The mating type-like loci of Candida glabrata.
Yáñez-Carrillo, Patricia; Robledo-Márquez, Karina A; Ramírez-Zavaleta, Candy Y; De Las Peñas, Alejandro; Castaño, Irene
2014-01-01
Candida glabrata, a haploid and opportunistic fungal pathogen that has not known sexual cycle, has conserved the majority of the genes required for mating and cell type identity. The C. glabrata genome contains three mating-type-like loci called MTL1, MTL2 and MTL3. The three loci encode putative transcription factors, a1, α1 and α2 that regulate cell type identity and sexual reproduction in other fungi like the closely related Saccharomyces cerevisiae. MTL1 can contain either a or α information. MTL2, which contains a information and MTL3 with α information, are relatively close to two telomeres. MTL1 and MTL2 are transcriptionally active, while MTL3 is subject to an incomplete silencing nucleated at the telomere that depends on the silencing proteins Sir2, Sir3, Sir4, yKu70/80, Rif1, Rap1 and Sum1. C. glabrata does not seem to maintain cell type identity, as cell type-specific genes are expressed regardless of the type (or even absence) of mating information. These data highlight important differences in the control of mating and cell type identity between the non-pathogenic yeast S. cerevisiae and C. glabrata, which might explain the absence of a sexual cycle in C. glabrata. The fact that C. glabrata has conserved the vast majority of the genes involved in mating might suggest that some of these genes perhaps have been rewired to control other processes important for the survival inside the host as a commensal or as a human pathogen. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Quality of public information matters in mate-choice copying in female zebra finches.
Kniel, Nina; Schmitz, Jennifer; Witte, Klaudia
2015-01-01
Mate-choice copying is a form of social learning in which an individual gains information about potential mates by observing conspecifics. However, it is still unknown what kind of information drives the decision of an individual to copy the mate choice of others. Among zebra finches (Taeniopygia guttata castanotis), only females (not males) copy the mate choice of others. We tested female zebra finches in a binary choice test where they, first, could choose between two males of different phenotypes: one unadorned male and one male artificially adorned with a red feather on the forehead. After this mate-choice test, females could observe a single unadorned male and a pair of zebra finches, i.e. a wild-type female and her adorned mate. Pair interactions were either restricted to acoustic and visual communication (clear glass screen between pair mates) or acoustic communication alone (opaque screen between pair mates). After the observation period, females could again choose between new males of the two phenotypes in a second mate-choice test. In experiments with a clear glass screen, time spent with the respective males changed between the two mate-choice tests, and females preferred adorned over unadorned males during the second mate-choice test. In experiments with an opaque screen, time spent with the respective males did not change between the two mate-choice tests, although females lost an initial preference for unadorned males. Our results demonstrate that the quality of the received public information (visual and acoustic interaction of the observed pair) influences mate-choice copying in female zebra finches.
An Evolutionary Perspective on Yeast Mating-Type Switching
Hanson, Sara J.; Wolfe, Kenneth H.
2017-01-01
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching? PMID:28476860
Lee, Soo Chan; Idnurm, Alexander
2017-03-01
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae
Haber, James E.
2012-01-01
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442
Do pheromones reveal male immunocompetence?
Rantala, Markus J; Jokinen, Ilmari; Kortet, Raine; Vainikka, Anssi; Suhonen, Jukka
2002-01-01
Pheromones function not only as mate attractors, but they may also relay important information to prospective mates. It has been shown that vertebrates can distinguish, via olfactory mechanisms, major histocompatibility complex types in their prospective mates. However, whether pheromones can transmit information about immunocompetence is unknown. Here, we show that female mealworm beetles (Tenebrio molitor) prefer pheromones from males with better immunocompetence, indicated by a faster encapsulation rate against a novel antigen, and higher levels of phenoloxidase in haemolymph. Thus, the present study indicates that pheromones could transmit information about males' parasite resistance ability and may work as a reliable sexual ornament for female choice. PMID:12204128
James, Timothy Y.; Srivilai, Prayook; Kües, Ursula; Vilgalys, Rytas
2006-01-01
Mating incompatibility in mushroom fungi is controlled by the mating-type loci. In tetrapolar species, two unlinked mating-type loci exist (A and B), whereas in bipolar species there is only one locus. The A and B mating-type loci encode homeodomain transcription factors and pheromones and pheromone receptors, respectively. Most mushroom species have a tetrapolar mating system, but numerous transitions to bipolar mating systems have occurred. Here we determined the genes controlling mating type in the bipolar mushroom Coprinellus disseminatus. Through positional cloning and degenerate PCR, we sequenced both the transcription factor and pheromone receptor mating-type gene homologs from C. disseminatus. Only the transcription factor genes segregate with mating type, discounting the hypothesis of genetic linkage between the A and B mating-type loci as the causal origin of bipolar mating behavior. The mating-type locus of C. disseminatus is similar to the A mating-type locus of the model species Coprinopsis cinerea and encodes two tightly linked pairs of homeodomain transcription factor genes. When transformed into C. cinerea, the C. disseminatus A and B homologs elicited sexual reactions like native mating-type genes. Although mating type in C. disseminatus is controlled by only the transcription factor genes, cellular functions appear to be conserved for both groups of genes. PMID:16461425
Sperm competition games: the risk model can generate higher sperm allocation to virgin females.
Ball, M A; Parker, G A
2007-03-01
We examine the risk model in sperm competition games for cases where female fertility increases significantly with sperm numbers (sperm limitation). Without sperm competition, sperm allocation increases with sperm limitation. We define 'average risk' as the probability q that females in the population mate twice, and 'perceived risk' as the information males gain about the sperm competition probability with individual females. If males obtain no information from individual females, sperm numbers increase with q unless sperm limitation is high and one of the two competing ejaculates is strongly disfavoured. If males can distinguish between virgin and mated females, greater sperm allocation to virgins is favoured by high sperm limitation, high q, and by the second male's ejaculate being disfavoured. With high sperm limitation, sperm allocation to virgins increases and to mated females decreases with q at high q levels. With perfect information about female mating pattern, sperm allocation (i) to virgins that will mate again exceeds that to mated females and to virgins that will mate only once, (ii) to virgins that mate only once exceeds that for mated females if q is high and there is high second male disadvantage and (iii) to each type of female can decrease with q if sperm limitation is high, although the average allocation increases at least across low q levels. In general, higher sperm allocation to virgins is favoured by: strong disadvantage to the second ejaculate, high sperm limitation, high average risk and increased information (perceived risk). These conditions may apply in a few species, especially spiders.
Maekawa, Hiromi; Kaneko, Yoshinobu
2014-11-01
Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci.
Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera)
Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark
2009-01-01
Background Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. Results A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons. Conclusion Owing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation. PMID:19740420
Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera).
Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark
2009-09-09
Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons. Owing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation.
Du, Xi-Hui; Zhao, Qi; Xia, En-Hua; Gao, Li-Zhi; Richard, Franck; Yang, Zhu L
2017-05-04
Morchella species are well known world-round as popular and prized edible fungi due to their unique culinary flavor. Recently, several species have been successfully cultivated in China. However, their reproductive modes are still unknown, and their basic biology needs to be elucidated. Here, we use the morel genome information to investigate mating systems and life cycles of fourteen black morel species. Mating type-specific primers were developed to screen and genotype ascospores, hymenia and stipes from 223 ascocarps of the 14 species from Asia and Europe. Our data indicated that they are all heterothallic and their life cycles are predominantly haploid, but sterile haploid fruiting also exists. Ascospores in all species are mostly haploid, homokaryotic, and multinuclear, whereas aborted ascospores without any nuclei were also detected. Interestingly, we monitored divergent spatial distribution of both mating types in natural morel populations and cultivated sites, where the fertile tissue of fruiting bodies usually harbored both mating types, whereas sterile tissue of wild morels constantly had one MAT allele, while the sterile tissue of cultivated strains always exhibited both MAT alleles. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in natural populations, which strongly suggested a competitive advantage for MAT1-1 strains.
Pöggeler, S; Risch, S; Kück, U; Osiewacz, H D
1997-10-01
Homokaryons from the homothallic ascomycte Sordaria macrospora are able to enter the sexual pathway and to form fertile fruiting bodies. To analyze the molecular basis of homothallism and to elucidate the role of mating-products during fruiting body development, we cloned and sequenced the entire S. macrospora mating-type locus. Comparison of the Sordaria mating-type locus with mating-type idiomorphs from the heterothallic ascomycetes Neurospora crassa and Podospora anserina revealed that sequences from both idiomorphs (A/a and mat-/mat+, respectively) are contiguous in S. macrospora. DNA sequencing of the S. macrospora mating-type region allowed the identification of four open reading frames (ORFs), which were termed Smt-a1, SmtA-1, SmtA-2 and SmtA-3. While Smt-a1, SmtA-1, and SmtA-2 show strong sequence similarities with the corresponding N. crassa mating-type ORFs, SmtA-3 has a chimeric character. It comprises sequences that are similar to the A and a mating-type idiomorph from N. crassa. To determine functionality of the S. macrospora mating-type genes, we show that all ORFs are transcriptionally expressed. Furthermore, we transformed the S. macrospora mating-type genes into mat- and mat+ strains of the closely related heterothallic fungus P. anserina. The transformation experiments show that mating-type genes from S. macrospora induce fruiting body formation in P. anserina.
Iwanaga, Akiko; Sasaki, Akira
2004-04-01
A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in the heteroplasmic zygotes. If the recombination rate is above the threshold, suppressor alleles are equally distributed in each mating type at evolutionary equilibrium. Based on the theoretical results of the site-specific nuclease model, we propose that a nested subsequence structure in the recognition sequence should underlie the linear dominance hierarchy of mitochondrial transmission.
Douglas, T E; Strassmann, J E; Queller, D C
2016-07-01
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency-dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Mate-choice copying, social information processing, and the roles of oxytocin.
Kavaliers, Martin; Matta, Richard; Choleris, Elena
2017-01-01
Social and sexual behaviors, including that of mate choice, are dependent on social information. Mate choice can be modified by prior and ongoing social factors and experience. The mate choice decisions of one individual can be influenced by either the actual or potential mate choice of another female or male. Such non-independent mate choice, where individuals gain social information and socially learn about and recognizes potential mates by observing the choices of another female or male, has been termed "mate-choice copying". Here we first briefly review how, why, and under what circumstances individuals engage in mate-choice copying. Secondly, we review the neurobiological mechanisms underlying mate-choice copying. In particular, we consider the roles of the nonapeptide, oxytocin, in the processing of social information and the expression of mate-choice copying. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiple convergent supergene evolution events in mating-type chromosomes.
Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana
2018-05-21
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.
Pöggeler, S; Kück, U
2000-03-01
The mating-type locus controls mating and sexual development in filamentous ascomycetes. In the heterothallic ascomycete Neurospora crassa, the genes that confer mating behavior comprise dissimilar DNA sequences (idiomorphs) in the mat a and mat A mating partners. In the homothallic fungus Sordaria macrospora, sequences corresponding to both idiomorphs are located contiguously in the mating-type locus, which contains one chimeric gene, Smt A-3, that includes sequences which are similar to sequences found at the mat A and mat a mating-type idiomorphs in N. crassa. In this study, we describe the comparative transcriptional analysis of the chimeric mating-type region of S. macrospora and the corresponding region of the N. crassa mat a idiomorph. By means of RT-PCR experiments, we identified novel intervening sequences in the mating-type loci of both ascomycetes and, hence, concluded that an additional ORF, encoding a putative polypeptide of 79 amino acids, is present in the N. crassa mat a idiomorph. Furthermore, our analysis revealed co-transcription of the novel gene with the mat a-1 gene in N. crassa. The same mode of transcription was found in the corresponding mating-type region of S. macrospora, where the chimeric Smt A-3 gene is co-transcribed with the mat a-specific Smt a-1 gene. Analysis of a Smt A-3 cDNA revealed optional splicing of two introns. We believe that this is the first report of co-transcription of protein-encoding nuclear genes in filamentous fungi. Possible functions of the novel ORFs in regulating mating-type gene expression are discussed.
Fungal Sex: The Basidiomycota.
Coelho, Marco A; Bakkeren, Guus; Sun, Sheng; Hood, Michael E; Giraud, Tatiana
2017-06-01
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Isolation of Cryptococcus gattii molecular type VGIII, from Corymbia ficifolia detritus in Colombia.
Escandón, P; Sánchez, A; Firacative, C; Castañeda, E
2010-06-01
An environmental sampling survey was carried out in different areas of Bogotá, Colombia, to obtain isolates of members of the Cryptococcus neoformans/C. gattii species complex from Corymbia ficifolia trees. During a 6-month period in 2007, 128 samples consisting of bark, soil around trunk bases, detritus, seeds and flowers were collected from 91 trees and processed according to standard procedures. The molecular type was determined using URA5 restriction fragment length polymorphism (RFLP) analysis and the mating type was established by PCR using specific primers for Mfalpha and Mfa C. gattii was isolated from 15 of the 128 (11.7%) samples, of which three (20%) were recovered from the red flower extract and the remaining 12 from C. ficifolia detritus. URA5 RFLP analysis revealed that all 15 isolates belonged to the molecular type VGIII and mating type specific PCR revealed that all were mating type a. The isolation of C. gattii from C. ficifolia represents an important finding since this is the first report revealing C. ficifolia as a habitat for C. gattii and adds additional information to the ever growing spectrum of tree species from which C. gattii can be recovered.
Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora.
Jacobsen, Sabine; Wittig, Michael; Pöggeler, Stefanie
2002-06-01
Mating-type genes control sexual development in ascomycetes. Little is known about their function in homothallic species, which are self-fertile and do not require a mating partner for sexual reproduction. The function of mating-type genes in the homothallic fungus Sordaria macrospora was assayed using a yeast system in order to find properties typical of eukaryotic transcription factors. We were able to demonstrate that the mating-type proteins SMTA-1 and SMTa-1 have domains capable of activating transcription of yeast reporter genes. Two-hybrid analysis for heterodimerization and homodimerization revealed the ability of SMTA-1 to interact with SMTa-1 and vice versa. These two proteins are encoded by different mating types in the related heterothallic species Neurospora crassa. The interaction between SMTA-1 and SMTa-1 was defined by experiments with truncated versions of SMTA-1 and in vitro by means of protein cross-linking. Moreover, we gained evidence for homodimerization of SMTA-1. Possible functions of mating-type proteins in the homothallic ascomycete S. macrospora are discussed.
Munhenga, Givemore; Brooke, Basil D; Gilles, Jeremie R L; Slabbert, Kobus; Kemp, Alan; Dandalo, Leonard C; Wood, Oliver R; Lobb, Leanne N; Govender, Danny; Renke, Marius; Koekemoer, Lizette L
2016-03-02
Anopheles arabiensis Patton is primarily responsible for malaria transmission in South Africa after successful suppression of other major vector species using indoor spraying of residual insecticides. Control of An. arabiensis using current insecticide based approaches is proving difficult owing to the development of insecticide resistance, and variable feeding and resting behaviours. The use of the sterile insect technique as an area-wide integrated pest management system to supplement the control of An. arabiensis was proposed for South Africa and is currently under investigation. The success of this technique is dependent on the ability of laboratory-reared sterile males to compete with wild males for mates. As part of the research and development of the SIT technique for use against An. arabiensis in South Africa, radio-sensitivity and mating competitiveness of a local An. arabiensis sexing strain were assessed. The optimal irradiation dose inducing male sterility without compromising mating vigour was tested using Cobalt 60 irradiation doses ranging from 70-100 Gy. Relative mating competitiveness of sterile laboratory-reared males (GAMA strain) compared to fertile wild-type males (AMAL strain) for virgin wild-type females (AMAL) was investigated under laboratory and semi-field conditions using large outdoor cages. Three different sterile male to fertile male to wild-type female ratios were evaluated [1:1:1, 5:1:1 and 10:1:1 (sterile males: fertile, wild-type males: fertile, wild-type females)]. Irradiation at the doses tested did not affect adult emergence but had a moderate effect on adult survivorship and mating vigour. A dose of 75 Gy was selected for the competitiveness assays. Mating competitiveness experiments showed that irradiated GAMA male mosquitoes are a third as competitive as their fertile AMAL counterparts under semi-field conditions. However, they were not as competitive under laboratory conditions. An inundative ratio of 10:1 induced the highest sterility in the representative wild-type population, with potential to effectively suppress reproduction. Laboratory-reared and sterilised GAMA male An. arabiensis at a release ratio of 3:1 (3 sterile males to 1 wild, fertile male) can successfully compete for insemination of wild-type females. These results will be used to inform subsequent small-scale pilot field releases in South Africa.
Klix, V; Nowrousian, M; Ringelberg, C; Loros, J J; Dunlap, J C; Pöggeler, S
2010-06-01
Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed that the PPF domain protein-encoding gene SmtA-2 is essential for sexual reproduction, whereas the alpha domain protein-encoding genes SmtA-1 and SmtA-3 play no role in fruiting-body development. By means of cross-species microarray analysis using Neurospora crassa oligonucleotide microarrays hybridized with S. macrospora targets and quantitative real-time PCR, we identified genes expressed under the control of SmtA-1 and SmtA-2. Both genes are involved in the regulation of gene expression, including that of pheromone genes.
Klix, V.; Nowrousian, M.; Ringelberg, C.; Loros, J. J.; Dunlap, J. C.; Pöggeler, S.
2010-01-01
Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed that the PPF domain protein-encoding gene SmtA-2 is essential for sexual reproduction, whereas the α domain protein-encoding genes SmtA-1 and SmtA-3 play no role in fruiting-body development. By means of cross-species microarray analysis using Neurospora crassa oligonucleotide microarrays hybridized with S. macrospora targets and quantitative real-time PCR, we identified genes expressed under the control of SmtA-1 and SmtA-2. Both genes are involved in the regulation of gene expression, including that of pheromone genes. PMID:20435701
van Peer, Arend F.; Park, Soon-Young; Shin, Pyung-Gyun; Jang, Kab-Yeul; Yoo, Young-Bok; Park, Young-Jin; Lee, Byoung-Moo; Sung, Gi-Ho; James, Timothy Y.; Kong, Won-Sik
2011-01-01
Background Mating-type loci of mushroom fungi contain master regulatory genes that control recognition between compatible nuclei, maintenance of compatible nuclei as heterokaryons, and fruiting body development. Regions near mating-type loci in fungi often show adapted recombination, facilitating the generation of novel mating types and reducing the production of self-compatible mating types. Compared to other fungi, mushroom fungi have complex mating-type systems, showing both loci with redundant function (subloci) and subloci with many alleles. The genomic organization of mating-type loci has been solved in very few mushroom species, which complicates proper interpretation of mating-type evolution and use of those genes in breeding programs. Methodology/Principal Findings We report a complete genetic structure of the mating-type loci from the tetrapolar, edible mushroom Flammulina velutipes mating type A3B3. Two matB3 subloci, matB3a that contains a unique pheromone and matB3b, were mapped 177 Kb apart on scaffold 1. The matA locus of F. velutipes contains three homeodomain genes distributed over 73 Kb distant matA3a and matA3b subloci. The conserved matA region in Agaricales approaches 350 Kb and contains conserved recombination hotspots showing major rearrangements in F. velutipes and Schizophyllum commune. Important evolutionary differences were indicated; separation of the matA subloci in F. velutipes was diverged from the Coprinopsis cinerea arrangement via two large inversions whereas separation in S. commune emerged through transposition of gene clusters. Conclusions/Significance In our study we determined that the Agaricales have very large scale synteny at matA (∼350 Kb) and that this synteny is maintained even when parts of this region are separated through chromosomal rearrangements. Four conserved recombination hotspots allow reshuffling of large fragments of this region. Next to this, it was revealed that large distance subloci can exist in matB as well. Finally, the genes that were linked to specific mating types will serve as molecular markers in breeding. PMID:21799803
Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong
2015-01-01
Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.
Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong
2015-01-01
Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477–517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10–12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1–84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars. PMID:25781331
Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M
2010-02-26
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Castellano, Sergio; Cermelli, Paolo
2011-04-07
Mate choice depends on mating preferences and on the manner in which mate-quality information is acquired and used to make decisions. We present a model that describes how these two components of mating decision interact with each other during a comparative evaluation of prospective mates. The model, with its well-explored precedents in psychology and neurophysiology, assumes that decisions are made by the integration over time of noisy information until a stopping-rule criterion is reached. Due to this informational approach, the model builds a coherent theoretical framework for developing an integrated view of functions and mechanisms of mating decisions. From a functional point of view, the model allows us to investigate speed-accuracy tradeoffs in mating decision at both population and individual levels. It shows that, under strong time constraints, decision makers are expected to make fast and frugal decisions and to optimally trade off population-sampling accuracy (i.e. the number of sampled males) against individual-assessment accuracy (i.e. the time spent for evaluating each mate). From the proximate-mechanism point of view, the model makes testable predictions on the interactions of mating preferences and choosiness in different contexts and it might be of compelling empirical utility for a context-independent description of mating preference strength. Copyright © 2011 Elsevier Ltd. All rights reserved.
Efficient Breeding by Genomic Mating.
Akdemir, Deniz; Sánchez, Julio I
2016-01-01
Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.
Female mate choice by chemical signals in a semi-terrestrial crab
NASA Astrophysics Data System (ADS)
Sal Moyano, María Paz; Silva, Paola; Luppi, Tomás; Gavio, María Andrea
2014-01-01
Information about the roles of both sexes in pair formation is required to better understand the mechanisms involved in sexual selection. Mate choice could depend on the courtship behavior, involving chemical, tactile and visual signals. We determined if Neohelice granulata mate choice is based on female or male choice, considering visual and chemical with contact and without contact signals between partners and different categories of individuals: receptive and unreceptive females; and large, small, mated or unmated males. Experiments showed that mate selection was based on receptive female's choice using chemical signals, but not visual ones. Since copulation occurs during high and low tides, water-borne chemical signals would be preferentially used during high tide, while contact ones during low tide. Females preferred large and unmated males, while males did not seem to recognize receptive females using chemical neither visual signals. Females were capable of detecting the presence of the chemical signals released by large and unmated males, but not its amount. It is proposed that small and mated males are probably releasing different types of chemical signals, not attractive to females, or that they are not emitting any signal.
The genetic structure of the A mating-type locus of Lentinula edodes.
Au, Chun Hang; Wong, Man Chun; Bao, Dapeng; Zhang, Meiyan; Song, Chunyan; Song, Wenhua; Law, Patrick Tik Wan; Kües, Ursula; Kwan, Hoi Shan
2014-02-10
The Shiitake mushroom, Lentinula edodes (Berk.) Pegler is a tetrapolar basidiomycete with two unlinked mating-type loci, commonly called the A and B loci. Identifying the mating-types in shiitake is important for enhancing the breeding and cultivation of this economically-important edible mushroom. Here, we identified the A mating-type locus from the first draft genome sequence of L. edodes and characterized multiple alleles from different monokaryotic strains. Two intron-length polymorphism markers were developed to facilitate rapid molecular determination of A mating-type. L. edodes sequences were compared with those of known tetrapolar and bipolar basidiomycete species. The A mating-type genes are conserved at the homeodomain region across the order Agaricales. However, we observed unique genomic organization of the locus in L. edodes which exhibits atypical gene order and multiple repetitive elements around its A locus. To our knowledge, this is the first known exception among Homobasidiomycetes, in which the mitochondrial intermediate peptidase (mip) gene is not closely linked to A locus. Copyright © 2013 Elsevier B.V. All rights reserved.
Ellabib, Mohamed S; Aboshkiwa, Mohamed A; Husien, Walid M; D'Amicis, Roberta; Cogliati, Massimo
2016-08-01
Cryptococcus neoformans and C. gattii are the major cause of fungal meningitis, a potentially lethal mycosis. Since pigeon excreta and other environmental sources can be considered a significant environmental reservoir of this species in urban areas, 100 samples of pigeon excreta and 420 samples from Eucalyptus camaldulensis and Olea europaea (olive tree) around the city of Tripoli, Libya, were collected. C. neoformans was isolated and identified using standard biochemical assays from 46 samples: 34 from pigeon droppings, 3 from Eucalyptus trees and 9 from olive trees. Molecular typing revealed that all isolates from pigeon droppings belonged to molecular type VNI (C. neoformans var. grubii) and mating type αA, whereas those from trees included also the molecular type VNII and VNIII (AD hybrids). The present study reports, for the first time, information about the distribution of species, mating types and molecular types of C. neoformans/C. gattii species complex in Libya.
Wu, Lin; van Peer, Arend; Song, Wenhua; Wang, Hong; Chen, Mingjie; Tan, Qi; Song, Chunyan; Zhang, Meiyan; Bao, Dapeng
2013-12-01
During the life cycle of heterothallic tetrapolar Agaricomycetes such as Lentinula edodes (Berk.) Pegler, the mating type system, composed of unlinked A and B loci, plays a vital role in controlling sexual development and resulting formation of the fruit body. L. edodes is produced worldwide for consumption and medicinal purposes, and understanding its sexual development is therefore of great importance. A considerable amount of mating type factors has been indicated over the past decades but few genes have actually been identified, and no complete genetic structures of L. edodes B mating-type loci are available. In this study, we cloned the matB regions from two mating compatible L. edodes strains, 939P26 and 939P42. Four pheromone receptors were identified on each new matB region, together with three and four pheromone precursor genes in the respective strains. Gene polymorphism, phylogenetic analysis and distribution of pheromone receptors and pheromone precursors clearly indicate a bipartite matB locus, each sublocus containing a pheromone receptor and one or two pheromone precursors. Detailed sequence comparisons of genetic structures between the matB regions of strains 939P42, 939P26 and a previously reported strain SUP2 further supported this model and allowed identification of the B mating type subloci borders. Mating studies confirmed the control of B mating by the identified pheromone receptors and pheromones in L. edodes. © 2013 Elsevier B.V. All rights reserved.
Mating-Type Inheritance and Maturity Times in Crosses between Subspecies of TETRAHYMENA PIGMENTOSA
Simon, Ellen M.
1980-01-01
Subspecies 6 and 8 of T. pigmentosa (formerly syngens 6 and 8 of T. pyriformis) share a mating-type system controlled by three alleles with "peck-order" dominance at a single locus. The system is apparently closed and limited to three mating types that are homologous, but not identical, in the subspecies. These relationships are reflected in new mating-type designations.—The viability in some intersyngenic crosses is excellent, and the inheritance of major mating types in first-generation hybrids and their progeny follows the pattern of subspecies 8.—The period of immaturity is shorter than that previously reported for subspecies 8, with 50% of the subclones maturing between 46 and 100 fissions after conjugation. Maturity curves are generally sigmoid, but some are apparently biphasic. The onset of maturity in triplicate sublines from the same synclone is usually highly correlated. PMID:17248998
Daspute, Abhijit Arun; Kobayashi, Yuriko; Panda, Sanjib Kumar; Fakrudin, Bashasab; Kobayashi, Yasufumi; Tokizawa, Mutsutomo; Iuchi, Satoshi; Choudhary, Arbind Kumar; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki
2018-01-01
Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.
Li, Qing; Guo, Dong; Dong, Zhongqi; Zhang, Wei; Zhang, Lei K.; Huang, Shiew-Mei; Polli, James E.; Shu, Yan
2013-01-01
The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT3) receptor antagonists, such as ondansetron, should be investigated in patients. PMID:24001450
Ding, Tianbo; Chi, Hsin; Gökçe, Ayhan; Gao, Yulin; Zhang, Bin
2018-02-20
Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a serious pest that is capable of bisexual and arrhenotokous reproduction. In arrhenotokous reproduction, virgin females initially produce male offspring; later, when their sons are sexually mature, the mothers begin bisexual reproduction by carrying out oedipal mating with their sons. Because a virgin female produces many male offspring before oedipal mating occurs, multiple oedipal mating is common. In this study, we investigated the effect of multiple oedipal mating on the population growth of F. occidentalis by using the age-stage, two-sex life table theory. In the arrhenotokous cohorts, all unfertilized eggs developed into males. In the bisexual cohorts, the offspring sex ratio was significantly female biased with the mean number of female offspring and male offspring being 72.68 and 29.00, respectively. These were the same as the net reproductive rate of female offspring and male offspring. In arrhenotokous cohorts, the number of males available for oedipal mating significantly affected the production of female offspring. The number of female offspring increased as the number of sons available for oedipal mating increased. Correctly characterizing this unique type of reproduction will provide important information for predicting the timing of future outbreaks of F. occidentalis, as well as aiding in formulating successful management strategies against the species.
Krupp, Daniel Brian
2008-02-01
Information is crucial to decision-making, including mate choice decisions. Perceptual systems, such as attention, evolved in part to forage for reproductive information; consequently, these systems can be used to reveal mate preferences. Here, I consider the place of visual information in human mate choice and provide a rationale for pressing into service methods drawn from the attention literature for the study of mate choice decisions. Because visual attention is allocated automatically and selectively, it may be used to complement common methods of mate preference assessment, such as self-report questionnaires and measures of genital arousal, while avoiding some of the pitfalls of these methods. Beyond the utility of increasing confidence in extant research findings by employing relatively unobtrusive methods, visual attention paradigms can also allow researchers to explore a variety of questions that are rarely asked, such as those concerned with signal efficiency and tradeoffs in the assessment of mate value.
Size and competitive mating success in the yeast Saccharomyces cerevisiae.
Smith, Carl; Pomiankowski, Andrew; Greig, Duncan
2014-03-01
In unicellular organisms like yeast, mating with the right partner is critical to future fitness because each individual can only mate once. Because cell size is important for viability, mating with a partner of the right size could be a significant advantage. To investigate this idea, we manipulated the size of unmated yeast cells and showed that their viability depended on environmental conditions; large cells do better on rich medium and small cells do better on poor medium. We also found that the fitness of offspring is determined by the size of their parents. Finally, we demonstrated that when a focal cell of one mating type was placed with a large and a small cell of the opposite mating type, it was more likely to mate with the cell that was closer to the optimum size for growth in a given environment. This pattern was not generated by differences in passive mating efficiency of large and small cells across environments but by competitive mating behavior, mate preference, or both. We conclude that the most likely mechanism underlying this interesting behavior is that yeast cells compete for mates by producing pheromone signals advertising their viability, and cells with the opportunity to choose prefer to mate with stronger signalers because such matings produce more viable offspring.
Supply of genetic information--amount, format, and frequency.
Misztal, I; Lawlor, T J
1999-05-01
The volume and complexity of genetic information is increasing because of new traits and better models. New traits may include reproduction, health, and carcass. More comprehensive models include the test day model in dairy cattle or a growth model in beef cattle. More complex models, which may include nonadditive effects such as inbreeding and dominance, also provide additional information. The amount of information per animal may increase drastically if DNA marker typing becomes routine and quantitative trait loci information is utilized. In many industries, evaluations are run more frequently. They result in faster genetic progress and improved management and marketing opportunities but also in extra costs and information overload. Adopting new technology and making some organizational changes can help realize all the added benefits of the improvements to the genetic evaluation systems at an acceptable cost. Continuous genetic evaluation, in which new records are accepted and breeding values are updated continuously, will relieve time pressures. An online mating system with access to both genetic and marketing information can result in mating recommendations customized for each user. Such a system could utilize inbreeding and dominance information that cannot efficiently be accommodated in the current sire summaries or off-line mating programs. The new systems will require a new organizational approach in which the task of scientists and technicians will not be simply running the evaluations but also providing the research, design, supervision, and maintenance required in the entire system of evaluation, decision making, and distribution.
Sex-specific gene expression during asexual development of Neurospora crassa.
Wang, Zheng; Kin, Koryu; López-Giráldez, Francesc; Johannesson, Hanna; Townsend, Jeffrey P
2012-07-01
The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted. Copyright © 2012 Elsevier Inc. All rights reserved.
Silencers, silencing, and heritable transcriptional states.
Laurenson, P; Rine, J
1992-01-01
Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes. PMID:1480108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qing; Institute of Clinical Pharmacology, Central South University, Hunan 410078; Guo, Dong
2013-11-15
The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate formore » OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic cisplatin. • The antiemetic ondansetron is frequently co-administrated with cisplatin. • Ondansetron was here demonstrated as a potent inhibitor of MATE transporters. • Ondansetron enhanced cisplatin nephrotoxicity likely via Mate1 inhibition in mice. • Ondansetron may increase patient risk of nephrotoxicity in cisplatin chemotherapy.« less
Giraud, T; Jonot, O; Shykoff, J A
2006-05-01
Microbotryum violaceum is a fungus that causes the sterilizing anther smut disease in Caryophyllaceae. Its diploid teliospores normally produce equal proportions of haploid sporidia of its two mating types. However natural populations contain high frequencies of individuals producing sporidia of only one mating type ('biased strains'). This mating type-ratio bias is caused by deleterious alleles at haploid phase ('haplo-lethals') linked to the mating type locus that can be transmitted only by intra-tetrad selfing. We used experimental inoculations to test some of the hypotheses proposed to explain the maintenance of haplo-lethals. We found a disadvantage of biased strains in infection ability and high intra-tetrad mating rates. Biased strains had no higher competitive ability nor shorter latency and their higher spore production per flower appeared insufficient to compensate their disadvantages. These findings were only consistent with the hypothesis that haplo-lethals are maintained under a metapopulation structure because of high intra-tetrad selfing rates, founder effects and selection at the population level.
Kim, Jung-Mi; Hong, Sung Kee; Kim, Wan Gyu; Chun, Se-Chul; Yu, Seung-Hun
2009-01-01
Twenty-five isolates of Fusarium fujikuroi acquired from rice seeds and rice plants evidencing symptoms of Bakanae disease were evaluated to determine their mating types and characterize the formation of their sexual state. The mating types of the isolates were evaluated via multiplex PCR with the diagnostic primers of the mating-type (MAT) region: GFmat1a, GFmat1b, GFmat2c, and GFmat2d. Among the 25 isolates, 11 were identified as MAT-1 (male), and 14 as MAT-2 (female). Four MAT-1 isolates and three MAT-2 isolates were mated and cultured to evaluate the optimal culture conditions for the production of their sexual states. Among four tested media, 10% V8 juice agar proved optimal for the perithecial production of the isolates. The isolates also generated the largest numbers of perithecia when incubated at 23℃ in alternating cycles of 12 hr fluorescent light and NUV fluorescent light and 12 hr darkness. PMID:23983543
Díaz-Valderrama, J R; Aime, M C
2016-01-01
The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IAs) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IAs values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America. PMID:26932308
Díaz-Valderrama, J R; Aime, M C
2016-06-01
The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IA(s)) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IA(s) values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America.
Silk wrapping of nuptial gifts as visual signal for female attraction in a crepuscular spider
NASA Astrophysics Data System (ADS)
Trillo, Mariana C.; Melo-González, Valentina; Albo, Maria J.
2014-02-01
An extensive diversity of nuptial gifts is known in invertebrates, but prey wrapped in silk is a unique type of gift present in few insects and spiders. Females from spider species prefer males offering a gift accepting more and longer matings than when males offered no gift. Silk wrapping of the gift is not essential to obtain a mating, but appears to increase the chance of a mating evidencing a particularly intriguing function of this trait. Consequently, as other secondary sexual traits, silk wrapping may be an important trait under sexual selection, if it is used by females as a signal providing information on male quality. We aimed to understand whether the white color of wrapped gifts is used as visual signal during courtship in the spider Paratrechalea ornata. We studied if a patch of white paint on the males' chelicerae is attractive to females by exposing females to males: with their chelicerae painted white; without paint; and with the sternum painted white (paint control). Females contacted males with white chelicerae more often and those males obtained higher mating success than other males. Thereafter, we explored whether silk wrapping is a condition-dependent trait and drives female visual attraction. We exposed good and poor condition males, carrying a prey, to the female silk. Males in poor condition added less silk to the prey than males in good condition, indicating that gift wrapping is an indicator of male quality and may be used by females to acquire information of the potential mate.
Robson, Gillian E.; Williams, Keith L.
1979-01-01
The genetic basis of vegetative incompatibility in the cellular slime mold, Dictyostelium discoideum, is elucidated. Vegetatively compatible haploid strains from parasexual diploids at a frequency of between 10-6 and 10-5, whereas "escaped" diploids are formed between vegetatively incompatible strains at a frequency of ∼10-8. There is probably only a single vegetative incompatibility site, which appears to be located at, or closely linked to, the mating-type locus. The nature of the vegetative incompatibility is deduced from parasexual diploid formation between wild isolates and tester strains of each mating type, examination of the frequency of formation of "escaped" diploids formed between vegetatively incompatible strains, and examination of the mating type and vegetative incompatibility of haploid segregants obtained from "escaped" diploids. PMID:17248984
Isolation of pheromone precursor genes of Magnaporthe grisea.
Shen, W C; Bobrowicz, P; Ebbole, D J
1999-01-01
In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia. Copyright 1999 Academic Press.
Mars Array Technology Experiment Developed to Test Solar Arrays on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2001-01-01
Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types and two different solar cell strings, to qualify advanced solar cell types for future Mars missions. The MATE instrument, designed for the Mars-2001 Surveyor Lander mission, contains a capable suite of sensors that will provide both scientific information as well as important engineering data on the operation of solar power systems on Mars. MATE will characterize the intensity and spectrum of the solar radiation on Mars and measure the performance of solar arrays in the Mars environment. MATE flight hardware was built and tested at the NASA Glenn Research Center and is ready for flight.
Homosexual mating preferences from an evolutionary perspective: sexual selection theory revisited.
Gobrogge, Kyle L; Perkins, Patrick S; Baker, Jessica H; Balcer, Kristen D; Breedlove, S Marc; Klump, Kelly L
2007-10-01
Studies in evolutionary psychology and sexual selection theory show that heterosexual men prefer younger mating partners than heterosexual women in order to ensure reproductive success. However, previous research has generally not examined differences in mating preferences as a function of sexual orientation or the type of relationship sought in naturalistic settings. Given that homosexual men seek partners for reasons other than procreation, they may exhibit different mating preferences than their heterosexual counterparts. Moreover, mating preferences may show important differences depending on whether an individual is seeking a long-term versus a short-term relationship. The purpose of the present study was to examine these issues by comparing partner preferences in terms of age and relationship type between homosexual and heterosexual men placing internet personal advertisements. Participants included 439 homosexual and 365 heterosexual men who placed internet ads in the U.S. or Canada. Ads were coded for the participant's age, relationship type (longer-term or short-term sexual encounter) sought, and partner age preferences. Significantly more homosexual than heterosexual men sought sexual encounters, although men (regardless of sexual orientation) seeking sexual encounters preferred a significantly wider age range of partners than men seeking longer-term relationships. These findings suggest that partner preferences are independent of evolutionary drives to procreate, since both types of men preferred similar ages in their partners. In addition, they highlight the importance of examining relationship type in evolutionary studies of mating preferences, as men's partner preferences show important differences depending upon the type of relationship sought.
Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts
Fu, Ci; Sun, Sheng; Billmyre, R. Blake; Roach, Kevin C.; Heitman, Joseph
2014-01-01
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller’s ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen. PMID:25173822
Computational mate choice: theory and empirical evidence.
Castellano, Sergio; Cadeddu, Giorgia; Cermelli, Paolo
2012-06-01
The present review is based on the thesis that mate choice results from information-processing mechanisms governed by computational rules and that, to understand how females choose their mates, we should identify which are the sources of information and how they are used to make decisions. We describe mate choice as a three-step computational process and for each step we present theories and review empirical evidence. The first step is a perceptual process. It describes the acquisition of evidence, that is, how females use multiple cues and signals to assign an attractiveness value to prospective mates (the preference function hypothesis). The second step is a decisional process. It describes the construction of the decision variable (DV), which integrates evidence (private information by direct assessment), priors (public information), and value (perceived utility) of prospective mates into a quantity that is used by a decision rule (DR) to produce a choice. We make the assumption that females are optimal Bayesian decision makers and we derive a formal model of DV that can explain the effects of preference functions, mate copying, social context, and females' state and condition on the patterns of mate choice. The third step of mating decision is a deliberative process that depends on the DRs. We identify two main categories of DRs (absolute and comparative rules), and review the normative models of mate sampling tactics associated to them. We highlight the limits of the normative approach and present a class of computational models (sequential-sampling models) that are based on the assumption that DVs accumulate noisy evidence over time until a decision threshold is reached. These models force us to rethink the dichotomy between comparative and absolute decision rules, between discrimination and recognition, and even between rational and irrational choice. Since they have a robust biological basis, we think they may represent a useful theoretical tool for behavioural ecologist interested in integrating proximate and ultimate causes of mate choice. Copyright © 2012 Elsevier B.V. All rights reserved.
Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio).
Howard, Richard D; Rohrer, Karl; Liu, Yiyang; Muir, William M
2015-05-01
Demonstrating relationships between sexual selection mechanisms and trait evolution is central to testing evolutionary theory. Using zebrafish, we found that wild-type males possessed a significant advantage in mate competition over transgenic RFP Glofish® males. In mating trials, wild-type males were aggressively superior to transgenic males in male-male chases and male-female chases; as a result, wild-type males sired 2.5× as many young as did transgenic males. In contrast, an earlier study demonstrated that female zebrafish preferred transgenic males as mates when mate competition was excluded experimentally. We tested the evolutionary consequence of this conflict between sexual selection mechanisms in a long-term study. The predicted loss of the transgenic phenotype was confirmed. More than 18,500 adults collected from 18 populations across 15 generations revealed that the frequency of the transgenic phenotype declined rapidly and was eliminated entirely in all but one population. Fitness component data for both sexes indicated that only male mating success differed between wild-type and transgenic individuals. Our predictive demographic model based on fitness components closely matched the rate of transgenic phenotype loss observed in the long-term study, thereby supporting its utility for studies assessing evolutionary outcomes of escaped or released genetically modified animals. © 2015 The Author(s).
Sexual reproduction and sex determination in green algae.
Sekimoto, Hiroyuki
2017-05-01
The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt + ) and mating type minus (mt - ), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt + and mt - mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.
Allen, W R; Wilsher, S
2012-09-01
Although considerable variation in per cycle pregnancy rates exists between Thoroughbred (TB) stallions, there is little information on factors that may influence this figure. To assess the influence of month, mare numbers and mating frequency on the fertility of TB stallions standing on studfarms in East Anglia, England. The daily breeding records of 31 TB stallions mating 3034 mares on 4851 occasions during the 2010 season were surveyed and related to first scan pregnancy rates. The influences of mare book size, month, number of matings per day and mating frequency or abstinence on per mating pregnancy rates were analysed. The overall per mating pregnancy rate for all the stallions was 59.6%, but for individual stallions the figures ranged from 19.0% to 80.1%. The first mating occurred on 9 February and the last on 24 July and the per mating pregnancy rate per month was significantly reduced in June and July. The number of mares mated by individual stallions ranged from 15 to 161, giving a mean overall workload of 160 matings per 100 mares. The per mating pregnancy rate was not related to book size, the number of matings in the season or the mating frequency per day. However, some stallions showed differences in per mating pregnancy rate related to month or the number of ejaculations in the preceding 3 days. The majority of TB stallions are able to maintain good fertility despite large books of mares. However, 5 of the 31 stallions surveyed showed a per mating pregnancy rate of ≤50%. This survey has identified wide differences between the per mating pregnancy rate in TB stallions. Identification of the factors involved through more comprehensive surveys would provide useful information for mare and stallion owners. © 2011 EVJ Ltd.
Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena.
Orias, Eduardo; Singh, Deepankar Pratap; Meyer, Eric
2017-09-08
While sex is an ancient and highly conserved eukaryotic invention, self-incompatibility systems such as mating types or sexes appear to be derived limitations that show considerable evolutionary plasticity. Within a single class of ciliates, Paramecium and Tetrahymena species have long been known to present a wide variety of mating type numbers and modes of inheritance, but only recently have the genes involved been identified. Although similar transmembrane proteins mediate self/nonself recognition in both ciliates, the mechanisms of mating type determination differ widely, ranging from Mendelian systems to developmental nuclear differentiation, either stochastic or maternally inherited. The non-Mendelian systems rely on programmed editing of the germline genome that occurs during differentiation of the somatic nucleus, and they have co-opted different DNA recombination mechanisms-some previously unknown. Here we review the recent molecular advances and some remaining unsolved questions and discuss the possible implications of these diverse mechanisms for inbreeding/outbreeding balance regulation.
Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.
Wilson, Nedra F
2008-01-01
During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.
Maintaining heterokaryosis in pseudo-homothallic fungi
Grognet, Pierre; Silar, Philippe
2015-01-01
Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species. PMID:26479494
Maintaining heterokaryosis in pseudo-homothallic fungi.
Grognet, Pierre; Silar, Philippe
2015-01-01
Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.
Votintseva, A A; Filatov, D A
2011-01-01
The population-genetic processes leading to the genetic degeneration of non-recombining regions have mainly been studied in animal and plant sex chromosomes. Here, we report population genetic analysis of the processes in the non-recombining mating-type-specific regions of the smut fungus Microbotryum violaceum. M. violaceum has A1 and A2 mating types, determined by mating-type-specific ‘sex chromosomes' that contain 1–2 Mb long non-recombining regions. If genetic degeneration were occurring, then one would expect reduced DNA polymorphism in the non-recombining regions of this fungus. The analysis of DNA diversity among 19 M. violaceum strains, collected across Europe from Silene latifolia flowers, revealed that (i) DNA polymorphism is relatively low in all 20 studied loci (π∼0.15%), (ii) it is not significantly different between the two mating-type-specific chromosomes nor between the non-recombining and recombining regions, (iii) there is substantial population structure in M. violaceum populations, which resembles that of its host species, S. latifolia, and (iv) there is significant linkage disequilibrium, suggesting that widespread selfing in this species results in a reduction of the effective recombination rate across the genome. We hypothesise that selfing-related reduction of recombination across the M. violaceum genome negates the difference in the level of DNA polymorphism between the recombining and non-recombining regions, and may possibly lead to similar levels of genetic degeneration in the mating-type-specific regions of the non-recombining ‘sex chromosomes' and elsewhere in the genome. PMID:21081967
77 FR 66836 - Notice of Receipt of Pesticide Products; Registration Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... Pheromone Mimic (7,9,11-Dodecatrien-1-ol, formate at 90.8%. Product Type: Pheromone (Mating Disruptor... (Mating Disruptor) with Carob Moth Pheromone Mimic (7,9,11-Dodecatrien-1-ol, formate at 2%. Product Type...
An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi
Wallen, R. M.; Perlin, Michael H.
2018-01-01
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi. PMID:29619017
Li, Hao-Xi; Gottilla, Thomas M; Brewer, Marin Talbot
2017-10-01
Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Alpha3, a transposable element that promotes host sexual reproduction.
Barsoum, Emad; Martinez, Paula; Aström, Stefan U
2010-01-01
Theoretical models predict that selfish DNA elements require host sex to persist in a population. Therefore, a transposon that induces sex would strongly favor its own spread. We demonstrate that a protein homologous to transposases, called alpha3, was essential for mating type switch in Kluyveromyces lactis. Mutational analysis showed that amino acids conserved among transposases were essential for its function. During switching, sequences in the 5' and 3' flanking regions of the alpha3 gene were joined, forming a DNA circle, showing that alpha3 mobilized from the genome. The sequences encompassing the alpha3 gene circle junctions in the mating type alpha (MATalpha) locus were essential for switching from MATalpha to MATa, suggesting that alpha3 mobilization was a coupled event. Switching also required a DNA-binding protein, Mating type switch 1 (Mts1), whose binding sites in MATalpha were important. Expression of Mts1 was repressed in MATa/MATalpha diploids and by nutrients, limiting switching to haploids in low-nutrient conditions. A hairpin-capped DNA double-strand break (DSB) was observed in the MATa locus in mre11 mutant strains, indicating that mating type switch was induced by MAT-specific DSBs. This study provides empirical evidence for selfish DNA promoting host sexual reproduction by mediating mating type switch.
Model of Exploratory Search for Mating Partners by Fission Yeast
NASA Astrophysics Data System (ADS)
Hurwitz, Daniel; Bendezu, Felipe; Martin, Sophie; Vavylonis, Dimitrios
2014-03-01
During conditions of nitrogen starvation, the model eukaryote S. pombe (fission yeast) undergoes sexual sporulation. Because fission yeast are non-motile, contact between opposite mating types during spore formation is accomplished by polarizing growth, via the Rho GTP-ase Cdc42, in each mating type towards the selected mate, a process known as shmooing. Recent findings showed that cells pick one of their neighboring compatible mates by randomizing the position of the Cdc42 complex about the cell membrane, such that the complex is stabilized near areas of high concentration of the opposite mating type pheromone. We developed Monte Carlo simulations to model partner finding in populations of mating cells and in small cell clusters. We assume that pheromones are secreted at the site of Cdc42 accumulation and that the Cdc42 dwell time increases in response to increasing pheromone concentration. We measured the number of cells that succeed in successful reciprocal pairing, the number of cells that were unable to find a partner, and the number of cells that picked a partner already engaged with another cell. For optimal cell pairing, we find the pheromone concentration decay length is around 1 micron, of order the cell size. We show that non-linear response of Cdc42 dwell time to pheromone concentration improves the number of successful pairs for a given spatial cell distribution. We discuss how these results compare to non-exploratory pairing mechanisms.
Gorjanc, Gregor; Hickey, John M
2018-05-02
AlphaMate is a flexible program that optimises selection, maintenance of genetic diversity, and mate allocation in breeding programs. It can be used in animal and cross- and self-pollinating plant populations. These populations can be subject to selective breeding or conservation management. The problem is formulated as a multi-objective optimisation of a valid mating plan that is solved with an evolutionary algorithm. A valid mating plan is defined by a combination of mating constraints (the number of matings, the maximal number of parents, the minimal/equal/maximal number of contributions per parent, or allowance for selfing) that are gender specific or generic. The optimisation can maximize genetic gain, minimize group coancestry, minimize inbreeding of individual matings, or maximize genetic gain for a given increase in group coancestry or inbreeding. Users provide a list of candidate individuals with associated gender and selection criteria information (if applicable) and coancestry matrix. Selection criteria and coancestry matrix can be based on pedigree or genome-wide markers. Additional individual or mating specific information can be included to enrich optimisation objectives. An example of rapid recurrent genomic selection in wheat demonstrates how AlphaMate can double the efficiency of converting genetic diversity into genetic gain compared to truncation selection. Another example demonstrates the use of genome editing to expand the gain-diversity frontier. Executable versions of AlphaMate for Windows, Mac, and Linux platforms are available at http://www.AlphaGenes.roslin.ed.ac.uk/AlphaMate. gregor.gorjanc@roslin.ed.ack.uk.
USDA-ARS?s Scientific Manuscript database
Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern USA. There is no information available on the fine scale population genetic diversity. Four cv. Wichita trees (populations) were sampled hierarchically. Within each tree canopy, 4 approximately evenly spaced terminals...
Persinoti, Gabriela F.; Martinez, Diego A.; Li, Wenjun; Döğen, Aylin; Billmyre, R. Blake; Averette, Anna; Goldberg, Jonathan M.; Shea, Terrance; Young, Sarah; Zeng, Qiandong; Oliver, Brian G.; Barton, Richard; Metin, Banu; Hilmioğlu-Polat, Süleyha; Ilkit, Macit; Gräser, Yvonne; Martinez-Rossi, Nilce M.; White, Theodore C.; Heitman, Joseph; Cuomo, Christina A.
2018-01-01
Dermatophytes include fungal species that infect humans, as well as those that also infect other animals or only grow in the environment. The dermatophyte species Trichophyton rubrum is a frequent cause of skin infection in immunocompetent individuals. While members of the T. rubrum species complex have been further categorized based on various morphologies, their population structure and ability to undergo sexual reproduction are not well understood. In this study, we analyze a large set of T. rubrum and T. interdigitale isolates to examine mating types, evidence of mating, and genetic variation. We find that nearly all isolates of T. rubrum are of a single mating type, and that incubation with T. rubrum “morphotype” megninii isolates of the other mating type failed to induce sexual development. While the region around the mating type locus is characterized by a higher frequency of SNPs compared to other genomic regions, we find that the population is remarkably clonal, with highly conserved gene content, low levels of variation, and little evidence of recombination. These results support a model of recent transition to asexual growth when this species specialized to growth on human hosts. PMID:29467168
Chen, Bo-Jian; Liu, Kai; Zhou, Lin-Jun; Gomes-Silva, Guilherme; Sommer-Trembo, Carolin; Plath, Martin
2018-01-01
Consistent individual differences in behavioral tendencies (animal personality) can affect individual mate choice decisions. We asked whether personality traits affect male and female mate choice decisions similarly and whether potential personality effects are consistent across different mate choice situations. Using western mosquitofish (Gambusia affinis) as our study organism, we characterized focal individuals (males and females) twice for boldness, activity, and sociability/shoaling and found high and significant behavioral repeatability. Additionally, each focal individual was tested in two different dichotomous mate choice tests in which it could choose between computer-animated stimulus fish of the opposite sex that differed in body size and activity levels, respectively. Personality had different effects on female and male mate choice: females that were larger than average showed stronger preferences for large-bodied males with increasing levels of boldness/activity (i.e., towards more proactive personality types). Males that were larger than average and had higher shoaling tendencies showed stronger preferences for actively swimming females. Size-dependent effects of personality on the strength of preferences for distinct phenotypes of potential mating partners may reflect effects of age/experience (especially in females) and social dominance (especially in males). Previous studies found evidence for assortative mate choice based on personality types or hypothesized the existence of behavioral syndromes of individuals' choosiness across mate choice criteria, possibly including other personality traits. Our present study exemplifies that far more complex patterns of personality-dependent mate choice can emerge in natural systems.
Same-Sex Gaze Attraction Influences Mate-Choice Copying in Humans
Yorzinski, Jessica L.; Platt, Michael L.
2010-01-01
Mate-choice copying occurs when animals rely on the mating choices of others to inform their own mating decisions. The proximate mechanisms underlying mate-choice copying remain unknown. To address this question, we tracked the gaze of men and women as they viewed a series of photographs in which a potential mate was pictured beside an opposite-sex partner; the participants then indicated their willingness to engage in a long-term relationship with each potential mate. We found that both men and women expressed more interest in engaging in a relationship with a potential mate if that mate was paired with an attractive partner. Men and women's attention to partners varied with partner attractiveness and this gaze attraction influenced their subsequent mate choices. These results highlight the prevalence of non-independent mate choice in humans and implicate social attention and reward circuitry in these decisions. PMID:20161739
Duménil, Claire; Woud, David; Pinto, Francesco; Alkema, Jeroen T; Jansen, Ilse; Van Der Geest, Anne M; Roessingh, Sanne; Billeter, Jean-Christophe
2016-03-01
Individuals can make choices based on information learned from others, a phenomenon called social learning. How observers differentiate between which individual they should or should not learn from is, however, poorly understood. Here, we showed that Drosophila melanogaster females can influence the choice of egg-laying site of other females through pheromonal marking. Mated females mark territories of high quality food by ejecting surplus male sperm containing the aggregation pheromone cis-11-vaccenyl acetate (cVA) and, in addition, deposit several sex- and species-specific cuticular hydrocarbon (CHC) pheromones. These pheromonal cues affect the choices of other females, which respond by preferentially laying eggs on the marked food. This system benefits both senders and responders, as communal egg laying increases offspring survival. Virgin females, however, do not elicit a change in the egg-laying decision of mated females, even when food has been supplemented with ejected sperm from mated females, thus indicating the necessity for additional cues. Genetic ablation of either a female's CHC pheromones or those of their mate results in loss of ability of mated females to attract other females. We conclude that mated females use a pheromonal marking system, comprising cVA acquired from male ejaculate with sex- and species-specific CHCs produced by both mates, to indicate egg-laying sites. This system ensures information reliability because mated, but not virgin, females have both the ability to generate the pheromone blend that attracts other flies to those sites and a direct interest in egg-laying site quality.
Bui, Tien; Lin, Xiaorong; Malik, Richard; Heitman, Joseph; Carter, Dee
2008-01-01
Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type α and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible α-α unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for α-α unions is evidence that α-α unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules. PMID:18552280
Integrating TV/digital data spectrograph system
NASA Technical Reports Server (NTRS)
Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.
1975-01-01
A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.
Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici
Carlson, Maryn O.; Gazave, Elodie; Gore, Michael A.; Smart, Christine D.
2017-01-01
Defining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen, Phytophthora capsici, into a grower’s field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two P. capsici isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009–2013 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F1 in 2009–2010, to multi-generational in 2011, and ultimately all inbred in 2012–2013. Survival of F1 oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in Phytophthora. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations. PMID:28348576
Salkicevic, Svjetlana; Stanic, Ajana L; Grabovac, Masa T
2014-12-07
Mate retention strategies are an important tool in keeping a partner, and their use is determined by the mate value (MV) of the partner one is trying to keep. The type of strategy used is also dependent on one's own MV: mates of lower MV are more prone to exhibiting strategies that are cost-inflicting for their partners, whereas partner-benefiting strategies are used by mates of higher value. The type of strategies used affects relationship satisfaction (RS), and is also affected by the perceived difference in MVs. However, it is unclear how someone's perception of their partner's MV is related to that partner's behavior and their own RS. To this aim, we investigated the relationship between these variables on a sample of 178 couples. Our results showed that benefit-inducing strategies were used more by--and towards--partners of higher MV, and were positively connected with RS. Cost-inflicting strategies were more used by--and towards--partners of lower MV, and were negatively connected with RS. Less MV difference was positively correlated with RS and benefiting strategies, and negatively correlated with cost-inflicting strategies. It seems that good mates use strategies that benefit their partners, which, in turn, make them more valuable and, consequently, their partner more satisfied.
Is there a role for amplifiers in sexual selection?
Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio
2008-05-21
The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information transfer at the emitter level due to the increased stereotypy of male advertising strategy.
Characterization of Phytophthora infestans populations in northwestern Algeria during 2008-2014.
Rekad, Fatma Zohra; Cooke, David Edward Llewelyn; Puglisi, Ivana; Randall, Eva; Guenaoui, Yamina; Bouznad, Zouaoui; Evoli, Maria; Pane, Antonella; Schena, Leonardo; Magnano di San Lio, Gaetano; Cacciola, Santa Olga
2017-05-01
A total of 161 Phytophthora infestans isolates, collected from infected potato and tomato plants during 2008-2014, were characterized based on mating type, metalaxyl sensitivity and polymorphism at 12 simple sequence repeat (SSR) loci, in order to investigate the population of P. infestans in the north-west of Algeria, an emerging potato production region. The majority of isolates were of A2 mating type (112 isolates). A high percentage (89 %) of resistance to metalaxyl among isolates was detected. The metalaxyl resistant phenotype was present in both mating types with a higher percentage in A2 mating type isolates. SSR-based genotypic analysis of P. infestans population showed a low diversity. Genotype 13_A2 was the predominant in the population with a frequency of 67 % followed by 2_A1 (21 %) and 23_A1 (5 %). Genotype 23_A1 was detected only in tomato and potato isolates collected in 2013 and 2014. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina
Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert
2013-01-01
High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi. PMID:23935511
Efficiency of the Use of Pedigree and Molecular Marker Information in Conservation Programs
Fernández, Jesús; Villanueva, Beatriz; Pong-Wong, Ricardo; Toro, Miguel Ángel
2005-01-01
The value of molecular markers and pedigree records, separately or in combination, to assist in the management of conserved populations has been tested. The general strategy for managing the population was to optimize contributions of parents to the next generation for minimizing the global weighted coancestry. Strategies differed in the type of information used to compute global coancestries, the number and type of evaluated individuals, and the system of mating. Genealogical information proved to be very useful (at least for 10 generations of management) to arrange individuals' contributions via the minimization of global coancestry. In fact, the level of expected heterozygosity after 10 generations yielded by this strategy was 88–100% of the maximum possible improvement obtained if the genotype for all loci was known. Marker information was of very limited value if used alone. The amount and degree of polymorphism of markers to be used to compute molecular coancestry had to be high to mimic the performance of the strategy relying on pedigree, especially in the short term (for example, >10 markers per chromosome with 10 alleles each were needed if only the parents' genotype was available). When both sources of information are combined to calculate the coancestry conditional on markers, clear increases in effective population size (Ne) were found, but observed diversity levels (either gene or allelic diversity) in the early generations were quite similar to the ones obtained with pedigree alone. The advantage of including molecular information is greater when information is available on a greater number of individuals (offspring and parents vs. parents only). However, for realistic situations (i.e., large genomes) the benefits of using information on offspring are small. The same conclusions were reached when comparing the use of the different types of information (genealogical or/and molecular) to perform minimum coancestry matings. PMID:15879510
Deng, Yan; Zheng, Yong
2015-01-26
Studies of humans and non-human animals indicate that females tend to change the likelihood of choosing a potential mate based on the decisions of other females; this is known as mate-choice copying. In a sample of both single and coupled women, we examined the influence of other women's (model) mate-choice decisions, including mate acceptance and mate rejection, on participants' attractiveness ratings of men (target) and willingness of mate selection. We also examined whether different types of relationships between the target men and the model women affected mate-choice copying. We found that both the single and coupled women showed mate-choice copying, but their response patterns differed. The significant effects for single women were dependent on a decrease in attractiveness ratings when they perceived the models' mate rejection. However, the significant findings for coupled women relied on an increase in attractiveness ratings when they observed the models' mate acceptance. Furthermore, the relationship status between the target men and the model women affected the magnitude of mate-choice copying effects for the single women. Specifically, they showed less mate-choice copying when the targets and models were in a committed romantic relationship than when in a temporary relationship.
Conroy-Beam, Daniel; Buss, David M.
2016-01-01
Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection. PMID:27276030
Conroy-Beam, Daniel; Buss, David M
2016-01-01
Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection.
Mating-type locus characterization and variation in Pyrenophora semeniperda
Julie Leanna Henry
2015-01-01
Pyrenophora semeniperda is a generalist fungal pathogen that occurs primarily on monocot seed hosts. It is in the phylum Ascomycota, which includes both self-compatible (homothallic) and self-incompatible (heterothallic) species. Homothallic fungal species contain complementary mating-type (MAT) idiomorphs in a single unikaryotic strain, while heterothallic strains...
Mating compatibility in the parasitic protist Trypanosoma brucei.
Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy
2014-02-21
Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion.
Mating compatibility in the parasitic protist Trypanosoma brucei
2014-01-01
Background Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. Methods We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Results Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. Conclusions The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion. PMID:24559099
Equilibrium population dynamics when mating is by mutual choice based on age.
Alpern, Steve; Katrantzi, Ioanna; Ramsey, David
2014-06-01
We consider a steady state model of mutual mate choice in which an individual's mate preferences depend on his/her age, and the preferences are over the ages of prospective mates of the opposite sex. We present a discrete time (and age) model corresponding to successive mating seasons. Males are fertile for m periods (corresponding to 'age' i=1 to m) and females for n≤m periods (they have ages j=1 to n), which is all that distinguishes the sexes. Although we can deal with arbitrary preferences, we concentrate on a simple fertility model where the common utility to a male age i and female age j who mate is the number K=min(m-i+1,n-j+1) of future periods of joint fertility. The incoming sex ratio R of age 1 males to age 1 females is given exogenously. In each period individuals are randomly (non assortatively) matched and form a mated couple by mutual consent; otherwise they go into the next period unmated and older. We derive properties of equilibrium threshold acceptance strategies and establish the existence of time-invariant age distributions. Our methods determine the age distribution of couples at marriage (mating) and the population sex ratio (OSR) at equilibrium. Since this can be determined empirically in a population, our model can be used to rule out most systems of age preferences (those not consistent with the observed distribution). This extends earlier models of mutual choice with one dimensional types of Alpern and Reyniers [1999. Strategic mating with homotypic preferences. J. Theor. Biol. 198, 71-88; 2005. Strategic mating with common preferences. J. Theor. Biol. 237, 337-354] where individuals sought, respectively, individuals with similar or high types, but in those models an individual's type was fixed over time. Under the simple fertility model, at equilibrium the maximum age of an acceptable partner is increasing in the age of the searcher. Our results relate to discussions in the literature regarding optimal parental age differences, age-related mate preferences, and to mate choice in general. We believe our model will be used as a tool in future investigations in these areas. Copyright © 2013 Elsevier Inc. All rights reserved.
Monitoring Indianmeal moth in the presence of mating disruption
USDA-ARS?s Scientific Manuscript database
Mating disruption with female sex pheromone offers a least-toxic, worker-friendly alternative to fumigation and fogging for control of the Indianmeal moth, an important postharvest pest. Commercial formulations are available for control of this pest with mating disruption, but loss of information fr...
Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie
2016-07-01
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.
Electrician's Mate 3 & 2: Rate Training Manual.
ERIC Educational Resources Information Center
Naval Education and Training Command, Pensacola, FL.
The training manual provides information related to the tasks assigned to the Electrician's Mate Third and Second Class who operate and maintain power and lighting systems and associated equipment. Individual chapters deal with: career challenges for the Electrician's Mate, safety precautions, test equipment, electrical installations, A-C power…
Biased learning affects mate choice in a butterfly.
Westerman, Erica L; Hodgins-Davis, Andrea; Dinwiddie, April; Monteiro, Antónia
2012-07-03
Early acquisition of mate preferences or mate-preference learning is associated with signal diversity and speciation in a wide variety of animal species. However, the diversity of mechanisms of mate-preference learning across taxa remains poorly understood. Using the butterfly Bicyclus anynana we uncover a mechanism that can lead to directional sexual selection via mate-preference learning: a bias in learning enhanced ornamentation, which is independent of preexisting mating biases. Naïve females mated preferentially with wild-type males over males with enhanced wing ornamentation, but females briefly exposed to enhanced males mated significantly more often with enhanced males. In contrast, females exposed to males with reduced wing ornamentation did not learn to prefer drab males. Thus, we observe both a learned change of a preexisting mating bias, and a bias in ability to learn enhanced male ornaments over reduced ornaments. Our findings demonstrate that females are able to change their preferences in response to a single social event, and suggest a role for biased learning in the evolution of visual sexual ornamentation.
Establishment and Maintenance of a Heterochromatin Domain
NASA Astrophysics Data System (ADS)
Hall, Ira M.; Shankaranarayana, Gurumurthy D.; Noma, Ken-ichi; Ayoub, Nabieh; Cohen, Amikam; Grewal, Shiv I. S.
2002-09-01
The higher-order assembly of chromatin imposes structural organization on the genetic information of eukaryotes and is thought to be largely determined by posttranslational modification of histone tails. Here, we study a 20-kilobase silent domain at the mating-type region of fission yeast as a model for heterochromatin formation. We find that, although histone H3 methylated at lysine 9 (H3 Lys9) directly recruits heterochromatin protein Swi6/HP1, the critical determinant for H3 Lys9 methylation to spread in cis and to be inherited through mitosis and meiosis is Swi6 itself. We demonstrate that a centromere-homologous repeat (cenH) present at the silent mating-type region is sufficient for heterochromatin formation at an ectopic site, and that its repressive capacity is mediated by components of the RNA interference (RNAi) machinery. Moreover, cenH and the RNAi machinery cooperate to nucleate heterochromatin assembly at the endogenous mat locus but are dispensable for its subsequent inheritance. This work defines sequential requirements for the initiation and propagation of regional heterochromatic domains.
Palmer, Jonathan M; Kubatova, Alena; Novakova, Alena; Minnis, Andrew M; Kolarik, Miroslav; Lindner, Daniel L
2014-07-21
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungus. To gain insight into the genes involved in sexual reproduction, we characterized the mating-type locus (MAT) of two Pseudogymnoascus spp. that are closely related to P. destructans and homothallic (self-fertile). As with other homothallic Ascomycota, the MAT locus of these two species encodes a conserved α-box protein (MAT1-1-1) as well as two high-mobility group (HMG) box proteins (MAT1-1-3 and MAT1-2-1). Comparisons with the MAT locus of the North American isolate of P. destructans (the ex-type isolate) revealed that this isolate of P. destructans was missing a clear homolog of the conserved HMG box protein (MAT1-2-1). These data prompted the discovery and molecular characterization of a heterothallic mating system in isolates of P. destructans from the Czech Republic. Both mating types of P. destructans were found to coexist within hibernacula, suggesting the presence of mating populations in Europe. Although populations of P. destructans in North America are thought to be clonal and of one mating type, the potential for sexual recombination indicates that continued vigilance is needed regarding introductions of additional isolates of this pathogen. Copyright © 2014 Palmer et al.
Palmer, Jonathan M.; Kubatova, Alena; Novakova, Alena; Minnis, Andrew M.; Kolarik, Miroslav; Lindner, Daniel L.
2014-01-01
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungus. To gain insight into the genes involved in sexual reproduction, we characterized the mating-type locus (MAT) of two Pseudogymnoascus spp. that are closely related to P. destructans and homothallic (self-fertile). As with other homothallic Ascomycota, the MAT locus of these two species encodes a conserved α-box protein (MAT1-1-1) as well as two high-mobility group (HMG) box proteins (MAT1-1-3 and MAT1-2-1). Comparisons with the MAT locus of the North American isolate of P. destructans (the ex-type isolate) revealed that this isolate of P. destructans was missing a clear homolog of the conserved HMG box protein (MAT1-2-1). These data prompted the discovery and molecular characterization of a heterothallic mating system in isolates of P. destructans from the Czech Republic. Both mating types of P. destructans were found to coexist within hibernacula, suggesting the presence of mating populations in Europe. Although populations of P. destructans in North America are thought to be clonal and of one mating type, the potential for sexual recombination indicates that continued vigilance is needed regarding introductions of additional isolates of this pathogen. PMID:25053709
Still and Moving Image Evidences for Mating of Echinococcus granulosus Reared in Culture Media.
Mohammadzadeh, Tahereh; Sadjjadi, Seyed Mahmoud; Rahimi, Hamidreza
2014-03-01
Echinococcus granulosus cultivation is very important for improvement of different aspect of medical and veterinary researches. Despite many advances in this case, there is a missing link for in vitro life cycle of adult worms and it is fertilization. Regarding the researchers' observations, self-fertilization can be done in worms living in dog intestine, but despite all sorts of experimental techniques, this phenomenon has never been observed in reared worms in culture media. Furthermore, cross fertilization has not been observed in vitro and even in parasites with dog intestinal origin; although it theoretically is possible. During a follow-up of cultivated adult worms, evidences of behaviors similar to self-mating (Type 2) and cross-mating were observed in our lab which will be presented here. Protoscoleces were aseptically removed from sheep hydatid cysts, washed twice with PBS and then cultivated in S.10E.H culture medium. The stages of parasite growth were observed using an inverted microscope for two months and all stages and behaviors were microscopically photographed. Different movies have also been made from these behavioral features. After around 55 days post cultivation, some evidences of behaviors similar to self-mating (Type 2) and cross-mating were observed in some of the mature adult worms. However, fertile eggs in these parasites have never been observed. Regarding the above observations, these parasites show tendency to unsuccessful self-mating/fertilization (type 2) which failure could be due to anatomical position and physiological maturation. Also lack of suitable conditions for self-fertilization causes the worms try to do unsuccessful cross- mating/fertilization in culture media.
USDA-ARS?s Scientific Manuscript database
Chickpea production is greatly hampered by blight causing fungal pathogen Ascochyta rabiei (AR) in chickpea growing regions of the world. Genetic variability and mating type frequency of thirty-two AR isolates from six geographical regions of Pakistan were compared with a US-AR population. Pakistani...
Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D
2017-05-01
Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.
NASA Astrophysics Data System (ADS)
Abadjiev, Valentin; Abadjieva, Emilia
2016-06-01
Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid and Helicon gear drives. The classical gear drives of this type are the Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion possesses threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three types transmis- sions with face mating gears and a conic pinion are titled Spiroid and all three types transmissions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in this study. The presented research shows that the synthesis is realized by application of two mathematical models: pitch contact point and mesh region models. Two approaches for synthesis of the gear drives in accordance with Olivier's principles are illustrated. The algorithms and computer programs for optimization synthesis and design of the studied hyperboloid gear drives are presented.
USDA-ARS?s Scientific Manuscript database
Fusarium tucumaniae is the only known sexually reproducing species among the seven closely related fusaria that cause soybean sudden death syndrome (SDS) or bean root rot (BRR). Laboratory mating of F. tucumaniae required two mating-compatible strains, indicating that it is heterothallic. To assess ...
Li, Xiao-Wei; Jiang, Hong-Xue; Zhang, Xiao-Chen; Shelton, Anthony M; Feng, Ji-Nian
2014-01-01
Post-mating, sexual interactions of opposite sexes differ considerably in different organisms. Post-mating interactions such as re-mating behavior and male harassment can affect the fitness of both sexes. Echinothrips americanus is a new insect pest in Mainland China, and little is known about its post-mating interactions. In this study, we observed re-mating frequency and male harassment frequency and their effects on fitness parameters and offspring sex ratios of E. americanus females. Furthermore, we tested the impact of mating and post-mating interactions on fitness parameters of males. Our results revealed that the re-mating frequency in female adults was extremely low during a 30-day period. However, post-mating interactions between females and males, consisting mainly of male harassment and female resistance, did occur and significantly reduced female longevity and fecundity. Interestingly, increased access to males did not affect the ratio of female offspring. For males, mating dramatically reduced their longevity. However, post-mating interactions with females had no effects on the longevity of mated males. These results enrich our basic knowledge about female and male mating and post-mating behaviors in this species and provide important information about factors that may influence population regulation of this important pest species.
USDA-ARS?s Scientific Manuscript database
Random mating (i.e., panmixis) is a fundamental assumption in quantitative genetics. In outcrossing bee-pollinated perennial forage legume polycrosses, mating is assumed by default to follow theoretical random mating. This assumption informs breeders of expected inbreeding estimates based on polycro...
Condition-dependent mate choice: A stochastic dynamic programming approach.
Frame, Alicia M; Mills, Alex F
2014-09-01
We study how changing female condition during the mating season and condition-dependent search costs impact female mate choice, and what strategies a female could employ in choosing mates to maximize her own fitness. We address this problem via a stochastic dynamic programming model of mate choice. In the model, a female encounters males sequentially and must choose whether to mate or continue searching. As the female searches, her own condition changes stochastically, and she incurs condition-dependent search costs. The female attempts to maximize the quality of the offspring, which is a function of the female's condition at mating and the quality of the male with whom she mates. The mating strategy that maximizes the female's net expected reward is a quality threshold. We compare the optimal policy with other well-known mate choice strategies, and we use simulations to examine how well the optimal policy fares under imperfect information. Copyright © 2014 Elsevier Inc. All rights reserved.
Cool Sex? Hibernation and Reproduction Overlap in the Echidna
Morrow, Gemma; Nicol, Stewart C.
2009-01-01
During hibernation there is a slowing of all metabolic processes, and thus it is normally considered to be incompatible with reproduction. In Tasmania the egg-laying mammal, the echidna (Tachyglossus aculeatus) hibernates for several months before mating in mid-winter, and in previous studies we observed males with females that were still hibernating. We monitored the reproductive activity of radio-tracked echidnas by swabbing the reproductive tract for sperm while external temperature loggers provided information on the timing of hibernation. Additional information was provided by camera traps and ultrasound imaging. More than a third of the females found in mating groups were torpid, and the majority of these had mated. Some females re-entered deep torpor for extended periods after mating. Ultrasound examination showed a developing egg in the uterus of a female that had repeatedly re-entered torpor. The presence of fresh sperm in cloacal swabs taken from this female on three occasions after her presumed date of fertilization indicated she mated several times after being fertilized. The mating of males with torpid females is the result of extreme competition between promiscuous males, while re-entry into hibernation by pregnant females could improve the possibility of mating with a better quality male. PMID:19562080
The "booty call": a compromise between men's and women's ideal mating strategies.
Jonason, Peter K; Li, Norman P; Cason, Margaret J
2009-01-01
Traditionally, research on romantic and sexual relationships has focused on one-night stands and monogamous pairs. However, as the result of men and women pursuing their ideal relationship types, various compromise relationships may emerge. One such compromise is explored here: the "booty call." The results of an act-nomination and frequency study of college students provided an initial definition and exploration of this type of relationship. Booty calls tend to utilize various communication mediums to facilitate sexual contact among friends who, for men, may represent low-investment, attractive sexual partners and, for women, may represent attractive test-mates. The relationship is discussed as a compromise between men's and women's ideal mating strategies that allows men greater sexual access and women an ongoing opportunity to evaluate potential long-term mates.
Kinship and mate choice in a historic eastern Blue Ridge community, Madison County, Virginia.
Frankenberg, S R
1990-12-01
Potential mates analysis is difficult to apply to small historic populations that lack clear boundaries or regular vital event registration. Here I analyze the actual mate pool as an alternative way to identify causes of nonrandom mating when unmarried members are unknown. Factors influencing mate choice within a historic eastern Blue Ridge community in Madison County, Virginia, are examined for four marriage cohorts: 1850-1879, 1880-1899, 1900-1919, and 1920-1939. These factors include nuclear kin avoidance, preferred age differences between mates, and preferences for more distant kin. A simulation is used to recombine members of the cohort-specific pools of married individuals to generate the probabilities of various types of kin marriages. The pedigree and vital statistics data are derived from first-time marriage licenses filled by community members in Madison County from 1794 to 1939. The numbers of marriages examined for each cohort are 88, 120, 132, and 132, respectively; the mate pools constructed from the samples are viewed from the female perspective. The results generated by simulation on the actual mate pools consist of mean kinship coefficients, numbers of marriages between "allowed" kin types, and probabilities of these values when marriage is random with respect to kinship. The results indicate significantly high levels of inbreeding in all four marriage cohorts, primarily because of high levels of first-cousin marriages in the first three cohorts and of first-cousin once-removed marriages in the 1920 cohort. The observed mating patterns are discussed in terms of the social history of the Blue Ridge community and restrictions of the data.
Okamoto, Marina; Yamada, Lixy; Fujisaki, Yukie; Bloomfield, Gareth; Yoshida, Kentaro; Kuwayama, Hidekazu; Sawada, Hitoshi; Mori, Toshiyuki; Urushihara, Hideko
2016-07-01
Fertilization is a central event in sexual reproduction, and understanding its molecular mechanisms has both basic and applicative biological importance. Recent studies have uncovered the molecules that mediate this process in a variety of organisms, making it intriguing to consider conservation and evolution of the mechanisms of sexual reproduction across phyla. The social amoeba Dictyostelium discoideum undergoes sexual maturation and forms gametes under dark and humid conditions. It exhibits three mating types, type-I, -II, and -III, for the heterothallic mating system. Based on proteome analyses of the gamete membranes, we detected expression of two homologs of the plant fertilization protein HAP2-GCS1. When their coding genes were disrupted in type-I and type-II strains, sexual potency was completely lost, whereas disruption in the type-III strain did not affect mating behavior, suggesting that the latter acts as female in complex organisms. Our results demonstrate the highly conserved function of HAP2-GCS1 in gamete interactions and suggest the presence of additional allo-recognition mechanisms in D. discoideum gametes. Copyright © 2016 Elsevier Inc. All rights reserved.
Loaded transducer for downhole drilling components
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT; Daly, Jeffery E [Cypress, TX
2009-05-05
A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.
Potential for sexual reproduction of Phytophthora ramorum in Washington state nurseries
Matteo Garbelotto; Kelly Ivors; Daniel Hüberli; Peter Bonants; Art Wagner
2006-01-01
In 2003, isolates belonging to the Al mating type were reported from commercial nurseries in Oregon. Soon thereafter, we reported the presence of both mating types of P. ramorum in nurseries in Washington. AFLP, microsatellite, and RFLP of the Cox I region indicated the Al isolates belonged to the European (E.U.) lineage of P. ramorum...
Zhao, Jian; Huhman, David; Shadle, Gail; He, Xian-Zhi; Sumner, Lloyd W.; Tang, Yuhong; Dixon, Richard A.
2011-01-01
The majority of flavonoids, such as anthocyanins, proanthocyanidins, and isoflavones, are stored in the central vacuole, but the molecular basis of flavonoid transport is still poorly understood. Here, we report the functional characterization of a multidrug and toxin extrusion transporter (MATE2), from Medicago truncatula. MATE 2 is expressed primarily in leaves and flowers. Despite its high similarity to the epicatechin 3′-O-glucoside transporter MATE1, MATE2 cannot efficiently transport proanthocyanidin precursors. In contrast, MATE2 shows higher transport capacity for anthocyanins and lower efficiency for other flavonoid glycosides. Three malonyltransferases that are coexpressed with MATE2 were identified. The malonylated flavonoid glucosides generated by these malonyltransferases are more efficiently taken up into MATE2-containing membrane vesicles than are the parent glycosides. Malonylation increases both the affinity and transport efficiency of flavonoid glucosides for uptake by MATE2. Genetic loss of MATE2 function leads to the disappearance of leaf anthocyanin pigmentation and pale flower color as a result of drastic decreases in the levels of various flavonoids. However, some flavonoid glycoside malonates accumulate to higher levels in MATE2 knockouts than in wild-type controls. Deletion of MATE2 increases seed proanthocyanidin biosynthesis, presumably via redirection of metabolic flux from anthocyanin storage. PMID:21467581
Wang, Jianjun; Ma, Yuanyuan; Zhang, Kun; Yang, Huajun; Liu, Cheng; Zou, Shaolan; Hong, Jiefang; Zhang, Minhua
2016-08-10
In order to investigate the effect of mating type and ploidy on enzymatic activity and fermentation performance in yeast with multiple δ-integrated foreign genes, eight ploidy series strains were constructed. The initial haploid strain BGL-a was shown to contain about 19 copies of the bgl1 gene. In rich media containing 2% (w/v) sugar the specific activities of BGL-aα were lower than those of BGL-aa or BGL-αα, which indicates the existence of mating type effects. While the maximum OD660 decreased with rising ploidy, the biomass yield showed no significant difference between the eight strains and the specific activities (expressed as U/mL or U/mg DCW) showed little to no variation. When cellobiose was used as the carbon source and β-glucosidase substrate, β-glucosidase was expressed more quickly and at higher levels than in glucose-containing media. The maximum specific activitiy values obtained were 19.07U/mL and 19.39U/mL for BGL-αα and BGL-aa, repsectively. The anaerobic biomass and ethanol-producing performance in rich media containing 10% cellobiose showed no significant difference among the eight strains. Their maximal ethanol concentrations and corresponding yields ranged from 40.27 to 43.46g/L and 77.56 to 83.71%, respectively. When the acid- and alkali-pretreated corncob (10% solids content) was used, the diploid BGL-aα fermented the best. When urea was used as the only supplemented nutrient, the ethanol titer and yield were 35.65g/L and 83.69%, respectively, while a control experiment using industrial Angel yeast with exogenous β-glucosidase addition gave values of 37.93g/L and 89.04%. The combined effects of δ-integration of bgl1, ploidy and mating type result in BGL-aa or BGL-αα being the optimal choice for enzyme production and BGL-aα being more suitable for cellulosic ethanol fermentation. These results provide valuable information for future yeast breeding and utilization efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterisation of Phytophthora capsici isolates from black pepper in Vietnam.
Truong, Nguyen V; Liew, Edward C Y; Burgess, Lester W
2010-01-01
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity.
Lee, Sejoon; Lee, Soohyun; Ouellette, Scott; Park, Woong-Yang; Lee, Eunjung A; Park, Peter J
2017-06-20
In many next-generation sequencing (NGS) studies, multiple samples or data types are profiled for each individual. An important quality control (QC) step in these studies is to ensure that datasets from the same subject are properly paired. Given the heterogeneity of data types, file types and sequencing depths in a multi-dimensional study, a robust program that provides a standardized metric for genotype comparisons would be useful. Here, we describe NGSCheckMate, a user-friendly software package for verifying sample identities from FASTQ, BAM or VCF files. This tool uses a model-based method to compare allele read fractions at known single-nucleotide polymorphisms, considering depth-dependent behavior of similarity metrics for identical and unrelated samples. Our evaluation shows that NGSCheckMate is effective for a variety of data types, including exome sequencing, whole-genome sequencing, RNA-seq, ChIP-seq, targeted sequencing and single-cell whole-genome sequencing, with a minimal requirement for sequencing depth (>0.5X). An alignment-free module can be run directly on FASTQ files for a quick initial check. We recommend using this software as a QC step in NGS studies. https://github.com/parklab/NGSCheckMate. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
USDA-ARS?s Scientific Manuscript database
The determination of mated status in wild female fruit fly detections provides information to program managers that is useful in two respects. Firstly, the mated (or unmated) status, is a factor in triggering quarantine restrictions at the detection location. Invasive female fruit flies that have ma...
ERIC Educational Resources Information Center
De La Lama, Luisa Batthyany; De La Lama, Luis; Wittgenstein, Ariana
2012-01-01
This article presents the integrative soul mates relationship development model, which provides the helping professionals with a conceptual map for couples' relationship development from dating, to intimacy, to soul mating, and long-term flourishing. This model is informed by a holistic, a developmental, and a positive psychology conceptualization…
USDA-ARS?s Scientific Manuscript database
The ascomycete Pyrenophora tritici-repentis (Ptr) is an important fungal pathogen worldwide that causes tan spot of wheat. The fungus is self-fertile because each isolate contains both mating type (MAT) idiomorphs. In this work, we developed knockouts of the MAT genes in Ptr and tested fertility of ...
USDA-ARS?s Scientific Manuscript database
In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...
Ophir, Alexander G
2017-01-01
The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative "socio-spatial memory neural circuit." This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making.
[DNA Extraction from Old Bones by AutoMate Express™ System].
Li, B; Lü, Z
2017-08-01
To establish a method for extracting DNA from old bones by AutoMate Express™ system. Bones were grinded into powder by freeze-mill. After extraction by AutoMate Express™, DNA were amplified and genotyped by Identifiler®Plus and MinFiler™ kits. DNA were extracted from 10 old bone samples, which kept in different environments with the postmortem interval from 10 to 20 years, in 3 hours by AutoMate Express™ system. Complete STR typing results were obtained from 8 samples. AutoMate Express™ system can quickly and efficiently extract DNA from old bones, which can be applied in forensic practice. Copyright© by the Editorial Department of Journal of Forensic Medicine
NASA Astrophysics Data System (ADS)
Schlechter-Helas, Jerry; Schmitt, Thomas; Peschke, Klaus
2011-10-01
By reducing the attractiveness of their mating partner via an anti-aphrodisiac pheromone, males can prevent a remating of the female and thus reduce the risk of sperm competition. For females, the main benefit from allowing the chemical manipulation of their attractiveness is probably the avoidance of sexual harassments from rival males. While mating plugs generally constitute a physical barrier which hinders male mating attempts, chemical manipulations must trustfully inform the responding male of the female's reluctance to mate; otherwise, it would be beneficial to ignore the repellent information. In our experiments, males of the polyandrous rove beetle Aleochara curtula chemically manipulated the attractiveness of their mating partner. Coincident with the deposition of a spermatophore into the female genital chamber, an anti-aphrodisiac pheromone was transferred and readily spread onto the female surface, where it was subsequently perceived by rival males via parameres, the claspers of the male genitalia. Males aborted contact with the mated female to avoid further time- and energy-consuming elements of the mating sequence. The chemical mode of action was demonstrated inter alia by spicing virgin females with spermatophore extracts. The action of the anti-aphrodisiac correlated with the persistence of the spermatophore in the female genital chamber and corresponded to the length of stay of the mated female at a carcass, where the density of rival males is highest. The ensuing benefits for all three parties involved in this communication system, which render this post-copulatory mate guarding strategy evolutionary stable, are discussed.
Bracharz, Felix; Lorenzen, Jan; Kracht, Octavia N.; Chovatia, Mansi; Daum, Chris; Deshpande, Shweta; Lipzen, Anna; Nolan, Matt; Ohm, Robin A.; Grigoriev, Igor V.; Sun, Sheng; Heitman, Joseph
2015-01-01
ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. PMID:26199329
NASA Astrophysics Data System (ADS)
Fowler-Finn, Kasey D.; Al-Wathiqui, Nooria; Cruz, Daniel; Al-Wathiqui, Mishal; Rodríguez, Rafael L.
2014-03-01
Finding and attracting mates can impose costs on males in terms of increased encounters with, and attraction of, predators. To decrease the likelihood of predation, males may modify mate-acquisition efforts in two main ways: they may reduce mate-searching efforts or they may reduce mate-attraction efforts. The specific behavior that males change in the presence of predator cues should depend upon the nature of risk imposed by the type of predator present in the environment. For example, sit-and-wait predators impose greater costs to males moving in search of mates. Here, we test whether cues of the presence of a sit-and-wait predator lead to a reduction in mate-searching but not mate-acquisition behavior. We used a member of the Enchenopa binotata complex of treehoppers—a clade of vibrationally communicating insects in which males fly in search of mates and produce mate-attraction signals when they land on plant stems. We tested for changes in mate-searching and signaling behaviors when silk from a web-building spider was present or absent. We found that males delayed flight when spider silk was present but only if they were actively searching for mates. These results suggest that males have been selected to reduce predation risk by adjusting how they move about their environment according to the cues of sit-and-wait predators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Hiroaki
Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less
Engineering species-like barriers to sexual reproduction.
Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J
2017-10-12
Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.
Klein, Graziela A; Stefanuto, Aliny; Boaventura, Brunna C B; de Morais, Elayne C; Cavalcante, Luciana da S; de Andrade, Fernanda; Wazlawik, Elisabeth; Di Pietro, Patrícia F; Maraschin, Marcelo; da Silva, Edson L
2011-10-01
Yerba mate (Ilex paraguariensis) infusions have been shown to reduce plasma glucose in animals and serum lipids in humans. The aim of this study was to evaluate the effects of roasted mate tea consumption, with or without dietary counseling, on the glycemic and lipid profiles of individuals with type 2 diabetes mellitus (T2DM) or pre-diabetes. Twenty-nine T2DM and 29 pre-diabetes subjects were divided into 3 groups: mate tea, dietary intervention, and mate tea and dietary intervention. Individuals drank 330 mL of roasted mate tea 3 times a day and/or received nutritional counseling over 60 days. Blood samples were collected and food intake was assessed at baseline and after 20, 40, and 60 days of treatments. Mate tea consumption decreased significantly the levels of fasting glucose (25.0 mg/dL), glycated hemoglobin A(1c) (HbA(1c)) (0.85%), and low-density lipoprotein cholesterol (LDL-c) (13.5 mg/dL) of T2DM subjects (p < 0.05); however, it did not change the intake of total energy, protein, carbohydrate, cholesterol, and fiber. In pre-diabetes individuals, mate tea consumption combined with nutritional counseling diminished significantly the levels of LDL-c (11 mg/dL), non-high-density lipoprotein cholesterol (HDL-c) (21.5 mg/dL), and triglycerides (53.0 mg/dL) (p < 0.05). Individuals of this group decreased significantly their consumption of total fat (14%), cholesterol (28%), and saturated (23.8%) and monounsaturated (28.0%) fatty acids, and increased their fiber intake by 35% (p < 0.05). Mate tea consumption improved the glycemic control and lipid profile of T2DM subjects, and mate tea consumption combined with nutritional intervention was highly effective in decreasing serum lipid parameters of pre-diabetes individuals, which may reduce their risk of developing coronary disease.
Bakkeren, G; Kronstad, J W
1994-01-01
Sexual compatibility requires self vs. non-self recognition. Genetically, two compatibility or mating-type systems govern recognition in heterothallic basidiomycete fungi such as the edible and woodrotting mushrooms and the economically important rust and smut phytopathogens. A bipolar system is defined by a single genetic locus (MAT) that can have two or multiple alleles. A tetrapolar system has two loci, each with two or more specificities. We have employed two species from the genus Ustilago (smut fungi) to discover a molecular explanation for the genetic difference in mating systems. Ustilago maydis, a tetrapolar species, has two genetically unlinked loci that encode the distinct mating functions of cell fusion (a locus) and subsequent sexual development and pathogenicity (b locus). We have recently described a b locus in a bipolar species, Ustilago hordei, wherein the existence of an a locus has been suspected, but not demonstrated. We report here the cloning of an allele of the a locus (a1) from U. hordei and the discovery that physical linkage of the a and b loci in this bipolar fungus accounts for the distinct mating system. Linkage establishes a large complex MAT locus in U. hordei; this locus appears to be in a region suppressed for recombination. Images PMID:7913746
Sebro, Ronnie; Hoffman, Thomas J.; Lange, Christoph; Rogus, John J.; Risch, Neil J.
2013-01-01
Population stratification leads to a predictable phenomenon—a reduction in the number of heterozygotes compared to that calculated assuming Hardy-Weinberg Equilibrium (HWE). We show that population stratification results in another phenomenon—an excess in the proportion of spouse-pairs with the same genotypes at all ancestrally informative markers, resulting in ancestrally related positive assortative mating. We use principal components analysis to show that there is evidence of population stratification within the Framingham Heart Study, and show that the first principal component correlates with a North-South European cline. We then show that the first principal component is highly correlated between spouses (r=0.58, p=0.0013), demonstrating that there is ancestrally related positive assortative mating among the Framingham Caucasian population. We also show that the single nucleotide polymorphisms loading most heavily on the first principal component show an excess of homozygotes within the spouses, consistent with similar ancestry-related assortative mating in the previous generation. This nonrandom mating likely affects genetic structure seen more generally in the North American population of European descent today, and decreases the rate of decay of linkage disequilibrium for ancestrally informative markers. PMID:20842694
Mendel’s law reveals fatal flaws in Bateman’s 1948 study of mating and fitness
Gowaty, Patricia Adair; Kim, Yong-Kyu; Anderson, Wyatt W.
2013-01-01
Bateman’s experimental study of Drosophila melanogaster produced conclusions that are now part of the bedrock premises of modern sexual selection. Today it is the most cited experimental study in sexual selection, and famous as the first experimental demonstration of sex differences in the relationship between number of mates and relative reproductive success. We repeated the experimental methodology of the original to evaluate its reliability. The results indicate that Bateman’s methodology of visible mutations to assign parentage and reproductive success to subject adults is significantly biased. When combined in offspring, the mutations decrease offspring survival, so that counts of mate number and reproductive success are mismeasured. Bateman’s method overestimates the number of subjects with no mates and underestimates the number with one or more mates for both sexes. Here we discuss why Bateman’s paper is important and present additional analyses of data from our monogamy trials. Monogamy trials can inform inferences about the force of sexual selection in populations because in monogamy trials male–male competition and female choice are absent. Monogamy trials also would have provided Bateman with an a priori test of the fit of his data to Mendel’s laws, an unstated, but vital assumption of his methodology for assigning parentage from which he inferred the number of mates per individual subject and their reproductive success. Even under enforced monogamous mating, offspring frequencies of double mutant, single mutant and no mutant offspring were significantly different from Mendelian expectations proving that Bateman’s method was inappropriate for answering the questions he posed. Double mutant offspring (those with a mutation from each parent) suffered significant inviability as did single mutant offspring whenever they inherited their mother’s marker but the wild-type allele at their father’s marker locus. These inviability effects produced two important inaccuracies in Bateman’s results and conclusions. (1) Some matings that actually occurred were invisible and (2) reproductive success of some mothers was under-estimated. Both observations show that Bateman’s conclusions about sex differences in number of mates and reproductive success were unwarranted, based on biased observations. We speculate about why Bateman’s classic study remained without replication for so long, and we discuss why repetition almost 60 years after the original is still timely, necessary and critical to the scientific enterprise. We highlight overlooked alternative hypotheses to urge that modern tests of Bateman’s conclusions go beyond confirmatory studies to test alternative hypotheses to explain the relationship between mate number and reproductive success. PMID:23360967
Mendel's law reveals fatal flaws in Bateman's 1948 study of mating and fitness.
Gowaty, Patricia Adair; Kim, Yong-Kyu; Anderson, Wyatt W
2013-01-01
Bateman's experimental study of Drosophila melanogaster produced conclusions that are now part of the bedrock premises of modern sexual selection. Today it is the most cited experimental study in sexual selection, and famous as the first experimental demonstration of sex differences in the relationship between number of mates and relative reproductive success. We repeated the experimental methodology of the original to evaluate its reliability. The results indicate that Bateman's methodology of visible mutations to assign parentage and reproductive success to subject adults is significantly biased. When combined in offspring, the mutations decrease offspring survival, so that counts of mate number and reproductive success are mismeasured. Bateman's method overestimates the number of subjects with no mates and underestimates the number with one or more mates for both sexes. Here we discuss why Bateman's paper is important and present additional analyses of data from our monogamy trials. Monogamy trials can inform inferences about the force of sexual selection in populations because in monogamy trials male-male competition and female choice are absent. Monogamy trials also would have provided Bateman with an a priori test of the fit of his data to Mendel's laws, an unstated, but vital assumption of his methodology for assigning parentage from which he inferred the number of mates per individual subject and their reproductive success. Even under enforced monogamous mating, offspring frequencies of double mutant, single mutant and no mutant offspring were significantly different from Mendelian expectations proving that Bateman's method was inappropriate for answering the questions he posed. Double mutant offspring (those with a mutation from each parent) suffered significant inviability as did single mutant offspring whenever they inherited their mother's marker but the wild-type allele at their father's marker locus. These inviability effects produced two important inaccuracies in Bateman's results and conclusions. (1) Some matings that actually occurred were invisible and (2) reproductive success of some mothers was under-estimated. Both observations show that Bateman's conclusions about sex differences in number of mates and reproductive success were unwarranted, based on biased observations. We speculate about why Bateman's classic study remained without replication for so long, and we discuss why repetition almost 60 years after the original is still timely, necessary and critical to the scientific enterprise. We highlight overlooked alternative hypotheses to urge that modern tests of Bateman's conclusions go beyond confirmatory studies to test alternative hypotheses to explain the relationship between mate number and reproductive success.
Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R L
2016-01-01
Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control.
Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R. L.
2016-01-01
Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control. PMID:26990981
Evolution of uni- and bifactorial sexual compatibility systems in fungi
Nieuwenhuis, B P S; Billiard, S; Vuilleumier, S; Petit, E; Hood, M E; Giraud, T
2013-01-01
Mating systems, that is, whether organisms give rise to progeny by selfing, inbreeding or outcrossing, strongly affect important ecological and evolutionary processes. Large variations in mating systems exist in fungi, allowing the study of their origin and consequences. In fungi, sexual incompatibility is determined by molecular recognition mechanisms, controlled by a single mating-type locus in most unifactorial fungi. In Basidiomycete fungi, however, which include rusts, smuts and mushrooms, a system has evolved in which incompatibility is controlled by two unlinked loci. This bifactorial system probably evolved from a unifactorial system. Multiple independent transitions back to a unifactorial system occurred. It is still unclear what force drove evolution and maintenance of these contrasting inheritance patterns that determine mating compatibility. Here, we give an overview of the evolutionary factors that might have driven the evolution of bifactoriality from a unifactorial system and the transitions back to unifactoriality. Bifactoriality most likely evolved for selfing avoidance. Subsequently, multiallelism at mating-type loci evolved through negative frequency-dependent selection by increasing the chance to find a compatible mate. Unifactoriality then evolved back in some species, possibly because either selfing was favoured or for increasing the chance to find a compatible mate in species with few alleles. Owing to the existence of closely related unifactorial and bifactorial species and the increasing knowledge of the genetic systems of the different mechanisms, Basidiomycetes provide an excellent model for studying the different forces that shape breeding systems. PMID:23838688
Jaime-Garcia, R; Orum, T V; Felix-Gastelum, R; Trinidad-Correa, R; Vanetten, H D; Nelson, M R
2001-12-01
ABSTRACT Genetic structure of Phytophthora infestans, the causal agent of potato and tomato late blight, was analyzed spatially in a mixed potato and tomato production area in the Del Fuerte Valley, Sinaloa, Mexico. Isolates of P. infestans were characterized by mating type, allozyme analysis at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. Spatial patterns of P. infestans genotypes were analyzed by geographical information systems and geo-statistics during the seasons of 1994-95, 1995-96, and 1996-97. Spatial analysis of the genetic structure of P. infestans indicates that geographic substructuring of this pathogen occurs in this area. Maps displaying the probabilities of occurrence of mating types and genotypes of P. infestans, and of disease severity at a regional scale, were presented. Some genotypes that exhibited differences in epidemiologically important features such as metalaxyl sensitivity and aggressiveness to tomato and potato had a restricted spread and were localized in isolated areas. Analysis of late blight severity showed recurring patterns, such as the earliest onset of the disease in the area where both potato and tomato were growing, strengthening the hypothesis that infected potato tubers are the main source of primary inoculum. The information that geostatistical analysis provides might help improve management programs for late blight in the Del Fuerte Valley.
Genetics of Ustilago violacea. XXXII. Genetic evidence for transposable elements.
Garber, E D; Ruddat, M
1994-12-01
Crosses between Ustilago violacea mutant strains with different color phenotypes that were derived from the 1.A1 and 2.A2 laboratory strains yielded, as expected, bisectored teliospore colonies with the parental colors as well as the a-1 and the a-2 mating-types. Generally, wild teliospore collections usually produced sporidia of both mating-types, providing two-mating-type (TMT) strains. Occasionally, however, sporidia with only one mating-type allele, a-1 or a-2, were obtained from teliospores, providing one-mating-type (OMT) strains. Crosses between OMT and laboratory strains with different color phenotypes gave (1) bisectored teliospore colonies with the parental colors or colonies with a parental color and a nonparental color and (2) nonsectored colonies with the nonparental color or with the parental color. The frequencies for the occurrence of non-parental color ranged from 41% to 93%, depending on the strain. The yield of teliospore colonies was usually reduced for these crosses. In many of these teliospore colonies, morphologically-altered sporidia (MAS phenotype) were observed. The morphology and the size of the sporidia with the MAS phenotype differed from those of teliospore colonies of the crosses between the laboratory strains. In addition, these sporidia did not form conjugants. A cross involving the TMT strains C449 yielded the MAS phenotype as well as a high incidence of tetrad colonies with a nonparental color. The high degree of instability of the parental color phenotypes, and the high frequency of the appearance of nonparental color phenotypes as well as the appearance of the MAS phenotype, are in accord with the presence of active and inactive transposable elements in the OMT strains, TMT strains, and laboratory strains.
Ophir, Alexander G.
2017-01-01
The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative “socio-spatial memory neural circuit.” This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making. PMID:28744194
Cryan, Paul M.; Jameson, Joel W.; Baerwald, Erin F.; Willis, Craig K. R.; Barclay, Robert M. R.; Snider, E. Apple; Crichton, Elizabeth G.
2012-01-01
Understanding animal mating systems is an important component of their conservation, yet the precise mating times for many species of bats are unknown. The aim of this study was to better understand the details and timing of reproductive events in species of bats that die most frequently at wind turbines in North America, because such information can help inform conservation strategies. We examined the reproductive anatomy of hoary bats (Lasiurus cinereus), eastern red bats (L. borealis), and silver-haired bats (Lasionycteris noctivagans) found dead beneath industrial-scale wind turbines to learn more about when they mate. We evaluated 103 L. cinereus, 18 L. borealis, and 47 Ln. noctivagans from wind energy facilities in the United States and Canada. Histological analysis revealed that most male L. cinereus and L. borealis, as well as over half the Ln. noctivagans examined had sperm in the caudae epididymides by late August, indicating readiness to mate. Testes regression in male hoary bats coincided with enlargement of seminal vesicles and apparent growth of keratinized spines on the glans penis. Seasonality of these processes also suggests that mating could occur during August in L. cinereus. Spermatozoa were found in the uterus of an adult female hoary bat collected in September, but not in any other females. Ovaries of all females sampled had growing secondary or tertiary follicles, indicating sexual maturity even in first-year females. Lasiurus cinereus, L. borealis, and Ln. noctivagans are the only North American temperate bats in which most first-year young of both sexes are known to sexually mature in their first autumn. Our findings provide the first detailed information published on the seasonal timing of mating readiness in these species most affected by wind turbines. PMID:23094065
Cryan, Paul M; Jameson, Joel W; Baerwald, Erin F; Willis, Craig K R; Barclay, Robert M R; Snider, E Apple; Crichton, Elizabeth G
2012-01-01
Understanding animal mating systems is an important component of their conservation, yet the precise mating times for many species of bats are unknown. The aim of this study was to better understand the details and timing of reproductive events in species of bats that die most frequently at wind turbines in North America, because such information can help inform conservation strategies. We examined the reproductive anatomy of hoary bats (Lasiurus cinereus), eastern red bats (L. borealis), and silver-haired bats (Lasionycteris noctivagans) found dead beneath industrial-scale wind turbines to learn more about when they mate. We evaluated 103 L. cinereus, 18 L. borealis, and 47 Ln. noctivagans from wind energy facilities in the United States and Canada. Histological analysis revealed that most male L. cinereus and L. borealis, as well as over half the Ln. noctivagans examined had sperm in the caudae epididymides by late August, indicating readiness to mate. Testes regression in male hoary bats coincided with enlargement of seminal vesicles and apparent growth of keratinized spines on the glans penis. Seasonality of these processes also suggests that mating could occur during August in L. cinereus. Spermatozoa were found in the uterus of an adult female hoary bat collected in September, but not in any other females. Ovaries of all females sampled had growing secondary or tertiary follicles, indicating sexual maturity even in first-year females. Lasiurus cinereus, L. borealis, and Ln. noctivagans are the only North American temperate bats in which most first-year young of both sexes are known to sexually mature in their first autumn. Our findings provide the first detailed information published on the seasonal timing of mating readiness in these species most affected by wind turbines.
Cryan, P.M.; Jameson, J.W.; Baerwald, E.F.; Willis, C.K.R.; Barclay, R.M.R.; Snider, E.A.; Crichton, E.G.
2012-01-01
Understanding animal mating systems is an important component of their conservation, yet the precise mating times for many species of bats are unknown. The aim of this study was to better understand the details and timing of reproductive events in species of bats that die most frequently at wind turbines in North America, because such information can help inform conservation strategies. We examined the reproductive anatomy of hoary bats (Lasiurus cinereus), eastern red bats (L. borealis), and silver-haired bats (Lasionycteris noctivagans) found dead beneath industrial-scale wind turbines to learn more about when they mate. We evaluated 103 L. cinereus, 18 L. borealis, and 47 Ln. noctivagans from wind energy facilities in the United States and Canada. Histological analysis revealed that most male L. cinereus and L. borealis, as well as over half the Ln. noctivagans examined had sperm in the caudae epididymides by late August, indicating readiness to mate. Testes regression in male hoary bats coincided with enlargement of seminal vesicles and apparent growth of keratinized spines on the glans penis. Seasonality of these processes also suggests that mating could occur during August in L. cinereus. Spermatozoa were found in the uterus of an adult female hoary bat collected in September, but not in any other females. Ovaries of all females sampled had growing secondary or tertiary follicles, indicating sexual maturity even in first-year females. Lasiurus cinereus, L. borealis, and Ln. noctivagans are the only North American temperate bats in which most first-year young of both sexes are known to sexually mature in their first autumn. Our findings provide the first detailed information published on the seasonal timing of mating readiness in these species most affected by wind turbines.
Zhang, Dong; Terschak, John A; Harley, Maggy A; Lin, Junda; Hardege, Jörg D
2011-04-20
Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.
Findley, Keisha; Sun, Sheng; Fraser, James A; Hsueh, Yen-Ping; Averette, Anna Floyd; Li, Wenjun; Dietrich, Fred S; Heitman, Joseph
2012-01-01
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.
Lubanga, Umar K; Drijfhout, Falko P; Farnier, Kevin; Steinbauer, Martin J
2016-02-01
Mating is preceded by a series of interdependent events that can be broadly categorized into searching and courtship. Long-range signals convey species- and sex-specific information during searching, while short-range signals provide information specific to individuals during courtship. Studies have shown that cuticular hydrocarbons (CHCs) can be used for mate recognition in addition to protecting insects from desiccation. In Psylloidea, four species rely on semiochemicals for long-range mate attraction. Psyllid mating research has focused on long-range mate attraction and has largely ignored the potential use of cuticular hydrocarbons (CHCs) as mate recognition cues. This study investigated whether CHCs of Aacanthocnema dobsoni have semiochemical activity for long- and short-range communication prior to mating. Using a solid sampler for solvent-less injection of whole psyllids into coupled gas chromatography/mass spectrometry, we found quantitative, sex- and age-related differences in CHC profiles. Males had higher proportions of 2-MeC28, 11,15-diMeC29, and n-C33 alkanes, while females had higher proportions of 5-MeC27, 3-MeC27, 5,15-diMeC27, n-C29 and n-C30 alkanes. In males and females, 84 and 68 % of CHCs varied with age, respectively. Y-tube olfactometer bioassays provided no evidence that males or females responded to odors emanating from groups of conspecifics of the opposite sex. Tests of male and female psyllids for attraction to branchlets previously occupied by conspecifics showed no evidence of attraction to possible semiochemical residues. Our short-range chemoreception bioassay showed that males were as indifferent to freshly killed individuals of either sex with intact CHC profiles as to those treated with hexane (to remove CHCs). Aacanthocnema dobsoni utilizes substrate-borne vibrations (SBVs) for communication. Therefore, our results indicate that SBVs are probably more important than semiochemicals for long-range mate attraction. Furthermore, CHCs are unlikely to mediate short-range mate recognition or provide mate assessment cues.
Spline screw payload fastening system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the first type electrical connector up to the complementary second type connector for interconnection therewith.
Mate retention behavior of men and women in heterosexual and homosexual relationships.
Vanderlaan, Doug P; Vasey, Paul L
2008-08-01
Comparing the behavior of heterosexual and homosexual persons can provide insight into the origins of heterosexual sex differences in psychology. Evidence indicates that, aside from sexual partner preference, the mating psychology of homosexual men is sex-typical whereas that of homosexual women tends to be more sex-atypical. The current study examined one aspect of mating psychology, mate retention behavior, and tested whether homosexual men and women were sex-typical or sex-atypical for those mate retention tactics where heterosexual men and women differed. Men and women in heterosexual and homosexual relationships were asked to provide information regarding their partners' mate retention behavior by using the Mate Retention Inventory Questionnaire. Heterosexual men and women differed significantly for six of the 19 mate retention tactics considered. With respect to the six mate retention tactics where heterosexual sex differences existed, homosexual men behaved in a sex-typical manner for five of the tactics, whereas homosexual women behaved in a sex-atypical manner for all six tactics. We discuss the significance of these findings for explaining the origins of the mate retention behavior of heterosexual men and women. In addition, we consider what the pattern of sex-typical and sex-atypical mating psychology among homosexual men and women, respectively, suggests in regard to sex differences in the development of mating psychology and the development of homosexual persons.
Mechanical seal having a double-tier mating ring
Khonsari, Michael M.; Somanchi, Anoop K.
2005-09-13
An apparatus and method to enhance the overall performance of mechanical seals in one of the following ways: by reducing seal face wear, by reducing the contact surface temperature, or by increasing the life span of mechanical seals. The apparatus is a mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) comprising a rotating ring and a double-tier mating ring. In a preferred embodiment, the double-tier mating ring comprises a first and a second stationary ring that together form an agitation-inducing, guided flow channel to allow for the removal of heat generated at the seal face of the mating ring by channeling a coolant entering the mating ring to a position adjacent to and in close proximity with the interior surface area of the seal face of the mating ring.
NASA Astrophysics Data System (ADS)
Abadjiev, Valentin; Abadjieva, Emilia
2016-09-01
Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid1 and Helicon gear drives. The classical gear drives of this type are Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion has threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three type transmissions with face mating gears and a conic pinion are titled Spiroid and all three type trans- missions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in Part 1: Basic theoretical and CAD experience of this study. The second part of this article is a brief overview of the innovations and inventions created in this field at the Institute of Mechanics - Bulgarian Academy of Sciences in the last three decades. This study is also dedicated on elaboration of the specialized face gear sets for implementation into bio-robot hand. It is based on the application of 3D software technology, using 3D print for the realization of the physical models of the gear drives.
Occurrence of Clavispora lusitaniae, the teleomorph of Candida lusitaniae, among clinical isolates.
Gargeya, I B; Pruitt, W R; Simmons, R B; Meyer, S A; Ahearn, D G
1990-01-01
Of 13 clinical isolates of Candida lusitaniae from diverse geographical regions, 7 represented the mating types (6 alpha, 1 a) of the ascomycete Clavispora lusitaniae. Selected nonfertile isolates showed significant DNA relatedness (greater than 90%) to representatives of both mating types. Phenotypic physiological characteristics, such as cellobiose fermentation and rhamnose assimilation, proved insufficient for separation of Clavispora lusitaniae and Clavispora opuntiae. Images PMID:2229346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, Christoper; Stajich, Jason; Jacobson, David
2011-05-16
A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated withmore » the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.« less
Alfonso-Parra, Catalina; Avila, Frank W.; Deewatthanawong, Prasit; Sirot, Laura K.; Wolfner, Mariana F.; Harrington, Laura C.
2014-01-01
Aedes aegypti males transfer sperm and seminal fluid proteins (Sfps), primarily produced by male accessory glands (AGs), to females during mating. When collectively injected or transplanted into females, AG tissues and/or seminal fluid homogenates have profound effects on Aedes female physiology and behavior. To identify targets and design new strategies for vector control, it is important to understand the biology of the AGs. Thus, we examined characteristics of AG secretion and development in Ae. aegypti, using the AG-specific seminal fluid protein, AAEL010824, as a marker. We showed that AAEL010824 is first detectable by 12h post-eclosion, and increases in amount over the first 3 days of adult life. We then showed that the amount of AAEL0010824 in the AG decreases after mating, with each successive mating depleting it further; by 5 successive matings with no time for recovery, its levels are very low. AAEL010824 levels in a depleted male are replenished by 48hr post-mating. In addition to examining the level of AAEL010824 protein, we also characterized the expression of its gene. We did this by making a transgenic mosquito line that carries an Enhanced Green Fluorescence Protein (EGFP) fused to the AAEL0010824 promoter that we defined here. We showed that AAEL010824 is expressed in the anterior cells of the accessory glands, and that its RNA levels also respond to mating. In addition to further characterizing AAEL010824 expression, our results with the EGFP fusion provide a promoter for driving AG expression. By providing this information on the biology of an important male reproductive tissue and the production of one of its seminal proteins, our results lay the foundation for future work aimed at identifying novel targets for mosquito population control. PMID:25107876
Singh, Garima; Dal Grande, Francesco; Werth, Silke; Scheidegger, Christoph
2015-01-01
The effect of disturbance on symbiotic organisms such as lichens is particularly severe. In case of heterothallic lichen-forming fungi, disturbances may lead to unbalanced gene frequency and patchy distribution of mating types, thus inhibiting sexual reproduction and imposing clonality. The impact of disturbance on reproductive strategies and genetic diversity of clonal systems has so far received little attention. To infer the effects of disturbances on mating-type allele frequencies and population structure, we selected three populations in the Parc Jurassien Vaudois (Switzerland), which were affected by uneven-aged forestry, intensive logging and fire, respectively. We used microsatellite markers to infer genetic diversity, allelic richness and clonal diversity of the epiphytic lichen Lobaria pulmonaria and used L. pulmonaria-specific MAT1-1 and MAT1-2 markers to analyse the frequency and distribution of mating types of 889 individuals. Our study shows that stand-replacing disturbances affect the mating-type frequency and distribution, thus compromising the potential for sexual reproduction. The fire-disturbed area had a significantly lower genetic and genotypic diversity and a higher clonality. Furthermore, the majority of compatible mating pairs in this area were beyond the effective vegetative dispersal range of the species. We conclude that stand-replacing disturbances lead to lower chances of sex and symbiont reshuffling and thus have long-lasting negative consequences on the reproductive strategies and adaptive potential of epiphytic lichen symbioses. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Watanabe, Kazuki; Sakai, Takaomi
2016-01-01
In the fruitfly Drosophila melanogaster, females take the initiative to mate successfully because they decide whether to mate or not. However, little is known about the molecular and neuronal mechanisms regulating sexual receptivity in virgin females. Genetic tools available in Drosophila are useful for identifying molecules and neural circuits involved in the regulation of sexual receptivity. We previously demonstrated that insulin-producing cells (IPCs) in the female brain are critical to the regulation of female sexual receptivity. Ablation and inactivation of IPCs enhance female sexual receptivity, suggesting that neurosecretion from IPCs inhibits female sexual receptivity. IPCs produce and release insulin-like peptides (Ilps) that modulate various biological processes such as metabolism, growth, lifespan and behaviors. Here, we report a novel role of the Ilps in sexual behavior in Drosophila virgin females. Compared with wild-type females, females with knockout mutations of Ilps showed a high mating success rate toward wild-type males, whereas wild-type males courted wild-type and Ilp-knockout females to the same extent. Wild-type receptive females retard their movement during male courtship and this reduced female mobility allows males to copulate. Thus, it was anticipated that knockout mutations of Ilps would reduce general locomotion. However, the locomotor activity in Ilp-knockout females was significantly higher than that in wild-type females. Thus, our findings indicate that the high mating success rate in Ilp-knockout females is caused by their enhanced sexual receptivity, but not by improvement of their sex appeal or by general sluggishness.
Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander
NASA Technical Reports Server (NTRS)
Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.
1999-01-01
Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.
Public information influences sperm transfer to females in sailfin molly males.
Nöbel, Sabine; Witte, Klaudia
2013-01-01
In animals, including humans, the social environment can serve as a public information network in which individuals can gather public information about the quality of potential mates by observing conspecifics during sexual interactions. The observing individual itself is also a part of this information network. When recognized by the observed conspecifics as an audience, his/her presence could influence the sexual interaction between those individuals, because the observer might be considered as a potential mate or competitor. One of the most challenging questions in sexual selection to date is how the use of public information in the context of mate choice is linked to the fitness of individuals. Here, we could show that public information influences mate-choice behaviour in sailfin molly males, Poecilia latipinna, and influences the amount of sperm males transfer to a female partner. In the presence of an audience male, males spent less time with the previously preferred, larger of two females and significantly more time with the previously non-preferred, smaller female. When males could physically interact with a female and were faced with an audience male, three audience females or no audience, males transferred significantly more sperm to a female partner in the presence of an audience male than with female audience or no audience and spent less time courting his female partner. This is the first study showing that public information use turns into fitness investment, which is the crucial factor to understand the role of public information in the dynamic processes in sexual selection.
Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San
2014-01-01
Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513
When not to copy: female fruit flies use sophisticated public information to avoid mated males
NASA Astrophysics Data System (ADS)
Loyau, Adeline; Blanchet, Simon; van Laere, Pauline; Clobert, Jean; Danchin, Etienne
2012-10-01
Semen limitation (lack of semen to fertilize all of a female's eggs) imposes high fitness costs to female partners. Females should therefore avoid mating with semen-limited males. This can be achieved by using public information extracted from watching individual males' previous copulating activities. This adaptive preference should be flexible given that semen limitation is temporary. We first demonstrate that the number of offspring produced by males Drosophila melanogaster gradually decreases over successive copulations. We then show that females avoid mating with males they just watched copulating and that visual public cues are sufficient to elicit this response. Finally, after males were given the time to replenish their sperm reserves, females did not avoid the males they previously saw copulating anymore. These results suggest that female fruit flies may have evolved sophisticated behavioural processes of resistance to semen-limited males, and demonstrate unsuspected adaptive context-dependent mate choice in an invertebrate.
Genetic versus census estimators of the opportunity for sexual selection in the wild.
Dunn, Stacey J; Waits, Lisette P; Byers, John A
2012-04-01
Abstract The existence of a direct link between intensity of sexual selection and mating-system type is widely accepted. However, the quantification of sexual selection has proven problematic. Several measures of sexual selection have been proposed, including the operational sex ratio (OSR), the breeding sex ratio (BSR), and the opportunity for sexual selection (I(mates)). For a wild population of pronghorn (Antilocapra americana), we calculated OSR and BSR. We estimated I(mates) from census data on the spatial and temporal distribution of receptive females in rut and from a multigenerational genetic pedigree. OSR and BSR indicated weak sexual selection on males, but census and pedigree I(mates) suggested stronger sexual selection on males than on females. OSR and BSR correlated with census but not pedigree estimates of I(mates), and census I(mates) did not correlate with pedigree estimates. This suggests that the behavioral mating system, as deduced from the spatial and temporal distribution of females, does not predict the genetic mating system of pronghorn. The differences we observed between estimators were primarily due to female mate sampling and choice and to the sex ratio. For most species, behavioral data are not perfectly accurate and therefore will be an insufficient alternative to using multigenerational pedigrees to quantify sexual selection.
Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding.
Knop, Michael
2006-07-01
The term 'breeding system' is used to describe the morphological and behavioural aspects of the sexual life cycle of a species. The yeast breeding system provides three alternatives that enable hapoids to return to the diploid state that is necessary for meiosis: mating of unrelated haploids (amphimixis), mating between spores from the same tetrad (intratetrad mating, automixis) and mother daughter mating upon mating type switching (haplo-selfing). The frequency of specific mating events affects the level of heterozygosity present in individuals and the genetic diversity of populations. This review discusses the reproductive strategies of yeasts, in particular S. cerevisiae (Bakers' or budding yeast). Emphasis is put on intratetrad mating, its implication for diversity, and how the particular genome structure could have evolved to ensure the preservation of a high degree of heterozygosity in conjunction with frequent intratetrad matings. I also discuss how the ability of yeast to control the number of spores that are formed accounts for high intratetrad mating rates and for enhanced transmission of genomic variation. I extend the discussion to natural genetic variation and propose that a high level of plasticity is inherent in the yeast breeding system, which may allow variation of the breeding behaviour in accordance with the needs imposed by the environment. (c) 2006 Wiley Periodicals, Inc.
Structural basis for the blockade of MATE multidrug efflux pumps
Radchenko, Martha; Symersky, Jindrich; Nie, Rongxin; ...
2015-08-06
Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H + or Na + electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H +-coupled DinF transporter, as well as of an H +-coupled DinF and a Na +-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm themore » biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.« less
Prioritization of Potential Mates' History of Sexual Fidelity During a Conjoint Ranking Task.
Mogilski, Justin K; Wade, T Joel; Welling, Lisa L M
2014-07-01
This series of studies is the first to use conjoint analysis to examine how individuals make trade-offs during mate selection when provided information about a partner's history of sexual infidelity. Across three studies, participants ranked profiles of potential mates, with each profile varying across five attributes: financial stability, physical attractiveness, sexual fidelity, emotional investment, and similarity. They also rated each attribute separately for importance in an ideal mate. Overall, we found that for a long-term mate, participants prioritized a potential partner's history of sexual fidelity over other attributes when profiles were ranked conjointly. For a short-term mate, sexual fidelity, physical attractiveness, and financial stability were equally important, and each was more important than emotional investment and similarity. These patterns contrast with participants' self-reported importance ratings of each individual attribute. Our results are interpreted within the context of previous literature examining how making trade-offs affect mate selection. © 2014 by the Society for Personality and Social Psychology, Inc.
Olvido, Alexander E.; Fernandes, Pearl R.; Mousseau, Timothy A.
2010-01-01
Finding a mate is a fundamental aspect of sexual reproduction. To this end, specific-mate recognition systems (SMRS) have evolved that facilitate copulation between producers of the mating signal and their opposite-sex responders. Environmental variation, however, may compromise the efficiency with which SMRS operate. In this study, the degree to which seasonal climate experienced during juvenile and adult life-cycle stages affects the SMRS of a cricket, Allonemobius socius (Scudder) (Orthoptera: Gryllidae) was assessed. Results from two-choice behavioral trials suggest that adult ambient temperature, along with population and family origins, mediate variation in male mating call, and to a lesser extent directional response of females for those calls. Restricted maximum-likelihood estimates of heritability for male mating call components and for female response to mating call appeared statistically nonsignificant. However, appreciable “maternal genetic effects” suggest that maternal egg provisioning and other indirect maternal determinants of the embryonic environment significantly contributed to variation in male mating call and female response to mating calls. Thus, environmental factors can generate substantial variation in A. socius mating call, and, more importantly, their marginal effect on female responses to either fast-chirp or long-chirp mating calls suggest negative fitness consequences to males producing alternative types of calls. Future studies of sexual selection and SMRS evolution, particularly those focused on hybrid zone dynamics, should take explicit account of the loose concordance between signal producers and responders suggested by the current findings. PMID:20673114
Single-gene deletions that restore mating competence to diploid yeast.
Schmidlin, Tom; Kaeberlein, Matt; Kudlow, Brian A; MacKay, Vivian; Lockshon, Daniel; Kennedy, Brian K
2008-03-01
Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.
Jin, Taewon; Kim, Oh Yoen; Shin, Min-Jeong; Choi, Eun Young; Lee, Sung Sook; Han, Ye Sun; Chung, Ji Hyung
2014-10-29
Adiponectin, an adipokine, has been described as showing physiological benefits against obesity-related malfunctions and vascular dysfunction. Several natural compounds that promote the expression and secretion of adipokines in adipocytes could be useful for treating metabolic disorders. This study investigated the effect of fisetin, a dietary flavonoid, on the regulation of adiponectin in adipocytes using 3T3-L1 preadipocytes. The expression and secretion of adiponectin increased in 3T3-L1 cells upon treatment with fisetin in a dose-dependent manner. Fisetin-induced adiponectin secretion was inhibited by peroxisome proliferator-activated receptor (PPAR) antagonists. It was also revealed that fisetin increased the activities of PPARs and silent mating type information regulation 2 homologue 1 (SIRT1) in a dose-dependent manner. Furthermore, the up-regulation of adiponectin and the activation of PPARs induced by fisetin were prevented by a SIRT1 inhibitor. Fisetin also promoted deacetylation of PPAR γ coactivator 1 (PGC-1) and its interaction with PPARs. SIRT knockdown by siRNA significantly decreased both adiponectin production and PPARs-PGC-1 interaction. These results provide evidence that fisetin promotes the gene expression of adiponectin through the activation of SIRT1 and PPARs in adipocytes.
Firefly Mating Algorithm for Continuous Optimization Problems
Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442
Subramoniam, T
2013-12-01
Crustaceans are known for their unrivalled diversity of sexual systems, as well as peculiar mating associations to achieve maximum mating success and fertilization accomplishment. Although sexes are separate in most species, various types of hermaphroditism characterize these predominantly aquatic arthropods. A low operational sex ratio between female and male, together with temporally limited receptivity of females towards males, imposes restrictions on the structuring of mating systems in crustaceans. The basic mating systems consist of monogamy, polygamy, mate guarding and pure searching. Understandably, ecological influences may also play a determinative role in the evolution of such sexual and mating systems in crustaceans. An important outcome of the crustacean sexual biology is the development of complex social structures in many aquatic species, in much the same way insects have established them in terrestrial conditions. In addition, groups like isopods and certain families of brachyuran crabs have shown terrestrial adaptation, exhibiting peculiar reproductive modes, sometimes reminiscent of their terrestrial counterparts, insects. Many caridean shrimps, living in symbiotic relationship with other marine invertebrates in the coral reef habitats, have reached pinnacle of complexity in sexuality and peculiar mating behaviours, resulting in communal living and establishing advanced social systems, such as eusociality.
Firefly Mating Algorithm for Continuous Optimization Problems.
Ritthipakdee, Amarita; Thammano, Arit; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
A sociobiological origin of pregnancy failure in domestic dogs
Bartoš, Luděk; Bartošová, Jitka; Chaloupková, Helena; Dušek, Adam; Hradecká, Lenka; Svobodová, Ivona
2016-01-01
Among domestic dog breeders it is common practice to transfer a domestic dog bitch out of her home environment for mating, bringing her back after the mating. If the home environment contains a male, who is not the father of the foetuses, there is a potential risk of future infanticide. We collected 621 records on mating of 249 healthy bitches of 11 breed-types. The highest proportion of successful pregnancies following mating occurred in bitches mated within their home pack and remaining there. Bitches mated elsewhere and then returned to a home containing at least one male had substantially lower incidence of maintained pregnancy in comparison with bitches mated by a home male. After returning home, housing affected strongly the frequency of pregnancy success. Bitches mated elsewhere but released into a home pack containing a home male were four times more likely to maintain pregnancy than bitches which were housed individually after returning home. Suppression of pregnancy in situations where a bitch is unable to confuse a home male about parentage may be seen as an adaptation to avoid any seemingly unavoidable future loss of her progeny to infanticide after birth and thus to save energy. PMID:26917034
Edwards, Mark A; Derocher, Andrew E
2015-02-01
In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.
Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim
2016-01-01
Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712
SLE as a Mating of Trees in Euclidean Geometry
NASA Astrophysics Data System (ADS)
Holden, Nina; Sun, Xin
2018-05-01
The mating of trees approach to Schramm-Loewner evolution (SLE) in the random geometry of Liouville quantum gravity (LQG) has been recently developed by Duplantier et al. (Liouville quantum gravity as a mating of trees, 2014. arXiv:1409.7055). In this paper we consider the mating of trees approach to SLE in Euclidean geometry. Let {η} be a whole-plane space-filling SLE with parameter {κ > 4} , parameterized by Lebesgue measure. The main observable in the mating of trees approach is the contour function, a two-dimensional continuous process describing the evolution of the Minkowski content of the left and right frontier of {η} . We prove regularity properties of the contour function and show that (as in the LQG case) it encodes all the information about the curve {η} . We also prove that the uniform spanning tree on {Z^2} converges to SLE8 in the natural topology associated with the mating of trees approach.
The scent of inbreeding: a male sex pheromone betrays inbred males
van Bergen, Erik; Brakefield, Paul M.; Heuskin, Stéphanie; Zwaan, Bas J.; Nieberding, Caroline M.
2013-01-01
Inbreeding depression results from mating among genetically related individuals and impairs reproductive success. The decrease in male mating success is usually attributed to an impact on multiple fitness-related traits that reduce the general condition of inbred males. Here, we find that the production of the male sex pheromone is reduced significantly by inbreeding in the butterfly Bicyclus anynana. Other traits indicative of the general condition, including flight performance, are also negatively affected in male butterflies by inbreeding. Yet, we unambiguously show that only the production of male pheromones affects mating success. Thus, this pheromone signal informs females about the inbreeding status of their mating partners. We also identify the specific chemical component (hexadecanal) probably responsible for the decrease in male mating success. Our results advocate giving increased attention to olfactory communication as a major causal factor of mate-choice decisions and sexual selection. PMID:23466986
Using lod scores to detect sex differences in male-female recombination fractions.
Feenstra, B; Greenberg, D A; Hodge, S E
2004-01-01
Human recombination fraction (RF) can differ between males and females, but investigators do not always know which disease genes are located in genomic areas of large RF sex differences. Knowledge of RF sex differences contributes to our understanding of basic biology and can increase the power of a linkage study, improve gene localization, and provide clues to possible imprinting. One way to detect these differences is to use lod scores. In this study we focused on detecting RF sex differences and answered the following questions, in both phase-known and phase-unknown matings: (1) How large a sample size is needed to detect a RF sex difference? (2) What are "optimal" proportions of paternally vs. maternally informative matings? (3) Does ascertaining nonoptimal proportions of paternally or maternally informative matings lead to ascertainment bias? Our results were as follows: (1) We calculated expected lod scores (ELODs) under two different conditions: "unconstrained," allowing sex-specific RF parameters (theta(female), theta(male)); and "constrained," requiring theta(female) = theta(male). We then examined the DeltaELOD (identical with difference between maximized constrained and unconstrained ELODs) and calculated minimum sample sizes required to achieve statistically significant DeltaELODs. For large RF sex differences, samples as small as 10 to 20 fully informative matings can achieve statistical significance. We give general sample size guidelines for detecting RF differences in informative phase-known and phase-unknown matings. (2) We defined p as the proportion of paternally informative matings in the dataset; and the optimal proportion p(circ) as that value of p that maximizes DeltaELOD. We determined that, surprisingly, p(circ) does not necessarily equal (1/2), although it does fall between approximately 0.4 and 0.6 in most situations. (3) We showed that if p in a sample deviates from its optimal value, no bias is introduced (asymptotically) to the maximum likelihood estimates of theta(female) and theta(male), even though ELOD is reduced (see point 2). This fact is important because often investigators cannot control the proportions of paternally and maternally informative families. In conclusion, it is possible to reliably detect sex differences in recombination fraction. Copyright 2004 S. Karger AG, Basel
Reproductive isolation in the acoustically divergent groups of tettigoniid, Mecopoda elongata
Tregenza, Tom; Balakrishnan, Rohini
2017-01-01
Sympatric divergent populations of the same species provide an opportunity to study the evolution and maintenance of reproductive isolation. Male mating calls are important in sexual selection in acoustically communicating species, and they also have the potential to maintain isolation among species or incipient species. We studied divergent south Indian populations of the bush cricket Mecopoda elongata which are extremely difficult to distinguish morphologically, but which exhibit striking divergence in male acoustic signals. We performed phonotactic experiments investigating the relative preference of females of the “Chirper” song type for calls of all 5 of the song types found in the region (in varying degrees of sympatry). We found that Chirper females preferred their own song type and were completely unresponsive to three trilling song types. Chirper females were occasionally attracted to the call type “Double Chirper” (the call most similar to their own type), suggesting call preference alone cannot provide a complete isolating mechanism. To investigate the basis of call preference we investigated the response of chirper females to variation in chirp rate. Chirper females responded most frequently to a mean chirp rate characteristic of their own song type rather than a higher chirp rate which would be more characteristic of the Double-Chirper song type. This suggests females drive stabilising selection on male chirp rate, which may contribute to the maintenance of isolation. Finally, a no-choice mating experiment using Chirper females and Chirper and Double Chirper males revealed a significant preference of Chirper females to mate with their own song type, even without a requirement for phonotaxis. Overall, the strong specificity of Chirper females for their ‘own’ song type provides evidence for behavioural isolation among divergent sympatric Mecopoda song types being maintained by female preference for both male song type and subsequent mating probability driven by other cues. PMID:29182676
Mujic, Alija Bajro; Kuo, Alan; Tritt, Andrew; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Sharma, Aditi; Barry, Kerrie; Grigoriev, Igor V.; Spatafora, Joseph W.
2017-01-01
Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)—the first genomes available for Basidiomycota truffles—and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus. Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales. PMID:28450370
Numan, Michael; Young, Larry J
2016-01-01
This article is part of a Special Issue "Parental Care". Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occur in ~5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin actions within NA appear to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Numan, Michael; Young, Larry J.
2015-01-01
Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occurs in ∼5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin action within NA appears to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans. PMID:26062432
Sexual selection and the opportunity cost of free mate choice.
Apostolou, Menelaos
2016-06-01
The model of sexual selection under parental choice has been proposed to account for the control that parents exercise over their children's mating decisions. The present paper attempts to formalize and advance this model with the purpose of providing a better understanding of how parental choice mandates the course of sexual selection. In particular, in the proposed formulation, free mate choice involves an opportunity cost which motivates parents to place their children's mate choices under their control. When they succeed in doing so, they become a significant sexual selection force, as traits that appeal to parents in an in-law are selected and increase in frequency in the population. The degree of parental control over mating, and thus the strength of sexual selection under parental choice, is positively predicted by the size of the opportunity cost of free mate choice. The primary factors that affect the level of opportunity cost vary between society types, affecting the strength of parental choice as a sexual selection force.
Sezik, M; Aslan, M; Orhan, D D; Erdemoglu, E; Pekcan, M; Mungan, T; Sezik, E
2010-02-01
Our aim was to investigate the hypoglycaemic and antioxidant effects of the Helichrysum plicatum ssp. plicatum (HPsP) plant extract in the streptozotocin-induced type 1 diabetes rat model during pregnancy. Five groups (n = 8, each) were formed: (1) diabetic non-mated control, (2) non-diabetic mated control, (3) diabetic mated control, (4) diabetic non-mated treatment and (5) diabetic mated treatment. The HPsP extract was administered orally for 15 days (250 mg/kg body weight), beginning 3 days before mating. The extract led to decreased blood glucose, increased serum insulin, and decreased serum triglycerides in pregnant and non-pregnant diabetic animals. Liver thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) measurements in extract-treated diabetics were similar to non-diabetic pregnant controls, indicating probable reversal of increased lipid peroxidation in the liver. The mean pup number tended to increase (p = 0.06) with extract administration. In conclusion, the beneficial effects we encountered with the periconception use of the studied herbal extract warrant further investigation.
Zhu, Wen; Shen, Lin-Lin; Fang, Zhi-Guo; Yang, Li-Na; Zhang, Jia-Feng; Sun, Dan-Li; Zhan, Jiasui
2016-01-01
Knowledge of population dynamics of mating types is important for better understanding pathogen’s evolutionary potential and sustainable management of natural and chemical resources such as host resistances and fungicides. In this study, 2250 Phytophthora infestans isolates sampled from 61 fields across China were assayed for spatiotemporal dynamics of mating type frequency. Self-fertile isolates dominated in ~50% of populations and all but one cropping region with an average frequency of 0.64 while no A2 isolates were detected. Analyses of 140 genotypes consisting of 82 self-fertile and 58 A1 isolates indicated that on average self-fertile isolates grew faster, demonstrated higher aggressiveness and were more tolerant to fungicides than A1 isolates; Furthermore, pattern of association between virulence complexity (defined as the number of differential cultivars on which an isolate can induce disease) and frequency was different in the two mating types. In A1 isolates, virulence complexity was negatively correlated (r = −0.515, p = 0.043) with frequency but this correlation was positive (r = 0.532, p = 0.037) in self-fertile isolates. Our results indicate a quick increase of self-fertile isolates possibly attributable to their higher fitness relative to A1 mating type counterpart in the field populations of P. infestans in China. PMID:27384813
Oxytocin receptor density is associated with male mating tactics and social monogamy
Ophir, Alexander G.; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M.
2012-01-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. PMID:22285648
Yang, Sichao; Jiang, Yun; Xu, Liqing; Shiratake, Katsuhiro; Luo, Zhengrong; Zhang, Qinglin
2016-11-01
Persimmon fruits accumulate a large amount of proanthocyanidins (PAs) in "tannin cells" during development that cause the sensation of astringency due to coagulation of oral proteins. Pollination-constant non-astringent (PCNA) is a spontaneous mutant persimmon phenotype that loses its astringency naturally on the tree at maturity; while the more common non-PCNA fruits remain rich in PAs until they are fully ripened. Here, we isolated a DkMATE1 gene encoding a Multidrug And Toxic Compound Extrusion (MATE) family protein from the Chinese PCNA (C-PCNA) 'Eshi 1'. Expression patterns of DkMATE1 were positively correlated with the accumulation of PAs in different types of persimmons fruits during fruit development. An analysis of the inferred amino acid sequences and phylogenetic relationships indicated that DkMATE1 is a putative PA precursor transporter, and subcellular localization assays revealed that DkMATE1 is localized in the vacuolar membrane. Ectopic expression of the DkMATE1 in Arabidopsis tt12 mutant supported that DkMATE1 could complement its biological function in transporting epicatechin 3'-O-glucoside as a PAs precursor from the cytoplasm to vacuole. Furthermore, the transient over-expression and silencing of DkMATE1 in 'Mopanshi' persimmon leaves resulted in a significant increase and a decrease in PA content, respectively. The analysis of cis-elements in DkMATE1 promoter regions indicated that DkMATE1 might be regulated by DkMYB4, another well-known structural gene in persimmon. Overall, our results show that DkMATE1 may be an essential PA precursor membrane transporter that plays an important role in PA biosynthesis in persimmon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin
2013-01-01
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435
The role of ecology in speciation by sexual selection: a systematic empirical review.
Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J
2014-01-01
Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice
Sutter, Andreas; Lindholm, Anna K.
2015-01-01
Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry. PMID:26136452
Goodisman, MAD.; Asmussen, M. A.
1997-01-01
We develop models that describe the cytonuclear structure for either a cytoplasmic and nuclear marker in a haplodiploid species or a cytoplasmic and X-linked marker in a diploid species. Sex-specific disequilibrium statistics that summarize nonrandom cytonuclear associations in such systems are defined, and their basic Hardy-Weinberg dynamics and admixture formulae are delimited. We focus on the context of hybrid zones and develop continent-island models whereby individuals from two genetically differentiated source populations migrate into and mate within a single zone of admixture. We examine the effects of differential migration of the sexes, assortative mating by pure type females, and census time (relative to mating and migration), as well as special cases of random mating and migration subsumed under the general models. We show that pure type individuals and nonzero cytonuclear disequilibria can be maintained within a hybrid zone if there is continued migration from both source populations, and that females generally have a greater influence over these cytonuclear variables than males. The resulting theoretical framework can be used to estimate the rates of assortative mating and sex-specific gene flow in hybrid zones and other zones of admixture involving haplodiploid or sex-linked cytonuclear data. PMID:9286692
Food, audience and sex effects on pinyon jay (Gymnorhinus cyanocephalus) communication.
Dahlin, C R; Balda, R P; Slobodchikoff, C
2005-01-31
Pinyon jays (Gymnorhinus cyanocephalus) have a complex social system that may require a complex communication system. They need to interact with multiple flock members, and they form life-long pair-bonds. We researched whether pinyon jays would selectively vocalize depending on the presence or absence of food and certain flock members. We recorded the vocalizations of nine pinyon jays (four pair-bonds and one single male) in response to different audience types. The calls of the test bird were recorded after it was given either an empty food cup or one containing 50 pinyon pine (Pinus edulis) seeds, and the bird was in the presence of one of the following audience types: (1) two males and two females including subject's mate; (2) two males and two females excluding subject's mate; (3) four males excluding mate; (4) three females excluding mate; and (5) no audience. Birds gave fewer calls when there was food. When alone, birds called in a manner that may maximize long-distance transmission. Trends indicate that birds call differently to their mate. A sex effect was also found in that males and females called in a distinct manner, possibly reflecting differences in dominance status. Overall, birds responded to the presence or absence of an audience.
The impact of plant and flower age on mating patterns
Marshall, Diane L.; Avritt, Joy J.; Maliakal-Witt, Satya; Medeiros, Juliana S.; Shaner, Marieken G. M.
2010-01-01
Background Over a season, plant condition, amount of ongoing reproduction and biotic and abiotic environmental factors vary. As flowers age, flower condition and amount of pollen donated and received also vary. These internal and external changes are significant for fitness if they result in changes in reproduction and mating. Scope Literature from several fields was reviewed to provide a picture of the changes that occur in plants and flowers that can affect mating over a season. As flowers age, both the entire flower and individual floral whorls show changes in appearance and function. Over a season, changes in mating often appear as alteration in seed production vs. pollen donation. In several species, older, unpollinated flowers are more likely to self. If flowers are receiving pollen, staying open longer may increase the number of mates. In wild radish, for which there is considerable information on seed paternity, older flowers produce fewer seeds and appear to discriminate less among pollen donors. Pollen donor performance can also be linked to maternal plant age. Different pollinators and mates are available across the season. Also in wild radish, maternal plants appear to exert the most control over paternity when they are of intermediate age. Conclusions Although much is known about the characters of plants and flowers that can change over a season, there is less information on the effects of age on mating. Several studies document changes in self-pollination over time, but very few, other than those on wild radish, consider more subtle aspects of differential success of pollen donors over time. PMID:19875519
USDA-ARS?s Scientific Manuscript database
Diptera Tephritidae are an enormous threat to fruit and vegetable production throughout the world, causing both quantitative and qualitative losses. Investigating mating behavioural sequences could help to unravel mate choice dynamics, adding useful information to build behaviour-based control strat...
Wang, Hong; Cai, Tao; Wei, Jing; Feng, Aiping; Lin, Nan; Bao, Dapeng
2015-01-01
Cordyceps militaris is widely cultivated on artificial media in China; however, the cultures often are afflicted with the degeneration of nonfruiting strains. To understand the mechanism of degeneration of C. militaris, from the heterokaryotic strain into the homokaryotic strain, we examined the mating-type genes present in individual asexual spores. Further, we determined the distribution ratio of the different mating-type genes among a sample of asexual spores and the growth rate of heterokaryotic and homokaryotic strains of C. militaris. The distribution ratio of 3 groups of asexual spores from C. militaris heterokaryotic strains was determined as 1:1:1 by statistical analysis, whereas that of the two types of nuclei among asexual spores was 1:1. Nearly two-thirds of the asexual spore isolates were homokaryon, which showed a growth speed similar to the heterokaryon. However, the homokaryon (bearing mating-type MAT-HMG) grew significantly faster at times compared with the heterokaryon. Therefore, the purity of the spawn was difficult to establish. C. militaris heterokaryotic strains can transform into a homokaryotic strain following continued subculture.
Bowman, Elizabeth; Tatar, Marc
2016-10-27
BACKGROUND: The ratio of protein to carbohydrate (P:C) consumed influences reproduction and lifespan, outcomes that are often maximized by different P:C intake. OBJECTIVE: Determine if reproduction in female Drosophila drives elevated P:C intake. Distinguish whether such a preference is driven by egg production or from male-derived sex peptides in seminal fluid. METHODS: Intake of protein and carbohydrate was measured in a diet-choice assay. Macronutrient intake was calculated for mated and unmated fertile females, mated and unmated sterile females, and both types of female when mated to wildtype males and to males lacking sex peptide. RESULTS: Mated females have high P:C intake relative to unmated females and mated, sterile females. Fertile females mated to wildtype males and to males lacking sex peptide have high P:C intake, but sterile females have similar, low P:C intake when unmated and when mated to males lacking sex peptide. CONCLUSIONS: The metabolic demands of egg production and sex peptides are individually sufficient to drive elevated P:C intake in adult female Drosophila. Reproductive state can thus modulate how animals consume macronutrients, which in turn can impact their health and aging.
Bowman, Elizabeth; Tatar, Marc
2016-01-01
BACKGROUND: The ratio of protein to carbohydrate (P:C) consumed influences reproduction and lifespan, outcomes that are often maximized by different P:C intake. OBJECTIVE: Determine if reproduction in female Drosophila drives elevated P:C intake. Distinguish whether such a preference is driven by egg production or from male-derived sex peptides in seminal fluid. METHODS: Intake of protein and carbohydrate was measured in a diet-choice assay. Macronutrient intake was calculated for mated and unmated fertile females, mated and unmated sterile females, and both types of female when mated to wildtype males and to males lacking sex peptide. RESULTS: Mated females have high P:C intake relative to unmated females and mated, sterile females. Fertile females mated to wildtype males and to males lacking sex peptide have high P:C intake, but sterile females have similar, low P:C intake when unmated and when mated to males lacking sex peptide. CONCLUSIONS: The metabolic demands of egg production and sex peptides are individually sufficient to drive elevated P:C intake in adult female Drosophila. Reproductive state can thus modulate how animals consume macronutrients, which in turn can impact their health and aging. PMID:28035342
X-MATE: a flexible system for mapping short read data
Pearson, John V.; Cloonan, Nicole; Grimmond, Sean M.
2011-01-01
Summary: Accurate and complete mapping of short-read sequencing to a reference genome greatly enhances the discovery of biological results and improves statistical predictions. We recently presented RNA-MATE, a pipeline for the recursive mapping of RNA-Seq datasets. With the rapid increase in genome re-sequencing projects, progression of available mapping software and the evolution of file formats, we now present X-MATE, an updated version of RNA-MATE, capable of mapping both RNA-Seq and DNA datasets and with improved performance, output file formats, configuration files, and flexibility in core mapping software. Availability: Executables, source code, junction libraries, test data and results and the user manual are available from http://grimmond.imb.uq.edu.au/X-MATE/. Contact: n.cloonan@uq.edu.au; s.grimmond@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics Online. PMID:21216778
Model of the synthesis of trisporic acid in Mucorales showing bistability.
Werner, S; Schroeter, A; Schimek, C; Vlaic, S; Wöstemeyer, J; Schuster, S
2012-12-01
An important substance in the signalling between individuals of Mucor-like fungi is trisporic acid (TA). This compound, together with some of its precursors, serves as a pheromone in mating between (+)- and (-)-mating types. Moreover, intermediates of the TA pathway are exchanged between the two mating partners. Based on differential equations, mathematical models of the synthesis pathways of TA in the two mating types of an idealised Mucor-fungus are here presented. These models include the positive feedback of TA on its own synthesis. The authors compare three sub-models in view of bistability, robustness and the reversibility of transitions. The proposed modelling study showed that, in a system where intermediates are exchanged, a reversible transition between the two stable steady states occurs, whereas an exchange of the end product leads to an irreversible transition. The reversible transition is physiologically favoured, because the high-production state of TA must come to an end eventually. Moreover, the exchange of intermediates and TA is compared with the 3-way handshake widely used by computers linked in a network.
Male antenna morphology and its effect on scramble competition in false garden mantids
NASA Astrophysics Data System (ADS)
Jayaweera, Anuradhi; Barry, Katherine L.
2017-10-01
Well-developed antennae are crucial for many insects, but especially for scramble competitors, who race to find their mates using female sex cues. In these systems, the ability of males to locate females quickly is thought to be under strong selection. A rarely tested assumption is that males with more sensory structures are able to locate females faster. In the present study, we used the false garden mantid Pseudomantis albofimbriata to investigate male antennal morphology and its effect on male efficiency in finding a mate. We used scanning electron microscopy to describe the major sensilla types and their arrangement along the length of male antennae. We also conducted field enclosure trials relating male antennal morphology to scramble competition in this system. We identified six different types of antennal sensilla (cheatic, trichoid, basiconic, grooved peg, ceolocapitular and campaniform) on male P. albofimbriata antennae. As expected, males who had more trichoid sensilla located females quicker than did males with fewer sensilla. Results of the current study suggest that antenna morphology plays a significant role in mate location and hence scramble competition in the P. albofimbriata mating system.
Male antenna morphology and its effect on scramble competition in false garden mantids.
Jayaweera, Anuradhi; Barry, Katherine L
2017-08-23
Well-developed antennae are crucial for many insects, but especially for scramble competitors, who race to find their mates using female sex cues. In these systems, the ability of males to locate females quickly is thought to be under strong selection. A rarely tested assumption is that males with more sensory structures are able to locate females faster. In the present study, we used the false garden mantid Pseudomantis albofimbriata to investigate male antennal morphology and its effect on male efficiency in finding a mate. We used scanning electron microscopy to describe the major sensilla types and their arrangement along the length of male antennae. We also conducted field enclosure trials relating male antennal morphology to scramble competition in this system. We identified six different types of antennal sensilla (cheatic, trichoid, basiconic, grooved peg, ceolocapitular and campaniform) on male P. albofimbriata antennae. As expected, males who had more trichoid sensilla located females quicker than did males with fewer sensilla. Results of the current study suggest that antenna morphology plays a significant role in mate location and hence scramble competition in the P. albofimbriata mating system.
Karthikeyan, Veluswamy; Gnanamanickam, S S
2008-10-01
A total of 128 isolates of Setaria-infecting Magnaporthe grisea strains were obtained from different states of South India which includes sampling sites from Tamil Nadu, two from Karnataka, one from Andhra Pradesh and Kerala. Out of the selected 128 isolates 30 strains were tested with MAT1-1 and MAT1-2 fertile standard testers to determine their mating type. None of the 30 Setaria isolates produced perithecia with fertile testers. However, when monoconidial isolates were mated among themselves, isolates from the same field produced only barren perithecia and the tester isolates were able to mate readily with finger millet isolates. This is the first report of the mating-type studies on Setaria infecting Magnaporthe grisea with standard testers. This result indicates that the Setaria infecting population is infertile. In pathogenicity assay, it was found that 9 out of the 22 Setaria accessions were highly susceptible to Setaria strains of the blast fungus and seven cultivars/accessions were resistant to blast pathogen. Various virulence reactions were scored according to Standard Evaluation System.
Puniamoorthy, N; Ismail, M R B; Tan, D S H; Meier, R
2009-11-01
Our understanding of how fast mating behaviour evolves in insects is rather poor due to a lack of comparative studies among insect groups for which phylogenetic relationships are known. Here, we present a detailed study of the mating behaviour of 27 species of Sepsidae (Diptera) for which a well-resolved and supported phylogeny is available. We demonstrate that mating behaviour is extremely diverse in sepsids with each species having its own mating profile. We define 32 behavioural characters and document them with video clips. Based on sister species comparisons, we provide several examples where mating behaviour evolves faster than all sexually dimorphic morphological traits. Mapping the behaviours onto the molecular tree reveals much homoplasy, comparable to that observed for third positions of mitochondrial protein-encoding genes. A partitioned Bremer support (PBS) analysis reveals conflict between the molecular and behavioural data, but behavioural characters have higher PBS values per parsimony-informative character than DNA sequence characters.
The synergistic effect of prosociality and physical attractiveness on mate desirability.
Ehlebracht, Daniel; Stavrova, Olga; Fetchenhauer, Detlef; Farrelly, Daniel
2017-12-17
Mate selection requires a prioritization and joint evaluation of different traits present or absent in potential mates. Herein, we focus on two such traits - physical attractiveness and prosociality - and examine how they jointly shape impressions of overall desirability. We report on two related experiments which make use of an innovative methodology combining large samples of raters and target persons (i.e., stimuli) and information on targets' behaviour in economic games representing altruistic behaviour (Experiment 1) and trustworthiness (Experiment 2), two important facets of prosociality. In accordance with predictions derived from a cognitive perspective on mate choice and sexual strategies theory, the results show that the impact of being prosocial on an individual's overall desirability was increased further by them also being physically attractive, but only in long-term mating contexts. Furthermore, we show that men's mate preferences for certain prosocial traits (i.e., trustworthiness) were more context-dependent than women's due to differential evolutionary pressures for ancestral men and women. © 2017 The British Psychological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra
Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover,more » our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.« less
Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; ...
2016-11-11
Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover,more » our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.« less
Nolting, Nicole; Pöggeler, Stefanie
2006-07-01
MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Deltamcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.
Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; Guse, Tilo; Bauer, Lisa; Seitner, Denise; Rabanal, Fernando A; Czedik-Eysenberg, Angelika; Uhse, Simon; Bindics, Janos; Genenncher, Bianca; Navarrete, Fernando; Kellner, Ronny; Ekker, Heinz; Kumlehn, Jochen; Vogel, John P; Gordon, Sean P; Marcel, Thierry C; Münsterkötter, Martin; Walter, Mathias C; Sieber, Christian MK; Mannhaupt, Gertrud; Güldener, Ulrich; Kahmann, Regine; Djamei, Armin
2016-01-01
Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver. DOI: http://dx.doi.org/10.7554/eLife.20522.001 PMID:27835569
Stopher, K V; Nussey, D H; Clutton-Brock, T H; Guinness, F; Morris, A; Pemberton, J M
2012-01-01
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co-ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co-ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re-mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re-mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems. PMID:23039875
Why (and When) Straight Women Trust Gay Men: Ulterior Mating Motives and Female Competition.
Russell, Eric M; Ta, Vivian P; Lewis, David M G; Babcock, Meghan J; Ickes, William
2017-04-01
Previous findings indicate that heterosexual women experience a greater sense of comfort and trust in their friendships with gay men than in their friendships with heterosexual individuals. In the present studies, we tested a hypothesis that not only explains why women exhibit increased trust in gay men but also yields novel predictions about when (i.e., in what contexts) this phenomenon is likely to occur. Specifically, we propose that gay men's lack of motives to mate with women or to compete with them for mates enhances women's trust in gay men and openness to befriend them. Study 1 demonstrated that women placed greater trust in a gay man's mating-but not non-mating (e.g., career) advice-than in the same advice given by heterosexual individuals. Study 2 showed that women perceived a gay man to be more sincere in scenarios relevant to sexual and competitive mating deception. In Study 3, exposing women to a visualization of increased mating competition enhanced their trust in gay men; when mating competition was salient, women's trust in mating information from a gay man was amplified. Study 4 showed that women who perceived higher levels of mating competition were more open to befriending gay men. Together, these converging findings support our central hypothesis, which not only provides a distal explanation for the trust that straight women place in gay men, but also provides novel insights into previously unidentified contexts that facilitate the formation and strengthening of this unique bond.
Oxytocin receptor density is associated with male mating tactics and social monogamy.
Ophir, Alexander G; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M
2012-03-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Published by Elsevier Inc.
The effect of transcutaneous application of carbon dioxide (CO{sub 2}) on skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oe, Keisuke; Ueha, Takeshi; Sakai, Yoshitada, E-mail: sakai.yoshitada@gm.himeji-du.ac.jp
2011-04-01
Highlights: {yields} PGC-1{alpha} is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. {yields} We demonstrated transcutaneous application of CO{sub 2} up-regulated the gene expression of PGC-1{alpha}, SIRT1 and VEGF, and instance of muscle fiber switching. {yields} Transcutaneous application of CO{sub 2} may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptormore » (PPAR)-gamma coactivator-1 (PGC-1{alpha}) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1{alpha}-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO{sub 2} increased blood flow and a partial increase of O{sub 2} pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO{sub 2} to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO{sub 2} application caused: (1) the gene expression of PGC-1{alpha}, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO{sub 2} may have therapeutic potential for muscular strength recovery resulting from disuse atrophy in post-operative patients and the elderly population.« less
PAVE: program for assembling and viewing ESTs.
Soderlund, Carol; Johnson, Eric; Bomhoff, Matthew; Descour, Anne
2009-08-26
New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs. The new 454 technology has the benefit of high-throughput expression profiling, but introduces time and space problems for assembling large contigs. The PAVE (Program for Assembling and Viewing ESTs) assembler takes advantage of the 5' and 3' mate-pair information by requiring that the mate-pairs be assembled into the same contig and joined by n's if the two sub-contigs do not overlap. It handles the depth of 454 data sets by "burying" similar ESTs during assembly, which retains the expression level information while circumventing time and space problems. PAVE uses MegaBLAST for the clustering step and CAP3 for assembly, however it assembles incrementally to enforce the mate-pair constraint, bury ESTs, and reduce incorrect joins and splits. The PAVE data management system uses a MySQL database to store multiple libraries of ESTs along with their metadata; the management system allows multiple assemblies with variations on libraries and parameters. Analysis routines provide standard annotation for the contigs including a measure of differentially expressed genes across the libraries. A Java viewer program is provided for display and analysis of the results. Our results clearly show the benefit of using the PAVE assembler to explicitly use mate-pair information and bury ESTs for large contigs. The PAVE assembler provides a software package for assembling Sanger and/or 454 ESTs. The assembly software, data management software, Java viewer and user's guide are freely available.
Jantzen, Troy M; Havenhand, Jon N
2003-06-01
Squid behavior is synonymous with distinctive body patterns, postures, and movements that constitute a complex visual communication system. These communications are particularly obvious during reproduction. They are important for sexual selection and have been identified as a potential means of species differentiation. Here we present a detailed account of copulation, mating, and egg deposition behaviors from in situ observations of the squid Sepioteuthis australis from South Australia. We identified four mating types from 85 separate mating attempts: "Male-upturned mating" (64% of mating attempts); "Sneaker mating" (33%); "Male-parallel" (2%); and "Head-to-head" (1%). Intervals between successive egg deposition behaviors were clearly bimodal, with modes at 2.5 s and 70.0 s. Ninety-three percent of egg capsules contained 3 or 4 eggs (mean = 3.54), and each egg cluster contained between 218 and 1922 egg capsules (mean = 893.9). The reproductive behavior of S. australis from South Australia was different from that described for other cephalopod species. More importantly, comparison between these results and those for other populations of S. australis suggests that behavior may differ from one population to another.
Swaddle, John P; Cathey, Mark G; Correll, Maureen; Hodkinson, Brendan P
2005-05-22
There is increasing evidence that animals can acquire mate preferences through the use of public information, notably by observing (and copying) the mate preferences of others in the population. If females acquire preferences through social mechanisms, sexual selection could act very rapidly to spread the preference and drive elaboration of the preferred trait(s). Although there are reports of 'mate-choice copying' in polygynous species, there is no clear evidence for this process in monogamous species. Here, we investigated whether adult female zebra finches Taeniopygia guttata can socially acquire sexual preferences for individual males and, in a separate study, for a generalized trait (coloured leg bands) of males. In both studies, test females observed males in two simultaneous conditions: a ('chosen') mixed-sex situation in which a male was paired with a (model) female, and a ('unchosen') same-sex situation in which a male was paired with another male. In the first experiment, after two weeks of females observing males, test females significantly preferred individual males who had been paired with another female (i.e. chosen males). In the second experiment, test females significantly preferred novel males that were wearing the same leg band colour as the apparently chosen males. Our findings are consistent with the conclusion that female zebra finches' mate preferences are altered by public information. Our study implies that mate preferences can spread rapidly through populations by social mechanisms, affecting the strength of sexual selection in a monogamous species.
Mating of Phytophthora ramorum: functionality and consequences
Xavier Boutet; Annelies Vercauteren; Chandelier Heungens; Anne Kurt
2010-01-01
Phytophthora ramorum (Werres, De Cock, Man inât Veld), which causes âsudden oak deathâ in the United States and dieback and leaf necrosis in ornamental plants (mainly Rhododendron and Viburnum) in Europe, is a heterothallic species with two mating types, A1 and A2 (Werres and others 2001, Rizzo and...
Sexual dimorphism in stature (SDS), jealousy and mate retention.
Brewer, Gayle; Riley, Charlene
2010-10-02
Previous research has investigated the manner in which absolute height impacts on jealousy and mate retention. Although relative height is also important, little information exists about the potential influence of sexual dimorphism in stature (SDS) within established relationships. The current study investigated the relationship between SDS and the satisfaction, jealousy and mate retention behaviors reported by men and women. Heterosexual men (n = 98) and women (n = 102) completed a questionnaire. Men in high SDS relationships reported the lowest levels of cognitive and behavioral jealousy, although the impact of SDS on relationship satisfaction was less clear. SDS was not associated with the overall use of mate retention strategies; SDS did however affect the use of three specific strategies (vigilance, monopolization of time, love and care). SDS did not affect women's relationship satisfaction, jealousy (cognitive, behavioral, or emotional) or the use of mate retention strategies (with the exception of resource display).
Bryant, Edwin H.; Kence, Aykut; Kimball, Kay T.
1980-01-01
Multiple-choice crosses among five geographic strains of the housefly, Musca domestica L., were carried out in equal (10:10) and low-frequency (4:16) ratios. Initially, a low-frequency-male mating advantage was apparent, but further analyses related this minority advantage to a reduction of male mating success during marking by wing clipping. When there are fluctuating differences in the level of sexual vigor between competing male types over replicate trials of a cross, a mating advantage will accrue to the minority type. Even if males from the two competing strains are equally vigorous, such fluctuating differences will occur during sampling of flies. Harming the flies during marking will serve to enhance this effect and make significant departures toward greater mating success of rare males highly likely. This statistical bias in favor of minority males was substantiated in simulations of the Kence-Bryant model of mating success and compared with our results of a minority advantage in the housefly and with published results of a minority advantage in Drosophila. Our evidence, though circumstantial, that an advantage to minority males could have been induced by such an experimental bias suggests that a re-examination of existing data, as well as new experimentation, is necessary to discern whether or not a real rare-male advantage exists. PMID:7262546
Larraya, Luis M.; Pérez, Gúmer; Iribarren, Iñaki; Blanco, Juan A.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía
2001-01-01
The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus. PMID:11472908
The messenger matters: Pollinator functional group influences mating system dynamics.
Weber, Jennifer J
2017-08-01
The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross-pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self- and cross-pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross-pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen () examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self-incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self- and cross-pollination paradigm. Rhodes et al. () demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics. © 2017 John Wiley & Sons Ltd.
A Role of DLPFC in the Learning Process of Human Mate Copying
Zhuang, Jin-Ying; Xie, Jiajia; Hu, Die; Fan, Mingxia; Zheng, Li
2016-01-01
In the current study, we conducted a behavioral experiment to test the mate coping effect and a functional magnetic resonance imaging (fMRI) experiment to test the neural basis involved in the social learning process of mate copying. In the behavioral experiment, participants were asked to rate the attractiveness of isolated opposite-sex (potential mates) facial photographs, then shown the targets associating with a neutral-faced model with textual cues indicating the models’ attitude (interested vs. not-interested) toward the potential mates, and then asked to re-evaluate the potential mates’ attractiveness. Using a similar procedure as the behavioral experiment, participants were scanned while observing the compound images in the fMRI experiment. The mate copying effect was confirmed in the behavioral experiment –greater increase in attractiveness ratings was observed for opposite-sex photographs in the interested than in the not-interested condition. The fMRI results showed that the dorsolateral prefrontal gyrus (DLPFC) was significantly active in the comparison of interested > not-interested condition, suggesting that a cognitive integration and selection function may be involved when participants process information from conditions related to mate copying. PMID:27148151
Dushimirimana, Severin; Hance, Thierry; Damiens, David
2012-01-01
Summary The sterile insect technique (SIT) is increasingly used to control pest insect populations. The success of SIT control programs depends on the ability to release sterile males and on the capacity of sterile males to compete with wild males to inseminate wild females. In this study, we evaluated the mating performance of Schistocerca gregaria (Försk.) males irradiated with 4 Gray. We compared reproductive traits, such as duration of precopulation time, mating duration, quantity of sperm stored by females after copulation, number of females mated successively and postmating competition of irradiated males with non-irradiated males. Irradiated males were able to mate but the resulting number of offspring was dramatically reduced compared to the average number of offspring observed during a regular mating. During a single copulation, irradiated males transferred fewer sperm than regular males but, theoretically, this quantity is enough to fertilize all the eggs produced by a female during its reproductive life. Irradiated males also had the ability to remove sperm from a previous mating with unirraditated males. This new information on the mating strategies helps explain the post-copulation guarding behaviour of S. gregaria. PMID:23213413
Surbeck, Martin; Mundry, Roger; Hohmann, Gottfried
2011-02-22
Variation in male mating success is often related to rank differences. Males who are unable to monopolize oestrous females alone may engage in coalitions, thus enhancing their mating success. While studies on chimpanzees and dolphins suggest that coalitions are independent of kinship, information from female philopatric species shows the importance of kin support, especially from mothers, on the reproductive success of females. Therefore, one might expect a similar effect on sons in male philopatric species. We evaluate mating success determinants in male bonobos using data from nine male individuals from a wild population. Results reveal a steep, linear male dominance hierarchy and a positive correlation between dominance status and mating success. In addition to rank, the presence of mothers enhances the mating success of sons and reduces the proportion of matings by the highest ranking male. Mothers and sons have high association rates and mothers provide agonistic aid to sons in conflicts with other males. As bonobos are male-philopatric and adult females occupy high dominance status, maternal support extends into adulthood and females have the leverage to intervene in male conflicts. The absence of female support to unrelated males suggests that mothers gain indirect fitness benefits by supporting their sons.
Cognitive ability is heritable and predicts the success of an alternative mating tactic
Smith, Carl; Philips, André; Reichard, Martin
2015-01-01
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits—the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. PMID:26041347
Cognitive ability is heritable and predicts the success of an alternative mating tactic.
Smith, Carl; Philips, André; Reichard, Martin
2015-06-22
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits--the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Sperm precedence in a novel context: mating in a sessile marine invertebrate with dispersing sperm.
Bishop, J D; Pemberton, A J; Noble, L R
2000-06-07
The compound ascidian Diplosoma listerianum releases aquatic sperm which are dispersed passively to potential mates as individual gametes prior to storage of sperm, internal fertilization and brooding of embryos. The storage of exogenous sperm enables D. listerianum to produce a lengthy series of progeny following a brief period of mating. Molecular paternity analysis following sequential mating of colonies in laboratory culture revealed a consistent pattern with a clear initial bias in paternity towards the first of two acting males. The sites of sperm storage and fertilization and the morphology of the ovary in D. listerianum suggest that this bias reflects first-in-first-out use of individual stored gametes. The proportion of second-male paternity subsequently increased with time within the progeny arrays. This may have reflected the ageing or passive loss of first-male sperm. It is also possible that the modular nature of the organism contributed to this temporal trend: any recently budded colony modules maturing in the interval between matings would have been available exclusively to second-male sperm as virgin zooids. Two sets of mating trials were run. In the first, the collection of progeny suffered an interruption of 13 days and each male gained a larger proportion of recorded paternity within the progeny analysed when mating first rather than when mating second. In one mating combination, the first male obtained almost 100% of recorded paternity. In the second set of trials, with different clonal combinations, the complete sequence of progeny was collected and the estimated overall proportion of second-male paternity (P2) was consistently > 0.5. Taken as a whole, the results suggest that the overall P2-value can vary widely within the population studied. Proposed mechanisms of mating-order effects in species with copulatory mating include several which can have no counterpart in indirect aquatic mating since they involve the active removal, sealing off, volumetric displacement or incapacitation of first-male ejaculates. It is nevertheless clear that mating-order effects can be pronounced during the type of non-copulatory mating examined here, which is widespread in marine invertebrates.
Sperm precedence in a novel context: mating in a sessile marine invertebrate with dispersing sperm.
Bishop, J D; Pemberton, A J; Noble, L R
2000-01-01
The compound ascidian Diplosoma listerianum releases aquatic sperm which are dispersed passively to potential mates as individual gametes prior to storage of sperm, internal fertilization and brooding of embryos. The storage of exogenous sperm enables D. listerianum to produce a lengthy series of progeny following a brief period of mating. Molecular paternity analysis following sequential mating of colonies in laboratory culture revealed a consistent pattern with a clear initial bias in paternity towards the first of two acting males. The sites of sperm storage and fertilization and the morphology of the ovary in D. listerianum suggest that this bias reflects first-in-first-out use of individual stored gametes. The proportion of second-male paternity subsequently increased with time within the progeny arrays. This may have reflected the ageing or passive loss of first-male sperm. It is also possible that the modular nature of the organism contributed to this temporal trend: any recently budded colony modules maturing in the interval between matings would have been available exclusively to second-male sperm as virgin zooids. Two sets of mating trials were run. In the first, the collection of progeny suffered an interruption of 13 days and each male gained a larger proportion of recorded paternity within the progeny analysed when mating first rather than when mating second. In one mating combination, the first male obtained almost 100% of recorded paternity. In the second set of trials, with different clonal combinations, the complete sequence of progeny was collected and the estimated overall proportion of second-male paternity (P2) was consistently > 0.5. Taken as a whole, the results suggest that the overall P2-value can vary widely within the population studied. Proposed mechanisms of mating-order effects in species with copulatory mating include several which can have no counterpart in indirect aquatic mating since they involve the active removal, sealing off, volumetric displacement or incapacitation of first-male ejaculates. It is nevertheless clear that mating-order effects can be pronounced during the type of non-copulatory mating examined here, which is widespread in marine invertebrates. PMID:10885515
PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.
Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M
2017-09-01
We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Evolution of fungal sexual reproduction.
Heitman, Joseph; Sun, Sheng; James, Timothy Y
2013-01-01
We review here recent advances in our understanding of the genetic, molecular and genomic basis of sex determination and sexual reproduction in the fungal kingdom as a window on the evolution of sex in eukaryotes more generally. In particular, we focus on the evolution of the mating-type locus and transitions in modes of sexual reproduction using examples from throughout the kingdom. These examples illustrate general principles of the origins of mating-type loci/sex chromosomes and the balance between inbreeding and outcrossing afforded by different modes of sexual reproduction involving tetrapolar, bipolar and unipolar sexual cycles.
2018-01-01
The use of medicinal plants mixed with yerba mate (Ilex paraguariensis) has been poorly studied in the ethnopharmacological literature so far. The Paraguayan Mestizo people have the longest tradition of using the yerba mate beverage, apart from the indigenous Guarani people. This study analyses the role of yerba mate and medicinal plants in the treatment of illnesses within Paraguayan folk medicine. The research was conducted among 100 Paraguayan migrants living in Misiones, Argentina, in 2014 and 2015. Yerba mate is not considered to be a medicinal plant by its own virtues but is culturally a very important type of medicinal plant intake. Ninety-seven species are employed in hot and cold versions of the yerba mate beverage. The most important species are as follows: Allophylus edulis (highest number of citations), Aristolochia triangularis (highest relative importance value), and Achyrocline flaccida and Achyrocline tomentosa (highest score by Index of Agreement on Species). The plants are used in the treatment of 18 medicinal categories, which include illnesses traditionally treated with plants: digestive system, humoral medicine, and relatively new health conditions such as diabetes, hypertension, and high levels of cholesterol. Newly incorporated medicinal plants, such as Moringa oleifera, are ingested predominantly or exclusively with the mate beverage. PMID:29725356
Hybrid female mate choice as a species isolating mechanism: environment matters.
Schmidt, E M; Pfennig, K S
2016-04-01
A fundamental goal of biology is to understand how new species arise and are maintained. Female mate choice is potentially critical to the speciation process: mate choice can prevent hybridization and thereby generate reproductive isolation between potentially interbreeding groups. Yet, in systems where hybridization occurs, mate choice by hybrid females might also play a key role in reproductive isolation by affecting hybrid fitness and contributing to patterns of gene flow between species. We evaluated whether hybrid mate choice behaviour could serve as such an isolating mechanism using spadefoot toad hybrids of Spea multiplicata and Spea bombifrons. We assessed the mate preferences of female hybrid spadefoot toads for sterile hybrid males vs. pure-species males in two alternative habitat types in which spadefoots breed: deep or shallow water. We found that, in deep water, hybrid females preferred the calls of sterile hybrid males to those of S. multiplicata males. Thus, maladaptive hybrid mate preferences could serve as an isolating mechanism. However, in shallow water, the preference for hybrid male calls was not expressed. Moreover, hybrid females did not prefer hybrid calls to those of S. bombifrons in either environment. Because hybrid female mate choice was context-dependent, its efficacy as a reproductive isolating mechanism will depend on both the environment in which females choose their mates as well as the relative frequencies of males in a given population. Thus, reproductive isolation between species, as well as habitat specific patterns of gene flow between species, might depend critically on the nature of hybrid mate preferences and the way in which they vary across environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Hernández, Emilio; Liedo, Pablo; Toledo, Jorge; Montoya, Pablo; Perales, Hugo; Ruiz-Montoya, Lorena
2017-12-05
The sterile insect technique uses males that have been mass-reared in a controlled environment. The insects, once released in the field, must compete to mate. However, the mass-rearing condition supposes a loss of fitness that will be noticeable by wild females. To compare the fitness of wild males and mass-reared males, three competition settings were established. In setting 1, wild males, mass-reared males and wild females were released in field cages. In setting 2, wild females and wild males were released without competition, and in setting 3, mass-reared males and mass-reared females were also released without competition. Male fitness was based on their mating success, fecundity, weight and longevity. The fitness of the females was measured based on weight and several demographic parameters. The highest percentage of mating was between wild males and wild females between 0800 and 0900 h in the competition condition, while the mass-reared males started one hour later. The successful wild males weighed more and showed longer mating times, greater longevity and a higher number of matings than the mass-reared males. Although the mass-reared males showed the lowest percentage of matings, their fecundity when mating with wild females indicated a high fitness. Since the survival and fecundity of wild females that mated with mass-reared males decreased to become similar to those of mass-reared females that mated with mass-reared males, females seem to be influenced by the type of male (wild or mass-reared). © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic and educational assortative mating among US adults.
Domingue, Benjamin W; Fletcher, Jason; Conley, Dalton; Boardman, Jason D
2014-06-03
Understanding the social and biological mechanisms that lead to homogamy (similar individuals marrying one another) has been a long-standing issue across many fields of scientific inquiry. Using a nationally representative sample of non-Hispanic white US adults from the Health and Retirement Study and information from 1.7 million single-nucleotide polymorphisms, we compare genetic similarity among married couples to noncoupled pairs in the population. We provide evidence for genetic assortative mating in this population but the strength of this association is substantially smaller than the strength of educational assortative mating in the same sample. Furthermore, genetic similarity explains at most 10% of the assortative mating by education levels. Results are replicated using comparable data from the Framingham Heart Study.
Mortality among seamen with special reference to work on tankers.
Moen, B E; Riise, T; Helseth, A
1994-08-01
Several studies demonstrate a high mortality among seamen but this has not been related to different types of work on board. This study examined a possible relationship between work on tankers and mortality. Tankers differ from other ships by carrying different types of oil, oil products and other chemicals. Mortality was studied in 1687 men who were captains and mates during the period 1970-1987, and were registered by a Norwegian census in 1970. The data were linked to the Norwegian Register of Death Certificates. In all 181 deaths were found. Each case was age-matched at time of death to three individuals from the rest of the population alive at this date. Information about the seamen's work on different ships was obtained for cases and controls. The data were analysed using multivariate conditional logistic regression. Seamen working on tankers had a higher mortality rate ratio (RR = 2.43, 95% confidence interval [CI]: 1.65-3.60) than seamen who had not been working on tankers. The increased risk was especially related to death from cancer and from accidents, while no significantly increased mortality due to cardiovascular diseases was found. Employment as a mate on tankers showed the highest all-causes risk of death (RR = 3.14, 95% CI: 2.04-4.82) as well as for cancer (RR = 4.24, 95% CI: 2.02-8.88) and accidents (RR = 5.85, 95% CI: 1.66-20.60). Employment as a captain on tankers showed no significantly increased mortality. Exposure to chemicals on tankers may be related to the increased mortality, as this is the major difference between tankers and other ships and mates are exposed to chemical agents, while captains are not.
Gao, Ge; Smith, David I.
2015-01-01
DNA viruses are known to be associated with a variety of different cancers. Human papillomaviruses (HPV) are a family of viruses and several of its sub-types are classified as high-risk HPVs as they are found to be associated with the development of a number of different cancers. Almost all cervical cancers appear to be driven by HPV infection and HPV is also found in most cancers of the anus and at least half the cancers of the vulva, penis and vagina, and increasingly found in one sub-type of head and neck cancers namely oropharyngeal squamous cell carcinoma. Our understanding of HPVs role in cancer development comes from extensive studies done on cervical cancer and it has just been assumed that HPV plays an identical role in the development of all other cancers arising in the presence of HPV sequences, although this has not been proven. Most invasive cervical cancers have the HPV genome integrated into one or more sites within the human genome. One powerful tool to examine all the sites of HPV integration in a cancer but that also provides a comprehensive view of genomic alterations in that cancer is the use of next generation sequencing of mate-pair libraries produced from the DNA isolated. We will describe how this powerful technology can provide important information about the genomic organization within an individual cancer genome, and how this has demonstrated that HPVs role in oropharyngeal squamous cell carcinoma is distinct from that in cervical cancer. We will also describe why the sequencing of mate-pair libraries could be a powerful clinical tool for the management of patients with a DNA viral etiology and how this could quickly transform the care of these patients. PMID:26262638
The mitonuclear compatibility hypothesis of sexual selection
Hill, Geoffrey E.; Johnson, James D.
2013-01-01
Why females assess ornaments when choosing mates remains a central question in evolutionary biology. We hypothesize that the imperative for a choosing female to find a mate with nuclear oxidative phosphorylation (OXPHOS) genes that are compatible with her mitochondrial OXPHOS genes drives the evolution of ornaments. Indicator traits are proposed to signal the efficiency of OXPHOS function thus enabling females to select mates with nuclear genes that are compatible with maternal mitochondrial genes in the formation of OXPHOS complexes. Species-typical pattern of ornamentation is proposed to serve as a marker of mitochondrial type ensuring that females assess prospective mates with a shared mitochondrial background. The mitonuclear compatibility hypothesis predicts that the production of ornaments will be closely linked to OXPHOS pathways, and that sexual selection for compatible mates will be strongest when genes for nuclear components of OXPHOS complexes are Z-linked. The implications of this hypothesis are that sexual selection may serve as a driver for the evolution of more efficient cellular respiration. PMID:23945683
Evolution of pathogenicity and sexual reproduction in eight Candida genomes
Butler, Geraldine; Rasmussen, Matthew D.; Lin, Michael F.; Santos, Manuel A.S.; Sakthikumar, Sharadha; Munro, Carol A.; Rheinbay, Esther; Grabherr, Manfred; Forche, Anja; Reedy, Jennifer L.; Agrafioti, Ino; Arnaud, Martha B.; Bates, Steven; Brown, Alistair J.P.; Brunke, Sascha; Costanzo, Maria C.; Fitzpatrick, David A.; de Groot, Piet W. J.; Harris, David; Hoyer, Lois L.; Hube, Bernhard; Klis, Frans M.; Kodira, Chinnappa; Lennard, Nicola; Logue, Mary E.; Martin, Ronny; Neiman, Aaron M.; Nikolaou, Elissavet; Quail, Michael A.; Quinn, Janet; Santos, Maria C.; Schmitzberger, Florian F.; Sherlock, Gavin; Shah, Prachi; Silverstein, Kevin; Skrzypek, Marek S.; Soll, David; Staggs, Rodney; Stansfield, Ian; Stumpf, Michael P H; Sudbery, Peter E.; Thyagarajan, Srikantha; Zeng, Qiandong; Berman, Judith; Berriman, Matthew; Heitman, Joseph; Gow, Neil A. R.; Lorenz, Michael C.; Birren, Bruce W.; Kellis, Manolis; Cuomo, Christina A.
2009-01-01
Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes. PMID:19465905
Electrician's Mate 3 & 2. Rate Training Manual and Nonresident Career Course.
ERIC Educational Resources Information Center
Gallant, Thomas E.; Hawley, John F.
This Rate Training Manual (Textbook) and Nonresident Career Course form a correspondence, self-study package to provide information related to tasks assigned to the Electrician's Mate Third and Second Class. Focus is on operating and maintaining power and lighting systems and associated equipment. The 16 chapters in the text are (1) The…
USDA-ARS?s Scientific Manuscript database
Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...
Vargas, Angela M; Quesada Ocampo, Lina M; Céspedes, Maria Catalina; Carreño, Natalia; González, Adriana; Rojas, Alejandro; Zuluaga, A Paola; Myers, Kevin; Fry, William E; Jiménez, Pedro; Bernal, Adriana J; Restrepo, Silvia
2009-01-01
Phytophthora infestans, the causal agent of late blight in crops of the Solanaceae family, is one of the most important plant pathogens in Colombia. Not only are Solanum lycopersicum, and S. tuberosum at risk, but also several other solanaceous hosts (Physalis peruviana, S. betaceum, S. phureja, and S. quitoense) that have recently gained importance as new crops in Colombia may be at risk. Because little is known about the population structure of Phytophthora infestans in Colombia, we report here the phenotypic and molecular characterization of 97 isolates collected from these six different solanaceous plants in Colombia. All the isolates were analyzed for mating type, mitochondrial haplotypes, genotype for several microsatellites, and sequence of the internal transcribed spacer (ITS) region. This characterization identified a single individual of A2 mating type (from Physalis peruviana) for the first time in Colombia. All isolates had an ITS sequence that was at least 97% identical to the consensus sequence. Of the 97 isolates, 96 were mitochondrial haplotype IIa, with the single A2 isolate being Ia. All isolates were invariant for the microsatellites. Additionally, isolates collected from S. tuberosum and P. peruviana (64 isolates) were tested for: aggressiveness on both hosts, genotype for the isozymes (glucose-6-phosphate isomerase and peptidase), and restriction fragment length polymorphism fingerprint pattern as detected by RG57. Isolates from S. tuberosum were preferentially pathogenic on S. tuberosum, and isolates from P. peruviana were preferentially pathogenic on P. peruviana. The population from these two hosts was dominated by a single clonal lineage (59 of 64 individuals assayed), previously identified from Ecuador and Peru as EC-1. This lineage was mating type A1, IIa for mitochondrial DNA, invariant for two microsatellites, and invariant for both isozymes. The remaining four A1 isolates were in lineages very closely related to EC-1 (named EC-1.1, CO-1, and CO-2). The remaining lineage (the A2 mating type) had characteristics of the US-8 lineage (previously identified in Mexico, the United States, and Canada). These results have important epidemiological implications for the production of these two crops in Colombia.
Infants Prefer Female Body Phenotypes; Infant Girls Prefer They Have an Hourglass Shape
Alexander, Gerianne M.; Hawkins, Laura B.; Wilcox, Teresa; Hirshkowitz, Amy
2016-01-01
Adolescents and adults show preferences for male and female body shapes consistent with evolutionary theories of reproductive fitness and mate selection. However, when these preferences for females with narrow waists (i.e., 0.7 waist-to-hip ratio) and men with broad shoulders (i.e., mesomorphic body shape) emerge during the lifespan is largely unknown. To address this knowledge gap, eye-movements were tracked in 146 infants (3–18 months of age) during computer presentation of three-dimensional human figures varying in body features thought relevant for reproductive success (e.g., secondary sex characteristics, waist-to-hip ratio). When presented with pairs of figures differing in apparent sex, male and female infants looked significantly longer at the female figure compared to the male figure, a new finding that extends previous research showing preferences for female faces in infancy. When presented with same-sex figures differing in characteristics associated with mate value, male and female infants looked longer at a low mate value male (i.e., an endomorphic body type) compared to a high mate value male (i.e., a mesomorphic body type), a finding that replicates the results of previous research. In addition, the novel use of high and low mate value female figures showed a sex difference in visual attention, such that female infants looked longer at the high mate value female figure compared to the low mate female figure whereas male infants showed the opposite pattern of results. In sum, these findings suggest that infants generally do not possess preferences for adult-defined attractive male body shapes. However, infant girls’ greater attention to a female figure with an adult-preferred waist-to-hip ratio raises the possibility that evolved preferences for 0.7 waist-to-hip ratio influence girls’ later preference for toys representing females with an hourglass shape, perhaps supporting elaboration of adult social behaviors that enhance reproductive success (e.g., cooperative breeding). PMID:27375509
QUICK DISCONNECT ELECTRICAL CONNECTOR
None
1962-08-14
A remotely actuated quick-dlsconnect electrical connector which comprises a pair of mating portrons releasably retained together by a bayonet- type joint with a rotatable sleeve on one of the mating portions providing for engagement and disengagement of the joint is described. A lanyard with ends passed through fulcrums and affixed to the sleeve erfects rotation of the sleeve and disengages the joint. (AEC)
Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H
2014-11-11
Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.
Short-term exposure to a synthetic estrogen disrupts mating dynamics in a pipefish.
Partridge, Charlyn; Boettcher, Anne; Jones, Adam G
2010-11-01
Sexual selection is responsible for the evolution of some of the most elaborate traits occurring in nature, many of which play a vital role in competition over access to mates and individual reproductive fitness. Because expression of these traits is typically regulated by sex-steroids there is a significant potential for their expression to be affected by the presence of certain pollutants, such as endocrine disrupting compounds. Endocrine disruptors have been shown to alter primary sexual traits and impact reproduction, but few studies have investigated how these compounds affect secondary sexual trait expression and how that may, in turn, impact mating dynamics. In this study we examine how short-term exposure to a synthetic estrogen impacts secondary sexual trait expression and mating dynamics in the Gulf pipefish, a species displaying sex-role reversal. Our results show that only 10days of exposure to 17α-ethinylestradiol results in adult male pipefish developing female-like secondary sexual traits. While these males are capable of reproduction, females discriminate against exposed males in mate choice trials. In natural populations, this type of discrimination would reduce male mating opportunities, thus potentially reducing their long-term reproductive success. Importantly, the effects of these compounds on mating dynamics and mating opportunity would not be observed using the current standard methods of assessing environmental contamination. However, disrupting these processes could have profound effects on the viability of exposed populations. Copyright © 2010 Elsevier Inc. All rights reserved.
Experimental hybridization and backcrossing reveal forces of reproductive isolation in Microbotryum
2013-01-01
Background Hybridization and reproductive isolation are central to the origin and maintenance of species, and especially for sympatric species, gene flow is often inhibited through barriers that depend upon mating compatibility factors. The anther-smut fungi (genus Microbotryum) serve as models for speciation in the face of sympatry, and previous studies have tested for but not detected assortative mating. In addition, post-mating barriers are indicated by reduced fitness of hybrids, but sources of those barriers (i.e. ecological maladaptation or genetic incompatibilities) have not yet been detected. Here, backcrossing experiments, specifically controlling for the fungal species origins of the mating compatibility factors, were used to investigate reproductive isolation in the recently-derived species Microbotryum lychnidis-dioicae and Microbotryum silenes-dioicae. Results Assortative mating was detected during backcrossing and was manifested by the preferential conjugation of the hybrid-produced gametes with non-hybrid gametes containing mating compatibility factors from the same parental species. Patterns of post-mating performance supported either a level of extrinsic isolation mechanism, where backcross progeny with a higher proportion of the pathogen genome adapted to the particular host environment were favored, or an infection advantage attributed to greater genetic contribution to the hybrid from the M. lychnidis-dioicae genome. Conclusion The use of controlled backcrossing experiments reveals significant species-specific mating type effects on conjugations between recently-derived sister species, which are likely to play important roles in both maintaining species separation and the nature of hybrids lineages that emerge in sympatry between Microbotryum species. PMID:24112452
What initiates speciation in passion-vine butterflies?
McMillan, W. Owen; Jiggins, Chris D.; Mallet, James
1997-01-01
Studies of the continuum between geographic races and species provide the clearest insights into the causes of speciation. Here we report on mate choice and hybrid viability experiments in a pair of warningly colored butterflies, Heliconius erato and Heliconius himera, that maintain their genetic integrity in the face of hybridization. Hybrid sterility and inviability have been unimportant in the early stages of speciation of these two Heliconius. We find no evidence of reduced fecundity, egg hatch, or larval survival nor increases in developmental time in three generations of hybrid crosses. Instead, speciation in this pair appears to have been catalyzed by the association of strong mating preferences with divergence in warning coloration and ecology. In mate choice experiments, matings between the two species are a tenth as likely as matings within species. F1 hybrids of both sexes mate frequently with both pure forms. However, male F1 progeny from crosses between H. himera mothers and H. erato fathers have somewhat reduced mating success. The strong barrier to gene flow provided by divergence in mate preference is probably enhanced by frequency-dependent predation against hybrids similar to the type known to occur across interracial hybrid zones of H. erato. In addition, the transition between this pair falls at the boundary between wet and dry forest, and rare hybrids may also be selected against because they are poorly adapted to either biotope. These results add to a growing body of evidence that challenge the importance of genomic incompatibilities in the earliest stages of speciation. PMID:9238028
Avise, John C.; Liu, Jin-Xian
2010-01-01
We construct a verbal and graphical theory (the “fecundity-limitation hypothesis”) about how constraints on the brooding space for embryos probably truncate individual fecundity in male-pregnant and female-pregnant species in ways that should differentially influence selection pressures for multiple mating by males or by females. We then review the empirical literature on genetically deduced rates of multiple mating by the embryo-brooding parent in various fish species with three alternative categories of pregnancy: internal gestation by males, internal gestation by females, and external gestation (in nests) by males. Multiple mating by the brooding gender was common in all three forms of pregnancy. However, rates of multiple mating as well as mate numbers for the pregnant parent averaged higher in species with external as compared with internal male pregnancy, and also for dams in female-pregnant species versus sires in male-pregnant species. These outcomes are all consistent with the theory that different types of pregnancy have predictable consequences for a parent's brood space, its effective fecundity, its opportunities and rewards for producing half-sib clutches, and thereby its exposure to selection pressures for seeking multiple mates. Overall, we try to fit these fecundity-limitation phenomena into a broader conceptual framework for mating-system evolution that also includes anisogamy, sexual-selection gradients, parental investment, and other selective factors that can influence the relative proclivities of males versus females to seek multiple sexual partners. PMID:20956296
Free mate choice does not influence reproductive success in humans.
Sorokowski, Piotr; Groyecka, Agata; Karwowski, Maciej; Manral, Upma; Kumar, Amit; Niemczyk, Agnieszka; Marczak, Michalina; Misiak, Michał; Sorokowska, Agnieszka; Huanca, Thomas; Conde, Esther; Wojciszke, Bogdan; Pawłowski, Bogusław
2017-08-31
The effect of free mate choice on the relative magnitude of fitness benefits has been examined among various species. The majority of the data show significant fitness benefits of mating with partners of an individual's own choice, highlighting elevated behavioral compatibility between partners with free mate choice. Similarities between humans and other species that benefit from free mate choice led us to hypothesize that it also confers reproductive benefits in Homo sapiens. To test this hypothesis, we conducted a study among three indigenous societies-the Tsimane', Yali, and Bhotiya-who employ natural birth control. In all three samples, we compared the marriages arranged by parents with the non-arranged ones in terms of number of offspring. Here, we show that there were no significant relationships between type of marriage and the total number of alive children and number of dead children among the three sampled groups. The presented study is the first to date to examine the fitness benefits of free mate choice in humans. In discussion we present limitations of our research and discuss the possibility of love having a beneficial influence in terms of the number of offspring.
Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns
Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely
2011-01-01
Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088
Nolting, Nicole; Pöggeler, Stefanie
2006-01-01
MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Δmcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development. PMID:16835449
Ravigné, Virginie; Lemesle, Valérie; Walter, Alicia; Mailleret, Ludovic; Hamelin, Frédéric M
2017-03-01
Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.
[DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].
Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying
2013-04-01
To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.
Matos, Yvonne K; Osborne, Jason A; Schal, Coby
2017-11-07
Bed bugs (Cimex lectularius L.) are now endemic in most major cities, but information regarding their basic biology is still largely based on research done over four decades ago. We investigated the effects of starvation, mating, sperm storage, and female and male age on egg production and hatch. Egg production cycles varied with the number of bloodmeals that females received. Once-mated females fed every 5 d had constant egg production for ∼75 d followed by a monotonic decline to near zero. Percentage egg hatch was high and constant, but declined after ∼30 d to near zero. To determine whether the age of the female, male, or sperm affected these patterns, we mated newly eclosed females to 60-d-old virgin males, 60-d-old mated males, or newly eclosed males. Females produced the most eggs when mated to young males, followed by old mated males, and then old virgin males; percentage hatch followed a similar pattern, suggesting that sperm stored within males for long was deficient. To examine effects of sperm stored within females, we mated newly eclosed females, starved them for 30 or 60 d, then fed them every 5 d. The 60-d starved group produced fewer eggs than the 30-d starved group, and both produced fewer eggs than young females mated to old or young males. Longer periods of sperm storage within females caused lower corresponding percentage hatch. These findings indicate egg production and hatch are governed by complex interactions among female and male age, frequency of feeding and mating, and sperm condition. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mothers matter! Maternal support, dominance status and mating success in male bonobos (Pan paniscus)
Surbeck, Martin; Mundry, Roger; Hohmann, Gottfried
2011-01-01
Variation in male mating success is often related to rank differences. Males who are unable to monopolize oestrous females alone may engage in coalitions, thus enhancing their mating success. While studies on chimpanzees and dolphins suggest that coalitions are independent of kinship, information from female philopatric species shows the importance of kin support, especially from mothers, on the reproductive success of females. Therefore, one might expect a similar effect on sons in male philopatric species. We evaluate mating success determinants in male bonobos using data from nine male individuals from a wild population. Results reveal a steep, linear male dominance hierarchy and a positive correlation between dominance status and mating success. In addition to rank, the presence of mothers enhances the mating success of sons and reduces the proportion of matings by the highest ranking male. Mothers and sons have high association rates and mothers provide agonistic aid to sons in conflicts with other males. As bonobos are male-philopatric and adult females occupy high dominance status, maternal support extends into adulthood and females have the leverage to intervene in male conflicts. The absence of female support to unrelated males suggests that mothers gain indirect fitness benefits by supporting their sons. PMID:20810444
Identifying swimmers as water-polo or swim team-mates from visual displays of less than one second.
Steel, Kylie A; Adams, Roger D; Canning, Colleen G
2007-09-01
Opportunities for ball passing in water-polo may be brief and the decision to pass only informed by minimal visual input. Since researchers using point light displays have shown that the walking or running gait of familiars can be identified, water-polo players may have the ability to recognize team-mates from their swimming gait. To test this hypothesis, members of a water-polo team and a competition swim team viewed two randomized sets of video clips, each less than one second long, of swimmers from both teams sprinting freestyle past a fixed camera. The arm stroke clip sequence showed only the upper body, and the kick sequence showed only the lower body. After viewing each video clip, observers rated their level of certainty as to whether the swimmer presented was a team-mate or not. Discrimination was significantly above chance in both groups. Water-polo players were better able to identify team-mates from their kick, whereas swimmers were better able to do so by viewing arm stroke. Our results suggest that, as with walking and running gait, small amounts of visual information about swimmers can be used for recognition, and so raise the possibility that specific training may be able to improve team-mate classification in water-polo, particularly in newly formed teams.
Sexual reproduction and gene flow in the pine pathogen Dothistroma septosporum in British Columbia.
Dale, A L; Lewis, K J; Murray, B W
2011-01-01
Dothistroma septosporum has caused a serious needle blight epidemic in the lodgepole pine forests in northwest British Columbia over the past several years. Although ascocarps had been observed in British Columbia, nothing was known about the contribution of sexual reproduction, gene flow and long-distance dispersal to the epidemic. Amplified fragment length polymorphism and mating-type markers in 19 sites were used to generate population and reproductive data. Overall, evidence suggests a mixed mode of reproduction. Haplotypic diversity was high, with 79 unique and 56 shared haplotypes (possible clones) identified from 192 fungal isolates. Overall, mating-type segregation did not differ significantly from 1:1; however, random mating was rejected in most populations in the index of association and parsimony tree-length permutation analyses using the full data set and, when using clone-corrected data sets, more of the smaller populations showed random mating. Two of the smaller populations consistently showed random mating for both tests using both clone-corrected and noncorrected data. High gene flow is suggested by no differentiation between 14 of the 19 sites, several of which came from young plantations where the pathogen was not likely present prior to the current outbreak. The remaining five sites showed some level of divergence, possibly due to historic separation and endemic pathogen populations. Results indicate a high evolutionary potential and long-distance dispersal in this pathogen, important to consider in future forest management.
Aviation Machinist's Mate R 1 and C: Rate Training Manual.
ERIC Educational Resources Information Center
Naval Education and Training Command, Pensacola, FL.
The profusely illustrated rate training manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve who are studying for advancement in the Aviation Machinist's Mate R rating (ADR 1 and ADRC). Chapter one provides information helpful for use in advancement. Chapters two through ten consist of units…
Noël, Elsa; Chemtob, Yohann; Janicke, Tim; Sarda, Violette; Pélissié, Benjamin; Jarne, Philippe; David, Patrice
2016-03-01
Basic models of mating-system evolution predict that hermaphroditic organisms should mostly either cross-fertilize, or self-fertilize, due to self-reinforcing coevolution of inbreeding depression and outcrossing rates. However transitions between mating systems occur. A plausible scenario for such transitions assumes that a decrease in pollinator or mate availability temporarily constrains outcrossing populations to self-fertilize as a reproductive assurance strategy. This should trigger a purge of inbreeding depression, which in turn encourages individuals to self-fertilize more often and finally to reduce male allocation. We tested the predictions of this scenario using the freshwater snail Physa acuta, a self-compatible hermaphrodite that preferentially outcrosses and exhibits high inbreeding depression in natural populations. From an outbred population, we built two types of experimental evolution lines, controls (outcrossing every generation) and constrained lines (in which mates were often unavailable, forcing individuals to self-fertilize). After ca. 20 generations, individuals from constrained lines initiated self-fertilization earlier in life and had purged most of their inbreeding depression compared to controls. However, their male allocation remained unchanged. Our study suggests that the mating system can rapidly evolve as a response to reduced mating opportunities, supporting the reproductive assurance scenario of transitions from outcrossing to selfing. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Both Geography and Ecology Contribute to Mating Isolation in Guppies
Schwartz, Amy K.; Weese, Dylan J.; Bentzen, Paul; Kinnison, Michael T.; Hendry, Andrew P.
2010-01-01
Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature. PMID:21179541
Comparing pre- and post-copulatory mate competition using social network analysis in wild crickets
Fisher, David N.; Rodríguez-Muñoz, Rolando
2016-01-01
Sexual selection results from variation in success at multiple stages in the mating process, including competition before and after mating. The relationship between these forms of competition, such as whether they trade-off or reinforce one another, influences the role of sexual selection in evolution. However, the relationship between these 2 forms of competition is rarely quantified in the wild. We used video cameras to observe competition among male field crickets and their matings in the wild. We characterized pre- and post-copulatory competition as 2 networks of competing individuals. Social network analysis then allowed us to determine 1) the effectiveness of precopulatory competition for avoiding postcopulatory competition, 2) the potential for divergent mating strategies, and 3) whether increased postcopulatory competition reduces the apparent reproductive benefits of male promiscuity. We found 1) limited effectiveness of precopulatory competition for avoiding postcopulatory competition; 2) males do not specifically engage in only 1 type of competition; and 3) promiscuous individuals tend to mate with each other, which will tend to reduce variance in reproductive success in the population and highlights the trade-off inherent in mate guarding. Our results provide novel insights into the works of sexual competition in the wild. Furthermore, our study demonstrates the utility of using network analyses to study competitive interactions, even in species lacking obvious social structure. PMID:27174599
Eastwick, Paul W
2009-09-01
Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Rueppell, Olav; Phaincharoen, Mananya; Kuster, Ryan; Tingek, Salim
2011-09-01
During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.
Effects of sodium puddling on male mating success, courtship and flight in a swallowtail butterfly
Mitra, Chandreyee; Reynoso, Edgar; Davidowitz, Goggy; Papaj, Daniel
2016-01-01
In many Lepidoptera species usually only males puddle for sodium. Two explanations have been offered for this: (1) neuromuscular activity: males need increased sodium for flight because they are more active flyers than females; and (2) direct benefits: sodium is a type of direct benefit provided by males to females via ejaculate during mating. Surprisingly, there is little direct experimental evidence for either of these. In this study, we examined both explanations using the pipevine swallowtail butterfly, Battus philenor L. If sodium increases neuromuscular activity, males consuming sodium should be better fliers than males without sodium. If males collect sodium for nuptial gifts that benefit their mates, males consuming sodium may have greater mating success than males without sodium. In that case, females then need an honest cue/signal of the quality of male-provided direct benefits that they can assess before mating. If sodium affects male courtship flight by increasing neuromuscular activity, how a male courts could serve as such a premating cue/signal of male benefit quality. Therefore, sodium may benefit males in terms of obtaining mates by increasing their neuromuscular activity. In this study we found that males that consumed sodium courted more vigorously and had greater mating success than males that consumed water. In addition, the courtship displays of males consuming sodium were significantly different from those of males consuming water, providing a possible honest cue/signal of male benefit quality that females can assess. Interestingly, we did not find evidence that sodium consumption affects male flight outside of courtship. That only aspects of male flight related to mating were affected by sodium, while aspects of general flight were not, is consistent with the idea that sodium may benefit males in terms of obtaining mates via effects on neuromuscular activity. PMID:27103748
Mutations Leading to Expression of the Cryptic HMR a Locus in the Yeast SACCHAROMYCES CEREVISIAE
Kassir, Yona; Simchen, Giora
1985-01-01
Mutations leading to expression of the silent HMR a information in Saccharomyces cerevisiae result in sporulation proficiency in mata1/MATα diploids. An example of such a mutation is sir5-2, a recessive mutation in the gene SIR5. As expected, haploids carrying the sir5-2 mutation are nonmaters due to the simultaneous expression of HMRa and HMLα, resulting in the nonmating phenotype of an a/α diploid. However, sir5-2/sir5-2 mata1/MATα diploids mate as α yet are capable of sporulation. The sir5-2 mutation is unlinked to sir1-1, yet the two mutations do not complement each other: mata1/MATα sir5-2/SIR5 SIR1/sir1-1 diploids are capable of sporulation. In this case, recessive mutations in two unlinked genes form a mutant phenotype, in spite of the presence of the normal wild-type alleles.—The PAS1-1 mutation, Provider of a Sporulation function, is a dominant mutation tightly linked to HMRa. PAS1-1 does not affect the mating ability of a strain, yet it allows diploids lacking a functional MATa locus to sporulate. It is proposed that PAS1-1 leads to partial expression of the otherwise cryptic a1 information at HMRa. PMID:3884439
Inbreeding avoidance under different null models of random mating in the great tit.
Szulkin, Marta; Zelazowski, Przemyslaw; Nicholson, George; Sheldon, Ben C
2009-07-01
1. In populations where inbreeding causes a substantial decrease in fitness, selection is expected to favour the evolution of inbreeding avoidance behaviours. Elsewhere we have documented substantial inbreeding depression and the importance of dispersal in avoiding inbreeding in a long-term population study of the great tit Parus major in Wytham (UK). In this study, we ask whether individuals from this population actively avoid mating with kin. 2. We generated four contrasting models of random mate choice that assumed varying levels of mate availability in each year of the data set. This allowed us to compare observed and simulated distributions and frequencies of inbreeding coefficients from 41 years of breeding data. 3. We found no evidence that birds avoid mating with related partners. Our results show that birds breed more often with relatives than expected under null models of mate choice that lack population structure, but not when compared to scenarios where birds were mated with their nearest neighbours. Pedigree-derived F(IS) values were positive for all scenarios of random mating, confirming the lack of inbreeding avoidance in this population. 4. These results imply the existence of spatial genetic structure where related individuals occur closer together than nonrelated individuals while breeding, and suggest that the relatedness between breeding individuals of the opposite sex decreases with distance. Thus, while dispersal from the natal site decreases the number of relatives around an individual, it does not completely homogenize genetic structure. 5. We show that brother-sister pairs are observed more often than under any scenario of random mating, suggesting that not only birds do not avoid mating with kin, but also that the apparently maladaptive choice of mating with a sibling is made more often than expected. 6. Our results provide no evidence to suggest that individuals actively avoid kin. In fact, some types of inbreeding occur more often than expected, despite the substantial fitness costs. The observed lack of inbreeding avoidance is in agreement with other studies of non-cooperatively breeding passerine birds, although the higher than expected frequency of sibling mating remains a puzzling result.
Gout, Lilian; Eckert, Maria; Rouxel, Thierry; Balesdent, Marie-Hélène
2006-01-01
Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used. PMID:16391041
2010-01-01
Background Sexual selection theory predicts that females, being the limiting sex, invest less in courtship signals than males. However, when chemical signals are involved it is often the female that initiates mating by producing stimuli that inform about sex and/or receptivity. This apparent contradiction has been discussed in the literature as 'the female pheromone fallacy'. Because the release of chemical stimuli may not have evolved to elicit the male's courtship response, whether these female stimuli represent signals remains an open question. Using techniques to visualise and block release of urine, we studied the role of urine signals during fighting and mating interactions of crayfish (Pacifastacus leniusculus). Test individuals were blindfolded to exclude visual disturbance from dye release and artificial urine introduction. Results Staged female-male pairings during the reproductive season often resulted in male mating attempts. Blocking female urine release in such pairings prevented any male courtship behaviour. Artificial introduction of female urine re-established male mating attempts. Urine visualisation showed that female urine release coincides with aggressive behaviours but not with female submissive behaviour in reproductive interactions as well as in intersexual and intrasexual fights. In reproductive interactions, females predominately released urine during precopulatory aggression; males subsequently released significantly less urine during mating than in fights. Conclusions Urine-blocking experiments demonstrate that female urine contains sex-specific components that elicit male mating behaviour. The coincidence of chemical signalling and aggressive behaviour in both females and males suggests that urine release has evolved as an aggressive signal in both sexes of crayfish. By limiting urine release to aggressive behaviours in reproductive interactions females challenge their potential mating partners at the same time as they trigger a sexual response. These double messages should favour stronger males that are able to overcome the resistance of the female. We conclude that the difference between the sexes in disclosing urine-borne information reflects their conflicting interests in reproduction. Males discontinue aggressive urine signalling in order to increase their chances of mating. Females resume urine signalling in connection with aggressive behaviour, potentially repelling low quality or sexually inactive males while favouring reproduction with high quality males. PMID:20353555
Goldberg, Jay K; Wallace, Alisa K; Weiss, Stacey L
2017-09-14
Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards (Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.
NASA Astrophysics Data System (ADS)
Goldberg, Jay K.; Wallace, Alisa K.; Weiss, Stacey L.
2017-10-01
Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards ( Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.
Fang, Guangzhan; Yang, Ping; Cui, Jianguo; Yao, Dezhong; Brauth, Steven E.; Tang, Yezhong
2012-01-01
Female mate choice is of importance for individual fitness as well as a determining factor in genetic diversity and speciation. Nevertheless relatively little is known about how females process information acquired from males during mate selection. In the Emei music frog, Babina daunchina, males normally call from hidden burrows and females in the reproductive stage prefer male calls produced from inside burrows compared with ones from outside burrows. The present study evaluated changes in electroencephalogram (EEG) power output in four frequency bands induced by male courtship vocalizations on both sides of the telencephalon and mesencephalon in females. The results show that (1) both the values of left hemispheric theta relative power and global lateralization in the theta band are modulated by the sexual attractiveness of the acoustic stimulus in the reproductive stage, suggesting the theta oscillation is closely correlated with processing information associated with mate choice; (2) mean relative power in the beta band is significantly greater in the mesencephalon than the left telencephalon, regardless of reproductive status or the biological significance of signals, indicating it is associated with processing acoustic features and (3) relative power in the delta and alpha bands are not affected by reproductive status or acoustic stimuli. The results imply that EEG power in the theta and beta bands reflect different information processing mechanisms related to vocal recognition and auditory perception in anurans. PMID:23285010
de Souza, Elaine Dantas; Moralez-Silva, Emmanuel; Valdes, Talita Alvarenga; Cortiço Corrêa Rodrigues, Vera Lúcia
2017-01-01
Colonial waterbirds such as herons, egrets and spoonbills exhibit ecological characteristics that could have promoted the evolution of conspecific brood parasitism and extra-pair copulation. However, an adequate characterization of the genetic mating systems of this avian group has been hindered by the lack of samples of elusive candidate parents which precluded conducting conventional parentage allocation tests. Here, we investigate the genetic mating system of the invasive cattle egret using hematophagous insects contained in fake eggs to collect blood from incubating adults in a wild breeding colony. We tested a protocol with a previously unused Neotropical Triatominae, Panstrongylus megistus, obtained blood samples from males and females in 31 nests built on trees, drew blood from 89 nestlings at those nests, and genotyped all samples at 14 microsatellite loci, including six new species-specific loci. We comparatively addressed the performance of parentage allocation versus kinship classification of nestlings to infer the genetic mating system of cattle egrets. In line with previous behavioral observations, we found evidence in support of a non-monogamous genetic mating system, including extra-pair paternity (EPP) and conspecific brood parasitism (CBP). Parentage allocation tests detected a higher percentage of nests with alternative reproductive tactics (EPP: 61.7%; CBP: 64.5%) than the kinship classification method (EPP: 50.0%; CBP: 43.3%). Overall, these results indicate that rates of alternative reproductive tactics inferred in the absence of parental genetic information could be underestimated and should be interpreted with caution. This study highlights the importance of incorporating samples from candidate parents to adequately determine the genetic mating system of a species. We expand knowledge on the reproductive tactics of colonial waterbirds, contributing novel data on the genetic mating system of the cattle egret, valuable for the design of management strategies for this invasive bird. PMID:28854191
Miño, Carolina Isabel; de Souza, Elaine Dantas; Moralez-Silva, Emmanuel; Valdes, Talita Alvarenga; Cortiço Corrêa Rodrigues, Vera Lúcia; Del Lama, Sílvia Nassif
2017-01-01
Colonial waterbirds such as herons, egrets and spoonbills exhibit ecological characteristics that could have promoted the evolution of conspecific brood parasitism and extra-pair copulation. However, an adequate characterization of the genetic mating systems of this avian group has been hindered by the lack of samples of elusive candidate parents which precluded conducting conventional parentage allocation tests. Here, we investigate the genetic mating system of the invasive cattle egret using hematophagous insects contained in fake eggs to collect blood from incubating adults in a wild breeding colony. We tested a protocol with a previously unused Neotropical Triatominae, Panstrongylus megistus, obtained blood samples from males and females in 31 nests built on trees, drew blood from 89 nestlings at those nests, and genotyped all samples at 14 microsatellite loci, including six new species-specific loci. We comparatively addressed the performance of parentage allocation versus kinship classification of nestlings to infer the genetic mating system of cattle egrets. In line with previous behavioral observations, we found evidence in support of a non-monogamous genetic mating system, including extra-pair paternity (EPP) and conspecific brood parasitism (CBP). Parentage allocation tests detected a higher percentage of nests with alternative reproductive tactics (EPP: 61.7%; CBP: 64.5%) than the kinship classification method (EPP: 50.0%; CBP: 43.3%). Overall, these results indicate that rates of alternative reproductive tactics inferred in the absence of parental genetic information could be underestimated and should be interpreted with caution. This study highlights the importance of incorporating samples from candidate parents to adequately determine the genetic mating system of a species. We expand knowledge on the reproductive tactics of colonial waterbirds, contributing novel data on the genetic mating system of the cattle egret, valuable for the design of management strategies for this invasive bird.
Garcilazo-Cruz, Uriel; Alvarez-Padilla, Fernando
2015-01-01
Abstract Reproduction in arthropods is an interesting area of research where intrasexual and intersexual mechanisms have evolved structures with several functions. The mating plugs usually produced by males are good examples of these structures where the main function is to obstruct the female genitalia against new sperm depositions. In spiders several types of mating plugs have been documented, the most common ones include solidified secretions, parts of the bulb or in some extraordinary cases the mutilation of the entire palpal bulb. Here, we describe the first case of modified setae, which are located on the cymbial dorsal base, used directly as a mating plug for the Order Araneae in the species Maeota setastrobilaris sp. n. In addition the taxonomic description of Maeota setastrobilaris sp. n. is provided and based on our findings the geographic distribution of this genus is extended to the Northern hemisphere. PMID:26175601
Grognet, Pierre; Bidard, Frédérique; Kuchly, Claire; Tong, Laetitia Chan Ho; Coppin, Evelyne; Benkhali, Jinane Ait; Couloux, Arnaud; Wincker, Patrick; Debuchy, Robert; Silar, Philippe
2014-05-01
Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat- isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat- mating types of P. anserina, which is mostly found in nature as a mat+/mat- heterokaryotic mycelium harboring sexually compatible nuclei. We identified a "mat" region ∼0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat- strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat- chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat-, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat-/mat- heterokaryons are as stable as mat+/mat- ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat- strains.
Grognet, Pierre; Bidard, Frédérique; Kuchly, Claire; Tong, Laetitia Chan Ho; Coppin, Evelyne; Benkhali, Jinane Ait; Couloux, Arnaud; Wincker, Patrick; Debuchy, Robert; Silar, Philippe
2014-01-01
Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat− isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat− mating types of P. anserina, which is mostly found in nature as a mat+/mat− heterokaryotic mycelium harboring sexually compatible nuclei. We identified a “mat” region ∼0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat− strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat− chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat−, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat−/mat− heterokaryons are as stable as mat+/mat− ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat− strains. PMID:24558260
Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.
2012-01-01
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593
Hanson, Sara J.; Byrne, Kevin P.; Wolfe, Kenneth H.
2014-01-01
Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)–like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms. PMID:25349420
Linde, C C; Selmes, H
2012-09-01
Tuber melanosporum is a truffle native to Europe and is cultivated in countries such as Australia for the gastronomic market, where production yields are often lower than expected. We assessed the genetic diversity of T. melanosporum with six microsatellite loci to assess the effect of genetic drift on truffle yield in Australia. Genetic diversity as assessed on 210 ascocarps revealed a higher allelic diversity compared to previous studies from Europe, suggesting a possible genetic expansion and/or multiple and diverse source populations for inoculum. The results also suggest that the single sequence repeat diversity of locus ME2 is adaptive and that, for example, the probability of replication errors is increased for this locus. Loss of genetic diversity in Australian populations is therefore not a likely factor in limiting ascocarp production. A survey of nursery seedlings and trees inoculated with T. melanosporum revealed that <70% of seedlings and host trees were colonized with T. melanosporum and that some trees had been contaminated by Tuber brumale, presumably during the inoculation process. Mating type (MAT1-1-1 and MAT1-2-1) analyses on seedling and four- to ten-year-old host trees found that 100% of seedlings but only approximately half of host trees had both mating types present. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in established trees, suggesting a competitive advantage for MAT1-1-1 strains. This study clearly shows that there are more factors involved in ascocarp production than just the presence of both mating types on host trees.
Selmes, H.
2012-01-01
Tuber melanosporum is a truffle native to Europe and is cultivated in countries such as Australia for the gastronomic market, where production yields are often lower than expected. We assessed the genetic diversity of T. melanosporum with six microsatellite loci to assess the effect of genetic drift on truffle yield in Australia. Genetic diversity as assessed on 210 ascocarps revealed a higher allelic diversity compared to previous studies from Europe, suggesting a possible genetic expansion and/or multiple and diverse source populations for inoculum. The results also suggest that the single sequence repeat diversity of locus ME2 is adaptive and that, for example, the probability of replication errors is increased for this locus. Loss of genetic diversity in Australian populations is therefore not a likely factor in limiting ascocarp production. A survey of nursery seedlings and trees inoculated with T. melanosporum revealed that <70% of seedlings and host trees were colonized with T. melanosporum and that some trees had been contaminated by Tuber brumale, presumably during the inoculation process. Mating type (MAT1-1-1 and MAT1-2-1) analyses on seedling and four- to ten-year-old host trees found that 100% of seedlings but only approximately half of host trees had both mating types present. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in established trees, suggesting a competitive advantage for MAT1-1-1 strains. This study clearly shows that there are more factors involved in ascocarp production than just the presence of both mating types on host trees. PMID:22773652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahng, K.Y.; Ferguson, J.; Reed, S.I.
1988-06-01
Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identically to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to gene encoding the ..cap alpha.. subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpal mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G/sub 1/, deposition of mating-specificmore » cell surface aggultinins, and induction of pheromone-specific mRNa, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed.« less
Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies.
Zamudio, K R; Sinervo, B
2000-12-19
Alternative male mating strategies within populations are thought to be evolutionarily stable because different behaviors allow each male type to successfully gain access to females. Although alternative male strategies are widespread among animals, quantitative evidence for the success of discrete male strategies is available for only a few systems. We use nuclear microsatellites to estimate the paternity rates of three male lizard strategies previously modeled as a rock-paper-scissors game. Each strategy has strengths that allow it to outcompete one morph, and weaknesses that leave it vulnerable to the strategy of another. Blue-throated males mate-guard their females and avoid cuckoldry by yellow-throated "sneaker" males, but mate-guarding is ineffective against aggressive orange-throated neighbors. The ultradominant orange-throated males are highly polygynous and maintain large territories; they overpower blue-throated neighbors and cosire offspring with their females, but are often cuckolded by yellow-throated males. Finally, yellow-throated sneaker males sire offspring via secretive copulations and often share paternity of offspring within a female's clutch. Sneaker males sire more offspring posthumously, indicating that sperm competition may be an important component of their strategy.
Horizontal gene transfer does not occur between sFat-1 transgenic pigs and nontransgenic pigs.
Tang, M X; Zheng, X M; Hou, J; Qian, L L; Jiang, S W; Cui, W T; Li, K
2013-03-01
We previously generated and characterized synthesized fatty acid desaturase-1 (sFat-1) transgenic pigs that had increased concentrations of ω-3 unsaturated fatty acid in their meat. The objective was to assess whether the inserted foreign gene in sFat-1 transgenic pigs was able to transfer and integrate into the genome of nontransgenic pigs by suckling or mating. Tests for suckling-mediated horizontal gene transfer (HGT) included sFat-1 transgenic sows nursing nontransgenic piglets and sFat-1 transgenic piglets suckling nontransgenic sows. Tests for mating-mediated HGT were performed by male sFat-1 transgenic pigs mated with nontransgenic females and female sFat-1 transgenic pigs mated with nontransgenic males. Polymerase chain reaction was used to detect the sFat-1 gene fragment in various tissues sampled from nontransgenic pigs. The foreign target gene sFat-1 was not detected in the genomic DNA of various tissues and organs sampled from nontransgenic pigs. Therefore, we concluded that HGT from transgenic pigs to wild type pigs via suckling or mating was unlikely. Copyright © 2013 Elsevier Inc. All rights reserved.
Mate choice for genetic quality when environments vary: suggestions for empirical progress.
Bussière, Luc F; Hunt, John; Stölting, Kai N; Jennions, Michael D; Brooks, Robert
2008-09-01
Mate choice for good-genes remains one of the most controversial evolutionary processes ever proposed. This is partly because strong directional choice should theoretically deplete the genetic variation that explains the evolution of this type of female mating preference (the so-called lek paradox). Moreover, good-genes benefits are generally assumed to be too small to outweigh opposing direct selection on females. Here, we review recent progress in the study of mate choice for genetic quality, focussing particularly on the potential for genotype by environment interactions (GEIs) to rescue additive genetic variation for quality, and thereby resolve the lek paradox. We raise five questions that we think will stimulate empirical progress in this field, and suggest directions for research in each area: (1) How is condition-dependence affected by environmental variation? (2) How important are GEIs for maintaining additive genetic variance in condition? (3) How much do GEIs reduce the signalling value of male condition? (4) How does GEI affect the multivariate version of the lek paradox? (5) Have mating biases for high-condition males evolved because of indirect benefits?
Gunner's Mate M 1&C. Rate Training Manual.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
This document is one of a series of manuals designed to provide enlisted men with background information that will be useful in preparing for advancement in rating and necessary in the proper performance of their duties. The manual serves as an aid for enlisted men who are preparing for advancement to Gunner's Mate Missles 1 and C and covers the…
Yokoi, Saori; Okuyama, Teruhiro; Kamei, Yasuhiro; Naruse, Kiyoshi; Taniguchi, Yoshihito; Ansai, Satoshi; Kinoshita, Masato; Young, Larry J.; Takemori, Nobuaki; Kubo, Takeo; Takeuchi, Hideaki
2015-01-01
To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context. PMID:25719383
Danesi, Patrizia; Firacative, Carolina; Cogliati, Massimo; Otranto, Domenico; Capelli, Gioia; Meyer, Wieland
2014-09-01
Cryptococcosis represents a fungal disease acquired from the environment with animals serving as host sentinels for human exposure. The aim of this study was to investigate the genetic characteristics of Cryptococcus isolates from veterinary sources (cats, dogs and birds) to understand their epidemiology and the genetic variability of the casual isolates. Mating-type PCR in connection with MLST analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex was used to genotype 17 C. neoformans isolates. In the absence of an MLST typing scheme Cryptococcus adeliensis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus and C. uniguttulatus strains were typed using M13 PCR fingerprinting. All C. neoformans isolates were MATα mating type, but hybrids possessed αADa and aADα mating and serotypes. Two C. neoformans molecular types VNI, VNIV and VNIII and VNII/VNIV hybrids were identified. Amongst the 66 non-C. neoformans strains investigated 55 M13 PCR fingerprinting types were identified. The wide variety of MLST types of C. neoformans and the occurrence of αADa and aADα hybrids in our study supports the notion of genetic recombination in the area studied. The heterogeneity of the non-C. neoformans isolates remains open to further investigations and should be taken into consideration when identifying emergent pathogens. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
SEE Design Guide and Requirements for Electrical Deadfacing
NASA Technical Reports Server (NTRS)
Berki, Joe M.; Sargent, Noel; Kauffman, W. (Technical Monitor)
2002-01-01
The purpose of this design guide is to present information for understanding and mitigating the potential hazards associated with de-mating and mating powered electrical connectors on space flight vehicles. The process of staging is a necessary function in the launching of space vehicles and in the deployment of satellites, and now in manned assembly of systems in space. During this electrical interconnection process, various environments may be encountered that warrant the restriction of the voltage and current present across the pins of an electrical connector prior to separation, mating, or in a static open non-mated configuration. This process is called deadfacing. These potentially hazardous environments encompass the obvious explosive fuel vapors and human shock hazard, to multiple Electro-Magnetic Interference (EMI) phenomena related to the rapid rate of change in current as well as exposure to Radio Frequency (RF) fields.
Yockteng, Roxana; Marthey, Sylvain; Chiapello, Hélène; Gendrault, Annie; Hood, Michael E; Rodolphe, François; Devier, Benjamin; Wincker, Patrick; Dossat, Carole; Giraud, Tatiana
2007-01-01
Background The basidiomycete fungus Microbotryum violaceum is responsible for the anther-smut disease in many plants of the Caryophyllaceae family and is a model in genetics and evolutionary biology. Infection is initiated by dikaryotic hyphae produced after the conjugation of two haploid sporidia of opposite mating type. This study describes M. violaceum ESTs corresponding to nuclear genes expressed during conjugation and early hyphal production. Results A normalized cDNA library generated 24,128 sequences, which were assembled into 7,765 unique genes; 25.2% of them displayed significant similarity to annotated proteins from other organisms, 74.3% a weak similarity to the same set of known proteins, and 0.5% were orphans. We identified putative pheromone receptors and genes that in other fungi are involved in the mating process. We also identified many sequences similar to genes known to be involved in pathogenicity in other fungi. The M. violaceum EST database, MICROBASE, is available on the Web and provides access to the sequences, assembled contigs, annotations and programs to compare similarities against MICROBASE. Conclusion This study provides a basis for cloning the mating type locus, for further investigation of pathogenicity genes in the anther smut fungi, and for comparative genomics. PMID:17692127
De Fine Licht, Henrik H; Andersen, Anders; Aanen, Duur K
2005-03-01
Fungi of the genus Termitomyces live in an obligate symbiosis with termites of the subfamily Macrotermitinae. Many species of Termitomyces frequently form fruit bodies, which develop from the fungus comb within the nest. In this study, we determined the mating system of a species of Termitomyces associated with the South African termite Macrotermes natalensis. Termite nests were excavated and a Termitomyces sp. was isolated into pure culture from the asexual fruit bodies (nodules) growing in the fungus gardens. For one strain, single basidiospore cultures were obtained from basidiomes growing from the fungus comb after incubation without termites. Using nuclear staining, we show that both comb cultures and single spore cultures have multinucleate cells and that the majority of spores has a single nucleus. However, DNA sequencing of the ITS region in the nuclear RNA gene revealed that the comb mycelium had two different ITS types that segregated in the single spore cultures, which consequently had only a single ITS type. These results unambiguously prove that the strain of Termitomyces studied here has a heterothallic mating system, with the fungus garden of the termite mound being in the heterokaryotic phase. This is the first time the mating system of a Termitomnyces species has been studied.
Senior, Alistair McNair; Nakagawa, Shinichi; Grimm, Volker
2014-01-01
Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness. PMID:25047080
The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.
Prokop, Pavol
2015-08-01
A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.
Simple Model of Mating Preference and Extinction Risk
NASA Astrophysics Data System (ADS)
PȨKALSKI, Andrzej
We present a simple model of a population of individuals characterized by their genetic structure in the form of a double string of bits and the phenotype following from it. The population is living in an unchanging habitat preferring a certain type of phenotype (optimum). Individuals are unisex, however a pair is necessary for breeding. An individual rejects a mate if the latter's phenotype contains too many bad, i.e. different from the optimum, genes in the same places as the individual's. We show that such strategy, analogous to disassortative mating based on the major histocompatibility complex, avoiding inbreeding and incest, could be beneficial for the population and could reduce considerably the extinction risk, especially in small populations.
Heterothallic Type of Mating System for Cordyceps cardinalis
Sung, Gi-Ho; Shrestha, Bhushan; Han, Sang-Kuk; Kim, Soo-Young
2010-01-01
Cordyceps cardinalis successfully produced its fruiting bodies from multi-ascospore isolates. However, subcultures of multi-ascospore isolates could not produce fruiting bodies after few generations. Fruiting body production also differed from sector to sector of the same isolate. Single ascospore isolates were then co-inoculated in combinations of two to observe the fruiting characteristics. Combinations of certain isolates produced perithecial stromata formation, whereas other combinations did not produce any fruiting bodies. These results show that C. cardinalis is a heterothallic fungus, requiring two isolates of opposite mating types for fruiting body production. It was also shown that single ascospore isolates are hermaphrodites. PMID:23956667
Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains.
Dahlmann, Tim A; Böhm, Julia; Becker, Kordula; Kück, Ulrich
2015-11-01
The recent discovery and functional characterization of opposite mating-type loci in the industrial penicillin producer Penicillium chrysogenum demonstrated their regulatory role in sexual as well as asexual development. Subsequent experiments further showed that a sexual life cycle can be induced in P. chrysogenum that was for long believed to reproduce exclusively by asexual propagation. Finally, crossing of wild type and production strains resulted in the generation of recombinant ascospore isolates. We predict from these recent findings that recombinant progeny for industrial applications can be obtained by sexual crossings and discuss experimental difficulties that occur when parental strains with karyotype heterogeneity are used for mating.
Effects of partner beauty on opposite-sex attractiveness judgments.
Little, Anthony C; Caldwell, Christine A; Jones, Benedict C; DeBruine, Lisa M
2011-12-01
Many studies show mate choice copying effects on mate preferences in non-human species in which individuals follow or copy the mate choices of same-sex conspecifics. Recent studies suggest that social learning also influences mate preferences in humans. Studies on heterosexual humans have focused on rating the attractiveness of potential mates (targets) presented alongside individuals of the opposite sex to the target (models). Here, we examined several different types of pairing to examine how specific social learning is to mate preferences. In Study 1, we replicated a previous effect whereby target faces of the opposite sex to the subject were rated as more attractive when paired with attractive than unattractive partner models of the same sex as the subject. Using the same paired stimuli, Study 2 demonstrated no effect of a paired model if subjects were asked to rate targets who were the same sex as themselves. In Study 3, we used pairs of the same sex, stating the pair were friends, and subjects rated targets of the opposite sex to themselves. Attractive models decreased targets' attractiveness, opposite to the effect in Study 1. Finally, Study 4 examined if attractive versus unattractive non-face stimuli might influence attraction. Unlike in Study 1, pairing with attractive stimuli either had no effect or decreased the attractiveness of paired target face images. These data suggest that social transmission of preferences via pairing with attractive/unattractive images is relatively specific to learning about mate preferences but does not influence attractiveness judgments more generally.
SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
Dayarian, Adel; Michael, Todd P; Sengupta, Anirvan M
2010-06-24
High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the genome. We have developed SOPRA, a tool designed to exploit the mate pair/paired-end information for assembly of short reads. The main focus of the algorithm is selecting a sufficiently large subset of simultaneously satisfiable mate pair constraints to achieve a balance between the size and the quality of the output scaffolds. Scaffold assembly is presented as an optimization problem for variables associated with vertices and with edges of the contig connectivity graph. Vertices of this graph are individual contigs with edges drawn between contigs connected by mate pairs. Similar graph problems have been invoked in the context of shotgun sequencing and scaffold building for previous generation of sequencing projects. However, given the error-prone nature of HTS data and the fundamental limitations from the shortness of the reads, the ad hoc greedy algorithms used in the earlier studies are likely to lead to poor quality results in the current context. SOPRA circumvents this problem by treating all the constraints on equal footing for solving the optimization problem, the solution itself indicating the problematic constraints (chimeric/repetitive contigs, etc.) to be removed. The process of solving and removing of constraints is iterated till one reaches a core set of consistent constraints. For SOLiD sequencer data, SOPRA uses a dynamic programming approach to robustly translate the color-space assembly to base-space. For assessing the quality of an assembly, we report the no-match/mismatch error rate as well as the rates of various rearrangement errors. Applying SOPRA to real data from bacterial genomes, we were able to assemble contigs into scaffolds of significant length (N50 up to 200 Kb) with very few errors introduced in the process. In general, the methodology presented here will allow better scaffold assemblies of any type of mate pair sequencing data.
Haq, Ihsan ul; Wornayporn, Viwat; Ahmad, Sohel; Sto Tomas, Ulysses; Dammalage, Thilakasiri; Gembinsky, Keke; Franz, Gerald; Cáceres, Carlos; Vreysen, Marc J. B.
2016-01-01
The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C). The use of this GSS permits production and the release of only males which has increased the cost effectiveness of the SIT several fold for this pest. An efficient method of identification of recaptured sterile males can further increase the cost effectiveness of the SIT for this pest. Therefore, VIENNA 8-Sergeant2 (Sr2) strain and the transgenic strain VIENNA 8–1260 having visible markers were constructed. All three strains were evaluated for egg production, egg hatch, and egg sterility parameters under semi mass-rearing conditions and mating competitiveness in field cages. VIENNA 8–1260 females produced significantly fewer eggs as compared with the two other strains, which produced similar numbers of eggs. However, egg hatch of all strains was similar. Egg hatch of eggs produced by untreated females that had mated with adult males that had been irradiated with 100 Gy as pupae 2 days before emergence, was different for the three strains, i.e., egg hatch of 0.63%, 0.77%, 0.89% for VIENNA 8, VIENNA 8–1260, and VIENNA 8-Sr2, respectively. Differences in male mating competitiveness of the three strains against wild-type males were gradually reduced with successive generations under semi mass-rearing conditions. However, VIENNA 8 males adapted faster to laboratory conditions as compared with VIENNA 8-Sr2 and VIENNA 8–1260 males with respect to mating competitiveness. VIENNA 8 males of the F10 generation were equally competitive with wild-type males, whereas the mating competitiveness of VIENNA 8-Sr2 and VIENNA 8–1260 males was similar but lower as compared with wild-type males. Males from all three strains copulated earlier than wild-type males. Results are discussed in relation with the potential benefits of incorporating novel strains for more effective SIT application. PMID:27336737
Mating Changes Sexually Dimorphic Gene Expression in the Seed Beetle Callosobruchus maculatus.
Immonen, Elina; Sayadi, Ahmed; Bayram, Helen; Arnqvist, Göran
2017-03-01
Sexually dimorphic phenotypes arise largely from sex-specific gene expression, which has mainly been characterized in sexually naïve adults. However, we expect sexual dimorphism in transcription to be dynamic and dependent on factors such as reproductive status. Mating induces many behavioral and physiological changes distinct to each sex and is therefore expected to activate regulatory changes in many sex-biased genes. Here, we first characterized sexual dimorphism in gene expression in Callosobruchus maculatus seed beetles. We then examined how females and males respond to mating and how it affects sex-biased expression, both in sex-limited (abdomen) and sex-shared (head and thorax) tissues. Mating responses were largely sex-specific and, as expected, females showed more genes responding compared with males (∼2,000 vs. ∼300 genes in the abdomen, ∼500 vs. ∼400 in the head and thorax, respectively). Of the sex-biased genes present in virgins, 16% (1,041 genes) in the abdomen and 17% (243 genes) in the head and thorax altered their relative expression between the sexes as a result of mating. Sex-bias status changed in 2% of the genes in the abdomen and 4% in the head and thorax following mating. Mating responses involved de-feminization of females and, to a lesser extent, de-masculinization of males relative to their virgin state: mating decreased rather than increased dimorphic expression of sex-biased genes. The fact that regulatory changes of both types of sex-biased genes occurred in both sexes suggests that male- and female-specific selection is not restricted to male- and female-biased genes, respectively, as is sometimes assumed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Mating Changes Sexually Dimorphic Gene Expression in the Seed Beetle Callosobruchus maculatus
Sayadi, Ahmed; Bayram, Helen; Arnqvist, Göran
2017-01-01
Sexually dimorphic phenotypes arise largely from sex-specific gene expression, which has mainly been characterized in sexually naïve adults. However, we expect sexual dimorphism in transcription to be dynamic and dependent on factors such as reproductive status. Mating induces many behavioral and physiological changes distinct to each sex and is therefore expected to activate regulatory changes in many sex-biased genes. Here, we first characterized sexual dimorphism in gene expression in Callosobruchus maculatus seed beetles. We then examined how females and males respond to mating and how it affects sex-biased expression, both in sex-limited (abdomen) and sex-shared (head and thorax) tissues. Mating responses were largely sex-specific and, as expected, females showed more genes responding compared with males (∼2,000 vs. ∼300 genes in the abdomen, ∼500 vs. ∼400 in the head and thorax, respectively). Of the sex-biased genes present in virgins, 16% (1,041 genes) in the abdomen and 17% (243 genes) in the head and thorax altered their relative expression between the sexes as a result of mating. Sex-bias status changed in 2% of the genes in the abdomen and 4% in the head and thorax following mating. Mating responses involved de-feminization of females and, to a lesser extent, de-masculinization of males relative to their virgin state: mating decreased rather than increased dimorphic expression of sex-biased genes. The fact that regulatory changes of both types of sex-biased genes occurred in both sexes suggests that male- and female-specific selection is not restricted to male- and female-biased genes, respectively, as is sometimes assumed. PMID:28391318
Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim
2013-01-01
Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11ΔN467) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase. PMID:24130492
Genetics of Drosophila simulans male mating discrimination in crosses with D. melanogaster.
Carracedo, M C; Asenjo, A; Casares, P
2003-09-01
The genetic bases of sexual isolation between Drosophila melanogaster and D. simulans have been mainly studied in females, and there is little information about the role of the males in interspecific mating discrimination. Using D. simulans synthetic lines with compound chromosomes from a population of the Seychelles Islands (high frequency of interspecific mating) and a multimarker strain (low frequency), we show that D. simulans males play an important role in discriminating D. melanogaster females. The genetics of male discrimination fits well with the inheritance mode of a single locus, dominant for sexual isolation, located in chromosome II near the net mutation (2L-0.0). The heterospecific mating success of the male was not related to his sexual vigor. The specific load of male cuticular hydrocarbons was counted as a possible source of discrimination used by the D. melanogaster female.
Automatic attention towards face or body as a function of mating motivation.
Lu, Hui Jing; Chang, Lei
2012-03-22
Because women's faces and bodies carry different cues of reproductive value, men may attend to different perceptual cues as functions of their long-term versus short-term mating motivations. We tested this hypothesis in three experiments on 135 male and 132 female participants. When influenced by short-term rather than long-term mating motivations, men's attention was captured by (Study 1), was shifted to (Study 2), and was distracted by (Study 3) the waist/hip area rather than the face on photographs of attractive women. Similar effects were not found among the female participants in response to photographs of attractive men. These results support the evolutionary view that, similar to the attentional selectivity found in other domains of life, male perceptual attention has evolved to selectively capture and hold reproductive information about the opposite sex as a function of short-term versus long-term mating goals.
Free mate choice enhances conservation breeding in the endangered giant panda
Martin-Wintle, Meghan S.; Shepherdson, David; Zhang, Guiquan; Zhang, Hemin; Li, Desheng; Zhou, Xiaoping; Li, Rengui; Swaisgood, Ronald R.
2015-01-01
Conservation breeding programmes have become an increasingly important tool to save endangered species, yet despite the allocation of significant resources, efforts to create self-sustaining populations have met with limited success. The iconic giant panda (Ailuropoda melanoleuca) embodies the struggles associated with ex situ species conservation. Here we show that behavioural mate preferences in giant pandas predict reproductive outcomes. Giant pandas paired with preferred partners have significantly higher copulation and birth rates. Reproductive rates increase further when both partners show mutual preference for one another. If managers were to incorporate mate preferences more fully into breeding management, the production of giant panda offspring for China's reintroduction programme might be greatly expedited. When extended to the increasing numbers of species dependent on ex situ conservation breeding to avoid extinction, our findings highlight that mate preference and other aspects of informed behavioural management could make the difference between success and failure of these programmes. PMID:26670381
Free mate choice enhances conservation breeding in the endangered giant panda.
Martin-Wintle, Meghan S; Shepherdson, David; Zhang, Guiquan; Zhang, Hemin; Li, Desheng; Zhou, Xiaoping; Li, Rengui; Swaisgood, Ronald R
2015-12-15
Conservation breeding programmes have become an increasingly important tool to save endangered species, yet despite the allocation of significant resources, efforts to create self-sustaining populations have met with limited success. The iconic giant panda (Ailuropoda melanoleuca) embodies the struggles associated with ex situ species conservation. Here we show that behavioural mate preferences in giant pandas predict reproductive outcomes. Giant pandas paired with preferred partners have significantly higher copulation and birth rates. Reproductive rates increase further when both partners show mutual preference for one another. If managers were to incorporate mate preferences more fully into breeding management, the production of giant panda offspring for China's reintroduction programme might be greatly expedited. When extended to the increasing numbers of species dependent on ex situ conservation breeding to avoid extinction, our findings highlight that mate preference and other aspects of informed behavioural management could make the difference between success and failure of these programmes.
Do assortative preferences contribute to assortative mating for adiposity?
Fisher, Claire I; Fincher, Corey L; Hahn, Amanda C; Little, Anthony C; DeBruine, Lisa M; Jones, Benedict C
2014-01-01
Assortative mating for adiposity, whereby levels of adiposity in romantic partners tend to be positively correlated, has implications for population health due to the combined effects of partners' levels of adiposity on fertility and/or offspring health. Although assortative preferences for cues of adiposity, whereby leaner people are inherently more attracted to leaner individuals, have been proposed as a factor in assortative mating for adiposity, there have been no direct tests of this issue. Because of this, and because of recent work suggesting that facial cues of adiposity convey information about others' health that may be particularly important for mate preferences, we tested the contribution of assortative preferences for facial cues of adiposity to assortative mating for adiposity (assessed from body mass index, BMI) in a sample of romantic couples. Romantic partners' BMIs were positively correlated and this correlation was not due to the effects of age or relationship duration. However, although men and women with leaner partners showed stronger preferences for cues of low levels of adiposity, controlling for these preferences did not weaken the correlation between partners' BMIs. Indeed, own BMI and preferences were uncorrelated. These results suggest that assortative preferences for facial cues of adiposity contribute little (if at all) to assortative mating for adiposity. PMID:24168811
Female brain size affects the assessment of male attractiveness during mate choice.
Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas
2017-03-01
Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies
Zamudio, Kelly R.; Sinervo, Barry
2000-01-01
Alternative male mating strategies within populations are thought to be evolutionarily stable because different behaviors allow each male type to successfully gain access to females. Although alternative male strategies are widespread among animals, quantitative evidence for the success of discrete male strategies is available for only a few systems. We use nuclear microsatellites to estimate the paternity rates of three male lizard strategies previously modeled as a rock-paper-scissors game. Each strategy has strengths that allow it to outcompete one morph, and weaknesses that leave it vulnerable to the strategy of another. Blue-throated males mate-guard their females and avoid cuckoldry by yellow-throated “sneaker” males, but mate-guarding is ineffective against aggressive orange-throated neighbors. The ultradominant orange-throated males are highly polygynous and maintain large territories; they overpower blue-throated neighbors and cosire offspring with their females, but are often cuckolded by yellow-throated males. Finally, yellow-throated sneaker males sire offspring via secretive copulations and often share paternity of offspring within a female's clutch. Sneaker males sire more offspring posthumously, indicating that sperm competition may be an important component of their strategy. PMID:11106369
Bao, Lei; Cai, Xiaxia; Zhang, Zhaofeng; Li, Yong
2015-01-14
Grape seed procyanidin B2 (GSPB2), an antioxidative and anti-inflammatory polyphenol in grape seed, has been found to have protective effects on diabetic nephropathy. Based on its favourable biological activities, in the present study, we aimed to investigate whether GSPB2 could inhibit apoptosis in rat mesangial cells treated with glucosamine (GlcN) under high-dose conditions. The results showed that the administration of GSPB2 (10 μg/ml) significantly increased the viability of mesangial cells treated with GlcN at a dose of 15 mM. We found that GSPB2 inhibited apoptosis in mesangial cells using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphates (dUTP) nick-end labelling staining and flow cytometry technique (P< 0·05 for both). GSPB2 treatment also suppressed oxidative stress by elevating the activity of glutathione peroxidase (P< 0·05) and superoxide dismutase (P< 0·01), as well as prevented cellular damage. GSPB2 enhanced the mRNA expression of nuclear respiratory factor 1, mitochondrial transcription factor A and mitochondrial DNA copy number in mesangial cells as determined by real-time PCR (P< 0·05 for each). Finally, GSPB2 treatment activated the protein expression of PPARγ co-activator-1α (PGC-1α), silent mating type information regulation 2 homologue 1 (SIRT1) and AMP-activated protein kinase (AMPK) in mesangial cells. These findings suggest that GSPB2 markedly ameliorates mitochondrial dysfunction and inhibits apoptosis in rat mesangial cells treated with high-dose GlcN. This protective effect could be, at least in part, due to the activation of the AMPK-SIRT1-PGC-1α axis.
Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Hofseth, Lorne J.; Price, Robert L.; Nagarkatti, Mitzi
2010-01-01
Inflammatory bowel disease is a chronic, relapsing, and tissue-destructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-α, interleukin (IL-6), and IL-1β. After resveratrol treatment, the percentage of CD4+ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory κB expression and nuclear transcription factor-κB (NF-κB) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-κB activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon. PMID:19940103
Mechanical seal having a single-piece, perforated mating ring
Khonsari, Michael M [Baton Rouge, LA; Somanchi, Anoop K [Fremont, CA
2007-08-07
A mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) with reduced contact surface temperature, reduced contact surface wear, or increased life span. The mechanical seal comprises a rotating ring and a single-piece, perforated mating ring, which improves heat transfer by controllably channeling coolant flow through the single-piece mating ring such that the coolant is in substantially uniform thermal contact with a substantial portion of the interior surface area of the seal face, while maintaining the structural integrity of the mechanical seal and minimizing the potential for coolant flow interruptions to the seal face caused by debris or contaminants (e.g., small solids and trash) in the coolant.
Exact Markov chains versus diffusion theory for haploid random mating.
Tyvand, Peder A; Thorvaldsen, Steinar
2010-05-01
Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.
Polished Downhole Transducer Having Improved Signal Coupling
Hall, David R.; Fox, Joe
2006-03-28
Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.
Shurtliff, Quinn R; Murphy, Peter J; Matocq, Marjorie D
2014-03-01
The degree to which closely related species interbreed is determined by a complex interaction of ecological, behavioral, and genetic factors. We examine the degree of interbreeding between two woodrat species, Neotoma bryanti and N. lepida, at a sharp ecological transition. We identify the ecological association of each genotypic class, assess the opportunity for mating between these groups, and test whether they have similar patterns of year-to-year persistence on our study site. We find that 13% of individuals have a hybrid signature but that the two parental populations and backcrosses are highly segregated by habitat type and use. Also, we find that adult hybrids are comparable to parental types in terms of year-to-year persistence on our site but that, among juveniles, significantly fewer hybrids reach adulthood on site compared to their purebred counterparts. Our analyses show that this hybrid zone is maintained by occasional nonassortative mating coupled with hybrid fertility, but that these factors are balanced by lower apparent survival of juvenile hybrids and habitat-based preference or selection that limits heterospecific mating while promoting backcrossing to habitat-specific genotypes. This system presents a novel example of the role that sharp resource gradients play in reproductive isolation and the potential for genetic introgression. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Reproductive ecology of lampreys
Johnson, Nicholas S.; Buchinger, Tyler J.; Li, Weiming
2014-01-01
Lampreys typically spawn in riffle habitats during the spring. Spawning activity and diel (i.e., during daylight and at night) behavioral patterns are initiated when spring water temperatures increase to levels that coincide with optimal embryologic development. Nests are constructed in gravel substrate using the oral disc to move stones and the tail to fan sediment out of the nest. Spawning habitat used by individual species is generally a function of adult size, where small-bodied species construct nests in shallower water with slower flow and smaller gravel than large-bodied species. The mating system of lampreys is primarily polygynandrous (i.e., where multiple males mate with multiple females). Lamprey species with adult total length less than 30 cm generally spawn communally, where a nest may contain 20 or more individuals of both sexes. Lamprey species with adult sizes greater than 35 cm generally spawn in groups of two to four. Operational sex ratios of lampreys are highly variable across species, populations, and time, but are generally male biased. The act of spawning typically starts with the male attaching with his oral disc to the back of the female’s head; the male and female then entwine and simultaneously release gametes. However, alternative mating behaviors (e.g., release of gametes without paired courtship and sneaker males) have been observed. Future research should determine how multiple modalities of communication among lampreys (including mating pheromones) are integrated to inform species recognition and mate choice. Such research could inform both sea lamprey control strategies and provide insight into possible evolution of reproductive isolation mechanisms between paired lamprey species in sympatry.
Smith, David S; Jones, Benedict C; Allan, Kevin
2013-08-01
The functionalist memory perspective predicts that information of adaptive value may trigger specific processing modes. It was recently demonstrated that women's memory is sensitive to cues of male sexual dimorphism (i.e., masculinity) that convey information of adaptive value for mate choice because they signal health and genetic quality, as well as personality traits important in relationship contexts. Here, we show that individual differences in women's mating strategies predict the effect of facial masculinity cues upon memory, strengthening the case for functional design within memory. Using the revised socio-sexual orientation inventory, Experiment 1 demonstrates that women pursuing a short-term, uncommitted mating strategy have enhanced source memory for men with exaggerated versus reduced masculine facial features, an effect that reverses in women who favor long-term committed relationships. The reversal in the direction of the effect indicates that it does not reflect the sex typicality of male faces per se. The same pattern occurred within women's source memory for women's faces, implying that the memory bias does not reflect the perceived attractiveness of faces per se. In Experiment 2, we reran the experiment using men's faces to establish the reliability of the core finding and replicated Experiment 1's results. Masculinity cues may therefore trigger a specific mode within women's episodic memory. We discuss why this mode may be triggered by female faces and its possible role in mate choice. In so doing, we draw upon the encoding specificity principle and the idea that episodic memory limits the scope of stereotypical inferences about male behavior.
Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System
Kellner, Ronny; Vollmeister, Evelyn; Feldbrügge, Michael; Begerow, Dominik
2011-01-01
The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities. PMID:22242007
Park, Jin-Ah; Kim, Jung-Mi; Park, Seung-Moon; Kim, Dae-Hyuk
2012-04-01
The gene CpSte11 of Cryphonectria parasitica, which encodes a yeast Ste11 homologue, was cloned and characterized. Gene replacement analysis revealed a high frequency of CpSte11 null mutants. When compared with the wild-type parent strain, CpSte11 null mutants showed no difference in terms of growth rate or pigmentation. However, CpSte11 null mutants showed a marked decrease in both the number and size of stromal pustules on chestnut twigs. The virulence test showed that, in comparison with those of the wild-type and virus-infected hypovirulent strains, CpSte11 null mutants produced necrotic areas of intermediate size. Disruption of the CpSte11 gene also resulted in defects in female fertility. Down-regulation of transcripts for the mating pheromone precursor gene, Mf2/2, and mating response transcription factors, such as cpst12 and pro1, was observed in CpSte11 null mutants. The down-regulation of Mf2/2, cpst12 and pro1 was also observed in the mutant phenotype of Cpmk2, a mating response Fus3-like mitogen-activated protein kinase (MAPK) gene, but not in the mutant of Cpmk1, a high-osmolarity glycerol Hog1-like MAPK gene. These results indicate that the cloned CpSte11 gene is functionally involved in the mating response pathway and acts through downstream targets, including Cpmk2, cpst12, pro1 and Mf2/2. However, the characteristics of the CpSte11 null mutant were fully phenocopied only in the cpst12 null mutant, but not in other studied null mutants of components of the putative mating response pathway. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.
Semiochemical compounds of preen secretion reflect genetic make-up in a seabird species
Leclaire, S.; Merkling, T.; Raynaud, C.; Mulard, Hervé; Bessiere, J.-M.; Lhuillier, E.M.; Hatch, Shyla A.; Danchin, E.
2012-01-01
Several vertebrates choose their mate according to genetic heterozygosity and relatedness, and use odour cues to assess their conspecifics' genetic make-up. In birds, although several species (including the blacklegged kittiwake) exhibit non-random mating according to genetic traits, the cues used to assess genetic characteristics remain unknown. The importance of olfaction in birds' social behaviour is gaining attention among researchers, and it has been suggested that, as in other vertebrates, bird body scent may convey information about genetic traits. Here, we combined gas chromatography data and genetic analyses at microsatellite loci to test whether semiochemical messages in preen secretion of kittiwakes carried information about genetic heterozygosity and relatedness. Semiochemical profile was correlated with heterozygosity in males and females, while semiochemical distance was correlated with genetic distance only in male-male dyads. Our study is the first to demonstrate a link between odour and genetics in birds, which sets the stage for the existence of sophisticated odour-based mechanisms of mate choice also in birds. ?? 2011 The Royal Society.
Juárez, M. Laura; Devescovi, Francisco; Břízová, Radka; Bachmann, Guillermo; Segura, Diego F.; Kalinová, Blanka; Fernández, Patricia; Ruiz, M. Josefina; Yang, Jianquan; Teal, Peter E.A.; Cáceres, Carlos; Vreysen, Marc J.B.; Hendrichs, Jorge; Vera, M. Teresa
2015-01-01
Abstract The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitis fasciventris (Bezzi), Ceratitis anonae (Graham) and Ceratitis rosa Karsch (FAR) complex, the Bactrocera dorsalis (Hendel) complex and the Anastrepha fraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrepha fraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrepha fraterculus and Bactrocera dorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations. PMID:26798257
Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.
Neff, Bryan D; Pitcher, Trevor E
2005-01-01
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward--females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term 'good gene' be used exclusively to refer to additive genetic variation in fitness, 'compatible gene' be used to refer to nonadditive genetic variation in fitness, and 'genetic quality' be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.
Sciarretta, Andrea; Tabilio, Maria Rosaria; Lampazzi, Elena; Ceccaroli, Claudio; Colacci, Marco; Trematerra, Pasquale
2018-01-01
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is a key pest of fruit crops in many tropical, subtropical and mild temperate areas worldwide. The economic importance of this fruit fly is increasing due to its invasion of new geographical areas. Efficient control and eradication efforts require adequate information regarding C. capitata adults in relation to environmental and physiological cues. This would allow effective characterisation of the population spatio-temporal dynamic of the C. capitata population at both the orchard level and the area-wide landscape. The aim of this study was to analyse population patterns of adult medflies caught using two trapping systems in a peach orchard located in central Italy. They were differentiated by adult sex (males or females) and mating status of females (unmated or mated females) to determine the spatio-temporal dynamic and evaluate the effect of cultivar and chemical treatments on trap catches. Female mating status was assessed by spermathecal dissection and a blind test was carried out to evaluate the reliability of the technique. Geostatistical methods, variogram and kriging, were used to produce distributional maps. Results showed a strong correlation between the distribution of males and unmated females, whereas males versus mated females and unmated females versus mated females showed a lower correlation. Both cultivar and chemical treatments had significant effects on trap catches, showing associations with sex and female mating status. Medfly adults showed aggregated distributions in the experimental field, but hot spots locations varied. The spatial pattern of unmated females reflected that of males, whereas mated females were largely distributed around ripening or ripe fruit. The results give relevant insights into pest management. Mated females may be distributed differently to unmated females and the identification of male hot spots through monitoring would allow localisation of virgin female populations. Based on our results, a more precise IPM strategy, coupled with effective sanitation practices, could represent a more effective approach to medfly control.
Takano, Isamu; Arima, Kenji
1979-01-01
The possible function of the α-inc allele (an α mating-type allele that is insensitive to the function of the homothallic gene system) was investigated by means of protoplast fusion. The fusion of protoplasts prepared from haploid strains of α-inc HO HMα HMa and α ho hmα HMa gave rise mainly to nonmating clones (58 of 64 isolates) and a few clones (six of 64 isolates) showing α mating type. Thirty of the 58 nonmating clones showed the diploid cell size and 28 clones had a larger cell size. Tetrad analysis of the nonmating clones with diploid cell size indicated that they were a/α-inc diploid; the normal α allele in α/α-inc cells was preferentially switched to an a allele. This observation further indicated that the HO/ho HMα/hmα HMa/HMa genotype is effective for the conversion of the α to a and that the inconvertibility of the α-inc allele is due to the insensitivity of the mating-type allele to the functional combination of the homothallic genes. It was suspected that fusion products larger than diploid cells might have been caused by multiple fusion of protoplasts. PMID:17248884
Queiroz, C B; Miranda, E C; Hanada, R E; Sousa, N R; Gasparotto, L; Soares, M A; Silva, G F
2013-02-08
The fungus Mycosphaerella fijiensis is the causative agent of black sigatoka, which is one of the most destructive diseases of banana plants. Infection with this pathogen results in underdeveloped fruit, with no commercial value. We analyzed the distribution of the M. fijiensis mating-type system and its genetic variability using M13 phage DNA markers. We found a 1:1 distribution of mating-type alleles, indicating MAT1-1 and MAT1-2 idiomorphs. A polymorphism analysis using three different primers for M13 markers showed that only the M13 minisatellite primers generated polymorphic products. We then utilized this polymorphism to characterize 40 isolates from various Brazilian states. The largest genetic distances were found between isolates from the same location and between isolates from different parts of the country. Therefore, there was no correlation between the genetic similarity and the geographic origin of the isolates. The M13 marker was used to generate genetic fingerprints for five isolates; these fingerprints were compared with the band profiles obtained from inter-simple sequence repeat (UBC861) and inter-retrotransposon amplified polymorphism analyses. We found that the M13 marker was more effective than the other two markers for differentiating these isolates.
Arif, Rabia; Akram, Faiza; Jamil, Tazeen; Lee, Siu Fai
2017-01-01
Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora, we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution. PMID:28717646
Arif, Rabia; Akram, Faiza; Jamil, Tazeen; Mukhtar, Hamid; Lee, Siu Fai; Saleem, Muhammad
2017-01-01
Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora , we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution.
Müller-Unterberg, Maarit; Wallmann, Sandra; Distl, Ottmar
2017-10-18
The Black Forest Draught horse (BFDH) is an endangered German coldblood breed with its origin in the area of the Black Forest in South Germany. In this retrospective study, the influence of the inbreeding coefficient on foaling rates was investigated using records from ten breeding seasons. Due to the small population size of BFDH, the level of inbreeding is increasing and may have an effect on foaling rates.The data of the present study included all coverings reported for 1024 BFDH mares in the years 2001-2009. These mares were covered by 32 BFDH stallions from the State Stud Marbach. Data from 4534 estrus cycles was used to calculate per cycle foaling rate (CFR). Pedigree data contained all studbook data up to the foundation of the breed as early as 1836. The level of inbreeding of the mare, stallion and expected foal along with other systematic effects on CFR were analysed using a generalized linear mixed model approach. Stallion was employed as a random effect. Systematic fixed effects were month of mating, mating type, age of the mare and stallion, reproductive status of the mare and stallion line of the mare. Inbreeding coefficients of the stallion, mare and expected foal were modelled as linear covariates. The average CFR was 40.9%. The mean inbreeding coefficients of the mares, stallions and expected foals were 7.46, 7.70 and 9.66%. Mating type, age of the mare, reproductive status of the mare and stallion line of the mare had a significant effect. The results showed that the mating type, stallion line of the mare, sire, age and reproductive status of the mare exerted the largest influences on CFR in BFDH. Inbreeding coefficients of the stallion, mare and expected foal were not significantly related with CFR.
Yi, Ruirong; Mukaiyama, Hiroyuki; Tachikawa, Takashi; Shimomura, Norihiro; Aimi, Tadanori
2010-01-01
In the bipolar basidiomycete Pholiota microspora, a pair of homeodomain protein genes located at the A-mating-type locus regulates mating compatibility. In the present study, we used a DNA-mediated transformation system in P. microspora to investigate the homeodomain proteins that control the clamp formation. When a single homeodomain protein gene (A3-hox1 or A3-hox2) from the A3 monokaryon strain was transformed into the A4 monokaryon strain, the transformants produced many pseudoclamps but very few clamps. When two homeodomain protein genes (A3-hox1 and A3-hox2) were transformed either separately or together into the A4 monokaryon, the ratio of clamps to the clamplike cells in the transformants was significantly increased to ca. 50%. We therefore concluded that the gene dosage of homeodomain protein genes is important for clamp formation. When the sip promoter was connected to the coding region of A3-hox1 and A3-hox2 and the fused fragments were introduced into NGW19-6 (A4), the transformants achieved more than 85% clamp formation and exhibited two nuclei per cell, similar to the dikaryon (NGW12-163 × NGW19-6). The results of real-time reverse transcription-PCR confirmed that sip promoter activity is greater than that of the native promoter of homeodomain protein genes in P. microspora. Thus, we concluded that nearly 100% clamp formation requires high expression levels of homeodomain protein genes and that altered expression of the A-mating-type genes alone is sufficient to drive true clamp formation. PMID:20453073
Kopps, Anna M; Kang, Jungkoo; Sherwin, William B; Palsbøll, Per J
2015-06-30
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies. Copyright © 2015 Kopps et al.
Environmental change mediates mate choice for an extended phenotype, but not for mate quality.
Head, Megan L; Fox, Rebecca J; Barber, Iain
2017-01-01
Sexual cues, including extended phenotypes, are expected to be reliable indicators of male genetic quality and/or provide information on parental quality. However, the reliability of these cues may be dependent on stability of the environment, with heterogeneity affecting how selection acts on such traits. Here, we test how environmental change mediates mate choice for multiple sexual traits, including an extended phenotype--the structure of male-built nests - in stickleback fish. First, we manipulated the dissolved oxygen (DO) content of water to create high or low DO environments in which male fish built nests. Then we recorded the mate choice of females encountering these males (and their nests), under either the same or reversed DO conditions. Males in high DO environments built more compact nests than those in low DO conditions and males adjusted their nest structure in response to changing conditions. Female mate choice for extended phenotype (male nests) was environmentally dependent (females chose more compact nests in high DO conditions), while female choice for male phenotype was not (females chose large, vigorous males regardless of DO level). Examining mate choice in this dynamic context suggests that females evaluate the reliability of multiple sexual cues, taking into account environmental heterogeneity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Notes on a mating event of the deep-sea crab Chaecon affinis in the Gorringe Bank (NE Atlantic)
NASA Astrophysics Data System (ADS)
Hilário, A.; Cunha, M. R.
2013-08-01
The deep-water red crab Chaceon affinis is the largest species of the family Geryonidae. Unlike other species of the same genus, C. affinis is not yet subject to intense commercial exploitation but it has been appointed as a new target resource in European waters, in spite of the lack of information on its biology, life cycle and distribution, which is essential to provide advice for a sustainable exploitation. Here we report for the first time the presence of C. affinis in the Gorringe Bank and give the first account of the mating behavior of this species. All mating pairs were found at the interface of the Mediterranean Outflow Water with North Atlantic Deep Water, suggesting that environmental parameters associated with the interface of these water masses may be relevant for mating in this species. The majority of C. affinis was mating which is an indication of synchrony and reproductive seasonality. A biennial female reproductive cycle is hypothesized, involving molting and mating in the first year with subsequent oviposition during the autumn, and spawning during spring of the second year. We suggest that synchrony and seasonality in the reproduction of C. affinis is linked to the formation of phytoplankton blooms in surface waters, with females carrying embryos from autumn to spring, possibly timing the release of planktotrophic larvae to exploit a seasonal peak in surface productivity and its export.
Aesthetic evolution by mate choice: Darwin's really dangerous idea.
Prum, Richard O
2012-08-19
Darwin proposed an explicitly aesthetic theory of sexual selection in which he described mate preferences as a 'taste for the beautiful', an 'aesthetic capacity', etc. These statements were not merely colourful Victorian mannerisms, but explicit expressions of Darwin's hypothesis that mate preferences can evolve for arbitrarily attractive traits that do not provide any additional benefits to mate choice. In his critique of Darwin, A. R. Wallace proposed an entirely modern mechanism of mate preference evolution through the correlation of display traits with male vigour or viability, but he called this mechanism natural selection. Wallace's honest advertisement proposal was stridently anti-Darwinian and anti-aesthetic. Most modern sexual selection research relies on essentially the same Neo-Wallacean theory renamed as sexual selection. I define the process of aesthetic evolution as the evolution of a communication signal through sensory/cognitive evaluation, which is most elaborated through coevolution of the signal and its evaluation. Sensory evaluation includes the possibility that display traits do not encode information that is being assessed, but are merely preferred. A genuinely Darwinian, aesthetic theory of sexual selection requires the incorporation of the Lande-Kirkpatrick null model into sexual selection research, but also encompasses the possibility of sensory bias, good genes and direct benefits mechanisms.
Aguilera, Patricia M.; Bubillo, Rosana E.; Otegui, Mónica B.; Ducasse, Daniel A.; Zapata, Pedro D.; Marti, Dardo A.
2014-01-01
Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important subtropical tree crop cultivated on 326,000 ha in Argentina, Brazil and Paraguay, with a total yield production of more than 1,000,000 t. Yerba mate presents a strong limitation regarding sequence information. The NCBI GenBank lacks an EST database of yerba mate and depicts only 80 DNA sequences, mostly uncharacterized. In this scenario, in order to elucidate the yerba mate gene landscape by means of NGS, we explored and discovered a vast collection of I. paraguariensis transcripts. Total RNA from I. paraguariensis was sequenced by Illumina HiSeq-2000 obtaining 72,031,388 pair-end 100 bp sequences. High quality reads were de novo assembled into 44,907 transcripts encompassing 40 million bases with an estimated coverage of 180X. Multiple sequence analysis allowed us to predict that yerba mate contains ∼32,355 genes and 12,551 gene variants or isoforms. We identified and categorized members of more than 100 metabolic pathways. Overall, we have identified ∼1,000 putative transcription factors, genes involved in heat and oxidative stress, pathogen response, as well as disease resistance and hormone response. We have also identified, based in sequence homology searches, novel transcripts related to osmotic, drought, salinity and cold stress, senescence and early flowering. We have also pinpointed several members of the gene silencing pathway, and characterized the silencing effector Argonaute1. We predicted a diverse supply of putative microRNA precursors involved in developmental processes. We present here the first draft of the transcribed genomes of the yerba mate chloroplast and mitochondrion. The putative sequence and predicted structure of the caffeine synthase of yerba mate is presented. Moreover, we provide a collection of over 10,800 SSR accessible to the scientific community interested in yerba mate genetic improvement. This contribution broadly expands the limited knowledge of yerba mate genes, and is presented as the first genomic resource of this important crop. PMID:25330175
Crozier's paradox revisited: maintenance of genetic recognition systems by disassortative mating.
Holman, Luke; van Zweden, Jelle S; Linksvayer, Timothy A; d'Ettorre, Patrizia
2013-09-27
Organisms are predicted to behave more favourably towards relatives, and kin-biased cooperation has been found in all domains of life from bacteria to vertebrates. Cooperation based on genetic recognition cues is paradoxical because it disproportionately benefits individuals with common phenotypes, which should erode the required cue polymorphism. Theoretical models suggest that many recognition loci likely have some secondary function that is subject to diversifying selection, keeping them variable. Here, we use individual-based simulations to investigate the hypothesis that the dual use of recognition cues to facilitate social behaviour and disassortative mating (e.g. for inbreeding avoidance) can maintain cue diversity over evolutionary time. Our model shows that when organisms mate disassortatively with respect to their recognition cues, cooperation and recognition locus diversity can persist at high values, especially when outcrossed matings produce more surviving offspring. Mating system affects cue diversity via at least four distinct mechanisms, and its effects interact with other parameters such as population structure. Also, the attrition of cue diversity is less rapid when cooperation does not require an exact cue match. Using a literature review, we show that there is abundant empirical evidence that heritable recognition cues are simultaneously used in social and sexual behaviour. Our models show that mate choice is one possible resolution of the paradox of genetic kin recognition, and the literature review suggests that genetic recognition cues simultaneously inform assortative cooperation and disassortative mating in a large range of taxa. However, direct evidence is scant and there is substantial scope for future work.
An Insertional Translocation in Neurospora That Generates Duplications Heterozygous for Mating Type
Perkins, David D.
1972-01-01
In strain T(I→II)39311 a long interstitial segment is transposed from IL to IIR, where it is inserted in reversed order with respect to the centromere. In crosses of T x T essentially all asci have eight viable, black spores, and all progeny are phenotypically normal. When T(I→II)39311 is crossed by Normal sequence (N), the expected duplication class is viable while the corresponding deficiency is lethal; 44% of the asci have 8 Black (viable) spores and 0 White (inviable) spores, 41% have 4 Black: 4 White, and 10% have 6 Black: 2 White. These are the ascus types expected from normal centromere disjunction without crossing over (8B:0W and 4B:4W equally probable), and with crossing over between centromere and break point (6B:2W). On germination, 8B:0W asci give rise to only parental types—4 T and 4 N; 4B:4W asci usually give four duplication (Dup) progeny; and 6B:2W asci usually give 2 T, 2 N, 2 Dup. Thus one third of all viable, black ascospores contain duplications.—Recessive markers in the donor chromosome which contributes the translocated segment can be mapped by duplication coverage. Ratios of 2 Dominant: 1 Recessive vs. 1 Dominant: 2 Recessive distinguish location in or outside the transposed segment. Eleven loci including mating type have been shown to lie within the segment, and markers at four loci have been transferred into the segment by meiotic recombination. The frequency of marker transfer indicates that the inserted segment usually pairs with its homologue. Ascus types that would result from single exchanges within the insertion are infrequent, as expected if asci containing dicentric bridges usually do not survive.—Duplication ascospores germinate to produce distinctive inhibited colonies. Later these "escape" to grow like wild type, and genes that were initially heterozygous in the duplication segregate when escape occurs. As with duplications from pericentric inversion In(IL→IR)H4250 (Newmeyer and Taylor 1967), the initial inhibition is attributed to mating-type heterozygosity, and escape to a somatic event that makes mating type homoor hemizygous.—Twenty additional duplication-generating Neurospora rearrangements are listed and described briefly in an Appendix. PMID:17248574
The use of multisensor data for robotic applications
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Gonzalez, R. C.
1990-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is shown through two experiments involving a fluid interchange system and a module interchange system. In both cases, autonomous location of the mating element, autonomous location of the guiding light target, mating, and demating of the system were performed. Specifically, vision-driven techniques were implemented to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. The robotic system was also equipped with a force/torque sensor that continuously monitored the six components of force and torque exerted on the end effector. Using vision, force, torque, proximity, and touch sensors, the two experiments were completed successfully and autonomously.
Lankinen, Åsa; Smith, Henrik G; Andersson, Stefan; Madjidian, Josefin A
2016-03-01
Although much attention has focused on the diversity of plant mating systems, only a few studies have considered the joint effects of mating system and sexual conflict in plant evolution. In mixed-mating Collinsia heterophylla, a sexual conflict over timing of stigma receptivity is proposed: pollen with a capacity to induce early onset of stigma receptivity secures paternity for early-arriving pollen (at the expense of reduced maternal seed set), whereas late onset of stigma receptivity mitigates the negative effects of early-arriving pollen. Here we investigated whether selection on pollen and pistil traits involved in sexual conflict is affected by the presence of both outcross- and self-pollen (mixed mating) during pollen competition. We conducted two-donor crosses at different floral developmental stages to explore male fitness (siring ability) and female fitness (seed set) in relation to male and female identity, pollen and pistil traits, and type of competitor pollen (outcross vs. self). Late-fertilizing pollen rather than rapidly growing pollen tubes was most successful in terms of siring success, especially in competition with self-pollen after pollination at early floral stages. Late stigma receptivity increased seed set after early-stage pollinations, in agreement with selection against antagonistic pollen. Selection on pollen and pistil traits in C. heterophylla is affected by both sexual conflict and mixed mating, suggesting the importance of jointly considering these factors in plant evolution. © 2016 Botanical Society of America.
Bilen, Julide; Atallah, Jade; Azanchi, Reza; Levine, Joel D.; Riddiford, Lynn M.
2013-01-01
Juvenile hormone (JH) coordinates timing of female reproductive maturation in most insects. In Drosophila melanogaster, JH plays roles in both mating and egg maturation. However, very little is known about the molecular pathways associated with mating. Our behavioral analysis of females genetically lacking the corpora allata, the glands that produce JH, showed that they were courted less by males and mated later than control females. Application of the JH mimic, methoprene, to the allatectomized females just after eclosion rescued both the male courtship and the mating delay. Our studies of the null mutants of the JH receptors, Methoprene tolerant (Met) and germ cell-expressed (gce), showed that lack of Met in Met27 females delayed the onset of mating, whereas lack of Gce had little effect. The Met27 females were shown to be more attractive but less behaviorally receptive to copulation attempts. The behavioral but not the attractiveness phenotype was rescued by the Met genomic transgene. Analysis of the female cuticular hydrocarbon profiles showed that corpora allata ablation caused a delay in production of the major female-specific sex pheromones (the 7,11-C27 and -C29 dienes) and a change in the cuticular hydrocarbon blend. In the Met27 null mutant, by 48 h, the major C27 diene was greatly increased relative to wild type. In contrast, the gce2.5k null mutant females were courted similarly to control females despite changes in certain cuticular hydrocarbons. Our findings indicate that JH acts primarily via Met to modulate the timing of onset of female sex pheromone production and mating. PMID:24145432
Lee, Hyun-Hee; Kang, Naru; Park, Inmyoung; Park, Jungwook; Kim, Inyoung; Kim, Jieun; Kim, Namgyu; Lee, Jae-Yun; Seo, Young-Su
2017-07-28
Cordyceps militaris , a member of Ascomycota, a mushroom referred to as caterpillar Dongchung-ha-cho, is commercially valuable because of its high content of bioactive substances, including cordycepin, and its potential for artificial cultivation. Cordycepin (3'-deoxyadenosine) is highly associated with the pharmacological effects of C. militaris . C. militaris is heterothallic in that two mating-type loci, idiomorph MAT1-1 and MAT1-2 , exist discretely in two different spores. In this study, nine C. militaris strains were mated with each other to prepare newly bred strains that produced a larger amount of cordycepin than the parent strains. Nine strains of C. militaris were identified by comparing the internal transcribed spacer sequence, and a total of 12 single spores were isolated from the nine strains of C. militaris . After the MAT idiomorph was confirmed by PCR, 36 mating combinations were performed with six single spores with MAT1-1 and the others with MAT1-2 . Eight mating combinations were successfully mated, producing stroma with perithecia. Cordycepin content analysis of all strains by high-performance liquid chromatography revealed that the KASP4-bred strain produced the maximum cordycepin among all strains, regardless of the medium and stroma parts. Finally, universal rice primer-PCR was performed to demonstrate that the bred strains were genetically different from the parental strains and new C. militaris strains. These results may be related to the recombination of genes during mating. The newly produced strains can be used to meet the industrial demand for cordycepin. In addition, breeding through mating suggests the possibility of producing numerous cordycepin-producing C. militaris strains.
Bhattacharya, Samik; Baldwin, Ian T
2012-08-01
The self-compatible plant Nicotiana attenuata grows in genetically diverse populations after fires, and produces flowers that remain open for 3 days and are visited by assorted pollinators. To determine whether and when post-pollination non-random mate selection occurs among self and non-self pollen, seed paternity and semi-in vivo pollen tube growth were determined in controlled single/mixed pollinations. Despite all pollen sources being equally proficient in siring seeds in single-genotype pollinations, self pollen was consistently selected in mixed pollinations, irrespective of maternal genotype. However, clear patterns of mate discrimination occurred amongst non-self pollen when mixed pollinations were performed soon after corollas open, including selection against hygromycin B resistance (transformation selectable marker) in wild-type styles and for it in transformed styles. However, mate choice among pollen genotypes was completely shut down in plants transformed to be unable to produce (irACO) or perceive (ETR1) ethylene. The post-pollination ethylene burst, which originates primarily from the stigma and upper style, was strongly correlated with mate selection in single and mixed hand-pollinations using eight pollen donors in two maternal ecotypes. The post-pollination ethylene burst was also negatively correlated with the continuation of emission of benzylacetone, the most abundant pollinator-attracting corolla-derived floral volatile. We conclude that ethylene signaling plays a pivotal role in mate choice, and the post-pollination ethylene burst and the termination of benzylacetone release are accurate predictors, both qualitatively and quantitatively, of pre-zygotic mate selection and seed paternity. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Alternative phenotypes of male mating behaviour in the two-spotted spider mite.
Sato, Yukie; Sabelis, Maurice W; Egas, Martijn; Faraji, Farid
2013-09-01
Severe intraspecific competition for mates selects for aggressive individuals but may also lead to the evolution of alternative phenotypes that do not act aggressively, yet manage to acquire matings. The two-spotted spider mite, Tetranychus urticae, shows male mate-guarding behaviour and male-male combat for available females. This may provide opportunity for weaker males to avoid fighting by adopting alternative mating behaviour such as sneaker or satellite tactics as observed in other animals. We investigated male precopulatory behaviour in the two-spotted spider mite by means of video-techniques and found three types of male mating behaviour: territorial, sneaker and opportunistic. Territorial and sneaker males associate with female teleiochrysales and spend much time guarding them. Territorial males are easily disturbed by rival males and engage themselves in fights with them. However, sneaker males are not at all disturbed by rival males, never engage in fights and, strikingly, never face attack by territorial males. Opportunistic males wander around in search of females that are in the teleiochrysalis stage but very close to or at emergence. To quickly classify any given mate-guarding male as territorial or sneaker we developed a method based on the instantaneous response of males to disturbance by a live male mounted on top of a brush. We tested this method against the response of the same males to natural disturbance by two or three other males. Because this method proved to be successful, we used it to collect territorial and sneaker males, and subjected them to morphological analysis to assess whether the various behavioural phenotypes are associated with different morphological characters. However, we found no statistical differences between territorial and sneaker males, concerning the length of the first legs, the stylets, the pedipalps or the body.
Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas
It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.
Inter-genomic sexual conflict drives antagonistic coevolution in harvester ants
Herrmann, Michael; Cahan, Sara Helms
2014-01-01
The reproductive interests of males and females are not always aligned, leading to sexual conflict over parental investment, rate of reproduction and mate choice. Traits that increase the genetic interests of one sex often occur at the expense of the other, selecting for counter-adaptations leading to antagonistic coevolution. Reproductive conflict is not limited to intraspecific interactions; interspecific hybridization can produce pronounced sexual conflict between males and females of different species, but it is unclear whether such conflict can drive sexually antagonistic coevolution between reproductively isolated genomes. We tested for hybridization-driven sexually antagonistic adaptations in queens and males of the socially hybridogenetic ‘J’ lineages of Pogonomyrmex harvester ants, whose mating system promotes hybridization in queens but selects against it in males. We conducted no-choice mating assays to compare patterns of mating behaviour and sperm transfer between inter- and intra-lineage pairings. There was no evidence for mate discrimination on the basis of pair type, and the total quantity of sperm transferred did not differ between intra- and inter-lineage pairs; however, further dissection of the sperm transfer process into distinct mechanistic components revealed significant, and opposing, cryptic manipulation of copulatory investment by both sexes. Males of both lineages increased their rate of sperm transfer to high-fitness intra-lineage mates, with a stronger response in the rarer lineage for whom mating mistakes are the most likely. By contrast, the total duration of copulation for intra-lineage mating pairs was significantly shorter than for inter-lineage crosses, suggesting that queens respond to prevent excessive sperm loading by prematurely terminating copulation. These findings demonstrate that sexual conflict can lead to antagonistic coevolution in both intra-genomic and inter-genomic contexts. Indeed, the resolution of sexual conflict may be a key determinant of the long-term evolutionary potential of host-dependent reproductive strategies, counteracting the inherent instabilities arising from such systems. PMID:25355474
Usability testing and requirements derivation for EMU-compatible electrical connectors
NASA Technical Reports Server (NTRS)
Reaux, Ray A.; Griffin, Thomas J.; Lewis, Ruthan
1989-01-01
On-orbit servicing of payloads is simplified when a spacecraft has been designed for serviceability. A key design criterion for a serviceable spaceraft is standardization of electrical connectors. This paper investigates the effects of extravehicular mobility unit (EMU) glove size, connector size, and connector type on usability of electrical connectors. An experiment was conducted exploring participants' ability to mate and demate connectors in an evacuated glovebox. Independent variables were two EMU glove-sizes, five connector size groups, and seven connector types. Significant differences in performance times and heart rate changes during mate and demate operations were found. Subjective assessments of connectors were collected from participants with a usability questionnaire. The data were used to derive design recommendations for a NASA-recommended EMU-compatible electrical connector.
Viral repression of fungal pheromone precursor gene expression.
Zhang, L; Baasiri, R A; Van Alfen, N K
1998-02-01
Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a G alpha(i) subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete.
Hurtado-Gonzales, Jorge L; Uy, J Albert C
2010-12-23
Intense competition for access to females can lead to males exploiting different components of sexual selection, and result in the evolution of alternative mating strategies (AMSs). Males of Poecilia parae, a colour polymorphic fish, exhibit five distinct phenotypes: drab-coloured (immaculata), striped (parae), structural-coloured (blue) and carotenoid-based red and yellow morphs. Previous work indicates that immaculata males employ a sneaker strategy, whereas the red and yellow morphs exploit female preferences for carotenoid-based colours. Mating strategies favouring the maintenance of the other morphs remain to be determined. Here, we report the role of agonistic male-male interactions in influencing female mating preferences and male mating success, and in facilitating the evolution of AMSs. Our study reveals variation in aggressiveness among P. parae morphs during indirect and direct interactions with sexually receptive females. Two morphs, parae and yellow, use aggression to enhance their mating success (i.e., number of copulations) by 1) directly monopolizing access to females, and 2) modifying female preferences after winning agonistic encounters. Conversely, we found that the success of the drab-coloured immaculata morph, which specializes in a sneak copulation strategy, relies in its ability to circumvent both male aggression and female choice when facing all but yellow males. Strong directional selection is expected to deplete genetic variation, yet many species show striking genetically-based polymorphisms. Most studies evoke frequency dependent selection to explain the persistence of such variation. Consistent with a growing body of evidence, our findings suggest that a complex form of balancing selection may alternatively explain the evolution and maintenance of AMSs in a colour polymorphic fish. In particular, this study demonstrates that intrasexual competition results in phenotypically distinct males exhibiting clear differences in their levels of aggression to exclude potential sexual rivals. By being dominant, the more aggressive males are able to circumvent female mating preferences for attractive males, whereas another male type incorporates subordinate behaviours that allow them to circumvent male aggression and female mating preferences. Together, these and previous results indicate that exploiting different aspects of social interactions may allow males to evolve distinct mating strategies and thus the long term maintenance of polymorphisms within populations.
Scalco, Eleonora; Amato, Alberto; Ferrante, Maria Immacolata; Montresor, Marina
2016-11-01
Pseudo-nitzschia is a thoroughly studied pennate diatom genus for ecological and biological reasons. Many species in this genus, including Pseudo-nitzschia multistriata, can produce domoic acid, a toxin responsible for amnesic shellfish poisoning. Physiological, phylogenetic and biological features of P. multistriata were studied extensively in the past. Life cycle stages, including the sexual phase, fundamental in diatoms to restore the maximum cell size and avoid miniaturization to death, have been well described for this species. P. multistriata is heterothallic; sexual reproduction is induced when strains of opposite mating type are mixed, and proceeds with cells producing two functionally anisogamous gametes each; however, detailed cytological information for this process is missing. By means of confocal laser scanning microscopy and nuclear staining, we followed the nuclear fate during meiosis, and using time-lapse cinematography, we timed every step of the sexual reproduction process from mate pairing to initial cell hatching. The present paper depicts cytological aspects during gametogenesis in P. multistriata, shedding light on the chloroplast behaviour during sexual reproduction, finely describing the timing of the sexual phases and providing reference data for further studies on the molecular control of this fundamental process.
Can cuticular lipids provide sufficient information for within-colony nepotism in wasps?
Dani, Francesca R.; Foster, Kevin R.; Zacchi, Francesca; Seppä, Perttu; Massolo, Alessandro; Carelli, Annalisa; Arévalo, Elisabeth; Queller, David C.; Strassmann, Joan E.; Turillazzi, Stefano
2004-01-01
Inclusive fitness theory predicts that members of non-clonal societies will gain by directing altruistic acts towards their closest relatives. Multiple mating by queens and multiple queens creates distinct full-sister groups in many hymenopteran societies within which nepotism might occur. However, the weight of empirical data suggests that nepotism within full-sister groups is absent. It has been suggested that a lack of reliable recognition markers is responsible. In this paper, we investigated whether epicuticular lipids could provide reliable cues for intracolony kin recognition in two species of social wasps, the paper wasp Polistes dominulus and the hornet Vespa crabro. Epicuticular lipids have previously been shown to be central to kin recognition at the nest level, making them excellent candidates for within-nest discrimination. We genotyped individuals using DNA microsatellites and analysed surface chemistry by gas chromatography-mass spectrometry. We find that in both species epicuticular lipids typically could provide enough information to distinguish related nest-mates from unrelated nest-mates, a difference that occurs in colonies with multiple queens. However, in V. crabro, where colonies may be composed by different patrilines, information for discrimination between full sisters and half-sisters is weaker and prone to errors. Our data suggest that epicuticular lipids at best provide reliable information for intracolony nepotistic discrimination in multiple-queen colonies composed of unrelated lines. PMID:15209109
Optimal marker-assisted selection to increase the effective size of small populations.
Wang, J
2001-02-01
An approach to the optimal utilization of marker and pedigree information in minimizing the rates of inbreeding and genetic drift at the average locus of the genome (not just the marked loci) in a small diploid population is proposed, and its efficiency is investigated by stochastic simulations. The approach is based on estimating the expected pedigree of each chromosome by using marker and individual pedigree information and minimizing the average coancestry of selected chromosomes by quadratic integer programming. It is shown that the approach is much more effective and much less computer demanding in implementation than previous ones. For pigs with 10 offspring per mother genotyped for two markers (each with four alleles at equal initial frequency) per chromosome of 100 cM, the approach can increase the average effective size for the whole genome by approximately 40 and 55% if mating ratios (the number of females mated with a male) are 3 and 12, respectively, compared with the corresponding values obtained by optimizing between-family selection using pedigree information only. The efficiency of the marker-assisted selection method increases with increasing amount of marker information (number of markers per chromosome, heterozygosity per marker) and family size, but decreases with increasing genome size. For less prolific species, the approach is still effective if the mating ratio is large so that a high marker-assisted selection pressure on the rarer sex can be maintained.
Albert, Arianne Y K
2005-04-01
One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.
Preferential Mating in Symmetric Multilocus Systems: Limits for Multiallelism and for Many Loci
Raper, J.
1982-01-01
Models in which general forms of preferential mating have been superimposed on the framework of the symmetric heterozygosity selection regime have been examined previously with respect to the existence and local stability of a central polymorphic equilibrium. The results are now extended to produce the limiting form of the stability conditions in two cases: First, where the number of alleles per locus is assumed to be very large; second, where the number of loci affecting the character is very large. It is argued that some type of frequency dependence in the mating pattern must be included, and a particular case is examined in detail. It is shown that multiallelism is ambiguous in its effect on stability, while an increasing number of loci, at least under zero linkage, leads to a simple stability condition which is analogous to the one-locus heterosis principle. Assortative mating appears to be more likely to produce a stable central polymorphism under high levels of allelism than is sexual selection, but is relatively very much weaker than sexual or viability selection if the number of loci involved is large. PMID:17246061
Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning
Manatschal, Cristina; Farcas, Ana-Maria; Degen, Miriam Steiner; Bayer, Mathias; Kumar, Anil; Landgraf, Christiane; Volkmer, Rudolf; Barral, Yves; Steinmetz, Michel O.
2016-01-01
The Kar9 pathway promotes nuclear fusion during mating and spindle alignment during metaphase in budding yeast. How Kar9 supports the different outcome of these two divergent processes is an open question. Here, we show that three sites in the C-terminal disordered domain of Kar9 mediate tight Kar9 interaction with the C-terminal dimerization domain of Bim1 (EB1 orthologue). Site1 and Site2 contain SxIP motifs; however, Site3 defines a novel type of EB1-binding site. Whereas Site2 and Site3 mediate Kar9 recruitment to microtubule tips, nuclear movement, and karyogamy, only Site2 functions in spindle positioning during metaphase. Site1 in turn plays an inhibitory role during mating. Additionally, the Kar9-Bim1 complex is involved in microtubule-independent activities during mating. Together, our data reveal how multiple and partially redundant EB1-binding sites provide a microtubule-associated protein with the means to modulate its biochemical properties to promote different molecular processes during cell proliferation and differentiation. PMID:27682587
Murray, Anita; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W
2018-02-01
Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.
Baena, Martha Lucía; Macías-Ordóñez, Rogelio
2012-01-01
Recent debate has highlighted the importance of estimating both the strength of sexual selection on phenotypic traits, and the opportunity for sexual selection. We describe seasonal fluctuations in mating dynamics of Leptinotarsa undecimlineata (Coleoptera: Chrysomelidae). We compared several estimates of the opportunity for, and the strength of, sexual selection and male precopulatory competition over the reproductive season. First, using a null model, we suggest that the ratio between observed values of the opportunity for sexual selections and their expected value under random mating results in unbiased estimates of the actual nonrandom mating behavior of the population. Second, we found that estimates for the whole reproductive season often misrepresent the actual value at any given time period. Third, mating differentials on male size and mobility, frequency of male fighting and three estimates of the opportunity for sexual selection provide contrasting but complementary information. More intense sexual selection associated to male mobility, but not to male size, was observed in periods with high opportunity for sexual selection and high frequency of male fights. Fourth, based on parameters of spatial and temporal aggregation of female receptivity, we describe the mating system of L. undecimlineata as a scramble mating polygyny in which the opportunity for sexual selection varies widely throughout the season, but the strength of sexual selection on male size remains fairly weak, while male mobility inversely covaries with mating success. We suggest that different estimates for the opportunity for, and intensity of, sexual selection should be applied in order to discriminate how different behavioral and demographic factors shape the reproductive dynamic of populations. PMID:22761675
Duplouy, Anne; Woestmann, Luisa; Gallego Zamorano, Juan; Saastamoinen, Marjo
2018-04-01
In butterflies, male reproductive success is highly related to the quality and the size of the spermatophore transferred to the female. The spermatophore is a capsule produced by the male during copulation, which in many species contains sperm in addition to a nuptial gift, and which is digested by the female after copulation. The nuptial gift may contribute to egg production and offspring quality, and in some cases also to female body maintenance. The production of the spermatophore, however, represents a cost for the male and, in polyandrous species, ejaculates are sometimes allocated adaptively across matings. Nonetheless, although the ecological factors affecting the reproductive success of female butterflies have been the topic of numerous studies, little information exists on the factors affecting males' contribution to reproduction, and the indirect impacts on female fecundity and fitness. We used the Glanville fritillary butterfly, Melitaea cinxia (Linnaeus, 1758) (Nymphalidae), in order to assess variation in male allocation to matings. In this species, smaller males produce smaller spermatophores, but variation in spermatophore size is not correlated with female reproductive success. We show that spermatophore size increases with male age at first mating, decreases with mating frequency and adult food-deprivation, and is not influenced by developmental food-limitation. The length of copulation period does not influence the spermatophore size nor influences the polyandrous mating behavior in this species. Male contribution to his spermatophore size is clearly influenced by his condition and adult-resource at the time of mating. Despite this variation, spermatophore size does not seem to have a direct impact on female reproductive output or mating behavior. © 2016 The Authors Insect Science published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.
Endocrinology of human female sexuality, mating, and reproductive behavior.
Motta-Mena, Natalie V; Puts, David A
2017-05-01
Hormones orchestrate and coordinate human female sexual development, sexuality, and reproduction in relation to three types of phenotypic changes: life history transitions such as puberty and childbirth, responses to contextual factors such as caloric intake and stress, and cyclical patterns such as the ovulatory cycle. Here, we review the endocrinology underlying women's reproductive phenotypes, including sexual orientation and gender identity, mate preferences, competition for mates, sex drive, and maternal behavior. We highlight distinctive aspects of women's sexuality such as the possession of sexual ornaments, relatively cryptic fertile windows, extended sexual behavior across the ovulatory cycle, and a period of midlife reproductive senescence-and we focus on how hormonal mechanisms were shaped by selection to produce adaptive outcomes. We conclude with suggestions for future research to elucidate how hormonal mechanisms subserve women's reproductive phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of Type II Fast Packs for Electrostatic Discharge Properties.
1983-08-01
34 x 8" x 1 3/4") consisting of a reclosable cushioned carrier which mates into an outer fiberboard sleeve. A cushioning insert is used consisting of a... RECLOSABLE CUSHIONED CARRIER TEST LOAD FIGURE 1: Cancel Caddy Pack * CONVOLUTED 4* CUSHIONED I FIGURE 2: Type II Fast Pack (PPP-B-1672) TYPE II FAST PACK
Mated Fingerprint Card Pairs 2 (MFCP2)
National Institute of Standards and Technology Data Gateway
NIST Mated Fingerprint Card Pairs 2 (MFCP2) (Web, free access) NIST Special Database 14 is being distributed for use in development and testing of automated fingerprint classification and matching systems on a set of images which approximate a natural horizontal distribution of the National Crime Information Center (NCIC) fingerprint classes. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.
Ciliates learn to diagnose and correct classical error syndromes in mating strategies
Clark, Kevin B.
2013-01-01
Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987
Baños, R M; Cebolla, A; Oliver, E; Alcañiz, M; Botella, C
2013-04-01
Possessing sufficient nutritional knowledge is a necessary component in the prevention and treatment of obesity. A solid understanding of nutrition can help people make appropriate food selections and can also help correct irrational ideas or myths people may believe about food. It is a challenge to provide this information to children in ways that are exciting. Thus, we propose an online video game platform to deliver the information. The objective of this study was to study the efficacy and acceptability of an online game called 'ETIOBE Mates' that was designed to improve children's nutritional knowledge; furthermore, we compare it with the traditional paper-pencil mode of information delivery. A sample of 228 children participated in the study. Participants were divided into two groups: an experimental group (who used ETIOBE Mates) and a control group (who were given a pamphlet). Both groups increased their scores for nutritional knowledge. The interaction between group × time was also statistically significant; it indicated that acquisition of nutritional knowledge was superior in the experimental group. The children considered the serious games platform to be a useful medium for improving their nutritional knowledge. Online games can be an effective method of delivery for preventive and treatment tasks that are otherwise tedious for children.
Smith, David S; Jones, Benedict C; Feinberg, David R; Allan, Kevin
2012-01-01
From a functionalist perspective, human memory should be attuned to information of adaptive value for one's survival and reproductive fitness. While evidence of sensitivity to survival-related information is growing, specific links between memory and information that could impact upon reproductive fitness have remained elusive. Here, in two experiments, we showed that memory in women is sensitive to male voice pitch, a sexually dimorphic cue important for mate choice because it not only serves as an indicator of genetic quality, but may also signal behavioural traits undesirable in a long-term partner. In Experiment 1, we report that women's visual object memory is significantly enhanced when an object's name is spoken during encoding in a masculinised (i.e., lower-pitch) versus feminised (i.e., higher-pitch) male voice, but that no analogous effect occurs when women listen to other women's voices. Experiment 2 replicated this pattern of results, additionally showing that lowering and raising male voice pitch enhanced and impaired women's memory, respectively, relative to a baseline (i.e., unmanipulated) voice condition. The modulatory effect of sexual dimorphism cues in the male voice may reveal a mate-choice adaptation within women's memory, sculpted by evolution in response to the dilemma posed by the double-edged qualities of male masculinity.
Chen, Ri-Zhao; Jow, Chung-Kuang; Klein, Michael G; Jia, Yu-di; Zhang, Da-Yu; Li, Lan-Bing
2017-08-01
Mating disruption of Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) with its sex pheromone has not been commonly used in NE China due to a lack of information about optimal sex pheromone dosages and the density of release points required in the field. During 2014-2016, first, the two active pheromone ingredients were evaluated in the laboratory alone at ca. 2.5-5.0 mg, or in combination at 0.2-6.0 mg, to disrupt male O. furnacalis mating behaviors. Then, mating disruption areas, with radii of <8.0 m, were determined with those same dosages in corn, an orchard, and soybean fields by comparing male captures in sentinel traps in the control plots with those in corresponding disruption treatments. Finally, 6.0 (F30) and 0.2 mg (Fs) dosages were used in fields at 20-640 and 200-6,400 release points/ha. We found that ≧6.0 mg of the binary pheromone mixture, or ca. 5.0 mg of either of the two single components, completely disrupted mating behaviors, and F30 of the binary mixture provided a 200-m2 disruption area, with at least 50% capture reductions. At a density of 60-640 and 600-6,400 points/ha in a corn field, F30 and Fs dosages provided >90% mating disruption, leaf protection, and ear protection. The dispenser densities and inverse male catches in traps tended to follow a noncompetitive mechanism of mating disruption. Since 85% disruption of mating with 200-400 0.02 mg release points/ha was obtained, that level is recommended as the choice in future NE China O. furnacalis IPM programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Riley, Rohan; Charron, Philippe; Idnurm, Alexander; Farinelli, Laurent; Dalpé, Yolande; Martin, Francis; Corradi, Nicolas
2014-01-01
Arbuscular mycorrhizal fungi (AMF) are important plant symbionts that have long been considered evolutionary anomalies because of their apparent long-term lack of sexuality, but recent explorations of available DNA sequence have challenged this notion by revealing the presence of homologues of fungal mating type-high-mobility group (MATA-HMG) and core meiotic genes in these organisms. To obtain more insights into the sexual potential of AMF, homologues of MATA-HMGs were sought in the transcriptome of three AMF isolates, and their functional and evolutionary trajectories were studied in genetically divergent strains of Rhizophagus irregularis using conventional and quantitative PCR procedures. Our analyses revealed the presence of at least 76 homologues of MATA-HMGs in R. irregularis isolates. None of these was found to be surrounded by genes generally found near other known fungal mating type loci, but here we report the presence of a 9-kb-long region in the AMF R. irregularis harbouring a total of four tandem-repeated MATA-HMGs; a feature that highlights a potentially elevated intragenomic diversity in this AMF species. The present study provides intriguing insights into the genome evolution of R. irregularis, and represents a stepping stone for understanding the potential of these fungi to undergo cryptic sex. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Beisner, Brianne A; McCowan, Brenda
2013-01-01
Studies of prosocial policing in nonhuman societies traditionally focus on impartial interventions because of an underlying assumption that partial support implies a direct benefit to the intervener, thereby negating the potential for being prosocial in maintaining social stability for the benefit of the group. However, certain types of partial interventions have significant potential to be prosocial in controlling conflict, e.g. support of non-kin subordinates. Here, we propose a policing support hypothesis that some types of agonistic support serve a prosocial policing function that maintains group stability. Using seven large captive groups of rhesus macaques, we investigated the relationship between intervention type and group-level costs and benefits (rates of trauma, severe aggression, social relocation) and individual level costs and benefits (preferential sex-dyad targeting, dominance ambiguity reduction, access to mates, and return aggression). Our results show that impartial interventions and support of subordinate non-kin represent prosocial policing as both (1) were negatively associated with group-level rates of trauma and severe aggression, respectively, (2) showed no potential to confer individual dominance benefits, (3) when performed outside the mating season, they did not increase chances of mating with the beneficiary, and (4) were low-cost for the highest-ranking interveners. We recommend expanding the definition of 'policing' in nonhumans to include these 'policing support interventions'.
Sexuality and Genetic Identity in the Agaricus Section Arvenses
Calvo-Bado, Leo; Noble, Ralph; Challen, Mike; Dobrovin-Pennington, Andreja; Elliott, Tim
2000-01-01
Twelve wild collections and one commercial strain were used to characterize breeding systems and to develop molecular identities in the Arvenses section of the genus Agaricus, which includes the “horse mushroom” A. arvensis. Two morphotypes were identified based on macro- and micromorphological features. However, not all collections could be delimited by conventional taxonomic characters. Sequencing of the small subunit intergenic spacer (ITS) region (368 to 370 bp) of the rRNA genes clearly resolved the 13 collections into two clusters consistent with the identified morphotypes. Single-spore progenies and mating type testers were established and used to test intra- and interstock compatibility. The two compatibility groups identified were consistent with ITS clusters. Compatibility group I stocks readily interbred within the constraints of a unifactorial heterothallic system with a multiallelic mating type factor. Compatibility group II had a more restricted breeding pattern, and interactions were difficult to predict on the basis of mating type. Morphological data, ITS sequences, and the ability to interbreed suggest that these collections are part of a complex of interrelated species. Single-spore, homokaryotic isolates from both compatibility groups were able to fruit in compost culture, and two of the collections may represent natural homokaryotic fruiting. We conclude that species from the section Arvenses have versatile unifactorial heterothallic life cycles that permit both interbreeding and homokaryotic fruiting. PMID:10653743
Desjardins, A. E.; Brown, D. W.; Yun, S.-H.; Proctor, R. H.; Lee, T.; Plattner, R. D.; Lu, S.-W.; Turgeon, B. G.
2004-01-01
Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight epidemics. To develop fungal strains to test this hypothesis, the entire mating type (MAT1) locus was deleted from a self-fertile (MAT1-1/MAT1-2), virulent, trichothecene-producing wild-type strain of G. zeae. The resulting MAT deletion (mat1-1/mat1-2) strains were unable to produce perithecia or ascospores and appeared to be unable to mate with the fertile strain from which they were derived. Complementation of a MAT deletion strain by transformation with a copy of the entire MAT locus resulted in recovery of production of perithecia and ascospores. MAT deletion strains and MAT-complemented strains retained the ability to produce macroconidia that could cause head blight, as assessed by direct injection into wheat heads in greenhouse tests. Availability of MAT-null and MAT-complemented strains provides a means to determine the importance of ascospores in the biology of G. zeae and perhaps to identify novel approaches to control wheat head blight. PMID:15066842
Hassanien, Intisar T E; Grötzner, Manuela; Meyering-Vos, Martina; Hoffmann, Klaus H
2014-07-01
In the polyandric moth, Spodopterafrugiperda, juvenile hormone (JH) is transferred from the male accessory reproductive glands (AG) to the female bursa copulatrix (BC) during copulation (see Hassanien et al., 2014). Here we used the RNA interference technique to study the role of allatoregulating neuropeptides in controlling the synthesis and transfer of JH during mating. Knockdown of S. frugiperda allatostatin C (Spofr-AS type C) in freshly emerged males leads to an accumulation of JH in the AG beyond that in the control and mating results in a higher transport of JH I and JH II into the female BC. Knockdown of S. frugiperda allatotropin 2 (Spofr-AT2) significantly reduces the amount of JH in the AG as well as its transfer into the female BC during copulation. Knockdown of S. frugiperda allatostatin A (Spofr-AS type A) and S. frugiperda allatotropin (Spofr-AT; Hassanien et al., 2014) only slightly affects the accumulation of JH in the AG and its transfer from the male to the female. We conclude that Spofr-AS type C and Spofr-AT2 act as true allatostatin and true allatotropin, respectively, on the synthesis of JH I and JH II in the male AG. Moreover, both peptides seem to control the synthesis of JH III in the corpora allata of adult males and its release into the hemolymph. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rauscher, Emily
2015-08-01
Modernization theory predicts that rising education should increase assortative mating by education and decrease sorting by race. Recent research suggests that effects of educational expansion depend on contextual factors, such as economic development. Using log-linear and log-multiplicative models of male household heads ages 36 to 75 in the 1940 U.S. census data--the first U.S. census with educational attainment information--I investigate how educational assortative mating changed with one instance of educational expansion: early U.S. compulsory school attendance laws. To improve on existing research and distinguish effects of expansion from changes due to particular years or cohorts, I capitalize on state variation in the timing of these compulsory laws (ranging from 1852 to 1918). Aggregate results suggest that compulsory laws had minimal impact on assortative mating. However, separate analyses by region (and supplemental analyses by race) reveal that assortative mating by education decreased with the laws in the South but increased in the North. Whether due to economic, legal, political, or other differences, results suggest that the implications of educational expansion for marital sorting depend on context. Contemporary implications are discussed in light of President Obama's 2012 suggested extension of compulsory schooling to age 18.
Aesthetic evolution by mate choice: Darwin's really dangerous idea
Prum, Richard O.
2012-01-01
Darwin proposed an explicitly aesthetic theory of sexual selection in which he described mate preferences as a ‘taste for the beautiful’, an ‘aesthetic capacity’, etc. These statements were not merely colourful Victorian mannerisms, but explicit expressions of Darwin's hypothesis that mate preferences can evolve for arbitrarily attractive traits that do not provide any additional benefits to mate choice. In his critique of Darwin, A. R. Wallace proposed an entirely modern mechanism of mate preference evolution through the correlation of display traits with male vigour or viability, but he called this mechanism natural selection. Wallace's honest advertisement proposal was stridently anti-Darwinian and anti-aesthetic. Most modern sexual selection research relies on essentially the same Neo-Wallacean theory renamed as sexual selection. I define the process of aesthetic evolution as the evolution of a communication signal through sensory/cognitive evaluation, which is most elaborated through coevolution of the signal and its evaluation. Sensory evaluation includes the possibility that display traits do not encode information that is being assessed, but are merely preferred. A genuinely Darwinian, aesthetic theory of sexual selection requires the incorporation of the Lande–Kirkpatrick null model into sexual selection research, but also encompasses the possibility of sensory bias, good genes and direct benefits mechanisms. PMID:22777014
Performance measures from the explorer platform berthing experiment
NASA Technical Reports Server (NTRS)
Leake, Stephen
1993-01-01
The Explorer Platform is a Modular Mission Spacecraft: it has several subunits that are designed to be replaced on orbit. The Goddard Space Flight Center Robotics Lab undertook an experiment to evaluate various robotic approaches to replacing one of the units; a large (approximately 1 meter by 1 meter by 0.5 meter) power box. The hardware consists of a Robotics Research Corporation K-1607 (RRC) manipulator mounted on a large gantry robot, a Kraft handcontroller for teleoperation of RRC, a Lightweight Servicing Tool (LST) mounted on the RRC, and an Explorer Platform mockup (EP) with a removable box (MMS) that has fixtures that mate with the LST. Sensors include a wrist wrench sensor on the RRC and Capaciflectors mounted on the LST and the MMS. There are also several cameras, but no machine vision is used. The control system for the RRC is entirely written by Goddard; it consists of Ada code on three Multibus I 386/387 CPU boards doing the real-time robot control, and C on a 386 PC processing Capaciflector data. The gantry is not moved during this experiment. The task is the exchange of the MMS; it is removed and replaced. This involves four basic steps: mating the LST to the MMS, demating the MMS from the EP, mating the MMS to the EP, and demating the LST form the MMS. Each of the mating steps must be preceeded by an alignment to bring the mechanical fixtures within their capture range. Two basic approaches to alignment are explored: teleoperation with the operator viewing thru cameras, and Capaciflector based autonomy. To evaluate the two alignment approaches, several runs were run with each approach and the final pose was recorded. Comparing this to the ideal alignment pose gives accuracy and repeatability data. In addition the wrenches exerted during the mating tasks were recorded; this gives information on how the alignment step affects the mating step. There are also two approaches to mating; teleoperation, and impedance based autonomy. The wrench data taken during mating using these two approaches is used to evaluate them. Section 2 describes the alignment results, section 3 describes the mating results, and finally Section 4 gives some conclusions.
Tabilio, Maria Rosaria; Lampazzi, Elena; Ceccaroli, Claudio; Colacci, Marco; Trematerra, Pasquale
2018-01-01
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is a key pest of fruit crops in many tropical, subtropical and mild temperate areas worldwide. The economic importance of this fruit fly is increasing due to its invasion of new geographical areas. Efficient control and eradication efforts require adequate information regarding C. capitata adults in relation to environmental and physiological cues. This would allow effective characterisation of the population spatio-temporal dynamic of the C. capitata population at both the orchard level and the area-wide landscape. The aim of this study was to analyse population patterns of adult medflies caught using two trapping systems in a peach orchard located in central Italy. They were differentiated by adult sex (males or females) and mating status of females (unmated or mated females) to determine the spatio-temporal dynamic and evaluate the effect of cultivar and chemical treatments on trap catches. Female mating status was assessed by spermathecal dissection and a blind test was carried out to evaluate the reliability of the technique. Geostatistical methods, variogram and kriging, were used to produce distributional maps. Results showed a strong correlation between the distribution of males and unmated females, whereas males versus mated females and unmated females versus mated females showed a lower correlation. Both cultivar and chemical treatments had significant effects on trap catches, showing associations with sex and female mating status. Medfly adults showed aggregated distributions in the experimental field, but hot spots locations varied. The spatial pattern of unmated females reflected that of males, whereas mated females were largely distributed around ripening or ripe fruit. The results give relevant insights into pest management. Mated females may be distributed differently to unmated females and the identification of male hot spots through monitoring would allow localisation of virgin female populations. Based on our results, a more precise IPM strategy, coupled with effective sanitation practices, could represent a more effective approach to medfly control. PMID:29617420
True polyandry and pseudopolyandry: why does a monandrous fly remate?
Fisher, David N; Doff, Rowan J; Price, Tom A R
2013-07-25
The rate of female remating can have important impacts on a species, from affecting conflict and cooperation within families, to population viability and gene flow. However, determining the level of polyandry in a species can be difficult, with information on the mating system of many species being based on a single experiment, or completely absent. Here we investigate the mating system of the fruit fly Drosophila subobscura. Reports from England, Spain and Canada suggest D. subobscura is entirely monandrous, with no females remating. However, work in Greece suggests that 23% of females remate. We examine the willingness of female D. subobscura to remate in the laboratory in a range of conditions, using flies from both Greece and England. We make a distinction between pseudopolyandry, where a female remates after an ineffective first mating that is incapable of fertilising her eggs, and true polyandry, where a female remates even though she has received suitable sperm from a previous mating. We find a low rate of true polyandry by females (4%), with no difference between populations. The rate of true polyandry is affected by temperature, but not starvation. Pseudopolyandry is three times as common as true polyandry, and most females showing pseudopolyandry mated at their first opportunity after their first failed mating. However, despite the lack of differences in polyandry between the populations, we do find differences in the way males respond to exposure to other males prior to mating. In line with previous work, English flies responded to one or more rivals by increasing their copulation duration, a response previously thought to be driven by sperm competition. Greek males only show increased copulation duration when exposed to four or more rival males. This suggests that the response to rivals in D. subobscura is not related to sperm competition, because sperm competition is rare, and there is no correlation of response to rivals and mating system across the populations. These results illustrate the difficulties in determining the mating system of a species, even one that is well known and an excellent laboratory species, with results being highly dependent on the conditions used to assay the behaviour, and the population used.
Phase Transition Behavior in a Neutral Evolution Model
NASA Astrophysics Data System (ADS)
King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya
2014-03-01
The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.
Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.
Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W
2002-01-01
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055
Baker, T C; Myrick, A J; Park, K C
2016-09-01
High-emission-rate "mega-dispensers" have come into increasing use for sex pheromone mating disruption of moth pests over the past two decades. These commercially available dispensers successfully suppress mating and reduce crop damage when they are deployed at very low to moderate densities, ranging from 1 to 5/ha to 100-1000/ha, depending on the dispenser types and their corresponding pheromone emission rates. Whereas traditionally the emission rates for successful commercial mating disruption formulations have been measured in terms of amounts (usually milligram) emitted by the disruptant application per acre or hectare per day, we suggest that emission rates should be measured on a per-dispenser per-minute basis. In addition we suggest, because of our knowledge concerning upwind flight of male moths being dependent on contact with pheromone plume strands, that more attention needs to be paid to optimizing the flux within plume strands that shear off of any mating disruption dispenser's surface. By measuring the emission rates on a per-minute basis and measuring the plume strand concentrations emanating from the dispensers, it may help improve the ability of the dispensers to initiate upwind flight from males and initiate their habituation to the pheromone farther downwind than can otherwise be achieved. In addition, by optimizing plume strand flux by paying attention to the geometries and compactness of mating disruption mega-dispensers may help reduce the cost of mega-dispenser disruption formulations by improving their behavioral efficacy while maintaining field longevity and using lower loading rates per dispenser.
A potential mate influences reproductive development in female, but not male, pine siskins.
Watts, Heather E; Edley, Bruce; Hahn, Thomas P
2016-04-01
The role of photoperiod in avian reproductive timing has been well studied, and we are increasingly recognizing the roles of other environmental cues such as social cues. However, few studies have evaluated the extent to which males and females of the same species respond similarly to the same type of cue. Moreover, previous studies have rarely examined how variation in the quality or nature of a given social cue might modulate its effect. Here, we examine the sensitivity of male and female pine siskins (Spinus pinus) to a potential mate as a stimulatory cue for gonadal recrudescence, and we investigate whether variation in the relationship between a bird and its potential mate modulates the effect of that potential mate. Birds were initially housed without opposite sex birds on a 12L:12D photoperiod with ad libitum food. After gonadal recrudescence had begun males and females were randomly paired with an opposite sex bird or housed alone. An additional group of males was paired with estradiol-implanted females. In males, these social treatments had no effect on testis length, cloacal protuberance length, luteinizing hormone (LH) levels, or testosterone levels. In females, presence of a potential mate had a significant and positive effect on ovary score, defeathering of the brood patch, and LH levels. Among paired birds, the degree of affiliation within a pair corresponded to the extent of reproductive development in females, but not males. Thus, reproductive timing in females appears to be sensitive to both the presence of a potential mate and her relationship with him. Copyright © 2016 Elsevier Inc. All rights reserved.
A potential mate influences reproductive development in female, but not male, pine siskins
Watts, Heather E.; Edley, Bruce; Hahn, Thomas P.
2016-01-01
The role of photoperiod in avian reproductive timing has been well studied, and we are increasingly recognizing the roles of other environmental cues such as social cues. However, few studies have evaluated the extent to which males and females of the same species respond similarly to the same type of cue. Moreover, previous studies have rarely examined how variation in the quality or nature of a given social cue might modulate its effect. Here, we examine the sensitivity of male and female pine siskins (Spinus pinus) to a potential mate as a stimulatory cue for gonadal recrudescence, and we investigate whether variation in the relationship between a bird and its potential mate modulates the effect of that potential mate. Birds were initially housed without opposite sex birds on a 12L:12D photoperiod with ad libitum food. After gonadal recrudescence had begun males and females were randomly paired with an opposite sex bird or housed alone. An additional group of males was paired with estradiol-implanted females. In males, these social treatments had no effect on testis length, cloacal protuberance length, luteinizing hormone (LH) levels, or testosterone levels. In females, presence of a potential mate had a significant and positive effect on ovary score, defeathering of the brood patch, and LH levels. Among paired birds, the degree of affiliation within a pair corresponded to the extent of reproductive development in females, but not males. Thus, reproductive timing in females appears to be sensitive to both the presence of a potential mate and her relationship with him. PMID:26836771
Locatelli, D; Delmonte Corrado, M U; Politi, H; Bottiroli, G
1998-01-01
Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon occurring between the molecules of two fluorochromes with suitable spectral characteristics (donor-acceptor dye pair), and consisting in an excitation energy migration through a non-radiative process. Since the efficiency of the process is strictly dependent on the distance and reciprocal orientation of the donor and acceptor molecules, FRET-based techniques can be successfully applied to the study of biomolecules and cell component organisation and distribution. These techniques have been employed in studying Paramecium primaurelia surface membrane for the reciprocal distribution of N-acetylneuraminic acid (NeuAc) and N-acetylglucosamine (GlcNAc) glycosidic residues, which were found to be involved in mating cell pairing. NeuAc and GlcNAc were detected by their specific binding lectins, Limulus polyphemus agglutinin (LPA) and wheat germ agglutinin (WGA), respectively. Microspectrofluorometric analysis afforded the choice of fluorescein isothiocyanate and Texas red conjugated with LPA and WGA, respectively, as a suitable donor-acceptor couple efficiently activating FRET processes. Studies performed both in solution and in cells allowed to define the experimental conditions favourable for a FRET analysis. The comparative study carried out both on the conjugating-region and the non conjugating region of the surface membrane, indicates that FRET distribution appears quite homogeneous in mating-competent mating type (mt) I, whereas, in mating-competent mt II cells, FRET distribution seems to be preferentially localised on the conjugating-region functionally involved in mating cell pairing. This difference in the distribution of lectin-binding sites is suggested to be related to mating-competence acquisition.
Fortes, Eunice Anita de Moura; Ferraz, Maíra Soares; Bezerra, Dayseanny Oliveira; Júnior, Aírton Mendes Conde; Cabral, Rosa Maria; Sousa, Francisco das Chagas Araújo; Almeida, Hatawa Melo; Pessoa, Gerson Tavares; Menezes, Danilo José Ayres de; Guerra, Sérgio Paulo Lima; Sampaio, Ivan Barbosa Machado; Assis Neto, Antônio Chaves; Carvalho, Maria Acelina Martins de
2013-08-01
The gestation period in agoutis can range from 104 to 120 days. Knowledge regarding the morphological characteristics of embryos and fetuses is important as a base for studies in reproduction biotechnology, such as in vitro fertilization, embryo transfer and helps in determining congenital anomalies during the development phase. Thus, given the importance and lack of information about agouti embryology, the objective of this study was to characterize the external morphology and define the biometry of embryos and fetuses, at different days of development. Nine females were submitted to daily colpocytology to identify the estrus, confirm mating and identify day zero of the gestation. When the mating was confirmed they were weighed, underwent abdominal ultrasonography and surgery was conducted on the females at the gestational ages of 25, 30, 35, 40, 45, 50, 75 and 100 days. Sixteen embryos/fetuses were weighed and measured. Agouti embryos at 25 days after mating are "C" shaped, with primitive structures, 0.4±0.01cm crown-rump and weighed 0.06±0.01g; at 30 days after mating the crown-rump was 0.95±0.07cm and weighed 0.28±0.00g; at 35 days after mating the crown-rump was 155±0.07cm and weighed 0.38±0.01g; at 40 days after mating the crown-rump was 2.25±0.21cm and weighed 1.25±0.07g; at 45 days after mating the crown-rump was 3.45±0.35cm and weighed 2.75±0.64g; at 50 days after mating the crown-rump was 5.0±0.3cm and weighed 7.01±2.6g; at 75 days after mating, the skin was dark, the crown-rump was 10.0±0.14cm and weighed 55.2±0.07g. At 100 days after mating, the crown-rump was 13.8±0.49cm and fetuses weighed 136.7±9.40g. Based on the morphological data assessed the embryo and fetus age could be assessed and the size and average weight of agouti embryos was established. Copyright © 2013 Elsevier B.V. All rights reserved.
Lockhart, Shawn R.; Wu, Wei; Radke, Joshua B.; Zhao, Rui; Soll, David R.
2005-01-01
The majority of Candida albicans strains in nature are a/α and must undergo homozygosis to a/a or α/α to mate. Here we have used a mouse model for systemic infection to test the hypothesis that a/α strains predominate in nature because they have a competitive advantage over a/a and α/α offspring in colonizing hosts. Single-strain injection experiments revealed that a/α strains were far more virulent than either their a/a or α/α offspring. When equal numbers of parent a/α and offspring a/a or α/α cells were co-injected, a/α always exhibited a competitive advantage at the time of extreme host morbidity or death. When equal numbers of an engineered a/a/α2 strain and its isogenic a/a parent strain were co-injected, the a/a/α2 strain exhibited a competitive advantage at the time of host morbidity or death, suggesting that the genotype of the mating-type (MTL) locus, not associated genes on chromosome 5, provides a competitive advantage. We therefore propose that heterozygosity at the MTL locus not only represses white-opaque switching and genes involved in the mating process, but also affects virulence, providing a competitive advantage to the a/α genotype that conserves the mating system of C. albicans in nature. PMID:15695357
Lockhart, Shawn R; Wu, Wei; Radke, Joshua B; Zhao, Rui; Soll, David R
2005-04-01
The majority of Candida albicans strains in nature are a/alpha and must undergo homozygosis to a/a or alpha/alpha to mate. Here we have used a mouse model for systemic infection to test the hypothesis that a/alpha strains predominate in nature because they have a competitive advantage over a/a and alpha/alpha offspring in colonizing hosts. Single-strain injection experiments revealed that a/alpha strains were far more virulent than either their a/a or alpha/alpha offspring. When equal numbers of parent a/alpha and offspring a/a or alpha/alpha cells were co-injected, a/alpha always exhibited a competitive advantage at the time of extreme host morbidity or death. When equal numbers of an engineered a/a/alpha2 strain and its isogenic a/a parent strain were co-injected, the a/a/alpha2 strain exhibited a competitive advantage at the time of host morbidity or death, suggesting that the genotype of the mating-type (MTL) locus, not associated genes on chromosome 5, provides a competitive advantage. We therefore propose that heterozygosity at the MTL locus not only represses white-opaque switching and genes involved in the mating process, but also affects virulence, providing a competitive advantage to the a/alpha genotype that conserves the mating system of C. albicans in nature.
Female mating preferences determine system-level evolution in a gene network model.
Fierst, Janna L
2013-06-01
Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.
Dawson, John A.; Dhurandhar, Emily J.; Vazquez, Ana I.; Peng, Bo; Allison, David B.
2013-01-01
Background/Aims To quantify the extent to which the increase in obesity observed across recent generations of the American population is associated with the individual or combined effects of assortative mating for body mass index (BMI; kg/m2) and differential realized fertility by BMI. Methods A Monte Carlo framework is formed and informed using data collected from the National Longitudinal Survey of Youth (NLSY). The model has two portions, one that generates childbirth events on an annual basis and another that produces a BMI for each child. Once the model is informed using the data, a reference distribution of offspring BMIs is simulated. We quantify the effects of our factors of interest by removing them from the model and comparing the resulting offspring BMI distributions with that of the baseline scenario. Results An association between maternal BMI and number of offspring is evidenced in the NLSY data, as well as the presence of assortative mating. These two factors combined are associated with increased mean BMI (+0.067, C.I. [0.056, 0.078]), increased BMI variance (+0.578, C.I. [0.418, 0.736]) and increased prevalence of obesity (RR 1.032, 95% C.I. [1.023, 1.041]) and BMIs over 40 (RR 1.083, 95% C.I. [1.053, 1.118]) among offspring. Conclusion Our investigation suggests that both differential realized fertility and assortative mating by BMI appear to play a role in the increasing prevalence of obesity in America. PMID:24081235
Correlates of reproductive success in a Caribbean village.
Flinn, M V
1986-06-01
The concept of individual reproductive success was investigated in a rural Trinidadian village by analyzing genealogical, economic and demographic data. The author conducted field research in the village of Grand Anse, on the northern coast of Trinidad, with 342 inhabitants, collecting accurate genealogies, information on economic assets and occupations, residence, horticultural productivity, flow of material resources between individuals, and past and current mating and marriage relationships. Individuals with more land had more offspring, especially so for males. Males with land had more offspring by more mates than less prosperous males. Although this may have occurred because females desired males who were well dressed, gave them presents, and appeared to be able to support children, in fact, the village elders exerted considerable control over mating relationships. Young males with a father resident in the village had more children. Fathers helped their sons get jobs, controlled land, conferred social standing. The findings were surprisingly congruent with current evolutionary models of mating systems developed from the study of nonhuman organisms: specifically the hypothesis that organisms evolve to amass resources in ways that maximize the reproduction of their genetic materials.
Dangerous mating systems: signal complexity, signal content and neural capacity in spiders.
Herberstein, M E; Wignall, A E; Hebets, E A; Schneider, J M
2014-10-01
Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rebar, D; Rodríguez, R L
2016-04-01
Sexual signals are conspicuous sources of information about neighbouring competitors, and species in which males and females signal during pair formation provide various sources of public information to which individuals can adjust their behaviour. We performed two experiments with a duetting vibrational insect, Enchenopa binotata treehoppers (Hemiptera: Membracidae), to ask whether males adjust their signalling behaviour according to (1a) their own experience of competitors' signals, (1b) how females adjust their mate preferences on the basis of their experience of male signals (described in prior work), and/or (2) their own experience of female response signals to competitors' signals. We presented males with synthetic male signals of different frequencies and combinations thereof for 2 weeks. We recorded males a day after their last signal exposure, finding that (1a) male signal rate increased in response to experience of attractive competitors, but that (1b) male signal frequency did not shift in a manner consistent with how females adjust their mate preferences in those experience treatments. Second, we presented males with different male-female duets for 2 weeks, finding that (2) male signal length increased from experience of female duets with attractive competitors. Males thus make two types of adjustment according to two sources of public information: one provided by experience of male signals and another by experience of female responses to male signals. Signalling plasticity can generate feedback loops between the adjustments that males and females make, and we discuss the potential consequences of such feedback loops for the evolution of communication systems. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Viral Repression of Fungal Pheromone Precursor Gene Expression
Zhang, Lei; Baasiri, Rudeina A.; Van Alfen, Neal K.
1998-01-01
Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a Gαi subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete. PMID:9447992
NASA Astrophysics Data System (ADS)
Hegyi, Gergely; Szöllősi, Eszter; Jenni-Eiermann, Susanne; Török, János; Eens, Marcel; Garamszegi, László Zsolt
2010-06-01
The information content of a sexual signal may predict its importance in a multiple signal system. Many studies have correlated sexual signal expression with the absolute levels of nutrient reserves. In contrast, the changes of nutrient reserves associated with signal expression are largely unknown in the wild due to technical limitations although they are important determinants of signal information content. We compared two visual and eight acoustic sexual traits in male collared flycatchers to see whether the nutritional correlates of expression predict the role of the signal in sexual selection. We used single point assays of plasma lipid metabolites to estimate short-term changes in nutritional state in relation to sexual trait expression during courtship. As a measure of sexual selection, we estimated the relationship with pairing latency after arrival in a 4-year dataset. Males which found a mate rapidly were characterized by large wing and forehead patches, but small song strophe complexity and small figure repertoire size. Traits more strongly related to pairing latency were also more closely related to changes in nutrient reserves. This indicates a link between signal role and information content. Small wing patches and, surprisingly, complex songs seemed to indicate poor phenotypic quality and were apparently disfavoured at mate acquisition in our population. Future studies of the information content of sexual traits, especially dynamic traits such as song, may benefit from the use of plasma metabolite profiles as non-invasive indicators of short-term changes in body condition.
Fluorescent sperm in a transparent worm: validation of a GFP marker to study sexual selection.
Marie-Orleach, Lucas; Janicke, Tim; Vizoso, Dita B; Eichmann, Micha; Schärer, Lukas
2014-06-30
Sexual selection has initially been thought to occur exclusively at the precopulatory stage in terms of contests among males and female mate choice, but research over the last four decades revealed that it often continues after copulation through sperm competition and cryptic female choice. However, studying these postcopulatory processes remains challenging because they occur internally and therefore are often difficult to observe. In the transparent free-living flatworm Macrostomum lignano, a recently established transgenic line that expresses green fluorescent protein (GFP) in all cell types, including sperm, offers a unique opportunity to non-invasively visualise and quantify the sperm of a GFP-expressing donor inside the reproductive tract of wild-type recipients in vivo. We here test several aspects of the reproductive performance of the transgenic individuals and the accuracy of the techniques involved in assessing the GFP-expressing worms and their sperm. We then show the usefulness of these methods in a study on sperm displacement. GFP-expressing worms do not differ from wild-type worms in terms of morphology, mating rate and reproductive success. In addition, we show that the GFP signal is reliably and unequivocally expressed by all GFP-expressing individuals observed under epifluorescence illumination. However, the intensity of the GFP signal emitted by sperm of GFP expressing donors can vary (which we show to be at least in part due to sperm ageing) and the GFP marker is inherited according to Mendel's laws in most, but not all, of the individuals. Nevertheless, we argue these two issues can be addressed with an appropriate experimental design. Finally, we demonstrate the value of the GFP-techniques by comparing the number of GFP-expressing sperm in a wild-type recipient before and after mating with a competing sperm donor, providing clear experimental evidence for sperm displacement in M. lignano. This result suggests that sperm donors can displace previously stored sperm and replace it with their own. The availability of the GFP-techniques in a transparent organism provide unique opportunities to visualise and quantify internal processes in the female reproductive tract after mating, which opens new avenues in the study of sexual selection.
Pons, Elsa; Navarro, Antonio; Ollitrault, Patrick; Peña, Leandro
2011-01-01
Background/Objective Despite potential benefits granted by genetically modified (GM) fruit trees, their release and commercialization raises concerns about their potential environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is deemed to be the greatest source for environmental exposure. Information compiled from field trials on GM trees is essential to propose measures to minimize the transgene dispersal. We have conducted a field trial of seven consecutive years to investigate the maximum frequency of pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, phenological and environmental factors involved. Methodology/Principal Findings Three different citrus genotypes carrying the uidA (GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17–2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another non-GM pollen source population that greatly limited the mating chance of the contiguous cross-compatible and flowering-synchronized transgenic pollen source. This mating superiority could be explained by a much higher pollen competition capacity of the non-GM genotypes, as was confirmed through mixed-hand pollinations. Conclusions/Significance Pollen competition strongly contributed to transgene confinement. Based on this finding, suitable isolation measures are proposed for the first time to prevent transgene outflow between contiguous plantings of citrus types that may be extendible to other entomophilous transgenic fruit tree species. PMID:21991359
Pons, Elsa; Navarro, Antonio; Ollitrault, Patrick; Peña, Leandro
2011-01-01
Despite potential benefits granted by genetically modified (GM) fruit trees, their release and commercialization raises concerns about their potential environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is deemed to be the greatest source for environmental exposure. Information compiled from field trials on GM trees is essential to propose measures to minimize the transgene dispersal. We have conducted a field trial of seven consecutive years to investigate the maximum frequency of pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, phenological and environmental factors involved. Three different citrus genotypes carrying the uidA (GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17-2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another non-GM pollen source population that greatly limited the mating chance of the contiguous cross-compatible and flowering-synchronized transgenic pollen source. This mating superiority could be explained by a much higher pollen competition capacity of the non-GM genotypes, as was confirmed through mixed-hand pollinations. Pollen competition strongly contributed to transgene confinement. Based on this finding, suitable isolation measures are proposed for the first time to prevent transgene outflow between contiguous plantings of citrus types that may be extendible to other entomophilous transgenic fruit tree species.
Pooryasin, Atefeh; Fiala, André
2015-09-16
Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively. Copyright © 2015 the authors 0270-6474/15/3512792-21$15.00/0.
Scobie, A. R.; Wilcock, C. C.
2009-01-01
Background and Aims Small populations of rare plant species are increasingly reported to have high levels of reproductive failure. The objective of this study was to understand the principal constraints on sexual reproduction in small fragmented populations of a rare clonal self-incompatible plant. Methods The pollinator spectrum, diversity of flower colour, natural pollination and fruit-set levels of L. borealis were examined in Scotland. Artificially crossed seed production was compared within and between different flower colour types and patches. Key Results Linnaea borealis was pollinated by a diverse spectrum of insect species and the principal pollinators were muscid, syrphid and empid flies which mostly moved only small distances (<0·25 m) between flowers when foraging. Natural pollination levels were high, indicating high pollinator effectiveness, but fruit set was very low in most patches. Flower colour diversity was low in most patches and only those with a diversity of flower colour types had high fruiting success. Pollination experiments showed L. borealis to be highly self-incompatible and artificial crosses within and between patches and flower colour types confirmed that low fruit success was the result of a lack of compatible mates and limited pollen movement between them. Evidence of isolation from pollen exchange was apparent at as little as 6 m and severe at 30 m and beyond. Conclusions Limited mate availability and isolation from pollen exchange compromise the reproductive success of fragmented populations of L. borealis in Scotland. A diversity of compatible mates situated within close proximity (<6 m) is the key requirement to ensure high natural fruiting success. This study emphasizes that an understanding of the breeding system, pollinator spectrum and potential for interconnectivity via pollinator movement are fundamental to identify isolation distances and to establish when conservation intervention is necessary for rare species. PMID:19181748
Hasegawa, Masaru; Arai, Emi; Sato, Megumi; Sakai, Hidetsugu
2017-08-01
Recent experimental studies involving the manipulation of sexual traits have demonstrated that sexual trait expression feeds back to testosterone levels, perhaps via social interactions, reinforcing the linkage between sexual trait expression and testosterone levels during the mating period. However, information on this reinforcement under the natural variation of sexual traits remains limited. Using Japanese barn swallows, Hirundo rustica gutturalis, in which extra-pair paternity is quite rare (< 3%), we studied the relationship between plasma testosterone level and a male sexual trait, throat patch size, during the mating and incubation periods. Given the importance of social interaction, we predicted that this relationship should be intense during the mating period, but not the incubation period, due to reduced social interaction during the latter. We found low plasma testosterone levels during the incubation period compared with those in the mating period, and plasma testosterone levels were significantly positively related to throat patch area during the mating period, but not the incubation period. Similar relationships were found in another sexual trait, the size of white tail spots. During the incubation period, body condition, instead of male sexual trait expression, was negatively related to plasma testosterone level, indicating that an intrinsic link, rather than reinforcement, is important during this period. These relationships are consistent with the hypothesis that social interaction reinforces the relationship between sexual traits and plasma testosterone levels. The current study provides evidence for a highly variable relationship between testosterone and ornamentation across breeding periods in the natural variation of sexual traits.
Strategic mating with common preferences.
Alpern, Steve; Reyniers, Diane
2005-12-21
We present a two-sided search model in which individuals from two groups (males and females, employers and workers) would like to form a long-term relationship with a highly ranked individual of the other group, but are limited to individuals who they randomly encounter and to those who also accept them. This article extends the research program, begun in Alpern and Reyniers [1999. J. Theor. Biol. 198, 71-88], of providing a game theoretic analysis for the Kalick-Hamilton [1986. J. Personality Soc. Psychol. 51, 673-682] mating model in which a cohort of males and females of various 'fitness' or 'attractiveness' levels are randomly paired in successive periods and mate if they accept each other. Their model compared two acceptance rules chosen to represent homotypic (similarity) preferences and common (or 'type') preferences. Our earlier paper modeled the first kind by assuming that if a level x male mates with a level y female, both get utility -|x-y|, whereas this paper models the second kind by giving the male utility y and the female utility x. Our model can also be seen as a continuous generalization of the discrete fitness-level game of Johnstone [1997. Behav. Ecol. Sociobiol. 40, 51-59]. We establish the existence of equilibrium strategy pairs, give examples of multiple equilibria, and conditions guaranteeing uniqueness. In all equilibria individuals become less choosy over time, with high fitness individuals pairing off with each other first, leaving the rest to pair off later. This route to assortative mating was suggested by Parker [1983. Mate Choice, Cambridge University Press, Cambridge, pp. 141-164]. If the initial fitness distributions have atoms, then mixed strategy equilibria may also occur. If these distributions are unknown, there are equilibria in which only individuals in the same fitness band are mated, as in the steady-state model of MacNamara and Collins [1990. J. Appl. Prob. 28, 815-827] for the job search problem.
Sherlekar, Amrita L; Janssen, Abbey; Siehr, Meagan S; Koo, Pamela K; Caflisch, Laura; Boggess, May; Lints, Robyn
2013-01-01
Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.
Sherlekar, Amrita L.; Janssen, Abbey; Siehr, Meagan S.; Koo, Pamela K.; Caflisch, Laura; Boggess, May; Lints, Robyn
2013-01-01
Background Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. Methodology/Principal Findings Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male’s decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite’s surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. Conclusion/Significance Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation. PMID:23577128
Frisell, Thomas; Pawitan, Yudi; Långström, Niklas; Lichtenstein, Paul
2012-01-01
Research addressing genetic and environmental determinants to antisocial behaviour suggests substantial variability across studies. Likewise, evidence for etiologic gender differences is mixed, and estimates might be biased due to assortative mating. We used longitudinal Swedish total population registers to estimate the heritability of objectively measured violent offending (convictions) in classic twin (N = 36,877 pairs), adoptee-parent (N = 5,068 pairs), adoptee-sibling (N = 10,610 pairs), and sibling designs (N = 1,521,066 pairs). Type and degree of assortative mating were calculated from comparisons between spouses of siblings and half-siblings, and across consecutive spouses. Heritability estimates for the liability of violent offending agreed with previously reported heritability for self-reported antisocial behaviour. While the sibling model yielded estimates similar to the twin model (A ≈ 55%, C ≈ 13%), adoptee-models appeared to underestimate familial effects (A ≈ 20-30%, C ≈ 0%). Assortative mating was moderate to strong (r (spouse) = 0.4), appeared to result from both phenotypic assortment and social homogamy, but had only minor effect on variance components. Finally, we found significant gender differences in the etiology of violent crime.
Bargaining babblers: vocal negotiation of cooperative behaviour in a social bird
Bell, M. B. V.; Radford, A. N.; Smith, R. A.; Thompson, A. M.; Ridley, A. R.
2010-01-01
Wherever individuals perform cooperative behaviours, each should be selected to adjust their own current contributions in relation to the likely future contributions of their collaborators. Here, we use the sentinel system of pied babblers (Turdoides bicolor) to show that individuals anticipate contributions by group mates, adjusting their own contribution in response to information about internal state broadcast by others. Specifically, we show that (i) short-term changes in state influence contributions to a cooperative behaviour, (ii) individuals communicate short-term changes in state, and (iii) individuals use information about the state of group mates to adjust their own investment in sentinel behaviour. Our results demonstrate that individual decisions about contributions to a cooperative effort can be influenced by information about the likely future contribution of others. We suggest that similar pre-emptive adjustments based on information obtained from collaborators will be a common feature of cooperative behaviour, and may play an important role in the development of complex communication in social species. PMID:20519221
Mangold, Alexandra; Trenkwalder, Katharina; Ringler, Max; Hödl, Walter; Ringler, Eva
2015-09-03
Reproductive skew, the uneven distribution of reproductive success among individuals, is a common feature of many animal populations. Several scenarios have been proposed to favour either high or low levels of reproductive skew. Particularly a male-biased operational sex ratio and the asynchronous arrival of females is expected to cause high variation in reproductive success among males. Recently it has been suggested that the type of benefits provided by males (fixed vs. dilutable) could also strongly impact individual mating patterns, and thereby affecting reproductive skew. We tested this hypothesis in Hyalinobatrachium valerioi, a Neotropical glass frog with prolonged breeding and paternal care. We monitored and genetically sampled a natural population in southwestern Costa Rica during the breeding season in 2012 and performed parentage analysis of adult frogs and tadpoles to investigate individual mating frequencies, possible mating preferences, and estimate reproductive skew in males and females. We identified a polygamous mating system, where high proportions of males (69 %) and females (94 %) reproduced successfully. The variance in male mating success could largely be attributed to differences in time spent calling at the reproductive site, but not to body size or relatedness. Female H. valerioi were not choosy and mated indiscriminately with available males. Our findings support the hypothesis that dilutable male benefits - such as parental care - can favour female polyandry and maintain low levels of reproductive skew among males within a population, even in the presence of direct male-male competition and a highly male-biased operational sex ratio. We hypothesize that low male reproductive skew might be a general characteristic in prolonged breeders with paternal care.
Shaw, Robyn E; Banks, Sam C; Peakall, Rod
2018-01-01
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.
Marriage and its transition in Bangladesh.
Ahmed, A U
1986-01-01
The author examines developments in marriage patterns in Bangladesh in light of social, cultural, and economic conditions. Previous literature on the subject is used to discuss Muslim marriage, Hindu marriage, child marriage, mate selection and social mobility, and the question of a marriage squeeze. "The analysis presents evidence that the society is experiencing a change in its family formation, mating process and family type. This transition is to some extent towards the characteristics of [the] Western World, but in a poor economy. Part of this transition is due to the effect of modernization and part due to increasing poverty." excerpt
Nnadi, N E; Enweani, I B; Cogliati, M; Ayanbimpe, G M; Okolo, M O; Kim, E; Sabitu, M Z; Criseo, G; Romeo, O; Scordino, F
2016-12-01
Cryptococcus neoformans and Cryptococcus gattii are encapsulated yeasts able to cause fatal neurological infections in both human and other mammals. Cryptococcosis is the most common fungal infection of the central nervous system and has a huge burden in sub-Saharan Africa and South East Asia. Bird excreta are considered an environmental reservoir for C. neoformans in urban areas, therefore a study aimed at isolating and characterizing this yeast is important in disease management. In this study, one hundred samples of pigeon droppings were collected in Jos, Plateau State, Nigeria. C. neoformans was isolated from three samples and initially identified using standard phenotypic and biochemical tests. Molecular analysis revealed that all three isolates belonged to C. neoformans genotype VNII, mating type α and were assigned to the sequence type ST43 by multilocus sequence typing analysis. This study reports, for the first time, the molecular characterization of C. neoformans in Nigeria, where little is still known about the environmental distribution of the genotypes, serotypes and mating types of this important human pathogen. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Microscopic Gardens: A Close Look at Algae.
ERIC Educational Resources Information Center
Foote, Mary Ann
1983-01-01
Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)
Shrestha, Sandesh Kumar; Cochran, Alicia; Mengistu, Alemu; Castro-Rocha, Arturo; Young-Kelly, Heather
2017-01-01
Frogeye leaf spot (FLS), caused by Cercospora sojina, causes significant damage to soybean in the U.S. One control strategy is the use of quinone outside inhibitor (QoI) fungicides. QoI resistant isolates were first reported in Tennessee (TN) in 2010. To investigate the disease dynamics of C. sojina, we collected 437 C. sojina isolates in 2015 from Jackson and Milan, TN and used 40 historical isolates collected from 2006–2009 from TN and ten additional states for comparison. A subset of 186 isolates, including historical isolates, were genotyped for 49 single nucleotide polymorphism (SNP) markers and the QoI resistance locus, revealing 35 unique genotypes. The genotypes clustered into three groups with two groups containing only sensitive isolates and the remaining group containing all resistant isolates and a dominant clonal lineage of 130 isolates. All 477 C. sojina isolates were genotyped for the QoI locus revealing 344 resistant and 133 sensitive isolates. All isolates collected prior to 2015 were QoI sensitive. Both mating type alleles (MAT1-1-1 and MAT1-2) were found in Jackson and Milan, TN and recovered from single lesions suggesting sexual recombination may play a role in the epidemiology of field populations. Analysis of C. sojina isolates using SNP markers proved useful to investigate population diversity and to elaborate on diversity as it relates to QoI resistance and mating type. PMID:28486517
Gabel, Eileen; Gray, David A; Matthias Hennig, R
2016-11-01
In crickets acoustic communication serves mate selection. Female crickets have to perceive and integrate male cues relevant for mate choice while confronted with several different signals in an acoustically diverse background. Overall female decisions are based on the attractiveness of the temporal pattern (informative about the 'what') and on signal intensity (informative about the 'where') of male calling songs. Here, we investigated how the relevant cues for mate choice are integrated during the decision process by females of five different species of chirping and trilling field crickets. Using a behavioral design, female preferences in no-choice and choice situations for male calling songs differing in pulse rate, modulation depth, intensities, chirp/trill arrangements and temporal shifts were examined. Sensory processing underlying decisions in female field crickets is rather similar as combined evidence suggested that incoming song patterns were analyzed separately by bilaterally paired networks for pattern attractiveness and pattern intensity. A downstream gain control mechanism leads to a weighting of the intensity cue by pattern attractiveness. While remarkable differences between species were observed with respect to specific processing steps, closely related species exhibited more similar preferences than did more distantly related species.
Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads.
Burmeister, Sabrina S; Rodriguez Moncalvo, Verónica G; Pfennig, Karin S
2017-09-01
Social behavior often includes the production of species-specific signals (e.g. mating calls or visual displays) that evoke context-dependent behavioral responses from conspecifics. Monoamines are important neuromodulators that have been implicated in context-dependent social behavior, yet we know little about the development of monoaminergic systems and whether they mediate the effects of early life experiences on adult behavior. We examined the effects of diet and social signals on monoamines early in development in the plains spadefoot toad ( Spea bombifrons ), a species in which diet affects the developmental emergence of species recognition and body condition affects the expression of adult mating preferences. To do so, we manipulated the diet of juveniles for 6 weeks following metamorphosis and collected their brains 40 min following the presentation of either a conspecific or a heterospecific call. We measured levels of monoamines and their metabolites using high pressure liquid chromatography from tissue punches of the auditory midbrain (i.e. torus semicircularis), hypothalamus and preoptic area. We found that call type affected dopamine and noradrenaline signaling in the auditory midbrain and that diet affected dopamine and serotonin in the hypothalamus. In the preoptic area, we detected an interaction between diet and call type, indicating that diet modulates how the preoptic area integrates social information. Our results suggest that the responsiveness of monoamine systems varies across the brain and highlight preoptic dopamine and noradrenaline as candidates for mediating effects of early diet experience on later expression of social preferences. © 2017. Published by The Company of Biologists Ltd.
Urokinase-type plasminogen activator: a new target for male contraception?
Qin, Ying; Han, Yan; Xiong, Cheng-Liang; Li, Hong-Gang; Hu, Lian; Zhang, Ling
2015-01-01
Urokinase-type plasminogen activator (uPA) is closely related to male reproduction. With the aim of investigating the possibility for uPA as a potential contraceptive target, in the present work, Kunming male mice were immunized by human uPA subcutaneous injection at three separate doses for 3 times. Then the potency of the anti-human uPA antibody in serum was analyzed, and mouse fertility was evaluated. Serum antibody titers for human uPA in immunized groups all reached 1:10,240 or higher levels by enzyme linked immunosorbent assay, and mating experiments revealed that pregnancy rates and the mean number of embryos implanted after mating declined obviously (P < 0.05) when compared with control groups. However, the mating capacity and reproductive organ weights had no obvious change, and histological analysis of the testes and epididymides also showed normal morphology for immunized male mice. Sperm function tests suggested that the sperm concentration, sperm viability, sperm motility, and in vitro fertilization rate for the cauda epididymis sperm in uPA-immunized groups were lower than those in the controls (P < 0.05). Together, these observations indicated that subcutaneous injection human uPA to the male mice could effectively reduce their fertility, and uPA could become a new target for immunocontraception in male contraceptive development.
Evaluation of pheromone release from commercial mating disruption dispensers.
Tomaszewska, Elizabeth; Hebert, Vincent R; Brunner, Jay F; Jones, Vincent P; Doerr, Mike; Hilton, Richard
2005-04-06
Pome fruit growers and crop consultants have expressed concerns about the seasonal release performance of commercial codling moth mating disruption dispenser products. Because of these concerns, we developed a laboratory flow-through volatile collection system (VCS) for measuring the volatile release of the codling moth sex pheromone, codlemone, from commercially available hand-applied dispensers. Under controlled air-flow and temperature conditions, the released vapor was trapped onto a polyurethane foam adsorbent followed by solvent extraction, solvent reduction, and GC/MS determination. Method recovery and breakthrough validations were performed to demonstrate system reliability before determining codlemone release from commercial dispensers field-aged over 140 days. The volatile collection was carried out in a consistent manner among five dispenser types most commonly used by growers, so that direct comparison of performance could be made. The comparison showed differences in the amount of pheromone released and in the patterns of release throughout the season between dispenser types. The variation in release performance demonstrates the need for routine evaluation of commercially marketed mating disruption dispensers. We believe that the simple and cost-effective volatile collection system can assist pheromone dispenser manufacturers in determining seasonal dispenser performance before new products are introduced into the commercial market and in rapidly verifying dispenser release when field-aged dispenser efficacy is in question.
Wagner, David J; Sager, Jennifer E; Duan, Haichuan; Isoherranen, Nina; Wang, Joanne
2017-07-01
Methamphetamine is one of the most abused illicit drugs with roughly 1.2 million users in the United States alone. A large portion of methamphetamine and its metabolites is eliminated by the kidney with renal clearance larger than glomerular filtration clearance. Yet the mechanism of active renal secretion is poorly understood. The goals of this study were to characterize the interaction of methamphetamine and its major metabolites with organic cation transporters (OCTs) and multidrug and toxin extrusion (MATE) transporters and to identify the major transporters involved in the disposition of methamphetamine and its major metabolites, amphetamine and para -hydroxymethamphetamine ( p -OHMA). We used cell lines stably expressing relevant transporters to show that methamphetamine and its metabolites inhibit human OCTs 1-3 (hOCT1-3) and hMATE1/2-K with the greatest potencies against hOCT1 and hOCT2. Methamphetamine and amphetamine are substrates of hOCT2, hMATE1, and hMATE2-K, but not hOCT1 and hOCT3. p -OHMA is transported by hOCT1-3 and hMATE1, but not hMATE2-K. In contrast, organic anion transporters 1 and 3 do not interact with or transport these compounds. Methamphetamine and its metabolites exhibited complex interactions with hOCT1 and hOCT2, suggesting the existence of multiple binding sites. Our studies suggest the involvement of the renal OCT2/MATE pathway in tubular secretion of methamphetamine and its major metabolites and the potential of drug-drug interactions with substrates or inhibitors of the OCTs. This information may be considered when prescribing medications to suspected or known abusers of methamphetamine to mitigate the risk of increased toxicity or reduced therapeutic efficacy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Adaptive Memory: Is There a Reproduction-Processing Effect?
Seitz, Benjamin M; Polack, Cody W; Miller, Ralph R
2017-12-14
Like all biological systems, human memory is likely to have been influenced by evolutionary processes, and its abilities have been subjected to selective mechanisms. Consequently, human memory should be primed to better remember information relevant to one's evolutionary fitness. Supporting this view, participants asked to rate words based on their relevance to an imaginary survival situation better recall those words (even the words rated low in relevancy) than the same words rated with respect to non-survival situations. This mnemonic advantage is called the "survival-processing effect," and presumably it was selected for because it contributed to evolutionary fitness. The same reasoning suggests that there should be an advantage for recall of information that has been rated for relevancy to reproduction and/or mate seeking, although little evidence has existed to assess this proposition. We used an experimental design similar to that in the original survival-processing effect study (Nairne, Thompson, & Pandeirada, 2007) and across 3 experiments tested several newly designed scenarios to determine whether a reproduction-processing effect could be found in an ancestral environment, a modern mating environment, and an ancestral environment in which the emphasis was on raising offspring as opposed to finding a mate. Our results replicated the survival-processing effect but provided no evidence of a reproduction-processing effect when the scenario emphasized finding a mate. However, when rating items on their relevancy to raising one's offspring in an ancestral environment, a mnemonic advantage comparable to that of the survival-processing effect was found. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Multisensor robotic system for autonomous space maintenance and repair
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.
1988-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.
Female preferences drive the evolution of mimetic accuracy in male sexual displays.
Coleman, Seth William; Patricelli, Gail Lisa; Coyle, Brian; Siani, Jennifer; Borgia, Gerald
2007-10-22
Males in many bird species mimic the vocalizations of other species during sexual displays, but the evolutionary and functional significance of interspecific vocal mimicry is unclear. Here we use spectrographic cross-correlation to compare mimetic calls produced by male satin bowerbirds (Ptilonorhynchus violaceus) in courtship with calls from several model species. We show that the accuracy of vocal mimicry and the number of model species mimicked are both independently related to male mating success. Multivariate analyses revealed that these mimetic traits were better predictors of male mating success than other male display traits previously shown to be important for male mating success. We suggest that preference-driven mimetic accuracy may be a widespread occurrence, and that mimetic accuracy may provide females with important information about male quality. Our findings support an alternative hypothesis to help explain a common element of male sexual displays.
Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass.
Chen, Li; Li, Xiuzhang; Li, Chunjie; Swoboda, Ginger A; Young, Carolyn A; Sugawara, Koya; Leuchtmann, Adrian; Schardl, Christopher L
2015-01-01
Achnatherum inebrians, colloquially known as drunken horse grass, is associated with livestock toxicity in northern China. Epichloë gansuensis (Eg) was described from endophyte isolates from A. inebrians in Sunan County, Gansu Province, whereas a morphologically distinct variety, E. gansuensis var. inebrians (Ei), was described based on two isolates from A. inebrians seeds collected in Urumqi County, Xinjiang Province. Genome sequencing and alkaloid analyses also distinguish these taxa; the Ei isolates produce neurotropic lysergic acid amides (ergot alkaloids), and an Eg isolate produces paxilline (an indole-diterpene alkaloid). To better elucidate the taxonomic diversity of Epichloë spp. symbiotic with A. inebrians, we surveyed eight populations in Xinjiang, Gansu and Inner Mongolia provinces of China and analyzed their genotypes by multiplex PCR for alkaloid biosynthesis genes and mating-type genes. Genotypes consistent with Ei were present in all eight populations, of which they dominated seven. The Ei isolates were all mating type A and tested positive for the ergot alkaloid gene, dmaW. In contrast Eg isolates were all mating type B and had the indole-diterpene gene, idtG. The genome was sequenced from an Ei isolate from seeds collected in Xiahe County, Gansu, and compared to that of the varietal ex type isolate from Urumqi. Alkaloid genes and four different housekeeping genes were nearly identical between the two sequenced Ei isolates and were distinct from a sequenced Eg isolate. Phylogenetic analysis placed Ei, Eg and Epichloë sibirica into respective subclades of a clade that emanated from the base of the Epichloë phylogeny. Given its chemotypic, genotypic, morphological and phylogenetic distinctiveness, its widespread occurrence in rangelands of northern China, and its importance in livestock toxicity, we propose raising Ei to species rank as Epichloë inebrians. © 2015 by The Mycological Society of America.
Preference for Male Traits Differ in Two Female Morphs of the Tree Lizard, Urosaurus ornatus
Lattanzio, Matthew S.; Metro, Kevin J.; Miles, Donald B.
2014-01-01
Non-random female mating preferences may contribute to the maintenance of phenotypic variation in color polymorphic species. However, the effect of female preference depends on the types of male traits used as signals by receptive females. If preference signals derive from discrete male traits (i.e., morph-specific), female preferences may rapidly fix to a morph. However, female preference signals may also include condition-dependent male traits. In this scenario, female preference may differ depending on the social context (i.e., male morph availability). Male tree lizards (Urosaurus ornatus) exhibit a dewlap color polymorphism that covaries with mating behavior. Blue morph males are aggressive and defend territories, yellow males are less aggressive and defend smaller territories, and orange males are typically nomadic. Female U. ornatus are also polymorphic in dewlap color, but the covariation between dewlap color and female behavior is unknown. We performed an experiment to determine how female mate choice depends on the visual and chemical signals produced by males. We also tested whether female morphs differ in their preferences for these signals. Female preferences involved both male dewlap color and size of the ventral color patch. However, the female morphs responded to these signals differently and depended on the choice between the types of male morphs. Our experiment revealed that females may be capable of distinguishing among the male morphs using chemical signals alone. Yellow females exhibit preferences based on both chemical and visual signals, which may be a strategy to avoid ultra-dominant males. In contrast, orange females may prefer dominant males. We conclude that female U. ornatus morphs differ in mating behavior. Our findings also provide evidence for a chemical polymorphism among male lizards in femoral pore secretions. PMID:25033282
Sugui, Janyce A.; Peterson, Stephen W.; Figat, Abigail; Hansen, Bryan; Samson, Robert A.; Mellado, Emilia; Cuenca-Estrella, Manuel
2014-01-01
Aspergillus section Fumigati contains 12 clinically relevant species. Among these Aspergillus species, A. fumigatus is the most frequent agent of invasive aspergillosis, followed by A. lentulus and A. viridinutans. Genealogical concordance and mating experiments were performed to examine the relationship between phylogenetic distance and mating success in these three heterothallic species. Analyses of 19 isolates from section Fumigati revealed the presence of three previously unrecognized species within the broadly circumscribed species A. viridinutans. A single mating type was found in the new species Aspergillus pseudofelis and Aspergillus pseudoviridinutans, but in Aspergillus parafelis, both mating types were present. Reciprocal interspecific pairings of all species in the study showed that the only successful crosses occurred with the MAT1-2 isolates of both A. parafelis and A. pseudofelis. The MAT1-2 isolate of A. parafelis was fertile when paired with the MAT1-1 isolates of A. fumigatus, A. viridinutans, A. felis, A. pseudoviridinutans, and A. wyomingensis but was not fertile with the MAT1-1 isolate of A. lentulus. The MAT1-2 isolates of A. pseudofelis were fertile when paired with the MAT1-1 isolate of A. felis but not with any of the other species. The general infertility in the interspecies crossings suggests that genetically unrelated species are also biologically incompatible, with the MAT1-2 isolates of A. parafelis and A. pseudofelis being the exception. Our findings underscore the importance of genealogical concordance analysis for species circumscription, as well as for accurate species identification, since misidentification of morphologically similar pathogens with differences in innate drug resistance may be of grave consequences for disease management. PMID:25100816
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Le, Thang D. (Inventor); Morales, Ray H. (Inventor); Robertson, Brandan R. (Inventor)
2009-01-01
An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.
Male irradiation affects female remating behavior in Anastrepha serpentina (Diptera: Tephritidae).
Landeta-Escamilla, Anais; Hernández, Emilio; Arredondo, José; Díaz-Fleischer, Francisco; Pérez-Staples, Diana
2016-02-01
Female remating in target pest species can affect the efficacy of control methods such as the Sterile Insect Technique (SIT) but very little is known about the postcopulatory mating behavior of these pests. In this study, we investigated the remating behavior of female Anastrepha serpentina (Diptera: Tephritidae), an oligophagous pest of Sapotaceae. First, we tested how long the sexual refractory period of females lasted after an initial mating. Second, we tested the effect of male and female sterility, female ovipositing opportunities and male density on female propensity to remate. Lastly, we tested if the amount of sperm stored by females was correlated to the likelihood of females to remate. We found that receptivity of mass-reared A. serpentina females had a bimodal response, with up to 16% of mass-reared A. serpentina females remating five days after the initial copulation, decreasing to 2% at 10 and 15 days and increasing to 13% after 20 days. Compared to fertile males, sterile males were less likely to mate and less likely to inhibit females from remating. Copula duration of sterile males was shorter compared to fertile males. Remating females were less likely to mate with a sterile male as a second mate. Sterile females were less likely to mate or remate compared to fertile females. Opportunity to oviposit and male density had no effect on female remating probability. Sperm numbers were not correlated with female likelihood to remate. Information on the post-copulatory behavior of mass-reared A. serpentina will aid fruit fly managers in improving the quality of sterile males. We discuss our results in terms of the differences this species presents in female remating behavior compared to other tephritids. Copyright © 2015 Elsevier Ltd. All rights reserved.
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-06-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (Ρ(p(m))=0.607) rather than among the fruits (Ρ(p(m))=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species.
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-01-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (r̂p(m)=0.607) rather than among the fruits (r̂p(m)=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. PMID:21139632
Extending the Capability of Mars Umbilical Technology Demonstrator
NASA Technical Reports Server (NTRS)
Houshangi, Nasser
2001-01-01
The objective of this project is to expand the capabilities of for the Mars Umbilical Technology Demonstrator (MUTD). The MUTD shall provide electrical power and fiber optic data cable connections between two simulated mars vehicles, 1000 in apart. ne wheeled mobile robot Omnibot is used to provide the mobile base for the system. The mate-to umbilical plate is mounted on a Cartesian robot, which is installed on the Omnibot mobile base. It is desirable to provide the operator controlling the Omnibot, the distance and direction to the target. In this report, an approach for finding the position and orientation of the mobile robot using inertial sensors and beacons is investigated. First phase of the project considered the Omnibot being on the flat surface. To deal with the uneven Mars environment, the orientation as well as position needs to be controlled. During local positioning, the information received from four ultrasonic sensors installed at the four corner of the mate-mi plate is used to identify the position of mate-to plate and mate the umbilical plates autonomously. The work proposed is the continuation of the principal investigator research effort as a participant in the 1999 NASA/ASEE Summer Faculty Fellowship Program.
Lunar cycles at mating do not influence sex ratio at birth in horses.
Aguilar, J J; Cuervo-Arango, J; Santa Juliana, L
2015-02-01
It is scientifically demonstrated that lunar cycles have important effects on several biological events. Controversy exists about the lunar influence on human and animal parturition. In addition, in the horse industry, especially in Polo Horse breeders of Argentina and around the world there is a higher demand for female offspring than for males. The objective of this study was to determine whether there is a significant association between the lunar phase at the time of mating and the sex ratio at birth in horses. The Argentinean Stud Book provided information related to all matings registered for Thoroughbred and Arab horses between 2003 and 2011. Statistical associations were tested between dates of matings at different lunar phases or days and sex ratio at birth. A total of 65.535 gestations were studied. Overall, sex ratio at birth resulted in 33.396 fillies (50.96%) and 32.139 colts (49.04%). The percentages of males and females at birth were not statistically different amongst the different lunar phases or days. We can strongly conclude that managing the breeding dates in relation to lunar cycles in order to manipulate the sex ratio of the offspring is not a viable option in horses.
Ask, Helga; Rognmo, Kamilla; Torvik, Fartein Ask; Røysamb, Espen; Tambs, Kristian
2012-05-01
Spouses tend to have similar lifestyles. We explored the degree to which spouse similarity in alcohol use, smoking, and physical exercise is caused by non-random mating or convergence. We used data collected for the Nord-Trøndelag Health Study from 1984 to 1986 and prospective registry information about when and with whom people entered marriage/cohabitation between 1970 and 2000. Our sample included 19,599 married/cohabitating couples and 1,551 future couples that were to marry/cohabitate in the 14-16 years following data collection. All couples were grouped according to the duration between data collection and entering into marriage/cohabitation. Age-adjusted polychoric spouse correlations were used as the dependent variables in non-linear segmented regression analysis; the independent variable was time. The results indicate that spouse concordance in lifestyle is due to both non-random mating and convergence. Non-random mating appeared to be strongest for smoking. Convergence in alcohol use and smoking was evident during the period prior to marriage/cohabitation, whereas convergence in exercise was evident throughout life. Reduced spouse similarity in smoking with relationship duration may reflect secular trends.
Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis
2018-01-01
The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368
Beyond promiscuity: mate-choice commitments in social breeding
Boomsma, Jacobus J.
2013-01-01
Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory. PMID:23339241
From Environment to Mating Competition and Super-K in a Predominantly Urban Sample of Young Adults.
Richardson, George B; Dariotis, Jacinda K; Lai, Mark H C
2017-01-01
Recent research suggests human life history strategy (LHS) may be subsumed by multiple dimensions, including mating competition and Super-K, rather than one. In this study, we test whether a two-dimensional structure best fit data from a predominantly urban sample of young adults ages 18-24. We also test whether latent life history dimensions are associated with environmental harshness and unpredictability as predicted by life history theory. Results provide evidence that a two-dimensional model best fit the data. Furthermore, a moderate inverse residual correlation between mating competition and Super-K was found, consistent with a life history trade-off. Our findings suggest that parental socioeconomic status may enhance investment in mating competition, that harshness might persist into young adulthood as an important correlate of LHS, and that unpredictability may not have significant effects in young adulthood. These findings further support the contention that human LHS is multidimensional and environmental effects on LHS are more complex than previously suggested. The model presented provides a parsimonious explanation of an array of human behaviors and traits and can be used to inform public health initiatives, particularly with respect to the potential impact of environmental interventions.
Mate Value Discrepancy and Mate Retention Behaviors of Self and Partner.
Sela, Yael; Mogilski, Justin K; Shackelford, Todd K; Zeigler-Hill, Virgil; Fink, Bernhard
2017-10-01
This study investigated the relationship between perceived mate value discrepancy (i.e., the difference between an individual's mate value and their partner's mate value) and perceived frequency of mate retention performed by an individual relative to his or her partner. In two studies, participants in long-term, exclusive, sexual, heterosexual relationships reported their own, and their partner's, mate value and mate retention. Samples included 899 community members (Study 1) and 941 students and community members (Study 2). In Study 1, we documented that individuals with higher self-perceived short-term mate value, and who perceive their partner to have lower (vs. higher) short-term mate value, perform less frequent Benefit-Provisioning mate retention, controlling for the partner's Benefit-Provisioning mate retention. In Study 2, we documented that individuals who perceive that they could less easily replace their partner, and who perceive their partner could more (vs. less) easily replace them, perform more frequent mate retention (Benefit-Provisioning and Cost-Inflicting), controlling for the partner's mate retention. These results highlight the importance of assessing perceived discrepancies in mate value (notably, regarding the replaceability of self and partner with another long-term mate) and perceived mate retention behaviors of self, relative to partner, between men and women in long-term relationships. © 2016 Wiley Periodicals, Inc.
Evolution of male and female choice in polyandrous systems.
Puurtinen, Mikael; Fromhage, Lutz
2017-03-29
We study the evolution of male and female mating strategies and mate choice for female fecundity and male fertilization ability in a system where both sexes can mate with multiple partners, and where there is variation in individual quality (i.e. in the availability of resources individuals can allocate to matings, mate choice and production of gametes). We find that when the cost of mating differs between sexes, the sex with higher cost of mating is reluctant to accept matings and is often also choosy, while the other sex accepts all matings. With equal mating costs, the evolution of mating strategies depends on the strength of female sperm limitation, so that when sperm limitation is strong, males are often reluctant and choosy, whereas females tend to accept available matings. Male reluctance evolves because a male's benefit per mating diminishes rapidly as he mates too often, hence losing out in the process of sperm competition as he spends much of his resources on mating costs rather than ejaculate production. When sperm limitation is weaker, females become more reluctant and males are more eager to mate. The model thus suggests that reversed sex roles are plausible outcomes of polyandry and limited sperm production. Implications for empirical studies of mate choice are discussed. © 2017 The Author(s).
Contribution of MATE1 to Renal Secretion of the NMDA Receptor Antagonist Memantine.
Müller, Fabian; Weitz, Dietmar; Derdau, Volker; Sandvoss, Martin; Mertsch, Katharina; König, Jörg; Fromm, Martin F
2017-09-05
The weak base memantine is actively secreted into urine, however the underlying mechanisms are insufficiently understood. Potential candidates involved in memantine renal secretion are organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATE1, MATE2-K). The aim of this in vitro study was the examination of the interaction of memantine with OCT2 and MATEs. Memantine transporter inhibition and transport were examined in HEK cells expressing human OCT2, MATE1, or MATE2-K. Monolayers of single- (MDCK-OCT2, MDCK-MATE1) and double-transfected MDCK cells (MDCK-OCT2-MATE1) were used for studies on vectorial, basal to apical memantine transport. Memantine inhibited OCT2-, MATE1-, and MATE2-K-mediated metformin transport with IC 50 values of 3.2, 40.9, and 315.3 μM, respectively. In HEK cells, no relevant memantine uptake by OCT2, MATE1, or MATE2-K was detected. Vectorial transport experiments, however, indicated a role of MATE1 for memantine export: After memantine administration to the basal side of the monolayers, memantine cellular accumulation was considerably lower (MDCK-MATE1 vs MDCK control cells, P < 0.01) and memantine transcellular, basal to apical transport was higher in MATE1 expressing cells (MDCK-MATE1 vs MDCK control cells, P < 0.001 at 60 and 180 min). Both effects were abolished upon addition of the MATE inhibitor cimetidine. These experiments suggest a relevant role of MATE1 for renal secretion of memantine. In the clinical setting, renal elimination of memantine could be impaired by coadministration of MATE inhibitors.
Arnocky, Steven
2018-01-01
Ten years ago, Buss and Shackelford demonstrated that high mate value (i.e., physically attractive) women held more discerning mate preferences relative to lower mate value women. Since then, researchers have begun to consider the equally important role of men's sexual selectivity in human mate choice. Yet, little research has focused on whether high mate value men are similarly choosy in their mate preferences. In a sample of 139 undergraduate men, relationships between self-perceived mate value as well as female-rated facial attractiveness were examined in relation to men's expressed mate preferences. Results showed that self-perceived mate value was unrelated to men's facial attractiveness as rated by women. Men who believed they were of high mate value were more likely than lower mate value men to prefer to marry at a younger age; to have a spouse who was younger than them; and to have a partner who was sociable, ambitious, high in social status, with good financial prospects, a desire for children, health, good looks, and mutual attraction. Objective male facial attractiveness was generally unrelated to heightened mate preferences, with the exception of heightened preference for similar religious background and good physical health. Findings suggest that men who perceive themselves as high in overall mate value are selective in their mate choice in a manner similar to high mate value women.
NASA Astrophysics Data System (ADS)
Takeshita, Fumio; Murai, Minoru
2016-06-01
In some fiddler crab species, males emit vibrations from their burrows to mate-searching females after they have attracted a female to the burrow entrance using a waving display. Although the vibrations are considered acoustic signals to induce mating, it has not been demonstrated whether the vibrations attract the females into the burrow and, consequently, influence females' mating decisions. We investigated the structures and patterns of the vibrations using a dummy female and demonstrated experimentally a female preference for male vibrations in Uca lactea in the field. The acoustic signals consisted of repetitions of pulses. The dominant frequency of the pulses decreased with male carapace width. The pulse length decreased slightly with an increasing number of vibrational repetitions, and the pulse interval increased with increasing repetitions. These factors imply that the vibrations convey information on male characteristics, such as body size and stamina. In the experiment on female mate choice, the females significantly preferred males with higher pulse repetition rates when they were positioned at the entrance of the burrow, indicating that the females use the male vibrational signals to decide whether to enter the burrow. However, females showed no preference for the vibrations once they were inside a burrow, i.e., whether they decided to copulate, suggesting that the vibrations do not independently affect a female's final decision of mate choice. The vibrations inside the burrow might influence a female's decision by interaction with other male traits such as the burrow structure.
Dynamics of sperm transfer in the ant Leptothorax gredleri
NASA Astrophysics Data System (ADS)
Oppelt, Angelika; Heinze, Jürgen
2007-09-01
Mating tactics differ remarkably between and within species of social Hymenoptera (bees, wasps, ants) concerning, e.g., mating frequencies, sperm competition, and the degree of male sperm limitation. Although social Hymenoptera might, therefore, potentially be ideal model systems for testing sexual selection theory, the dynamics of mating and sperm transfer have rarely been studied in species other than social bees, and basic information needed to draw conclusions about possible sperm competition and female choice is lacking. We investigated sperm transfer in the ant Leptothorax gredleri, a species in which female sexuals attract males by “female calling.” The analysis of 38 female sexuals fixed immediately or up to 7 days after copulation with a single male each revealed that the sperm is transferred into the female bursa copulatrix embedded in a gelatinous mass, presumably a spermatophore. Sperm cells rapidly start to migrate from the tip of the spermatophore towards the spermatheca, but transfer is drastically slowed down by an extreme constriction of the spermathecal duct, through which sperm cells have to pass virtually one by one. This results in the spermatheca being filled only between one and several hours after mating. During this time, the posterior part of the spermatophore seals the junction between bursa copulatrix and spermathecal duct and prevents sperm loss. The prolonged duration of sperm transfer might allow female sexuals to chose between ejaculates and explain previously reported patterns of single paternity of the offspring of multiply mated queens.
Using time-dependent models to investigate body condition and growth rate of the giant gartersnake
Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, Michael L.
2009-01-01
Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.
Sex roles and mutual mate choice matter during mate sampling.
Myhre, Lise Cats; de Jong, Karen; Forsgren, Elisabet; Amundsen, Trond
2012-06-01
The roles of females and males in mating competition and mate choice have lately proven more variable, between and within species, than previously thought. In nature, mating competition occurs during mate search and is expected to be regulated by the numbers of potential mates and same-sex competitors. Here, we present the first study to test how a temporal change in sex roles affects mating competition and mate choice during mate sampling. Our model system (the marine fish Gobiusculus flavescens) is uniquely suitable because of its change in sex roles, from conventional to reversed, over the breeding season. As predicted from sex role theory, courtship was typically initiated by males and terminated by females early in the breeding season. The opposite pattern was observed late in the season, at which time several females often simultaneously courted the same male. Mate-searching females visited more males early than late in the breeding season. Our study shows that mutual mate choice and mating competition can have profound effects on female and male behavior. Future work needs to consider the dynamic nature of mating competition and mate choice if we aim to fully understand sexual selection in the wild.
Gurarie, David; King, Charles H.
2014-01-01
Mathematical modeling is widely used for predictive analysis of control options for infectious agents. Challenging problems arise for modeling host-parasite systems having complex life-cycles and transmission environments. Macroparasites, like Schistosoma, inhabit highly fragmented habitats that shape their reproductive success and distribution. Overdispersion and mating success are important factors to consider in modeling control options for such systems. Simpler models based on mean worm burden (MWB) formulations do not take these into account and overestimate transmission. Proposed MWB revisions have employed prescribed distributions and mating factor corrections to derive modified MWB models that have qualitatively different equilibria, including ‘breakpoints’ below which the parasite goes to extinction, suggesting the possibility of elimination via long-term mass-treatment control. Despite common use, no one has attempted to validate the scope and hypotheses underlying such MWB approaches. We conducted a systematic analysis of both the classical MWB and more recent “stratified worm burden” (SWB) modeling that accounts for mating and reproductive hurdles (Allee effect). Our analysis reveals some similarities, including breakpoints, between MWB and SWB, but also significant differences between the two types of model. We show the classic MWB has inherent inconsistencies, and propose SWB as a reliable alternative for projection of long-term control outcomes. PMID:25549362
Keiser, Carl N.; Pinter-Wollman, Noa; Augustine, David A.; Ziemba, Michael J.; Hao, Lingran; Lawrence, Jeffrey G.; Pruitt, Jonathan N.
2016-01-01
Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium, Pantoea sp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher ‘boldness’ relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics. PMID:27097926
Keiser, Carl N; Pinter-Wollman, Noa; Augustine, David A; Ziemba, Michael J; Hao, Lingran; Lawrence, Jeffrey G; Pruitt, Jonathan N
2016-04-27
Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium,Pantoeasp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher 'boldness' relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics. © 2016 The Author(s).
Uptake of plant-derived specific alkaloids allows males of a butterfly to copulate.
Honda, Keiichi; Matsumoto, Junya; Sasaki, Ken; Tsuruta, Yoshiaki; Honda, Yasuyuki
2018-04-03
Certain butterflies utilize plant-acquired alkaloids for their own chemical defense and/or for producing male sex pheromone; a trait known as pharmacophagy. Males of the danaine butterfly, Parantica sita, have been reported to ingest pyrrolizidine alkaloids (PAs) as adults to produce two PA-derived sex pheromone components, viz. danaidone (major) and 7R-hydroxydanaidal. We found, however, that not all PAs that can be precursors for the pheromone serve for mating success of males. Here we show that although the sex pheromone is regarded as a requisite for successful mating, uptake of specific PA(s) (lycopsamine-type PAs) is also imperative for the males to achieve copulation. The increase in the levels of two biogenic amines, octopamine and/or serotonin, in the brain and thoracic ganglia of males fed with specific PA(s) suggested that these alkaloids most likely enhance male mating activity. The results can present new evidence for the evolutionary provenance of pharmacophagous acquisition of PAs in PA-adapted insects.
Green, Sarah; Castlebury, Lisa A
2007-01-01
Discula betulina is a foliar pathogen on birch (Betula) and Gnomonia intermedia is found on overwintered birch leaves. Perithecia of G. intermedia developed in vitro on colonies of D. betulina isolated from birch tissues in late summer, and single ascospores of G. intermedia consistently developed into colonies similar to D. betulina, producing typical D. betulina conidia. Isolates of D. betulina could be grouped into two mating types, which produced fertile perithecia of G. intermedia when mated with each other. Mycelia from single-ascospore and single-conidial isolates were inoculated onto shoots of downy birch, causing lesions and die-back from which D. betulina was consistently isolated. ITS region ribosomal DNA sequence analysis confirmed the results of the morphological and mating studies, and found that the closest known relatives of G. intermedia/D. betulina are Gnomoniella nana and Sirococcus clavigignenti-juglandacearum. The conclusion from these studies is that D. betulina is the anamorph of G. intermedia.
Polyandry promotes enhanced offspring survival in decorated crickets.
Ivy, Tracie M; Sakaluk, Scott K
2005-01-01
Although female multiple mating is ubiquitous in insects, its adaptive significance remains poorly understood. Benefits to multiple mating can accrue via direct material benefits, indirect genetic benefits, or both. We investigated the effects of multiple mating in the decorated cricket, Gryllodes sigillatus, by simultaneously varying the number of times that females mated and the number of different males with which they mated, measuring aspects of female fecundity and elements of offspring performance and viability. Multiple matings resulted in enhanced female fitness relative to single matings when females mated with different partners, but not when females mated repeatedly with the same male. Specifically, polyandrous females produced significantly more offspring surviving to reproductive maturity than did monogamous females mating once or mating repeatedly with the same male. These results suggest that the benefit females gain from multiple mating is influenced primarily by genetic and not material benefits.
Identification of Dh/+ and Dh/Dh embryos through close linkage of Dh and peptidase-3.
Holmes, L B
1986-12-01
The close linkage between the genes Dominant hemimelia (Dh) and peptidase-3 (Pep-3) has been determined in 65 informative matings with the recombination frequency of 3.8%. Progeny testing showed that nonpenetrance does occur in Dh/+ adults. The presence of the "slow" and "fast" variants of Pep-3 can be determined in homogenates of kidney tissue as well as in a portion of the day 10 and 11 embryos. In a litter of embryos born to an informative mating, those which are Dh/Dh, Dh/+, and +/+ can be distinguished by the presence of the Pep-3 allele known to be in coupling with the Dh gene. This technique makes it possible to identify and to study the limb malformations and other phenotypic effects of Dh during their development and before the limb deformity is visible.
Candida biofilms: is adhesion sexy?
Soll, David R
2008-08-26
The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.
Determining the effectiveness of pavement marking materials.
DOT National Transportation Integrated Search
2001-01-01
The purpose of this research was to determine the safety, motorist opinion, and cost-effectiveness of pavement marking materials used by the Virginia Department of Transportation and to develop guidelines, where possible, as to when each type of mate...
Morató, Santiago; Shelly, Todd; Rull, Juan; Aluja, Martin
2015-04-01
Males of the Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) display increased mating competitiveness following exposure to the odor of certain host and nonhost plants, and this phenomenon has been used in the sterile insect technique to boost the mating success of released, sterile males. Here, we aimed to establish whether males of the Mexican fruit fly (Anastrepha ludens (Loew)) gain a mating advantage when exposed to the aroma of two preferred hosts, grapefruit (Citrus paradisi Macfadyen) and bitter orange (Citrus aurantium L.). Under seminatural conditions, we observed that, in trials using wildish males (from a young laboratory colony started with wild flies) exclusively, exposure to the aroma of bitter orange had no effect on male mating success but exposure to the odor grapefruit oil increased male mating success significantly. In a separate test involving both exposed and nonexposed wildish and mass-reared, sterile males, although wildish males were clearly more competitive than sterile males, exposure to grapefruit oil had no detectable effect on either male type. Exposure to oils had no effect on copulation duration in any of the experiments. We discuss the possibility that the positive effect of grapefruit essential oils on wildish male competitiveness may have been linked to exposure of females to grapefruit as a larval food, which may have imprinted them with grapefruit odors during pupal eclosion and biased their response as adults to odors of their maternal host. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nematode Tango Milonguero - the C. elegans male's search for the hermaphrodite vulva.
Sherlekar, Amrita L; Lints, Robyn
2014-09-01
The vulva search corresponds to the first step of mating in Caenorhabditis elegans wherein the male recognizes a potential mate through contact and commences a systematic, contact-based search of her surface for the vulva. During this 'dance' the male presses his tail genitalia firmly against the hermaphrodite surface and moves backward, modulating tail posture to effect changes in search trajectory. Upon sensing the vulva, the male pauses and the insemination phase of mating begins. External tail sensilla, the rays, induce and guide the male's search by registering hermaphrodite surface cues. C. elegans male mating behavior, like many other animate interactions (such as predator-prey interactions or intrasexual aggression), is performed at close quarters and requires that participants constantly adjust their movement with respect to one another on a moment-by-moment basis. The design features of the supporting circuitry explain simultaneously the robustness, speed and acuity of the male's behavior and its male-specific nature. Processing at all levels of the circuitry appears to be distributed. Cellular components exhibit both partial redundancy (thus conferring robustness in output) and subtle functional differences (predicted to confer acuity). Surprisingly, gender-shared cell types feature prominently in the circuitry. Male-specific components form sensory pathways that render downstream gender-shared circuits responsive to mate cues, while other male cells act to augment gender-shared cell activity. Overall, the attributes of the vulva search circuitry provide insight into principles guiding the design and operation of circuits supporting dynamic social behaviors expressed by more complex and less tractable animal species. Copyright © 2014 Elsevier Ltd. All rights reserved.
How Choice Ecology Influences Search in Decisions from Experience
ERIC Educational Resources Information Center
Lejarraga, Tomas; Hertwig, Ralph; Gonzalez, Cleotilde
2012-01-01
Research into human decision-making has often sidestepped the question of search despite its importance across a wide range of domains such as search for food, mates, allies, visual targets or information. Recently, research on decisions from experience has made progress in finding out how individual characteristics shape search for information.…
García-Navas, Vicente; Ortego, Joaquín; Sanz, Juan José
2009-01-01
The general hypothesis of mate choice based on non-additive genetic traits suggests that individuals would gain important benefits by choosing genetically dissimilar mates (compatible mate hypothesis) and/or more heterozygous mates (heterozygous mate hypothesis). In this study, we test these hypotheses in a socially monogamous bird, the blue tit (Cyanistes caeruleus). We found no evidence for a relatedness-based mating pattern, but heterozygosity was positively correlated between social mates, suggesting that blue tits may base their mating preferences on partner's heterozygosity. We found evidence that the observed heterozygosity-based assortative mating could be maintained by both direct and indirect benefits. Heterozygosity reflected individual quality in both sexes: egg production and quality increased with female heterozygosity while more heterozygous males showed higher feeding rates during the brood-rearing period. Further, estimated offspring heterozygosity correlated with both paternal and maternal heterozygosity, suggesting that mating with heterozygous individuals can increase offspring genetic quality. Finally, plumage crown coloration was associated with male heterozygosity, and this could explain unanimous mate preferences for highly heterozygous and more ornamented individuals. Overall, this study suggests that non-additive genetic traits may play an important role in the evolution of mating preferences and offers empirical support to the resolution of the lek paradox from the perspective of the heterozygous mate hypothesis. PMID:19474042
Mate value asymmetry and relationship satisfaction in female opinion.
Nowak, Natalia; Danel, Dariusz
2014-01-01
A considerable amount of studies highlight positive assortative mating in terms of various aspects of mate value. However, there is a lack of studies that directly show how both partners' mate value and mate value differences are related to the satisfaction in heterosexual relationship. In the present study, the authors focused on women and analyzed how their mate value self-assessment and perception of their partners' mate value are related to female relationship satisfaction. The authors also classified them under 3 categories of couples defined by partners' mate value discrepancy, that is, in which a woman has higher, lower, and equal mate value than does her male partner. Women's relationship satisfaction was positively related to the perception of their partners' mate value but negatively correlated to their mate value self-assessment. Moreover, relationship satisfaction was the lowest in the category where woman has higher self-assessed mate value. The level of women's relationship satisfaction did not differ in 2 other categories of relationships. Our results suggest that women's perception of mate value and mate value asymmetry may significantly affect women's satisfaction from their relationships. The authors provide several possible, evolutionary-based explanatory mechanisms.
González-Recio, O; Haile-Mariam, M; Pryce, J E
2016-01-01
The objectives of this study were (1) to propose changing the selection criteria trait for evaluating fertility in Australia from calving interval to conception rate at d 42 after the beginning of the mating season and (2) to use type traits as early fertility predictors, to increase the reliability of estimated breeding values for fertility. The breeding goal in Australia is conception within 6 wk of the start of the mating season. Currently, the Australian model to predict fertility breeding values (expressed as a linear transformation of calving interval) is a multitrait model that includes calving interval (CVI), lactation length (LL), calving to first service (CFS), first nonreturn rate (FNRR), and conception rate. However, CVI has a lower genetic correlation with the breeding goal (conception within 6 wk of the start of the mating season) than conception rate. Milk yield, type, and fertility data from 164,318 cow sired by 4,766 bulls were used. Principal component analysis and genetic correlation estimates between type and fertility traits were used to select type traits that could subsequently be used in a multitrait analysis. Angularity, foot angle, and pin set were chosen as type traits to include in an index with the traits that are included in the multitrait fertility model: CVI, LL, CFS, FNRR, and conception rate at d 42 (CR42). An index with these 8 traits is expected to achieve an average bull first proof reliability of 0.60 on the breeding objective (conception within 6 wk of the start of the mating season) compared with reliabilities of 0.39 and 0.45 for CR42 only or the current 5-trait Australian model. Subsequently, we used the first eigenvector of a principal component analysis with udder texture, bone quality, angularity, and body condition score to calculate an energy status indicator trait. The inclusion of the energy status indicator trait composite in a multitrait index with CVI, LL, CFS, FNRR, and CR42 achieved a 12-point increase in fertility breeding value reliability (i.e., increased by 30%; up to 0.72 points of reliability), whereas a lower increase in reliability (4 points, i.e., increased by 10%) was obtained by including angularity, foot angle, and pin set in the index. In situations when a limited number of daughters have been phenotyped for CR42, including type data for sires increased reliabilities compared with when type data were omitted. However, sires with more than 80 daughters with CR42 records achieved reliability estimates close to 80% on average, and there did not appear to be a benefit from having daughters with type records. The cost of phenotyping to obtain such reliabilities (assuming a cost of AU$14 per cow with type data and AU$5 per cow with pregnancy diagnosed) is lower if more pregnancy data are collected in preference to type data. That is, efforts to increase the reliability of fertility EBV are most cost effective when directed at obtaining a larger number of pregnancy tests. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Analysis of the Mating and Reproductive Traits of Plutella xylostella (Lepidoptera: Plutellidae)
Song, Wen; Liu, Li; Li, Pengyan; Sun, Hui; Qin, Yuchuan
2014-01-01
Abstract The reproductive traits of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) were investigated and analyzed by different analytical methods. Simple statistical analysis showed relatively higher mating rates maintained from 21:00 to 2:00, thereafter dropping to a minimum at about 18:00. Mating rates were affected by female and male age. Mating was most likely to take place between females and males that were 1 d old. Correlation and factor analysis indicated that mating delayed females have a relatively lower and unsuccessful mating rate and relatively shorter copulation duration, with lower egg hatchability and fecundity; in addition, the mating delayed male would reduce female’s fertility. Delay of mating prolonged life of both males and females. A higher and successful mating rate would cause a higher egg hatchability and fecundity. Canonical correlation analysis showed that mating age and successful copulation of female play a decisive role for her fecundity and longevity, and mating age and mating rates of male play a decisive role for his longevity. PMID:25434041
Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating
Wiget, Philippe; Shimada, Yukiko; Butty, Anne-Christine; Bi, Efrei; Peter, Matthias
2004-01-01
Receptor-mediated cell polarization via heterotrimeric G-proteins induces cytoskeletal rearrangements in a variety of organisms. In yeast, Far1p is required for orienting cell growth towards the mating partner by linking activated Gβγ to the guanine-nucleotide exchange factor (GEF) Cdc24p, which activates the Rho-type GTPase Cdc42p. Here we investigated the role of Far1p in the regulation of Cdc24p in vivo. Using time-lapse microscopy of mating cells and artificial membrane targeting of Far1p, we show that Far1p is necessary and sufficient to recruit Cdc24p to the plasma membrane. Wild-type Far1p contains a PH-like domain, which is required for its membrane localization in vivo. Interestingly, expression of membrane-targeted Far1p causes toxicity, most likely by activating Cdc42p uniformly at the cell cortex. The ability of full-length Far1p to function as an activator of Cdc24p in vivo requires its interaction with Cdc24p and Gβγ. Our results imply that Gβγ not only targets Far1p to the correct site but may also trigger a conformational change in Far1p that is required for its ability to activate Cdc24p in vivo. PMID:14988725
Wang, Desen; Wang, Changlu; Singh, Narinderpal; Cooper, Richard; Zha, Chen; Eiden, Amanda L
2016-04-28
We investigated male mate choice and mating competency in the common bed bug, Cimex lectularius L., using video tracking for 10 min per experiment. In the male mate choice experiment, when a male was placed with two females of different mating status, males preferred to initiate copulation with the virgin female more quickly than with the mated female, and the mean total copulation duration with virgin females (38.0 ± 3.0 s) was significantly longer than with mated females (14.6 ± 3.0 s). When a male was placed with two females of different age, males initiated copulation more quickly with the old virgin female (29-34 d adult emergence) than with the young virgin one (<7 d adult emergence), and the mean total copulation duration with old virgin females (38.4 ± 4.0 s) was significantly longer than with young virgin females (24.0 ± 3.0 s). In the male mating competency experiment where a female was placed with two males of different mating status or age, the virgin males were more eager to mate than the mated males, and the old virgin males (29-34 d adult emergence) were more eager than the young virgin males (<7 d adult emergence), with eagerness measured by the percentage of first mate selected (first copulation occurred) and the total copulation duration by each group of males. Male mating competency is related to postmating duration (PMD); males mated 1 d earlier were significantly less likely to mate than virgin males. However, males mated 7 d earlier showed no significant difference in mating competency compared to virgin males. In conclusion, mate choice in C. lectularius is associated with both male and female mating status, age, and PMD. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Multidrug and toxin extrusion proteins mediate cellular transport of cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hong; Guo, Dong; Obianom, Obinna N.
Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd{sup 2+}). In this study, we aimed to examine whether Cd{sup 2+} is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd{sup 2+}. The cells overexpressing MATEs showed a 2–4more » fold increase of Cd{sup 2+} uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K{sub m}) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd{sup 2+} could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC{sub 50}) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd{sup 2+} out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd{sup 2+}-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd{sup 2+} and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.« less
Biological aspects and mating behavior of Leucothyreus albopilosus (Coleoptera: Scarabaeidae).
Ferreira, Kleyton Rezende; Gomes, Elias Soares; Rodrigues, Sérgio Roberto
2016-06-01
The genus Leucothyreus has been linked to some commercial plant crop pests. Eventhough several species have been described for this genus, information about this group is still scarce. This study investigated some biological aspects and mating behavior in Leucothyreus albopilosus. Studies were conducted at the State University of Mato Grosso do Sul, in the municipalities of Aquidauana and Cassilândia, MS, Brazil. For biological studies, adults were collected with light traps from February 2011 to February 2012, and for behavior analyses from September to December 2014. Biological studies were undertaken every three days and included the eggs inspection, and the separation of the newly hatched larvae to observe and describe their developmental stages; to monitor larval growth and differentiate larval instars, we measured the larvae cephalic capsule. Life cycle was determined starting from the newly laid eggs until adult death. For mating behavior studies, adults obtained with light traps were taken to the laboratory. As soon as they started flying in the evening, couples were formed and copulation steps were recorded. In the field, we observed that adults were mostly collected during warmer and wetter periods (from August to March). Our results showed that the embryonic period of L. albopilosus lasted 20.5 days, the 1st, 2nd and 3rd instars lasted 31.0, 33.1 and 85.6 days, respectively. The pupal stage lasted 20 days, and the egg to adult period was completed in 185.5 days; these results suggest that L. albopilosus can be characterized as a univoltine species. Observations of mating behavior in the laboratory showed that, after the sunset, adults projected a small portion of clypeus near the soil surface and flew off seeking a female to mate. The female could accept or reject the male for mating. When the female accepted the male, copulation occurred from 19:00 to 23:00 hours, and lasted 19.45 minutes on average. Sometimes females refused to mate, probably because the male or female were not sexually mature to perform copulation, and there might be a chemical communication between the adults. Adults were observed feeding on ripe bananas (Musa sp., Musaceae) and on mangaba flowers (Hancornia speciosa, Apocynaceae) in the laboratory. With this work we contributed with the description of mating behavior in the genus Leucothyreus and concluded that the biological cycle was completed in less than 200 days.
Females use self-referent cues to avoid mating with previous mates.
Ivy, Tracie M; Weddle, Carie B; Sakaluk, Scott K
2005-12-07
Females of many species mate repeatedly throughout their lives, often with many different males (polyandry). Females can secure genetic benefits by maximizing their diversity of mating partners, and might be expected, therefore, to forego matings with previous partners in favour of novel males. Indeed, a female preference for novel mating partners has been shown in several taxa, but the mechanism by which females distinguish between novel males and previous mates remains unknown. We show that female crickets (Gryllodes sigillatus) mark males with their own unique chemical signatures during mating, enabling females to recognize prior mates in subsequent encounters and to avoid remating with them. Because self-referent chemosensory cues provide females with a simple, but reliable mechanism of identifying individuals with whom they have mated without requiring any special cognitive ability, they may be a widespread means by which females across a broad range of animal mating systems maximize the genetic benefits of polyandry.
Females use self-referent cues to avoid mating with previous mates
Ivy, Tracie M; Weddle, Carie B; Sakaluk, Scott K
2005-01-01
Females of many species mate repeatedly throughout their lives, often with many different males (polyandry). Females can secure genetic benefits by maximizing their diversity of mating partners, and might be expected, therefore, to forego matings with previous partners in favour of novel males. Indeed, a female preference for novel mating partners has been shown in several taxa, but the mechanism by which females distinguish between novel males and previous mates remains unknown. We show that female crickets (Gryllodes sigillatus) mark males with their own unique chemical signatures during mating, enabling females to recognize prior mates in subsequent encounters and to avoid remating with them. Because self-referent chemosensory cues provide females with a simple, but reliable mechanism of identifying individuals with whom they have mated without requiring any special cognitive ability, they may be a widespread means by which females across a broad range of animal mating systems maximize the genetic benefits of polyandry. PMID:16271971
Bergagnini-Kolev, Mackenzie C; Hebert, Mary F; Easterling, Thomas R; Lin, Yvonne S
2017-03-01
N 1 -methylnicotinamide (1-NMN) has been investigated as an endogenous probe for the renal transporter activity of organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins 1 and 2-K (MATE1 and MATE2-K). As pregnancy increased the renal secretion of metformin, a substrate for OCT2, MATE1, and MATE2-K, we hypothesized that the renal secretion of 1-NMN would be similarly affected. Blood and urine samples collected from women prescribed metformin for type 2 diabetes, gestational diabetes, and polycystic ovarian syndrome during early, mid, and late pregnancy ( n = 34 visits) and postpartum ( n = 14 visits) were analyzed for 1-NMN using liquid chromatography-mass spectrometry. The renal clearance and secretion clearance, using creatinine clearance to correct for glomerular filtration, were estimated for 1-NMN and correlated with metformin renal clearance. 1-NMN renal clearance was higher in both mid (504 ± 293 ml/min, P < 0.01) and late pregnancy (557 ± 305 ml/min, P < 0.01) compared with postpartum (240 ± 106 ml/min). The renal secretion of 1-NMN was 3.5-fold higher in mid pregnancy (269± 267, P < 0.05) and 4.5-fold higher in late pregnancy compared with postpartum (342 ± 283 versus 76 ± 92 ml/min, P < 0.01). Because creatinine is also a substrate of OCT2, MATE1, and MATE2-K, creatinine clearance likely overestimates filtration clearance, whereas the calculated 1-NMN secretion clearance is likely underestimated. Metformin renal clearance and 1-NMN renal clearance were positively correlated (r s = 0.68, P < 0.0001). 1-NMN renal clearance increases during pregnancy due to increased glomerular filtration and net secretion by renal transporters. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Nest fidelity is driven by multi-scale information in a long-lived seabird.
Robert, Alexandre; Paiva, Vítor H; Bolton, Mark; Jiguet, Frédéric; Bried, Joël
2014-10-22
Although the reproductive success of most organisms depends on factors acting at several spatial scales, little is known about how organisms are able to synthesize multi-scale information to optimize reproduction. Using longitudinal data from a long-lived seabird, Monteiro's storm-petrel, we show that average breeding success is strongly related to oceanic conditions at the population level, and we postulate that (i) individuals use proximal information (their own reproduction outcome in year t) to assess the qualities of their mate and nest and to decide to retain them or not in year t + 1; (ii) the intensity of these responses depends on the quality of the oceanic environment in year t, which affects the predictability of reproduction outcome in year t + 1. Our results confirm that mate and nest fidelities are higher following successful reproduction and that the relationship between the success of a given pair and subsequent nest fidelity is stronger in years with unfavourable oceanic conditions, suggesting that individuals rely on distant information to modulate their use of proximal information and adjust their breeding strategy. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Rearing Temperature Influences Adult Response to Changes in Mating Status
Westerman, Erica; Monteiro, Antónia
2016-01-01
Rearing environment can have an impact on adult behavior, but it is less clear how rearing environment influences adult behavior plasticity. Here we explore the effect of rearing temperature on adult mating behavior plasticity in the butterfly Bicyclus anynana, a species that has evolved two seasonal forms in response to seasonal changes in temperature. These seasonal forms differ in both morphology and behavior. Females are the choosy sex in cohorts reared at warm temperatures (WS butterflies), and males are the choosy sex in cohorts reared at cooler temperatures (DS butterflies). Rearing temperature also influences mating benefits and costs. In DS butterflies, mated females live longer than virgin females, and mated males live shorter than virgin males. No such benefits or costs to mating are present in WS butterflies. Given that choosiness and mating costs are rearing temperature dependent in B. anynana, we hypothesized that temperature may also impact male and female incentives to remate in the event that benefits and costs of second matings are similar to those of first matings. We first examined whether lifespan was affected by number of matings. We found that two matings did not significantly increase lifespan for either WS or DS butterflies relative to single matings. However, both sexes of WS but not DS butterflies experienced decreased longevity when mated to a non-virgin relative to a virgin. We next observed pairs of WS and DS butterflies and documented changes in mating behavior in response to changes in the mating status of their partner. WS but not DS butterflies changed their mating behavior in response to the mating status of their partner. These results suggest that rearing temperature influences adult mating behavior plasticity in B. anynana. This developmentally controlled behavioral plasticity may be adaptive, as lifespan depends on the partner’s mating status in one seasonal form, but not in the other. PMID:26863319
Global population structure and adaptive evolution of aflatoxin-producing fungi
USDA-ARS?s Scientific Manuscript database
We employed interspecific principal component analyses for six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type) and inferred maximum likelihood phylogenies for six combined loci, including two aflatoxin cluster regions (aflM/alfN and...
Sperm competition games: sperm selection by females.
Ball, M A; Parker, G A
2003-09-07
We analyse a co-evolutionary sexual conflict game, in which males compete for fertilizations (sperm competition) and females operate sperm selection against unfavourable ejaculates (cryptic female choice). For simplicity, each female mates with two males per reproductive event, and the competing ejaculates are of two types, favourable (having high viability or success) or unfavourable (where progeny are less successful). Over evolutionary time, females can increase their level of sperm selection (measured as the proportion of unfavourable sperm eliminated) by paying a fecundity cost. Males can regulate sperm allocations depending on whether they will be favoured or disfavoured, but increasing sperm allocation reduces their mating rate. The resolution of this game depends on whether males are equal, or unequal. Males could be equal: each is favoured with probability, p, reflecting the proportion of females in the population that favour his ejaculate (the 'random-roles' model); different males are favoured by different sets of females. Alternatively, males could be unequal: given males are perceived consistently by all females as two distinct types, favoured and disfavoured, where p is now the frequency of the favoured male type in the population (the 'constant-types' model). In both cases, the evolutionarily stable strategy (ESS) is for females initially to increase sperm selection from zero as the viability of offspring from unfavourable ejaculates falls below that of favourable ejaculates. But in the random-roles model, sperm selection decreases again towards zero as the unfavourable ejaculates become disastrous (i.e. as their progeny viability decreases towards zero). This occurs because males avoid expenditure in unfavourable matings, to conserve sperm for matings in the favoured role where their offspring have high viability, thus allowing females to relax sperm selection. If sperm selection is costly to females, ESS sperm selection is high across a region of intermediate viabilities. If it is uncostly, there is no ESS in this region unless sperm limitation (i.e. some eggs fail to be fertilized because sperm numbers are too low) is included into the model. In the constant-types model, no relaxation of sperm selection occurs at very low viabilities of disfavoured male progeny. If sperm selection is sufficiently costly, ESS sperm selection increases as progeny viability decreases down towards zero; but if it is uncostly, there is no ESS at the lowest viabilities, and unlike the random-roles model, this cannot be stabilized by including sperm limitation. Sperm allocations in the ESS regions differ between the two models. With random roles, males always allocate more sperm in the favoured role. With constant types, the male type that is favoured allocates less sperm than the disfavoured type. These results suggests that empiricists studying cryptic female choice and sperm allocation patterns need to determine whether sperm selection is applied differently, or consistently, on given males by different females in the same population.
Zietsch, Brendan P.; Verweij, Karin J. H.; Heath, Andrew C.; Martin, Nicholas G.
2012-01-01
Human mate choice is central to individuals’ lives and to the evolution of the species, but the basis of variation in mate choice is not well understood. Here we look at a large community-based sample of twins and their partners and parents (N > 20,000 individuals) to test for genetic and family environmental influences on mate choice, with and without controlling for the effects of assortative mating. Key traits are analyzed, including height, body mass index, age, education, income, personality, social attitudes, and religiosity. This revealed near-zero genetic influences on male and female mate choice over all traits and no significant genetic influences on mate choice for any specific trait. A significant family environmental influence was found for the age and income of females’ mate choices, possibly reflecting parental influence over mating decisions. We also tested for evidence of sexual imprinting, where individuals acquire mate-choice criteria during development by using their opposite-sex parent as the template of a desirable mate; there was no such effect for any trait. The main discernable pattern to mate choice was assortative mating; we found that partner similarity was due to initial choice rather than convergence and also due at least in part to phenotypic matching. PMID:21508607
Zietsch, Brendan P; Verweij, Karin J H; Heath, Andrew C; Martin, Nicholas G
2011-05-01
Human mate choice is central to individuals' lives and to the evolution of the species, but the basis of variation in mate choice is not well understood. Here we looked at a large community-based sample of twins and their partners and parents ([Formula: see text] individuals) to test for genetic and family environmental influences on mate choice, while controlling for and not controlling for the effects of assortative mating. Key traits were analyzed, including height, body mass index, age, education, income, personality, social attitudes, and religiosity. This revealed near-zero genetic influences on male and female mate choice over all traits and no significant genetic influences on mate choice for any specific trait. A significant family environmental influence was found for the age and income of females' mate choices, possibly reflecting parental influence over mating decisions. We also tested for evidence of sexual imprinting, where individuals acquire mate-choice criteria during development by using their opposite-sex parent as the template of a desirable mate; there was no such effect for any trait. The main discernible pattern of mate choice was assortative mating; we found that partner similarity was due to initial choice rather than convergence and also at least in part to phenotypic matching.
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
Studying parents and grandparents to assess genetic contributions to early-onset disease.
Weinberg, Clarice R
2003-02-01
Suppose DNA is available from affected individuals, their parents, and their grandparents. Particularly for early-onset diseases, maternally mediated genetic effects can play a role, because the mother determines the prenatal environment. The proposed maximum-likelihood approach for the detection of apparent transmission distortion treats the triad consisting of the affected individual and his or her two parents as the outcome, conditioning on grandparental mating types. Under a null model in which the allele under study does not confer susceptibility, either through linkage or directly, and when there are no maternally mediated genetic effects, conditional probabilities for specific triads are easily derived. A log-linear model permits a likelihood-ratio test (LRT) and allows the estimation of relative penetrances. The proposed approach is robust against genetic population stratification. Missing-data methods permit the inclusion of incomplete families, even if the missing person is the affected grandchild, as is the case when an induced abortion has followed the detection of a malformation. When screening multiple markers, one can begin by genotyping only the grandparents and the affected grandchildren. LRTs based on conditioning on grandparental mating types (i.e., ignoring the parents) have asymptotic relative efficiencies that are typically >150% (per family), compared with tests based on parents. A test for asymmetry in the number of copies carried by maternal versus paternal grandparents yields an LRT specific to maternal effects. One can then genotype the parents for only the genes that passed the initial screen. Conditioning on both the grandparents' and the affected grandchild's genotypes, a third log-linear model captures the remaining information, in an independent LRT for maternal effects.
Polat, İlknur; Baysal, Ömür; Mercati, Francesco; Gümrükcü, Emine; Sülü, Görkem; Kitapcı, Aytül; Araniti, Fabrizio; Carimi, Francesco
2018-06-01
Botrytis cinerea is a polyphagous fungal pathogen causing gray mold disease. Moreover, it is one of the most destructive infections of small fruit crops such as pepper (Capsicum annnum L.). C. sativum is a species belonging to the Solanaceae family and Turkey is one of the main producers in the World. In the present work, aiming to obtain information useful for pest management, fifty B. cinerea isolates collected from Turkey and a reference isolate (B05.10) were characterized using molecular markers and fungicide resistance genes. Morphological and molecular (ITS1-ITS4) identification of B. cinerea isolates, the degree of virulence and mating types were determined. Since one or several allelic mutations in the histidine kinase (Bos1) and β-tubulin genes generally confer the resistance to fungicides, the sequences of these target genes were investigated in the selected isolates, which allowed the identification of two different haplotypes. Mating types were also determined by PCR assays using primer specific for MAT1-1 alpha gene (MAT1-1-1) and MAT1-2 HMG (MAT1-2-1) of B. cinerea. Twenty-two out of 50 isolates (44%) were MAT1-2, while 38% were MAT1-1. Interestingly, out of whole studied samples, 9 isolates (18%) were heterokaryotic or mixed colonies. In addition, cluster and population structure analyses identified five main groups and two genetic pools, respectively, underlining a good level of variability in the analysed panel. The results highlighted the presence of remarkable genetic diversity in B. cinerea isolates collected in a crucial economical area for pepper cultivation in Turkey and the data will be beneficial in view of future gray mold disease management. Copyright © 2018 Elsevier B.V. All rights reserved.
Cui, Jianguo; Tang, Yezhong; Narins, Peter M
2012-06-23
During female mate choice, both the male's phenotype and resources (e.g. his nest) contribute to the chooser's fitness. Animals other than humans are not known to advertise resource characteristics to potential mates through vocal communication; although in some species of anurans and birds, females do evaluate male qualities through vocal communication. Here, we demonstrate that calls of the male Emei music frog (Babina dauchina), vocalizing from male-built nests, reflect nest structure information that can be recognized by females. Inside-nest calls consisted of notes with energy concentrated at lower frequency ranges and longer note durations when compared with outside-nest calls. Centre frequencies and note durations of the inside calls positively correlate with the area of the burrow entrance and the depth of the burrow, respectively. When given a choice between outside and inside calls played back alternately, more than 70 per cent of the females (33/47) chose inside calls. These results demonstrate that males of this species faithfully advertise whether or not they possess a nest to potential mates by vocal communication, which probably facilitates optimal mate selection by females. These results revealed a novel function of advertisement calls, which is consistent with the wide variation in both call complexity and social behaviour within amphibians.
Can sexual selection theory inform genetic management of captive populations? A review
Chargé, Rémi; Teplitsky, Céline; Sorci, Gabriele; Low, Matthew
2014-01-01
Captive breeding for conservation purposes presents a serious practical challenge because several conflicting genetic processes (i.e., inbreeding depression, random genetic drift and genetic adaptation to captivity) need to be managed in concert to maximize captive population persistence and reintroduction success probability. Because current genetic management is often only partly successful in achieving these goals, it has been suggested that management insights may be found in sexual selection theory (in particular, female mate choice). We review the theoretical and empirical literature and consider how female mate choice might influence captive breeding in the context of current genetic guidelines for different sexual selection theories (i.e., direct benefits, good genes, compatible genes, sexy sons). We show that while mate choice shows promise as a tool in captive breeding under certain conditions, for most species, there is currently too little theoretical and empirical evidence to provide any clear guidelines that would guarantee positive fitness outcomes and avoid conflicts with other genetic goals. The application of female mate choice to captive breeding is in its infancy and requires a goal-oriented framework based on the needs of captive species management, so researchers can make honest assessments of the costs and benefits of such an approach, using simulations, model species and captive animal data. PMID:25553072
Kandler, Christian; Bleidorn, Wiebke; Riemann, Rainer
2012-03-01
In this study, we used an extended twin family design to investigate the influences of genetic and cultural transmission as well as different sources of nonrandom mating on 2 core aspects of political orientation: acceptance of inequality and rejecting system change. In addition, we studied the sources of phenotypic links between Big Five personality traits and political beliefs using self- and other reports. Data of 1,992 individuals (224 monozygotic and 166 dizygotic twin pairs, 92 unmatched twins, 530 spouses of twins, 268 fathers, and 322 mothers) were analyzed. Genetically informative analyses showed that political attitudes are genetically but not environmentally transmitted from parents to offspring and that a substantial proportion of this genetic variance can be accounted for by genetic variance in personality traits. Beyond genetic effects and genotypic assortative mating, generation-specific environmental sources act to increase twins' and spouses' resemblance in political beliefs. The results suggest multiple sources of political orientations in a modern democracy.
Inbreeding affects sexual signalling in males but not females of Tenebrio molitor.
Pölkki, Mari; Krams, Indrikis; Kangassalo, Katariina; Rantala, Markus J
2012-06-23
In many species of animals, individuals advertise their quality with sexual signals to obtain mates. Chemical signals such as volatile pheromones are species specific, and their primary purpose is to influence mate choice by carrying information about the phenotypic and genetic quality of the sender. The deleterious effects of consanguineous mating on individual quality are generally known, whereas the effect of inbreeding on sexual signalling is poorly understood. Here, we tested whether inbreeding reduces the attractiveness of sexual signalling in the mealworm beetle, Tenebrio molitor, by testing the preferences for odours of inbred and outbred (control) individuals of the opposite sex. Females were more attracted to the odours produced by outbred males than the odours produced by inbred males, suggesting that inbreeding reduces the attractiveness of male sexual signalling. However, we did not find any difference between the attractiveness of inbred and outbred female odours, which may indicate that the quality of females is either irrelevant for T. molitor males or quality is not revealed through female odours.
Inbreeding affects sexual signalling in males but not females of Tenebrio molitor
Pölkki, Mari; Krams, Indrikis; Kangassalo, Katariina; Rantala, Markus J.
2012-01-01
In many species of animals, individuals advertise their quality with sexual signals to obtain mates. Chemical signals such as volatile pheromones are species specific, and their primary purpose is to influence mate choice by carrying information about the phenotypic and genetic quality of the sender. The deleterious effects of consanguineous mating on individual quality are generally known, whereas the effect of inbreeding on sexual signalling is poorly understood. Here, we tested whether inbreeding reduces the attractiveness of sexual signalling in the mealworm beetle, Tenebrio molitor, by testing the preferences for odours of inbred and outbred (control) individuals of the opposite sex. Females were more attracted to the odours produced by outbred males than the odours produced by inbred males, suggesting that inbreeding reduces the attractiveness of male sexual signalling. However, we did not find any difference between the attractiveness of inbred and outbred female odours, which may indicate that the quality of females is either irrelevant for T. molitor males or quality is not revealed through female odours. PMID:22237501
Mares Prefer the Voices of Highly Fertile Stallions
Lemasson, Alban; Remeuf, Kévin; Trabalon, Marie; Cuir, Frédérique; Hausberger, Martine
2015-01-01
We investigated the possibility that stallion whinnies, known to encode caller size, also encoded information about caller arousal and fertility, and the reactions of mares in relation to type of voice. Voice acoustic features are correlated with arousal and reproduction success, the lower-pitched the stallion’s voice, the slower his heart beat and the higher his fertility. Females from three study groups preferred playbacks of low-pitched voices. Hence, females are attracted by frequencies encoding for large male size, calmness and high fertility. More work is needed to explore the relative importance of morpho-physiological features. Assortative mating may be involved as large females preferred voices of larger stallions. Our study contributes to basic and applied ongoing research on mammal reproduction, and questions the mechanisms used by females to detect males’ fertility. PMID:25714814
Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness.
Hodges-Simeon, Carolyn R; Gaulin, Steven J C; Puts, David A
2010-12-01
Low mean fundamental frequency (F(0)) in men's voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F(0) (an acoustic correlate of vocal fold size), F(0) variation, intensity (loudness), utterance duration, and formant dispersion (D(f), an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F(0) variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F(0), low D(f), high intensity, and attractive word content across cycle phase and mating context. Low D(f) was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men's voices because of the different types of information these vocal parameters provide.
Sexual signalling in Propithecus verreauxi: male "chest badge" and female mate choice.
Dall'Olio, Stefania; Norscia, Ivan; Antonacci, Daniela; Palagi, Elisabetta
2012-01-01
Communication, an essential prerequisite for sociality, involves the transmission of signals. A signal can be defined as any action or trait produced by one animal, the sender, that produces a change in the behaviour of another animal, the receiver. Secondary sexual signals are often used for mate choice because they may inform on a potential partner's quality. Verreaux's sifaka (Propithecus verreauxi) is characterized by the presence of two different morphs of males (bimorphism), which can show either a stained or clean chest. The chest becomes stained by secretions of the sternal gland during throat marking (rubbing throat and chest on a vertical substrate while smearing the scent deposition). The role of the chest staining in guiding female mate choice was previously hypothesized but never demonstrated probably due to the difficulty of observing sifaka copulations in the wild. Here we report that stained-chested males had a higher throat marking activity than clean-chested males during the mating season, but not during the birth season. We found that females copulated more frequently with stained-chested males than the clean-chested males. Finally, in agreement with the biological market theory, we found that clean-chested males, with a lower scent-releasing potential, offered more grooming to females. This "grooming for sex" tactic was not completely unsuccessful; in fact, half of the clean-chested males copulated with females, even though at low frequency. In conclusion, the chest stain, possibly correlated with different cues targeted by females, could be one of the parameters which help females in selecting mates.
Sexual Signalling in Propithecus verreauxi: Male “Chest Badge” and Female Mate Choice
Dall'Olio, Stefania; Norscia, Ivan; Antonacci, Daniela; Palagi, Elisabetta
2012-01-01
Communication, an essential prerequisite for sociality, involves the transmission of signals. A signal can be defined as any action or trait produced by one animal, the sender, that produces a change in the behaviour of another animal, the receiver. Secondary sexual signals are often used for mate choice because they may inform on a potential partner's quality. Verreaux's sifaka (Propithecus verreauxi) is characterized by the presence of two different morphs of males (bimorphism), which can show either a stained or clean chest. The chest becomes stained by secretions of the sternal gland during throat marking (rubbing throat and chest on a vertical substrate while smearing the scent deposition). The role of the chest staining in guiding female mate choice was previously hypothesized but never demonstrated probably due to the difficulty of observing sifaka copulations in the wild. Here we report that stained-chested males had a higher throat marking activity than clean-chested males during the mating season, but not during the birth season. We found that females copulated more frequently with stained-chested males than the clean-chested males. Finally, in agreement with the biological market theory, we found that clean-chested males, with a lower scent-releasing potential, offered more grooming to females. This “grooming for sex” tactic was not completely unsuccessful; in fact, half of the clean-chested males copulated with females, even though at low frequency. In conclusion, the chest stain, possibly correlated with different cues targeted by females, could be one of the parameters which help females in selecting mates. PMID:22615982
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
Integrating body movement into attractiveness research.
Fink, Bernhard; Weege, Bettina; Neave, Nick; Pham, Michael N; Shackelford, Todd K
2015-01-01
People judge attractiveness and make trait inferences from the physical appearance of others, and research reveals high agreement among observers making such judgments. Evolutionary psychologists have argued that interest in physical appearance and beauty reflects adaptations that motivate the search for desirable qualities in a potential partner. Although men more than women value the physical appearance of a partner, appearance universally affects social perception in both sexes. Most studies of attractiveness perceptions have focused on third party assessments of static representations of the face and body. Corroborating evidence suggests that body movement, such as dance, also conveys information about mate quality. Here we review evidence that dynamic cues (e.g., gait, dance) also influence perceptions of mate quality, including personality traits, strength, and overall attractiveness. We recommend that attractiveness research considers the informational value of body movement in addition to static cues, to present an integrated perspective on human social perception.
Flores-Prado, Luis; Aguilera-Olivares, Daniel; Niemeyer, Hermann M
2008-02-07
In eusocial Hymenoptera, females are more tolerant towards nest-mate than towards non-nest-mate females. In solitary Hymenoptera, females are generally aggressive towards any conspecific female. Field observations of the nest biology of Manuelia postica suggested nest-mate recognition. Experiments were performed involving two live interacting females or one live female interacting with a dead female. Live females from different nests were more intolerant to each other than females from the same nest. Females were more intolerant towards non-nest-mate than towards nest-mate dead females. When dead females were washed with pentane, no differences in tolerant and intolerant behaviours were detected between non-nest-mate and nest-mate females. Females were more intolerant towards nest-mate female carcasses coated with the cuticular extract from a non-nest-mate than towards non-nest-mate female carcasses coated with the cuticular extract from a nest-mate. The compositions of the cuticular extracts was more similar between females from the same nest than between females from different nests. The results demonstrate for the first time nest-mate recognition mediated by cuticular chemicals in a largely solitary species of Apidae. The position of Manuelia at the base of the Apidae phylogeny suggests that nest-mate recognition in eusocial species apical to Manuelia represents the retention of a primitive capacity in Apidae.
Molecular identification and functional characterization of rabbit MATE1 and MATE2-K.
Zhang, Xiaohong; Cherrington, Nathan J; Wright, Stephen H
2007-07-01
An electroneutral organic cation (OC)/proton exchanger in the apical membrane of proximal tubules mediates the final step of renal OC excretion. Two members of the multidrug and toxin extrusion family, MATE1 and MATE2-K, were recently identified in human and rodent kidney and proposed to be the molecular basis of renal OC/H(+) exchange. To take advantage of the comparative value of the large database on the kinetic and selectivity characteristics of OC/H(+) exchange that exists for rabbit kidney, we cloned rbMATE1 and rbMATE2-K. The rabbit homologs have 75% (MATE1) and 74% (MATE2-K) amino acid identity to their human counterparts (and 51% identity with each other). rbMATE1 and rbMATE2-K exhibited H(+) gradient-dependent uptake and efflux of tetraethylammonium (TEA) when expressed in Chinese hamster ovary cells. Both transporters displayed similar affinities for selected compounds [IC(50) values within 2-fold for TEA, 1-methyl-4-phenylpyridinium, and quinidine] and very different affinities for others (IC(50) values differing by 8- to 80-fold for choline and cimetidine, respectively). These results indicate that rbMATE1 and rbMATE2-K are multispecific OC/H(+) exchangers with similar, but distinct, functional characteristics. Overall, the selectivity of MATE1 and MATE2-K correlated closely with that observed in rabbit renal brush-border membrane vesicles.
Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct.
Kapelnikov, Anat; Rivlin, Patricia K; Hoy, Ronald R; Heifetz, Yael
2008-12-08
In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ.
Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct
Kapelnikov, Anat; Rivlin, Patricia K; Hoy, Ronald R; Heifetz, Yael
2008-01-01
Background In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. Results Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. Conclusion We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ. PMID:19063748
Fuller, Rebecca C
2009-07-01
The sensory bias model for the evolution of mating preferences states that mating preferences evolve as correlated responses to selection on nonmating behaviors sharing a common sensory system. The critical assumption is that pleiotropy creates genetic correlations that affect the response to selection. I simulated selection on populations of neural networks to test this. First, I selected for various combinations of foraging and mating preferences. Sensory bias predicts that populations with preferences for like-colored objects (red food and red mates) should evolve more readily than preferences for differently colored objects (red food and blue mates). Here, I found no evidence for sensory bias. The responses to selection on foraging and mating preferences were independent of one another. Second, I selected on foraging preferences alone and asked whether there were correlated responses for increased mating preferences for like-colored mates. Here, I found modest evidence for sensory bias. Selection for a particular foraging preference resulted in increased mating preference for similarly colored mates. However, the correlated responses were small and inconsistent. Selection on foraging preferences alone may affect initial levels of mating preferences, but these correlations did not constrain the joint evolution of foraging and mating preferences in these simulations.
Chemical characterization of candy made of Erva-Mate (Ilex paraguariensis A. St. Hil.) residue.
Vieira, Manoela A; Rovaris, Angela A; Maraschin, Marcelo; De Simas, Karina N; Pagliosa, Cristiane M; Podestá, Rossana; Amboni, Renata D M C; Barreto, Pedro L M; Amante, Edna R
2008-06-25
The aim of this work was to evaluate the chemical properties of the residues from erva-mate processing and also to determine the candy-making performance with addition of residues from erva-mate on consumers' acceptance and purchase intent of this new product. The candies containing different amounts of mate powder were evaluated through overall acceptability test and purchase intent. Mate powder showed high contents of dietary fiber, total ash, and total polyphenols. The total dietary fiber content of the mate candies ranged from 5.7 to 6.29% on a dry matter basis. Supplementation with mate powder caused significant increases in polyphenol and mineral contents of mate candies. The incorporation of mate powder increased the hardness of the candies and produced desirable results in their nutritional characteristics. The sensory tests indicated that mate candies were acceptable and approved in relation to purchase intent.
Schröder, Markus S; Martinez de San Vicente, Kontxi; Prandini, Tâmara H R; Hammel, Stephen; Higgins, Desmond G; Bagagli, Eduardo; Wolfe, Kenneth H; Butler, Geraldine
2016-11-01
Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.
Valdez, Diego J.; Vera Cortez, Marilina; Della Costa, Natalia S.; Lèche, Alvina; Hansen, Cristian; Navarro, Joaquín L.; Martella, Mónica B.
2014-01-01
Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the “Challenge Hypothesis”. In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period. PMID:24837464
Genetic Variation in Fusarium Section Liseola from No-Till Maize in Argentina†
Chulze, S. N.; Ramirez, M. L.; Torres, A.; Leslie, J. F.
2000-01-01
Strains of Fusarium species belonging to section Liseola cause stalk and ear rot of maize and produce important mycotoxins, such as fumonisins. We isolated two species, Fusarium verticillioides (Gibberella fujikuroi mating population A) and Fusarium proliferatum (G. fujikuroi mating population D) from maize cultivated under no-till conditions at five locations in the Córdoba province of Argentina. We determined the effective population number for mating population A (Ne) and found that the Ne for mating type was 89% of the count (total population) and that the Ne for male or hermaphrodite status was 36%. Thus, the number of strains that can function as the female parent limits Ne, and sexual reproduction needs to occur only once every 54 to 220 asexual generations to maintain this level of sexual fertility. Our results indicate that the fungal populations isolated from no-till maize are similar to those recovered from maize managed with conventional tillage. We placed 36 strains from mating population A into 28 vegetative compatibility groups (VCGs). Of the 13 strains belonging to five multimember VCGs, only 2 isolates belonging to one VCG were clones based on amplified fragment length polymorphism (AFLP) fingerprints. Members of the other four multimember VCGs had an average similarity index of 0.89, and members of one VCG were no more closely related to other members of the same VCG than they were to other members of the population as a whole. This finding suggests that the common assumption that strains in the same VCG are either clonal or very closely related needs to be examined in more detail. The variability observed with AFLPs and VCGs suggests that sexual reproduction may occur more frequently than estimated by Ne. PMID:11097907
Wilson, Anthony B; Ahnesjö, Ingrid; Vincent, Amanda C J; Meyer, Axel
2003-06-01
Modern theory predicts that relative parental investment of the sexes in their young is a key factor responsible for sexual selection. Seahorses and pipefishes (family Syngnathidae) are extraordinary among fishes in their remarkable adaptations for paternal care and frequent occurrences of sex-role reversals (i.e., female-female competition for mates), offering exceptional opportunities to test predictions of sexual selection theory. During mating, the female transfers eggs into or onto specialized egg-brooding structures that are located on either the male's abdomen or its tail, where they are osmoregulated, aerated, and nourished by specially adapted structures. All syngnathid males exhibit this form of parental care but the brooding structures vary, ranging from the simple ventral gluing areas of some pipefishes to the completely enclosed pouches found in seahorses. We present a molecular phylogeny that indicates that the diversification of pouch types is positively correlated with the major evolutionary radiation of the group, suggesting that this extreme development and diversification of paternal care may have been an important evolutionary innovation of the Syngnathidae. Based on recent studies that show that the complexity of brooding structures reflects the degree of paternal investment in several syngnathid species, we predicted sex-role reversals to be more common among species with more complex brooding structures. In contrast to this prediction, however, both parsimony- and likelihood-based reconstructions of the evolution of sex-role reversal in pipefishes and seahorses suggest multiple shifts in sex roles in the group, independent from the degree of brood pouch development. At the same time, our data demonstrate that sex-role reversal is positively associated with polygamous mating patterns, whereas most nonreversed species mate monogamously, suggesting that selection for polygamy or monogamy in pipefishes and seahorses may strongly influence sex roles in the wild.
New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum.
Brandeis, Michael
2018-05-01
Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction. © 2017 Cambridge Philosophical Society.
Hsueh, Yen-Ping; Fraser, James A.; Heitman, Joseph
2008-01-01
Sex is orchestrated by the mating-type locus (MAT) in fungi and by sex chromosomes in plants and animals. In fungi, two patterns of sexuality occur: bipolar with a single, typically biallelic sex determinant that promotes inbreeding, and tetrapolar with two unlinked, often multiallelic sex determinants that restrict inbreeding. Multiallelism in either bipolar or tetrapolar mating systems promotes outcrossing. Cryptococcus neoformans is a pathogenic bipolar yeast with two unusually large MAT alleles (a/α) spanning >100 kb, ∼100-fold larger than many other fungal MAT loci. Based on comparative genomic analysis, this unusual MAT locus is hypothesized to have evolved from an ancestral tetrapolar system. In this model, the unlinked homeodomain (HD) transcription factor and pheromone/receptor tetrapolar loci acquired additional sex-related genes and then fused via chromosomal translocation, forming an intermediate transitional mating system (which we term tripolar), which then underwent recombination and gene conversion to fashion the extant bipolar MAT alleles. To experimentally validate this model, C. neoformans was engineered to have a tetrapolar mating system by relocating the MAT SXI1α and SXI2a HD genes to an unlinked genomic locale. Genetic and molecular analyses revealed that this modified organism could complete a tetrapolar sexual cycle. Analysis of progeny generated from bipolar, tripolar, and tetrapolar crosses provides direct experimental evidence that the tripolar state confers decreased fertility and therefore may represent an unstable evolutionary intermediate. These findings illustrate how transitions between outcrossing and inbreeding preference occur by involving sex determinant linkage and collapse from multiallelic to biallelic sex determination, providing insights into both fungal sex evolution and early steps in sex chromosome evolution. PMID:18723606
Estrogens Can Disrupt Amphibian Mating Behavior
Hoffmann, Frauke; Kloas, Werner
2012-01-01
The main component of classical contraceptives, 17α-ethinylestradiol (EE2), has high estrogenic activity even at environmentally relevant concentrations. Although estrogenic endocrine disrupting compounds are assumed to contribute to the worldwide decline of amphibian populations by adverse effects on sexual differentiation, evidence for EE2 affecting amphibian mating behaviour is lacking. In this study, we demonstrate that EE2 exposure at five different concentrations (0.296 ng/L, 2.96 ng/L, 29.64 ng/L, 2.96 µg/L and 296.4 µg/L) can disrupt the mating behavior of adult male Xenopus laevis. EE2 exposure at all concentrations lowered male sexual arousal, indicated by decreased proportions of advertisement calls and increased proportions of the call type rasping, which characterizes a sexually unaroused state of a male. Additionally, EE2 at all tested concentrations affected temporal and spectral parameters of the advertisement calls, respectively. The classical and highly sensitive biomarker vitellogenin, on the other hand, was only induced at concentrations equal or higher than 2.96 µg/L. If kept under control conditions after a 96 h EE2 exposure (2.96 µg/L), alterations of male advertisement calls vanish gradually within 6 weeks and result in a lower sexual attractiveness of EE2 exposed males toward females as demonstrated by female choice experiments. These findings indicate that exposure to environmentally relevant EE2 concentrations can directly disrupt male mate calling behavior of X. laevis and can indirectly affect the mating behavior of females. The results suggest the possibility that EE2 exposure could reduce the reproductive success of EE2 exposed animals and these effects might contribute to the global problem of amphibian decline. PMID:22355410
Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival
Goossens, Katty V. Y.; Ielasi, Francesco S.; Nookaew, Intawat; Stals, Ingeborg; Alonso-Sarduy, Livan; Daenen, Luk; Van Mulders, Sebastiaan E.; Stassen, Catherine; van Eijsden, Rudy G. E.; Siewers, Verena; Delvaux, Freddy R.; Kasas, Sandor; Nielsen, Jens; Devreese, Bart
2015-01-01
ABSTRACT We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. PMID:25873380
Cooper, Jacob D.; Kerr, Benjamin
2016-01-01
Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple “peaks” of high-fitness allele combinations are separated by “valleys” of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may generate new high-fitness genotypes by recombination, but it may also destroy high-fitness genotypes by shuffling the genes of a fit parent with a genetically distinct mate, creating low-fitness offspring. Either of these opposing aspects of sex require genotypic diversity in the population. Spatially structured populations may harbor more diversity than well-mixed populations, potentially amplifying both positive and negative effects of sex. On the other hand, spatial structure leads to clumping in which mating is more likely to occur between like types, diminishing the effects of recombination. In this study, we use computer simulations to investigate the combined effects of recombination and spatial structure on adaptation in rugged fitness landscapes. We find that spatially restricted mating and offspring dispersal may allow multiple genotypes inhabiting suboptimal peaks to coexist, and recombination at the “sutures” between the clusters of these genotypes can create genetically novel offspring. Sometimes such an offspring genotype inhabits a new peak on the fitness landscape. In such a case, spatially restricted mating allows this fledgling subpopulation to avoid recombination with distinct genotypes, as mates are more likely to be the same genotype. Such population “centers” can allow nascent peaks to establish despite recombination. Spatial structure may therefore allow an evolving population to enjoy the creative side of sexual recombination while avoiding its destructive side. PMID:27973606
Norrby, Mattias; Madsen, Mads T; Alexandersen, Charlotte Borg; Kindahl, Hans; Madej, Andrzej
2007-01-01
Background The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Methods Thirty three crossbred sows (Danish Landrace × Danish Large White) were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group) and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Results Cortisol concentrations increased in all groups but Boar-group (n = 8) had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8). In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8) showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively) had a 2.5-fold increase in PG-metabolite 15 minutes after service. Conclusion In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating. PMID:18053237
Norrby, Mattias; Madsen, Mads T; Alexandersen, Charlotte Borg; Kindahl, Hans; Madej, Andrzej
2007-12-05
The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Thirty three crossbred sows (Danish Landrace x Danish Large White) were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group) and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Cortisol concentrations increased in all groups but Boar-group (n = 8) had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8). In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8) showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively) had a 2.5-fold increase in PG-metabolite 15 minutes after service. In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating.
Huberman, Lori B; Murray, Andrew W
2014-01-01
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.
Huberman, Lori B.; Murray, Andrew W.
2014-01-01
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559
Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard
2015-01-01
In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland. PMID:25955586
Wagner-Vogel, Gaby; Lämmer, Frauke; Kämper, Jörg; Basse, Christoph W
2015-02-06
Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage.
Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard
2015-01-01
In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchman, A.R.; Kimmerly, W.J.; Rine, J.
1988-01-01
Two DNA-binding factors from Saccharomyces cerevisiae have been characterized, GRFI (general regulatory factor I) and ABFI (ARS-binding factor I), that recognize specific sequences within diverse genetic elements. GRFI bound to sequences at the negative regulatory elements (silencers) of the silent mating type loci HML E and HMR E and to the upstream activating sequence (UAS) required for transcription of the MAT ..cap alpha.. genes. A putative conserved UAS located at genes involved in translation (RPG box) was also recognized by GRFI. In addition, GRFI bound with high affinity to sequences within the (C/sub 1-3/A)-repeat region at yeast telomeres. Binding sitesmore » for GRFI with the highest affinity appeared to be of the form 5'-(A/G)(A/C)ACCCAN NCA(T/C)(T/C)-3', where N is any nucleotide. ABFI-binding sites were located next to autonomously replicating sequences (ARSs) at controlling elements of the silent mating type loci HMR E, HMR I, and HML I and were associated with ARS1, ARS2, and the 2..mu..m plasmid ARS. Two tandem ABFI binding sites were found between the HIS3 and DED1 genes, several kilobase pairs from any ARS, indicating that ABFI-binding sites are not restricted to ARSs. The sequences recognized by AFBI showed partial dyad-symmetry and appeared to be variations of the consensus 5'-TATCATTNNNNACGA-3'. GRFI and ABFI were both abundant DNA-binding factors and did not appear to be encoded by the SIR genes, whose product are required for repression of the silent mating type loci. Together, these results indicate that both GRFI and ABFI play multiple roles within the cell.« less
Tisch, Doris; Pomraning, Kyle R.; Collett, James R.; ...
2017-09-15
Here, the filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostlymore » QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tisch, Doris; Pomraning, Kyle R.; Collett, James R.
Here, the filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostlymore » QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.« less
Ge, Yongyi; Wang, Yuchen; Liu, YongXiang; Tan, Yumei; Ren, Xiuxiu; Zhang, Xinyu; Hyde, Kevin D; Liu, Yongfeng; Liu, Zuoyi
2016-06-07
Aspergillus cristatus is the dominant fungus involved in the fermentation of Chinese Fuzhuan brick tea. Aspergillus cristatus is a homothallic fungus that undergoes a sexual stage without asexual conidiation when cultured in hypotonic medium. The asexual stage is induced by a high salt concentration, which completely inhibits sexual development. The taxon is therefore appropriate for investigating the mechanisms of asexual and sexual reproduction in fungi. In this study, de novo genome sequencing and analysis of transcriptomes during culture under high- and low-osmolarity conditions were performed. These analyses facilitated investigation of the evolution of mating-type genes, which determine the mode of sexual reproduction, in A. cristatus, the response of the high-osmolarity glycerol (HOG) pathway to osmotic stimulation, and the detection of mycotoxins and evaluation of the relationship with the location of the encoding genes. The A. cristatus genome comprised 27.9 Mb and included 68 scaffolds, from which 10,136 protein-coding gene models were predicted. A phylogenetic analysis suggested a considerable phylogenetic distance between A. cristatus and A. nidulans. Comparison of the mating-type gene loci among Aspergillus species indicated that the mode in A. cristatus differs from those in other Aspergillus species. The components of the HOG pathway were conserved in the genome of A. cristatus. Differential gene expression analysis in A. cristatus using RNA-Seq demonstrated that the expression of most genes in the HOG pathway was unaffected by osmotic pressure. No gene clusters associated with the production of carcinogens were detected. A model of the mating-type locus in A. cristatus is reported for the first time. Aspergillus cristatus has evolved various mechanisms to cope with high osmotic stress. As a fungus associated with Fuzhuan tea, it is considered to be safe under low- and high-osmolarity conditions.
Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B
2012-02-01
The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.