A Study of Ultrasonic Wavefront Distortion Compensation.
1998-08-01
arrays. The array is made of piezoelectric composite consisting of PZT (lead zirconate titanate) ceramic rods in a polymer matrix. The transducer...We have developed the procedures for making the final transducer array package by a series of steps. The arrays utilize PZT piezoelectric ceramic ...the low contrast cyst at coordinates (250,425) in Figure 6a. Seen below the cyst is a region with an altered texture and poorer angular resolution, a
Kosik, Ivan; Raess, Avery
2015-01-01
Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177
Hudson, John M; Williams, Ross; Milot, Laurent; Wei, Qifeng; Jago, James; Burns, Peter N
2017-03-01
The goal of this study was to evaluate the accuracy of a non-invasive C-plane Doppler estimation of pulsatile blood flow in the lower abdominal vessels of a porcine model. Doppler ultrasound measurements from a matrix array transducer system were compared with invasive volume flow measurements made on the same vessels with a surgically implanted ultrasonic transit-time flow probe. For volume flow rates ranging from 60 to 750 mL/min, agreement was very good, with a Pearson correlation coefficient of 0.97 (p < 0.0001) and a mean bias of -4.2%. The combination of 2-D matrix array technology and fast processing gives this Doppler method clinical potential, as many of the user- and system-dependent parameters of previous methods, including explicit vessel angle and diameter measurements, are eliminated. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Herickhoff, Carl D; Light, Edward D; Bing, Kristin F; Mukundan, Srinivasan; Grant, Gerald A; Wolf, Patrick D; Smith, Stephen W
2009-04-01
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.
Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin F.; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Smith, Stephen W.
2010-01-01
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm × 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom electrical impedance matching circuits to achieve a temperature rise over 4°C in excised pork muscle, and second by designing and constructing a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm × 2.3 mm. This array achieved a 3.5°C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating. PMID:19630251
Chen, Chao; Raghunathan, Shreyas B; Yu, Zili; Shabanimotlagh, Maysam; Chen, Zhao; Chang, Zu-yao; Blaak, Sandra; Prins, Christian; Ponte, Jacco; Noothout, Emile; Vos, Hendrik J; Bosch, Johan G; Verweij, Martin D; de Jong, Nico; Pertijs, Michiel A P
2016-01-01
This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 ×12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and micro-beamformer circuits that locally process and combine echo signals received by the elements of each 3 ×3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques.
Long range guided wave defect monitoring in rail track
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Long, Craig S.
2014-02-01
A guided wave ultrasound system was previously developed for monitoring rail track used on heavy duty freight lines. This system operates by transmitting guided waves between permanently installed transmit and receive transducers spaced approximately 1km apart. The system has been proven to reliably detect rail breaks without false alarms. While cracks are sometimes detected there is a trade - off between detecting cracks and the possibility of false alarms. Adding a pulse-echo mode of operation to the system could provide increased functionality by detecting, locating and possibly monitoring cracks. This would require an array of transducers to control the direction and mode of propagation and it would be necessary to detect cracks up to a range of approximately 500 m in either direction along the rail. A four transducer array was designed and full matrix capture was used for field measurements. Post processing of the signals showed that a thermite weld could be detected at a range of 790m from the transducer array. It was concluded that the required range can be achieved in new rail while it would be extremely difficult in very old rail.
Transducer with a sense of touch
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Paine, G.
1979-01-01
Matrix of pressure sensors determines shape and pressure distribution of object in contact with its surface. Output can be used to develop pressure map of objects' surface and displayed as array of alphanumeric symbols on video monitor.
NASA Astrophysics Data System (ADS)
Amory, V.; Lhémery, A.
2008-02-01
Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.
Phased array performance evaluation with photoelastic visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzel, Robert; Dao, Gavin
2014-02-18
New instrumentation and a widening range of phased array transducer options are affording the industry a greater potential. Visualization of the complex wave components using the photoelastic system can greatly enhance understanding of the generated signals. Diffraction, mode conversion and wave front interaction, together with beam forming for linear, sectorial and matrix arrays, will be viewed using the photoelastic system. Beam focus and steering performance will be shown with a range of embedded and surface targets within glass samples. This paper will present principles and sound field images using this visualization system.
Simulation of sparse matrix array designs
NASA Astrophysics Data System (ADS)
Boehm, Rainer; Heckel, Thomas
2018-04-01
Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.
Lindsey, Brooks D; Light, Edward D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W
2011-06-01
Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays-transducer design and interconnects-in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation.
Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A
2008-06-01
Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.
NASA Astrophysics Data System (ADS)
Soner Gözü, Mehmet; Zengin, Reyhan; Güneri Gençer, Nevzat
2018-02-01
In this study, the performance and implementation of magneto-acousto-electrical tomography (MAET) is investigated using a linear phased array (LPA) transducer. The goal of MAET is to image the conductivity distribution in biological bodies. It uses the interaction between ultrasound and a static magnetic field to generate velocity current density distribution inside the body. The resultant voltage due to velocity current density is sensed by surface electrodes attached on the body. In this study, the theory of MAET is reviewed. A 16-element LPA transducer with 1 MHz excitation frequency is used to provide beam directivity and steerability of acoustic waves. Different two-dimensional numerical models of breast and tumour are formed to analyze the multiphysics problem coupled with acoustics and electromagnetic fields. In these models, velocity current density distributions are obtained for pulse type ultrasound excitations. The static magnetic field is assumed as 1 T. To sense the resultant voltage caused by the velocity current density, it is assumed that two electrodes are attached on the surface of the body. The performance of MAET is shown through sensitivity matrix analysis. The sensitivity matrix is obtained for two transducer positions with 13 steering angles between -30\\circ to 30\\circ with 5\\circ angular intervals. For the reconstruction of the images, truncated singular value decomposition method is used with different signal-to-noise ratio (SNR) values (20 dB, 40 dB, 60 dB and 80 dB). The resultant images show that the perturbation (5 mm × 5 mm) placed 35 mm depth can be detected even if the SNR is 20 dB.
Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.
Clarke, Clyde; Etienne-Cummings, Ralph
2006-01-01
A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.
Shieh, Bernard; Sabra, Karim G; Degertekin, F Levent
2016-11-01
A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix that captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully populated boundary element matrix equation using standard techniques requires computation time and memory usage that scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multilevel fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green's function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver's capabilities by simulating a 32-element 7-MHz 1-D capacitive MUT (CMUT) phased array with 2880 membranes. The array is simulated using 233280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15210 nodes, the FMA solver performed ten times faster and used 32 times less memory than a standard solver based on LU decomposition. We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about seven nodes over the width of the membrane to observe convergence of the solution-even below the first membrane resonance frequency-due to the influence of higher order membrane modes.
Development of transducer arrays for ultrasound-computer tomography
NASA Astrophysics Data System (ADS)
Stotzka, Rainer; Gobel, Georg; Schlote-Holubek, Klaus
2003-05-01
Ultrasound computer-tomography (USCT) is a novel ultrasound imaging method capable of producing volume images with both high spatial and temporal resolution. Several thousand ultrasound transducers are arranged in a cylindrical array around a tank containing the object to be examined coupled by water. Every single transducer is small enough to emit an almost spherical sound-wave. While one transducer is transmitting, all others receive simultaneously. Our experimental setup, using only a few transducers simulating a ring-shaped geometry, showed even nylon threads (0.1 mm) with an image quality superior to clinical in-use ultrasound scanners. In order to build a complete circular array several thousand transducers, with cylindrical sound field characteristics, are needed. Since such transducer arrays are hardly available and expensive, we developed inexpensive transducer arrays consisting of 8 elements. Each array is based on a plate of lead titanate zirconate ceramics (PZT) sawn into 8 elements of 0.3 mm width, 3.8 mm height and 0.5 mm pitch. Each element has a mean frequency of 3.8 MHz and can be triggered separately. The main challenge was the development of production steps with reproducible results. Our transducer arrays show only small variances in the sound field characteristics which are strongly required for ultrasound tomography.
A micro-machined source transducer for a parametric array in air.
Lee, Haksue; Kang, Daesil; Moon, Wonkyu
2009-04-01
Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.
Stress field forming of sector array transducers for vibro-acoustography.
Silva, Glauber T; Chen, Shigao; Frery, Alejandro C; Greenleaf, James F; Fatemi, Mostafa
2005-11-01
This paper presents a study of the stress field forming of sector array transducers for vibro-acoustography applications. The system point-spread function (PSF) is given in terms of the dynamic radiation stress exerted on a point target by a dual ultrasound beam with slightly different frequencies. The radiation stress is calculated by assuming that the resulting ultrasound beam is a plane wave. The stress is proportional to the product of the velocity potential of each incident ultrasound beam. The beamforming and stress field forming of sector array transducers are analyzed through linear acoustics. An expression for the velocity potential produced by sector array transducers is derived. The vibro-acoustography PSF is evaluated numerically. A comparison between the PSF of a sector array and a confocal transducers is presented. The compared characteristics of the PSF are sidelobe levels, transverse, and in-depth spatial resolution. Indeed, one motivation to study sector transducers is the fact the depth-of-field of these transducers should be smaller than that of same size confocal transducers. An experimental setup was used to validate the theoretical PSF of sector array transducers. Results show that the measured PSF is in good agreement with the theoretical predications. Vibro-acoustography images of a breast-phantom by both transducers are presented and discussed.
Micromachined capacitive ultrasonic immersion transducer array
NASA Astrophysics Data System (ADS)
Jin, Xuecheng
Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.
Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa
2017-01-01
In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Stoner, Lee; Geoffron, Morgane; Cornwall, Jon; Chinn, Victoria; Gram, Martin; Credeur, Daniel; Fryer, Simon
2016-12-01
Recently, it was reported that intra-abdominal thickness (IAT) assessments using ultrasound are most reliable if measured from the linea alba to the anterior vertebral column. These 2 anatomical sites can be simultaneously visualized using a linear array transducer. Linear array transducers have different operational characteristics when compared with conventional curved array transducers and are more reliable for some ultrasound-derived measures such as abdominal subcutaneous fat thickness. However, it is unknown whether linear array transducers facilitate more reliable IAT measurements than curved array transducers. The purpose of the current study was to (1) compare the reliability of linear and curved array transducer assessments of IAT and maximal abdominal ratio (MAR) and (2) use the findings to update central adiposity measurement guidelines. Fifteen healthy adults (mean [SD], 27 [10] years; 60% female) with a range of somatotypes (body mass index: mean [SD], 24 [4]; range, 19-33 kg/m; waist circumference: mean [SD], 75 [11]; range, 61-96 cm) were tested on 3 mornings under standardized conditions. Intra-abdominal thickness was assessed 2 cm above the umbilicus (transverse plane), measuring from linea alba to the anterior vertebral column. Maximal abdominal ratio was defined as the ratio of IAT to abdominal subcutaneous fat thickness. The IAT range was 25 to 87 mm, and the MAR range was 0.15 to 0.77. Between-day intraclass correlation coefficient values for IAT measurements made were comparable (0.96-0.97) for both transducers, as were MAR values (0.95). In conclusion, while both transducers provided equally reliable measurement of IAT, the use of a single linear array transducer simplifies the assessment of central adiposity.
SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation
NASA Astrophysics Data System (ADS)
Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.
2015-04-01
Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.
Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System
Moore, Thomas L.; Fisher, Karl A.
2005-08-09
An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.
Thermal-Independent Properties of PIN-PMN-PT Single-Crystal Linear-Array Ultrasonic Transducers
Chen, Ruimin; Wu, Jinchuan; Lam, Kwok Ho; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K. Kirk
2013-01-01
In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and binary Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a −6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227
Hammond, Kendra; Mampilly, Jobby; Laghi, Franco A; Goyal, Amit; Collins, Eileen G; McBurney, Conor; Jubran, Amal; Tobin, Martin J
2014-01-01
Muscle-mass loss augers increased morbidity and mortality in critically ill patients. Muscle-mass loss can be assessed by wide linear-array ultrasound transducers connected to cumbersome, expensive console units. Whether cheaper, hand-carried units equipped with curved-array transducers can be used as alternatives is unknown. Accordingly, our primary aim was to investigate in 15 nondisabled subjects the validity of measurements of rectus femoris cross-sectional area by using a curved-array transducer against a linear-array transducer-the reference-standard technique. In these subjects, we also determined the reliability of measurements obtained by a novice operator versus measurements obtained by an experienced operator. Lastly, the relationship between quadriceps strength and rectus area recorded by two experienced operators with a curved-array transducer was assessed in 17 patients with chronic obstructive pulmonary disease (COPD). In nondisabled subjects, the rectus cross-sectional area measured with the curved-array transducer by the novice and experienced operators was valid (intraclass correlation coefficient [ICC]: 0.98, typical percentage error [%TE]: 3.7%) and reliable (ICC: 0.79, %TE: 9.7%). In the subjects with COPD, both reliability (ICC: 0.99) and repeatability (%TE: 7.6% and 9.8%) were high. Rectus area was related to quadriceps strength in COPD for both experienced operators (coefficient of determination: 0.67 and 0.70). In conclusion, measurements of rectus femoris cross-sectional area recorded with a curved-array transducer connected to a hand-carried unit are valid, reliable, and reproducible, leading us to contend that this technique is suitable for cross-sectional and longitudinal studies.
Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
2000-01-01
A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.
Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound.
Lee, Warren; Idriss, Salim F; Wolf, Patrick D; Smith, Stephen W
2003-09-01
We have developed dual lumen probes incorporating a forward-viewing matrix array transducer with an integrated working lumen for delivery of tools in real-time 3-D (RT3-D) interventional echocardiography. The probes are of 14 Fr and 22 Fr sizes, with 112 channel 2-D arrays operating at 5 MHz. We obtained images of cardiac anatomy and simultaneous interventional device delivery with an in vivo sheep model, including: manipulation of a 0.36-mm diameter guidewire into the coronary sinus, guidance of a transseptal puncture using a 1.2-mm diameter Brockenbrough needle, and guidance of a right ventricular biopsy using 3 Fr biopsy forceps. We have also incorporated the 22 Fr probe within a 6-mm surgical trocar to obtain apical four-chamber ultrasound (US) scans from a subcostal position. Combining the imaging catheter with a working lumen in a single device may simplify cardiac interventional procedures by allowing clinicians to easily visualize cardiac structures and simultaneously direct interventional tools in a RT3-D image.
Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T
2009-10-01
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.
Equivalent circuit-based analysis of CMUT cell dynamics in arrays.
Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin
2013-05-01
Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.
High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer
Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson
2006-01-01
Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314
High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.
Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson
2007-04-01
Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.
Design and testing of an annular array for very-high-frequency imaging
NASA Astrophysics Data System (ADS)
Ketterling, Jeffrey A.; Ramachandran, Sarayu; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.
2004-05-01
Very-high-frequency ultrasound (VHFU) transducer technology is currently experiencing a great deal of interest. Traditionally, researchers have used single-element transducers which achieve exceptional lateral image resolution although at a very limited depth of field. A 5-ring focused annular array, a transducer geometry that permits an increased depth of field via electronic focusing, has been constructed. The transducer is fabricated with a PVDF membrane and a copper-clad Kapton film with an annular array pattern. The PVDF is bonded to the Kapton film and pressed into a spherically curved shape. The back side of the transducer is then filled with epoxy. One side of the PVDF is metallized with gold, forming the ground plane of the transducer. The array elements are accessed electrically via copper traces formed on the Kapton film. The annular array consists of 5 equal-area rings with an outer diameter of 1 cm and a radius of curvature of 9 mm. A wire reflector target was used to test the imaging capability of the transducer by acquiring B-scan data for each transmit/receive pair. A synthetic aperture approach was then used to reconstruct the image and demonstrate the enhanced depth of field capabilities of the transducer.
Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results
NASA Astrophysics Data System (ADS)
Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael
2015-03-01
Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.
High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications
Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan
2014-01-01
Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222
A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer.
Urban, Matthew W; Chalek, Carl; Haider, Bruno; Thomenius, Kai E; Fatemi, Mostafa; Alizad, Azra
2013-03-01
Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using 1-D linear-array transducers. In this article, we discuss VA beamforming and image formation using a 1.75-D array transducer. A 1.75-D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75-D array over a 1-D linear-array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75-D array transducer offers several advantages over scanning with a linear-array transducer, including improved image resolution and contrast resulting from better elevation focusing of the imaging point-spread function.
A Beamforming Study for Implementation of Vibro-acoustography with a 1.75D Array Transducer
Urban, Matthew W.; Chalek, Carl; Haider, Bruno; Thomenius, Kai E.; Fatemi, Mostafa; Alizad, Azra
2013-01-01
Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using one-dimensional (1D) linear array transducers. In this article, we discuss VA beamforming and image formation using a 1.75D array transducer. A 1.75D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75D array over a 1D linear array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75D array transducer offers several advantages over scanning with a linear array transducer including improved image resolution and contrast due to better elevation focusing of the imaging point-spread function. PMID:23475919
Frequency-multiplexed and pipelined iterative optical systolic array processors
NASA Technical Reports Server (NTRS)
Casasent, D.; Jackson, J.; Neuman, C.
1983-01-01
Optical matrix processors using acoustooptic transducers are described, with emphasis on new systolic array architectures using frequency multiplexing in addition to space and time multiplexing. A Kalman filtering application is considered in a case study from which the operations required on such a system can be defined. This also serves as a new and powerful application for iterative optical processors. The importance of pipelining the data flow and the ordering of the operations performed in a specific application of such a system are also noted. Several examples of how to effectively achieve this are included. A new technique for handling bipolar data on such architectures is also described.
NASA Astrophysics Data System (ADS)
Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric
2008-03-01
We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.
Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K. Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa
2011-01-01
In this paper, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (kt = 0.81%), very low mechanical quality factor (Qm = 11) and relatively low acoustic impedance (Zt = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1–3 composite radial array transducer with 64 elements was tested in a pulse-echo response measurement. The −6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be −32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications. PMID:21342833
Wang, Huaijun; Kaneko, Osamu F; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K
2015-05-01
We sought to assess the feasibility and reproducibility of 3-dimensional ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n = 33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) after intravenous injection of either clinical grade VEGFR2-targeted microbubbles or nontargeted control microbubbles. Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24 hours after treatment with either bevacizumab (n = 7) or saline only (n = 7). Three-dimensional USMI data sets were retrospectively reconstructed into multiple consecutive 1-mm-thick USMI data sets to simulate 2-dimensional imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Three-dimensional USMI was highly reproducible using both VEGFR2-targeted microbubbles and nontargeted control microbubbles (intraclass correlation coefficient, 0.83). The VEGFR2-targeted USMI signal significantly (P = 0.02) decreased by 57% after antiangiogenic treatment compared with the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (ρ = 0.93, P = 0.003). If only central 1-mm tumor planes were analyzed to assess antiangiogenic treatment response, the USMI signal change was significantly (P = 0.006) overestimated by an average of 27% (range, 2%-73%) compared with 3-dimensional USMI. Three-dimensional USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer.
Ultrasonic phased array controller for hyperthermia applications.
Benkeser, P J; Pao, T L; Yoon, Y J
1991-01-01
Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.
Synthetic aperture ultrasound imaging with a ring transducer array: preliminary ex vivo results.
Qu, Xiaolei; Azuma, Takashi; Yogi, Takeshi; Azuma, Shiho; Takeuchi, Hideki; Tamano, Satoshi; Takagi, Shu
2016-10-01
The conventional medical ultrasound imaging has a low lateral spatial resolution, and the image quality depends on the depth of the imaging location. To overcome these problems, this study presents a synthetic aperture (SA) ultrasound imaging method using a ring transducer array. An experimental ring transducer array imaging system was constructed. The array was composed of 2048 transducer elements, and had a diameter of 200 mm and an inter-element pitch of 0.325 mm. The imaging object was placed in the center of the ring transducer array, which was immersed in water. SA ultrasound imaging was then employed to scan the object and reconstruct the reflection image. Both wire phantom and ex vivo experiments were conducted. The proposed method was found to be capable of producing isotropic high-resolution images of the wire phantom. In addition, preliminary ex vivo experiments using porcine organs demonstrated the ability of the method to reconstruct high-quality images without any depth dependence. The proposed ring transducer array and SA ultrasound imaging method were shown to be capable of producing isotropic high-resolution images whose quality was independent of depth.
Celmer, M; Opieliński, K J; Dopierała, M
2018-02-01
One of the reasons of distortions in ultrasonic imaging are crosstalk effects. They can be divided into groups according to the way of their formation. One of them is constituted by mechanical crosstalk, which is propagated by a construction of a multi-element array of piezoelectric transducers. When an individual transducer is excited, mechanical vibrations are transferred to adjacent construction components, thereby stimulating neighboring transducers to an undesired operation. In order to explore ways of the propagation of such vibrations, the authors developed the FEM model of the array of piezoelectric transducers designed for calculations in COMSOL Multiphysics software. Simulations of activating individual transducers and calculated electrical voltages appearing on transducers unstimulated intentionally, were performed in the time domain in order to assess the propagation velocity of different vibration modes through the construction elements. On this basis, conclusions were drawn in terms of the participation of various construction parts of the array of piezoelectric transducers in the process of creating the mechanical crosstalk. The elaborated FEM model allowed also to examine the ways aimed at reducing the transmission of mechanical crosstalk vibrations through the components of the array. Studies showed that correct cuts in the fasteners and the front layer improve the reduction of the mechanical crosstalk effect. The model can become a helpful tool in the process of design and modifications of manufactured ultrasonic arrays particularly in terms of mechanical crosstalk reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
A simple uniformity test for ultrasound phased arrays.
Dudley, Nicholas J; Woolley, Darren J
2016-09-01
It is difficult to test phased array ultrasound transducers for non functioning elements. We aimed to modify a widely performed test to improve its ease and effectiveness for these arrays. A paperclip was slowly moved along the transducer array, with the scanner operating in M-mode, imaging at a fundamental frequency with automatic gain and grey scale adjustment disabled. Non-functioning elements are identified by a dark vertical line in the image. The test was repeated several times for each transducer, looking for consistency of results. 2 transducers, with faults already shown by electronic transducer testing, were used to validate the method. 23 transducers in clinical use were tested. The results of the modified test on the 2 faulty transducers agreed closely with electronic transducer testing results. The test indicated faults in 5 of the 23 transducers in clinical use: 3 with a single failed element and 2 with non-uniform sensitivity. 1 transducer with non-uniform sensitivity had undergone lens repair; the new lens was visibly non-uniform in thickness and further testing showed a reduction in depth of penetration and a loss of elevational focus in comparison with a new transducer. The modified test is capable of detecting non-functioning elements. Further work is required to provide a better understanding of more subtle faults. Copyright © 2016 Associazione Italiana di Fisica Medica. All rights reserved.
Aircraft components structural health monitoring using flexible ultrasonic transducer arrays
NASA Astrophysics Data System (ADS)
Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.
2011-04-01
A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.
Smith, Richard W.
1979-01-01
An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.
Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk
2014-01-01
Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027
Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan
2015-01-01
Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038
Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan
2015-04-03
Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.
Electrochemical Detection of Multiple Bioprocess Analytes
NASA Technical Reports Server (NTRS)
Rauh, R. David
2010-01-01
An apparatus that includes highly miniaturized thin-film electrochemical sensor array has been demonstrated as a prototype of instruments for simultaneous detection of multiple substances of interest (analytes) and measurement of acidity or alkalinity in bioprocess streams. Measurements of pH and of concentrations of nutrients and wastes in cell-culture media, made by use of these instruments, are to be used as feedback for optimizing the growth of cells or the production of desired substances by the cultured cells. The apparatus is designed to utilize samples of minimal volume so as to minimize any perturbation of monitored processes. The apparatus can function in a potentiometric mode (for measuring pH), an amperometric mode (detecting analytes via oxidation/reduction reactions), or both. The sensor array is planar and includes multiple thin-film microelectrodes covered with hydrous iridium oxide. The oxide layer on each electrode serves as both a protective and electrochemical transducing layer. In its transducing role, the oxide provides electrical conductivity for amperometric measurement or pH response for potentiometric measurement. The oxide on an electrode can also serve as a matrix for one or more enzymes that render the electrode sensitive to a specific analyte. In addition to transducing electrodes, the array includes electrodes for potential control. The array can be fabricated by techniques familiar to the microelectronics industry. The sensor array is housed in a thin-film liquid-flow cell that has a total volume of about 100 mL. The flow cell is connected to a computer-controlled subsystem that periodically draws samples from the bioprocess stream to be monitored. Before entering the cell, each 100-mL sample is subjected to tangential-flow filtration to remove particles. In the present version of the apparatus, the electrodes are operated under control by a potentiostat and are used to simultaneously measure the pH and the concentration of glucose. It is anticipated that development of procedures for trapping more enzymes into hydrous iridium oxide (and possibly into other electroactive metal oxides) and of means for imparting long-term stability to the transducer layers should make it possible to monitor concentrations of products of many enzyme reactions for example, such key bioprocess analytes as amino acids, vitamins, lactose, and acetate.
A Dual-Layer Transducer Array for 3-D Rectilinear Imaging
Yen, Jesse T.; Seo, Chi Hyung; Awad, Samer I.; Jeong, Jong S.
2010-01-01
2-D arrays for 3-D rectilinear imaging require very large element counts (16,000–65,000). The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of two perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count making 3-D rectilinear imaging more realizable. With this design, an effective N × N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 × 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured −6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was −30.4 ± 3.1 dB and −28.8 ± 3.7 dB respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed off-line 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared to measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation respectively. 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired. PMID:19213647
Lindsey, Brooks D.; Light, Edward D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.
2012-01-01
Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation. PMID:21693401
He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-01-01
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636
Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-03-02
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.
Engineering a biospecific communication pathway between cells and electrodes
NASA Astrophysics Data System (ADS)
Collier, Joel H.; Mrksich, Milan
2006-02-01
Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction
Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang
2016-01-01
A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799
Fast photoacoustic imaging system based on 320-element linear transducer array.
Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun
2004-04-07
A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.
Analog circuit for controlling acoustic transducer arrays
Drumheller, Douglas S.
1991-01-01
A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.
High frequency copolymer ultrasonic transducer array of size-effective elements
NASA Astrophysics Data System (ADS)
Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank
2018-02-01
A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.
Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process
Eccardt; Niederer
2000-03-01
For medical high frequency acoustic imaging purposes the reduction in size of a single transducer element for one-dimensional and even more for two-dimensional arrays is more and more limited by fabrication and cabling technology. In the fields of industrial distance measurement and simple object recognition low cost phased arrays are lacking. Both problems can be solved with micromachined ultrasound transducers (MUTs). A single transducer is made of a large number of microscopic elements. Because of the array structure of these transducers, groups of elements can be built up and used as a phased array. By integrating parts of the sensor electronics on chip, the cabling effort for arrays can be reduced markedly. In contrast to standard ultrasonic technology, which is based on massive thickness resonators, vibrating membranes are the radiating elements of the MUTs. New micromachining technologies have emerged, allowing a highly reproducible fabrication of electrostatically driven membranes with gap heights below 500 nm. A microelectronic BiCMOS process was extended for surface micromechanics (T. Scheiter et al., Proceedings 11th European Conference on Solid-State Transducers, Warsaw, Vol. 3, 1997, pp. 1595-1598). Additional process steps were included for the realization of the membranes which form sealed cavities with the underlying substrate. Membrane and substrate are the opposite electrodes of a capacitive transducer. The transducers can be integrated monolithically on one chip together with the driving, preamplifying and multiplexing circuitry, thus reducing parasitic capacities and noise level significantly. Owing to their low mass the transducers are very well matched to fluid loads, resulting in a very high bandwidth of 50-100% (C. Eccardt et al., Proceedings Ultrasonics Symposium, San Antonio, Vol. 2, 1996, pp. 959-962; P.C. Eccardt et al., Proceedings of the 1997 Ultrasonics Symposium, Toronto, Vol. 2, 1997, pp. 1609-1618). In the following it is shown how the BiCMOS process has been modified to meet the demands for ultrasound generation and reception. Bias and driving voltages have been reduced down to the 10 V range. The electromechanical coupling is now almost comparable with that for piezoelectric transducers. The measurements exhibit sound pressures and bandwidths that are at least comparable with those of conventional piezoelectric transducer arrays.
Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals
Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina
2017-01-01
Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807
A novel serrated columnar phased array ultrasonic transducer
NASA Astrophysics Data System (ADS)
Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang
2016-02-01
Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.
Linear array transducer for high-power airborne ultrasound using flextensional structure
NASA Astrophysics Data System (ADS)
Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro
2015-07-01
To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.
Breast ultrasound tomography with two parallel transducer arrays
NASA Astrophysics Data System (ADS)
Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Gao, Kai; Intrator, Miranda; Hanson, Kenneth
2016-03-01
Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and characterization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated vertically to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography prototype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images.
NASA Astrophysics Data System (ADS)
Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong
2018-01-01
In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.
Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array
Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk
2013-01-01
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M.; Lin, Win-Li; Chang, Hsu; Shung, K. Kirk
2013-01-01
A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing. PMID:22293745
Autonomous surgical robotics using 3-D ultrasound guidance: feasibility study.
Whitman, John; Fronheiser, Matthew P; Ivancevich, Nikolas M; Smith, Stephen W
2007-10-01
The goal of this study was to test the feasibility of using a real-time 3D (RT3D) ultrasound scanner with a transthoracic matrix array transducer probe to guide an autonomous surgical robot. Employing a fiducial alignment mark on the transducer to orient the robot's frame of reference and using simple thresholding algorithms to segment the 3D images, we tested the accuracy of using the scanner to automatically direct a robot arm that touched two needle tips together within a water tank. RMS measurement error was 3.8% or 1.58 mm for an average path length of 41 mm. Using these same techniques, the autonomous robot also performed simulated needle biopsies of a cyst-like lesion in a tissue phantom. This feasibility study shows the potential for 3D ultrasound guidance of an autonomous surgical robot for simple interventional tasks, including lesion biopsy and foreign body removal.
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1973-01-01
The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.
Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound
NASA Astrophysics Data System (ADS)
Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning
2015-03-01
In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.
Azuma, Takashi; Ogihara, Makoto; Kubota, Jun; Sasaki, Akira; Umemura, Shin-ichiro; Furuhata, Hiroshi
2010-05-01
A new ultrasound array transducer with two different optimal frequencies designed for diagnosis and therapy integration in Doppler imaging-based transcranial sonothrombolysis is described. Previous studies have shown that respective frequencies around 0.5 and 2 MHz are suitable for sonothrombolysis and Doppler imaging. Because of the small acoustic window available for transcranial ultrasound exposure, it is highly desirable that both therapeutic and diagnostic ultrasounds pass through the same aperture with high efficiency. To achieve such a dual-frequency array transducer, we propose a bilaminar array, having an array for imaging and another for therapy, with a frequency selective isolation layer between the two arrays. The function of this layer is to isolate the imaging array from the therapy array at 2 MHz without disturbing the 0.5-MHz ultrasound transmission. In this study, we first used a 1-D model including two lead zirconate titanate (PZT) layers separated by an isolation layer for intuitive understanding of the phenomena. After that, we optimized the acoustic impedance and thickness of the isolation layer by analyzing pulse propagation in a 2-D model by conducting a numerical simulation with commercially available software. The optimal acoustic impedance and thickness are 3 to 4 MRayI and lambda/10, respectively. On the basis of the optimization, a prototype array transducer was fabricated, and the spatial resolutions of the Doppler images it obtained were found to be practically the same as those obtained through conventional imaging array transducers.
Distributed optical microsensors for hydrogen leak detection and related applications
NASA Astrophysics Data System (ADS)
Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton
2010-04-01
Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.
Ultrasonic imaging using optoelectronic transmitters.
Emery, C D; Casey, H C; Smith, S W
1998-04-01
Conventional ultrasound scanners utilize electronic transmitters and receivers at the scanner with a separate coaxial cable connected to each transducer element in the handle. The number of transducer elements determines the size and weight of the transducer cable assembly that connects the imaging array to the scanner. 2-D arrays that allow new imaging modalities to be introduced significantly increase the channel count making the transducer cable assembly more difficult to handle. Therefore, reducing the size and increasing the flexibility of the transducer cable assembly is a concern. Fiber optics can be used to transmit signals optically and has distinct advantages over standard coaxial cable to increase flexibility and decrease the weight of the transducer cable for larger channel numbers. The use of fiber optics to connect the array and the scanner entails the use of optoelectronics such as detectors and laser diodes to send and receive signals. In transmit, optoelectronics would have to be designed to produce high-voltage wide-bandwidth pulses across the transducer element. In this paper, we describe a 48 channel ultrasound system having 16 optoelectronic transmitters and 32 conventional electronic receivers. We investigated both silicon avalanche photodiodes (APD's) and GaAs lateral photoconductive semiconductor switches (PCSS's) for producing the transmit pulses. A Siemens SI-1200 scanner and a 2.25 MHz linear array were used to compare the optoelectronic system to a conventional electronic transmit system. Transmit signal results and images in tissue mimicking of cysts and tumors are provided for comparison.
Tunable optical lens array using viscoelastic material and acoustic radiation force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami
2015-10-28
A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.
Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk
2012-01-01
This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041
Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L
2011-09-01
This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.
Influence of resonant transducer variations on long range guided wave monitoring of rail track
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Long, Craig S.
2016-02-01
The ability of certain guided wave modes to propagate long distances in continuously welded rail track is exploited in permanently installed monitoring systems. Previous work demonstrated that reflections from thermite welds could be measured at distances of the order of 1 km from a transducer array. The availability of numerous thermite welds is useful during the development of a monitoring system as real defects are not available. Measurements of reflections from welds were performed over an eleven month period with two permanently installed transducers. Phased array processing was performed and the true location of a weld is indicated by a strong reflection but there is generally also a smaller, spurious replica reflection, at the same distance but in the incorrect direction. In addition, the relative reflection from different welds appears to change over time. The influence of differences between the two resonant transducers was investigated using a model. It was found that estimating the attenuation in either direction and scaling the reflections in either direction decreased the variability in the reflection measurements. Transducer interaction effects, where the transducer closer to the weld records a greater reflection than the second transducer were observed and can be used to determine the direction of a weld. This feature was used to demonstrate a simple alternative to phased array processing that can be used with resonant transducers.
Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Archer, Eric D. (Inventor)
2016-01-01
A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.
4-D ultrafast shear-wave imaging.
Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael
2015-06-01
Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE.
Design and fabrication of a 40-MHz annular array transducer
Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.
2006-01-01
This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516
Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S
2002-08-01
An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.
TH-AB-209-09: Quantitative Imaging of Electrical Conductivity by VHF-Induced Thermoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, S; Hull, D; See, W
Purpose: To demonstrate that very high frequency (VHF) induced thermoacoustics has the potential to provide quantitative images of electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Quantitatively imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. VHF irradiation provides superior depth penetration over near infrared used in photoacoustics. Additionally, VHF signalmore » production is proportional to electrical conductivity, and prostate cancer is known to suppress electrical conductivity of prostatic fluid. Methods: A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system augmented by a lower frequency focused single element transducer was developed. Simultaneous acquisition of VHF-induced thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were measured at isocenter. Results: The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a DC offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged ex vivo and volumetric reconstructions reveal structures rarely seen in diagnostic images. Conclusion: Quantitative whole-organ thermoacoustic tomography will be feasible by sparsely interspersing transducer elements sensitive to the low end of the ultrasonic range.« less
Triaxial thermopile array geo-heat-flow sensor
Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.
1992-01-01
A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Multiple single-element transducer photoacoustic computed tomography system
NASA Astrophysics Data System (ADS)
Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit
2018-02-01
Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.
Chaudhry, Aafia; Benson, Laura; Varshaver, Michael; Farber, Ori; Weinberg, Uri; Kirson, Eilon; Palti, Yoram
2015-11-11
Optune™, previously known as the NovoTTF-100A System™, generates Tumor Treating Fields (TTFields), an effective anti-mitotic therapy for glioblastoma. The system delivers intermediate frequency, alternating electric fields to the supratentorial brain. Patient therapy is personalized by configuring transducer array layout placement on the scalp to the tumor site using MRI measurements and the NovoTAL System. Transducer array layout mapping optimizes therapy by maximizing electric field intensity to the tumor site. This study evaluated physician performance in conducting transducer array layout mapping using the NovoTAL System compared with mapping performed by the Novocure in-house clinical team. Fourteen physicians (7 neuro-oncologists, 4 medical oncologists, and 3 neurosurgeons) evaluated five blinded cases of recurrent glioblastoma and performed head size and tumor location measurements using a standard Digital Imaging and Communications in Medicine reader. Concordance with Novocure measurement and intra- and inter-rater reliability were assessed using relevant correlation coefficients. The study criterion for success was a concordance correlation coefficient (CCC) >0.80. CCC for each physician versus Novocure on 20 MRI measurements was 0.96 (standard deviation, SD ± 0.03, range 0.90-1.00), indicating very high agreement between the two groups. Intra- and inter-rater reliability correlation coefficients were similarly high: 0.83 (SD ±0.15, range 0.54-1.00) and 0.80 (SD ±0.18, range 0.48-1.00), respectively. This user study demonstrated an excellent level of concordance between prescribing physicians and Novocure in-house clinical teams in performing transducer array layout planning. Intra-rater reliability was very high, indicating reproducible performance. Physicians prescribing TTFields, when trained on the NovoTAL System, can independently perform transducer array layout mapping required for the initiation and maintenance of patients on TTFields therapy.
Localization of multiple defects using the compact phased array (CPA) method
NASA Astrophysics Data System (ADS)
Senyurek, Volkan Y.; Baghalian, Amin; Tashakori, Shervin; McDaniel, Dwayne; Tansel, Ibrahim N.
2018-01-01
Array systems of transducers have found numerous applications in detection and localization of defects in structural health monitoring (SHM) of plate-like structures. Different types of array configurations and analysis algorithms have been used to improve the process of localization of defects. For accurate and reliable monitoring of large structures by array systems, a high number of actuator and sensor elements are often required. In this study, a compact phased array system consisting of only three piezoelectric elements is used in conjunction with an updated total focusing method (TFM) for localization of single and multiple defects in an aluminum plate. The accuracy of the localization process was greatly improved by including wave propagation information in TFM. Results indicated that the proposed CPA approach can locate single and multiple defects with high accuracy while decreasing the processing costs and the number of required transducers. This method can be utilized in critical applications such as aerospace structures where the use of a large number of transducers is not desirable.
Design of a HIFU array for the treatment of deep venous thrombosis: a simulation study
NASA Astrophysics Data System (ADS)
Smirnov, Petr; Hynynen, Kullervo
2017-08-01
Deep venous thrombosis of the iliofemoral veins is a common and morbid disease, with the recommended interventional treatment carrying a high risk of hemorrhaging and complications. High intensity focused ultrasound delivered with a single element transducer has been shown to successfully precipitate thrombolysis non-invasively in vitro and in vivo. However, in all previous studies damage to the veins or surrounding tissue has been observed. Using a simulation model of the human thigh, this study investigated whether a phased array device could overcome the large focal region limitations faced by single transducer treatment devices. Effects of the size, shape and frequency of the array on its focal region were considered. It was found that a λ/2 spaced array of 7680 elements operating at 500 kHz could consistently focus to a region fully contained within the femoral vein. Furthermore, it is possible to reduce the number of elements required by building arrays operating at lower frequencies. The results suggest that phased transducer arrays hold potential for developing a safe, non-invasive treatment of thrombolysis.
A micromachined efficient parametric array loudspeaker with a wide radiation frequency band.
Je, Yub; Lee, Haksue; Been, Kyounghun; Moon, Wonkyu
2015-04-01
Parametric array (PA) loudspeakers generate directional audible sound via the PA effect, which can make private listening possible. The practical applications of PA loudspeakers include information technology devices that require large power efficiency transducers with a wide frequency bandwidth. Piezoelectric micromachined ultrasonic transducers (PMUTs) are compact and efficient units for PA sources [Je, Lee, and Moon, Ultrasonics 53, 1124-1134 (2013)]. This study investigated the use of an array of PMUTs to make a PA loudspeaker with high power efficiency and wide bandwidth. The achievable maximum radiation bandwidth of the driver was calculated, and an array of PMUTs with two distinct resonance frequencies (f1 = 100 kHz, f2 = 110 kHz) was designed. Out-of-phase driving was used with the dual-resonance transducer array to increase the bandwidth. The fabricated PMUT array exhibited an efficiency of up to 71%, together with a ±3-dB bandwidth of 17 kHz for directly radiated primary waves, and 19.5 kHz (500 Hz to 20 kHz) for the difference frequency waves (with equalization).
Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.
Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos
2009-04-01
In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface.
NASA Astrophysics Data System (ADS)
Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.
2015-03-01
Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.
A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS.
Lemmerhirt, David F; Cheng, Xiaoyang; White, Robert; Rich, Collin A; Zhang, Man; Fowlkes, J Brian; Kripfgans, Oliver D
2012-07-01
As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process. This process typically yields better than 99% working elements per array, with less than ±1.5 dB variation in receive sensitivity among the 1024 individually addressable elements. The CMUT pulseecho frequency response is typically centered at 2.1 MHz with a -6 dB fractional bandwidth of 60%, and elements are arranged on a 250 μm hexagonal grid (less than half-wavelength pitch). Multiplexers and CMOS buffers within the array are used to make on-chip routing manageable, reduce the number of physical output leads, and drive the transducer cable. The array has been interfaced to a commercial imager as well as a set of custom transmit and receive electronics, and volumetric images of nylon fishing line targets have been produced.
Prototype development of a piezo-heating array for deicing application on bridges : final report.
DOT National Transportation Integrated Search
2017-01-01
A novel piezoelectric transducer was designed and fabricated to demonstrate energy harvesting from traffic-induced loading on pavement. The piezoelectric transducer is based on the cymbal transducer design used for underwater acoustic and sonar...
A Directional Dogbone Flextensional Sonar Transducer
2010-10-01
A Directional Dogbone Flextensional Sonar Transducer Stephen C. Butler Naval Undersea Warfare Center, Newport, RI 02841 Abstract: In order to...transmit energy in one direction, sonar flextensional transducers are combined into arrays of elements that are spaced a 1/4 wavelength apart. The...electroacoustic performance and compared with an experimental data. Keywords: Transducer, Flextensional, Sonar , Piezoelectric, Directional, Cardioid
Yang, Hao-Chung; Cannata, Jonathan; Williams, Jay; Shung, K. Kirk
2013-01-01
The goal of this research was to develop a novel diced 1–3 piezocomposite geometry to reduce pulse–echo ring down and acoustic crosstalk between high-frequency ultrasonic array elements. Two PZT-5H-based 1–3 composites (10 and 15 MHz) of different pillar geometries [square (SQ), 45° triangle (TR), and pseudo-random (PR)] were fabricated and then made into single-element ultrasound transducers. The measured pulse–echo waveforms and their envelopes indicate that the PR composites had the shortest −20-dB pulse length and highest sensitivity among the composites evaluated. Using these composites, 15-MHz array subapertures with a 0.95λ pitch were fabricated to assess the acoustic crosstalk between array elements. The combined electrical and acoustical crosstalk between the nearest array elements of the PR array sub-apertures (−31.8 dB at 15 MHz) was 6.5 and 2.2 dB lower than those of the SQ and the TR array subapertures, respectively. These results demonstrate that the 1–3 piezocomposite with the pseudo-random pillars may be a better choice for fabricating enhanced high-frequency linear-array ultrasound transducers; especially when mechanical dicing is used. PMID:23143580
Development of an omni-directional shear horizontal mode magnetostrictive patch transducer
NASA Astrophysics Data System (ADS)
Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin
2018-04-01
The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.
Annular array and method of manufacturing same
Day, Robert A.
1989-01-01
A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.
Means of manufacturing annular arrays
Day, R.A.
1985-10-10
A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.
NASA Astrophysics Data System (ADS)
Cheng, Jiqi; Lu, Jian-Yu
2002-05-01
Angular spectrum is one of the most powerful tools for field calculation. It is based on linear system theory and the Fourier transform and is used for the calculation of propagating sound fields at different distances. In this report, the generalization and interpretation of the angular spectrum and its intrinsic relationship with limited diffraction beams are studied. With an angular spectrum, the field at the surface of a transducer is decomposed into limited diffractions beams. For an array transducer, a linear relationship between the quantized fields at the surface of elements of the array and the propagating field at any point in space can be established. For an annular array, the field is decomposed into limited diffraction Bessel beams [P. D. Fox and S. Holm, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 85-93 (2002)], while for a two-dimensional (2-D) array the field is decomposed into limited diffraction array beams [J-y. Lu and J. Cheng, J. Acoust. Soc. Am. 109, 2397-2398 (2001)]. The angular spectrum reveals the intrinsic link between these decompositions. [Work supported in part by Grant 5RO1 HL60301 from NIH.
Phased-array vector velocity estimation using transverse oscillations.
Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A
2012-12-01
A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.
Ferns, Sunita; Komarlu, Rukmini; Van Bergen, Andrew; Multani, Kanwar; Cui, Vivian Wei; Roberson, David A
2012-08-01
Multiple barriers to transthoracic echocardiography are present in critically ill infants immediately after surgery. Transesophageal echocardiography (TEE) is sometimes needed to obtain specific important information that transthoracic echocardiography fails to demonstrate. Formerly, the investigators used the AcuNav intracardiac echocardiographic (ICE) intravascular ultrasound transducer (8 Fr, 2.5 mm, 64-element crystal array, multifrequency [5.5-10 MHz], single longitudinal plane, linear phased array [Siemens Medical Solutions USA, Inc., Mountain View, CA]). Recently, the investigators have also used the microTEE transducer (8-mm transducer tip, 5.2-mm shaft, multifrequency [3-8 MHz], multiplane phased array, 32-element probe [Philips Medical Systems, Andover, MA]). Both transducers have two-dimensional, M-mode, color Doppler, and pulsed-wave and continuous-wave Doppler capabilities. The aim of this study was to compare the efficacy, safety, ease of insertion, capabilities, utilization, and cost of the AcuNav ICE transducer versus those of the microTEE transducer. A retrospective review of all 50 postoperative critically ill infants who underwent TEE using the AcuNav and microTEE in the past 5 years was conducted. TEE was performed as ordered by the attending physician to answer a specific question not answered by transthoracic echocardiography. In all cases, the clinical information sought was obtained. The AcuNav ICE transducer was safe, easy to insert through the transnasal route, and did not require paralysis; however, it had a limited number of echocardiographic views and had greater sterilization cost. The microTEE transducer had greater echocardiographic capabilities and lower sterilization cost; however, it was slightly more difficult to insert, had a few manageable complications, and required more sedation and paralysis. TEE in this setting has increased because of demonstrated efficacy and safety. Both the AcuNav ICE and microTEE transducers are useful and effective in this critical clinical scenario. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
A high-precision miniaturized rotating coil transducer for magnetic measurements
Arpaia, P.; Buzio, M.; De Oliveira, R.; ...
2018-02-08
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
A high-precision miniaturized rotating coil transducer for magnetic measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P.; Buzio, M.; De Oliveira, R.
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
A new ultrasonic transducer for improved contrast nonlinear imaging
NASA Astrophysics Data System (ADS)
Bouakaz, Ayache; ten Cate, Folkert; de Jong, Nico
2004-08-01
Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of such a transducer design for improved contrast detection.
Phased Array Focusing for Acoustic Wireless Power Transfer.
Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan
2018-01-01
Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.
Acoustic backing in 3-D integration of CMUT with front-end electronics.
Berg, Sigrid; Rønnekleiv, Arne
2012-07-01
Capacitive micromachined ultrasonic transducers (CMUTs) have shown promising qualities for medical imaging. However, there are still some problems to be investigated, and some challenges to overcome. Acoustic backing is necessary to prevent SAWs excited in the surface of the silicon substrate from affecting the transmit pattern from the array. In addition, echoes resulting from bulk waves in the substrate must be removed. There is growing interest in integrating electronic circuits to do some of the beamforming directly below the transducer array. This may be easier to achieve for CMUTs than for traditional piezoelectric transducers. We will present simulations showing that the thickness of the silicon substrate and thicknesses and acoustic properties of the bonding material must be considered, especially when designing highfrequency transducers. Through simulations, we compare the acoustic properties of 3-D stacks bonded with three different bonding techniques; solid-liquid interdiffusion (SLID) bonding, direct fusion bonding, and anisotropic conductive adhesives (ACA). We look at a CMUT array with a center frequency of 30 MHz and three silicon wafers underneath, having a total silicon thickness of 100 μm. We find that fusion bonding is most beneficial if we want to prevent surface waves from damaging the array response, but SLID and ACA are also promising if bonding layer thicknesses can be reduced.
NASA Technical Reports Server (NTRS)
Casasent, D.
1978-01-01
The article discusses several optical configurations used for signal processing. Electronic-to-optical transducers are outlined, noting fixed window transducers and moving window acousto-optic transducers. Folded spectrum techniques are considered, with reference to wideband RF signal analysis, fetal electroencephalogram analysis, engine vibration analysis, signal buried in noise, and spatial filtering. Various methods for radar signal processing are described, such as phased-array antennas, the optical processing of phased-array data, pulsed Doppler and FM radar systems, a multichannel one-dimensional optical correlator, correlations with long coded waveforms, and Doppler signal processing. Means for noncoherent optical signal processing are noted, including an optical correlator for speech recognition and a noncoherent optical correlator.
Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner
NASA Astrophysics Data System (ADS)
Bücking, Thore M.; van den Berg, Pim J.; Balabani, Stavroula; Steenbergen, Wiendelt; Beard, Paul C.; Brunker, Joanna
2018-02-01
Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580 μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25 mm / s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability.
High density pixel array and laser micro-milling method for fabricating array
NASA Technical Reports Server (NTRS)
McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)
2003-01-01
A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.
NASA Technical Reports Server (NTRS)
McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)
2004-01-01
A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.
Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng
2016-12-21
In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI.
The extracellular matrix remodeled
Kirmse, Robert; Otto, Hannes
2012-01-01
Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell’s microenvironment. Cell’s must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I. PMID:22482015
Damage localization in aluminum plate with compact rectangular phased piezoelectric transducer array
NASA Astrophysics Data System (ADS)
Liu, Zenghua; Sun, Kunming; Song, Guorong; He, Cunfu; Wu, Bin
2016-03-01
In this work, a detection method for the damage in plate-like structure with a compact rectangular phased piezoelectric transducer array of 16 piezoelectric elements was presented. This compact array can not only detect and locate a single defect (through hole) in plate, but also identify multi-defects (through holes and surface defect simulated by an iron pillar glued to the plate). The experiments proved that the compact rectangular phased transducer array could detect the full range of plate structures and implement multiple-defect detection simultaneously. The processing algorithm proposed in this paper contains two parts: signal filtering and damage imaging. The former part was used to remove noise from signals. Continuous wavelet transform was applicable to signal filtering. Continuous wavelet transform can provide a plot of wavelet coefficients and the signal with narrow frequency band can be easily extracted from the plot. The latter part of processing algorithm was to implement damage detection and localization. In order to accurately locate defects and improve the imaging quality, two images were obtained from amplitude and phase information. One image was obtained with the Total Focusing Method (TFM) and another phase image was obtained with the Sign Coherence Factor (SCF). Furthermore, an image compounding technique for compact rectangular phased piezoelectric transducer array was proposed in this paper. With the proposed technique, the compounded image can be obtained by combining TFM image with SCF image, thus greatly improving the resolution and contrast of image.
Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bourdais, F.; Le Polles, T.; Baque, F.
2015-07-01
This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)
2D array transducers for real-time 3D ultrasound guidance of interventional devices
NASA Astrophysics Data System (ADS)
Light, Edward D.; Smith, Stephen W.
2009-02-01
We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.
Quantitative ultrasonic evaluation of concrete structures using one-sided access
NASA Astrophysics Data System (ADS)
Khazanovich, Lev; Hoegh, Kyle
2016-02-01
Nondestructive diagnostics of concrete structures is an important and challenging problem. A recent introduction of array ultrasonic dry point contact transducer systems offers opportunities for quantitative assessment of the subsurface condition of concrete structures, including detection of defects and inclusions. The methods described in this paper are developed for signal interpretation of shear wave impulse response time histories from multiple fixed distance transducer pairs in a self-contained ultrasonic linear array. This included generalizing Kirchoff migration-based synthetic aperture focusing technique (SAFT) reconstruction methods to handle the spatially diverse transducer pair locations, creating expanded virtual arrays with associated reconstruction methods, and creating automated reconstruction interpretation methods for reinforcement detection and stochastic flaw detection. Interpretation of the reconstruction techniques developed in this study were validated using the results of laboratory and field forensic studies. Applicability of the developed methods for solving practical engineering problems was demonstrated.
A novel ultrasonic phased array inspection system to NDT for offshore platform structures
NASA Astrophysics Data System (ADS)
Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping
2007-01-01
A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-09-13
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-01-01
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602
High power transcranial beam steering for ultrasonic brain therapy
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickaël; Thomas, Jean-Louis; Fink, Mathias
2003-01-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single-elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5cm2 and works at 0.9 MHz central frequency with a maximum 20W.cm−2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducers distributions on a spherical surface are simulated: hexagonal, annular, and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/− 15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system. PMID:12974575
High power transcranial beam steering for ultrasonic brain therapy
NASA Astrophysics Data System (ADS)
Pernot, M.; Aubry, J.-F.; Tanter, M.; Thomas, J.-L.; Fink, M.
2003-08-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5 cm2 and works at 0.9 MHz central frequency with a maximum 20 W cm-2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducer distributions on a spherical surface are simulated: hexagonal, annular and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/-15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system.
NASA Astrophysics Data System (ADS)
Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy
2012-11-01
Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.
Focused ultrasound in ophthalmology
Silverman, Ronald H
2016-01-01
The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007
Focused ultrasound in ophthalmology.
Silverman, Ronald H
2016-01-01
The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.
Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.
Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B
2012-09-01
The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Jung-Soon; Kim, Moo-Joon; Kim, Jung-Ho; Ha, Kang-Lyeol
2005-06-01
In this study, ultrasonic array transducers with 32 vibrators arranged on the internal surface of a part of a cylinder were fabricated. The vibrators were operated by the piezoelectric transverse effect. By controlling the phase of the input signal for every vibrator, a quasi plane wave was synthesized. Using the fabricated array, inverse scattering ultrasonic computed tomography (UCT) was carried out with a phantom specimen after checking the plane wave generation. It was confirmed that the plane wave was synthesized successfully and a sound velocity image of the phantom was obtained by the plane wave. Consequently, it was noted that the array could be employed as a transmitter and receiver for data acquisition in UCT.
Song, Junho; Hynynen, Kullervo
2009-01-01
A hemispherical-focused, ultrasound phased array was designed and fabricated using 1372 cylindrical piezoelectric transducers that utilize lateral coupling for noninvasive transcranial therapy. The cylindrical transducers allowed the electrical impedance to be reduced by at least an order of magnitude, such that effective operation could be achieved without electronic matching circuits. In addition, the transducer elements generated the maximum acoustic average surface intensity of 27 W/cm2. The array, driven at the low (306 kHz) or high frequency (840 kHz), achieved excellent focusing through an ex vivo human skull and an adequate beam steering range for clinical brain treatments. It could electronically steer the ultrasound beam over cylindrical volumes of 100 mm in diameter and 60 mm in height at 306 kHz, and 30-mm in diameter and 30-mm in height at 840 kHz. A scanning laser vibrometer was used to investigate the radial and length mode vibrations of the element. The maximum pressure amplitudes through the skull at the geometric focus were predicted to be 5.5 MPa at 306 kHz and 3.7 MPa at 840 kHz for RF power of 1 W on each element. This is the first study demonstrating the feasibility of using cylindrical transducer elements and lateral coupling in construction of ultrasound phased arrays. PMID:19695987
Effect of nonlinearity on lesion formation for high-intensity focused ultrasound (HIFU) exposures
NASA Astrophysics Data System (ADS)
Lee, Paul; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Vecchio, Christopher J.
2004-05-01
This study examined the effects of nonlinear propagation phenomena on two types of HIFU transducers (5 MHz) being used for thermal treatments of disease. The first transducer is a 5-element annular array. The second is a transducer with a 5-strip electrode; its multilobed focused beam is designed to efficiently produce broad, paddle-shaped lesions. The beam patterns of these transducers were computed using a variety of excitation patterns for electronic focusing of the annular array and variation of lesion size for the strip-electrode transducer. A range of intensities was studied to determine how nonlinear propagation affects the beam shape, constituent frequency content, grating lobes, etc. These 3D computations used a finite-amplitude beam propagation model that combined the angular spectrum method and Burger's equation to compute the diffraction and nonlinear effects, respectively. Computed beam patterns were compared with hydrophone measurements for each transducer. The linear and nonlinear beam patterns were used to compute the absorbed thermal dose, and the bioheat equation was evaluated to calculate 3D temperature rises and geometry of induced lesions. Computed lesion sizes and shapes were compared to in vitro lesions created by each HIFU transducer. [Work supported by NCI and NHLBI Grant 5R01 CA84588.
MEMS ultrasonic transducer for monitoring of steel structures
NASA Astrophysics Data System (ADS)
Jain, Akash; Greve, David W.; Oppenheim, Irving J.
2002-06-01
Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.
Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme
2011-01-01
This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.
Wang, Mingjun; Zhou, Yufeng
2016-08-01
HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.
NASA Astrophysics Data System (ADS)
Adams, Matthew S.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2017-02-01
Endoluminal high-intensity ultrasound offers spatially-precise thermal ablation of tissues adjacent to body lumens, but is constrained in treatment volume and penetration depth by the effective aperture of integrated transducers, which are limited in size to enable delivery through anatomical passages, endoscopic instrumentation, or laparoscopic ports. This study introduced and investigated three distinct endoluminal ultrasound applicator designs that can be delivered in a compact state then deployed or expanded at the target luminal site to increase the effective therapeutic aperture. The first design incorporated an array of planar transducers which could be unfolded at specific angles of convergence between the transducers. Two alternative designs consisted of fixed transducer sources surrounded by an expandable multicompartment balloon that contained acoustic reflector and dynamically-adjustable fluid lenses compartments. Parametric studies of acoustic output were performed across device design parameters via the rectangular radiator and secondary sources methods. Biothermal models were used to simulate resulting temperature distributions in three-dimensional heterogeneous tissue models. Simulations indicate that a deployable transducer array can increase volumetric coverage and penetration depth by 80% and 20%, respectively, while permitting more conformal thermal lesion shapes based on the degree of convergence between the transducers. The applicator designs incorporating reflector and fluid lenses demonstrated enhanced focal gain and penetration depth that increased with the diameter of the expanded reflector-lens balloon. Thermal simulations of assemblies with 12 mm compact profiles and 50 mm expanded balloon diameters demonstrated generation of localized thermal lesions at depths up to 10 cm in liver tissue.
A 15-MHz 1-3 Piezocomposite Concave Array Transducer for Ophthalmic Imaging.
Cha, Jung Hyui; Kang, Byungwoo; Jang, Jihun; Chang, Jin Ho
2015-11-01
Because of the spherical shape of the human eye, the anterior segments of the eye, particularly the cornea and the lens, create high levels of refraction and reflection of ultrasound which negatively affect the performance of linear and convex arrays. To minimize the ultrasound energy loss, a 15-MHz concave array transducer was designed, fabricated, and characterized; its footprint is able to mesh well with the shape of the cornea. The concave array has a curvature with a radius of 15 mm and 128 elements with a 1.44- pitch. Its elevational focus and view angle are 30 mm and 72.3°, respectively, thus allowing the imaging area to cover the retinal region of interest in the posterior segment. As an active layer, a 1-3 piezocomposite was designed and fabricated in response to the bidirectional (i.e., azimuthal and elevational) curvature of the concave array and the high coupling coefficient. From the performance evaluation, it was found that the completed concave array is able to provide a center frequency of 15.95 MHz and a -6-dB fractional bandwidth of 67.8% after electrical tuning has been conducted. The crosstalk level was measured to be less than -25 dB. It was verified that the concave array is robust to the refraction and reflection from the cornea through pulse-echo testing using a custom-made eye-mimicking phantom. Furthermore, images of both the wire-target phantom and the ex vivo porcine eye were acquired by the finished concave array, which was connected to a commercial ultrasound scanner equipped with a research package. The evaluation results demonstrated that the developed concave array transducer is a possible alternative to conventional arrays for effectively imaging the posterior segment of the eye.
Lorentz force electrical impedance tomography using magnetic field measurements.
Zengin, Reyhan; Gençer, Nevzat Güneri
2016-08-21
In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with [Formula: see text] mm size can be detected up to a 3.5 cm depth.
Lorentz force electrical impedance tomography using magnetic field measurements
NASA Astrophysics Data System (ADS)
Zengin, Reyhan; Güneri Gençer, Nevzat
2016-08-01
In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with 5~\\text{mm}× 5 mm size can be detected up to a 3.5 cm depth.
Ultrasound therapy transducers with space-filling non-periodic arrays.
Raju, Balasundar I; Hall, Christopher S; Seip, Ralf
2011-05-01
Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.
NASA Astrophysics Data System (ADS)
Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares
2011-06-01
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm-2 CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares
2011-06-21
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm(-2) CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Design of HIFU transducers to generate specific nonlinear ultrasound fields.
Khokhlova, Vera A; Yuldashev, Petr V; Rosnitskiy, Pavel B; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Sapozhnikov, Oleg A
2016-01-01
Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation of tissue. In this work, an inverse problem of determining transducer parameters to enable formation of shocks with desired amplitude at the focus is solved. The solution was obtained by performing multiple direct simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sources as well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocks are formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.
Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields
NASA Astrophysics Data System (ADS)
Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.
Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation oftissue. In this work, an inverse problem of determining transducer parameters to enable formation of shockswith desired amplitude at the focus is solved. The solution was obtained by performing multipledirect simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sourcesas well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocksare formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.
Environmental control system transducer development study
NASA Technical Reports Server (NTRS)
Brudnicki, M. J.
1973-01-01
A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.
Triaxial thermopile array geo-heat-flow sensor
Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.
1990-01-01
A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.
Wang, Zhuochen; Martin, K Heath; Dayton, Paul A; Jiang, Xiaoning
2018-01-01
Recent studies suggest that dual-frequency intravascular ultrasound (IVUS) transducers allow detection of superharmonic bubble signatures, enabling acoustic angiography for microvascular and molecular imaging. In this paper, a dual-frequency IVUS cylindrical array transducer was developed for real-time superharmonic imaging. A reduced form-factor lateral mode transmitter (2.25MHz) was used to excite microbubbles effectively at 782kPa with single-cycle excitation while still maintaining the small size and low profile (5Fr) (3Fr=1mm) for intravascular imaging applications. Superharmonic microbubble responses generated in simulated microvessels were captured by the high frequency receiver (30MHz). The axial and lateral full-width half-maximum of microbubbles in a 200-μm-diameter cellulose tube were measured to be 162μm and 1039μm, respectively, with a contrast-to-noise ratio (CNR) of 16.6dB. Compared to our previously reported single-element IVUS transducers, this IVUS array design achieves a higher CNR (16.6dBvs 11dB) and improved axial resolution (162μmvs 616μm). The results show that this dual-frequency IVUS array transducer with a lateral-mode transmitter can fulfill the native design requirement (∼3-5Fr) for acoustic angiography by generating nonlinear microbubble responses as well as detecting their superharmonic responses in a 5Fr form factor. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wooh, Shi-Chang; Azar, Lawrence
1999-01-01
The degradation of civil infrastructure has placed a focus on effective nondestructive evaluation techniques to correctly assess the condition of existing concrete structures. Conventional high frequency ultrasonic response are severely affected by scattering and material attenuation, resulting in weak and confusing signal returns. Therefore, low frequency ultrasonic transducers, which avoid this problem of wave attenuation, are commonly used for concrete with limited capabilities. The focus of this research is to ascertain some benefits and limitations of a low frequency ultrasonic phased array transducer. In this paper, we investigate a novel low-frequency ultrasonic phased array and the results of experimental feasibility test for practical condition assessment of concrete structures are reported.
A 5 MHz Cylindrical Dual-Layer Transducer Array for 3-D Transrectal Ultrasound Imaging
Chen, Yuling; Nguyen, Man; Yen, Jesse T.
2012-01-01
2-D transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user-dependent and unreliable. A real-time 3-D TRUS system could improve reliability and volume rates of imaging during these procedures. In this paper, we present a 5 MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared to fully-sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System (VDAS). Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor (GCF) was applied to improve the contrast of images. The measured −6 dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm. PMID:22972914
A 5-MHz cylindrical dual-layer transducer array for 3-D transrectal ultrasound imaging.
Chen, Yuling; Nguyen, Man; Yen, Jesse T
2012-07-01
Two-dimensional transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user dependent, and unreliable. A real-time three-dimensional (3-D) TRUS system could improve reliability and volume rates of imaging during these procedures. In this article, the authors present a 5-MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared with fully sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System. Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor was applied to improve the contrast of images. The measured -6-dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions, respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm.
NASA Astrophysics Data System (ADS)
Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo
2015-11-01
We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.
Compact Transducers and Arrays
2005-05-01
Batra A, Priya S, Uchino K, Markley D, Newnham RE, Hofmann HF, "Energy harvesting using a piezoelectric "cymbal" transducer in dynamic environment...transducers, the flexural vibration of the metal shell causes an extensional vibration of the piezoelectric ceramic, or vice versa. Cymbal elements are...34On Axi-Symmetrical Vibrations of Shallow Spherical Shells," Quart. Appl. Math, 13 279 (1950). 19.R.S. Woollett, "Theory of the Piezoelectric Flexural
Reflective array modeling for reflective and directional SAW transducers.
Morgan, D P
1998-01-01
This paper presents a new approximate method for analyzing reflective SAW transducers, with much of the convenience of the coupled-mode (COM) method but with better accuracy. Transduction accuracy is obtained by incorporating the accurate electrostatic solution, giving for example correct harmonics, and allowance for electrode width variation, in a simple manner. Results are shown for a single-electrode transducer, Natural SPUDT and DART SPUDT, each using theoretically derived parameters. In contrast to the COM, the RAM can give accurate results for short or withdrawal-weighted transducers and for wide analysis bandwidth.
Reducing mechanical cross-coupling in phased array transducers using stop band material as backing
NASA Astrophysics Data System (ADS)
Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.
2018-06-01
Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.
Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Lanzillotti-Kimura, Norberto D.; O'Brien, Kevin P.; Rho, Junsuk; Suchowski, Haim; Yin, Xiaobo; Zhang, Xiang
2018-06-01
Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons, and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducers, with tunable frequency, and easy to integrate in complex systems is still an open and challenging problem for the development of acoustic nanoscopies and phonon lasers. Here we show how an optimized plasmonic metasurface can act as a high-frequency phonon transducer. We report pump-probe experiments in metasurfaces composed of an array of gold nanostructures, revealing that such arrays can act as efficient and tunable photon-phonon transducers, with a strong spectral dependence on the excitation rate and laser polarization. We anticipate our work to be the starting point for the engineering of phononic metasurfaces based on plasmonic nanostructures.
Design of HIFU transducers to generate specific nonlinear ultrasound fields
Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.
2017-01-01
Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation of tissue. In this work, an inverse problem of determining transducer parameters to enable formation of shocks with desired amplitude at the focus is solved. The solution was obtained by performing multiple direct simulations of the parabolic Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sources as well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocks are formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90–100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University. PMID:28580038
Photoacoustic Imaging of Animals with an Annular Transducer Array
NASA Astrophysics Data System (ADS)
Yang, Di-Wu; Zhou, Zhi-Bin; Zeng, Lv-Ming; Zhou, Xin; Chen, Xing-Hui
2014-07-01
A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank
2016-07-01
High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.
NASA Astrophysics Data System (ADS)
Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.
2018-04-01
Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3 × 3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.
NASA Astrophysics Data System (ADS)
Kumavor, Patrick D.; Alqasemi, Umar; Tavakoli, Behnoosh; Li, Hai; Yang, Yi; Zhu, Quing
2013-03-01
This paper presents a real-time transvaginal photoacoustic imaging probe for imaging human ovaries in vivo. The probe consists of a high-throughput (up to 80%) fiber-optic 1 x 19 beamsplitters, a commercial array ultrasound transducer, and a fiber protective sheath. The beamsplitter has a 940-micron core diameter input fiber and 240-micron core diameter output fibers numbering 36. The 36 small-core output fibers surround the ultrasound transducer and delivers light to the tissue during imaging. A protective sheath, modeled in the form of the transducer using a 3-D printer, encloses the transducer with array of fibers. A real-time image acquisition system collects and processes the photoacoustic RF signals from the transducer, and displays the images formed on a monitor in real time. Additionally, the system is capable of coregistered pulse-echo ultrasound imaging. In this way, we obtain both morphological and functional information from the ovarian tissue. Photoacousitc images of malignant human ovaries taken ex vivo with the probe revealed blood vascular and networks that was distinguishable from normal ovaries, making the probe potential useful for characterizing ovarian tissue.
Feng, Guo-Hua; Liu, Wei-Fan
2013-10-09
This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.
NASA Astrophysics Data System (ADS)
Park, E.-J.; Luis, J.; Meyer, R. J.; Pishko, M. V.; Smith, N. B.
2006-05-01
Recent studies have shown that ultrasound mediated transdermal drug delivery offers promising results for noninvasive drug administration. The purpose of this study was to demonstrate ultrasonic transdermal insulin delivery and in vivo sensing glucose with a novel, low-profile ultrasound array based on the cymbal transducer. As a practical device, the array composed of circular cymbal transducers was thin (< 7mm) and weighed less than 22g. Using this array on hyperglycemic rats, our previous experiments demonstrated that blood glucose would decrease by 296.7 mg/dL from 60 minutes of ultrasound exposure. With a similar intensity, our goal was to evaluate the feasibility of insulin delivery with large animals (rabbits and pigs) and noninvasively determine the glucose level of hyperglycemic rats with the array system. Ultrasound was exposed for 60 minutes at Isptp=100 mW/cm2. With the same procedure, a preliminary experiment of large animal was performed on a pig (12 kg) at Isptp=50 mW/cm2. For the control experiments in insulin delivery, the blood glucose level varied little from the initial baseline. However, for the ultrasound and insulin exposure experiment, the glucose level was found to decrease by 132.6 mg/dL in 60 minutes and continued to decrease by 208.1 mg/dL in 90 minutes. From the preliminary pig experiment, the blood glucose level decreased by 120 mg/dL in 90 minutes. To noninvasively determine the glucose level, ultrasound exposure experiments with an electrochemical glucose biosensor were performed on hyperglycemic rats. After 20 minutes ultrasound exposure, the biosensor was placed at the exposure area to determine the concentration of glucose diffused through the skin. The glucose level of rats determined by the biosensor was 408 mg/dL which was very similar to the results of conventional glucose meter reading 396.7 mg/dL. Recently, a rectangular cymbal transducer was developed to obtain a larger sonication area without an increase in array size. Preliminary experiments were performed on hyperglycemic rabbits to evaluate the new transducer design. The results showed that the rectangular array has enhanced performance compared to the circular array. All results of ultrasound application indicate the feasibility of using a low-cost, light-weight cymbal array for enhanced noninvasive transdermal insulin delivery and glucose monitoring.
1996-12-16
the Invention 13 The present invention relates to planar sonar arrays. More 14 particularly, the invention relates to the arrangement of 15...transducer elements in planar sonar arrays. 16 (2) Description of the Prior Art 17 Conventional planar sonar array designs typically comprise 18 ceramic...signal 5 conditioners ( preamplifiers )/as short as possible. However, this 6 requirement complicates fabrication and provides little space to 7
NASA Astrophysics Data System (ADS)
Pang, Guofeng
The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.
NASA Astrophysics Data System (ADS)
Massimino, G.; Colombo, A.; D'Alessandro, L.; Procopio, F.; Ardito, R.; Ferrera, M.; Corigliano, A.
2018-05-01
In this paper a complete multiphysics modelling via the finite element method (FEM) of an air-coupled array of piezoelectric micromachined ultrasonic transducers (PMUT) and its experimental validation are presented. Two numerical models are described for the single transducer, axisymmetric and 3D, with the following features: the presence of fabrication induced residual stresses, which determine a non-linear initial deformed configuration of the diaphragm and a substantial fundamental mode frequency shift; the multiple coupling between different physics, namely electro-mechanical coupling for the piezo-electric model, thermo-acoustic-structural interaction and thermo-acoustic-pressure interaction for the waves propagation in the surrounding fluid. The model for the single transducer is enhanced considering the full set of PMUTs belonging to the silicon dye in a 4 × 4 array configuration. The results of the numerical multiphysics models are compared with experimental ones in terms of the initial static pre-deflection, of the diaphragm central point spectrum and of the sound intensity at 3.5 cm on the vertical direction along the axis of the diaphragm.
Grating lobe elimination in steerable parametric loudspeaker.
Shi, Chuang; Gan, Woon-Seng
2011-02-01
In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.
A 5 meter range non-planar CMUT array for Automotive Collision Avoidance
NASA Astrophysics Data System (ADS)
Hernandez Aguirre, Jonathan
A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.
Sheehy, Samuel; Annabi, Borhane
2017-01-01
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP's role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal-regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Li, Xiang; Yang, Zhibo; Chen, Xuefeng
2014-01-01
The active structural health monitoring (SHM) approach for the complex composite laminate structures of wind turbine blades (WTBs), addresses the important and complicated problem of signal noise. After illustrating the wind energy industry's development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT) pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT) denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load) on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates. PMID:24763210
NASA Astrophysics Data System (ADS)
Saleh, Khaldon Y.; Smith, Nadine B.
2003-10-01
Focused ultrasound surgery (FUS) is a clinical method for treating benign prostatic hyperplasia (BPH) in which tissue is noninvasively necrosed by elevating the temperature at the focal point above 60
Alternative Post-Processing on a CMOS Chip to Fabricate a Planar Microelectrode Array
López-Huerta, Francisco; Herrera-May, Agustín L.; Estrada-López, Johan J.; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S.
2011-01-01
We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications. PMID:22346681
Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array.
López-Huerta, Francisco; Herrera-May, Agustín L; Estrada-López, Johan J; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S
2011-01-01
We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+ -type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications.
Linear and nonlinear equivalent circuit modeling of CMUTs.
Lohfink, Annette; Eccardt, Peter-Christian
2005-12-01
Using piston radiator and plate capacitance theory capacitive micromachined ultrasound transducers (CMUT) membrane cells can be described by one-dimensional (1-D) model parameters. This paper describes in detail a new method, which derives a 1-D model for CMUT arrays from finite-element methods (FEM) simulations. A few static and harmonic FEM analyses of a single CMUT membrane cell are sufficient to derive the mechanical and electrical parameters of an equivalent piston as the moving part of the cell area. For an array of parallel-driven cells, the acoustic parameters are derived as a complex mechanical fluid impedance, depending on the membrane shape form. As a main advantage, the nonlinear behavior of the CMUT can be investigated much easier and faster compared to FEM simulations, e.g., for a design of the maximum applicable voltage depending on the input signal. The 1-D parameter model allows an easy description of the CMUT behavior in air and fluids and simplifies the investigation of wave propagation within the connecting fluid represented by FEM or transmission line matrix (TLM) models.
Advances in diagnostic ultrasonography.
Reef, V B
1991-08-01
A wide variety of ultrasonographic equipment currently is available for use in equine practice, but no one machine is optimal for every type of imaging. Image quality is the most important factor in equipment selection once the needs of the practitioner are ascertained. The transducer frequencies available, transducer footprints, depth of field displayed, frame rate, gray scale, simultaneous electrocardiography, Doppler, and functions to modify the image are all important considerations. The ability to make measurements off of videocassette recorder playback and future upgradability should be evaluated. Linear array and sector technology are the backbone of equine ultrasonography today. Linear array technology is most useful for a high-volume broodmare practice, whereas sector technology is ideal for a more general equine practice. The curved or convex linear scanner has more applications than the standard linear array and is equipped with the linear array rectal probe, which provides the equine practitioner with a more versatile unit for equine ultrasonographic evaluations. The annular array and phased array systems have improved image quality, but each has its own limitations. The new sector scanners still provide the most versatile affordable equipment for equine general practice.
NASA Astrophysics Data System (ADS)
Jung, Joontaek; Kim, Sangwon; Lee, Wonjun; Choi, Hongsoo
2013-12-01
A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm-2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.
Application of PMN-32PT Piezoelectric Crystals for Novel Air-coupled Ultrasonic Transducers
NASA Astrophysics Data System (ADS)
Kazys, Rymantas Jonas; Sliteris, Reimondas; Sestoke, Justina
Due to very high piezoelectric properties of PMN-PT crystals they may significantly improve performance of air-coupled ultrasonic transducers. For these purpose vibrations of PMN-PT rectangular plates and strips were investigated. An air-coupled ultrasonic transducer and array consisting of 8 single piezoelectric strips were designed. Operation of the transducer was simulated by the finite element method using ANSYS Mechanical APDL Product Launcher software. Spatial distributions of displacements inside piezoelectric elements and matching strip were obtained. Experimental investigations were carried out by the laser Doppler vibrometer Polytec OFV-5000 and the Bruel&Kjaer microphone 4138 with the measurement amplifier NEXUS WH 3219. It was found that performance of the ultrasonic transducer with PMN-32PT crystals was a few times better than of a PZT based ultrasonic transducer.
Piezoelectric single crystals for ultrasonic transducers in biomedical applications
Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk
2014-01-01
Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032
Ex-vivo HIFU experiments using a 32 × 32-element CMUT array
Yoon, Hyo-Seon; Chang, Chienliu; Jang, Ji Hoon; Bhuyan, Anshuman; Choe, Jung Woo; Nikoozadeh, Amin; Watkins, Ronald D.; Stephens, Douglas N.; Pauly, Kim Butts; Khuri-Yakub, Butrus T.
2016-01-01
High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 × 8-mm2, 32 × 32-element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit (ASIC). With a 40-V DC bias and a 60-V peak-to-peak AC excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this DC and AC voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. Following ex-vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue. PMID:27913330
Experiments in ultrasonic flaw detection using a MEMS transducer
NASA Astrophysics Data System (ADS)
Jain, Akash; Greve, David W.; Oppenheim, Irving J.
2003-08-01
In earlier work we developed a MEMS phased array transducer, fabricated in the MUMPs process, and we reported on initial experimental studies in which the device was affixed into contact with solids. We demonstrated the successful detection of signals from a conventional ultrasonic source, and the successful localization of the source in an off-axis geometry using phased array signal processing. We now describe the predicted transmission and coupling characteristics for such devices in contact with solids, demonstrating reasonable agreement with experimental behavior. We then describe the results of flaw detection experiments, as well as results for fluid-coupled detectors.
NASA Astrophysics Data System (ADS)
Emadi, Arezoo; Buchanan, Douglas
2016-10-01
A multiple moving membrane capacitive micromachined ultrasonic transducer has been developed. This transducer cell structure includes a second flexible plate suspended between the transducer top plate and the fixed bottom electrode. The added plate influences the transducer top plate deflection map and, therefore, the transducer properties. Three series of individual air-coupled, dual deflectable plate transducers and two 1×27 element transducer arrays were fabricated using multiuser microelectromechanical systems (MEMS) processes (MUMPs). Each set of transducers included devices with middle plate radii from 22% to 65% of the corresponding transducer top plate radius. The effect of the transducer middle plate configuration has been investigated. Electrical, optical, and acoustic characterizations were conducted and the results were compared with the simulation findings. It was found that the transducer top plate amplitude of vibration is significantly enhanced with a wider middle deflectable plate. The electrical and optical measurement results are shown to be in good agreement with simulation results. The acoustic measurement results indicated a 37% increase in the amplitude of transmitted signal by the 1-MHz air-couple transducer when its middle plate radius was increased by 35%.
NASA Astrophysics Data System (ADS)
Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.
2015-06-01
This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.
Fjield, T; Hynynen, K
2000-01-01
Phased-array technology offers an incredible advantage to therapeutic ultrasound due to the ability to electronically steer foci, create multiple foci, or to create an enlarged focal region by using phase cancellation. However, to take advantage of this flexibility, the phased-arrays generally consist of many elements. Each of these elements requires its own radio-frequency generator with independent amplitude and phase control, resulting in a large, complex, and expensive driving system. A method is presented here where in certain cases the number of amplifier channels can be reduced to a fraction of the number of transducer elements, thereby simplifying the driving system and reducing the overall system complexity and cost, by using isolation transformers to produce 180 degrees phase shifts.
Detection of biological molecules using chemical amplification and optical sensors
Van Antwerp, William Peter; Mastrototaro, John Joseph
2001-01-01
Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.
Feng, Guo-Hua; Liu, Wei-Fan
2013-01-01
This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683
Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.
Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M
2012-07-01
There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.
A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W
2016-03-01
A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.
Delrue, Steven; Van Den Abeele, Koen; Bou Matar, Olivier
2016-04-01
In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material. Copyright © 2016 Elsevier B.V. All rights reserved.
Detection of traces of triclosan in water
NASA Astrophysics Data System (ADS)
Marques, Inês; Magalhâes-Mota, Gonçalo; Pires, Filipa; Sério, Susana; Ribeiro, Paulo A.; Raposo, Maria
2017-11-01
Triclosan (TCS) is an antibacterial agent widely used in soaps, toothpastes and first-aid products, which presents several drawbacks related with its noxious effects on the biological systems. As this compound is stable and lipophilic, its consumption in large scale is a great deal of concern, particularly because it has been widely found in river water, lake water, sediments, fish and human milk. Therefore, it is urgent to produce an effective, economic, disposable sensor to detect TCS in complex matrixes. This work explores the electronic tongue sensor concept towards the detection of pico-molar concentrations of TCS in aqueous medium. For that an array of sensor devices consisting of bare interdigitated electrodes (IEs) and covered with different layer-by-layer (LBL) films was developed being its response analyzed by impedance spectroscopy. The LbL films were prepared from poly(ethyleneimine) (PEI), graphene oxide (GO), chitosan (Chi), poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly (allylamine hydrochloride) (PAH). Results allowed to select an adequate sensor array to be used for TCS detection in aqueous solutions within the 10-12 M-10-6 M concentrations range, either by using electrical resistance or electrical capacitance at fixed frequencies as key transducing variables. Principal Component Analysis (PCA) data treatment allowed the discrimination of triclosan solution and of methanol aqueous solutions used in TCS solutions preparation, suggesting that the methodology used in this work can be used to detect TCS in complex matrix solutions.
Saleh, Khaldon Y; Smith, Nadine Barrie
2005-01-01
Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements. PMID:15963237
CD44 in cancer progression: adhesion, migration and growth regulation.
Marhaba, R; Zöller, M
2004-03-01
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Zheng, Rui; Lou, Edmond H; Major, Paul W
2016-10-01
Intraoral ultrasonography uses high-frequency mechanical waves to study dento-periodontium. Besides the advantages of portability and cost-effectiveness, ultrasound technique has no ionizing radiation. Previous studies employed a single transducer or an array of transducer elements, and focused on enamel thickness and distance measurement. This study used a phased array system with a 128-element array transducer to image dento-periodontal tissues. We studied two porcine lower incisors from a 6-month-old piglet using 20-MHz ultrasound. The high-resolution ultrasonographs clearly showed the cross-sectional morphological images of the hard and soft tissues. The investigation used an integration of waveform analysis, travel-time calculation, and wavefield simulation to reveal the nature of the ultrasound data, which makes the study novel. With the assistance of time-distance radio-frequency records, we robustly justified the enamel-dentin interface, dentin-pulp interface, and the cemento-enamel junction. The alveolar crest level, the location of cemento-enamel junction, and the thickness of alveolar crest were measured from the images and compared favorably with those from the cone beam computed tomography with less than 10% difference. This preliminary and fundamental study has reinforced the conclusions from previous studies, that ultrasonography has great potential to become a non-invasive diagnostic imaging tool for quantitative assessment of periodontal structures and better delivery of oral care.
Control of complex components with Smart Flexible Phased Arrays.
Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph
2006-12-22
The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.
Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.
Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong
2013-01-14
We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.
Intracranial dual-mode IVUS and hyperthermia using circular arrays: preliminary experiments.
Patel, Vivek; Light, Edward; Herickhoff, Carl; Grant, Gerald; Britz, Gavin; Wilson, Christy; Palmeri, Mark; Smith, Stephen
2013-01-01
In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer's performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm-a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas.
Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.
2014-01-01
High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539
Gao, Mengdi; Yu, Yanyan; Zhao, Huixia; Li, Guofeng; Jiang, Hongyang; Wang, Congzhi; Cai, Feiyan; Chan, Leanne Lai-Hang; Chiu, Bernard; Qian, Wei; Qiu, Weibao; Zheng, Hairong
2017-09-01
Millions of people around the world suffer from varying degrees of vision loss (including complete blindness) because of retinal degenerative diseases. Artificial retinal prosthesis, which is usually based on electrical neurostimulation, is the most advanced technology for different types of retinal degeneration. However, this technology involves placing a device into the eyeball, and such a highly invasive procedure is inevitably highly risk and expensive. Ultrasound has been demonstrated to be a promising technology for noninvasive neurostimulation, making it possible to stimulate the retina and induce action potentials similar to those elicited by light stimulation. However, the technology of ultrasound retinal stimulation still requires considerable developments before it could be applied clinically. This paper proposes a novel contact-lens array transducer for use in an ultrasound retinal prosthesis (USRP). The transducer was designed in the shape of a contact lens so as to facilitate acoustic coupling with the eye liquid. The key parameters of the ultrasound transducer were simulated, and results are presented that indicate the achievement of 2-D pattern generation and that the proposed contact-lens array is suitable for multiple-focus neurostimulation, and can be used in a USRP.
Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk
2006-02-01
A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.
High-Performance Scanning Acousto-Ultrasonic System
NASA Technical Reports Server (NTRS)
Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew
2006-01-01
A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.
A flexible ultrasound transducer array with micro-machined bulk PZT.
Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling
2015-01-23
This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.
Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J
2010-01-01
Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.
NASA Astrophysics Data System (ADS)
Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun
2015-03-01
To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junho; Hynynen, Kullervo; Medical Biophysics, University of Toronto, ON, M4N 3M5
2009-04-14
Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the backmore » of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Fung, S.; Wang, Q.
2015-06-29
This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less
NASA Astrophysics Data System (ADS)
Datta, Bianca C.; Savidis, Nickolaos; Moebius, Michael; Jolly, Sundeep; Mazur, Eric; Bove, V. Michael
2017-02-01
Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.
Detection of ICG at low concentrations by photoacoustic imaging system using LED light source
NASA Astrophysics Data System (ADS)
Shigeta, Yusuke; Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Tanaka, Chizuyo
2017-03-01
Recently, various type of photoacoustic imaging (PAI) that can visualize properties and distribution of light absorber have been researched. We developed PAI system using LED light source and evaluated characteristics of photoacoustic signal intensity versus Indocyanine Green (ICG) concentration. In this experiment, a linear type PZT array transducer (128-elements, 10.0MHz center frequency) was used to be able to transmit and receive ultrasound and also detect photoacoustic signal from the target object. The transducer was connected to the PAI system, and two sets of LED light source that had 850nm wavelength chip array were set to the both side of the transducer. The transducer head was placed at a distance of 20 mm from the target in the water bath. The target object was a tube filled with ICG in it. The tubes containing ICG at concentrations from 300nanomolar to 3millimolar were made by diluting original ICG solution. We measured the photoacoustic signal strength from RF signal generated from the ICG in the tube, and the results showed that the intensity of the signal was almost linear response to the concentration in log-log scale.
Rata, Mihaela; Birlea, Vlad; Murillo, Adriana; Paquet, Christian; Cotton, François; Salomir, Rares
2015-01-01
MR-guided high-intensity contact ultrasound (HICU) was suggested as an alternative therapy for esophageal and rectal cancer. To offer high-quality MR guidance, two prototypes of receive-only opposed-solenoid coil were integrated with 64-element cylindrical phased-array ultrasound transducers (rectal/esophageal). The design of integrated coils took into account the transducer geometry (360° acoustic window within endoluminal space). The rectal coil was sealed on a plastic support and placed reversibly on the transducer head. The esophageal coil was fully embedded within the transducer head, resulting in one indivisible device. Comparison of integrated versus external coils was performed on a clinical 1.5T scanner. The integrated coils showed higher sensitivity compared with the standard extracorporeal coil with factors of up to 7.5 (rectal applicator) and 3.3 (esophageal applicator). High-resolution MR images for both anatomy (voxel 0.4 × 0.4 × 5 mm(3)) and thermometry (voxel 0.75 × 0.75 × 8 mm(3), 2 s/image) were acquired in vivo with the rectal endoscopic device. The temperature feedback loop accurately controlled multiple control points over the region of interest. This study showed significant improvement of MR data quality using endoluminal integrated coils versus standard external coil. Inframillimeter spatial resolution and accurate feedback control of MR-guided HICU thermotherapy were achieved. © 2014 Wiley Periodicals, Inc.
Song, Junho; Lucht, Benjamin; Hynynen, Kullervo
2012-07-01
With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.
Hernandez-Hurtado, Adelina A; Borrego-Soto, Gissela; Marino-Martinez, Ivan A; Lara-Arias, Jorge; Romero-Diaz, Viktor J; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G; Espinoza-Juarez, Marcela A; Lopez-Romero, Gloria C; Robles-Zamora, Alejandro; Mendoza Lemus, Oscar F; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto
2016-01-01
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.
NASA Astrophysics Data System (ADS)
Hughes, Alec; Hynynen, Kullervo
2017-09-01
The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.
Hughes, Alec; Hynynen, Kullervo
2017-08-03
The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.
Photoacoustic imaging velocimetry for flow-field measurement.
Ma, Songbo; Yang, Sihua; Xing, Da
2010-05-10
We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes. (c) 2010 Optical Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie Liming; Xing Da; Yang Diwu
2007-04-23
Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreignmore » objects.« less
Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.
Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I
2011-09-01
Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America
A 10-Fr ultrasound catheter with integrated micromotor for 4-D intracardiac echocardiography.
Lee, Warren; Griffin, Weston; Wildes, Douglas; Buckley, Donald; Topka, Terry; Chodakauskas, Thaddeus; Langer, Mark; Calisti, Serge; Bergstøl, Svein; Malacrida, Jean-Pierre; Lanteri, Frédéric; Maffre, Jennifer; McDaniel, Ben; Shivkumar, Kalyanam; Cummings, Jennifer; Callans, David; Silvestry, Frank; Packer, Douglas
2011-07-01
We developed prototype real-time 3-D intracardiac echocardiography catheters with integrated micromotors, allowing internal oscillation of a low-profile 64-element, 6.2-MHz phased-array transducer in the elevation direction. Components were designed to facilitate rotation of the array, including a low-torque flexible transducer interconnect and miniature fixtures for the transducer and micromotor. The catheter tip prototypes were integrated with two-way deflectable 10-Fr catheters and used in in vivo animal testing at multiple facilities. The 4-D ICE catheters were capable of imaging a 90° azimuth by up to 180° elevation field of view. Volume rates ranged from 1 vol/sec (180° elevation) to approximately 10 vol/sec (60° elevation). We successfully imaged electrophysiology catheters, atrial septal puncture procedures, and detailed cardiac anatomy. The elevation oscillation enabled 3-D visualization of devices and anatomy, providing new clinical information and perspective not possible with current 2-D imaging catheters.
NASA Astrophysics Data System (ADS)
Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi
2017-07-01
Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.
Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.
Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T
2013-12-01
Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.
pMUT+ASIC integrated platform for wide range ultrasonic imaging
NASA Astrophysics Data System (ADS)
Tillak, J.; Saeed, N.; Khazaaleh, S.; Viegas, J.; Yoo, J.
2017-03-01
We propose an integrated platform of Aluminum Nitrate (AlN) based Piezoelectric Micromachined Ultrasonic Transducer (pMUT) phased array with Application Specific Integrated Circuit (ASIC) for medical imaging and industrial diagnosis. The ASIC provides wide driving range for frequencies between 100 kHz and 5 MHz and channelscalable, programmable application adaptive transmitting beamformer. The system supports operation in various media, including gasses, liquids and biological tissue. The scan resolution for 5 MHz operation is 68 μm in air. The beamformer covers a test volume from -30° to +30° with a step of 3° and scan depth of 10 cm. The ASIC system features low noise receiver electronics, power saving transmission circuitry, and high-voltage drive of large capacitance transducer (up to 500 pF). Integrated pMUT phased array consists of 4 channels of single-membrane ultrasonic transducer of 400 nm deflection and 20 pF feed-thru capacitance, which produce 15 Pa pressure at 500 μm distance from the surface of the transducers. The active area of the ASIC is (700×1490) μm2, which includes channel scalable TX, 8-channale low noise RX, digital back end with autonomous beamformer and power management unit. The system is battery powered with 3.3V-5V standard supply, representing a truly portable solution for ultrasonic applications. Given the CMOS-compatible fabrication process for the AlN pMUTs, dense, miniaturized arrays are possible. Furthermore the smooth surface of dielectric AlN renders optical quality MEMS surfaces for integration in miniaturized photonic + ultrasound microsystems.
Improving the Performance of a 1-D Ultrasound Transducer Array by Subdicing.
Janjic, Jovana; Shabanimotlagh, Maysam; van Soest, Gijs; van der Steen, Antonius F W; de Jong, Nico; Verweij, Martin D
2016-08-01
In medical ultrasound transducer design, the geometry of the individual elements is crucial since it affects the vibration mode of each element and its radiation impedance. For a fixed frequency, optimal vibration (i.e., uniform surface motion) can be achieved by designing elements with very small width-to-thickness ratios. However, for optimal radiation impedance (i.e., highest radiated power), the width should be as large as possible. This leads to a contradiction that can be solved by subdicing wide elements. To systematically examine the effect of subdicing on the performance of a 1-D ultrasound transducer array, we applied finite-element simulations. We investigated the influence of subdicing on the radiation impedance, on the time and frequency response, and on the directivity of linear arrays with variable element widths. We also studied the effect of varying the depth of the subdicing cut. The results show that, for elements having a width greater than 0.6 times the wavelength, subdicing improves the performance compared with that of nonsubdiced elements: the emitted pressure may be increased up to a factor of three, the ringing time may be reduced by up to 50%, the bandwidth increased by up to 77%, and the sidelobes reduced by up to 13 dB. Moreover, this simulation study shows that all these improvements can already be achieved by subdicing the elements to a depth of 70% of the total element thickness. Thus, subdicing can improve important transducer parameters and, therefore, help in achieving images with improved signal-to-noise ratio and improved resolution.
Characterization of Kerfless Linear Arrays Based on PZT Thick Film.
Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique
2017-09-01
Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.
Passive Mode Carbon Nanotube Underwater Acoustic Transducer
2016-09-20
Acoustical transducer arrays can reflect a sound signal in reverse to the sender which can be used for echo location devices. [0008] In Jiang...of this layer of the medium determines the amplitude of the resulting sound waves. [0005] Recently, there has been development of underwater...structures. The energy is partially reflected from interfaces between the geologic structure and is detected with geophone or hydrophone sensors
Feasibility study: real-time 3-D ultrasound imaging of the brain.
Smith, Stephen W; Chu, Kengyeh; Idriss, Salim F; Ivancevich, Nikolas M; Light, Edward D; Wolf, Patrick D
2004-10-01
We tested the feasibility of real-time, 3-D ultrasound (US) imaging in the brain. The 3-D scanner uses a matrix phased-array transducer of 512 transmit channels and 256 receive channels operating at 2.5 MHz with a 15-mm diameter footprint. The real-time system scans a 65 degrees pyramid, producing up to 30 volumetric scans per second, and features up to five image planes as well as 3-D rendering, 3-D pulsed-wave and color Doppler. In a human subject, the real-time 3-D scans produced simultaneous transcranial horizontal (axial), coronal and sagittal image planes and real-time volume-rendered images of the gross anatomy of the brain. In a transcranial sheep model, we obtained real-time 3-D color flow Doppler scans and perfusion images using bolus injection of contrast agents into the internal carotid artery.
Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.
2010-01-01
Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106
In Situ Estimation of Applied Biaxial Loads with Lamb Waves (Preprint)
2012-07-01
be correct. IV. EXPERIMENTS AND RESULTS Fatigue tests were conducted for an array of six surface-bonded PZT transducers permanently attached to...because of their cumulative effects on the fatigue life of the structures. Waves propagating between array elements are directly affected by applied loads...their cumulative effects on the fatigue life of the structures. Waves propagating between array elements are directly affected by applied loads
NASA Astrophysics Data System (ADS)
Harne, Ryan L.; Lynd, Danielle T.
2016-08-01
Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellens, Nicholas, E-mail: nicholas.ellens@utoronto.ca; Hynynen, Kullervo
2014-07-15
Purpose: Assess the feasibility of using large-aperture, flat ultrasonic transducer arrays with 6500 small elements operating at 500 kHz without the use of any mechanical components for the thermal coagulation of uterine fibroids. This study examines the benefits and detriments of using a frequency that is significantly lower than that used in clinical systems (1–1.5 MHz). Methods: Ultrasound simulations were performed using the anatomies of five fibroid patients derived from 3D MRI. Using electronic steering solely, the ultrasound focus from a flat, 6500-element phased array was translated around the volume of the fibroids in various patterns to assess the feasibilitymore » of completing full treatments from fixed physical locations. Successive temperature maps were generated by numerically solving the bioheat equation. Using a thermal dose model, the bioeffects of these simulations were quantified and analyzed. Results: The simulations indicate that such an array could be used to perform fibroid treatments to 18 EM{sub 43} at an average rate of 90 ± 20 cm{sup 3}/h without physically moving the transducer array. On average, the maximum near-field thermal dose for each patient was below 4 EM{sub 43}. Fibroid tissue could be treated as close as 40 mm to the spine without reaching temperatures expected to cause pain or damage. Conclusions: Fibroids were successfully targeted and treated from a single transducer position to acceptable extents and without causing damage in the near- or far-field. Compared to clinical systems, treatment rates were good. The proposed treatment paradigm is a promising alternative to existing systems and warrants further investigation.« less
Hynynen, Kullervo; Yin, Jianhua
2009-03-01
A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (averaged over the cylinder diameter) over 10 W / cm(2) (a therapeutically relevant intensity) was measured from these elements.
Sarvazyan, A; Fillinger, L
2009-03-01
The ability to generate short focused ultrasonic pulses with duration on the order of one period of carrier frequency depends on the bandwidth of the transmitter as the pulse duration is inversely proportional to the bandwidth. Conventional focusing arrays used for focusing ultrasound have limited bandwidth due to the resonant nature of the piezoelements generating ultrasound. Theoretically it is possible to build a broadband phased array composed of "non-resonant" elements: wedge-shaped or flat-concave piezotransducers, though there are numerous technical difficulties in designing arrays with hundreds of elements of complex shape. This task is much easier to realize in an alternative technique of ultrasound focusing based on the principles of Time Reversed Acoustics (TRA) because in TRA systems, effective focusing can be achieved with just a few, or even one, transducers. The goal of this study is to demonstrate the possibility of broadband focusing of ultrasonic waves using a TRA system with non-resonant transducers and to explore the factors affecting the performance of such a system. A new type of TRA reverberators, such as water-filled thin-wall plastic vessels, which can be used with the submersible piezotransducers fixed internally in the reverberator, are proposed and tested. The experiments are conducted in a water tank with the walls and bottom covered by a sound absorbing lining. A needle hydrophone mounted on a 3D positioning system is used as a beacon for the TRA focusing and then for measuring the spatial distribution of the focused ultrasound field. The bandwidth and spatial distribution of the signal focused by the TRA system using a single channel with the resonant versus non-resonant transducers have been analyzed. Two types of non-resonant transducers were tested: a flat-concave transducer with a diameter of 30 mm, and a thickness varying from 2 mm in the center to 11 mm at the edge, and a specially designed submersible transducer having an uneven shape with a diameter of about 25 mm and a thickness varying from 2 to 6 mm. It was shown that TRA focusing system using non-resonant transducer had a bandwidth at 10 dB of 500 kHz while the resonant transducer provided about 100 kHz bandwidth. Correspondingly, the extended bandwidth of the TRA focusing system, especially toward higher frequencies, provides a 50% sharper spatial distribution. Furthermore, the relative level of the background ultrasound was reduced by a factor up to 3 as more frequencies were added coherently in focus and incoherently out of focus. Advantages of water-filled reverberators made of thin-wall plastic vessels include easy manufacturing, low costs, extreme simplicity, and good acoustical matching with soft tissues, important for biomedical applications.
Frequency steerable acoustic transducers
NASA Astrophysics Data System (ADS)
Senesi, Matteo
Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing algorithms and related imaging techniques for damage location are also presented. Finally, the WS-FSAT has also been experimentally validated in generation.
Development of a High Performance Acousto-ultrasonic Scan System
NASA Technical Reports Server (NTRS)
Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.
2002-01-01
Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.
Sonar Transducer Reliability Improvement Program (STRIP).
1981-04-01
CERAMICS. ... .......................... 31 10. STANDARDIZED TEST PROCEDURE ........ .................... ... 35 11. ACCELERATED LIFE TEST...components, and piece-parts that will meet specified requirements in the operational environment during the entire useful life of the transducer. Standards...C.I. Bohmaun F-3 Reliability & Life Prediction TRI R.I. Smith Specification ,F-4 TR-122 FM4 & Improvements NRL-USRD R.W. Timm 1-5 Metal Matrix
Rapid calculation of acoustic fields from arbitrary continuous-wave sources.
Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T
2018-01-01
A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.
Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.
2016-03-01
Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.
Block Copolymers as Templates for Arrays of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Bronikowski, Michael; Hunt, Brian
2003-01-01
A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.
Optimized Hyperthermia Treatment of Prostate Cancer Using a Novel Intracavitary Ultrasound Array
2005-01-01
many problems Introduction involved with transducer fabrication. Focused ultrasound surgery ( FUS ) has been shown to give promising results in treating...low frequencies are used) (Hutchinson 1997). With focused ultrasound ( FUS ), tissue is noninvasively necrosed by elevating the temperature at the focal...curved 1.5 dimensional (1.5-D) array that could, but had of a 1.75 dimensional (1.75-D) tapered ultrasound phased array restrictions to the focusing
Multi-foci beamforming for thermal strain imaging using a single ultrasound linear array transducer
Nguyen, Man M; Ding, Xuan; Leers, Steven A.; Kim, Kang
2017-01-01
Ultrasound-induced thermal strain imaging (TSI) has been used to successfully identify lipid and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts, displacement tracking accuracy as well as limited heating capability which contributes to low thermal strain signal-to-noise ratio and a limited field of view. The goal of this paper is to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physically aligning the heating and imaging beams and result in a bulky setup that limits in vivo operation. This paper proposes and evaluates a new design for heating beams that can be implemented on a linear array imaging transducer and can provide an improved heating area and efficiency as compared to previous implementations. The designed heating beams were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In-vitro experiments using tissue mimicking phantoms with no blood flow showed that the new design resulted in an effective heating area of approximately 0.85 cm2 and a 0.3°C temperature rise in 2 seconds of heating, which compared well with in- silico finite element simulations. With the new heating beams, TSI was shown to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and −0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm diameter human carotid endarterectomy (CEA) sample was identified with good agreement to histology. PMID:28318887
Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A
2012-06-01
The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.
NASA Astrophysics Data System (ADS)
Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.
2009-02-01
We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.
Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.
2016-01-01
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology. PMID:27818692
Skolnick, M L; Matzuk, T
1978-08-01
This paper describes a new real-time servo-controlled sector scanner that produces high-resolution images similar to phased-array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. Its unique feature is the transducer head which contains a single moving part--the transducer. Frame rates vary from 0 to 30 degrees and the sector angle from 0 to 60 degrees. Abdominal applications include: differentiation of vascular structures, detection of small masses, imaging of diagonally oriented organs. Survey scanning, and demonstration of regions difficult to image with contact scanners. Cardiac uses are also described.
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1976-01-01
An instrument with a single ultrasonic transducer probe and a linear array of transducer probes permitting three operator modes is described. An 'A' and an 'M' mode scanner were combined with a 'C' mode scanner and a single receiver is used. The 'C' scanner mode enables two-dimensional cross sections of the viewed organ. Video-produced markers enable measurement of the dimensions of the heart. COS/MOS integrated logic circuit components are used to minimize power consumption and permit battery operation.
Improving Plating by Use of Intense Acoustic Beams
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Denofrio, Charles
2003-01-01
An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.
Turbofan aft duct suppressor study. Contractor's data report of mode probe signal data
NASA Technical Reports Server (NTRS)
Fiske, G. H.; Motsinger, R. E.; Syed, A. A.; Joshi, M. C.; Kraft, R. E.
1983-01-01
Acoustic modal distributions were measured in a fan test model having an annular exhaust duct for comparison with theoretically predicted acoustic suppression values. This report contains the amplitude and phase data of the acoustic signals sensed by the transducers of the two mode probes employed in the measurement. Each mode probe consisted of an array of 12 transducers sensing the acoustic field at three axial positions and four radial positions.
Multiplexed operation of a micromachined ultrasonic droplet ejector array.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2007-10-01
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.
Multiplexed operation of a micromachined ultrasonic droplet ejector array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2007-10-15
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less
Design and application of a small size SAFT imaging system for concrete structure
NASA Astrophysics Data System (ADS)
Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian
2011-07-01
A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.
Ultrasound imaging based on nonlinear pressure field properties
NASA Astrophysics Data System (ADS)
Bouakaz, Ayache; Frinking, Peter J. A.; de Jong, Nico
2000-07-01
Ultrasound image quality has experienced a significant improvement over the past years with the utilization of harmonic frequencies. This brings the need to understand the physical processes involved in the propagation of finite amplitude sound beams, and the issues for redesigning and optimizing the phased array transducers. New arrays with higher imaging performances are essential for tissue imaging and contrast imaging as well. This study presents measurements and simulations on a 4.6 MHz square transducer. The numerical scheme used solves the KZK equation in the time domain. Comparison of measured and computed data showed good agreement for low and high excitation levels. In a similar way, a numerical simulation was performed on a linear array with five elements. The simulation showed that the second harmonic beam is narrower than the fundamental with less energy in the near field. In addition, the grating lobes are significantly lower. Accordingly, selective harmonic imaging shows less near field artifacts and will lower the clutter, resulting in much cleaner images.
NASA Astrophysics Data System (ADS)
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
NASA Astrophysics Data System (ADS)
Drossel, Welf-Guntram; Schubert, Andreas; Putz, Matthias; Koriath, Hans-Joachim; Wittstock, Volker; Hensel, Sebastian; Pierer, Alexander; Müller, Benedikt; Schmidt, Marek
2018-01-01
The technique joining by forming allows the structural integration of piezoceramic fibers into locally microstructured metal sheets without any elastic interlayers. A high-volume production of the joining partners causes in statistical deviations from the nominal dimensions. A numerical simulation on geometric process sensitivity shows that the deviations have a high significant influence on the resulting fiber stresses after the joining by forming operation and demonstrate the necessity of a monitoring concept. On this basis, the electromechanical behavior of piezoceramic array transducers is investigated experimentally before, during and after the joining process. The piezoceramic array transducer consists of an arrangement of five electrical interconnected piezoceramic fibers. The findings show that the impedance spectrum depends on the fiber stresses and can be used for in-process monitoring during the joining process. Based on the impedance values the preload state of the interconnected piezoceramic fibers can be specifically controlled and a fiber overload.
Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.
Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D
2012-01-21
Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.
Microlens array for focusing airborne ultrasound using heated wire grid
NASA Astrophysics Data System (ADS)
Cai, Liang-Wu; Sánchez-Dehesa, José
2007-10-01
This letter reports on the focusing of airborne ultrasound by a simple grid of heated wires. The focusing is analogous to that of an array of optical microlenses. The focusing pattern is determined by the spacing between wires, and the focusing areas are tightly confined with a great "depth of field." Such acoustical microlens arrays have great potentials for shaping beams produced by ultrasonic transducers, in applications such as ultrasonic cleaning and nondestructive testing.
Novel approaches to optomechanical transduction
NASA Astrophysics Data System (ADS)
Cernotik, Ondrej; Hammerer, Klemens
In recent years, mechanical oscillators received attention as a promising tool for frequency conversion between microwaves and light. A general, bi-directional transducer with high efficiency is still far from reach of current technology; finding new strategies for optomechanical transduction allows us to relax the requirements and bring these systems closer to an experimental realization. An interesting example is generation of entanglement between two superconducting qubits using measurement and postselection. Here, the mechanical oscillators interacts directly with the superconducting transmon qubit in such a way that it feels a qubit-state dependent force. This force can then be read out using a cavity field; reading out two such systems sequentially realizes an effective total spin measurement. Starting from a suitable initial state and employing postselection, entanglement can be generated. Another interesting approach is to use an array of optomechanical transducers in which the output fields of one transducer are fed into the input of the next. The periodicity of the array results in a joint dispersion relation for the propagating microwave and optical fields. The resulting structure can be used to control the conversion bandwidth and forward and backward scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, Cornelia, E-mail: cwenger@fc.ul.pt; Salvador, Ricardo; Basser, Peter J.
Purpose: To investigate tumors of different size, shape, and location and the effect of varying transducer layouts on Tumor Treating Fields (TTFields) distribution in an anisotropic model. Methods and Materials: A realistic human head model was generated from MR images of 1 healthy subject. Four different virtual tumors were placed at separate locations. The transducer arrays were modeled to mimic the TTFields-delivering commercial device. For each tumor location, varying array layouts were tested. The finite element method was used to calculate the electric field distribution, taking into account tissue heterogeneity and anisotropy. Results: In all tumors, the average electric field inducedmore » by either of the 2 perpendicular array layouts exceeded the 1-V/cm therapeutic threshold value for TTFields effectiveness. Field strength within a tumor did not correlate with its size and shape but was higher in more superficial tumors. Additionally, it always increased when the array was adapted to the tumor's location. Compared with a default layout, the largest increase in field strength was 184%, and the highest average field strength induced in a tumor was 2.21 V/cm. Conclusions: These results suggest that adapting array layouts to specific tumor locations can significantly increase field strength within the tumor. Our findings support the idea of personalized treatment planning to increase TTFields efficacy for patients with GBM.« less
NASA Astrophysics Data System (ADS)
Kang, Woojin; Jung, Joontaek; Lee, Wonjun; Ryu, Jungho; Choi, Hongsoo
2018-07-01
Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
A High-Frequency Annular-Array Transducer Using an Interdigital Bonded 1-3 Composite
Chabok, Hamid Reza; Cannata, Jonathan M.; Kim, Hyung Ham; Williams, Jay A.; Park, Jinhyoung; Shung, K. Kirk
2011-01-01
This paper reports the design, fabrication, and characterization of a 1–3 composite annular-array transducer. An interdigital bonded (IB) 1–3 composite was prepared using two IB operations on a fine-grain piezoelectric ceramic. The final composite had 19-μm-wide posts separated by 6-μm-wide polymer kerfs. A novel method to remove metal electrodes from polymer portions of the 1–3 composite was established to eliminate the need for patterning and aligning the electrode on the composite to the electrodes on a flexible circuit. Unloaded epoxy was used for both the matching and backing layers and a flexible circuit was used for interconnect. A prototype array was successfully fabricated and tested. The results were in reasonable agreement with those predicted by a circuit-analogous model. The average center frequency estimated from the measured pulse-echo responses of array elements was 33.5 MHz and the −6-dB fractional bandwidth was 57%. The average insertion loss recorded was 14.3 dB, and the maximum crosstalk between the nearest-neighbor elements was less than −37 dB. Images of a wire phantom and excised porcine eye were obtained to show the capabilities of the array for high-frequency ultrasound imaging. PMID:21244988
A high-frequency annular-array transducer using an interdigital bonded 1-3 composite.
Chabok, Hamid Reza; Cannata, Jonathan M; Kim, Hyung Ham; Williams, Jay A; Park, Jinhyoung; Shung, K Kirk
2011-01-01
This paper reports the design, fabrication, and characterization of a 1-3 composite annular-array transducer. An interdigital bonded (IB) 1-3 composite was prepared using two IB operations on a fine-grain piezoelectric ceramic. The final composite had 19-μm-wide posts separated by 6-μm-wide polymer kerfs. A novel method to remove metal electrodes from polymer portions of the 1-3 composite was established to eliminate the need for patterning and aligning the electrode on the composite to the electrodes on a flexible circuit. Unloaded epoxy was used for both the matching and backing layers and a flexible circuit was used for interconnect. A prototype array was successfully fabricated and tested. The results were in reasonable agreement with those predicted by a circuit-analogous model. The average center frequency estimated from the measured pulse-echo responses of array elements was 33.5 MHz and the -6-dB fractional bandwidth was 57%. The average insertion loss recorded was 14.3 dB, and the maximum crosstalk between the nearest-neighbor elements was less than -37 dB. Images of a wire phantom and excised porcine eye were obtained to show the capabilities of the array for high-frequency ultrasound imaging.
Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy
2013-03-01
This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.
Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.
Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V
2008-05-26
We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.
Piezoelectric films for high frequency ultrasonic transducers in biomedical applications
Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk
2011-01-01
Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451
Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.
Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk
2011-02-01
Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.
Design of HIFU transducers for generating specified nonlinear ultrasound fields
Rosnitskiy, Pavel B.; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Maxwell, Adam; Kreider, Wayne; Bailey, Michael R.; Khokhlova, Vera A.
2016-01-01
Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this work was to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasilinear conditions at the focus. Multi-parametric nonlinear modeling based on the KZK equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. Results are presented in terms of the parameters of an equivalent single-element, spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full-diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields. PMID:27775904
Ultrasonic fingerprinting by phased array transducer
NASA Astrophysics Data System (ADS)
Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.
2016-06-01
Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.
Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors
2012-01-01
and Preamplifiers . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Audio Recorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iv 4...consuming less energy than active systems such as radar, lidar, or sonar [5]. Ground and marine-based acoustic arrays are currently employed in a variety of...factors for the performance of an airborne acoustic array. 3.3.1 Audio Microphones and Preamplifiers An audio microphone is a transducer that converts
Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas
2005-07-01
Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.
On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers.
Pasqual, Alexander Mattioli; Martin, Vincent
2011-09-01
Compact spherical loudspeaker arrays can be used to provide control over their directivity pattern. Usually, this is made by adjusting the gains of preprogrammed spatial filters corresponding to a finite set of spherical harmonics, or to the acoustic radiation modes of the loudspeaker array. Unlike the former, the latter are closely related to the radiation efficiency of the source and span the subspace of the directivities it can produce. However, the radiation modes depend on frequency for arbitrary distributions of transducers on the sphere, which yields complex directivity filters. This work focuses on the most common loudspeaker array configurations, those following the regular shape of the Platonic solids. It is shown that the radiation modes of these sources are frequency independent, and simple algebraic expressions are derived for their radiation efficiencies. In addition, since such modes are vibration patterns driven by electrical signals, the transduction mechanism of compact multichannel sources is also investigated, which is an important issue, especially if the transducers interact inside a shared cabinet. For Platonic solid loudspeakers, it is shown that the common enclosure does not lead to directivity filters that depend on frequency. © 2011 Acoustical Society of America
Improved high-resolution ultrasonic imaging of the eye.
Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Coleman, D Jackson
2008-01-01
Currently, virtually all clinical diagnostic ultrasound systems used in ophthalmology are based on fixed-focus, single-element transducers. High-frequency (> or = 20-MHz) transducers introduced to ophthalmology during the last decade have led to improved resolution and diagnostic capabilities for assessment of the anterior segment and the retina. However, single-element transducers are restricted to a small depth of field, limiting their capacity to image the eye as a whole. We fabricated a 20-MHz annular array probe prototype consisting of 5 concentric transducer elements and scanned an ex vivo human eye. Synthetically focused images of the bank eye showed improved depth of field and sensitivity, allowing simultaneous display of the anterior and posterior segments and the full lens contour. This capability may be useful in assessment of vitreoretinal pathologies and investigation of the accommodative mechanism.
Tissue matrix arrays for high throughput screening and systems analysis of cell function
Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.
2015-01-01
Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-06-30
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-01-01
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongzhang, R.; Xiao, B.; Lardner, T.
2014-02-18
This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less
NASA Astrophysics Data System (ADS)
Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank
2016-12-01
Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.
PSPICE controlled-source models of analogous circuit for Langevin type piezoelectric transducer
NASA Astrophysics Data System (ADS)
Chen, Yeongchin; Wu, Menqjiun; Liu, Weikuo
2007-02-01
The design and construction of wide-band and high efficiency acoustical projector has long been considered an art beyond the capabilities of many smaller groups. Langevin type piezoelectric transducers have been the most candidate of sonar array system applied in underwater communication. The transducers are fabricated, by bolting head mass and tail mass on both ends of stacked piezoelectric ceramic, to satisfy the multiple, conflicting design for high power transmitting capability. The aim of this research is to study the characteristics of Langevin type piezoelectric transducer that depend on different metal loading. First, the Mason equivalent circuit is used to model the segmented piezoelectric ceramic, then, the impedance network of tail and head masses is deduced by the Newton’s theory. To obtain the optimal solution to a specific design formulation, PSPICE controlled-source programming techniques can be applied. A valid example of the application of PSPICE models for Langevin type transducer analysis is presented and the simulation results are in good agreement with the experimental measurements.
Analysis of a Non-resonant Ultrasonic Levitation Device
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.
In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa, E-mail: fatemi.mostafa@mayo.edu
2014-09-15
Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped withmore » a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that ultimately may allow US-based real-time intraoperative dosimetry.« less
Mehrmohammadi, Mohammad; Alizad, Azra; Kinnick, Randall R.; Davis, Brian J.; Fatemi, Mostafa
2014-01-01
Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that ultimately may allow US-based real-time intraoperative dosimetry. PMID:25186418
Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M
2008-12-01
Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.
NASA Astrophysics Data System (ADS)
Marinozzi, F.; Bini, F.; Biagioni, A.; Grandoni, A.; Spicci, L.
2013-09-01
The paper reports the experimental investigation of the behavior of 2-2 Lead Zirconate Titanate (PZT)-polymer composite transducers array for clinical ultrasound equipments. Several 2-2 plate composites having the same dicing pitch of 0.11 mm and different volume fractions were manufactured and investigated. Measurements were performed through different techniques such as electrical impedance, pulse-echo, and Laser Doppler Vibrometer. With the last one, maps of the surface displacement were presented relative to thickness mode and first lateral mode resonance frequencies. The transducers with volume fractions of the 40% resulted markedly inefficient, whereas the largest bandwidth and best band shape were achieved by the 50%.
A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters.
Zhang, Kai; Tan, Baohai; Liu, Xianping
2017-04-28
Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize.
Design and Performance of AN Electrostrictive-Polymer Acoustic Actuator
NASA Astrophysics Data System (ADS)
Heydt, R.; Kornbluh, R.; Pelrine, R.; Mason, V.
1998-08-01
This paper discusses a novel electroacoustic transducer that uses the electrostrictive response of a polymer film. The active element of the transducer is a thin silicone-rubber film, with graphite powder electrodes on each side, that forms an array of bubble-like radiating elements. In experiments, radiated acoustic pressure and harmonic distortion of the electrostrictive-film actuator were measured in the frequency band 50-2000 Hz. A simple acoustic model was also developed to study the effect of various design and operating parameters on the actuator performance. Preliminary results from the experiments and simulations show that the electrostrictive-polymer-film actuator has the potential to be an efficient, compact, and lightweight electroacoustic transducer.
Cost-effective optical switch matrix for microwave phased-array
NASA Technical Reports Server (NTRS)
Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.
1991-01-01
An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.
Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation
Li, Shu-Hong; Sun, Zhuo; Guo, Lily; Han, Mihan; Wood, Michael F G; Ghosh, Nirmalya; Alex Vitkin, I; Weisel, Richard D; Li, Ren-Ke
2012-01-01
After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re-establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full-length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9-week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell-based gene therapy provides a new approach to cardiac regeneration. PMID:22435995
Thermoelectric Control Of Temperatures Of Pressure Sensors
NASA Technical Reports Server (NTRS)
Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.
1995-01-01
Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.
Chan, Andrew K; Birk, Harjus S; Winkler, Ethan A; Viner, Jennifer A; Taylor, Jennie W; McDermott, Michael W
2016-07-07
The Optune® transducer array (Novocure Ltd., Haifa, Israel) is an FDA-approved noninvasive regional therapy that aims to inhibit the growth of glioblastoma multiforme (GBM) cells via utilization of alternating electric fields. Some patients with GBM may develop hydrocephalus and benefit from subsequent shunt placement, but special attention must be paid to patients in whom programmable valves are utilized, given the potential effect of the magnetic fields on valve settings. We present the first case report illustrating the stability of programmable shunt valve settings in a neurosurgical patient undergoing therapy with the Optune device. In this study, shunt valve settings were stable over a period of five days despite Optune therapy. This is reassuring for patients with GBM who require simultaneous treatment with both the Optune device and a programmable shunt system.
Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer
Zemp, Roger J.; Song, Liang; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.
2009-01-01
We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-µm-diameter carbon fibers are experimentally demonstrated at 80 µm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5–3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge. PMID:18545502
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.
2016-01-01
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the −6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the −3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and −8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery. PMID:27353347
General MoM Solutions for Large Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B; Capolino, F; Wilton, D R
2003-07-22
This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. Thismore » projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for the bases projection. An effective MoM solution scheme is developed for large arrays using a modification of the AIM (Adaptive Integral Method) method. The method permits the analysis of arrays with arbitrary contours and nonplanar elements. Both fill and solve times within the MoM method are improved with respect to more standard MoM solvers.« less
Tensegrity: the architectural basis of cellular mechanotransduction
NASA Technical Reports Server (NTRS)
Ingber, D. E.
1997-01-01
Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of the structural complexity of living cells. The model presented relies on recent experimental findings, which suggests that cells use tensegrity architecture for their organization. Tensegrity predicts that cells are hard-wired to respond immediately to mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix (e.g. integrins) or to other cells (cadherins, selectins, CAMs). Many signal transducing molecules that are activated by cell binding to growth factors and extracellular matrix associate with cytoskeletal scaffolds within focal adhesion complexes. Mechanical signals, therefore, may be integrated with other environmental signals and transduced into a biochemical response through force-dependent changes in scaffold geometry or molecular mechanics. Tensegrity also provides a mechanism to focus mechanical energy on molecular transducers and to orchestrate and tune the cellular response.
Acoustooptic pulse-echo transducer system
NASA Technical Reports Server (NTRS)
Claus, R. O.; Wade, J. C.
1983-01-01
A pulse-echo transducer system which uses an ultrasonic generating element and an optical detection technique is described. The transmitting transducer consists of a concentric ring electrode pattern deposited on a circular, X-cut quartz substrate with a circular hole in the center. The rings are independently pulsed with a sequence high voltage signals phased in such a way that the ultrasonic waves generated by the separate rings superimpose to produce a composite field which is focused at a controllable distance below the surface of the specimen. The amplitude of the field reflected from this focus position is determined by the local reflection coefficient of the medium at the effective focal point. By processing the signals received for a range of ultrasonic transducer array focal lengths, the system can be used to locate and size anomalies within solids and liquids. Applications in both nondestructive evaluation and biomedical scanning are suggested.
1980-07-01
WORKI, WORK2, ALOC, and FLAMB . The WORK1 array comprises a number of small arrays which have been read from input and will be utilized throughout the...of the WORK2 array at least as large as the maximum of the two. The size is the same for both the ALOC and FLAMB arrays. The ALOC array stores the...allocation matrix and the FLAMB array is used for the Lagrangian multiplier matrix. Their dimension should be set to 3 x NWPNS x NTGTS, where NTGTS is
Structure and assembly of a paramyxovirus matrix protein
Battisti, Anthony J.; Meng, Geng; Winkler, Dennis C.; McGinnes, Lori W.; Plevka, Pavel; Steven, Alasdair C.; Morrison, Trudy G.; Rossmann, Michael G.
2012-01-01
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host’s cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly. PMID:22891297
Structure and assembly of a paramyxovirus matrix protein.
Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G
2012-08-28
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.
Lin, Xiangwei; Liu, Chengbo; Meng, Jing; Gong, Xiaojing; Lin, Riqiang; Sun, Mingjian; Song, Liang
2018-05-01
A dual-foci transducer with coplanar light illumination and acoustic detection was applied for the first time. It overcame the small directivity angle, low-sensitivity, and large datasets in conventional circular scanning or array-based photoacoustic computed tomography (PACT). The custom-designed transducer is focused on both the scanning plane with virtual-point detection and the elevation direction for large field of view (FOV) cross-sectional imaging. Moreover, a coplanar light illumination and acoustic detection configuration can provide ring-shaped light irradiation with highly efficient acoustic detection, which in principle has a better adaptability when imaging samples of irregular surfaces. Phantom experiments showed that our PACT system can achieve high resolution (∼0.5 mm), enhanced signal-to-noise ratio (16-dB improvement), and a more complete structure in a greater FOV with an equal number of sampling points compared with the results from a flat aperture transducer. This study provides the proof of concept for the fabrication of a sparse array with the dual-foci property and large aperture size for high-quality, low-cost, and high-speed photoacoustic imaging. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.
2015-10-01
Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.
Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.
Bozkurt, Ayhan; Yaralioglu, G Goksenin
2016-11-01
This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.
Twenty years of barrel-stave flextensional transducer technology in Canada
NASA Astrophysics Data System (ADS)
Jones, Dennis F.
2005-04-01
The barrel-stave flextensional transducer, a compact underwater sound source, was conceived at DRDC Atlantic in 1986 [G. W. McMahon and D. F. Jones, U.S. Patent No. 4,922,470 (1 May 1990); Canadian Patent No. 1,285,646 (2 July 1991)]. Over the years, five barrel-stave designs belonging to three flextensional classes were built and tested at DRDC Atlantic. Three Class I transducers with operating frequencies ranging from 800 to 1600 Hz were integrated into submarine communications buoys, low frequency active horizontal projector arrays, and a broadband sonar towbody. A high-power Class II and broadband (1-7 kHz) Class III transducer were deployed under the ice in the Lincoln Sea for research related to rapidly deployable surveillance systems. These barrel-stave flextensional transducers have also supported a variety of marine mammal studies including vocal mimicry in long-finned pilot whales, coda dialects in sperm whales, and the R&D of acoustic detection and tracking systems for endangered northern right whales. In August 2004 a barrel-stave transducer was used to lure a trapped juvenile humpback whale to the sluice gates of a tidal generating station on the Annapolis River in Nova Scotia by transmitting humpback whale calls underwater. The acoustic performance parameters for all 5 transducers will be presented.
An experimental SMI adaptive antenna array simulator for weak interfering signals
NASA Technical Reports Server (NTRS)
Dilsavor, Ronald S.; Gupta, Inder J.
1991-01-01
An experimental sample matrix inversion (SMI) adaptive antenna array for suppressing weak interfering signals is described. The experimental adaptive array uses a modified SMI algorithm to increase the interference suppression. In the modified SMI algorithm, the sample covariance matrix is redefined to reduce the effect of thermal noise on the weights of an adaptive array. This is accomplished by subtracting a fraction of the smallest eigenvalue of the original covariance matrix from its diagonal entries. The test results obtained using the experimental system are compared with theoretical results. The two show a good agreement.
SMI adaptive antenna arrays for weak interfering signals. [Sample Matrix Inversion
NASA Technical Reports Server (NTRS)
Gupta, Inder J.
1986-01-01
The performance of adaptive antenna arrays in the presence of weak interfering signals (below thermal noise) is studied. It is shown that a conventional adaptive antenna array sample matrix inversion (SMI) algorithm is unable to suppress such interfering signals. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is redefined such that the effect of thermal noise on the weights of adaptive arrays is reduced. Thus, the weights are dictated by relatively weak signals. It is shown that the modified algorithm provides the desired interference protection.
Matrix addressable vertical cavity surface emitting laser array
NASA Astrophysics Data System (ADS)
Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.
1991-02-01
The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A
2017-02-01
Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.
Optical implementation of systolic array processing
NASA Technical Reports Server (NTRS)
Caulfield, H. J.; Rhodes, W. T.; Foster, M. J.; Horvitz, S.
1981-01-01
Algorithms for matrix vector multiplication are implemented using acousto-optic cells for multiplication and input data transfer and using charge coupled devices detector arrays for accumulation and output of the results. No two dimensional matrix mask is required; matrix changes are implemented electronically. A system for multiplying a 50 component nonnegative real vector by a 50 by 50 nonnegative real matrix is described. Modifications for bipolar real and complex valued processing are possible, as are extensions to matrix-matrix multiplication and multiplication of a vector by multiple matrices.
Study of Far—Field Directivity Pattern for Linear Arrays
NASA Astrophysics Data System (ADS)
Ana-Maria, Chiselev; Luminita, Moraru; Laura, Onose
2011-10-01
A model to calculate directivity pattern in far field is developed in this paper. Based on this model, the three-dimensional beam pattern is introduced and analyzed in order to investigate geometric parameters of linear arrays and their influences on the directivity pattern. Simulations in azimuthal plane are made to highlight the influence of transducers parameters, including number of elements and inter-element spacing. It is true that these parameters are important factors that influence the directivity pattern and the appearance of side-lobes for linear arrays.
Piezoelectric ceramics with high dielectric constants for ultrasonic medical transducers.
Hosono, Yasuharu; Yamashita, Yohachi
2005-10-01
Complex system ceramics Pb(Sc(1/2)Nb(1/2))O3-Pb(Mg(1/3)Nb(2/3))O3-Pb(Ni(1/2)Nb(1/2))O3-(Pb0.965,Sr0.035) (Zr,Ti)O3 (PSN-PMN-PNN-PSZT abbreviated PSMNZT) have been synthesized by the conventional technique, and dielectric and piezoelectric properties of the ceramics have been investigated for ultrasonic medical transducers. High capacitances of the transducers are desired in order to match the electrical impedance between the transducers and the coaxial cable in array probes. Although piezoelectric ceramics that have high dielectric constants (epsilon33t/epsilon0 > 5000, k'33 < 70%) are produced in many foundries, the dielectric constants are insufficient. However, we have reported that low molecular mass B-site ions in the lead-perovskite structures are important in realizing better dielectric and piezoelectric properties. We focused on the complex system ceramics PSMNZT that consists of light B-site elements. The maximum dielectric constant, epsilon33T/epsilon0 = 7, 200, was confirmed in the ceramics, where k'33 = 69%, d33 = 940 pC/N, and T(c) = 135 degrees C were obtained. Moreover, pulse-echo characteristics were simulated using the Mason model. The PSMNZT ceramic probe showed echo amplitude about 5.5 dB higher than that of the conventional PZT ceramic probe (PZT-5H type). In this paper, the electrical properties of the PSMNZT ceramics and the simulation results for pulse-echo characteristics of the phased-array probes are introduced.
Multi-ray medical ultrasound simulation without explicit speckle modelling.
Tuzer, Mert; Yazıcı, Abdulkadir; Türkay, Rüştü; Boyman, Michael; Acar, Burak
2018-05-04
To develop a medical ultrasound (US) simulation method using T1-weighted magnetic resonance images (MRI) as the input that offers a compromise between low-cost ray-based and high-cost realistic wave-based simulations. The proposed method uses a novel multi-ray image formation approach with a virtual phased array transducer probe. A domain model is built from input MR images. Multiple virtual acoustic rays are emerged from each element of the linear transducer array. Reflected and transmitted acoustic energy at discrete points along each ray is computed independently. Simulated US images are computed by fusion of the reflected energy along multiple rays from multiple transducers, while phase delays due to differences in distances to transducers are taken into account. A preliminary implementation using GPUs is presented. Preliminary results show that the multi-ray approach is capable of generating view point-dependent realistic US images with an inherent Rician distributed speckle pattern automatically. The proposed simulator can reproduce the shadowing artefacts and demonstrates frequency dependence apt for practical training purposes. We also have presented preliminary results towards the utilization of the method for real-time simulations. The proposed method offers a low-cost near-real-time wave-like simulation of realistic US images from input MR data. It can further be improved to cover the pathological findings using an improved domain model, without any algorithmic updates. Such a domain model would require lesion segmentation or manual embedding of virtual pathologies for training purposes.
A New Clinical HIFU System (Teleson II)
NASA Astrophysics Data System (ADS)
Ma, Yixin; Symonds-Tayler, Richard; Rivens, Ian H.; ter Haar, Gail R.
2007-05-01
Previous clinical trials with our first prototype HIFU system (Teleson I) for the treatment of liver tumors, demonstrated a major challenge to be treatment of those tumors located behind the ribs. We have designed a new multi-element transducer for rib sparing. Initial simulation and experimental results (using a single channel power amplifier) are very encouraging. A new clinical HIFU system which can drive the multi-element transducer and control each channel independently is being designed and constructed. This second version of a clinical prototype HIFU system consists of a 3D motorised gantry, a multi-channel signal generator, a multi-channel power amplifier, a user interface PC, an embedded controller and auxiliary circuits for real-time interleaving/synchronization control and a to-be-implemented safety monitoring and data logging unit. For multi-element transducers, each element can be individually switched on and off for rib sparing, and phase and amplitude modulated for potential phased array applications. The multi-channel power amplifier can be switched on/off very rapidly at required intervals to interleave with ultrasound B-Scan imaging for HIFU monitoring or radiation force elastography imaging via a dedicated interleaving/timing module. The gantry movement can also be synchronised with power amplifier on/off and phase/amplitude updating for lesion generation under a wide variety of conditions including single lesions, lesion arrays and lesions "tracks" created whilst translating the active transducer. Results from testing the system using excised tissue will be presented.
All-Optical Ultrasound Transducers for High Resolution Imaging
NASA Astrophysics Data System (ADS)
Sheaff, Clay Smith
High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.
The feasibility of non-contact ultrasound for medical imaging.
Clement, G T; Nomura, H; Adachi, H; Kamakura, T
2013-09-21
High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration.
A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters
Zhang, Kai; Tan, Baohai; Liu, Xianping
2017-01-01
Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize. PMID:28452947
Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer.
Park, E J; Werner, Jacob; Smith, Nadine Barrie
2007-07-01
In previous studies, ultrasound mediated transdermal drug delivery has shown a promising potential as a method for noninvasive drug administration. For prospective future human application, this study was designed to determine the feasibility of lightweight cymbal transducer array as a practical device for noninvasive transdermal insulin delivery in large pigs. Six Yorkshire pigs (100-140 lbs) were divided into two groups. As the control (n = 3), the first group did not receive any ultrasound exposure with the insulin. The second group (n = 3) was treated with ultrasound and insulin at 20 kHz with an I(sptp) = 100 mW/cm(2) at a 20% duty cycle for 60 min. With the pigs in lateral recumbency after anesthesia, the ultrasound transducer with insulin was placed on the axillary area of the pig. At the beginning and every 15 min up to 90 min, the blood glucose level was determined using a glucose monitoring system. To compare the results of individual animals, the change of blood glucose level was normalized to each animal's initial glucose value at the start of the experiment. Although each animal had a different initial glucose level, the mean and standard error for the six animals was 146 +/- 13 mg/dl. For the control group, the blood glucose level increased to 31 +/- 21 mg/dl compared to the initial baseline over the 90 min experiment. However for the ultrasound with insulin treated group, the glucose level decreased to -72 +/- 5 mg/dl at 60 min (p < 0.05) and continued to decrease to -91 +/- 23 mg/dl in 90 min (p < 0.05). The results indicate the feasibility of ultrasound mediated transdermal insulin delivery using the cymbal transducer array in animal with a similar size and weight to a human. Based on these result, the cymbal array has potential as a practical ultrasound system for noninvasive transdermal insulin delivery for diabetes management.
High frequency ultrasound imaging using Fabry-Perot optical etalon
NASA Astrophysics Data System (ADS)
Ashkenazi, S.; Witte, R.; O'Donnell, M.
2005-04-01
Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon, offer unique advantages for intravascular and neurological imaging devices.
Nguyen, Man M; Ding, Xuan; Leers, Steven A; Kim, Kang
2017-06-01
Ultrasound-induced thermal strain imaging (TSI) has been used successfully to identify lipid- and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts and displacement tracking accuracy, as well as limited heating capability, which contributes to low thermal strain signal-to-noise ratio, and a limited field of view. Our goal was to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physical alignment of the heating and imaging beams and result in a bulky setup that limits in vivo operation. We evaluated a new design for heating beams that can be implemented on a linear array imaging transducer and can provide improved heating area and efficiency as compared with previous implementations. The heating beams designed were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In vitro experiments using tissue-mimicking phantoms with no blood flow revealed that the new design resulted in an effective heating area of approximately 0.85 cm 2 and a 0.3°C temperature rise in 2 s of heating, which compared well with in silico finite-element simulations. With the new heating beams, TSI was found to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and -0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm-diameter human carotid endarterectomy (CEA) sample was identified in good agreement with histology. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
CMUT Fabrication Based On A Thick Buried Oxide Layer.
Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O; Khuri-Yakub, Butrus T
2010-10-01
We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.
CMUT Fabrication Based On A Thick Buried Oxide Layer
Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O.; Khuri-Yakub, Butrus T.
2010-01-01
We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required – in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377
Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays
Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent
2012-01-01
This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585
High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)
NASA Astrophysics Data System (ADS)
Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.
2003-06-01
Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.
Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.
Gurun, Gokce; Hasler, Paul; Degertekin, F
2011-08-01
This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.
High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.
Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk
2006-02-01
This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned.
Gel-Filled Holders For Ultrasonic Transducers
NASA Technical Reports Server (NTRS)
Companion, John A.
1992-01-01
In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.
Semiotic indexing of digital resources
Parker, Charles T; Garrity, George M
2014-12-02
A method of classifying a plurality of documents. The method includes steps of providing a first set of classification terms and a second set of classification terms, the second set of classification terms being different from the first set of classification terms; generating a first frequency array of a number of occurrences of each term from the first set of classification terms in each document; generating a second frequency array of a number of occurrences of each term from the second set of classification terms in each document; generating a first similarity matrix from the first frequency array; generating a second similarity matrix from the second frequency array; determining an entrywise combination of the first similarity matrix and the second similarity matrix; and clustering the plurality of documents based on the result of the entrywise combination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hristov, D; Schlosser, J; Bazalova, M
2014-06-01
Purpose: To quantify the effect of ultrasound (US) probe beam attenuation for radiation therapy delivered under real-time US image guidance by means of Monte Carlo (MC) simulations. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their CT images in the EGSnrc BEAMnrc and DOSXYZnrc codes. Due to the metal parts, the probes were scanned in a Tomotherapy machine with a 3.5 MV beam. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2–8.0 g/cm{sup 3}.more » Beam attenuation due to the probes was measured in a solid water phantom for a 6 MV and 15 MV 15x15 cm{sup 2} beam delivered on a Varian Trilogy linear accelerator. The dose was measured with the PTW-729 ionization chamber array at two depths and compared to MC simulations. The extreme case beam attenuation expected in robotic US image guided radiotherapy for probes in upright position was quantified by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities were 4.6 and 4.2 g/cm{sup 3} in the C5-2 and X6-1 probe, respectively. Gamma analysis of the simulated and measured doses revealed that over 98% of measurement points passed the 3%/3mm criteria for both probes and measurement depths. The extreme attenuation for probes in upright position was found to be 25% and 31% for the C5-2 and X6-1 probe, respectively, for both 6 and 15 MV beams at 10 cm depth. Conclusion: MC models of two US probes used for real-time image guidance during radiotherapy have been built. As a Result, radiotherapy treatment planning with the imaging probes in place can now be performed. J Schlosser is an employee of SoniTrack Systems, Inc. D Hristov has financial interest in SoniTrack Systems, Inc.« less
Model of a Piezoelectric Transducer
NASA Technical Reports Server (NTRS)
Goodenow, Debra
2004-01-01
It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to determine the transducer's electrical characteristics at the frequency of interest. This will also help me determine the characteristics of an impedance matching network to operate the transducer at its optimum efficiency. For this I will use ABMs (analog behavioral modeling) to model dependent current and voltage sources that represent the transducer. I have also been working on the Labview control software for the phased array used to control the bubbles, and will begin testing on that before the end of my internship.
Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.
2015-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a consistent average focal displacement decrease of 46.7±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15 %/ °C, and 2.03± 0.93%/ °C, respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528
A Prototype Tactile Sensor Array.
1982-09-15
Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial
A/C Interface: The Electronic Toolbox. Part I.
ERIC Educational Resources Information Center
Dessy, Raymond E., Ed.
1985-01-01
Discusses new solid-state transducers, arrays of nonspecific detectors, hardware and firmware computational elements, and other devices that are transforming modern analytical chemistry. Examples in which microelectroic sensors are used to solve 14 problems are included. (JN)
Thermal-to-visible transducer (TVT) for thermal-IR imaging
NASA Astrophysics Data System (ADS)
Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven
2008-04-01
We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.
Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces
Zhu, Xuan; Li, Xiaoshi; Chen, Zeyu; Chen, Yimu; Lei, Yusheng; Li, Yang; Nomoto, Akihiro; Zhou, Qifa; di Scalea, Francesco Lanza
2018-01-01
Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an “island-bridge” layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces. PMID:29740603
Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer
2014-01-01
In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594
Delivering both sum and difference beam distributions to a planar monopulse antenna array
Strassner, II, Bernd H.
2015-12-22
A planar monopulse radar apparatus includes a planar distribution matrix coupled to a planar antenna array having a linear configuration of antenna elements. The planar distribution matrix is responsive to first and second pluralities of weights applied thereto for providing both sum and difference beam distributions across the antenna array.
NASA Astrophysics Data System (ADS)
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.
2016-07-01
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W
2016-07-21
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
High-Performance Acousto-Ultrasonic Scan System Being Developed
NASA Technical Reports Server (NTRS)
Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.
2003-01-01
Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.
High-Performance Acousto-Ultrasonic Scan System Being Developed
NASA Technical Reports Server (NTRS)
Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.
2003-01-01
Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.
A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays
Hughes, Alec; Hynynen, Kullervo
2016-01-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323
A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.
Hughes, Alec; Hynynen, Kullervo
2016-12-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.
Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas
2018-03-26
In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.
An Ultrasonic Guided Wave Method to Estimate Applied Biaxial Loads (Preprint)
2011-11-01
VALIDATION A fatigue test was performed with an array of six surface-bonded PZT transducers on a 6061 aluminum plate as shown in Figure 4. The specimen...direct paths of propagation are oriented at different angles. This method is applied to experimental sparse array data recorded during a fatigue test...and the additional complication of the resulting fatigue cracks interfering with some of the direct arrivals is addressed via proper selection of
Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.
2004-01-01
The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can display up to 18 different wave parameters. Multiple scans of the test specimen demonstrated excellent repeatability in the measurement of all the guided-wave parameters, far exceeding the traditional point-by-point technique. In addition, the scan was able to detect a subsurface defect that was confirmed using flash thermography This technology is being further refined to provide a more robust and efficient software environment. Future hardware upgrades will allow for multiple receiving transducers and the ability to scan more complex surfaces. This work supports composite materials development and testing under the Ultra-Efficient Engine Technology (UEET) Project, but it also will be applied to other material systems under development for a wide range of applications.
Capacitive micromachined ultrasonic transducers for medical imaging and therapy.
Khuri-Yakub, Butrus T; Oralkan, Omer
2011-05-01
Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.
Capacitive micromachined ultrasonic transducers for medical imaging and therapy
Khuri-Yakub, Butrus T.; Oralkan, Ömer
2011-01-01
Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications. PMID:21860542
Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K
1994-10-01
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.
W-Band Circularly Polarized TE11 Mode Transducer
NASA Astrophysics Data System (ADS)
Zhan, Mingzhou; He, Wangdong; Wang, Lei
2018-06-01
This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.
W-Band Circularly Polarized TE11 Mode Transducer
NASA Astrophysics Data System (ADS)
Zhan, Mingzhou; He, Wangdong; Wang, Lei
2018-04-01
This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.
Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia
Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.
2010-01-01
Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363
Simultaneous excitation system for efficient guided wave structural health monitoring
NASA Astrophysics Data System (ADS)
Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing
2017-10-01
Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.
Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang
2005-12-01
Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.
Pixel electronic noise as a function of position in an active matrix flat panel imaging array
NASA Astrophysics Data System (ADS)
Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.
2010-04-01
We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.
Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus
NASA Astrophysics Data System (ADS)
Miyoshi, Tetsu; Ohga, Juro
2013-09-01
To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.
A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.
Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique
2015-06-01
Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.
Intracranial Dual-Mode IVUS and Hyperthermia Using Circular Arrays: Preliminary Experiments
Patel, Vivek; Light, Edward; Herickhoff, Carl; Grant, Gerald; Britz, Gavin; Wilson, Christy; Palmeri, Mark; Smith, Stephen
2013-01-01
In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer’s performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm—a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas. PMID:23287504
A Diamond Electron Tunneling Micro-Electromechanical Sensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia
2000-01-01
A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.
NASA Astrophysics Data System (ADS)
Nishiyama, Misaki; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
2018-02-01
For early diagnosis of rheumatoid arthritis (RA), it is important to visualize its potential marker, vascularization in the synovial membrane of the finger joints. Photoacoustic (PA) imaging, which can image blood vessels at high contrast and resolution is expected to be a potential modality for earlier diagnosis of RA. In previous studies of PA finger imaging, different acoustic schemes such as linear or arc-shaped arrays have been utilized, but these have limited detection views, rendering inaccurate reconstruction, and most of them require rotational detection. We are developing a photoacoustic system for finger vascular imaging using a ring-shaped array ultrasound transducer. By designing the ring-array based on simulations and phantom experiments, we have created a system that can image multiple objects of different diameters and has the potential to image small objects 0.1-0.5mm in diameter at accurate positions by providing PA and ultrasound echo images simultaneously. In addition, we determined that full width at half maximum (FWHM) of the slice direction corresponded to that of the simulation. In the future, this system may visualize the 3-D vascularization of RA patients' fingers.
NASA Astrophysics Data System (ADS)
Bigdeli, Abbas; Biglari-Abhari, Morteza; Salcic, Zoran; Tin Lai, Yat
2006-12-01
A new pipelined systolic array-based (PSA) architecture for matrix inversion is proposed. The pipelined systolic array (PSA) architecture is suitable for FPGA implementations as it efficiently uses available resources of an FPGA. It is scalable for different matrix size and as such allows employing parameterisation that makes it suitable for customisation for application-specific needs. This new architecture has an advantage of[InlineEquation not available: see fulltext.] processing element complexity, compared to the[InlineEquation not available: see fulltext.] in other systolic array structures, where the size of the input matrix is given by[InlineEquation not available: see fulltext.]. The use of the PSA architecture for Kalman filter as an implementation example, which requires different structures for different number of states, is illustrated. The resulting precision error is analysed and shown to be negligible.
Ji, Jin; Yang, Jiun-Chan; Larson, Dale N.
2009-01-01
We demonstrate using nanohole arrays of mixed designs and a microwriting process based on dip-pen nanolithography to monitor multiple, different protein binding events simultaneously in real time based on the intensity of Extraordinary Optical Transmission of nanohole arrays. The microwriting process and small footprint of the individual nanohole arrays enabled us to observe different binding events located only 16μm apart, achieving high spatial resolution. We also present a novel concept that incorporates nanohole arrays of different designs to improve confidence and accuracy of binding studies. For proof of concept, two types of nanohole arrays, designed to exhibit opposite responses to protein bindings, were fabricated on one transducer. Initial studies indicate that the mixed designs could help to screen out artifacts such as protein intrinsic signals, providing improved accuracy of binding interpretation. PMID:19297143
Engholm, Mathias; Beers, Christopher; Bouzari, Hamed; Jensen, Jørgen Arendt; Thomsen, Erik Vilain
2018-08-01
The purpose of this work is to investigate compound lenses for row-column-addressed (RCA) ultrasound transducers for increasing the field-of-view (FOV) to a curvilinear volume region, while retaining a flat sole to avoid trapping air between the transducer sole and the patient, which would otherwise lead to unwanted reflections. The primary motivation behind this research is to develop a RCA ultrasound transducer for abdominal or cardiac imaging, where a curvilinear volume region is a necessity. RCA transducers provide 3-D ultrasound imaging with fewer channels than fully-addressed 2-D arrays (2N instead of N 2 ), but they have inherently limited FOV. By increasing the RCA FOV, these transducers can be used for the same applications as fully-addressed transducers while retaining the same price range as conventional 2-D imaging due to the lower channel count. Analytical and finite element method (FEM) models were employed to evaluate design options. Composite materials were developed by loading polymers with inorganic powders to satisfy the corresponding speed of sound and specific acoustical impedance requirements. A Bi 2 O 3 powder with a density of 8.9g/cm 3 was used to decrease the speed of sound of a room temperature vulcanizing (RTV) silicone, RTV615, from 1.03mm/μs to 0.792mm/μs. Using micro-balloons in RTV615 and a urethane, Hapflex 541, their speeds of sound were increased from 1.03mm/μs to 1.50mm/μs and from 1.52mm/μs to 1.93mm/μs, respectively. A diverging add-on lens was fabricated of a Bi 2 O 3 loaded RTV615 and an unloaded Hapflex 541. The lens was tested using a RCA probe, and a FOV of 32.2° was measured from water tank tests, while the FEM model yielded 33.4°. A wire phantom with 0.15mm diameter wires was imaged at 3MHz down to a depth of 14cm using a synthetic aperture imaging sequence with single element transmissions. The beamformed image showed that wires outside the array footprint were visible, demonstrating the increased FOV. Copyright © 2018 Elsevier B.V. All rights reserved.
SU-E-CAMPUS-T-02: Exploring Radiation Acoustics CT Dosimeter Design Aspects for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsanea, F; Moskvin, V; Stantz, K
2014-06-15
Purpose: Investigate the design aspects and imaging dose capabilities of the Radiation Acoustics Computed Tomography (RA CT) dosimeter for Proton induced acoustics, with the objective to characterize a pulsed pencil proton beam. The focus includes scanner geometry, transducer array, and transducer bandwidth on image quality. Methods: The geometry of the dosimeter is a cylindrical water phantom (length 40cm, radius 15cm) with 71 ultrasound transducers placed along the length and end of the cylinder to achieve a weighted set of projections with spherical sampling. A 3D filtered backprojection algorithm was used to reconstruct the dosimetric images and compared to MC dosemore » distribution. First, 3D Monte Carlo (MC) Dose distributions for proton beam energies (range of 12cm, 16cm, 20cm, and 27cm) were used to simulate the acoustic pressure signal within this scanner for a pulsed proton beam of 1.8x107 protons, with a pulse width of 1 microsecond and a rise time of 0.1 microseconds. Dose comparison within the Bragg peak and distal edge were compared to MC analysis, where the integrated Gaussian was used to locate the 50% dose of the distal edge. To evaluate spatial fidelity, a set of point sources within the scanner field of view (15×15×15cm3) were simulated implementing a low-pass bandwidth response function (0 to 1MHz) equivalent to a multiple frequency transducer array, and the FWHM of the point-spread-function determined. Results: From the reconstructed images, RACT and MC range values are within 0.5mm, and the average variation of the dose within the Bragg peak are within 2%. The spatial resolution tracked with transducer bandwidth and projection angle sampling, and can be kept at 1.5mm. Conclusion: This design is ready for fabrication to start acquiring measurements. The 15 cm FOV is an optimum size for imaging dosimetry. Currently, simulations comparing transducer sensitivity, bandwidth, and proton beam parameters are being evaluated to assess signal-to-noise.« less
NASA Astrophysics Data System (ADS)
Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.
2018-03-01
Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5 × 0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.
Analysis of modified SMI method for adaptive array weight control
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Moses, R. L.
1989-01-01
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.
A class of parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.
Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François
2018-01-16
The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N = 3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.
NASA Astrophysics Data System (ADS)
Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François
2018-01-01
The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N = 3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).
Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2016-08-01
Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.
Focusing through the rib cage for MR-guided transcostal FUS
NASA Astrophysics Data System (ADS)
Gao, J.; Volovick, A.; Pekelny, Y.; Huang, ZH.; Cochran, S.; Melzer, A.
2012-10-01
The rib cage presents a significant obstacle in transcostal focused ultrasound surgery (FUS). This paper proposes a geometric solution, based on central projection from the focus to identify transducer elements affected by ribs shadowing which should be switched off. Its effectiveness in phantom experiments and simulations is reported, and ways are discussed to further reduce energy deposition on the ribs while enhancing heating at the focus. A tissue-mimicking phantom with phantom of ribs was sonicated using a 208-element 1.15 MHz bowl transducer and a 1000-element 550 kHz planar matrix transducer (both ExAblate, InSightec, Israel). The temperature evolution was monitored with real-time MRI thermometry (GE, USA). Numerical simulations were performed with FEA software (PZFlex, Weidlinger Associates, USA) to investigate different skin-focus and transducer-rib distances. The temperature rise near the ribs was reduced to 16°C and 4°C for the 1.15 MHz and 550 kHz transducers respectively. With the 1.15 MHz transducer, the focal temperature reached the ablation threshold. These measurements are in good agreement with simulations. The proposed method shows promising results for transcostal FUS. Residual temperature rise on the ribs can be further reduced by active cooling, allowing the higher energies essential for efficient ablation.
Signal processing applications of massively parallel charge domain computing devices
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)
1999-01-01
The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.
High-power CMUTs: design and experimental verification.
Yamaner, F Yalçin; Olçum, Selim; Oğuz, H Kağan; Bozkurt, Ayhan; Köymen, Hayrettin; Atalar, Abdullah
2012-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.
On-line calibration of high-response pressure transducers during jet-engine testing
NASA Technical Reports Server (NTRS)
Armentrout, E. C.
1974-01-01
Jet engine testing is reported concerned with the effect of inlet pressure and temperature distortions on engine performance and involves the use of numerous miniature pressure transducers. Despite recent improvements in the manufacture of miniature pressure transducers, they still exhibit sensitivity change and zero-shift with temperature and time. To obtain meaningful data, a calibration system is needed to determine these changes. A system has been developed which provides for computer selection of appropriate reference pressures selected from nine different sources to provide a two- or three-point calibration. Calibrations are made on command, before and sometimes after each data point. A unique no leak matrix valve design is used in the reference pressure system. Zero-shift corrections are measured and the values are automatically inserted into the data reduction program.
Noncontact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1998-01-01
High-temperature materials are of increasing importance in the development of more efficient engines and components for the aeronautics industry. In particular, ceramic matrix composite (CMC) and metal matrix composite (MMC) structures are under active development for these applications. The acousto-ultrasonic (AU) method has been shown to be useful for assessing mechanical properties in composite structures. In particular, plate wave analysis can characterize composites in terms of their stiffness moduli. It is desirable to monitor changes in mechanical properties that occur during thermomechanical testing and to monitor the health of components whose geometry or position make them hard to reach with conventional ultrasonic probes. In such applications, it would be useful to apply AU without coupling directly to the test surface. For a number of years, lasers have been under investigation as remote ultrasonic input sources and ultrasound detectors. The use of an ultrasonic transducer coupled through an air gap has also been under study. So far at the NASA Lewis Research Center, we have been more successful in using lasers as ultrasonic sources than as output devices. On the other hand, we have been more successful in using an air-coupled piezoelectric transducer as an output device than as an input device. For this reason, we studied the laser in/air-coupled-transducer out combination-using a pulsed NdYAG laser as the ultrasonic source and an air-coupled-transducer as the detector. The present work is focused on one of the AU parameters of interest, the ultrasonic velocity of the antisymmetric plate-wave mode. This easily identified antisymmetric pulse can be used to determine shear and flexure modulus. It was chosen for this initial work because the pulse arrival times are likely to be the most precise. The following schematic illustrates our experimental arrangement for using laser in/air-transducer out on SiC/SiC composite tensile specimens. The NdYAG pulse was directed downward by a 90 infrared prism to the top of the specimen, but at the edge of one end. An energy sensor measured a single pulse at 13 millijoules (mJ) before it passed through the prism, which attenuated 15 percent of its energy. It also provided an output trigger for the waveform time-delay synthesizer.
Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng
2017-12-12
Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.
Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John
2011-01-01
The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.
Micro-ultrasound for preclinical imaging
Foster, F. Stuart; Hossack, John; Adamson, S. Lee
2011-01-01
Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency ‘micro-ultrasound’ has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described. PMID:22866232
Solid Micro Horn Array (SMIHA) for Acoustic Matching
NASA Technical Reports Server (NTRS)
Sherrit, S.; Bao, X.; Bar-Cohen, Y.
2008-01-01
Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. This paper looks at novel methods of matching the acoustic impedance of structures to the piezoelectric material in an effort to increase power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give good matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.
An HDF5-based framework for the distribution and analysis of ultrasonic concrete data
NASA Astrophysics Data System (ADS)
Prince, Luke; Clayton, Dwight; Santos-Villalobos, Hector
2017-02-01
There are many commercial ultrasonic tomography devices (UTDs) available for use in nondestructive evaluation (NDE) of reinforced concrete structures. These devices emit, measure, and store ultrasonic signals typically in the 25 kHz to 5 MHz frequency range. UTDs are characterized by a composition of multiple transducers, also known as a transducer array or phased array. Often, UTDs data are in a proprietary format. Consequently, NDE research data is limited to those who have prior non-disclosure agreements or the appropriate licenses. Thus, there is a need for a proper universal data framework to exist such that proprietary file datasets for different concrete specimens can be converted, organized, and stored with relative metadata for individual or collaborative NDE research. Building upon the Hierarchical Data Format (HDF5) model, we have developed a UTD data management framework and Graphic User Interface (GUI) to promote the algorithmic reconstruction of ultrasonic data in a controlled environment for easily reproducible and publishable results.
An HDF5-Based Framework for the Distribution and Analysis of Ultrasonic Concrete Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, Luke J; Clayton, Dwight A; Santos-Villalobos, Hector J
There are many commercial ultrasonic tomography devices (UTDs) available for use in nondestructive evaluation (NDE) of reinforced concrete structures. These devices emit, measure, and store ultrasonic signals typically in the 25 kHz to 5 MHz frequency range. UTDs are characterized by a composition of multiple transducers, also known as a transducer array or phased array. Often, UTDs data are in a proprietary format. Consequently, NDE research data is limited to those who have prior non-disclosure agreements or the appropriate licenses. Thus, there is a need for a proper universal data framework to exist such that proprietary file datasets for differentmore » concrete specimens can be converted, organized, and stored with relative metadata for individual or collaborative NDE research. Building upon the Hierarchical Data Format (HDF5) model, we have developed a UTD data management framework and Graphic User Interface (GUI) to promote the algorithmic reconstruction of ultrasonic data in a controlled environment for easily reproducible and publishable results.« less
Pulse-echo sound speed estimation using second order speckle statistics
NASA Astrophysics Data System (ADS)
Rosado-Mendez, Ivan M.; Nam, Kibo; Madsen, Ernest L.; Hall, Timothy J.; Zagzebski, James A.
2012-10-01
This work presents a phantom-based evaluation of a method for estimating soft-tissue speeds of sound using pulse-echo data. The method is based on the improvement of image sharpness as the sound speed value assumed during beamforming is systematically matched to the tissue sound speed. The novelty of this work is the quantitative assessment of image sharpness by measuring the resolution cell size from the autocovariance matrix for echo signals from a random distribution of scatterers thus eliminating the need of strong reflectors. Envelope data were obtained from a fatty-tissue mimicking (FTM) phantom (sound speed = 1452 m/s) and a nonfatty-tissue mimicking (NFTM) phantom (1544 m/s) scanned with a linear array transducer on a clinical ultrasound system. Dependence on pulse characteristics was tested by varying the pulse frequency and amplitude. On average, sound speed estimation errors were -0.7% for the FTM phantom and -1.1% for the NFTM phantom. In general, no significant difference was found among errors from different pulse frequencies and amplitudes. The method is currently being optimized for the differentiation of diffuse liver diseases.
Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams.
Demore, Christine E M; Yang, Zhengyi; Volovick, Alexander; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C
2012-05-11
We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam's topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result.
NASA Astrophysics Data System (ADS)
Endo, Akito; Kawashima, Norimichi; Takeuchi, Shinichi; Ishikawa, Mutsuo; Kurosawa, Minoru Kuribayashi
2007-07-01
We deposited a lead zirconate titanete (PZT) polycrystalline film on a titanium substrate by the hydrothermal method and fabricated a transducer using the PZT film for use as an ultrasound probe. A 10 MHz miniature one-dimensional-array medical ultrasound probe containing the PZT film was developed. After sputtering titanium on the surface of a hydroxyapatite substrate, the titanium film on the substrate was etched by the photolithography to form a one-dimensional titanium film electrode array. We could thus fabricate a miniature one-dimensional-array ultrasound probe by the hydrothermal method. Transmitted ultrasound pulses from a 10 MHz commercial ultrasound probe were received by the newly fabricated one-dimensional-array ultrasound probe. The fabrication process of the probe and the results of experiments on receiving waveforms were reported in this paper.
Kolusheva, S; Yossef, R; Kugel, A; Katz, M; Volinsky, R; Welt, M; Hadad, U; Drory, V; Kliger, M; Rubin, E; Porgador, A; Jelinek, R
2012-07-17
We demonstrate a novel array-based diagnostic platform comprising lipid/polydiacetylene (PDA) vesicles embedded within a transparent silica-gel matrix. The diagnostic scheme is based upon the unique chromatic properties of PDA, which undergoes blue-red transformations induced by interactions with amphiphilic or membrane-active analytes. We show that constructing a gel matrix array hosting PDA vesicles with different lipid compositions and applying to blood plasma obtained from healthy individuals and from patients suffering from disease, respectively, allow distinguishing among the disease conditions through application of a simple machine-learning algorithm, using the colorimetric response of the lipid/PDA/gel matrix as the input. Importantly, the new colorimetric diagnostic approach does not require a priori knowledge on the exact metabolite compositions of the blood plasma, since the concept relies only on identifying statistically significant changes in overall disease-induced chromatic response. The chromatic lipid/PDA/gel array-based "fingerprinting" concept is generic, easy to apply, and could be implemented for varied diagnostic and screening applications.
The role of numerical simulation for the development of an advanced HIFU system
NASA Astrophysics Data System (ADS)
Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro
2014-10-01
High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.
Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk
2009-01-01
For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994
Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk
2009-09-01
For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.
Smart concrete slabs with embedded tubular PZT transducers for damage detection
NASA Astrophysics Data System (ADS)
Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing
2018-02-01
The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.
Combined distributed and concentrated transducer network for failure indication
NASA Astrophysics Data System (ADS)
Ostachowicz, Wieslaw; Wandowski, Tomasz; Malinowski, Pawel
2010-03-01
In this paper algorithm for discontinuities localisation in thin panels made of aluminium alloy is presented. Mentioned algorithm uses Lamb wave propagation methods for discontinuities localisation. Elastic waves were generated and received using piezoelectric transducers. They were arranged in concentrated arrays distributed on the specimen surface. In this way almost whole specimen could be monitored using this combined distributed-concentrated transducer network. Excited elastic waves propagate and reflect from panel boundaries and discontinuities existing in the panel. Wave reflection were registered through the piezoelectric transducers and used in signal processing algorithm. Proposed processing algorithm consists of two parts: signal filtering and extraction of obstacles location. The first part was used in order to enhance signals by removing noise from them. Second part allowed to extract features connected with wave reflections from discontinuities. Extracted features damage influence maps were a basis to create damage influence maps. Damage maps indicated intensity of elastic wave reflections which corresponds to obstacles coordinates. Described signal processing algorithms were implemented in the MATLAB environment. It should be underlined that in this work results based only on experimental signals were presented.
Improved cost-effective fabrication of arbitrarily shaped μIPMC transducers
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Chen, Ri-Hong
2008-01-01
Conventional ionic polymer-metal composite (IPMC) production cuts individual transducers from bulk IPMC sheets. This paper presents a novel photolithographic technique that grows a large array of identical devices on a thin (~µm range) parylene diaphragm supported on a perforated substrate of material that is immune to the subsequent processing liquids. In particular, the new technique relies on a unique wax fill-up and removal concept that can produce arbitrarily shaped Nafion films with micron feature size. The developed process is cheap and results in devices of high uniformity and reliability, with greater design flexibility. Microtensile testing characterizes the fracture profiles of the non-electroded Nafion film and IPMC. Young's modulus is characterized, as well as maximum displacement and current consumption under various loading, driving voltages, waveforms and frequencies. High product quality and low process costs make this process of interest for mass production of micromachined IPMC transducers.
Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.
Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang
2014-02-26
A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.
Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays
Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang
2014-01-01
A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen
2008-12-01
A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A
2015-09-01
For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less
NASA Astrophysics Data System (ADS)
Kim, Jinwook; Lindsey, Brooks D.; Li, Sibo; Dayton, Paul A.; Jiang, Xiaoning
2017-04-01
Acoustic angiography is a contrast-enhanced, superharmonic microvascular imaging method. It has shown the capability of high-resolution and high-contrast-to-tissue-ratio (CTR) imaging for vascular structure near tumor. Dual-frequency ultrasound transducers and arrays are usually used for this new imaging technique. Stacked-type dual-frequency transducers have been developed for this vascular imaging method by exciting injected microbubble contrast agent (MCA) in the vessels with low-frequency (1-5 MHz), moderate power ultrasound burst waves and receiving the superharmonic responses from MCA by a high-frequency receiver (>10 MHz). The main challenge of the conventional dual-frequency transducers is a limited penetration depth (<25 mm) due to the insufficient receiving sensitivity for highfrequency harmonic signal detection. A receiver with a high receiving sensitivity spanning a wide superharmonic frequency range (3rd to 6th) enables selectable bubble harmonic detection considering the required penetration depth. Here, we develop a new dual-frequency transducer composed of a 2 MHz 1-3 composite transmitter and a polyvinylidene fluoride (PVDF) receiver with a receiving frequency range of 4-12 MHz for adjustable harmonic imaging. The developed transducer was tested for harmonic responses from a microbubble-injected vessel-mimicking tube positioned 45 mm away. Despite the long imaging distance (45 mm), the prototype transducer detected clear harmonic response with the contrast-to-noise ratio of 6-20 dB and the -6 dB axial resolution of 200-350 μm for imaging a 200 um-diameter cellulose tube filled with microbubbles.
Integrated ultrasonic particle positioning and low excitation light fluorescence imaging
NASA Astrophysics Data System (ADS)
Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.
2013-12-01
A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.
Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array
Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.
2016-01-01
Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472
Passive front-ends for wideband millimeter wave electronic warfare
NASA Astrophysics Data System (ADS)
Jastram, Nathan Joseph
This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with integrated beamformer fabricated using the stacking of PCB boards is shown, and measured results compare favorably with the micromachined front ends. A 3D printed small aperture horn is compared with a conventionally machined horn, and measured results show similar performance with a ten-fold reduction in cost and weight.
NANOCAVITY SENSOR ARRAY FOR THE ISOLATION, DETECTION AND QUANTITATION OF ENGINEERED NANOPARTICLES
Lai, Zheng Bo; Yan, Cheng
2017-01-01
Many biological composite materials such as bone have demonstrated unique mechanical performance, i.e., a combination of superior stiffness and toughness. It has become increasingly clear that the constituents at the nano- and micro-length scales play a critical role in determining the mechanical performance of these biological composites. In this study, the underlying mechanisms governing the mechanical behaviour of the staggered array of mineralised collagen fibrils (MCF) embedded in extra-fibrillar protein matrix were numerically investigated. The evolution of damage zone in protein was estimated using cohesive zone models (CZM). The results indicate that the mechanisms and mechanical behaviour of MCF array are largely dependent on the MCF dimensions and the intrinsic failure energy in extra-fibrillar protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electric and Magnetic Manipulation of Biological Systems
NASA Astrophysics Data System (ADS)
Lee, H.; Hunt, T. P.; Liu, Y.; Ham, D.; Westervelt, R. M.
2005-06-01
New types of biological cell manipulation systems, a micropost matrix, a microelectromagnet matrix, and a microcoil array, were developed. The micropost matrix consists of post-shaped electrodes embedded in an insulating layer. With a separate ac voltage applied to each electrode, the micropost matrix generates dielectrophoretic force to trap and move individual biological cells. The microelectromagnet matrix consists of two arrays of straight wires aligned perpendicular to each other, that are covered with insulating layers. By independently controlling the current in each wire, the microelectromagnet matrix creates versatile magnetic fields to manipulate individual biological cells attached to magnetic beads. The microcoil array is a set of coils implemented in a foundry using a standard silicon fabrication technology. Current sources to the coils, and control circuits are integrated on a single chip, making the device self-contained. Versatile manipulation of biological cells was demonstrated using these devices by generating optimized electric or magnetic field patterns. A single yeast cell was trapped and positioned with microscopic resolution, and multiple yeast cells were trapped and independently moved along the separate paths for cell-sorting.
NASA Technical Reports Server (NTRS)
Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard
2005-01-01
A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.
Analysis of Modified SMI Method for Adaptive Array Weight Control. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dilsavor, Ronald Louis
1989-01-01
An adaptive array is used to receive a desired signal in the presence of weak interference signals which need to be suppressed. A modified sample matrix inversion (SMI) algorithm controls the array weights. The modification leads to increased interference suppression by subtracting a fraction of the noise power from the diagonal elements of the covariance matrix. The modified algorithm maximizes an intuitive power ratio criterion. The expected values and variances of the array weights, output powers, and power ratios as functions of the fraction and the number of snapshots are found and compared to computer simulation and real experimental array performance. Reduced-rank covariance approximations and errors in the estimated covariance are also described.
NASA Astrophysics Data System (ADS)
Spies, M.; Rieder, H.; Orth, Th.; Maack, S.
2012-05-01
In this contribution we address the beam field simulation of 2D ultrasonic arrays using the Generalized Point Source Synthesis technique. Aiming at the inspection of cylindrical components (e.g. pipes) the influence of concave and convex surface curvatures, respectively, has been evaluated for a commercial probe. We have compared these results with those obtained using a commercial simulation tool. In civil engineering, the ultrasonic inspection of highly attenuating concrete structures has been advanced by the development of dry contact point transducers, mainly applied in array arrangements. Our respective simulations for a widely used commercial probe are validated using experimental results acquired on concrete half-spheres with diameters from 200 mm up to 650 mm.
A portable infrasound generator.
Park, Joseph; Robertson, James
2009-04-01
The rotary subwoofer is a novel low frequency transducer capable of efficiently generating infrasound from a compact source. A field-deployable version of this device may find application as a calibration source for infrasound arrays of the International Monitoring System (IMS) [(2001). The Global Verification Regime and the International Monitoring System (CTBTO Preparatory Commission Vienna International Centre, Vienna, Austria)]. A prototype tested at the IMS infrasound array I59US demonstrated the ability to insonify all elements of the array from a standoff distance of 3.8 km. Signal-to-noise ratios of continuous wave signals ranged from 5 to 15 dB, indicating the utility of this source to transmit controllable infrasound signals over distances of 5 km.
The extracellular matrix in myocardial injury, repair, and remodeling
2017-01-01
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429
Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers
NASA Technical Reports Server (NTRS)
Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.
2014-01-01
Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.
Acoustic emission linear pulse holography
Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.
1985-01-01
Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.
Locating sources within a dense sensor array using graph clustering
NASA Astrophysics Data System (ADS)
Gerstoft, P.; Riahi, N.
2017-12-01
We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.
NASA Technical Reports Server (NTRS)
Roth, Don J.
1996-01-01
This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.
Zhang, J Y; Xu, W J; Carlier, J; Ji, X M; Nongaillard, B; Queste, S; Huang, Y P
2012-01-01
High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the fabrication of conventional backing-layer structure, which requires a pitch (distance between the centers of two adjacent elements) of half wavelength in medium, is really a great challenge. Here we present an alternative buffer-layer structure with a silicon lens for volumetric imaging. The requirement for the size of the pitch is less critical for this structure, making it possible to fabricate high-frequency (100MHz) ultrasonic linear array transducers. Using silicon substrate also makes it possible to integrate the arrays with IC (Integrated Circuit). To compare with the conventional backing-layer structure, a finite element tool, COMSOL, is employed to investigate the performances of acoustic beam focusing, the influence of pitch size for the buffer-layer configuration, and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. For a 100MHz 10-element array of buffer-layer structure, the ultrasound beam in azimuth plane in water could be electronically focused to obtain a spatial resolution (a half-amplitude width) of 86μm at the focal depth. When decreasing from half wavelength in silicon (42μm) to half wavelength in water (7.5μm), the pitch sizes weakly affect the focal resolution. The lateral spatial resolution is increased by 4.65% when the pitch size decreases from 42μm to 7.5μm. The crosstalk between adjacent elements at the central frequency is, respectively, -95dB, -39.4dB, and -60.5dB for the 10-element buffer, 49-element buffer and 49-element backing arrays. Additionally, the electrical impedance magnitudes for each structure are, respectively, 4kΩ, 26.4kΩ, and 24.2kΩ, which is consistent with calculation results using Krimholtz, Leedom, and Matthaei (KLM) model. These results show that the buffer-layer configuration is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays dedicated to volumetric imaging. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.
2016-03-01
Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).
Wiener-matrix image restoration beyond the sampling passband
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.
1991-01-01
A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.
Dynamic-Receive Focusing with High-Frequency Annular Arrays
NASA Astrophysics Data System (ADS)
Ketterling, J. A.; Mamou, J.; Silverman, R. H.
High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.
A simple method for the construction of small format tissue arrays
Hidalgo, A; Piña, P; Guerrero, G; Lazos, M; Salcedo, M
2003-01-01
Tissue arrays can evaluate molecular targets in high numbers of samples in parallel. Array construction presents technical difficulties and tissue arrayers are expensive, particularly for small and medium sized laboratories. This report describes a method for the construction of 36 sample arrays using widely available materials. A blunted 16 gauge needle for bone marrow aspiration was used to extract paraffin wax cylinders and manually define a 6 × 6 matrix on a blank paraffin wax block. Tissue cores from 36 paraffin wax embedded premalignant lesions and invasive cervical carcinomas were injected into the matrix using a 14 gauge needle. This tissue array was sectioned using a standard microtome and used for the immunodetection of CD44 variant 9 and interleukin 18 with satisfactory results. This method can be applied in any laboratory, without the need of specialised equipment, offering a good alternative for the wider application of tissue arrays. PMID:12560397
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays
Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera
2015-01-01
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345
Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases.
Florio, Tullio
2008-05-14
Activation of phosphotyrosine phosphatases (PTPs) by somatostatin receptor (SSTR) represents one of the main intracellular mechanisms involved in the antiproliferative effect of somatostatin (SST) and analogues. Since their molecular cloning, the role of PTPs is emerging as a major regulator of different cell functions including cell proliferation, differentiation, cell to cell interactions, cell matrix adhesion and cell migration. It was demonstrated that PTPs possess high substrate specificity and their activity is tightly regulated. Importantly, different G protein-coupled receptors transduce their biological activities through PTPs. PTPs were identified as down-stream effectors of SSTRs to transduce antiproliferative signals, and so far, three family members (SHP-1, SHP-2 and DEP-1/PTPeta) have been identified as selective SSTR intracellular effectors. Here, the molecular mechanisms leading SSTRs to regulate PTP activity are discussed, focusing on recent data showing a close interplay between PTPs and tyrosine kinases to transduce tumoral cell growth arrest following SST analogs administration.
Frequency wavenumber design of spiral macro fiber composite directional transducers
NASA Astrophysics Data System (ADS)
Carrara, Matteo; Ruzzene, Massimo
2015-04-01
This work is focused on design and testing of a novel class of transducers for Structural Health Monitoring (SHM), able to perform directional interrogation of plate-like structures. These transducers leverage guided waves (GWs), and in particular Lamb waves, that have emerged as a very prominent option for assessing the state of a structure during operation. GW-SHM approaches greatly benefit from the use of transducers with controllable directional characteristics, so that selective scanning of a surface can be performed to locate damage, impacts, or cracks. In the concepts that we propose, continuous beam steering and directional actuation are achieved through proper selection of the excitation frequency. The design procedure takes advantage of the wavenumber representation of the device, and formulates the problem using a Fourier-based approach. The active layer of the transducer is made of piezoelectric fibers embedded into an epoxy matrix, allowing the device to be flexible, and thus suitable for application on non{ at surfaces. Proper shaping of the electrodes pattern through a compensation function allows taking into account the anisotropy level introduced by the active layer. The resulting spiral frequency steerable acoustic actuator is a configuration that features (i) enhanced performance, (ii) reduced complexity, and (iii) reduced hardware requirements of such devices.
SMI adaptive antenna arrays for weak interfering signals
NASA Technical Reports Server (NTRS)
Gupta, I. J.
1987-01-01
The performance of adaptive antenna arrays is studied when a sample matrix inversion (SMI) algorithm is used to control array weights. It is shown that conventional SMI adaptive antennas, like other adaptive antennas, are unable to suppress weak interfering signals (below thermal noise) encountered in broadcasting satellite communication systems. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is modified such that the effect of thermal noise on the weights of the adaptive array is reduced. Thus, the weights are dictated by relatively weak coherent signals. It is shown that the modified algorithm provides the desired interference protection. The use of defocused feeds as auxiliary elements of an SMI adaptive array is also discussed.
Airborne ultrasound applied to anthropometry--physical and technical principles.
Lindström, K; Mauritzson, L; Benoni, G; Willner, S
1983-01-01
Airborne ultrasound has been utilized for remote measurement of distance, direction, size, form, volume and velocity. General anthropometrical measurements are performed with a newly constructed real-time linear array scanner. To make full use of the method, we expect a rapid development of high-frequency ultrasound transducers for use in air.
2015-06-01
area throughout the entire 3D structure. Hydrogels, organogels, and aerogels based on silica [1] or Distribution A: Approved for public release...porosity materials (e.g. bulk carbon aerogels ) or aligned CNT arrays [3]. In addition, to test the capability of the system to respond to incident light
Compact Tactile Sensors for Robot Fingers
NASA Technical Reports Server (NTRS)
Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa
2004-01-01
Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.
Volumetric Security Alarm Based on a Spherical Ultrasonic Transducer Array
NASA Astrophysics Data System (ADS)
Sayin, Umut; Scaini, Davide; Arteaga, Daniel
Most of the existent alarm systems depend on physical or visual contact. The detection area is often limited depending on the type of the transducer, creating blind spots. Our proposition is a truly volumetric alarm system that can detect any movement in the intrusion area, based on monitoring the change over time of the impulse response of the room, which acts as an acoustic footprint. The device depends on an omnidirectional ultrasonic transducer array emitting sweep signals to calculate the impulse response in short intervals. Any change in the room conditions is monitored through a correlation function. The sensitivity of the alarm to different objects and different environments depends on the sweep duration, sweep bandwidth, and sweep interval. Successful detection of intrusions also depends on the size of the monitoring area and requires an adjustment of emitted ultrasound power. Strong air flow affects the performance of the alarm. A method for separating moving objects from strong air flow is devised using an adaptive thresholding on the correlation function involving a series of impulse response measurements. The alarm system can be also used for fire detection since air flow sourced from heating objects differ from random nature of the present air flow. Several measurements are made to test the integrity of the alarm in rooms sizing from 834-2080m3 with irregular geometries and various objects. The proposed system can efficiently detect intrusion whilst adequate emitting power is provided.
Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise
NASA Astrophysics Data System (ADS)
Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru
2004-05-01
The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.
NASA Astrophysics Data System (ADS)
Chiou, De-Yi; Chen, Mu-Yueh; Chang, Ming-Wei; Deng, Hsu-Cheng
2007-11-01
This study constructs an electromechanical finite element model of the polymer-based capacitive micro-arrayed ultrasonic transducer (P-CMUT). The electrostatic-structural coupled-field simulations are performed to investigate the operational characteristics, such as collapse voltage and resonant frequency. The numerical results are found to be in good agreement with experimental observations. The study of influence of each defined parameter on the collapse voltage and resonant frequency are also presented. To solve some conflict problems in diversely physical fields, an integrated design method is developed to optimize the geometric parameters of the P-CMUT. The optimization search routine conducted using the genetic algorithm (GA) is connected with the commercial FEM software ANSYS to obtain the best design variable using multi-objective functions. The results show that the optimal parameter values satisfy the conflicting objectives, namely to minimize the collapse voltage while simultaneously maintaining a customized frequency. Overall, the present result indicates that the combined FEM/GA optimization scheme provides an efficient and versatile approach of optimization design of the P-CMUT.
Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John
2011-01-01
The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884
Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A
2016-05-07
Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.
Study and verification of multibeam ability for a new VHF-radar in northern Norway
NASA Astrophysics Data System (ADS)
Renkwitz, Toralf; Singer, Werner; Latteck, Ralph
2010-05-01
The Leibniz-Institute of Atmospheric Physics in Kühlungsborn (IAP) has been operating the ALWIN MST radar system at 53.5 MHz on the North-Norwegian island Andoya for more than 10 years. The antenna array of 144 Yagi antennas has been used to form a 6 degree wide beam on transmission and reception. With this radar, the characteristics of Polar Mesospheric Summer Echoes (PMSE) have been investigated with high time resolution. For future studies of horizontal structures of winds, waves, turbulence and PMSE, the IAP is currently building a new advanced VHF-Radar to replace ALWIN. For this purpose an additional module (Butler matrix) for the receiver of this VHF-Radar has been built which allows the generation of multiple beams in azimuth and zenith angles for simultaneous observations. In 2009 IAP started to build the successor system of the ALWIN radar, called MAARSY (Middle Atmosphere Alomar Radar SYstem). In the first step this new system will consist of a phased array of 217 individual 3-element Yagi antennas arranged in an equilateral grid structure and the same amount of transceiver modules. Furthermore 64 Yagi antennas of the former ALWIN antenna array are still available for reception (ALWIN64). On reception the Butler matrix will be used to form simultaneously 16 beams in hardware with the ALWIN64 array, while for transmission an equal illumination with the MAARSY array will be generated. A Butler matrix is a reciprocal structure composed of half-power 90° hybrid couplers and phase shifters, first described by Butler [1961]. In this structure the total number of available beams is determined by the amount of independent receivers and antenna feeds. A 4-Port Butler matrix simultaneously generates 4 individual in- and outputs. For the current 16 channel radar receiver a 16-Port Butler matrix was built by the concatenation of 8x 4-Port Butler matrices. Using this 16-Port Butler matrix with the ALWIN64 array 16 individual beams with a beam width of approximately 9° are generated. For the height of PMSE-layers the beam width results in a target area of roughly 14km diameter for each single beam. Since the installation of the 16-Port Butler matrix in November 2009 the ALWIN64 antenna array has been used to sample galactic noise. To verify the functionality of the Butler matrix 6 out of 16 beams have been selected to e.g. monitor the supernova remnant Cassiopeia A. It is furthermore planned to verify the Butler matrix measurements by comparing the data with the AIRIS Riometer which is also located on the Island Andoya.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
Matrix stiffness reverses the effect of actomyosin tension on cell proliferation.
Mih, Justin D; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S; Tschumperlin, Daniel J
2012-12-15
The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate.
Matrix stiffness reverses the effect of actomyosin tension on cell proliferation
Mih, Justin D.; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S.; Tschumperlin, Daniel J.
2012-01-01
Summary The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate. PMID:23097048
NASA Technical Reports Server (NTRS)
Miller, James G.
1995-01-01
In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.
Selecting Random Distributed Elements for HIFU using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yufeng
2011-09-01
As an effective and noninvasive therapeutic modality for tumor treatment, high-intensity focused ultrasound (HIFU) has attracted attention from both physicians and patients. New generations of HIFU systems with the ability to electrically steer the HIFU focus using phased array transducers have been under development. The presence of side and grating lobes may cause undesired thermal accumulation at the interface of the coupling medium (i.e. water) and skin, or in the intervening tissue. Although sparse randomly distributed piston elements could reduce the amplitude of grating lobes, there are theoretically no grating lobes with the use of concave elements in the new phased array HIFU. A new HIFU transmission strategy is proposed in this study, firing a number of but not all elements for a certain period and then changing to another group for the next firing sequence. The advantages are: 1) the asymmetric position of active elements may reduce the side lobes, and 2) each element has some resting time during the entire HIFU ablation (up to several hours for some clinical applications) so that the decreasing efficiency of the transducer due to thermal accumulation is minimized. Genetic algorithm was used for selecting randomly distributed elements in a HIFU array. Amplitudes of the first side lobes at the focal plane were used as the fitness value in the optimization. Overall, it is suggested that the proposed new strategy could reduce the side lobe and the consequent side-effects, and the genetic algorithm is effective in selecting those randomly distributed elements in a HIFU array.
Electro-optical processing of phased array data
NASA Technical Reports Server (NTRS)
Casasent, D.
1973-01-01
An on-line spatial light modulator for application as the input transducer for a real-time optical data processing system is described. The use of such a device in the analysis and processing of radar data in real time is reported. An interface from the optical processor to a control digital computer was designed, constructed, and tested. The input transducer, optical system, and computer interface have been operated in real time with real time radar data with the input data returns recorded on the input crystal, processed by the optical system, and the output plane pattern digitized, thresholded, and outputted to a display and storage in the computer memory. The correlation of theoretical and experimental results is discussed.
Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.
2017-02-06
We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam- pro les in water from the radial modes con rm the profile to be a Bessel beam.more » Collimated beam generation from radial modes is investigated using a coupled electromechanical finite-element model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam- profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials.« less
Multimodal sparse reconstruction in guided wave imaging of defects in plates
NASA Astrophysics Data System (ADS)
Golato, Andrew; Santhanam, Sridhar; Ahmad, Fauzia; Amin, Moeness G.
2016-07-01
A multimodal sparse reconstruction approach is proposed for localizing defects in thin plates in Lamb wave-based structural health monitoring. The proposed approach exploits both the sparsity of the defects and the multimodal nature of Lamb wave propagation in plates. It takes into account the variation of the defects' aspect angles across the various transducer pairs. At low operating frequencies, only the fundamental symmetric and antisymmetric Lamb modes emanate from a transmitting transducer. Asymmetric defects scatter these modes and spawn additional converted fundamental modes. Propagation models are developed for each of these scattered and spawned modes arriving at the various receiving transducers. This enables the construction of modal dictionary matrices spanning a two-dimensional array of pixels representing potential defect locations in the region of interest. Reconstruction of the region of interest is achieved by inverting the resulting linear model using the group sparsity constraint, where the groups extend across the various transducer pairs and the different modes. The effectiveness of the proposed approach is established with finite-element scattering simulations of the fundamental Lamb wave modes by crack-like defects in a plate. The approach is subsequently validated with experimental results obtained from an aluminum plate with asymmetric defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.
We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam- pro les in water from the radial modes con rm the profile to be a Bessel beam.more » Collimated beam generation from radial modes is investigated using a coupled electromechanical finite-element model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam- profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials.« less
González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M
2017-01-01
A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phased array inspection of large size forged steel parts
NASA Astrophysics Data System (ADS)
Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre
2018-04-01
High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.
O'Brien, Kevin D; Lewis, Katherine; Fischer, Jens W; Johnson, Pamela; Hwang, Jin-Yong; Knopp, Eleanor A; Kinsella, Michael G; Barrett, P Hugh R; Chait, Alan; Wight, Thomas N
2004-11-01
Lipoprotein retention on extracellular matrix (ECM) may play a central role in atherogenesis, and a specific extracellular matrix proteoglycan, biglycan, has been implicated in lipoprotein retention in human atherosclerosis. To test whether increased cellular biglycan expression results in increased retention of lipoproteins on ECM, rat aortic smooth muscle cells (SMCs) were transduced with a human biglycan cDNA-containing retroviral vector (LBSN) or with an empty retroviral vector (LXSN). To assess the importance of biglycan's glycosaminoglycan side chains in lipoprotein retention, ECM binding studies were also performed using RASMCs transduced with a retroviral vector encoding for a mutant, glycosaminoglycan-deficient biglycan (LBmutSN). Human biglycan mRNA and protein were confirmed in LBSN and LBmutSN RASMCs by Northern and Western blot analyses. HDL3+E binding to SMC ECM was increased significantly (as determined by 95% confidence intervals for binding curves) for LBSN as compared to either LXSN or LBmutSN cells; the increases for LBSN cell ECM were due primarily to an approximately 50% increase in binding sites (increased Bmax) versus LXSN cell ECM and of approximately 25% versus LBmutSN cell ECM. These results are consistent with the hypothesis that biglycan, through its glycosaminoglycan side chains, may mediate lipoprotein retention on atherosclerotic plaque ECM.
An Ultrasonic Wheel-Array Probe
NASA Astrophysics Data System (ADS)
Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.
2004-02-01
This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.
NASA Astrophysics Data System (ADS)
Adams, Matthew; Scott, Serena; Salgaonkar, Vasant; Sommer, Graham; Diederich, Chris
2017-03-01
An image-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. By considering a directional transducer array of planar, tubular, or curvilinear transducers, this design offers the potential for fast volumetric therapy and 3D spatial control over the energy deposition profile. Treatment of pancreatic tumor tissue would be performed in a minimally invasive fashion with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal wall would be achieved with a water-cooled balloon surrounding the transducers. A theoretical evaluation of this design was performed by developing a 3D acoustic and bioheat transfer model, with temperature and thermal dose solutions obtained using a FEM solver (COMSOL Multiphysics). Parametric studies were performed on a generalized anatomical model of the pancreas, tumor, and adjacent luminal wall to determine preferred transducer configurations and frequencies for maximizing lesion volume and penetration while sparing the luminal wall. Patient-specific models of pancreatic tumors were generated from CT studies and used to assess the feasibility of performing thermal ablation or hyperthermia on small (˜2 cm diameter) pancreatic head tumors with an endoluminal applicator positioned within the duodenum. Simulation results indicate lower transducer operating frequencies (1-3 MHz) are necessary to mitigate damage to the luminal wall, and a tradeoff between penetration depth and lesion volume emerges as the degree of focusing increases. For patient-specific ablation modeling of tumors within 30 mm of the luminal wall, approximately 95% of the volume could be ablated within 15 min using a planar or lightly focused transducer configuration without duodenal damage. Over 90% of the volume could be elevated above 40°C at steady state for hyperthermia applications (e.g., radiation sensitization, drug delivery) using a tubular transducer. For tumors extending deeper into the pancreas (˜35 mm), strongly focused curvilinear transducers could ablate over 80% of the tumor volume within 15 min while minimizing damage to nearby sensitive structures.
Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays.
Kinder, Erich; Moroz, Pavel; Diederich, Geoffrey; Johnson, Alexa; Kirsanova, Maria; Nemchinov, Alexander; O'Connor, Timothy; Roth, Dan; Zamkov, Mikhail
2011-12-21
A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells. © 2011 American Chemical Society
Spatial acoustic signal processing for immersive communication
NASA Astrophysics Data System (ADS)
Atkins, Joshua
Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to the true impulse response. This forces the need to track both the near and far end room responses. A transform domain method that mitigates this problem is derived and implemented. Results with a real system using a 16-channel loudspeaker array and 32-channel microphone array are presented.
Breast Cancer Nodes Detection Using Ultrasonic Microscale Subarrayed MIMO RADAR
Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos
2014-01-01
This paper proposes the use of ultrasonic microscale subarrayed MIMO RADARs to estimate the position of breast cancer nodes. The transmit and receive antenna arrays are divided into subarrays. In order to increase the signal diversity each subarray is assigned a different waveform from an orthogonal set. High-frequency ultrasonic transducers are used since a breast is considered to be a superficial structure. Closed form expressions for the optimal Neyman-Pearson detector are derived. The combination of the waveform diversity present in the subarrayed deployment and traditional phased-array RADAR techniques provides promising results. PMID:25309591
Integrated transrectal probe for translational ultrasound-photoacoustic imaging
NASA Astrophysics Data System (ADS)
Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.
2016-03-01
A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.
Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.
Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S
2006-01-01
Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. Conclusion The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts. PMID:16756651
Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; Macleod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S
2006-06-06
Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.
Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.
Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A
1999-05-01
Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.
Two-port network analysis and modeling of a balanced armature receiver.
Kim, Noori; Allen, Jont B
2013-07-01
Models for acoustic transducers, such as loudspeakers, mastoid bone-drivers, hearing-aid receivers, etc., are critical elements in many acoustic applications. Acoustic transducers employ two-port models to convert between acoustic and electromagnetic signals. This study analyzes a widely-used commercial hearing-aid receiver ED series, manufactured by Knowles Electronics, Inc. Electromagnetic transducer modeling must consider two key elements: a semi-inductor and a gyrator. The semi-inductor accounts for electromagnetic eddy-currents, the 'skin effect' of a conductor (Vanderkooy, 1989), while the gyrator (McMillan, 1946; Tellegen, 1948) accounts for the anti-reciprocity characteristic [Lenz's law (Hunt, 1954, p. 113)]. Aside from Hunt (1954), no publications we know of have included the gyrator element in their electromagnetic transducer models. The most prevalent method of transducer modeling evokes the mobility method, an ideal transformer instead of a gyrator followed by the dual of the mechanical circuit (Beranek, 1954). The mobility approach greatly complicates the analysis. The present study proposes a novel, simplified and rigorous receiver model. Hunt's two-port parameters, the electrical impedance Ze(s), acoustic impedance Za(s) and electro-acoustic transduction coefficient Ta(s), are calculated using ABCD and impedance matrix methods (Van Valkenburg, 1964). The results from electrical input impedance measurements Zin(s), which vary with given acoustical loads, are used in the calculation (Weece and Allen, 2010). The hearing-aid receiver transducer model is designed based on energy transformation flow [electric→ mechanic→ acoustic]. The model has been verified with electrical input impedance, diaphragm velocity in vacuo, and output pressure measurements. This receiver model is suitable for designing most electromagnetic transducers and it can ultimately improve the design of hearing-aid devices by providing a simplified yet accurate, physically motivated analysis. This article is part of a special issue entitled "MEMRO 2012". Published by Elsevier B.V.
General linear codes for fault-tolerant matrix operations on processor arrays
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Abraham, J. A.
1988-01-01
Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.
A 30-MHz piezo-composite ultrasound array for medical imaging applications.
Ritter, Timothy A; Shrout, Thomas R; Tutwiler, Rick; Shung, K Kirk
2002-02-01
Ultrasound imaging at frequencies above 20 MHz is capable of achieving improved resolution in clinical applications requiring limited penetration depth. High frequency arrays that allow real-time imaging are desired for these applications but are not yet currently available. In this work, a method for fabricating fine-scale 2-2 composites suitable for 30-MHz linear array transducers was successfully demonstrated. High thickness coupling, low mechanical loss, and moderate electrical loss were achieved. This piezo-composite was incorporated into a 30-MHz array that included acoustic matching, an elevation focusing lens, electrical matching, and an air-filled kerf between elements. Bandwidths near 60%, 15-dB insertion loss, and crosstalk less than -30 dB were measured. Images of both a phantom and an ex vivo human eye were acquired using a synthetic aperture reconstruction method, resulting in measured lateral and axial resolutions of approximately 100 microm.
Phased Array Probe Optimization for the Inspection of Titanium Billets
NASA Astrophysics Data System (ADS)
Rasselkorde, E.; Cooper, I.; Wallace, P.; Lupien, V.
2010-02-01
The manufacturing process of titanium billets can produce multiple sub-surface defects that are particularly difficult to detect during the early stages of production. Failure to detect these defects can lead to subsequent in-service failure. A new and novel automated quality control system is being developed for the inspection of titanium billets destined for use in aerospace applications. The sensors will be deployed by an automated system to minimise the use of manual inspections, which should improve the quality and reliability of these critical inspections early on in the manufacturing process. This paper presents the first part of the work, which is the design and the simulation of the phased array ultrasonic inspection of the billets. A series of phased array transducers were designed to optimise the ultrasonic inspection of a ten inch diameter billet made from Titanium 6Al-4V. A comparison was performed between different probes including a 2D annular sectorial array.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose
Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven
2015-01-01
Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001
Pulse-encoded ultrasound imaging of the vitreous with an annular array.
Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Lloyd, Harriet O; Filoux, Erwan; Coleman, D Jackson
2012-01-01
The vitreous body is nearly transparent both optically and ultrasonically. Conventional 10- to 12-MHz diagnostic ultrasound can detect vitreous inhomogeneities at high gain settings, but has limited resolution and sensitivity, especially outside the fixed focal zone near the retina. To improve visualization of faint intravitreal fluid/gel interfaces, the authors fabricated a spherically curved 20-MHz five-element annular array ultrasound transducer, implemented a synthetic-focusing algorithm to extend the depth-of-field, and used a pulse-encoding strategy to increase sensitivity. The authors evaluated a human subject with a recent posterior vitreous detachment and compared the annular array with conventional 10-MHz ultrasound and spectral-domain optical coherence tomography. With synthetic focusing and chirp pulse-encoding, the array allowed visualization of the formed and fluid components of the vitreous with improved sensitivity and resolution compared with the conventional B-scan. Although optical coherence tomography allowed assessment of the posterior vitreoretinal interface, the ultrasound array allowed evaluation of the entire vitreous body. Copyright 2012, SLACK Incorporated.
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET.
Du, Junwei; Schmall, Jeffrey P; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S; Buckley, Steve; Jackson, Carl; Cherry, Simon R
2015-02-01
The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL's front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm(2) and the total size of the detector head is 47.8 × 46.3 mm(2). Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0-32.5 V in 0.5 V intervals) and at different temperatures (5 °C-25 °C in 5 °C degree steps) to find the optimal operating conditions. The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems.
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET
Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.
2015-01-01
Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems. PMID:25652479
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Junwei, E-mail: jwdu@ucdavis.edu; Schmall, Jeffrey P.; Yang, Yongfeng
Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm{sup 2} and the total size of the detector head is 47.8 × 46.3 mm{sup 2}. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomographymore » (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems.« less
Applications of airborne ultrasound in human-computer interaction.
Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre
2014-09-01
Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.
Jolesz, Ferenc A; Hynynen, Kullervo; McDannold, Nathan; Freundlich, David; Kopelman, Doron
2004-11-01
A number of minimally invasive methods have been tested for the thermal ablation of liver tumors as an alternative to surgical resection. The use of focused ultrasound transducers to ablate deep tumors offers the first completely noninvasive alternative to these techniques. By increasing the flexibility of this technology with modern phased-array transducer design and by combining it with magnetic resonance imaging for targeting and online guidance, a powerful tool results with the potential to offer treatment to a larger population of patients, to reduce trauma to the patient, and to reduce the cost of treatment. In this article, we review previous work with focused ultrasound in the liver and recent experimental results with magnetic resonance imaging guidance.
NASA Astrophysics Data System (ADS)
Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang
2012-07-01
Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding-cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are - 15 dB and - 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( - 55 °C-80 °C ) and strength durability (160-1600μɛ, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life.
Coronal Axis Measurement of the Optic Nerve Sheath Diameter Using a Linear Transducer.
Amini, Richard; Stolz, Lori A; Patanwala, Asad E; Adhikari, Srikar
2015-09-01
The true optic nerve sheath diameter cutoff value for detecting elevated intracranial pressure is variable. The variability may stem from the technique used to acquire sonographic measurements of the optic nerve sheath diameter as well as sonographic artifacts inherent to the technique. The purpose of this study was to compare the traditional visual axis technique to an infraorbital coronal axis technique for assessing the optic nerve sheath diameter using a high-frequency linear array transducer. We conducted a cross-sectional study at an academic medical center. Timed optic nerve sheath diameter measurements were obtained on both eyes of healthy adult volunteers with a 10-5-MHz broadband linear array transducer using both traditional visual axis and coronal axis techniques. Optic nerve sheath diameter measurements were obtained by 2 sonologists who graded the difficulty of each technique and were blinded to each other's measurements for each participant. A total of 42 volunteers were enrolled, yielding 84 optic nerve sheath diameter measurements. There were no significant differences in the measurements between the techniques on either eye (P = .23 [right]; P = .99 [left]). Additionally, there was no difference in the degree of difficulty obtaining the measurements between the techniques (P = .16). There was a statistically significant difference in the time required to obtain the measurements between the traditional and coronal techniques (P < .05). Infraorbital coronal axis measurements are similar to measurements obtained in the traditional visual axis. The infraorbital coronal axis technique is slightly faster to perform and is not technically challenging. © 2015 by the American Institute of Ultrasound in Medicine.
Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.
Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr
2017-12-01
The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.
Hybrid organic–inorganic porous semiconductor transducer for multi-parameters sensing
Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca
2015-01-01
Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion. PMID:26063814
NASA Astrophysics Data System (ADS)
Juntarapaso, Yada
Scanning Acoustic Microscopy (SAM) is one of the most powerful techniques for nondestructive evaluation and it is a promising tool for characterizing the elastic properties of biological tissues/cells. Exploring a single cell is important since there is a connection between single cell biomechanics and human cancer. Scanning acoustic microscopy (SAM) has been accepted and extensively utilized for acoustical cellular and tissue imaging including measurements of the mechanical and elastic properties of biological specimens. SAM provides superb advantages in that it is non-invasive, can measure mechanical properties of biological cells or tissues, and fixation/chemical staining is not necessary. The first objective of this research is to develop a program for simulating the images and contrast mechanism obtained by high-frequency SAM. Computer simulation algorithms based on MatlabRTM were built for simulating the images and contrast mechanisms. The mechanical properties of HeLa and MCF-7 cells were computed from the measurement data of the output signal amplitude as a function of distance from the focal planes of the acoustics lens which is known as V(z) . Algorithms for simulating V(z) responses involved the calculation of the reflectance function and were created based on ray theory and wave theory. The second objective is to design transducer arrays for SAM. Theoretical simulations based on Field II(c) programs of the high frequency ultrasound array designs were performed to enhance image resolution and volumetric imaging capabilities. Phased array beam forming and dynamic apodization and focusing were employed in the simulations. The new transducer array design will be state-of-the-art in improving the performance of SAM by electronic scanning and potentially providing a 4-D image of the specimen.
Stephens, Douglas N.; Truong, Uyen T.; Nikoozadeh, Amin; Oralkan, Ömer; Seo, Chi Hyung; Cannata, Jonathan; Dentinger, Aaron; Thomenius, Kai; de la Rama, Alan; Nguyen, Tho; Lin, Feng; Khuri-Yakub, Pierre; Mahajan, Aman; Shivkumar, Kalyanam; O’Donnell, Matt; Sahn, David J.
2012-01-01
Objectives The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. Methods The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. Results The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. Conclusions Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures. PMID:22298868
Focusing of high intensity ultrasound through the rib cage using a therapeutic random phased array
Bobkova, Svetlana; Gavrilov, Leonid; Khokhlova, Vera; Shaw, Adam; Hand, Jeffrey; #, ||
2010-01-01
A method for focusing high intensity ultrasound through a rib cage that aims to minimize heating of the ribs whilst maintaining high intensities at the focus (or foci) is proposed and tested theoretically and experimentally. Two approaches, one based on geometric acoustics and the other accounting for diffraction effects associated with propagation through the rib cage, are investigated theoretically for idealized source conditions. It is shown that for an idealized radiator the diffraction approach provides a 23% gain in peak intensity and results in significantly less power losses on the ribs (1% versus 7.5% of the irradiated power) compared with the geometric one. A 2D 1-MHz phased array with 254 randomly distributed elements, tissue mimicking phantoms, and samples of porcine rib cages are used in experiments; the geometric approach is used to configure how the array is driven. Intensity distributions are measured in the plane of the ribs and in the focal plane using an infra-red camera. Theoretical and experimental results show that it is possible to provide adequate focusing through the ribs without overheating them for a single focus and several foci, including steering at ± 10–15 mm off and ± 20 mm along the array axis. Focus splitting due to the periodic spatial structure of ribs is demonstrated both in simulations and experiments; the parameters of splitting are quantified. The ability to produce thermal lesions with a split focal pattern in ex vivo porcine tissue placed beyond the rib phantom is also demonstrated. The results suggest that the method is potentially useful for clinical applications of HIFU for which the rib cage lies between the transducer(s) and the targeted tissue. PMID:20510186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongyu, Xu; Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208; Xin, Cheng
2014-12-28
The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction ofmore » piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.« less
Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.
Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa
2005-12-01
Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Lewis, N. S.
2001-01-01
Arrays of broadly responsive vapor detectors can be used to detect, identify, and quantify vapors and vapor mixtures. One implementation of this strategy involves the use of arrays of chemically-sensitive resistors made from conducting polymer composites. Sorption of an analyte into the polymer composite detector leads to swelling of the film material. The swelling is in turn transduced into a change in electrical resistance because the detector films consist of polymers filled with conducting particles such as carbon black. The differential sorption, and thus differential swelling, of an analyte into each polymer composite in the array produces a unique pattern for each different analyte of interest, Pattern recognition algorithms are then used to analyze the multivariate data arising from the responses of such a detector array. Chiral detector films can provide differential detection of the presence of certain chiral organic vapor analytes. Aspects of the spaceflight qualification and deployment of such a detector array, along with its performance for certain analytes of interest in manned life support applications, are reviewed and summarized in this article.
Characterization and Design of Spiral Frequency Steerable Acoustic Transducers
NASA Astrophysics Data System (ADS)
Repale, Rohan
Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.
Innovative Methods for High Resolution Imaging
2012-08-02
findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix factorization for...on their findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix...Computational Optical Sensing and Imaging . 2007/06/18 00:00:00, . : , 2012/07/16 15:30:42 9 Kelly N. Smith, V. Paul Pauca, Arun Ross, Todd Torgersen, Michael C
2013-12-14
population covariance matrix with application to array signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear...Applications , (01 2012): 1150004. doi: Walid Hachem, Malika Kharouf, Jamal Najim, Jack W. Silverstein. A CLT FOR INFORMATION- THEORETIC STATISTICS...for Multi-source Power Estimation, (04 2010) Malika Kharouf, Jamal Najim, Jack W. Silverstein, Walid Hachem. A CLT FOR INFORMATION- THEORETIC
Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.
2016-01-01
Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711
Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays
NASA Astrophysics Data System (ADS)
Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.
2014-12-01
Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.
NASA Astrophysics Data System (ADS)
Capineri, L.; Bulletti, A.; Calzolai, M.; Giannelli, P.
2016-12-01
This paper describes the design and fabrication of a 16-element transducer array for airborne ultrasonic imaging operating at 150 kHz, that can operate both at close range (50 mm) in the near field of a synthetic aperture, and up to 250 mm. The proposed imaging technique is based on a modified version of the delay and sum algorithm implemented with a synthetic aperture where each pixel amplitude is determined by the integration of the signal obtained by the coherent summation of the acquired signals over a delayed window with fixed length. The image reconstruction methods using raw data provides the possibility to detect targets with smaller feature size on the order of one wavelength because the coherent signals summation over the selected window length while the image reconstruction methods using the summation of enveloped signals increases the amplitude response at the expenses of a lower spatial resolution. For the implementation of this system it is important to design compact airborne transducers with large field of view and this can be obtained with a new design of hemi-cylindrical polyvinylidene fluoride film transducers directly mounted on a printed circuit board. This new method is low cost and has repeatable transducer characteristics. The complete system is compact, with a modular architecture, in which eight boards with dual ultrasonic channels are mounted on a mother board. Each daughter board hosts a microcontroller unit and can operate with transducers in the bandwidth 40-200 kHz with on-board data acquisition, pre-processing and transfer on a dedicated bus.
Biasing of Capacitive Micromachined Ultrasonic Transducers.
Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart
2017-02-01
Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.
Intracardiac ultrasound scanner using a micromachine (MEMS) actuator.
Zara, J M; Bobbio, S M; Goodwin-Johansson, S; Smith, S W
2000-01-01
Catheter-based intracardiac ultrasound offers the potential for improved guidance of interventional cardiac procedures. The objective of this research is the development of catheter-based mechanical sector scanners incorporating high frequency ultrasound transducers operating at frequencies up to 20 MHz. The authors' current transducer assembly consists of a single 1.75 mm by 1.75 mm, 20 MHz, PZT element mounted on a 2 mm by 2 mm square, 75 mum thick polyimide table that pivots on 3-mum thick gold plated polyimide hinges. The hinges also serve as the electrical connections to the transducer. This table-mounted transducer is tilted using a miniature linear actuator to produce a sector scan. This linear actuator is an integrated force array (IFA), which is an example of a micromachine, i.e., a microelectromechanical system (MEMS). The IFA is a thin (2.2 mum) polyimide membrane, which consists of a network of hundreds of thousands of micron scale deformable capacitors made from pairs of metallized polyimide plates. IFAs contract with an applied voltage of 30-120 V and have been shown to produce strains as large as 20% and forces of up to 8 dynes. The prototype transducer and actuator assembly was fabricated and interfaced with a GagePCI analog to digital conversion board digitizing 12 bit samples at a rate of 100 MSamples/second housed in a personal computer to create a single channel ultrasound scanner. The deflection of the table transducer in a low viscosity insulating fluid (HFE 7100, 3M) is up to +/-10 degrees at scan rates of 10-60 Hz. Software has been developed to produce real-time sector scans on the PC monitor.
Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging
Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.
2008-01-01
With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042
A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates
NASA Astrophysics Data System (ADS)
Chaplin, Vandiver; Phipps, Marshal A.; Caskey, Charles F.
2018-05-01
Transcranial focused ultrasound (FUS) is a non-invasive technique for therapy and study of brain neural activation. Here we report on the design and characterization of a new MR-guided FUS transducer for neuromodulation in non-human primates at 650 kHz. The array is randomized with 128 elements 6.6 mm in diameter, radius of curvature 7.2 cm, opening diameter 10.3 cm (focal ratio 0.7), and 46% coverage. Simulations were used to optimize transducer geometry with respect to focus size, grating lobes, and directivity. Focus size and grating lobes during electronic steering were quantified using hydrophone measurements in water and a three-axis stage. A novel combination of optical tracking and acoustic mapping enabled measurement of the 3D pressure distribution in the cortical region of an ex vivo skull to within ~3.5 mm of the surface, and allowed accurate modelling of the experiment via non-homogeneous 3D acoustic simulations. The data demonstrates acoustic focusing beyond the skull bone, with the focus slightly broadened and shifted proximal to the skull. The fabricated design is capable of targeting regions within the S1 sensorimotor cortex of macaques.
NASA Astrophysics Data System (ADS)
Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.
1998-03-01
The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.
NASA Astrophysics Data System (ADS)
Salomir, Rares; Rata, Mihaela; Lafon, Cyril; Melodelima, David; Chapelon, Jean-Yves; Mathias, Adrien; Cotton, François; Bonmartin, Alain; Cathignol, Dominique
2006-05-01
Contact application of high intensity ultrasound was demonstrated to be suitable for thermal ablation of sectorial tumours of the digestive duct. Experimental validation of a new MR compatible ultrasonic device is described here, dedicated to the minimal invasive therapy of localized colorectal cancer. This is a cylindrical 1D 64-element phased array transducer of 14 mm diameter and 25 mm height (Imasonic, France) allowing electronic rotation of the acoustic beam. Operating frequency ranges from 3.5 to 4.0 MHz and up to 5 effective electrical watts per element are available. A plane wave is reconstructed by simultaneous excitation of eigth adjacent elements with an appropriate phase law. Driving electronics operates outside the Faraday cage of the scanner and provides fast switching capabilities. Excellent passive and active compatibility with the MRI data acquisition has been demonstrated. In addition, feasibility of active temperature control has been demonstrated based on real-time data export out of the MR scanner and a PID feedback algorithm. Further studies will address the in-vivo validation and the integration of a miniature NMR coil for increased SNR in the near field.
A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates.
Chaplin, Vandiver; Phipps, Marshal A; Caskey, Charles F
2018-05-17
Transcranial focused ultrasound (FUS) is a non-invasive technique for therapy and study of brain neural activation. Here we report on the design and characterization of a new MR-guided FUS transducer for neuromodulation in non-human primates at 650 kHz. The array is randomized with 128 elements 6.6 mm in diameter, radius of curvature 7.2 cm, opening diameter 10.3 cm (focal ratio 0.7), and 46% coverage. Simulations were used to optimize transducer geometry with respect to focus size, grating lobes, and directivity. Focus size and grating lobes during electronic steering were quantified using hydrophone measurements in water and a three-axis stage. A novel combination of optical tracking and acoustic mapping enabled measurement of the 3D pressure distribution in the cortical region of an ex vivo skull to within ~3.5 mm of the surface, and allowed accurate modelling of the experiment via non-homogeneous 3D acoustic simulations. The data demonstrates acoustic focusing beyond the skull bone, with the focus slightly broadened and shifted proximal to the skull. The fabricated design is capable of targeting regions within the S1 sensorimotor cortex of macaques.
Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators
NASA Astrophysics Data System (ADS)
Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.
2010-02-01
The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.
Ultrashort Microwave-Pumped Real-Time Thermoacoustic Breast Tumor Imaging System.
Ye, Fanghao; Ji, Zhong; Ding, Wenzheng; Lou, Cunguang; Yang, Sihua; Xing, Da
2016-03-01
We report the design of a real-time thermoacoustic (TA) scanner dedicated to imaging deep breast tumors and investigate its imaging performance. The TA imaging system is composed of an ultrashort microwave pulse generator and a ring transducer array with 384 elements. By vertically scanning the transducer array that encircles the breast phantom, we achieve real-time, 3D thermoacoustic imaging (TAI) with an imaging speed of 16.7 frames per second. The stability of the microwave energy and its distribution in the cling-skin acoustic coupling cup are measured. The results indicate that there is a nearly uniform electromagnetic field in each XY-imaging plane. Three plastic tubes filled with salt water are imaged dynamically to evaluate the real-time performance of our system, followed by 3D imaging of an excised breast tumor embedded in a breast phantom. Finally, to demonstrate the potential for clinical applications, the excised breast of a ewe embedded with an ex vivo human breast tumor is imaged clearly with a contrast of about 1:2.8. The high imaging speed, large field of view, and 3D imaging performance of our dedicated TAI system provide the potential for clinical routine breast screening.
Thermally induced ultrasonic emission from porous silicon
NASA Astrophysics Data System (ADS)
Shinoda, H.; Nakajima, T.; Ueno, K.; Koshida, N.
1999-08-01
The most common mechanism for generating ultrasound in air is via a piezoelectric transducer, whereby an electrical signal is converted directly into a mechanical vibration. But the acoustic pressure so generated is usually limited to less than 10Pa, the frequency bandwidth of most piezoelectric ceramics is narrow, and it is difficult to assemble such transducers into a fine-scale phase array with no crosstalk,. An alternative strategy using micromachined electrostatic diaphragms is showing some promise,, but the high voltages required and the mechanical weakness of the diaphragms may prove problematic for applications. Here we show that simple heat conduction from porous silicon to air results in high-intensity ultrasound without the need for any mechanical vibrational system. Our non-optimized device generates an acoustic pressure of 0.1Pa at a power consumption of 1Wcm-2, and exhibits a flat frequency response up to at least 100kHz. We expect that substantial improvements in efficiency should be possible. Moreover, as this material lends itself to integration with conventional electronic circuitry, it should be relatively straightforward to develop finely structured phase arrays of these devices, which would give control over the wavefront of the acoustic emissions.
Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W
2014-10-20
Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.
Characterization of an acoustic cavitation bubble structure at 230 kHz.
Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2011-03-01
A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different. Copyright © 2010 Elsevier B.V. All rights reserved.
Using PVDF for wavenumber-frequency analysis and excitation of guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2018-04-01
The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.
1998-01-01
Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.
Design and simulation of a tactile display based on a CMUT array
NASA Astrophysics Data System (ADS)
Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.
2012-10-01
In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari Palczewski, Rongli Geng, Grigory Eremeev
2011-07-01
We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance onmore » a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.« less
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring
Orozco, Jahir; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia
2010-01-01
The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to available conventional electrodes and standardised analytical techniques. An overview of the fabrication processes of UMEAs, their characterization and applications carried out by the Spanish scientific community is presented. A brief explanation of theoretical aspects that highlight their electrochemical behavior is also given. Finally, the applications of this transducer platform in the environmental field are discussed. PMID:22315551
NASA Astrophysics Data System (ADS)
Nichols, Jonathan A.
Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.
NASA Astrophysics Data System (ADS)
Zhang, Siqian; Kuang, Gangyao
2014-10-01
In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.
Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode
NASA Astrophysics Data System (ADS)
Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi
2013-05-01
We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.
Superconducting multiport antenna arrays
NASA Astrophysics Data System (ADS)
Chaloupka, H.
1993-10-01
Applications of HTS to radiating elements and beam-forming networks of multibeam and/or multifrequency arrays are discussed. This includes radiating elements which meet special requirements with respect to size and frequency response. Realized versions of both a three-port HTS array and a 4 x 4 Butler matrix are presented.
Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.
2014-10-01
Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.
Coil-to-coil physiological noise correlations and their impact on fMRI time-series SNR
Triantafyllou, C.; Polimeni, J. R.; Keil, B.; Wald, L. L.
2017-01-01
Purpose Physiological nuisance fluctuations (“physiological noise”) are a major contribution to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. Theory and Methods We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal intensity vectors S. Results Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SSH. Conclusion Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. PMID:26756964
Novel ultrasonic real-time scanner featuring servo controlled transducers displaying a sector image.
Matzuk, T; Skolnick, M L
1978-07-01
This paper describes a new real-time servo controlled sector scanner that produces high resolution images and has functionally programmable features similar to phased array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. The unique feature is the transducer head which contains a single moving part--the transducer--enclosed within a light-weight, hand held, and vibration free case. The frame rate, sector width, stop action angle, are all operator programmable. The frame rate can be varied from 12 to 30 frames s-1 and the sector width from 0 degrees to 60 degrees. Conversion from sector to time motion (T/M) modes are instant and two options are available, a freeze position high density T/M and a low density T/M obtainable simultaneously during sector visualization. Unusual electronic features are: automatic gain control, electronic recording of images on video tape in rf format, and ability to post-process images during video playback to extract T/M display and to change time gain control (tgc) and image size.
Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1992-01-01
Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.
Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1992-01-01
Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.
Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements
NASA Astrophysics Data System (ADS)
Li, W.; Pyrak-Nolte, L. J.
2008-12-01
The physical properties of carbonate rock are strongly influenced by the rock fabric which depends on the depositional environment, diagenetic and tectonic processes. The most common form of heterogeneity is layering caused by a variation in porosity among layers and within layers. The variation in porosity among layers leads to anisotropic behavior in the hydraulic, mechanical and seismic properties of carbonate rocks. We present the results of a laboratory study to examine the effect of fabric-controlled layering on fluid flow and seismic wave propagation through intact and fractured carbonate rock. Experiments were performed on cubic samples of Austin Chalk Cordova Cream. Samples AC1, AC5 and AC6 are cubic samples that measure 100 mm on edge. The samples were sealed and contained three inlet and three outlet ports for fluid invasion experiments. Two orthogonal seismic arrays were used to record both compressional and shear wave transmission through intact and fractured samples. The arrays used piezoelectric contact transducers with a central frequency 1.0 MHz. Between the two arrays, sixteen sources and sixteen receivers were used. Seismic measurements were made on the samples as a function of stress and during fluid saturation. The location of the invading fluid front as a function of time was monitored by using the peak-to-peak amplitude of the transmitted signals. The front was assumed to be between a source-receiver pair when the signal amplitude decreased by 50% over the initial value. The hydraulic gradient was parallel and perpendicular to the layers for AC5 and AC6, respectively. Sample AC1 was fractured and flow ports were established on the edges of the fracture plane. The weakly directed fabric controlled the rate at which fluid flowed through the samples. From the seismic data on AC6, the fluid first spread vertically along a layer before flowing across the layers. For AC6, it took the fluid two and half hours to flow between the inlet and the outlet across the layers. However, for AC5, the water flowed quickly along the layers and crossed the entire sample in one and a half hours. From the seismic data on fractured sample AC1, the water initially took more than 15 hours to transverse the sample though portions of the fracture were invaded after two hours. No water was produced at the outlet over a 15 hour period. Upon inspection, chemical precipitation was observed along the fracture plane and fracture- matrix interaction controlled the saturation of the matrix. Seismic monitoring of the fluid-front during saturation indicates that fine bedding affects the hydraulic properties of the sample while geochemical interactions in fractures affect fracture-matrix communication. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08) and by Exxon Mobil Upstream Research Company.
Development of a MEMS acoustic emission sensor system
NASA Astrophysics Data System (ADS)
Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.
2007-04-01
An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.
Perk, Gila; Lang, Roberto M; Garcia-Fernandez, Miguel Angel; Lodato, Joe; Sugeng, Lissa; Lopez, John; Knight, Brad P; Messika-Zeitoun, David; Shah, Sanjiv; Slater, James; Brochet, Eric; Varkey, Mathew; Hijazi, Ziyad; Marino, Nino; Ruiz, Carlos; Kronzon, Itzhak
2009-08-01
Real-time three-dimensional (RT3D) echocardiography is a recently developed technique that is being increasingly used in echocardiography laboratories. Over the past several years, improvements in transducer technologies have allowed development of a full matrix-array transducer that allows acquisition of pyramidal-shaped data sets. These data sets can be processed online and offline to allow accurate evaluation of cardiac structures, volumes, and mass. More recently, a transesophageal transducer with RT3D capabilities has been developed. This allows acquisition of high-quality RT3D images on transesophageal echocardiography (TEE). Percutaneous catheter-based procedures have gained growing acceptance in the cardiac procedural armamentarium. Advances in technology and technical skills allow increasingly complex procedures to be performed using a catheter-based approach, thus obviating the need for open-heart surgery. The authors used RT3D TEE to guide 72 catheter-based cardiac interventions. The procedures included the occlusion of atrial septal defects or patent foramen ovales (n=25), percutaneous mitral valve repair (e-valve clipping; n=3), mitral balloon valvuloplasty for mitral stenosis (n=10), left atrial appendage obliteration (n=11), left atrial or pulmonary vein ablation for atrial fibrillation (n=5), percutaneous closures of prosthetic valve dehiscence (n=10), percutaneous aortic valve replacement (n=6), and percutaneous closures of ventricular septal defects (n=2). In this review, the authors describe their experience with this technique, the added value over multiplanar two-dimensional TEE, and the pitfalls that were encountered. The main advantages found for the use RT3D TEE during catheter-based interventions were (1) the ability to visualize the entire lengths of intracardiac catheters, including the tips of all catheters and the balloons or devices they carry, along with a clear depiction of their positions in relation to other cardiac structures, and (2) the ability to ability to demonstrate certain structures in an "en face" view, which is not offered by any other currently available real-time imaging technique, enabling appreciation of the exact nature of the lesion that is undergoing intervention. RT3D TEE is a powerful new imaging tool that may become the technique of choice and the standard of care for guidance of selected percutaneous catheter-based procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko
2014-05-01
Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation ofmore » VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.« less