than Secular, cultures. Contrary to gender role theory, societal equality had only limited interactions with sex and SPMV, with honesty of greater significance for male self-esteem in societies with unequal gender roles. These results point to the importance of cultural and environmental factors in influencing self-perceived mate qualities, and are discussed in relation to broader debates about the impact of gender role equality on sex differences in personality and mating strategies.

  2. Inbreeding avoidance in cunningham's skinks (Egernia cunninghami) in natural and fragmented habitat.

    PubMed

    Stow, A J; Sunnucks, P

    2004-02-01

    Habitat fragmentation/alteration has been proposed as a distinct process threatening the viability of populations of many organisms. One expression of its impact may be the disruption of core population processes such as inbreeding avoidance. Using the experimental design outlined in our companion paper, we report on the impact of habitat alteration (deforestation) on inbreeding in the rock-dwelling Australian lizard Egernia cunninghami. Ten microsatellite loci were used to calculate relatedness coefficients of potential and actual breeding pairs, and to examine mate-choice and heterozygosity. Despite significantly less dispersal and higher within-group relatedness between potential mates in deforested than in natural habitats, this did not result in significantly more inbred matings. Average relatedness amongst breeding pairs was low, with no significant difference between natural and fragmented populations in relatedness between breeding pairs, or individual heterozygosity. Active avoidance of close kin as mates was indicated by the substantially and significantly lower relatedness in actual breeding pairs than potential ones. These facts, and heterozygote excesses in all groups of immature lizards from both habitats, show that E. cunninghami maintained outbreeding in the face of increased accumulation of relatives.

  3. Mate Value and Self-Esteem: Evidence from Eight Cultural Groups

    PubMed Central

    Goodwin, Robin; Marshall, Tara; Fülöp, Marta; Adonu, Joseph; Spiewak, Slawomir; Neto, Felix; Hernandez Plaza, Sonia

    2012-01-01

    This paper explores self-perceived mate value (SPMV), and its association with self-esteem, in eight cultures. 1066 participants, from 8 cultural groups in 7 countries, rated themselves on 24 SPMVs and completed a measure of self-esteem. Consistent with evolutionary theory, women were more likely to emphasise their caring and passionate romantic nature. In line with previous cross-cultural research, characteristics indicating passion and romance and social attractiveness were stressed more by respondents from individualistic cultures, and those higher on self-expression (rather than survival) values; characteristics indicative of maturity and confidence were more likely to be mentioned by those from Traditional, rather than Secular, cultures. Contrary to gender role theory, societal equality had only limited interactions with sex and SPMV, with honesty of greater significance for male self-esteem in societies with unequal gender roles. These results point to the importance of cultural and environmental factors in influencing self-perceived mate qualities, and are discussed in relation to broader debates about the impact of gender role equality on sex differences in personality and mating strategies. PMID:22558347

  4. Do pre- and post-copulatory sexually selected traits covary in large herbivores?

    PubMed Central

    2014-01-01

    Background In most species, males compete to gain both matings (via pre-copulatory competition) and fertilizations (via post-copulatory competition) to maximize their reproductive success. However, the quantity of resources devoted to sexual traits is finite, and so males are predicted to balance their investment between pre- and post-copulatory expenditure depending on the expected pay-offs that should vary according to mating tactics. In Artiodactyla species, males can invest in weapons such as horns or antlers to increase their mating gains or in testes mass/sperm dimensions to increase their fertilization efficiency. Moreover, it has been suggested that in these species, males with territory defence mating tactic might preferentially increase their investment in post-copulatory traits to increase their fertilization efficiency whereas males with female defence mating tactic might increase their investment in pre-copulatory sexually selected traits to prevent other males from copulating with females. In this study, we thus test the prediction that male’s weapon length (pre-copulatory trait) covaries negatively with relative testes size and/or sperm dimensions (post-copulatory traits) across Artiodactyla using a phylogenetically controlled framework. Results Surprisingly no association between weapon length and testes mass is found but a negative association between weapon length and sperm length is evidenced. In addition, neither pre- nor post-copulatory traits were found to be affected by male mating tactics. Conclusions We propose several hypotheses that could explain why male ungulates may not balance their reproductive investment between pre- and post-copulatory traits. PMID:24716470

  5. Population Structure, Movement Patterns, and Frequency of Multiple Matings in Tenodera sinensis (Mantodea: Mantidae).

    PubMed

    Christensen, Tyler; Brown, William D

    2018-04-14

    Models of the evolution of sexual cannibalism show that the frequency of male mating opportunities has significant impact on male choice and male risk aversion. In this study, we examined ecological components that should affect opportunities for multiple mating in wild populations of the Chinese mantid (Tenodera sinensis Saussure). While conducting mark-recapture studies of two field populations over the course of two seasons, along with Global Positioning System data on locations of individuals, we collected data on population densities, movement patterns, and individual ranges to estimate the overlap of adult males and female mantids. Our results show that local populations of mantids range from 89 to 161 individuals and occur at densities ranging from 10 to 39 mantids per 1,000 m2. Males move greater distances daily compared with females, giving males larger home range sizes. The ranges of male mantids overlapped with multiple females, thus offering the potential for multiple mating by males. We directly observed 11 encounters between male and female T. sinensis, including one multiple mating by an individual male. The overall mate encounter rate for males was 12.5%. We also provide additional observations of interspecific sexual attraction between T. sinensis and Mantis religiosa Linne (Mantodea: Mantidae). Mantids were most commonly found within the top 20% of two flowering plants, goldenrod (Solidago Linnaeus spp. (Asterales: Asteraceae)) and mugwort (Artemisia vulgaris Linnaeus (Asterales: Asteraceae)), which should place them in prime locations for capturing flying pollinators.

  6. Mating behavior of adolescent male chimpanzees (Pan troglodytes) at Ngogo, Kibale National Park, Uganda.

    PubMed

    Watts, David P

    2015-04-01

    Male mating tactics vary extensively in many primates. Some variation occurs because adolescent males often are sexually active but cannot invest heavily in mating effort because of their limited ability to compete directly with adults and because they are still investing in growth; consequently, most of their mating attempts may be surreptitious and/or with females whose fecundity is low. Chimpanzees (Pan troglodytes) have a complex mating system: most copulations occur between estrous females with full sexual swelling and multiple males in group settings where the potential for sperm competition is high, but males sometimes mate-guard females, and sometimes male-female pairs mate exclusively with each other while avoiding other males during "consortships." Among other factors, dominance ranks, coalition formation, and variation in male-female association influence male mating and reproductive success. Mating effort increases from adolescence into prime adulthood. At Gombe and Mahale, adolescent males copulated more with nulliparous than with parous females, and mostly when females were unlikely to be ovulating, partly because of low adult male interest in nulliparous females and partly because of aggression from or avoidance of adult males. Adolescents thus had low probabilities of siring infants. However, adolescents are known to have gained some paternity at Gombe and in other populations, and their mating behavior deserves more study. I present data on mating by adolescent males in an unusually large chimpanzee community at Ngogo, Kibale National Park, Uganda. Adolescents at Ngogo also copulated more with nulliparous than parous females and mostly copulated outside of periovulatory periods. Also, they directed less aggression at estrous females than did adult males. However, they gained lower shares of copulations than reported for Gombe and Mahale, regardless of female parity, and received more aggression from adult males. These differences might partly reflect the influence of variation in the number of males per community on male mating tactics.

  7. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.

    PubMed

    Neff, Bryan D; Pitcher, Trevor E

    2005-01-01

    Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward--females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term 'good gene' be used exclusively to refer to additive genetic variation in fitness, 'compatible gene' be used to refer to nonadditive genetic variation in fitness, and 'genetic quality' be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.

  8. Mate choice, sexual imprinting, and speciation: a test of a one-allele isolating mechanism in sympatric sticklebacks.

    PubMed

    Albert, Arianne Y K

    2005-04-01

    One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.

  9. Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2009-01-01

    Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.

  10. Canalization of body size matters for lifetime reproductive success of male predatory mites (Acari: Phytoseiidae)

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2014-01-01

    The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus. Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 889–899. PMID:25132689

  11. A Comparative Analysis of the Morphology and Evolution of Permanent Sperm Depletion in Spiders

    PubMed Central

    2011-01-01

    Once thought to be energetically cheap and easy to produce, empirical work has shown that sperm is a costly and limited resource for males. In some spider species, there is behavioral evidence that sperm are permanently depleted after a single mating. This extreme degree of mating investment appears to co-occur with other reproductive strategies common to spiders, e.g. genital mutilation and sexual cannibalism. Here we corroborate that sperm depletion in the golden orb-web spider Nephila clavipes is permanent by uncovering its mechanistic basis using light and electron microscopy. In addition, we use a phylogeny-based statistical analysis to test the evolutionary relationships between permanent sperm depletion (PSD) and other reproductive strategies in spiders. Male testes do not produce sperm during adulthood, which is unusual in spiders. Instead, spermatogenesis is nearly synchronous and ends before the maturation molt. Testis size decreases as males approach their maturation molt and reaches its lowest point after sperm is transferred into the male copulatory organs (pedipalps). As a consequence, the amount of sperm available to males for mating is limited to the sperm contained in the pedipalps, and once it is used, males lose their ability to fertilize eggs. Our data suggest that PSD has evolved independently at least three times within web-building spiders and is significantly correlated with the evolution of other mating strategies that limit males to monogamy, including genital mutilation and sexual cannibalism. We conclude that PSD may be an energy-saving adaptation in species where males are limited to monogamy. This could be particularly important in web-building spiders where extreme sexual size dimorphism results in large, sedentary females and small, searching males who rarely feed as adults and are vulnerable to starvation. Future work will explore possible energetic benefits and the evolutionary lability of PSD relative to other mate-limiting reproductive behaviors. PMID:21264312

  12. Colonized Aedes albopictus and its sexual performance in the wild: implications for SIT technology and containment.

    PubMed

    Hamady, Dieng; Ruslan, Norrafiza Binti; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; FuKumitsu, Yuki; Saad, Ahmad Ramli; Rajasaygar, Sudha; Vargas, Ronald Enrique Morales; Majid, Abdul Hafiz Ab; Fadzly, Nik; Ghani, Idris Abd; AbuBakar, Sazaly

    2013-07-15

    Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations. Through a series of mating experiments, we examined the reproductive outcomes of sexual cross-affinity between laboratory-raised and wild adults of Ae. albopictus. The results indicated appreciable mating compatibility between laboratory-reared and wild adults, and equivalent levels of egg production among reciprocal crosses. We also observed comparable larval eclosion in lab females mated with wild males, and increased adult longevity in female offspring from wild females|×|laboratory males crosses. Taken together, these data suggest that Ae. albopictus can preserve its reproductive fitness over a long period of time in the laboratory environment and has valuable attributes for SIT application. These observations together with the ability to successfully inseminate heterospecific females indicate the potential of Ae. albopictus to act as an ecological barrier if non-sterilized males are massively released in areas occupied by Aedes aegypti. The observed substantial reproductive fitness combined with the capability to reproduce both, itself and viruses illustrates the potential of Ae. albopictus to pose a serious threat if infected and released accidentally.

  13. Mating systems and sexual selection in male-pregnant pipefishes and seahorses: insights from microsatellite-based studies of maternity.

    PubMed

    Jones, A G; Avise, J C

    2001-01-01

    In pipefishes and seahorses (family Syngnathidae), the males provide all postzygotic care of offspring by brooding embryos on their ventral surfaces. In some species, this phenomenon of male "pregnancy" results in a reversal of the usual direction of sexual selection, such that females compete more than males for access to mates, and secondary sexual characteristics evolve in females. Thus the syngnathids can provide critical tests of theories related to the evolution of sex differences and sexual selection. Microsatellite-based studies of the genetic mating systems of several species of pipefishes and seahorses have provided insights into important aspects of the natural history and evolution of these fishes. First, males of species with completely enclosed pouches have complete confidence of paternity, as might be predicted from parental investment theory for species in which males invest so heavily in offspring. Second, a wide range of genetic mating systems have been documented in nature, including genetic monogamy in a seahorse, polygynandry in two species of pipefish, and polyandry in a third pipefish species. The genetic mating systems appear to be causally related to the intensity of sexual selection, with secondary sex characters evolving most often in females of the more polyandrous species. Third, genetic studies of captive-breeding pipefish suggest that the sexual selection gradient (or Bateman gradient) may be a substantially better method for characterizing the mating system than previously available techniques. Finally, these genetic studies of syngnathid mating systems have led to some general insights into the occurrence of clustered mutations at microsatellite loci, the utility of linked loci in studies of parentage, and the use of parentage data for direct estimation of adult population size.

  14. Female mate choice in convict cichlids is transitive and consistent with a self-referent directional preference

    PubMed Central

    2013-01-01

    Introduction One of the most important decisions that an animal has to make in its life is choosing a mate. Although most studies in sexual selection assume that mate choice is rational, this assumption has not been tested seriously. A crucial component of rationality is that animals exhibit transitive choices: if an individual prefers option A over B, and B over C, then it also prefers A over C. Results We assessed transitivity in mate choice: 40 female convict cichlids had to make a series of binary choices between males of varying size. Ninety percent of females showed transitive choices. The mean preference index was significantly higher when a female chose between their most preferred and least preferred male (male 1 vs. male 3) compared to when they chose between males of adjacent ranks (1 vs. 2 or 2 vs. 3). The results are consistent with a simple underlying preference function leading to transitive choice: females preferred males about one third larger than themselves. This rule of thumb correctly predicted which male was preferred in 67% of the cases and the ordering in binary choices in 78% of cases. Conclusions This study provides the first evidence for strong stochastic transitivity in a context of mate choice. The females exhibited ordinal preferences and the direction and magnitude of these preferences could be predicted from a simple rule. The females do not necessarily compare two males to choose the best; it is sufficient to use a self-referent evaluation. Such a simple decision rule has important implications for the evolution of the mating strategies and it is consistent with patterns of assortative mating repeatedly observed at population level. PMID:24216003

  15. MHC-correlated mate choice in humans: a review.

    PubMed

    Havlicek, Jan; Roberts, S Craig

    2009-05-01

    Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.

  16. The Heritability of Mating Behaviour in a Fly and Its Plasticity in Response to the Threat of Sperm Competition

    PubMed Central

    Bretman, Amanda; Lizé, Anne; Walling, Craig A.; Price, Tom A. R.

    2014-01-01

    Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations. PMID:24587294

  17. The heritability of mating behaviour in a fly and its plasticity in response to the threat of sperm competition.

    PubMed

    Bretman, Amanda; Lizé, Anne; Walling, Craig A; Price, Tom A R

    2014-01-01

    Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations.

  18. The effect of fast created inbreeding on litter size and body weights in mice

    PubMed Central

    Holt, Marte; Meuwissen, Theo; Vangen, Odd

    2005-01-01

    This study was designed to reveal any differences in effects of fast created versus total inbreeding on reproduction and body weights in mice. A line selected for large litter size for 124 generations (H) and a control line (K) maintained without selection for the same number of generations were crossed (HK) and used as a basis for the experiment. Within the HK cross, full sib, cousin or random mating were practised for two generations in order to create new inbreeding (IBF) at a fast rate. In the first generation of systematic mating, old inbreeding was regenerated in addition to creation of new inbreeding from the mating design giving total inbreeding (IBT). The number of pups born alive (NBA) and body weights of the animals were then analysed by a model including both IBT and IBF. The IBT of the dam was in the present study found to reduce the mean NBA with -0.48 (± 0.22) (p < 0.05) pups per 10% increase in the inbreeding coefficient, while the additional effect of IBF was -0.42 (± 0.27). For the trait NBA per female mated, the effect of IBT was estimated to be -0.45 (± 0.29) per 10% increase in the inbreeding coefficient and the effect of IBF was -0.90 (± 0.37) (p < 0.05) pups. In the present study, only small or non-significant effects of IBF of the dam could be found on sex-ratio and body weights at three and six weeks of age in a population already adjusted for IBT. PMID:16093013

  19. Sperm competition games between sneaks and guards: a comparative analysis using dimorphic male beetles.

    PubMed

    Simmons, Leigh W; Emlen, Douglas J; Tomkins, Joseph L

    2007-11-01

    Sperm competition is widely recognized as a pervasive force of sexual selection. Theory predicts that across species increased risk of sperm competition should favor an increased expenditure on the ejaculate, a prediction for which there is much evidence. Sperm competition games have also been developed specifically for systems in which males adopt the alternative male mating tactics of sneaking copulations or guarding females. These models have not yet been tested in a comparative context, but predict that: across species male expenditure on the ejaculate should increase with increasing probability of a sneak mating; within species, sneaks should have the greater expenditure on the ejaculate; and the disparity in expenditure between sneaks and guards should be greatest in species with moderate risk of a sneak mating, and decline toward parity in species with low or high risk. Beetles in the genus Onthophagus are often characterized by dimorphic male morphologies that reflect the alternative mating tactics of sneak (minor males) and guard (major males). We conducted a comparative analysis across 16 species of male dimorphic onthophagines, finding that testes size increased across species with increasing frequency of the minor male phenotype. Minor males generally had the greater testes size, but across species the disparity between morphs was independent of the frequency of minor males. We present data on testes allometry from two populations of O. taurus that have undergone genetic divergence in the frequency of minor males. Consistent with the comparative analysis, these data support the notion that the relative frequency of sneaks in the population influences male expenditure on the ejaculate.

  20. Hybrid female mate choice as a species isolating mechanism: environment matters.

    PubMed

    Schmidt, E M; Pfennig, K S

    2016-04-01

    A fundamental goal of biology is to understand how new species arise and are maintained. Female mate choice is potentially critical to the speciation process: mate choice can prevent hybridization and thereby generate reproductive isolation between potentially interbreeding groups. Yet, in systems where hybridization occurs, mate choice by hybrid females might also play a key role in reproductive isolation by affecting hybrid fitness and contributing to patterns of gene flow between species. We evaluated whether hybrid mate choice behaviour could serve as such an isolating mechanism using spadefoot toad hybrids of Spea multiplicata and Spea bombifrons. We assessed the mate preferences of female hybrid spadefoot toads for sterile hybrid males vs. pure-species males in two alternative habitat types in which spadefoots breed: deep or shallow water. We found that, in deep water, hybrid females preferred the calls of sterile hybrid males to those of S. multiplicata males. Thus, maladaptive hybrid mate preferences could serve as an isolating mechanism. However, in shallow water, the preference for hybrid male calls was not expressed. Moreover, hybrid females did not prefer hybrid calls to those of S. bombifrons in either environment. Because hybrid female mate choice was context-dependent, its efficacy as a reproductive isolating mechanism will depend on both the environment in which females choose their mates as well as the relative frequencies of males in a given population. Thus, reproductive isolation between species, as well as habitat specific patterns of gene flow between species, might depend critically on the nature of hybrid mate preferences and the way in which they vary across environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  1. Forming groups of aggressive sows based on a predictive test of aggression does not affect overall sow aggression or welfare.

    PubMed

    Verdon, Megan; Morrison, R S; Hemsworth, P H

    2018-05-01

    This experiment examined the effects of group composition on sow aggressive behaviour and welfare. Over 6 time replicates, 360 sows (parity 1-6) were mixed into groups (10 sows per pen, 1.8 m 2 /sow) composed of animals that were predicted to be aggressive (n = 18 pens) or groups composed of animals that were randomly selected (n = 18 pens). Predicted aggressive sows were selected based on a model-pig test that has been shown to be related to the aggressive behaviour of parity 2 sows when subsequently mixed in groups. Measurements were taken on aggression delivered post-mixing, and aggression delivered around feeding, fresh skin injuries and plasma cortisol concentrations at days 2 and 24 post-mixing. Live weight gain, litter size (born alive, total born, stillborn piglets), and farrowing rate were also recorded. Manipulating the group composition based on predicted sow aggressiveness had no effect (P > 0.05) on sow aggression delivered at mixing or around feeding, fresh injuries, cortisol, weight gain from day 2 to day 24, farrowing rate, or litter size. The lack of treatment effects in the present experiment could be attributed to (1) a failure of the model-pig test to predict aggression in older sows in groups, or (2) the dependence of the expression of the aggressive phenotype on factors such as social experience and characteristics (e.g., physical size and aggressive phenotype) of pen mates. This research draws attention to the intrinsic difficulties associated with predicting behaviour across contexts, particularly when the behaviour is highly dependent on interactions with conspecifics, and highlights the social complexities involved in the presentation of a behavioural phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Wing Morphometry and Acoustic Signals in Sterile and Wild Males: Implications for Mating Success in Ceratitis capitata

    PubMed Central

    de Souza, João Maria Gomes Alencar; Molina, Wagner Franco; de Almeida, Lúcia Maria; de Gouveia, Milson Bezerra; de Macêdo, Francisco Pepino; Laumann, Raul Alberto; Paranhos, Beatriz Aguiar Jordão

    2015-01-01

    The sterile insect technique (SIT) is widely utilized in the biological control of fruit flies of the family Tephritidae, particularly against the Mediterranean fruit fly. This study investigated the interaction between mating success and morphometric variation in the wings and the production of acoustic signals among three male groups of Ceratitis capitata (Wiedemann): (1) wild males, (2) irradiated with Co-60 (steriles), and (3) irradiated (steriles) and treated with ginger oil. The canonical variate analysis discriminated two groups (males irradiated and males wild), based on the morphological shape of the wings. Among males that emit buzz signals, wild males obtained copulation more frequently than males in Groups 2 and 3. The individuals of Group 3 achieved more matings than those in Group 2. Wild males displayed lower pulse duration, higher intervals between pulses, and higher dominant frequency. Regarding the reproductive success, the morphological differences in the wings' shape between accepted and nonaccepted males are higher in wild males than in the irradiated ones. The present results can be useful in programs using the sterile insect technique for biological control of C. capitata. PMID:26075293

  3. Seminal Plasma Induces Ovulation in Llamas in the Absence of a Copulatory Stimulus: Role of Nerve Growth Factor as an Ovulation-Inducing Factor

    PubMed Central

    Berland, Marco A.; Ulloa-Leal, Cesar; Barría, Miguel; Wright, Hollis; Dissen, Gregory A.; Silva, Mauricio E.; Ojeda, Sergio R.

    2016-01-01

    Llamas are considered to be reflex ovulators. However, semen from these animals is reported to be rich in ovulation-inducing factor(s), one of which has been identified as nerve growth factor (NGF). These findings suggest that ovulation in llamas may be elicited by chemical signals contained in semen instead of being mediated by neural signals. The present study examines this notion. Llamas displaying a preovulatory follicle were assigned to four groups: group 1 received an intrauterine infusion (IUI) of PBS; group 2 received an IUI of seminal plasma; group 3 was mated to a male whose urethra had been surgically diverted (urethrostomized male); and group 4 was mated to an intact male. Ovulation (detected by ultrasonography) occurred only in llamas mated to an intact male or given an IUI of seminal plasma and was preceded by a surge in plasma LH levels initiated within an hour after coitus or IUI. In both ovulatory groups, circulating β-NGF levels increased within 15 minutes after treatment, reaching values that were greater and more sustained in llamas mated with an intact male. These results demonstrate that llamas can be induced to ovulate by seminal plasma in the absence of copulation and that copulation alone cannot elicit ovulation in the absence of seminal plasma. In addition, our results implicate β-NGF as an important mediator of seminal plasma-induced ovulation in llamas because ovulation does not occur if β-NGF levels do not increase in the bloodstream, a change that occurs promptly after copulation with an intact male or IUI of seminal plasma. PMID:27355492

  4. Seminal Plasma Induces Ovulation in Llamas in the Absence of a Copulatory Stimulus: Role of Nerve Growth Factor as an Ovulation-Inducing Factor.

    PubMed

    Berland, Marco A; Ulloa-Leal, Cesar; Barría, Miguel; Wright, Hollis; Dissen, Gregory A; Silva, Mauricio E; Ojeda, Sergio R; Ratto, Marcelo H

    2016-08-01

    Llamas are considered to be reflex ovulators. However, semen from these animals is reported to be rich in ovulation-inducing factor(s), one of which has been identified as nerve growth factor (NGF). These findings suggest that ovulation in llamas may be elicited by chemical signals contained in semen instead of being mediated by neural signals. The present study examines this notion. Llamas displaying a preovulatory follicle were assigned to four groups: group 1 received an intrauterine infusion (IUI) of PBS; group 2 received an IUI of seminal plasma; group 3 was mated to a male whose urethra had been surgically diverted (urethrostomized male); and group 4 was mated to an intact male. Ovulation (detected by ultrasonography) occurred only in llamas mated to an intact male or given an IUI of seminal plasma and was preceded by a surge in plasma LH levels initiated within an hour after coitus or IUI. In both ovulatory groups, circulating β-NGF levels increased within 15 minutes after treatment, reaching values that were greater and more sustained in llamas mated with an intact male. These results demonstrate that llamas can be induced to ovulate by seminal plasma in the absence of copulation and that copulation alone cannot elicit ovulation in the absence of seminal plasma. In addition, our results implicate β-NGF as an important mediator of seminal plasma-induced ovulation in llamas because ovulation does not occur if β-NGF levels do not increase in the bloodstream, a change that occurs promptly after copulation with an intact male or IUI of seminal plasma.

  5. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens

    PubMed Central

    Amiri, Esmaeil; Meixner, Marina D.; Kryger, Per

    2016-01-01

    Deformed wing virus is an important contributor to honey bee colony losses. Frequently queen failure is reported as a cause for colony loss. Here we examine whether sexual transmission during multiple matings of queens is a possible way of virus infection in queens. In an environment with high prevalence of deformed wing virus, queens (n = 30) were trapped upon their return from natural mating flights. The last drone’s endophallus (n = 29), if present, was removed from the mated queens for deformed wing virus quantification, leading to the detection of high-level infection in 3 endophalli. After oviposition, viral quantification revealed that seven of the 30 queens had high-level deformed wing virus infections, in all tissues, including the semen stored in the spermathecae. Two groups of either unmated queens (n = 8) with induced egg laying, or queens (n = 12) mated in isolation with drones showing comparatively low deformed wing virus infections served as control. None of the control queens exhibited high-level viral infections. Our results demonstrate that deformed wing virus infected drones are competitive to mate and able to transmit the virus along with semen, which occasionally leads to queen infections. Virus transmission to queens during mating may be common and can contribute noticeably to queen failure. PMID:27608961

  6. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.

    PubMed

    Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D

    2017-05-01

    Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.

  7. Mate choice and human stature: homogamy as a unified framework for understanding mating preferences.

    PubMed

    Courtiol, Alexandre; Raymond, Michel; Godelle, Bernard; Ferdy, Jean-Baptiste

    2010-08-01

    Assortative mating for human height has long attracted interest in evolutionary biology, and the phenomenon has been demonstrated in numerous human populations. It is often argued that mating preferences generate this pattern, but other processes can also induce trait correlations between mates. Here, we present a methodology tailored to quantify continuous preferences based on choice experiments between pairs of stimuli. In particular, it is possible to explore determinants of interindividual variations in preferences, such as the height of the chooser. We collected data from a sample of 200 individuals from France. Measurements obtained show that the perception of attractiveness depends on both the height of the stimuli and the stature of the individual who judged them. Therefore, this study demonstrates that homogamy is present at the level of preferences for both sexes. We also show that measurements of the function describing this homogamy are concordant with several distinct mating rules proposed in the literature. In addition, the quantitative approach introduced here fulfills metrics that can be used to compare groups of individuals. In particular, our results reveal an important disagreement between sexes regarding height preferences in the context of mutual mate choice. Finally, both women and men prefer individuals who are significantly taller than average. All major findings are confirmed by a reanalysis of previously published data.

  8. Paternity of offspring in multiply-mated, female crickets: the effect of nuptial food gifts and the advantage of mating first

    PubMed Central

    Calos, J. B.; Sakaluk, S. K.

    1998-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) includes a large gelatinous mass, the spermatophylax, that is consumed by the female after mating. This nuptial gift preoccupies the female while sperm are discharged from the remaining portion of the spermatophore, the sperm ampulla, into her reproductive tract. There is considerable variation in the mass of the spermatophylax, and about half of all males produce spermatophylaxes that are too small to ensure complete sperm transfer. We tested two hypotheses concerning the maintenance of this variation: (i) males trade-off investment in spermatophylaxes against copulation frequency; and (ii) males synthesize the largest spermatophylaxes of which they are physiologically capable. Males synthesizing large and small food gifts were permitted multiple mating opportunities with the same females, and allozyme markers were used to establish the paternity of offspring. There was a significant advantage to those males that mated first irrespective of gift size. This advantage probably arose, in part, because the sperm of first males would have had exclusive access to females' eggs during the first 24 hours of oviposition, and underscores the benefits of matings with virgin females. The paternity of 'small-gift' males increased with gift mass, but there was no such increase in 'large-gift' males. This difference probably stems from the relationship between gift mass and sperm transfer: most of the gifts of the large-gift males would have been above the threshold needed to achieve complete inseminations, whereas those of small-gift males would have been below the threshold. Within mating-order positions, there was no significant difference in the paternity of large-gift and small-gift males, a result seemingly consistent with the 'trade-off' hypothesis. However, there was no correlation between spermatophylax mass and male mating frequency, so that the mechanism by which small-gift males offset their fertilization disadvantage remains unknown.

  9. Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird.

    PubMed

    Freeman-Gallant, Corey R; Meguerdichian, Michael; Wheelwright, Nathaniel T; Sollecito, Suzanne V

    2003-11-01

    Female birds often copulate outside the pair-bond to produce broods of mixed paternity, but despite much recent attention the adaptive significance of this behaviour remains elusive. Although several studies support the idea that extra-pair copulations (EPCs) allow females to obtain 'good genes' for their offspring, many others have found no relationship between female mating fidelity and traits likely to reflect male quality. A corollary to the good genes hypothesis proposes that females do use EPCs to increase the quality of young, but it is the interaction between maternal and paternal genomes - and not male quality per se - that is the target of female choice. We tested this 'genetic compatibility' hypothesis in a free-living population of Savannah sparrows (Passerculus sandwichensis) by determining whether females mated nonrandomly with respect to the major histocompatibility complex (Mhc). During both the 1994 and 1995 breeding seasons, female yearlings (but not older birds) avoided pairing with Mhc-similar males (P < 0.005). The Mhc similarity between mates also predicted the occurrence of extra-pair young in first broods (P < 0.007) and covaried with estimates of genome-wide levels of similarity derived from multilocus DNA fingerprinting profiles (P = 0.007). The overall genetic similarity between adults tended to predict female mating fidelity, but with less precision than their Mhc similarity (P = 0.09). In contrast, females appeared insensitive to the size, weight or age of males, none of which explained variation in female mating fidelity. Taken together, these results are consistent with the hypothesis that females sought complementary genes for their offspring and suggest either that the benefits of heterozygosity (at the Mhc) drive female mating patterns or that the avoidance of inbreeding is an ultimate cause of social and genetic mate choice in Savannah sparrows.

  10. Gender, Gender Roles Affecting Mate Preferences in Turkish College Students

    ERIC Educational Resources Information Center

    Gazioglu, A. Esra Ismen

    2008-01-01

    The subject of this study is gender and gender roles affecting mate preferences. The sample of the study consists of 300 undergraduates and master students. To identify students' gender roles the Sex Role Evaluation Inventory (Bem, 1974) is used. The Question List (Bacanli 2001; Buss et. al., 1990) is applied to the sample group to determine the…

  11. Litter size at birth in purebred dogs--a retrospective study of 224 breeds.

    PubMed

    Borge, Kaja Sverdrup; Tønnessen, Ragnhild; Nødtvedt, Ane; Indrebø, Astrid

    2011-03-15

    Despite the long history of purebred dogs and the large number of existing breeds, few studies of canine litter size based upon a large number of breeds exist. Previous studies are either old or include only one or a few selected breeds. The aim of this large-scale retrospective study was to estimate the mean litter size in a large population of purebred dogs and to describe some factors that might influence the litter size. A total of 10,810 litters of 224 breeds registered in the Norwegian Kennel Club from 2006 to 2007 were included in the study. The overall mean litter size at birth was 5.4 (± 0.025). A generalized linear mixed model with a random intercept for breed revealed that the litter size was significantly influenced by the size of the breed, the method of mating and the age of the bitch. A significant interaction between breed size and age was detected, in that the expected number of puppies born decreased more for older bitches of large breeds. Mean litter size increased with breed size, from 3.5 (± 0.04) puppies in miniature breeds to 7.1 (± 0.13) puppies in giant breeds. No effect on litter size was found for the season of birth or the parity of the bitch. The large number of breeds and the detail of the registered information on the litters in this study are unique. In conclusion, the size of the breed, the age of the bitch and the method of mating were found to influence litter size in purebred dogs when controlling for breed, with the size of the breed as the strongest determinant. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Vomeronasal organ removal before sexual experience impairs male hamster mating behavior.

    PubMed

    Meredith, M

    1986-01-01

    Removal of vomeronasal chemoreceptors before sexual experience in male hamsters resulted in complete failure to mate in some animals but removal of these receptors after sexual experience had no effect. Animals were tested for mating behavior with intact behaviorally receptive females and also with anesthetized males scented with vaginal fluid. The two tests produced essentially the same result. Histological analysis of the lesions and radioimmunoassay of androgen levels showed no group differences, other than vomeronasal organ removal, that could account for the results. The behavioral data suggest that the vomeronasal system may be concerned with the production of preprogrammed behavior.

  13. Cooler butterflies lay larger eggs: developmental plasticity versus acclimation.

    PubMed Central

    Fischer, Klaus; Eenhoorn, Evelien; Bot, Adriane N M; Brakefield, Paul M; Zwaan, Bas J

    2003-01-01

    We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints. PMID:14561294

  14. Are relationships between pollen-ovule ratio and pollen and seed size explained by sex allocation?

    PubMed

    Burd, Martin

    2011-10-01

    Positive correlations between pollen-ovule ratio and seed size, and negative correlations between pollen-ovule ratio and pollen grain size have been noted frequently in a wide variety of angiosperm taxa. These relationships are commonly explained as a consequence of sex allocation on the basis of a simple model proposed by Charnov. Indeed, the theoretical expectation from the model has been the basis for interest in the empirical pattern. However, the predicted relationship is a necessary consequence of the mathematics of the model, which therefore has little explanatory power, even though its predictions are consistent with empirical results. The evolution of pollen-ovule ratios is likely to depend on selective factors affecting mating system, pollen presentation and dispensing, patterns of pollen receipt, pollen tube competition, female mate choice through embryo abortion, as well as genetic covariances among pollen, ovule, and seed size and other reproductive traits. To the extent the empirical correlations involving pollen-ovule ratios are interesting, they will need explanation in terms of a suite of selective factors. They are not explained simply by sex allocation trade-offs. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  15. Overview on the Diversity of Sounds Produced by Clownfishes (Pomacentridae): Importance of Acoustic Signals in Their Peculiar Way of Life

    PubMed Central

    Colleye, Orphal; Parmentier, Eric

    2012-01-01

    Background Clownfishes (Pomacentridae) are brightly colored coral reef fishes well known for their mutualistic symbiosis with tropical sea anemones. These fishes live in social groups in which there is a size-based dominance hierarchy. In this structure where sex is socially controlled, agonistic interactions are numerous and serve to maintain size differences between individuals adjacent in rank. Clownfishes are also prolific callers whose sounds seem to play an important role in the social hierarchy. Here, we aim to review and to synthesize the diversity of sounds produced by clownfishes in order to emphasize the importance of acoustic signals in their way of life. Methodology/Principal Findings Recording the different acoustic behaviors indicated that sounds are divided into two main categories: aggressive sounds produced in conjunction with threat postures (charge and chase), and submissive sounds always emitted when fish exhibited head shaking movements (i.e. a submissive posture). Both types of sounds showed size-related intraspecific variation in dominant frequency and pulse duration: smaller individuals produce higher frequency and shorter duration pulses than larger ones, and inversely. Consequently, these sonic features might be useful cues for individual recognition within the group. This observation is of significant importance due to the size-based hierarchy in clownfish group. On the other hand, no acoustic signal was associated with the different reproductive activities. Conclusions/Significance Unlike other pomacentrids, sounds are not produced for mate attraction in clownfishes but to reach and to defend the competition for breeding status, which explains why constraints are not important enough for promoting call diversification in this group. PMID:23145114

  16. Efficacy and acceptability of an Internet platform to improve the learning of nutritional knowledge in children: the ETIOBE Mates.

    PubMed

    Baños, R M; Cebolla, A; Oliver, E; Alcañiz, M; Botella, C

    2013-04-01

    Possessing sufficient nutritional knowledge is a necessary component in the prevention and treatment of obesity. A solid understanding of nutrition can help people make appropriate food selections and can also help correct irrational ideas or myths people may believe about food. It is a challenge to provide this information to children in ways that are exciting. Thus, we propose an online video game platform to deliver the information. The objective of this study was to study the efficacy and acceptability of an online game called 'ETIOBE Mates' that was designed to improve children's nutritional knowledge; furthermore, we compare it with the traditional paper-pencil mode of information delivery. A sample of 228 children participated in the study. Participants were divided into two groups: an experimental group (who used ETIOBE Mates) and a control group (who were given a pamphlet). Both groups increased their scores for nutritional knowledge. The interaction between group × time was also statistically significant; it indicated that acquisition of nutritional knowledge was superior in the experimental group. The children considered the serious games platform to be a useful medium for improving their nutritional knowledge. Online games can be an effective method of delivery for preventive and treatment tasks that are otherwise tedious for children.

  17. Inbreeding depression in an insect with maternal care: influences of family interactions, life stage and offspring sex.

    PubMed

    Meunier, J; Kölliker, M

    2013-10-01

    Although inbreeding is commonly known to depress individual fitness, the severity of inbreeding depression varies considerably across species. Among the factors contributing to this variation, family interactions, life stage and sex of offspring have been proposed, but their joint influence on inbreeding depression remains poorly understood. Here, we demonstrate that these three factors jointly shape inbreeding depression in the European earwig, Forficula auricularia. Using a series of cross-breeding, split-clutch and brood size manipulation experiments conducted over two generations, we first showed that sib mating (leading to inbred offspring) did not influence the reproductive success of earwig parents. Second, the presence of tending mothers and the strength of sibling competition (i.e. brood size) did not influence the expression of inbreeding depression in the inbred offspring. By contrast, our results revealed that inbreeding dramatically depressed the reproductive success of inbred adult male offspring, but only had little effect on the reproductive success of inbred adult female offspring. Overall, this study demonstrates limited effects of family interactions on inbreeding depression in this species and emphasizes the importance of disentangling effects of sib mating early and late during development to better understand the evolution of mating systems and population dynamics. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  18. Trade-off between mating opportunities and parental care: brood desertion by female Kentish plovers.

    PubMed

    Székely, T; Cuthill, I C

    2000-10-22

    Why do some parents care for their young whereas others divorce from their mate and abandon their offspring? This decision is governed by the trade-off between the value of the current breeding event and future breeding prospects. In the precocial Kentish plover Charadrius alexandrinus females frequently, but not always, abandon their broods to be cared for by their mate, and seek new breeding partners within the same season. We have shown previously that females' remating opportunities decline with date in the season, so brood desertion should be particularly favourable for early breeding females. However, the benefits are tempered by the fact that single-parent families have lower survival expectancies than those where the female remains to help the male care for the young. We therefore tested the prediction that increasing the value of the current brood (by brood-size manipulation) should increase the duration of female care early in the season, but that in late breeders, with reduced remating opportunities, desertion and thus the duration of female care should be independent of current brood size. These predictions were fulfilled, indicating that seasonally modulated trade-offs between current brood value and remating opportunities can be important in the desertion decisions of species with flexible patterns of parental care.

  19. Trade-off between mating opportunities and parental care: brood desertion by female Kentish plovers.

    PubMed Central

    Székely, T; Cuthill, I C

    2000-01-01

    Why do some parents care for their young whereas others divorce from their mate and abandon their offspring? This decision is governed by the trade-off between the value of the current breeding event and future breeding prospects. In the precocial Kentish plover Charadrius alexandrinus females frequently, but not always, abandon their broods to be cared for by their mate, and seek new breeding partners within the same season. We have shown previously that females' remating opportunities decline with date in the season, so brood desertion should be particularly favourable for early breeding females. However, the benefits are tempered by the fact that single-parent families have lower survival expectancies than those where the female remains to help the male care for the young. We therefore tested the prediction that increasing the value of the current brood (by brood-size manipulation) should increase the duration of female care early in the season, but that in late breeders, with reduced remating opportunities, desertion and thus the duration of female care should be independent of current brood size. These predictions were fulfilled, indicating that seasonally modulated trade-offs between current brood value and remating opportunities can be important in the desertion decisions of species with flexible patterns of parental care. PMID:11416913

  20. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate.

    PubMed

    Friesen, Christopher R; Powers, Donald R; Copenhaver, Paige E; Mason, Robert T

    2015-05-01

    The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5-18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species. © 2015. Published by The Company of Biologists Ltd.

  1. Trading up: the fitness consequences of divorce in monogamous birds.

    PubMed

    Culina, Antica; Radersma, Reinder; Sheldon, Ben C

    2015-11-01

    Social and genetic mating systems play an important role in natural and sexual selection, as well as in the dynamics of populations. In socially monogamous species different genetic mating patterns appear when individuals mate outside the breeding pair within a breeding season (extra-pair mating) or when they change partners between two breeding seasons (widowing or divorce). Divorce can be defined as having occurred when two previously paired individuals are alive during the next breeding season and at least one of them has re-mated with a new partner. In socially monogamous birds divorce is widespread, but it is not clear whether it is a behavioural adaptation to improve the quality of a mating decision or whether, alternatively, it results as a non-selected consequence of other processes: existing studies suggest a heterogeneous set of results with respect to this central question. This heterogeneity could result from a number of factors, ranging from the methodological approaches used, to population- or species-specific characters. In this review we use phylogenetic meta-analyses to assess the evidence that divorce is adaptive (in terms of breeding success) across 64 species of socially monogamous birds. Second, we explore biological and methodological reasons for the heterogeneity in the results of previous studies. Results of our analyses supported the hypothesis that divorce is, in general, an adaptive behavioural strategy as: (1) divorce is triggered by relatively low breeding success; (2) there is a positive change in breeding success as a result of divorce. More specifically, while controlling for methodological moderators, we show that: (i) earlier stages of breeding are better predictors of divorce than later stages (r = 0.231; 95% CI: 0.061-0.391 for clutch size; similar for laying date); (ii) females benefited from divorce more than males in terms of increasing breeding success between successive breeding attempts, with different stages of the breeding cycle improving at different rates (e.g. r = 0.637; 95% CI: 0.328-0.817 for brood-level measures). We show that the effect size was dependent on the methodological approach used across studies and argue that research on the adaptive nature of divorce should be cautious when designing the study and interpreting the results. Altogether, by providing strong evidence that divorce is an adaptive strategy across monogamous birds, the results of our analysis provide a firm ground for further exploration of external covariates of divorce (e.g. demographic factors) and the mechanisms underlying the differences in the effect sizes of the proximal fitness causes and consequences of divorce. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  2. RNA-sequencing elucidates the regulation of behavioural transitions associated with the mating process in honey bee queens.

    PubMed

    Manfredini, Fabio; Brown, Mark J F; Vergoz, Vanina; Oldroyd, Benjamin P

    2015-07-31

    Mating is a complex process, which is frequently associated with behavioural and physiological changes. However, understanding of the genetic underpinnings of these changes is limited. Honey bees are both a model system in behavioural genomics, and the dominant managed pollinator of human crops; consequently understanding the mating process has both pure and applied value. We used next-generation transcriptomics to probe changes in gene expression in the brains of honey bee queens, as they transition from virgin to mated reproductive status. In addition, we used CO2-narcosis, which induces oviposition without mating, to isolate the process of reproductive maturation. The mating process produced significant changes in the expression of vision, chemo-reception, metabolic, and immune-related genes. Differential expression of these genes maps clearly onto known behavioural and physiological changes that occur during the transition from being a virgin queen to a newly-mated queen. A subset of these changes in gene expression were also detected in CO2-treated queens, as predicted from previous physiological studies. In addition, we compared our results to previous studies that used microarray techniques across a range of experimental time-points. Changes in expression of immune- and vision-related genes were common to all studies, supporting an involvement of these groups of genes in the mating process. Our study is an important step in understanding the molecular mechanisms regulating post-mating behavioural transitions in a natural system. The weak overlap in patterns of gene expression with previous studies demonstrates the high sensitivity of genome-wide approaches. Thus, while we build on previous microarray studies that explored post-mating changes in honey bees, the broader experimental design, use of RNA-sequencing, and focus on Australian honey bees, which remain free from the devastating parasite Varroa destructor, in the current study, provide unique insights into the biology of the mating process in honey bees.

  3. Low-Salt Intake during Mating or Gestation in Rats Is Associated with Low Birth and Survival Rates of Babies.

    PubMed

    Chou, Ranna; Hara, Anna; Du, DongDong; Shimizu, Namiko; Sakuyama, Hiroe; Uehara, Yoshio

    2014-01-01

    We investigated the influence of maternal salt restriction during mating or gestation on birth rate and offspring growth in Dahl salt-sensitive rats (DS). DS were divided into 5 groups: DS fed a low-salt (0.3% NaCl, w/w) (DS-low) or high-salt (4% NaCl, w/w) diet (DS-high) during mating and DS-high or DS-low during gestation, and DS fed regular chow (0.75% NaCl, w/w) (DS-regular) throughout mating and gestation. During the unspecified periods, the rats were given regular chow. DS-low during mating delivered fewer infants than high-salt mothers (P < 0.05). The birth rate on regular chow was 87%. Six out of 11 DS-low rats during pregnancy produced pups while the rats fed a high-salt diet all delivered pups (P < 0.025). The pup survival rate was 67% for high-salt mothers during mating and 54% for mothers on a low-salt diet. The pup survival rate was 95% for mothers on a high-salt diet during pregnancy and 64% for mothers on a low-salt diet (P < 0.0001). Seven out of 8 DS-regular rats during mating delivered 59 neonates. However, 66% of the neonates survived. A low-salt diet during mating or pregnancy lowers birth rate and the neonates from low-salt mothers during pregnancy were more likely to die than those from high-salt mothers.

  4. Sperm as moderators of environmentally induced paternal effects in a livebearing fish.

    PubMed

    Evans, Jonathan P; Lymbery, Rowan A; Wiid, Kyle S; Rahman, Md Moshiur; Gasparini, Clelia

    2017-04-01

    Until recently, paternal effects-the influence of fathers on their offspring due to environmental factors rather than genes-were largely discarded or assumed to be confined to species exhibiting paternal care. It is now recognized that paternal effects can be transmitted through the ejaculate, but unambiguous evidence for them is scarce, because it is difficult to isolate effects operating via changes to the ejaculate from maternal effects driven by female mate assessment. Here, we use artificial insemination to disentangle mate assessment from fertilization in guppies, and show that paternal effects can be transmitted to offspring exclusively via ejaculates. We show that males fed reduced diets produce poor-quality sperm and that offspring sired by such males (via artificial insemination) exhibit reduced body size at birth. These findings may have important implications for the many mating systems in which environmentally induced changes in ejaculate quality have been reported. © 2017 The Author(s).

  5. Strategic mating with common preferences.

    PubMed

    Alpern, Steve; Reyniers, Diane

    2005-12-21

    We present a two-sided search model in which individuals from two groups (males and females, employers and workers) would like to form a long-term relationship with a highly ranked individual of the other group, but are limited to individuals who they randomly encounter and to those who also accept them. This article extends the research program, begun in Alpern and Reyniers [1999. J. Theor. Biol. 198, 71-88], of providing a game theoretic analysis for the Kalick-Hamilton [1986. J. Personality Soc. Psychol. 51, 673-682] mating model in which a cohort of males and females of various 'fitness' or 'attractiveness' levels are randomly paired in successive periods and mate if they accept each other. Their model compared two acceptance rules chosen to represent homotypic (similarity) preferences and common (or 'type') preferences. Our earlier paper modeled the first kind by assuming that if a level x male mates with a level y female, both get utility -|x-y|, whereas this paper models the second kind by giving the male utility y and the female utility x. Our model can also be seen as a continuous generalization of the discrete fitness-level game of Johnstone [1997. Behav. Ecol. Sociobiol. 40, 51-59]. We establish the existence of equilibrium strategy pairs, give examples of multiple equilibria, and conditions guaranteeing uniqueness. In all equilibria individuals become less choosy over time, with high fitness individuals pairing off with each other first, leaving the rest to pair off later. This route to assortative mating was suggested by Parker [1983. Mate Choice, Cambridge University Press, Cambridge, pp. 141-164]. If the initial fitness distributions have atoms, then mixed strategy equilibria may also occur. If these distributions are unknown, there are equilibria in which only individuals in the same fitness band are mated, as in the steady-state model of MacNamara and Collins [1990. J. Appl. Prob. 28, 815-827] for the job search problem.

  6. A supergene determines highly divergent male reproductive morphs in the ruff

    PubMed Central

    dos Remedios, Natalie; Farrell, Lindsay L.; McRae, Susan B.; Morgan, Tawna C.; Karlionova, Natalia; Pinchuk, Pavel; Verkuil, Yvonne I.; Kitaysky, Alexander S.; Wingfield, John C.; Piersma, Theunis; Zeng, Kai; Slate, Jon; Blaxter, Mark; Lank, David B.; Burke, Terry

    2015-01-01

    Three strikingly different alternative male mating morphs (aggressive “Independents”, semi-cooperative “Satellites” and female mimic “Faeders”) coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird1,2,3. Major differences in body size, ornamentation, and aggressive and mating behaviour are inherited as an autosomal polymorphism4,5. We show that development into Satellites and Faeders is determined by a supergene6,7,8 consisting of divergent alternative, dominant, non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential Centromere protein N (CENP-N) gene, and pedigree analysis confirms lethality of inversion homozygotes. We describe novel behavioural, testes size, and steroid metabolic differences among morphs, and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits. PMID:26569125

  7. Population properties affect inbreeding avoidance in moose

    PubMed Central

    Herfindal, Ivar; Haanes, Hallvard; Røed, Knut H.; Solberg, Erling J.; Markussen, Stine S.; Heim, Morten; Sæther, Bernt-Erik

    2014-01-01

    Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations. PMID:25540152

  8. [Effect of habitat and interspecific competition on Apis cerana cerana colony distribution].

    PubMed

    Yu, Linsheng; Han, Shengming

    2003-04-01

    Habitat change and interspecific competition were the main factors affecting, Apis cerana cerana colony distribution among Wannan and Wanxi Dabie mountainous areas, Jianghuai area and Huaibei plain. Wannan and Wanxi Dabie mountainous areas were the ideal places for Apis cerana cerana' habitation and propogation, in which, there were integrated natural vegetation, fine ecological condition, abundant nectariferous plants, and Apis cerana cerana had large colony size, wide distribution, high density, no disturbances of natural mating, and was dominant interspecific competition. In Jianghuai area and Huaibei plain, there were small covering of natural vegetation, different degree of degradation of ecological balance, few kinds of nectariferous plants with almost the same blooming periods, natural mating perturbed by Apis mellifera ligustica for Apis cerana cerana, and which was inferior in interspecific competition, colony size sharply decreased, distribution area reduced, and density cut down to a great extent. In Huaibei plain, the negative factors were more conspicuous.

  9. Free mate choice does not influence reproductive success in humans.

    PubMed

    Sorokowski, Piotr; Groyecka, Agata; Karwowski, Maciej; Manral, Upma; Kumar, Amit; Niemczyk, Agnieszka; Marczak, Michalina; Misiak, Michał; Sorokowska, Agnieszka; Huanca, Thomas; Conde, Esther; Wojciszke, Bogdan; Pawłowski, Bogusław

    2017-08-31

    The effect of free mate choice on the relative magnitude of fitness benefits has been examined among various species. The majority of the data show significant fitness benefits of mating with partners of an individual's own choice, highlighting elevated behavioral compatibility between partners with free mate choice. Similarities between humans and other species that benefit from free mate choice led us to hypothesize that it also confers reproductive benefits in Homo sapiens. To test this hypothesis, we conducted a study among three indigenous societies-the Tsimane', Yali, and Bhotiya-who employ natural birth control. In all three samples, we compared the marriages arranged by parents with the non-arranged ones in terms of number of offspring. Here, we show that there were no significant relationships between type of marriage and the total number of alive children and number of dead children among the three sampled groups. The presented study is the first to date to examine the fitness benefits of free mate choice in humans. In discussion we present limitations of our research and discuss the possibility of love having a beneficial influence in terms of the number of offspring.

  10. The measure and significance of Bateman's principles

    PubMed Central

    Collet, Julie M.; Dean, Rebecca F.; Worley, Kirsty; Richardson, David S.; Pizzari, Tommaso

    2014-01-01

    Bateman's principles explain sex roles and sexual dimorphism through sex-specific variance in mating success, reproductive success and their relationships within sexes (Bateman gradients). Empirical tests of these principles, however, have come under intense scrutiny. Here, we experimentally show that in replicate groups of red junglefowl, Gallus gallus, mating and reproductive successes were more variable in males than in females, resulting in a steeper male Bateman gradient, consistent with Bateman's principles. However, we use novel quantitative techniques to reveal that current methods typically overestimate Bateman's principles because they (i) infer mating success indirectly from offspring parentage, and thus miss matings that fail to result in fertilization, and (ii) measure Bateman gradients through the univariate regression of reproductive over mating success, without considering the substantial influence of other components of male reproductive success, namely female fecundity and paternity share. We also find a significant female Bateman gradient but show that this likely emerges as spurious consequences of male preference for fecund females, emphasizing the need for experimental approaches to establish the causal relationship between reproductive and mating success. While providing qualitative support for Bateman's principles, our study demonstrates how current approaches can generate a misleading view of sex differences and roles. PMID:24648220

  11. Body Size Correlates with Fertilization Success but not Gonad Size in Grass Goby Territorial Males

    PubMed Central

    Pujolar, Jose Martin; Locatello, Lisa; Zane, Lorenzo; Mazzoldi, Carlotta

    2012-01-01

    In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003–2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995–1996 in the same area (61 territorial males and 65 sneakers). Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males. PMID:23056415

  12. Body size correlates with fertilization success but not gonad size in grass goby territorial males.

    PubMed

    Pujolar, Jose Martin; Locatello, Lisa; Zane, Lorenzo; Mazzoldi, Carlotta

    2012-01-01

    In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003-2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995-1996 in the same area (61 territorial males and 65 sneakers). Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.

  13. The contrasting role of male relatedness in different mechanisms of sexual selection in red junglefowl.

    PubMed

    Tan, Cedric Kai Wei; Doyle, Philippa; Bagshaw, Emma; Richardson, David S; Wigby, Stuart; Pizzari, Tommaso

    2017-02-01

    In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within-group male relatedness across pre- and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more-rather than fewer-sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade-offs between male investment in pre- versus postcopulatory competition, differences in the relative relatedness of pre- versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within-group male relatedness may have contrasting effects in different mechanisms of sexual selection. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  14. Reduced population size does not affect the mating strategy of a vulnerable and endemic seabird

    NASA Astrophysics Data System (ADS)

    Nava, Cristina; Neves, Verónica C.; Andris, Malvina; Dubois, Marie-Pierre; Jarne, Philippe; Bolton, Mark; Bried, Joël

    2017-12-01

    Bottleneck episodes may occur in small and isolated animal populations, which may result in decreased genetic diversity and increased inbreeding, but also in mating strategy adjustment. This was evaluated in the vulnerable and socially monogamous Monteiro's Storm-petrel Hydrobates monteiroi, a seabird endemic to the Azores archipelago which has suffered a dramatic population decline since the XVth century. To do this, we conducted a genetic study (18 microsatellite markers) in the population from Praia islet, which has been monitored over 16 years. We found no evidence that a genetic bottleneck was associated with this demographic decline. Monteiro's Storm-petrels paired randomly with respect to genetic relatedness and body measurements. Pair fecundity was unrelated to genetic relatedness between partners. We detected only two cases of extra-pair parentage associated with an extra-pair copulation (out of 71 offspring). Unsuccessful pairs were most likely to divorce the next year, but genetic relatedness between pair mates and pair breeding experience did not influence divorce. Divorce enabled individuals to improve their reproductive performances after re-mating only when the new partner was experienced. Re-pairing with an experienced partner occurred more frequently when divorcees changed nest than when they retained their nest. This study shows that even in strongly reduced populations, genetic diversity can be maintained, inbreeding does not necessarily occur, and random pairing is not risky in terms of pair lifetime reproductive success. Given, however, that we found no clear phenotypic mate choice criteria, the part played by non-morphological traits should be assessed more accurately in order to better understand seabird mating strategies.

  15. Prenatal development of the agouti (Dasyprocta prymnolopha Wagler, 1831): External features and growth curves.

    PubMed

    Fortes, Eunice Anita de Moura; Ferraz, Maíra Soares; Bezerra, Dayseanny Oliveira; Júnior, Aírton Mendes Conde; Cabral, Rosa Maria; Sousa, Francisco das Chagas Araújo; Almeida, Hatawa Melo; Pessoa, Gerson Tavares; Menezes, Danilo José Ayres de; Guerra, Sérgio Paulo Lima; Sampaio, Ivan Barbosa Machado; Assis Neto, Antônio Chaves; Carvalho, Maria Acelina Martins de

    2013-08-01

    The gestation period in agoutis can range from 104 to 120 days. Knowledge regarding the morphological characteristics of embryos and fetuses is important as a base for studies in reproduction biotechnology, such as in vitro fertilization, embryo transfer and helps in determining congenital anomalies during the development phase. Thus, given the importance and lack of information about agouti embryology, the objective of this study was to characterize the external morphology and define the biometry of embryos and fetuses, at different days of development. Nine females were submitted to daily colpocytology to identify the estrus, confirm mating and identify day zero of the gestation. When the mating was confirmed they were weighed, underwent abdominal ultrasonography and surgery was conducted on the females at the gestational ages of 25, 30, 35, 40, 45, 50, 75 and 100 days. Sixteen embryos/fetuses were weighed and measured. Agouti embryos at 25 days after mating are "C" shaped, with primitive structures, 0.4±0.01cm crown-rump and weighed 0.06±0.01g; at 30 days after mating the crown-rump was 0.95±0.07cm and weighed 0.28±0.00g; at 35 days after mating the crown-rump was 155±0.07cm and weighed 0.38±0.01g; at 40 days after mating the crown-rump was 2.25±0.21cm and weighed 1.25±0.07g; at 45 days after mating the crown-rump was 3.45±0.35cm and weighed 2.75±0.64g; at 50 days after mating the crown-rump was 5.0±0.3cm and weighed 7.01±2.6g; at 75 days after mating, the skin was dark, the crown-rump was 10.0±0.14cm and weighed 55.2±0.07g. At 100 days after mating, the crown-rump was 13.8±0.49cm and fetuses weighed 136.7±9.40g. Based on the morphological data assessed the embryo and fetus age could be assessed and the size and average weight of agouti embryos was established. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The relationship of parthenogenesis in virgin Chinese Painted quail (Coturnix chinensis) hens with embryonic mortality and hatchability following mating.

    PubMed

    Parker, H M; Kiess, A S; Robertson, M L; Wells, J B; McDaniel, C D

    2012-06-01

    Unfertilized chicken, turkey, and quail eggs are capable of developing embryos by parthenogenesis. However, it is unknown if the physiological mechanisms regulating parthenogenesis in virgin hens may actually work against fertilization, embryonic development, and hatchability of eggs from these same hens following mating. Additionally, because most parthenogenic development closely resembles early embryonic mortality in fertilized eggs during the first 2 to 3 d of incubation, it is possible that many unhatched eggs classified as containing early embryonic mortality may actually be unfertilized eggs that contain parthenogens. Therefore, the objective of this study was to examine the relationship of parthenogenesis before mating with embryonic development and hatchability characteristics after mating. Based upon their ability to produce unfertilized eggs that contain parthenogens, 372 virgin Chinese Painted quail hens were divided into 7 groups, according to their incidence of parthenogenesis: 0, 10, 20, 30, 40, 50, and greater than 50% parthenogenesis. Males were then placed with these hens so that fertility, embryonic mortality, and hatchability could be evaluated for each hen. Hatchability of eggs set, hatchability of fertile eggs, and late embryonic mortality declined dramatically as the incidence of parthenogenesis increased. On the other hand, early embryonic mortality increased as parthenogenesis increased. Fertility was not different across the 7 parthenogenesis hen groups, perhaps because unfertilized eggs that exhibited parthenogenesis resembled and were therefore classified as early embryonic mortality. In conclusion, virgin quail hens that exhibit parthenogenesis appear to have impaired embryonic development and hatchability following mating. Additional sperm-egg interaction and embryonic research is needed to determine if a large portion of the early embryonic mortality experienced by mated hens that exhibit parthenogenesis as virgin hens is in fact embryonic development in unfertilized eggs.

  17. Mate loss in winter and mallard reproduction

    USGS Publications Warehouse

    Lercel, Barbara A.; Kaminski, Richard M.; Cox, Robert R.

    1999-01-01

    Mallards (Anas platyrhynchos) frequently pair during winter, and duck hunting seasons have been extended until the end of January in several southern states in the Mississippi Flyway. Therefore, we simulated dissolution of pair bonds from natural or hunting mortality by removing mates of wild-strain, captive, yearling female mallards in late January 1996 and early February 1997 to test if mate loss in winter would affect subsequent pair formation and reproductive performance. Most (97%) widowed females paired again. Nesting and incubation frequencies, nest-initiation date, days between first and second nests, and egg mass did not differ (P > 0.126) between widowed and control (i.e., no mate loss experienced) females in 1996 and 1997. In 1997, widowed females laid 1.91 fewer eggs in first nests (P = 0.014) and 3.75 fewer viable eggs in second nests (P = 0.056). Computer simulations with a mallard productivity model (incorporating default parameters [i.e., average environmental conditions]) indicated that the observed decreased clutch size of first nests, fewer viable eggs in second nests, and these factors combined had potential to decrease recruitment rates of yearling female mallards 9%, 12%, and 20%. Our results indicate that winter mate loss could reduce reproductive performance by yearling female mallards in some years. We suggest caution regarding extending duck hunting seasons in winter without concurrent evaluations of harvest and demographics of mallard and other duck populations.

  18. A reappraisal of the Pleurotus eryngii complex - new species and taxonomic combinations based on the application of a polyphasic approach, and an identification key to Pleurotus taxa associated with Apiaceae plants.

    PubMed

    Zervakis, Georgios I; Ntougias, Spyridon; Gargano, Maria Letizia; Besi, Maria I; Polemis, Elias; Typas, Milton A; Venturella, Giuseppe

    2014-01-01

    The Pleurotus eryngii species-complex comprises choice edible mushrooms growing on roots and lower stem residues of Apiaceae (umbellifers) plants. Material deriving from extensive sampling was studied by mating compatibility, morphological and ecological criteria, and through analysis of ITS1-5.8S-ITS2 and IGS1 rRNA sequences. Results revealed that P. eryngii sensu stricto forms a diverse and widely distributed aggregate composed of varieties elaeoselini, eryngii, ferulae, thapsiae, and tingitanus. Pleurotuseryngii subsp. tuoliensis comb. nov. is a phylogenetically sister group to the former growing only on various Ferula species in Asia. The existence of Pleurotusnebrodensis outside of Sicily (i.e., in Greece) is reported for the first time on the basis of molecular data, while P. nebrodensis subsp. fossulatus comb. nov. is a related Asiatic taxon associated with the same plant (Prangos ferulacea). Last, Pleurotusferulaginis sp. nov. grows on Ferulago campestris in northeast Italy, Slovenia and Hungary; it occupies a distinct phylogenetic position accompanied with significant differences in spore size and mating incompatibility versus other Pleurotus populations. Coevolution with umbellifers and host/substrate specificity seem to play key roles in speciation processes within this fungal group. An identification key to the nine Pleurotus taxa growing in association with Apiaceae plants is provided. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, F.L.; Anderson, S.L.

    The effects of lifetime exposure to chronic irradiation on reproductive success were assessed for laboratory populations of the polychaete worm Neanthes arenaceodentata. Lifetime exposure was initiated upon the spawning of the P1 female and was terminated upon spawning of the F1 female. Groups of experimental worms received either no radiation (controls) or 0.19, 2.1, or 17 mGy/h. The total dose received by the worms was either background or approximately 0.55, 6.5, or 54 Gy, respectively. The broods from the F1 mated pairs were sacrificed before hatching occurred, and information was obtained on brood size, on the number of normal andmore » abnormal embryos, and on the number of embryos that were living, dying, and dead. The mean number of embryos in the broods from the F1 females exposed to lifetime radiation of 0.19 and 2.1 mGy/h was not significantly different from the mean number of embryos from control females; however, the mean number of embryos was different from those F1 females exposed to 17 mGy/h. There was a significant reduction in the number of live embryos in the broods from the F1 mated pairs that were exposed to the lowest dose rate given, 0.19 mGy/h, as well as those exposed to 2.1 and 17 mGy/h. Also, increased percentages of abnormal embryos were determined in the broods of all the radiation-exposed groups. 39 refs., 10 figs., 15 tabs.« less

  20. Changing resonator geometry to boost sound power decouples size and song frequency in a small insect.

    PubMed

    Mhatre, Natasha; Montealegre-Z, Fernando; Balakrishnan, Rohini; Robert, Daniel

    2012-05-29

    Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.

  1. Sexual selection on morphological and physiological traits and fluctuating asymmetry in the black scavenger fly Sepsis cynipsea.

    PubMed

    Blanckenhorn, W U; Kraushaar, U R S; Teuschl, Y; Reim, C

    2004-05-01

    Previous univariate studies of the fly Sepsis cynipsea (Diptera: Sepsidae) have demonstrated spatiotemporally variable and consequently overall weak sexual selection favouring large male size, which is nevertheless stronger on average than fecundity selection favouring larger females. To identify specific target(s) of selection on body size and additional traits possibly affecting mating success, two multivariate field studies of sexual selection were conducted. In one study using seasonal replicates from three populations, we assessed 15 morphological traits. No clear targets of sexual selection on male size could be detected, perhaps because spatiotemporal variation in selection was again strong. In particular, there was no (current) selection on male abdomen length or fore coxa length, the only traits for which S. cynipsea males are not smaller than females. Interestingly, copulating males had a consistently shorter fore femur base, a secondary sexual trait, and a wider clasper (hypopygium) gap, an external genital trait. In a second study using daily and seasonal replicates from one population, we included physiological measures of energy reserves (lipids, glucose, glycogen), in addition to hind tibia length and fluctuating asymmetry (FA) of all pairs of legs. This study again confirmed the mating advantage of large males, and additionally suggests independent positive influences of lipids (the long-term energy stores), with effects of glucose and glycogen (the short-term energy stores) tending to be negative. FA of paired traits was not associated with male mating success. Our study suggests that inclusion of physiological measures and genital traits in phenomenological studies of selection, which is rare, would be fruitful in other species.

  2. The Long and the Short of Mate Attraction in a Psylloid: do Semiochemicals Mediate Mating in Aacanthocnema dobsoni Froggatt?

    PubMed

    Lubanga, Umar K; Drijfhout, Falko P; Farnier, Kevin; Steinbauer, Martin J

    2016-02-01

    Mating is preceded by a series of interdependent events that can be broadly categorized into searching and courtship. Long-range signals convey species- and sex-specific information during searching, while short-range signals provide information specific to individuals during courtship. Studies have shown that cuticular hydrocarbons (CHCs) can be used for mate recognition in addition to protecting insects from desiccation. In Psylloidea, four species rely on semiochemicals for long-range mate attraction. Psyllid mating research has focused on long-range mate attraction and has largely ignored the potential use of cuticular hydrocarbons (CHCs) as mate recognition cues. This study investigated whether CHCs of Aacanthocnema dobsoni have semiochemical activity for long- and short-range communication prior to mating. Using a solid sampler for solvent-less injection of whole psyllids into coupled gas chromatography/mass spectrometry, we found quantitative, sex- and age-related differences in CHC profiles. Males had higher proportions of 2-MeC28, 11,15-diMeC29, and n-C33 alkanes, while females had higher proportions of 5-MeC27, 3-MeC27, 5,15-diMeC27, n-C29 and n-C30 alkanes. In males and females, 84 and 68 % of CHCs varied with age, respectively. Y-tube olfactometer bioassays provided no evidence that males or females responded to odors emanating from groups of conspecifics of the opposite sex. Tests of male and female psyllids for attraction to branchlets previously occupied by conspecifics showed no evidence of attraction to possible semiochemical residues. Our short-range chemoreception bioassay showed that males were as indifferent to freshly killed individuals of either sex with intact CHC profiles as to those treated with hexane (to remove CHCs). Aacanthocnema dobsoni utilizes substrate-borne vibrations (SBVs) for communication. Therefore, our results indicate that SBVs are probably more important than semiochemicals for long-range mate attraction. Furthermore, CHCs are unlikely to mediate short-range mate recognition or provide mate assessment cues.

  3. Behavior differentiation between wild Japanese quail, domestic quail, and their first filial generation.

    PubMed

    Chang, G B; Liu, X P; Chang, H; Chen, G H; Zhao, W M; Ji, D J; Chen, R; Qin, Y R; Shi, X K; Hu, G S

    2009-06-01

    The number of wild quail has dramatically reduced in China and reached a state of endangerment with the deterioration of the environment in recent years. In this study, we examined the ecological behaviors of quails in the cage to determine the differentiation level between wild Japanese quail and domestic quail, to detect the relationship between quail behavior and evolutionary differentiation and to analyze the possibility of restoring effective size of wild population. With the on-the-spot observations and measurements, the behaviors of 3 categories of quail, namely wild Japanese quail from the Weishan Lake area in China, domestic quail, and their first filial generation (F(1)) were studied. Domestic quail differed from wild Japanese quail in morphological pattern and ecological behaviors, including some indexes of figure type and egg, vocalization, aggression and fighting, and mating, but wild Japanese quail and domestic quail could succeed in mating and reproducing fertile hybrid offspring. There were significant differences between domestic quail and wild Japanese quail in reproductive traits, involved mating times, fertility rate, hatching rate, and hatching rate of fertilized eggs (P < 0.05). The first filial generation presented significant difference from the wild Japanese quail in vocalization, aggression and fighting, mating, hatching rate, hatching rate of fertilized eggs, and some egg indexes (P < 0.05) and significantly differ from the domestic quail in vocalization, hatching rate, and hatching rate of fertilized eggs (P < 0.05). Evolutionary differentiation between wild quail and domestic quail was still at a relatively low level because no reproductive isolation existed. The advantages of the F(1) hybrids in reproductive capacity, fertilization, and hatching recommend that releasing hybrids instead of domestic quails to the wild would be a more effective way to restore the effective size of wild quail population if necessary.

  4. The number of service per conception of Indonesian Friesian Holstein with artificial insemination in Selo, Boyolali, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wicaksono, A. M.; Pramono, A.; Susilowati, A.; Sutarno; Widyas, N.; Prastowo, S.

    2018-03-01

    Boyolali is an area in Central Java Indonesia, it has large number of Indonesian Friesian Holstein (IFH; dairy cattle). To improve its population as well as genetic quality of milk production, artificial insemination (AI) is widely applied as mating program. The success of AI can be evaluated from the number of service per conception (S/C), represent a number of service using AI to achieve one pregnancy. Its mirroring mating management and reproductive efficiency in dairy cattle, estimated in herd during specific time and location. For that, this study aims to estimate S/C in Selo, Boyolali during October 2016 to January 2017. Data were gathered with 95% confidence level. Sample size were 367 IFH, visited and selected purposively based on criteria one-time partus, 3 y.o and have complete AI record. Animal data were collected in reproduction and mating management. In addition, 124 dairy farmer who have minimum 5 years experiences in rearing IFH cow were interviewed as respondent in estrus detection, followed with 2 skilled inseminators for AI performing time data. Result shows that S/C is 1.71, this mean one pregnancy need 1.71 times AI services. In the estrus detection, most of dairy farmers were able to observe estrus sign in vulva color, size and the present of mucus by visual. Moreover, AI was performed in 9 to 12 hours after the sign of estrus observed. It is concluded that AI of IFH in Selo, Boyolali has been successfully applied, however there are still rooms to improve the reproduction efficiency through mating management in regard to lower S/C.

  5. The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide

    PubMed Central

    Bellemain, Eva; Zedrosser, Andreas; Manel, Stéphanie; Waits, Lisette P; Taberlet, Pierre; Swenson, Jon E

    2005-01-01

    Because of differential investment in gametes between sexes, females tend to be the more selective sex. Based on this concept, we investigate mate selection in a large carnivore: the brown bear (Ursus arctos). We hypothesize that, in this species with sexually selected infanticide (SSI), females may be faced with a dilemma: either select a high-quality partner based on phenotypic criteria, as suggested by theories of mate choice, or rather mate with future potentially infanticidal males as a counter-strategy to SSI. We evaluated which male characteristics were important in paternity assignment. Among males available in the vicinity of the females, the largest, most heterozygous and less inbred and also the geographically closest males were more often the fathers of the female's next litter. We suggest that female brown bears may select the closest males as a counter-strategy to infanticide and exercise a post-copulatory cryptic choice, based on physical attributes, such as a large body size, reflecting male genetic quality. However, male–male competition either in the form of fighting before copulation or during the post-copulatory phase, in the form of sperm competition, cannot entirely be ruled out. PMID:16543170

  6. The contributions of premating and postmating selection episodes to total selection in sex-role-reversed Gulf pipefish.

    PubMed

    Rose, Emily; Paczolt, Kimberly A; Jones, Adam G

    2013-09-01

    Empirical studies of sexual selection often focus on events occurring either before or after mating but rarely both and consequently may fail to discern the relative magnitudes and interactions of premating and postmating episodes of selection. Here, we simultaneously quantify premating and postmating selection in the sex-role-reversed Gulf pipefish by using a microsatellite-based analysis of parentage in experimental populations. Female pipefish exhibited an opportunity for selection (I) of 1.64, which was higher than that of males (0.35). Decompositions of I and the selection differential on body size showed that over 95% of the selection on females arose from the premating phase. We also found evidence for a trade-off between selection phases, where multiply mating females had significantly lower offspring survivorship compared to singly mated females. In males, variance in relative fitness arose mainly from the number of eggs received per copulation and a small number of males who failed to mate. Overall, our study exemplifies a general approach for the decomposition of total selection into premating and postmating phases to understand the interplay among components of natural and sexual selection that conspire to shape sexually selected traits.

  7. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  8. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  9. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    PubMed Central

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  10. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm.

    PubMed

    Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L

    2016-09-01

    Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  11. Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size.

    PubMed

    Waller, John T; Svensson, Erik I

    2017-09-01

    We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Non-random nectar unloading interactions between foragers and their receivers in the honeybee hive

    NASA Astrophysics Data System (ADS)

    Goyret, Joaquín; Farina, Walter M.

    2005-09-01

    Nectar acquisition in the honeybee Apis mellifera is a partitioned task in which foragers gather nectar and bring it to the hive, where nest mates unload via trophallaxis (i.e. mouth-to-mouth transfer) the collected food for further storage. Because forager mates exploit different feeding places simultaneously, this study addresses the question of whether nectar unloading interactions between foragers and hive-bees are established randomly, as it is commonly assumed. Two groups of foragers were trained to exploit a different scented food source for 5 days. We recorded their trophallaxes with hive-mates, marking the latter ones according to the forager group they were unloading. We found non-random probabilities for the occurrence of trophallaxes between experimental foragers and hive-bees, instead, we found that trophallactic interactions were more likely to involve groups of individuals which had formerly interacted orally. We propose that olfactory cues present in the transferred nectar promoted the observed bias, and we discuss this bias in the context of the organization of nectar acquisition: a partitioned task carried out in a decentralized insect society.

  13. BATEMANATER: a computer program to estimate and bootstrap mating system variables based on Bateman's principles.

    PubMed

    Jones, Adam G

    2015-11-01

    Bateman's principles continue to play a major role in the characterization of genetic mating systems in natural populations. The modern manifestations of Bateman's ideas include the opportunity for sexual selection (i.e. I(s) - the variance in relative mating success), the opportunity for selection (i.e. I - the variance in relative reproductive success) and the Bateman gradient (i.e. β(ss) - the slope of the least-squares regression of reproductive success on mating success). These variables serve as the foundation for one convenient approach for the quantification of mating systems. However, their estimation presents at least two challenges, which I address here with a new Windows-based computer software package called BATEMANATER. The first challenge is that confidence intervals for these variables are not easy to calculate. BATEMANATER solves this problem using a bootstrapping approach. The second, more serious, problem is that direct estimates of mating system variables from open populations will typically be biased if some potential progeny or adults are missing from the analysed sample. BATEMANATER addresses this problem using a maximum-likelihood approach to estimate mating system variables from incompletely sampled breeding populations. The current version of BATEMANATER addresses the problem for systems in which progeny can be collected in groups of half- or full-siblings, as would occur when eggs are laid in discrete masses or offspring occur in pregnant females. BATEMANATER has a user-friendly graphical interface and thus represents a new, convenient tool for the characterization and comparison of genetic mating systems. © 2015 John Wiley & Sons Ltd.

  14. Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish.

    PubMed

    Wilson, Robbie S; Condon, Catriona H L; Johnston, Ian A

    2007-11-29

    The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived female G. holbrooki to avoid forced-coercive matings following acclimation to either 18 or 30 degrees C for six weeks (12h light:12h dark photoperiod). Thermal acclimation of burst and sustained swimming performance was also assessed, as these traits are likely to underlie their ability to avoid forced matings. There was no influence of thermal acclimation on the burst swimming performance of female G. holbrooki over the range 18-30 degrees C; however, sustained swimming performance was significantly lower in the warm- than the cool-acclimation group. For mating behaviour, we tested the hypothesis that acclimation would enhance the ability of female G. holbrooki to avoid forced matings at their host acclimation temperature relative to females acclimated to another environment. However, our hypothesis was not supported. The rate of copulations was almost three times greater for females acclimated to 30 degrees C than 18 degrees C when tested at 30 degrees C, indicating that they possess the ability to alter their avoidance behaviour to 'allow' more copulations in some environments. Coupled with previous studies, female G. holbrooki appear to have greater control on the outcome of coercive mating attempts than previously considered and can alter their propensity to receive forced matings following thermal acclimation. The significance of this change in female mating-avoidance behaviours with thermal acclimation remains to be explored.

  15. An Essential Role of the Arginine Vasotocin System in Mate-Guarding Behaviors in Triadic Relationships of Medaka Fish (Oryzias latipes)

    PubMed Central

    Yokoi, Saori; Okuyama, Teruhiro; Kamei, Yasuhiro; Naruse, Kiyoshi; Taniguchi, Yoshihito; Ansai, Satoshi; Kinoshita, Masato; Young, Larry J.; Takemori, Nobuaki; Kubo, Takeo; Takeuchi, Hideaki

    2015-01-01

    To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context. PMID:25719383

  16. The Role of Breast Size and Areolar Pigmentation in Perceptions of Women's Sexual Attractiveness, Reproductive Health, Sexual Maturity, Maternal Nurturing Abilities, and Age.

    PubMed

    Dixson, Barnaby J; Duncan, Melanie; Dixson, Alan F

    2015-08-01

    Women's breast morphology is thought to have evolved via sexual selection as a signal of maturity, health, and fecundity. While research demonstrates that breast morphology is important in men's judgments of women's attractiveness, it remains to be determined how perceptions might differ when considering a larger suite of mate relevant attributes. Here, we tested how variation in breast size and areolar pigmentation affected perceptions of women's sexual attractiveness, reproductive health, sexual maturity, maternal nurturing abilities, and age. Participants (100 men; 100 women) rated images of female torsos modeled to vary in breast size (very small, small, medium, and large) and areolar pigmentation (light, medium, and dark) for each of the five attributes listed above. Sexual attractiveness ratings increased linearly with breast size, but large breasts were not judged to be significantly more attractive than medium-sized breasts. Small and medium-sized breasts were rated as most attractive if they included light or medium colored areolae, whereas large breasts were more attractive if they had medium or dark areolae. Ratings for perceived age, sexual maturity, and nurturing ability also increased with breast size. Darkening the areolae reduced ratings of the reproductive health of medium and small breasts, whereas it increased ratings for large breasts. There were no significant sex differences in ratings of any of the perceptual measures. These results demonstrate that breast size and areolar pigmentation interact to determine ratings for a suite of sociosexual attributes, each of which may be relevant to mate choice in men and intra-sexual competition in women.

  17. Fixed-time Insemination in Pasture-based Medium-sized Dairy Operations of Northern Germany and an Attempt to Replace GnRH by hCG.

    PubMed

    Marthold, D; Detterer, J; Koenig von Borstel, U; Gauly, M; Holtz, W

    2016-02-01

    A field study was conducted aimed at (i) evaluating the practicability of a fixed-time insemination regime for medium-sized dairy operations of north-western Germany, representative for many regions of Central Europe and (ii) substituting hCG for GnRH as ovulation-inducing agent at the end of a presynch or ovsynch protocol in an attempt to reduce the incidence of premature luteal regression. Cows of two herds synchronized by presynch and two herds synchronized by ovsynch protocol were randomly allotted to three subgroups; in one group ovulation was induced by the GnRH analog buserelin, in another by hCG, whereas a third group remained untreated. The synchronized groups were fixed-time inseminated; the untreated group bred to observed oestrus. Relative to untreated herd mates, pregnancy rate in cows subjected to a presynch protocol with buserelin as ovulation-inducing agent was 74%; for hCG it was 60%. In cows subjected to an ovsynch protocol, the corresponding relative pregnancy rates reached 138% in the case of buserelin and 95% in the case of hCG. Average service interval was shortened by 1 week in the presynch and delayed by 2 weeks in the ovsynch group. It may be concluded that fixed-time insemination of cows synchronized via ovsynch protocol with buserelin as ovulation-inducing agent is practicable and may help improve efficiency and reduce the work load involved with herd management in medium-sized dairy operations. The substitution of hCG for buserelin was found to be not advisable. © 2015 Blackwell Verlag GmbH.

  18. Home range size of Tengmalm's owl during breeding in Central Europe is determined by prey abundance.

    PubMed

    Kouba, Marek; Bartoš, Luděk; Tomášek, Václav; Popelková, Alena; Šťastný, Karel; Zárybnická, Markéta

    2017-01-01

    Animal home ranges typically characterized by their size, shape and a given time interval can be affected by many different biotic and abiotic factors. However, despite the fact that many studies have addressed home ranges, our knowledge of the factors influencing the size of area occupied by different animals is, in many cases, still quite poor, especially among raptors. Using radio-telemetry (VHF; 2.1 g tail-mounted tags) we studied movements of 20 Tengmalm's owl (Aegolius funereus) males during the breeding season in a mountain area of Central Europe (the Czech Republic, the Ore Mountains: 50° 40' N, 13° 35' E) between years 2006-2010, determined their average hunting home range size and explored what factors affected the size of home range utilised. The mean breeding home range size calculated according to 95% fixed kernel density estimator was 190.7 ± 65.7 ha (± SD) with a median value of 187.1 ha. Home range size was affected by prey abundance, presence or absence of polygyny, the number of fledglings, and weather conditions. Home range size increased with decreasing prey abundance. Polygynously mated males had overall larger home range than those mated monogamously, and individuals with more fledged young possessed larger home range compared to those with fewer raised fledglings. Finally, we found that home ranges recorded during harsh weather (nights with strong wind speed and/or heavy rain) were smaller in size than those registered during better weather. Overall, the results provide novel insights into what factors may influence home range size and emphasize the prey abundance as a key factor for breeding dynamics in Tengmalm's owl.

  19. Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.

    PubMed

    Wilson, Nedra F

    2008-01-01

    During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.

  20. Behaviour of Arctic charr Salvelinus alpinus during an induced mating season in captivity: how male relative size influences male behavioural investment and female preference over time.

    PubMed

    Bolgan, M; O'Brien, J; Picciulin, M; Manning, L; Gammell, M

    2017-04-01

    The behaviour of sexually mature Arctic charr Salvelinus alpinus specimens (fifth farm generation) was observed in captivity for four consecutive days. Only agonistic interactions between males of different size were facilitated on the first 2 days, while both agonistic and courtship interactions were possible from the third day up to the end of the experiment. The reliability of behavioural analysis was assessed in order to reduce the possibility of observer errors within the generated datasets. The behavioural investment of big males, small males and females was analysed using general linear models (two-way repeated measures ANOVAs with time and male size as factors). A peak in the agonistic interactions between males occurred during the first day of interactions, where the agonistic investment of big males was significantly higher than that of small males. This resulted in an increased investment in submissive behaviour by the small males, who consistently performed submissive behaviours from the second day of interactions up to the end of the trial. Big males were found to invest significantly more than small males in courtship behaviours for the duration of the trial. Even though females performed inter-sexual behaviours towards both big and small males for the entire observation period, female interaction rate towards big males was higher than towards small males. This study suggests that both male investment in mating behaviour and female preference might be related to male characteristics such as body length and that S. alpinus behavioural patterns and mate choice cues might be strongly context-related and characterized by high levels of behavioural plasticity (i.e. presence-absence of certain behavioural units or potential reversal of a mate choice cue) within the same species. Finally, in light of this, some conservation measures are discussed. In particular, effective management plans should take into account the high level of behavioural plasticity likely to be occurring in this species. © 2016 The Fisheries Society of the British Isles.

  1. Flower-level developmental plasticity to nutrient availability in Datura stramonium: implications for the mating system.

    PubMed

    Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan

    2017-10-17

    Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.

    PubMed

    Moeller, David A; Geber, Monica A

    2005-04-01

    The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability directly influenced variation in the strength of selection on herkogamy among populations. The striking parallels between our experimental results and patterns of variation in ecological factors across the geographic range of outcrossing and selfing populations suggest that reproductive assurance may play a central role in directing mating system evolution in C. xantiana.

  3. The evolution of human reproduction: a primatological perspective.

    PubMed

    Martin, Robert D

    2007-01-01

    Successful reconstruction of any aspect of human evolution ideally requires broad-based comparisons with other primates, as recognition of general principles provides a more reliable foundation for inference. Indeed, in many cases it is necessary to conduct comparisons with other placental mammals to test interpretations. This review considers comparative evidence with respect to the following topics relating to human reproduction: (1) size of the testes, sperm, and baculum; (2) ovarian processes and mating cyclicity; (3) placentation and embryonic membranes; (4) gestation period and neonatal condition; (5) brain development in relation to reproduction; and (6) suckling and age at weaning. Relative testis size, the size of the sperm midpiece, and perhaps the absence of a baculum indicate that humans are adapted for a mating system in which sperm competition was not a major factor. Because sizes of mammalian gametes do not increase with body size, they are increasingly dwarfed by the size of the female reproductive tract as body size increases. The implications of this have yet to be explored. Primates have long ovarian cycles and humans show an average pattern. Menstruation is completely lacking in strepsirrhine primates, possibly weakly present in tarsiers and variably expressed in simians. The only other mammals reliably reported to show menstruation are bats. Three hypotheses have been proposed to explain the evolution of menstruation (eliminating sperm-borne pathogens; reducing the metabolic cost of a prepared uterine lining; occurrence as a side-effect of physiological changes), but no consensus has emerged. Copulation at times other than the periovulatory period is not unique to humans, and its occurrence during pregnancy is widespread among mammals. Although the human condition is extreme, extended copulation during the ovarian cycle is the norm among simian primates, in stark contrast to prosimians, in which mating is typically restricted to a few days when the female is in oestrus. The model of regular mid-cycle ovulation in simians is questionable. Gestation periods calculated on that basis show greater variability than in other mammals, and evidence from laboratory breeding colonies indicates that an extended mating period is matched by an extended period in which conception can occur. New evidence indicates that the noninvasive placentation found in strepsirrhine primates is not primitive after all. Furthermore, comparative studies reveal that such noninvasive placentation is not "inefficient". Evolution of highly invasive placentation in haplorhine primates is probably linked instead to immunological factors. Primates have relatively long gestation periods, and humans are average in this respect. However, there is evidence that humans show greater maternal investment during pregnancy in comparison with apes. Although the human neonate matches the typical precocial pattern of primates in most respects, a fetal pattern of brain growth continues for a year after birth, such that the human infant is "secondarily altricial" in terms of its dependence on parental care. Nevertheless, the "natural" lactation period of humans is probably about 3 years, fitting the expectation in comparison to other hominoids. (c) 2007 Wiley-Liss, Inc.

  4. Sexual behavior across ovarian cycles in wild black howler monkeys (Alouatta pigra): male mate guarding and female mate choice.

    PubMed

    Van Belle, Sarie; Estrada, Alejandro; Ziegler, Toni E; Strier, Karen B

    2009-02-01

    We studied two multimale-multifemale groups of black howler monkeys (Alouatta pigra) during a 14-month study (June 2006-July 2007) in Palenque National Park, Mexico to evaluate the ways in which their sexual behavior changes across ovarian cycles. We analyzed 231 fecal samples, collected every 2.2+/-1.4 days from five females. For four females, estradiol and progesterone profiles revealed an average (+/-SE) cycle length of 18.3+/-1.4 days. Copulations occurred significantly more frequently during the periovulatory period (POP), defined as the estimated day of ovulation +/-3 days (N=18). This was largely the result of cycling females soliciting sexual interactions during their POPs. Females directed their solicitations significantly more often toward "central" males of their group, who had close spatial associations with females at other times, compared with "noncentral" males, who did not associate closely with females. Central males rarely solicited sexual interactions, but instead monitored the females' reproductive status by sniffing their genitals, and maintained significantly closer proximity to females during their POPs, suggesting male mate guarding when conceptions are most likely to occur. Our findings indicate that the reproductive strategies of black howler central males and females coincide, highly skewing mating opportunities toward central males. Black howler females, however, occasionally choose to copulate with noncentral resident males or extra-group males during their POPs, undermining the ability of central males to monopolize all reproductive opportunities. (c) 2008 Wiley-Liss, Inc.

  5. Low reproductive skew despite high male-biased operational sex ratio in a glass frog with paternal care.

    PubMed

    Mangold, Alexandra; Trenkwalder, Katharina; Ringler, Max; Hödl, Walter; Ringler, Eva

    2015-09-03

    Reproductive skew, the uneven distribution of reproductive success among individuals, is a common feature of many animal populations. Several scenarios have been proposed to favour either high or low levels of reproductive skew. Particularly a male-biased operational sex ratio and the asynchronous arrival of females is expected to cause high variation in reproductive success among males. Recently it has been suggested that the type of benefits provided by males (fixed vs. dilutable) could also strongly impact individual mating patterns, and thereby affecting reproductive skew. We tested this hypothesis in Hyalinobatrachium valerioi, a Neotropical glass frog with prolonged breeding and paternal care. We monitored and genetically sampled a natural population in southwestern Costa Rica during the breeding season in 2012 and performed parentage analysis of adult frogs and tadpoles to investigate individual mating frequencies, possible mating preferences, and estimate reproductive skew in males and females. We identified a polygamous mating system, where high proportions of males (69 %) and females (94 %) reproduced successfully. The variance in male mating success could largely be attributed to differences in time spent calling at the reproductive site, but not to body size or relatedness. Female H. valerioi were not choosy and mated indiscriminately with available males. Our findings support the hypothesis that dilutable male benefits - such as parental care - can favour female polyandry and maintain low levels of reproductive skew among males within a population, even in the presence of direct male-male competition and a highly male-biased operational sex ratio. We hypothesize that low male reproductive skew might be a general characteristic in prolonged breeders with paternal care.

  6. Effects of temperature on development, mortality, mating and blood feeding behavior of Culiseta incidens (Diptera: Culicidae).

    PubMed

    Su, T; Mulla, M S

    2001-06-01

    Culiseta incidens Thomson is distributed over most of the western USA and Canada northward to Alaska. Because this mosquito is difficult to colonize, its biology has not been well investigated. We colonized this species in 1998 and studied the effects of temperature on various aspects of its life cycle. The time required for egg melanization and the duration of the egg stage were negatively correlated with temperature. The proportion of fertile egg rafts was temperature-independent. An inverse relationship existed between temperature and egg hatch. Molting and stadium duration after hatching were temperature-dependent, with higher temperature accelerating development and molting. Larvae and pupae experienced lower mortality and higher molting success at lower temperatures. Survivorship of adult mosquitoes fed on sugar solution was inversely proportional to temperature, lethal times for 50% mortality (LT50) were greater at the lower temperature than at the higher temperature. Females survived longer than did males at all test temperatures. Because this species is eurygamous, mating only occurred in large cages. Mating success was also affected by temperature. At the test temperatures, 20 degrees C, 25 degrees C and 30 degrees C, mating started from 3-5 days after emergence and reached a peak on days 13-15 after emergence. Maximum mating rates at 20 degrees C and 25 degrees C were higher than at 30 degrees C. Blood feeding, as indicated by cumulative feeding rates, was affected by cage size, mosquito age and temperature. Mosquitoes in large cages exhibited a much higher feeding rate than in small cages. With age, the cumulative blood feeding rate increased, with the highest rate at 25 degrees C, followed by 20 degrees C and 30 degrees C. At all temperatures tested, most of the blood fed females were mated.

  7. Effects of sib-mating and wind pollination on nursery seedling size, growth components, and phenology of Douglas-fir seed-orchard progenies.

    Treesearch

    Frank C. Sorensen

    1997-01-01

    Polymix outcross (X), full-sib (FS), and wind-pollination (WP) families were produced on 25 seed trees and 10 half-sib families on 10 of the same trees in a Pseudotsuga menziesii (Mirb.) Franco var. menziesii seedling seed orchard. Seedlings were raised at two sowing densities for 2 years in the nursery, and inbreeding depression in seedling size...

  8. SOPRA: Scaffolding algorithm for paired reads via statistical optimization.

    PubMed

    Dayarian, Adel; Michael, Todd P; Sengupta, Anirvan M

    2010-06-24

    High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the genome. We have developed SOPRA, a tool designed to exploit the mate pair/paired-end information for assembly of short reads. The main focus of the algorithm is selecting a sufficiently large subset of simultaneously satisfiable mate pair constraints to achieve a balance between the size and the quality of the output scaffolds. Scaffold assembly is presented as an optimization problem for variables associated with vertices and with edges of the contig connectivity graph. Vertices of this graph are individual contigs with edges drawn between contigs connected by mate pairs. Similar graph problems have been invoked in the context of shotgun sequencing and scaffold building for previous generation of sequencing projects. However, given the error-prone nature of HTS data and the fundamental limitations from the shortness of the reads, the ad hoc greedy algorithms used in the earlier studies are likely to lead to poor quality results in the current context. SOPRA circumvents this problem by treating all the constraints on equal footing for solving the optimization problem, the solution itself indicating the problematic constraints (chimeric/repetitive contigs, etc.) to be removed. The process of solving and removing of constraints is iterated till one reaches a core set of consistent constraints. For SOLiD sequencer data, SOPRA uses a dynamic programming approach to robustly translate the color-space assembly to base-space. For assessing the quality of an assembly, we report the no-match/mismatch error rate as well as the rates of various rearrangement errors. Applying SOPRA to real data from bacterial genomes, we were able to assemble contigs into scaffolds of significant length (N50 up to 200 Kb) with very few errors introduced in the process. In general, the methodology presented here will allow better scaffold assemblies of any type of mate pair sequencing data.

  9. When mothers make sons sexy: maternal effects contribute to the increased sexual attractiveness of extra-pair offspring.

    PubMed

    Tschirren, Barbara; Postma, Erik; Rutstein, Alison N; Griffith, Simon C

    2012-03-22

    Quality differences between offspring sired by the social and by an extra-pair partner are usually assumed to have a genetic basis, reflecting genetic benefits of female extra-pair mate choice. In the zebra finch (Taeniopygia guttata), we identified a colour ornament that is under sexual selection and appears to have a heritable basis. Hence, by engaging in extra-pair copulations with highly ornamented males, females could, in theory, obtain genes for increased offspring attractiveness. Indeed, sons sired by extra-pair partners had larger ornaments, seemingly supporting the genetic benefit hypothesis. Yet, when comparing ornament size of the social and extra-pair partners, there was no difference. Hence, the observed differences most likely had an environmental basis, mediated, for example, via differential maternal investment of resources into the eggs fertilized by extra-pair and social partners. Such maternal effects may (at least partly) be mediated by egg size, which we found to be associated with mean ornament expression in sons. Our results are consistent with the idea that maternal effects can shape sexual selection by altering the genotype-phenotype relationship for ornamentation. They also caution against automatically attributing greater offspring attractiveness or viability to an extra-pair mate's superior genetic quality, as without controlling for differential maternal investment we may significantly overestimate the role of genetic benefits in the evolution of extra-pair mating behaviour.

  10. When mothers make sons sexy: maternal effects contribute to the increased sexual attractiveness of extra-pair offspring

    PubMed Central

    Tschirren, Barbara; Postma, Erik; Rutstein, Alison N.; Griffith, Simon C.

    2012-01-01

    Quality differences between offspring sired by the social and by an extra-pair partner are usually assumed to have a genetic basis, reflecting genetic benefits of female extra-pair mate choice. In the zebra finch (Taeniopygia guttata), we identified a colour ornament that is under sexual selection and appears to have a heritable basis. Hence, by engaging in extra-pair copulations with highly ornamented males, females could, in theory, obtain genes for increased offspring attractiveness. Indeed, sons sired by extra-pair partners had larger ornaments, seemingly supporting the genetic benefit hypothesis. Yet, when comparing ornament size of the social and extra-pair partners, there was no difference. Hence, the observed differences most likely had an environmental basis, mediated, for example, via differential maternal investment of resources into the eggs fertilized by extra-pair and social partners. Such maternal effects may (at least partly) be mediated by egg size, which we found to be associated with mean ornament expression in sons. Our results are consistent with the idea that maternal effects can shape sexual selection by altering the genotype–phenotype relationship for ornamentation. They also caution against automatically attributing greater offspring attractiveness or viability to an extra-pair mate's superior genetic quality, as without controlling for differential maternal investment we may significantly overestimate the role of genetic benefits in the evolution of extra-pair mating behaviour. PMID:21957136

  11. Who's My Daddy? Considerations for the influence of sexual selection on multiple paternity in elasmobranch mating systems.

    PubMed

    Lyons, Kady; Chabot, Chris L; Mull, Christopher G; Paterson Holder, Corinne N; Lowe, Christopher G

    2017-08-01

    Polyandry resulting in multiply-sired litters has been documented in the majority of elasmobranch species examined to date. Although commonly observed, reasons for this mating system remain relatively obscure, especially in batoids. The round stingray ( Urobatis halleri ) is an abundant, well-studied elasmobranch distributed throughout the northeastern Pacific that we used to explore hypotheses regarding multiple paternity in elasmobranchs. Twenty mid- to late-term pregnant females were sampled off the coast of southern California and their litters analyzed for the occurrence of multiple paternity using five nuclear microsatellite loci. In addition, embryo sizes and their position within the female reproductive system (i.e., right or left uterus) were recorded and used to make inferences for patterns of ovulation. Multiple paternity was observed in 90% of litters and male reproductive success within litters was relatively even among sires. High variability in testes mass was observed suggesting that sperm competition is high in this species, although male reproductive success per litter appeared to be relatively even. Using embryo size as a proxy for fertilization, females were found to exhibit a variety of ovulation patterns that could function to limit a male's access to eggs and possibly promote high rates of multiple paternity. Our study highlights that elasmobranch mating systems may be more varied and complex than presumed and further investigation is warranted.

  12. Life history and past demography maintain genetic structure, outcrossing rate, contemporary pollen gene flow of an understory herb in a highly fragmented rainforest

    PubMed Central

    Suárez-Montes, Pilar; Chávez-Pesqueira, Mariana

    2016-01-01

    Introduction Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. Methods Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Results Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61), weak genetic structure (Rst = 0.037), and slight inbreeding in small fragments. Effective population sizes (Ne) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected. Aphelandra aurantiaca shows a mixed mating system (tm = 0.81) and the outcrossing rate have not been affected by habitat fragmentation. A strong pollen pool structure was detected due to few effective pollen donors (Nep) and low distance pollen movement, pointing that most plants received pollen from close neighbors. Past demographic fluctuations may have affected the present population genetic structure as Bayesian coalescent analysis revealed the signature of past population expansion, possibly during warmer conditions after the last glacial maximum. Discussion Habitat fragmentation has not increased genetic differentiation or reduced genetic diversity of A. aurantiaca despite dozens of generations since the onset of fragmentation in the region of Los Tuxtlas. Instead, past population expansion is compatible with the lack of observed genetic structure. The predicted negative effects of rainforest fragmentation on genetic diversity and population structure of A. aurantiaca seem to have been buffered owing to its large effective populations and long-distance dispersal events. In particular, its mixed-mating system, mostly of outcrossing, suggests high efficiency of pollinators promoting connectivity and reducing inbreeding. However, some results point that the effects of fragmentation are underway, as two small fragments showed higher membership probabilities to their population of origin, suggesting genetic isolation. Our findings underscore the importance of fragment size to maintain genetic connectivity across the landscape. PMID:28028460

  13. Experimental evidence for asymmetric mate preference and aggression: behavioral interactions in a woodrat (Neotoma) hybrid zone

    PubMed Central

    2013-01-01

    Background Female mate preferences may be under strong selection in zones of contact between closely related species because of greater variation in available mates and the potential costs of hybridization. We studied female mate preferences experimentally in a zone of secondary contact between Desert and Bryant’s Woodrat (Neotoma lepida and N. bryanti) in the southern foothills of the Sierra Nevada of California. We tested female preference for conspecific versus heterospecific males in paired choice trials in which females could interact freely with males, but males could not interact directly with each other. We compared preferences of females from both allopatric and sympatric sites. Results We did not find evidence of the process of reinforcement as assortative preferences were not stronger in sympatry than in allopatry. Mate preferences, however, were asymmetric, with N. lepida females mating preferentially with conspecifics and N. bryanti females showing no preference by species. Sympatric females were less likely to mate than allopatric females, due in part to an increase in aggressive interactions. However, even in the absence of aggression, courtship led to mating less often in sympatric females, suggesting they were choosier or had lower sexual motivation than allopatric females. Conclusions Patterns of mate choice in this woodrat system appear to be strongly impacted by body size and aggressive behavior. In particular, females of the smaller-bodied species rarely interact with the relatively large heterospecific males. In contrast females of the larger-bodied species accept the relatively small heterospecific males. For sympatric animals, rates of aggression were markedly higher than for allopatric animals and reduced affiliative and reproductive behavior in our trials. Sympatric animals are larger and more aggressive, traits that are likely under strong ecological selection across the sharp resource gradient that characterizes the contact zone. However, our results suggest that these traits that are likely favored in competitive interactions between the species also impact reproductive interactions. Combined with our previous findings of post-zygotic isolation in this system, this study suggests that multiple isolating mechanisms contribute to the rate of genetic exchange between these species when they come into contact, and that these mechanisms are the result of selection on traits that are important in a range of ecological and reproductive interactions. PMID:24093823

  14. The vibrational signals that male fiddler crabs ( Uca lactea) use to attract females into their burrows

    NASA Astrophysics Data System (ADS)

    Takeshita, Fumio; Murai, Minoru

    2016-06-01

    In some fiddler crab species, males emit vibrations from their burrows to mate-searching females after they have attracted a female to the burrow entrance using a waving display. Although the vibrations are considered acoustic signals to induce mating, it has not been demonstrated whether the vibrations attract the females into the burrow and, consequently, influence females' mating decisions. We investigated the structures and patterns of the vibrations using a dummy female and demonstrated experimentally a female preference for male vibrations in Uca lactea in the field. The acoustic signals consisted of repetitions of pulses. The dominant frequency of the pulses decreased with male carapace width. The pulse length decreased slightly with an increasing number of vibrational repetitions, and the pulse interval increased with increasing repetitions. These factors imply that the vibrations convey information on male characteristics, such as body size and stamina. In the experiment on female mate choice, the females significantly preferred males with higher pulse repetition rates when they were positioned at the entrance of the burrow, indicating that the females use the male vibrational signals to decide whether to enter the burrow. However, females showed no preference for the vibrations once they were inside a burrow, i.e., whether they decided to copulate, suggesting that the vibrations do not independently affect a female's final decision of mate choice. The vibrations inside the burrow might influence a female's decision by interaction with other male traits such as the burrow structure.

  15. Within-season variability of fighting behaviour in an Australian alpine grasshopper

    PubMed Central

    Muschett, Giselle; Umbers, Kate D. L.; Herberstein, Marie E.

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system. PMID:28403243

  16. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.

    PubMed

    Liao, H J; Qian, Q; Liu, X D

    2014-06-01

    Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.

  17. Surveys of ISS Returned Hardware for MMOD Impacts

    NASA Technical Reports Server (NTRS)

    Hyde, James; Christiansen, E.; Lear, D.; Nagy, K.

    2017-01-01

    Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center in Houston has performed 26 post-flight inspections on space exposed hardware that have been returned from the International Space Station. Data on 1,024 observations of MMOD damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of Scanning Electron Microscopy (SEM) analysis to discern impactor source is included in the database. This paper will summarize the post-flight MMOD inspections, and focus on two inspections in particular: (1) Pressurized Mating Adapter-2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed damages, and (2) Airlock shield panels returned in 2010 after 8.7 years exposure with 58 MMOD damages. Feature sizes from the observed data are compared to predictions using the Bumper risk assessment code.

  18. Surveys of Returned ISS Hardware for MMMOD Impacts

    NASA Technical Reports Server (NTRS)

    Hyde, J. L.; Christiansen, E. L.; Lear, D. M.; Nagy, K.; Berger, E. L.

    2017-01-01

    Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center (JSC) in Houston has performed 35 post-flight inspections on space exposed hardware returned from the International Space Station (ISS). Data on 1,188 observations of micrometeoroid and orbital debris (MMOD) damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of energy dispersive X-ray spectroscopic analysis to discern impactor source are included in the database when available. This paper will focus on two inspections, the Pressurized Mating Adapter 2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed impact features, and two Airlock shield panels returned in 2010 after 8.75 years exposure with 58 MMOD impacts. Feature sizes from the observed data are compared to predictions using the Bumper 3 risk assessment code.

  19. No pain, no gain: Male plasticity in burrow digging according to female rejection in a sand-dwelling wolf spider.

    PubMed

    Carballo, Matilde; Baldenegro, Fabiana; Bollatti, Fedra; Peretti, Alfredo V; Aisenberg, Anita

    2017-07-01

    Behavioral plasticity allows individuals to reversibly respond to short-term variations in their ecological and social environment in order to maximize their fitness. Allocosa senex is a burrow-digging spider that inhabits the sandy coasts of South America. This species shows a reversal in typical sex roles expected in spiders: females are wanderers that visit males at their burrows and initiate courtship. They prefer males with long burrows for mating, and males prefer virgin over mated females. We tested whether female sexual rejection induced males to enlarge their burrows and if female reproductive status affected males' responses. We exposed males who had constructed burrows to: a) virgin females or b) mated females, (n=16 for each category). If female rejection occurred, we repeated the trial 48h later with the same female. As control, we maintained a group of males without female exposure (unexposed group, n=32). Rejected males enlarged their burrows more frequently and burrows were longer compared to unexposed males. However, frequency and length of enlargement did not differ according to female reproductive status. Males of A. senex showed plasticity in digging behavior in response to the availability of females, as a way to maximize the possibilities of future mating. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Individual differences in boldness influence patterns of social interactions and the transmission of cuticular bacteria among group-mates

    PubMed Central

    Keiser, Carl N.; Pinter-Wollman, Noa; Augustine, David A.; Ziemba, Michael J.; Hao, Lingran; Lawrence, Jeffrey G.; Pruitt, Jonathan N.

    2016-01-01

    Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium, Pantoea sp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher ‘boldness’ relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics. PMID:27097926

  1. Individual differences in boldness influence patterns of social interactions and the transmission of cuticular bacteria among group-mates.

    PubMed

    Keiser, Carl N; Pinter-Wollman, Noa; Augustine, David A; Ziemba, Michael J; Hao, Lingran; Lawrence, Jeffrey G; Pruitt, Jonathan N

    2016-04-27

    Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium,Pantoeasp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher 'boldness' relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics. © 2016 The Author(s).

  2. On the widespread capacity for, and functional significance of, extreme inbreeding in ferns.

    PubMed

    Sessa, Emily B; Testo, Weston L; Watkins, James E

    2016-08-01

    Homosporous vascular plants utilize three different mating systems, one of which, gametophytic selfing, is an extreme form of inbreeding only possible in homosporous groups. This mating system results in complete homozygosity in all progeny and has important evolutionary and ecological implications. Ferns are the largest group of homosporous land plants, and the significance of extreme inbreeding for fern evolution has been a subject of debate for decades. We cultured gametophytes in the laboratory and quantified the relative frequencies of sporophyte production from isolated and paired gametophytes, and examined associations between breeding systems and several ecological and evolutionary traits. The majority of fern species studied show a capacity for gametophytic selfing, producing sporophytes from both isolated and paired gametophytes. While we did not follow sporophytes to maturity to investigate potential detrimental effects of homozygosity at later developmental stages, our results suggest that gametophytic selfing may have greater significance for fern evolution and diversification than has previously been realized. We present evidence from the largest study of mating behavior in ferns to date that the capacity for extreme inbreeding is prevalent in this lineage, and we discuss its implications and relevance and make recommendations for future studies of fern mating systems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata

    PubMed Central

    Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier

    2013-01-01

    Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects. PMID:23789084

  4. Environmentally driven shift between alternative female morphotypes in the mottled shore crab.

    PubMed

    Capparelli, Mariana V; Flores, Augusto A V

    2011-10-01

    Precocious maturity is an important life history trait and might be advantageous if the juvenile habitat is risky. Larvae of the mottled shore crab Pachygrapsus transversus settle to the benthic habitat at a very large size, undergo a brief juvenile development and mature within a few months at a size about a fourth of the asymptotic maximum size for this species. This strategy may rely on the capacity of this species to molt to a juvenile-like morphotype (mI) in which reproduction is suppressed. In the laboratory, winter temperature triggered the puberty molt for a large proportion of juveniles, and still allowed high growth rates if combined with long photoperiod. This would result in a large number of juvenile crabs to join the adult reproductive stock in spring, at the beginning of the breeding season. Adult morphs (mII) grow faster under winter conditions, and therefore might be able to direct resources to reproduction during summer. Yet, females held in captivity without any interaction with conspecifics failed to maintain their reproductive status and often reversed to mI stages. In contrast, when a potential mate was presented, all crabs held their mII status, regardless of whether interaction involved visual, visual + chemical, or visual + chemical + tactile cues. Males discriminate female morphs, and physical interactions, including the inspection of mate receptivity and copulation, took longer when they were interacting with mII females. More than a trade-off between growth and reproduction, sustaining a breeding condition in P. transversus females is apparently a bet for successful mating in the presence of a suitable male conspecific. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. The cacao pathogen Moniliophthora roreri (Marasmiaceae) possesses biallelic A and B mating loci but reproduces clonally

    PubMed Central

    Díaz-Valderrama, J R; Aime, M C

    2016-01-01

    The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IAs) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IAs values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America. PMID:26932308

  6. The cacao pathogen Moniliophthora roreri (Marasmiaceae) possesses biallelic A and B mating loci but reproduces clonally.

    PubMed

    Díaz-Valderrama, J R; Aime, M C

    2016-06-01

    The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IA(s)) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IA(s) values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America.

  7. Characterisation of Phytophthora capsici isolates from black pepper in Vietnam.

    PubMed

    Truong, Nguyen V; Liew, Edward C Y; Burgess, Lester W

    2010-01-01

    Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity.

  8. Offspring fitness and individual optimization of clutch size

    PubMed Central

    Both, C.; Tinbergen, J. M.; Noordwijk, A. J. van

    1998-01-01

    Within-year variation in clutch size has been claimed to be an adaptation to variation in the individual capacity to raise offspring. We tested this hypothesis by manipulating brood size to one common size, and predicted that if clutch size is individually optimized, then birds with originally large clutches have a higher fitness than birds with originally small clutches. No evidence was found that fitness was related to the original clutch size, and in this population clutch size is thus not related to the parental capacity to raise offspring. However, offspring from larger original clutches recruited better than their nest mates that came from smaller original clutches. This suggests that early maternal or genetic variation in viability is related to clutch size.

  9. Genetic mating systems and reproductive natural histories of fishes: lessons for ecology and evolution.

    PubMed

    Avise, John C; Jones, Adam G; Walker, DeEtte; DeWoody, J Andrew

    2002-01-01

    Fish species have diverse breeding behaviors that make them valuable for testing theories on genetic mating systems and reproductive tactics. Here we review genetic appraisals of paternity and maternity in wild fish populations. Behavioral phenomena quantified by genetic markers in various species include patterns of multiple mating by both sexes; frequent cuckoldry by males and rare cuckoldry by females in nest-tending species; additional routes to surrogate parentage via nest piracy and egg-thievery; egg mimicry by nest-tending males; brood parasitism by helper males in cooperative breeders; clutch mixing in oral brooders; kinship in schooling fry of broadcast spawners; sperm storage by dams in female-pregnant species; and sex-role reversal, polyandry, and strong sexual selection on females in some male-pregnant species. Additional phenomena addressed by genetic parentage analyses in fishes include clustered mutations, filial cannibalism, and local population size. All results are discussed in the context of relevant behavioral and evolutionary theory.

  10. Sexual selection on male vocal fundamental frequency in humans and other anthropoids.

    PubMed

    Puts, David A; Hill, Alexander K; Bailey, Drew H; Walker, Robert S; Rendall, Drew; Wheatley, John R; Welling, Lisa L M; Dawood, Khytam; Cárdenas, Rodrigo; Burriss, Robert P; Jablonski, Nina G; Shriver, Mark D; Weiss, Daniel; Lameira, Adriano R; Apicella, Coren L; Owren, Michael J; Barelli, Claudia; Glenn, Mary E; Ramos-Fernandez, Gabriel

    2016-04-27

    In many primates, including humans, the vocalizations of males and females differ dramatically, with male vocalizations and vocal anatomy often seeming to exaggerate apparent body size. These traits may be favoured by sexual selection because low-frequency male vocalizations intimidate rivals and/or attract females, but this hypothesis has not been systematically tested across primates, nor is it clear why competitors and potential mates should attend to vocalization frequencies. Here we show across anthropoids that sexual dimorphism in fundamental frequency (F0) increased during evolutionary transitions towards polygyny, and decreased during transitions towards monogamy. Surprisingly, humans exhibit greater F0 sexual dimorphism than any other ape. We also show that low-F0 vocalizations predict perceptions of men's dominance and attractiveness, and predict hormone profiles (low cortisol and high testosterone) related to immune function. These results suggest that low male F0 signals condition to competitors and mates, and evolved in male anthropoids in response to the intensity of mating competition. © 2016 The Author(s).

  11. Energetics of communal roosting in chestnut-crowned babblers: implications for group dynamics and breeding phenology.

    PubMed

    Chappell, Mark A; Buttemer, William A; Russell, Andrew F

    2016-11-01

    For many endotherms, communal roosting saves energy in cold conditions, but how this might affect social dynamics or breeding phenology is not well understood. Using chestnut-crowned babblers (Pomatostomus ruficeps), we studied the effects of nest use and group size on roosting energy costs. These 50 g cooperatively breeding passerine birds of outback Australia breed from late winter to early summer and roost in huddles of up to 20 in single-chambered nests. We measured babbler metabolism at three ecologically relevant temperatures: 5°C (similar to minimum nighttime temperatures during early breeding), 15°C (similar to nighttime temperatures during late breeding) and 28°C (thermal neutrality). Nest use alone had modest effects: even for solitary babblers at 5°C, it reduced nighttime energy expenditures by <15%. However, group-size effects were substantial, with savings of up to 60% in large groups at low temperatures. Babblers roosting in groups of seven or more at 5°C, and five or more at 15°C, did not need to elevate metabolic rates above basal levels. Furthermore, even at 28°C (thermoneutral for solitary babblers), individuals in groups of four or more had 15% lower basal metabolic rate than single birds, hinting that roosting in small groups is stressful. We suggest that the substantial energy savings of communal roosting at low temperatures help explain why early breeding is initiated in large groups and why breeding females, which roost alone and consequently expend 120% more energy overnight than other group members, suffer relatively higher mortality than communally roosting group mates. © 2016. Published by The Company of Biologists Ltd.

  12. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  13. Adaptive evolution of sexual systems in pedunculate barnacles

    PubMed Central

    Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun; Kawane, Masako; Ozaki, Yuki; Yamato, Shigeyuki; Høeg, Jens T.

    2012-01-01

    How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin. PMID:21881138

  14. Effect of evening primrose oil as food supplement on reproduction in the blue fox.

    PubMed

    Tauson, A H; Forsberg, M

    1991-01-01

    Addition of evening primrose oil (EPO) to a blue fox diet in the reproduction period was evaluated in an experiment with 2 groups, each of 12 male and 25 female blue foxes, regarding the effects on reproductive performance. The experiment was carried out as a field trial and the experimental period lasted from March 10 until the end of the mating season (males) or early July (females). During this period the control group was fed the standard diet of the farm and the experimental group was fed the same diet supplemented with 4.5 g EPO and 2.5 mg zinc sulphate per animal and day. An addition of 10 mg vitamin E per 500 mg EPO was made. The results were evaluated regarding male and female treatment effects. There was an increased rate of abortions in the EPO-group, but simultaneously a non-significant decrease in the frequency of barren females, resulting in a similar level of females without litters in both groups. A tendency for increased litter size in the EPO group was found, mainly as an effect of male treatment, which might indicate an effect on semen quality.

  15. Policing in nonhuman primates: partial interventions serve a prosocial conflict management function in rhesus macaques.

    PubMed

    Beisner, Brianne A; McCowan, Brenda

    2013-01-01

    Studies of prosocial policing in nonhuman societies traditionally focus on impartial interventions because of an underlying assumption that partial support implies a direct benefit to the intervener, thereby negating the potential for being prosocial in maintaining social stability for the benefit of the group. However, certain types of partial interventions have significant potential to be prosocial in controlling conflict, e.g. support of non-kin subordinates. Here, we propose a policing support hypothesis that some types of agonistic support serve a prosocial policing function that maintains group stability. Using seven large captive groups of rhesus macaques, we investigated the relationship between intervention type and group-level costs and benefits (rates of trauma, severe aggression, social relocation) and individual level costs and benefits (preferential sex-dyad targeting, dominance ambiguity reduction, access to mates, and return aggression). Our results show that impartial interventions and support of subordinate non-kin represent prosocial policing as both (1) were negatively associated with group-level rates of trauma and severe aggression, respectively, (2) showed no potential to confer individual dominance benefits, (3) when performed outside the mating season, they did not increase chances of mating with the beneficiary, and (4) were low-cost for the highest-ranking interveners. We recommend expanding the definition of 'policing' in nonhumans to include these 'policing support interventions'.

  16. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Avila, Frank W.; Villarreal, Susan M.; Pleiss, Jeffrey A.; Wolfner, Mariana F.; Harrington, Laura C.

    2016-01-01

    The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito. PMID:26901677

  17. Preload-Release Mechanism For Mounting Electronics Boxes

    NASA Technical Reports Server (NTRS)

    Generoli, Robert M.; Young, Harry J.

    1995-01-01

    Proposed mechanism applies spring preload to electrical connector only while needed during insertion of electronics box into supporting frame. Once connector fully mated, mechanism relieves preload. As result, supporting structure sized to handle only individual load applied briefly by each connector on box during insertion.

  18. Effect of adult screwworm male size on mating competence

    USDA-ARS?s Scientific Manuscript database

    Screwworms, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), were devastating pests in parts of North America and Central America before their eradication by means of the sterile insect technique (SIT). Now, a barrier is maintained to prevent re-entry of screwworms from endemic regions t...

  19. Temporal genetic structure of a drone congregation area of the giant Asian honeybee ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Kraus, F. B.; Koeniger, N.; Tingek, S.; Moritz, R. F. A.

    2005-12-01

    The giant Asian honeybee ( Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N e=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

  20. Population properties affect inbreeding avoidance in moose.

    PubMed

    Herfindal, Ivar; Haanes, Hallvard; Røed, Knut H; Solberg, Erling J; Markussen, Stine S; Heim, Morten; Sæther, Bernt-Erik

    2014-12-01

    Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Sexual selection targets cetacean pelvic bones

    PubMed Central

    Dines, J. P.; Otárola-Castillo, E.; Ralph, P.; Alas, J.; Daley, T.; Smith, A. D.; Dean, M. D.

    2014-01-01

    Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis which seems to serve no other function except to anchor muscles that maneuver the penis. Here we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: 1) males from species with relatively intense sexual selection (inferred by relative testes size) have evolved relatively large penises and pelvic bones compared to their body size, and 2) pelvic bone shape diverges more quickly in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496

  2. A trade-off between precopulatory and postcopulatory trait investment in male cetaceans.

    PubMed

    Dines, James P; Mesnick, Sarah L; Ralls, Katherine; May-Collado, Laura; Agnarsson, Ingi; Dean, Matthew D

    2015-06-01

    Mating with multiple partners is common across species, and understanding how individual males secure fertilization in the face of competition remains a fundamental goal of evolutionary biology. Game theory stipulates that males have a fixed budget for reproduction that can lead to a trade-off between investment in precopulatory traits such as body size, armaments, and ornaments, and postcopulatory traits such as testis size and spermatogenic efficiency. Recent theoretical and empirical studies have shown that if males can monopolize access to multiple females, they will invest disproportionately in precopulatory traits and less in postcopulatory traits. Using phylogenetically controlled comparative methods, we demonstrate that across 58 cetacean species with the most prominent sexual dimorphism in size, shape, teeth, tusks, and singing invest significantly less in relative testes mass. In support of theoretical predictions, these species tend to show evidence of male contests, suggesting there is opportunity for winners to monopolize access to multiple females. Our approach provides a robust dataset with which to make predictions about male mating strategies for the many cetacean species for which adequate behavioral observations do not exist. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  3. An autosomal dwarfism in the domestic fowl.

    PubMed

    Cole, R K

    2000-11-01

    A mutation in the Cornell K-strain of White Leghorns, first recognized when two adult males in a pedigreed family were definitely smaller than their two other brothers, proved to be an autosomal recessive mutation and gave rise to the autosomal dwarf stock. The effect of this gene (adw) can be recognized during embryonic development and leads to a normal adult, except for a 30% reduction in body weight. Selection for small size, egg production, and egg weight over a period of 15 yr yielded an efficient layer. Production for 11 mo from first egg was at a rate of 70%, with egg weight at 56 g and body weight at 1,160 g at 10 to 11 mo of age, based on data for the last four generations. Viability of the caged hens averaged over 95% for the 13 generations involved. Sexual maturity was delayed by about 2 wk, and good incubation (85+%) required 18+/- more hours than normal. When an autosomal dwarf male is used as a sire and mated to sex-linked dwarf (dw) females, all progeny are of normal size. Compared with problems of mating normal size males with dwarf females, the use of the two types of dwarfism can yield good fertility.

  4. Sperm competition games: optimal sperm allocation in response to the size of competing ejaculates.

    PubMed

    Engqvist, Leif; Reinhold, Klaus

    2007-01-22

    Sperm competition theory predicts that when males are certain of sperm competition, they should decrease sperm investment in matings with an increasing number of competing ejaculates. How males should allocate sperm when competing with differently sized ejaculates, however, has not yet been examined. Here, we report the outcomes of two models assuming variation in males' sperm reserves and males being faced with different amounts of competing sperm. In the first 'spawning model', two males compete instantaneously and both are able to assess the sperm competitive ability of each other. In the second 'sperm storage model', males are sequentially confronted with situations involving different levels of sperm competition, for instance different amounts of sperm already stored by the female mating partner. In both of the models, we found that optimal sperm allocation will strongly depend on the size of the male's sperm reserve. Males should always invest maximally in competition with other males that are equally strong competitors. That is, for males with small sperm reserves, our model predicts a negative correlation between sperm allocation and sperm competition intensity, whereas for males with large sperm reserves, this correlation is predicted to be positive.

  5. Signatures of microevolutionary processes in phylogenetic patterns.

    PubMed

    Costa, Carolina L N; Lemos-Costa, Paula; Marquitti, Flavia M D; Fernandes, Lucas D; Ramos, Marlon F; Schneider, David M; Martins, Ayana B; Aguiar, Marcus A M

    2018-06-23

    Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem we analysed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.

  6. Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats.

    PubMed

    Berger, Robert G; Lefèvre, Pavine L C; Ernest, Sheila R; Wade, Michael G; Ma, Yi-Qian; Rawn, Dorothea F K; Gaertner, Dean W; Robaire, Bernard; Hales, Barbara F

    2014-06-05

    Brominated flame retardants are incorporated into a wide variety of consumer products and are known to enter into the surrounding environment, leading to human exposure. There is accumulating evidence that these compounds have adverse effects on reproduction and development in humans and animal models. Animal studies have generally characterized the outcome of exposure to a single technical mixture or congener. Here, we determined the impact of exposure of rats prior to mating and during gestation to a mixture representative of congener levels found in North American household dust. Adult female Sprague-Dawley rats were fed a diet containing 0, 0.75, 250 or 750mg/kg of a mixture of flame retardants (polybrominated diphenyl ethers, hexabromocyclododecane) from two weeks prior to mating to gestation day 20. This formulation delivered nominal doses of 0, 0.06, 20 and 60mg/kg body weight/day. The lowest dose approximates high human exposures based on house dust levels and the dust ingestion rates of toddlers. Litter size and resorption sites were counted and fetal development evaluated. No effects on maternal health, litter size, fetal viability, weights, crown rump lengths or sex ratios were detected. The proportion of litters with fetuses with anomalies of the digits (soft tissue syndactyly or malposition of the distal phalanges) was increased significantly in the low (0.06mg/kg/day) dose group. Skeletal analysis revealed a decreased ossification of the sixth sternebra at all exposure levels. Thus, exposure to an environmentally relevant mixture of brominated flame retardants results in developmental abnormalities in the absence of apparent maternal toxicity. The relevance of these findings for predicting human risk is yet to be determined. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    PubMed

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  8. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum

    PubMed Central

    Johnson, M G; Shaw, A J

    2016-01-01

    A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population. PMID:26905464

  9. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum.

    PubMed

    Johnson, M G; Shaw, A J

    2016-06-01

    A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population.

  10. Small Cages with Insect Couples Provide a Simple Method for a Preliminary Assessment of Mating Disruption

    PubMed Central

    Briand, Françoise; Guerin, Patrick M.; Charmillot, Pierre-Joseph; Kehrli, Patrik

    2012-01-01

    Mating disruption by sex pheromones is a sustainable, effective and widely used pest management scheme. A drawback of this technique is its challenging assessment of effectiveness in the field (e.g., spatial scale, pest density). The aim of this work was to facilitate the evaluation of field-deployed pheromone dispensers. We tested the suitability of small insect field cages for a pre-evaluation of the impact of sex pheromones on mating using the grape moths Eupoecilia ambiguella and Lobesia botrana, two major pests in vineyards. Cages consisted of a cubic metal frame of 35 cm sides, which was covered with a mosquito net of 1500 μm mesh size. Cages were installed in the centre of pheromone-treated and untreated vineyards. In several trials, 1 to 20 couples of grape moths per cage were released for one to three nights. The proportion of mated females was between 15 to 70% lower in pheromone-treated compared to untreated vineyards. Overall, the exposure of eight couples for one night was adequate for comparing different control schemes. Small cages may therefore provide a fast and cheap method to compare the effectiveness of pheromone dispensers under standardised semi-field conditions and may help predict the value of setting-up large-scale field trials. PMID:22645483

  11. Relatedness among honeybees (Apis mellifera) of a drone congregation

    PubMed Central

    Baudry, E.; Solignac, M.; Garnery, L.; Gries, M.; Cornuet, J.-M.; Koeniger, N.

    1998-01-01

    The honeybee (Apis mellifera) queen mates during nuptial flights, in the so-called drone congregation area where many males from surrounding colonies gather. Using 20 highly polymorphic microsatellite loci, we studied a sample of 142 drones captured in a congregation close to Oberursel (Germany). A parentage test based on lod score showed that this sample contained one group of four brothers, six groups of three brothers, 20 groups of two brothers and 80 singletons. These values are very close to a Poisson distribution. Therefore, colonies were apparently equally represented in the drone congregation, and calculations showed that the congregation comprised males that originated from about 240 different colonies. This figure is surprisingly high. Considering the density of colonies around the congregation area and the average flight range of males, it suggests that most colonies within the recruitment perimeter delegated drones to the congregation with an equal probability, resulting in an almost perfect panmixis. Consequently, the relatedness between a queen and her mates, and hence the inbreeding coefficient of the progeny, should be minimized. The relatedness among the drones mated to the same queen is also very low, maximizing the genetic diversity among the different patrilines of a colony.

  12. Radiographic analysis of vocal tract length and its relation to overall body size in two canid species.

    PubMed

    Plotsky, K; Rendall, D; Riede, T; Chase, K

    2013-09-01

    Body size is an important determinant of resource and mate competition in many species. Competition is often mediated by conspicuous vocal displays, which may help to intimidate rivals and attract mates by providing honest cues to signaler size. Fitch proposed that vocal tract resonances (or formants) should provide particularly good, or honest, acoustic cues to signaler size because they are determined by the length of the vocal tract, which in turn, is hypothesized to scale reliably with overall body size. There is some empirical support for this hypothesis, but to date, many of the effects have been either mixed for males compared with females, weaker than expected in one or the other sex, or complicated by sampling issues. In this paper, we undertake a direct test of Fitch's hypothesis in two canid species using large samples that control for age- and sex-related variation. The samples involved radiographic images of 120 Portuguese water dogs Canis lupus familiaris and 121 Russian silver foxes Vulpes vulpes . Direct measurements were made of vocal tract length from X-ray images and compared against independent measures of body size. In adults of both species, and within both sexes, overall vocal tract length was strongly and significantly correlated with body size. Effects were strongest for the oral component of the vocal tract. By contrast, the length of the pharyngeal component was not as consistently related to body size. These outcomes are some of the clearest evidence to date in support of Fitch's hypothesis. At the same time, they highlight the potential for elements of both honest and deceptive body signaling to occur simultaneously via differential acoustic cues provided by the oral versus pharyngeal components of the vocal tract.

  13. Radiographic analysis of vocal tract length and its relation to overall body size in two canid species

    PubMed Central

    Plotsky, K.; Rendall, D.; Riede, T.; Chase, K.

    2013-01-01

    Body size is an important determinant of resource and mate competition in many species. Competition is often mediated by conspicuous vocal displays, which may help to intimidate rivals and attract mates by providing honest cues to signaler size. Fitch proposed that vocal tract resonances (or formants) should provide particularly good, or honest, acoustic cues to signaler size because they are determined by the length of the vocal tract, which in turn, is hypothesized to scale reliably with overall body size. There is some empirical support for this hypothesis, but to date, many of the effects have been either mixed for males compared with females, weaker than expected in one or the other sex, or complicated by sampling issues. In this paper, we undertake a direct test of Fitch’s hypothesis in two canid species using large samples that control for age- and sex-related variation. The samples involved radiographic images of 120 Portuguese water dogs Canis lupus familiaris and 121 Russian silver foxes Vulpes vulpes. Direct measurements were made of vocal tract length from X-ray images and compared against independent measures of body size. In adults of both species, and within both sexes, overall vocal tract length was strongly and significantly correlated with body size. Effects were strongest for the oral component of the vocal tract. By contrast, the length of the pharyngeal component was not as consistently related to body size. These outcomes are some of the clearest evidence to date in support of Fitch’s hypothesis. At the same time, they highlight the potential for elements of both honest and deceptive body signaling to occur simultaneously via differential acoustic cues provided by the oral versus pharyngeal components of the vocal tract. PMID:24363497

  14. [Ovarian development and analysis of mating effects on ovary maturation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae)].

    PubMed

    Dossi, Fábio C A; Cônsoli, Fernando L

    2010-01-01

    As many other insects with a restricted diet, the citrus psyllid Diaphorina citri Kuwayama, which vector the causing agent of the Huanglongbing, the bacteria Candidatus Liberibacter spp., is intimately associated with symbiotic microorganisms. These mutualist symbionts play a key role on their host nutritional ecology, and are vertically transmitted to the progeny. However, despite the role symbionts play on host development and reproduction, and the growing opportunities of exploitation of the association insect-symbiont to control insect vectored-pathogens, there are very few studies on the host reproductive biology and on the symbiont transovarial transmission. Therefore, we aimed at analyzing the ovary development during D. citri adulthood, and at verifying for the mating requirement as a trigger to initiate ovary development. Newly-emerged D. citri females were grouped as virgin or mated and ovary development was observed during adulthood. Newly-emerged females have immature ovaries, and ovaries remain without any mature eggs until females mate. Once female mates, the vitellogenesis synthesis and uptake are estimulated, and oocytes are quickly developed. Oocytes maturation in ovarioles is metachronic, with only one oocyte developing at a time in each oogenic cycle. Morphological observations of the reproductive system including the ovaries and spermatheca, after the first cluster of eggs is laid, indicated D. citri is polyandrous, and may require multiple mating to develop additional oogenic maturation cycles.

  15. An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi

    PubMed Central

    Wallen, R. M.; Perlin, Michael H.

    2018-01-01

    Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi. PMID:29619017

  16. Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii

    PubMed Central

    Ekechukwu, Nkiru E.; Baeshen, Rowida; Traorè, Sékou F.; Coulibaly, Mamadou; Diabate, Abdoulaye; Catteruccia, Flaminia; Tripet, Frédéric

    2015-01-01

    The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health. PMID:26497140

  17. Organization and evolution of mating-type genes in three Stagonosporopsis species causing gummy stem blight of cucurbits and leaf spot and dry rot of papaya.

    PubMed

    Li, Hao-Xi; Gottilla, Thomas M; Brewer, Marin Talbot

    2017-10-01

    Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. A solution to the collective action problem in between-group conflict with within-group inequality

    PubMed Central

    Gavrilets, Sergey; Fortunato, Laura

    2014-01-01

    Conflict with conspecifics from neighbouring groups over territory, mating opportunities and other resources is observed in many social organisms, including humans. Here we investigate the evolutionary origins of social instincts, as shaped by selection resulting from between-group conflict in the presence of a collective action problem. We focus on the effects of the differences between individuals on the evolutionary dynamics. Our theoretical models predict that high-rank individuals, who are able to usurp a disproportional share of resources in within-group interactions, will act seemingly altruistically in between-group conflict, expending more effort and often having lower reproductive success than their low-rank group-mates. Similar behaviour is expected for individuals with higher motivation, higher strengths or lower costs, or for individuals in a leadership position. Our theory also provides an evolutionary foundation for classical equity theory, and it has implications for the origin of coercive leadership and for reproductive skew theory. PMID:24667443

  19. THE EFFECTS OF POPULATION SIZE AND DENSITY ON THE MATING SYSTEM OF LUPINUS PERENNIS. (R826596)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Sexually dichromatic coloration reflects size and immunocompetence in female Spanish terrapins, Mauremys leprosa

    NASA Astrophysics Data System (ADS)

    Ibáñez, Alejandro; Marzal, Alfonso; López, Pilar; Martín, José

    2013-12-01

    Many studies have shown the importance of colorful ornamentation in mate choosiness or intrasexual conflict. However, research on color ornaments has focused mainly on birds, lizards or fish, but remains practically unknown in other animal groups such as turtles. In addition, female ornaments and their relation with sexual selection also remain almost unknown. Here, we measured the coloration of the shell and the limb stripes of male and female Spanish terrapins Mauremys leprosa and explored the existence of sexual dichromatism and the relation of color characteristics with body size and health state estimated from the immune response to the injection of an antigen (phytohaemagglutinin test). Our results showed that shell coloration, which could be constrained by natural selection to be cryptic, changed with body size, but did not differ between sexes. In contrast, females had brighter and less ultraviolet-saturated and more orange-saturated limb stripes than males. In females, interindividual variation in limb stripe coloration was related with body size and immune response suggesting that this coloration may inform honestly about multiple traits that could be important in sexual selection. In contrast, coloration of limb stripes of males was duller than in females, and was not related with any trait suggesting that coloration is not important in sexual selection for males.

Top