Sample records for matrix composite systems

  1. Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures

    DTIC Science & Technology

    2010-01-01

    angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective

  2. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  3. Lightweight armor system and process for producing the same

    DOEpatents

    Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.

    2004-01-20

    A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.

  4. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  5. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  6. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  7. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  8. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    NASA Technical Reports Server (NTRS)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  9. Parametric studies to determine the effect of compliant layers on metal matrix composite systems

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.; Brown, H. C.

    1990-01-01

    Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

  10. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Technical Reports Server (NTRS)

    Doychak, J.

    1992-01-01

    The requirements for high specific strength refractory materials of prospective military, civil, and space propulsion systems are presently addressed in the context of emerging capabilities in metal- and intermetallic-matrix composites. The candidate systems encompass composite matrix compositions of superalloy, Nb-Zr refractory alloy, Cu-base, and Ti-base alloy types, as well as such intermetallics as TiAl, Ti3Al, NiAl, and MoSi2. The brittleness of intermetallic matrices remains a major consideration, as does their general difficulty of fabrication.

  11. Relationship between microstructure and tribological behavior of CFRC composites

    NASA Astrophysics Data System (ADS)

    de Souza, Maria Aparecida Miranda; Pardini, Luiz Claudio

    2017-12-01

    Carbon fiber reinforced carbon (CFRC) composites were initially introduced in spacecraft propulsion area and quickly started to be applied in aircraft braking systems, replacing conventional metallic systems, thanks to their excellent tribological properties. Each company develops their own CFRC composite production system, the information is unique to each manufacturer, and little is reported in the literature. In this work, tribological characterizations of three commercial CFRC composites are performed using a pin-on-disc tribometer. The results showed that the pairs assembled with pyrolytic matrix composites of rough or smooth laminar texture with graphitization index between 18 and 40% has an average COF between 0.15 and 0.25, while the pairs assembled with mixed pairs, pyrolytic matrix and glassy matrix, or pair of glassy matrix display average COF between 0.10 and 0.15. Wear which can reach a rate 9 times higher to the tribological pair of glassy composite when compared to a pyrolytic composite.

  12. Development of Improved Environmental Resistant Organic-Reinforced Materials Systems

    DTIC Science & Technology

    1975-11-01

    Advanced composites , graphite and boron reinforced laminates, moisture resistance, environmental resistance, organic matrix composites . 20. ABSTRACT...in November 1975 for publication. Efforts at TOD were conducted within the Advanced Composites Engineering Departmfntrunde; L technical...weight makes^organic matrix advanced composites hardware extremely attractive for today s modern Air Force weapons systems. Accordingly, such

  13. International SAMPE Symposium and Exhibition, 35th, Anaheim, CA, Apr. 2-5, 1990, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janicki, G.; Bailey, V.; Schjelderup, H.

    The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.

  14. Acoustic emission as a screening tool for ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  15. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...

  16. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  17. Damage Accumulation in SiC/SiC Composites with 3D Architectures

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.

    2003-01-01

    The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.

  18. Fiber reinforced cementitious matrix (FRCM) composites for reinforced concrete strengthening.

    DOT National Transportation Integrated Search

    2013-07-01

    Fiber-reinforced composite systems are widely used for strengthening, repairing, and rehabilitation of reinforced concrete structural : members. A promising newly-developed type of composite, comprised of fibers and an inorganic cement-based matrix, ...

  19. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  20. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  1. Unified continuum damage model for matrix cracking in composite rotor blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less

  2. Electrical Resistance as a NDE Technique to Monitor Processing and Damage Accumulation in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. Initial efforts to quantify the electrical resistance of different fiber and different matrix SiC/SiC composites will be presented. Also, the effect of matrix cracking on electrical resistivity for several composite systems will be presented. The implications towards electrical resistance as a technique applied to composite processing, damage detection, and life-modeling will be discussed.

  3. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  4. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  5. Transverse ductility of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Gunawardena, S. R.; Jansson, S.; Leckie, F. A.

    1991-01-01

    The role of the fiber matrix interface bond on the transverse ductility of continuous fiber reinforced composites has been investigated. Two specific systems have been considered: an Aluminum alloy matrix reinforced by Alumina fibers, characterized by a strong interface and a Titanium alloy reinforced by coated Silicon Carbide fibers, characterized by a weak interface. A micro-mechanical study indicates that the bond condition has a significant effect on the state of stress in the matrix which in turn dictates the available matrix ductility. The micro-mechanical predictions are in good agreement with the experimental results for the two systems.

  6. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  7. X ray attenuation measurements for high-temperature materials characterization and in-situ monitoring of damage accumulation. Ph.D. Thesis - Cleveland State Univ., 1991

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1992-01-01

    The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.

  8. A model for predicting high-temperature fatigue failure of a W/Cu composite

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1991-01-01

    The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system.

  9. ASTM and VAMAS activities in titanium matrix composites test methods development

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.

    1994-01-01

    Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.

  10. Design of a unidirectional composite momentum wheel rim

    NASA Astrophysics Data System (ADS)

    Shogrin, Bradley; Jones, William R., Jr.; Prahl, Joseph M.

    1995-05-01

    A preliminary study comparing twelve unidirectional-fiber composite systems to five metal materials conventionally used in momentum wheels is presented. Six different fibers are considered in the study: E-Glass, S-Glass, Boron, AS, T300, and Kevlar. Because of the possibility of high momentum requirements, and thus high stresses, only two matrix materials are considered: a high-modulus (HM) and a intermediate-modulus-high-strength (IMHS) matrix. Each of the six fibers are coupled with each of the two matrix materials. In an effort to optimize the composite system, each composite is considered while varying the fiber volume ratio from 0.0 to 0.7 in increments of 0.1. For fiber volume ratios above 0.2, all twelve unidirectional-fiber composite systems meet the study's requirements with higher factors of safety and less mass than the five conventional isotropic (metal) materials. For example, at a fiber volume ratio of 0.6, the Kevlar/IMHS composite system has a safety factor 4.5 times greater than that of a steel (maraging) system and an approximately 10 percent reduction in weight.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu-khanh, T.; Denault, J.

    The effects of the conditions of the processing of PEEK/carbon prepregs and comingled fabric on the microstructure and mechanical characteristics of the resulting composites were investigated. Results showed that, in the comingled fabric system, the fiber/matrix adhesion depends on the molding temperature, the residence time at the melt temperature, and the cooling rate. Too high molding temperature resulted in degradation of the PEEK matrix, which affected the crystallization behavior of the composites, the fiber/matrix adhesion, and the matrix properties. This effect was most important in the case of comingled systems containing sized carbon fibers. 17 refs.

  12. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.

  13. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  14. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

  15. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  16. Recursive flexible multibody system dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1992-01-01

    This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.

  17. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial applications. In this paper, we review key PMC, MMC, CCC, and CMC optomechanical system materials, including properties, advantages, disadvantages, applications and future developments. These topics are covered in more detail in SPIE short courses SC218 and SC1078.

  18. Thermographic imaging for high-temperature composite materials: A defect detection study

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Bodis, James R.; Bishop, Chip

    1995-01-01

    The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.

  19. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  20. Critical Needs for Robust and Reliable Database for Design and Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic matrix composite (CMC) components are being designed, fabricated, and tested for a number of high temperature, high performance applications in aerospace and ground based systems. The critical need for and the role of reliable and robust databases for the design and manufacturing of ceramic matrix composites are presented. A number of issues related to engineering design, manufacturing technologies, joining, and attachment technologies, are also discussed. Examples of various ongoing activities in the area of composite databases. designing to codes and standards, and design for manufacturing are given.

  1. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Graves, J. A.; Rhodes, Cg.

    1994-06-01

    The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (“neat”) and unidirectional “SCS-6” reinforced panels. Microstructure of the Ti-24A1-11Nb matrix consisted of ordered Ti3Al ( α 2) + disordered beta (β), while the Ti-21 Al-22Nb matrix contained three phases: α2, ordered beta ( β 0), and ordered orthorhombic (O). Fiber/ matrix interface reaction zone growth kinetics at 982 °C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β} composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0+ α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermo-mechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α2+ β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis.

  2. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  3. Multiple cracking of unidirectional and cross-ply ceramic matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, W.S.; Chou, T.W.

    1995-03-01

    This paper examines the multiple cracking behavior of unidirectional and cross-ply ceramic matrix composites. For unidirectional composites, a model of concentric cylinders with finite crack spacing and debonding length is introduced. Stresses in the fiber and matrix are found and then applied to predict the composite moduli. Using an energy balance method, critical stresses for matrix cracking initiation are predicted. Effects of interfacial shear stress, debonding length and bonding energy on the critical stress are studied. All the three composite systems examined show that the critical stress for the completely debonded case is lower than that for the perfectly bondedmore » case. For crossply composites, an extensive study has been made for the transverse cracking in 90{degree} plies and the matrix cracking in 0{degree} plies. One transverse cracking and four matrix cracking modes are studied, and closed-form solutions of the critical stresses are obtained. The results indicate that the case of combined matrix and transverse crackings with associated fiber/matrix interfacial sliding in the 0{degree} plies gives the lowest critical stress for matrix cracking. The theoretical predictions are compared with experimental data of SiC/CAS cross-ply composites; both results demonstrated that an increase in the transverse ply thickness reduces the critical stress for matrix cracking in the longitudinal plies. The effects of fiber volume fraction and fiber modulus on the critical stress have been quantified. Thermal residual stresses are included in the analysis.« less

  4. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  5. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  6. Damage Characterization in SiC/SiC Composites using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Xia, Zhenhai

    2011-01-01

    SiC/SiC ceramic matrix composites (CMCs) under creep-rupture loading accumulate damage by means of local matrix cracks that typically form near a stress concentration, such as a 90o fiber tow or large matrix pore, and grow over time. Such damage is difficult to detect through conventional techniques. Electrical resistance changes can be correlated with matrix cracking to provide a means of damage detection. Sylramic-iBN fiber-reinforced SiC composites with both melt infiltrated (MI) and chemical vapor infiltrated (CVI) matrix types are compared here. Results for both systems exhibit an increase in resistance prior to fracture, which can be detected either in situ or post-damage.

  7. Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.

  8. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    PubMed

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-16

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  9. Micro-mechanics modelling of smart materials

    NASA Astrophysics Data System (ADS)

    Shah, Syed Asim Ali

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.

  10. The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material.

    PubMed

    Crocellà, Valentina; Groppo, Elena; Dani, Alessandro; Castellero, Alberto; Bordiga, Silvia; Zilio, Stefano; De Simone, Agnello; Vacca, Paolo

    2017-10-01

    The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO 4 ) 2 ) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO 4 ) 2 salt retains its molecular structure, because Mg 2+ cations are still surrounded by their [ClO 4 ] - counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg 2+ cations are completely solvated by the water molecules.

  11. Self-healing elastomer system

    NASA Technical Reports Server (NTRS)

    Sottos, Nancy R. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor)

    2009-01-01

    A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.

  12. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.

  13. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.

  14. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  15. Out-of-Autoclave Cure Composites

    NASA Technical Reports Server (NTRS)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  16. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  17. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  18. Influence of engineered interfaces on residual stresses and mechanical response in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wilt, Thomas E.

    1992-01-01

    Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.

  19. Improving Thermomechanical Properties of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bhatt, Ramakrishna T.

    2006-01-01

    Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the composite better resistance to propagation of cracks, enhanced thermal conductivity, and higher creep resistance.

  20. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna; Kiser, Doug; Wiesner, Valerie L.

    2016-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiCSiC Ceramic Matrix Composite (CMC) components for next generation turbine engines. The emphasis has been placed on the current design challenges of the 2700F environmental barrier coatings; coating processing and integration with SiCSiC CMCs and component systems; and performance evaluation and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements through advanced compositions and architecture designs, as shown in recent simulated engine high heat flux, combustion environment, in conjunction with mechanical creep and fatigue loading testing conditions.

  1. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  2. Computing Fiber/Matrix Interfacial Effects In SiC/RBSN

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1996-01-01

    Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.

  3. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  4. Condensed phase conversion and growth of nanorods instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  5. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications.

    PubMed

    Yang, Jingxin; Guo, Jason L; Mikos, Antonios G; He, Chunyan; Cheng, Guang

    2018-06-04

    In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.

  6. Self-healing of damage in fibre-reinforced polymer-matrix composites.

    PubMed

    Hayes, S A; Zhang, W; Branthwaite, M; Jones, F R

    2007-04-22

    Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy impact testing and repeated healing, while the efficiency of healing in composites was determined by analysing the growth of delaminations following repeated impacts with or without a healing cycle. To act as a reference, a non-healing resin system was subjected to the same treatments and the results are compared with the healable system. The optimized resin system displays a healing efficiency of 65% after the first healing cycle, dropping to 35 and 30% after the second and third healing cycles, respectively. Correction for any healability due to further curing showed that approximately 50% healing efficiency could be achieved with the bisphenol A-based epoxy resin containing 7.5% of polybisphenol-A-co-epichlorohydrin. The composite, on the other hand, displays a healing efficiency of approximately 30%. It is therefore clear that the solid-state self-healing system is capable of healing transverse cracks and delaminations in a composite, but that more work is needed to optimize matrix healing within a composite and to develop a methodology for assessing recovery in performance.

  7. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  8. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  9. Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.

    1993-01-01

    Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.

  10. Development of a High Performance Acousto-ultrasonic Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  11. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  12. Properties Of Carbon/Carbon and Carbon/Phenolic Composites

    NASA Technical Reports Server (NTRS)

    Mathis, John R.; Canfield, A. R.

    1993-01-01

    Report presents data on physical properties of carbon-fiber-reinforced carbon-matrix and phenolic-matrix composite materials. Based on tests conducted on panels, cylinders, blocks, and formed parts. Data used by designers to analyze thermal-response and stress levels and develop structural systems ensuring high reliability at minimum weight.

  13. Fatigue resistance criteria for fiber-reinforced composite structures. Final report, 1 Apr 1971-30 Sep 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorak, G.J.

    1974-10-01

    The research effort was concentrated on metal matrix composites, such as the Al--B, Al--Be, Cu--W, and similar systems. It was found that in as- fabricated composites with soft matrices fatigue failure can be prevented if the composite shakes down during cyclic loading. The fatigue strength of heat- treated composites is affected by residual microstresses, but failure can be prevented if the total microstresses are kept within the respective fatigue limits (at 10 to the 7th power cycles) of the constituents. These criteria for prevention of fatigue failure in metal matrix composite systems were verified by extensive comparisons of theoretical predictionsmore » with available experimental results. (GRA)« less

  14. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  15. High temperature tension-compression fatigue behavior of a tungsten copper composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.

    1990-01-01

    The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.

  16. Melt-infiltrated Sic Composites for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2004-01-01

    SiC-SiC ceramic matrix composites (CMCs) manufactured by the slurry -cast melt-infiltration (MI) process are leading candidates for many hot-section turbine engine components. A collaborative program between Goodrich Corporation and NASA-Glenn Research Center is aimed at determining and optimizing woven SiC/SiC CMC performance and reliability. A variety of composites with different fiber types, interphases and matrix compositions have been fabricated and evaluated. Particular focus of this program is on the development of interphase systems that will result in improved intermediate temperature stressed-oxidation properties of this composite system. The effect of the different composite variations on composite properties is discussed and, where appropriate, comparisons made to properties that have been generated under NASA's Ultra Efficient Engine Technology (UEET) Program.

  17. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  18. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  19. Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay

    2004-01-01

    Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.

  20. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  1. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  2. The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2005-01-01

    Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.

  3. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    NASA Astrophysics Data System (ADS)

    Myriounis, Dimitrios

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.

  4. Development of new and improved polymer matrix resin systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  5. Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces.

    DTIC Science & Technology

    1992-12-31

    Bimaterials Interfaces includes three sections: Mechanics of Interfaces, Coating Design for Composite Systems, and Mechanics of Brittle Matrix... Composites . For more details see Executive Summary. 14. SUBJECT TERM 15. NUMBER OF PAGES Effect, Microstructure, Strength, Fracture Energy, Bimatenal...The Role of Interfaces in Fiber-Reinforced Brittle A.G. Evans Matrix Composites F.W. Zok J.B. Davis Article 2. Effects of Fiber Roughness on Interface

  6. Method Developed for Improving the Thermomechanical Properties of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; DiCarlo, James A.

    2004-01-01

    Today, a major thrust for achieving engine components with improved thermal capability is the development of fiber-reinforced silicon-carbide (SiC) matrix composites. These materials are not only lighter and capable of higher use temperatures than state-of-the-art metallic alloys and oxide matrix composites (approx. 1100 C), but they can provide significantly better static and dynamic toughness than unreinforced silicon-based monolithic ceramics. However, for successful application in advanced engine systems, the SiC matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetime. Since the high-temperature structural life of ceramic materials is typically controlled by creep-induced flaw growth, a key composite property requirement is the ability to display high creep resistance under these conditions. Also, because of the possibility of severe thermal gradients in the components, the composites should provide maximum thermal conductivity to minimize the development of thermal stresses. State-of-the-art SiC matrix composites are typically fabricated via a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by high-performance fibers, (2) chemical vapor infiltration of a fiber coating material such as boron nitride (BN) into the preform, and (3) infiltration of a SiC matrix into the remaining porous areas in the preform. Generally, the highest performing composites have matrices fabricated by the CVI process, which produces a SiC matrix typically more thermally stable and denser than matrices formed by other approaches. As such, the CVI SiC matrix is able to provide better environmental protection to the coated fibers, plus provide the composite with better resistance to crack propagation. Also, the denser CVI SiC matrix should provide optimal creep resistance and thermal conductivity to the composite. However, for adequate preform infiltration, the CVI SiC matrix process typically has to be conducted at temperatures below 1100 C, which results in a SiC matrix that is fairly dense, but contains metastable atomic defects and is nonstoichiometric because of a small amount of excess silicon. Because these defects typically exist at the matrix grain boundaries, they can scatter thermal phonons and degrade matrix creep resistance by enhancing grain-boundary sliding. To eliminate these defects and improve the thermomechanical properties of ceramic composites with CVI SiC matrices, researchers at the NASA Glenn Research Center developed a high-temperature treatment process that can be used after the CVI SiC matrix is deposited into the fiber preform.

  7. ICAN: Integrated composites analyzer

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.

  8. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  9. Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.

    PubMed

    Kushwaha, V; Bhowmick, A; Behera, B K; Ray, A R

    1998-03-01

    Synthetic polymers are widely used in biomedical applications. Polymer blends have recently paved their way in this field. An attempt to prepare blend of synthetic polymer polyvinylalcohol and natural macromolecule gum arabica is made in this paper. Characterization of these blends by NMR, DSC and viscoelastic studies reveal preparation of a blend composition with synergistic properties. The blend composition with synergistic properties was used to release various antimicrobial drugs. The duration and release of the drug depends on the amount of drug loaded in the matrix and solubility of the drug in the matrix and release medium. The advantage of this system is that the release kinetics of the drug from the system can be tailored by adjusting plasticizer, homopolymer and crosslinker composition depending on the drug to be released.

  10. Laminated Object Manufacturing-Based Design Ceramic Matrix Composites

    DTIC Science & Technology

    2001-04-01

    components for DoD applications. Program goals included the development of (1) a new LOM based design methodology for CMC, (2) optimized preceramic polymer ...3.1.1-20 3.1.1-12 Detail of LOM Composites Forming System w/ glass fiber/ polymer laminate................ 3.1.1-21 3.1.1-13...such as polymer matrix composites have faced similar barriers to implementation. These barriers have been overcome through the development of suitable

  11. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  12. Characterization of the Effect of Fiber Undulation on Strength and Stiffness of Composite Laminates

    DTIC Science & Technology

    2015-03-01

    helicopter drivelines with flexible matrix composite shafting. Proceedings of the 61st American Helicopter Society Annual Forum; 2005 Jun 1–3...Grapevine, TX. Alexandria (VA): American Helicopter Society. p. 1582–1595. 2. Hannibal AJ, Gupta BP, Avila JA, Parr CH. Flexible matrix composites applied...to bearingless rotor system. Journal of the American Helicopter Society. 1985;30(1):21–27. 3. Ocalan M. High flexibility rotorcraft driveshafts

  13. Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Hayashi, Hiroyuki; Kashima, Hisashi; Tanaka, Isao

    2018-01-01

    Chemically relevant compositions (CRCs) and atomic arrangements of inorganic compounds have been collected as inorganic crystal structure databases. Machine learning is a unique approach to search for currently unknown CRCs from vast candidates. Herein we propose matrix- and tensor-based recommender system approaches to predict currently unknown CRCs from database entries of CRCs. Firstly, the performance of the recommender system approaches to discover currently unknown CRCs is examined. A Tucker decomposition recommender system shows the best discovery rate of CRCs as the majority of the top 100 recommended ternary and quaternary compositions correspond to CRCs. Secondly, systematic density functional theory (DFT) calculations are performed to investigate the phase stability of the recommended compositions. The phase stability of the 27 compositions reveals that 23 currently unknown compounds are newly found to be stable. These results indicate that the recommender system has great potential to accelerate the discovery of new compounds.

  14. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  15. Repair process and a repaired component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component,more » and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.« less

  16. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  17. Characterizing fiber-reinforced composite structures using AC-impedance spectroscopy (AC-IS)

    NASA Astrophysics Data System (ADS)

    Woo, Leta Y.

    Property enhancement in composites depends largely on the reinforcement. For fiber-reinforced composites, the distribution of fibers is crucial in determining the electrical and mechanical performance. Image analysis methods for characterization can be time-consuming and/or destructive. This work explores the capability of AC-impedance spectroscopy (AC-IS), an electrical measurement technique, to serve as a rapid, non-destructive tool for characterizing composite microstructure. The composite requirements include a filler that is electrically conducting or semi-conducting with higher conductivity than the matrix, and a high-impedance interface or coating between the filler and the matrix. To establish an AC-IS characterization method, cement-matrix composites with steel reinforcement were employed as both a technologically important and a model system to investigate how fibers affect the electrical response. Beginning with spherical particulates and then fibers, composites were examined using composite theory and an "intrinsic conductivity" approach. The intrinsic conductivity approach applies to composites with low volume fractions of fibers (i.e., in the dilute regime) and relates how the composite conductivity varies relative to the matrix as a function of volume fraction. A universal equivalent circuit model was created to understand the AC-IS response of composites based on the geometry and volume fraction of the filler. Deviation from predicted behavior was assessed using a developed f-function, which quantifies how fibers contribute to the overall electrical response of the composite. Using the f-function, an AC-IS method for investigating fiber dispersion was established to characterize alignment, settling/segregation, and aggregation. Alignment was investigated using measurements made in three directions. A point-probe technique characterized settling and/or large-scale inhomogeneous mixing in samples. Aggregation was quantified using a "dispersion factor" that compared theoretical with measured values and served as an upper limit for how well the fibers were dispersed. The AC-IS method was then extended to two different cement-matrix composite systems, low resistivity fresh-paste cement composites (confirmed by time domain reflectometry) and high resistivity cement composites, both of which required additional analysis to apply the AC-IS characterization method.

  18. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution.

    PubMed

    Huang, Ting; Lu, Renguo; Su, Chao; Wang, Hongna; Guo, Zheng; Liu, Pei; Huang, Zhongyuan; Chen, Haiming; Li, Tongsheng

    2012-05-01

    Herein, we have developed a rather simple composite fabrication approach to achieving molecular-level dispersion and planar orientation of chemically modified graphene (CMG) in the thermosetting polyimide (PI) matrix as well as realizing strong adhesion at the interfacial regions between reinforcing filler and matrix. The covalent adhesion of CMG to PI matrix and oriented distribution of CMG were carefully confirmed and analyzed by detailed investigations. Combination of covalent bonding and oriented distribution could enlarge the effectiveness of CMG in the matrix. Efficient stress transfer was found at the CMG/PI interfaces. Significant improvements in the mechanical performances, thermal stability, electrical conductivity, and hydrophobic behavior were achieved by addition of only a small amount of CMG. Furthermore, it is noteworthy that the hydrophilic-to-hydrophobic transition and the electrical percolation were observed at only 0.2 wt % CMG in this composite system. This facile methodology is believed to afford broad application potential in graphene-based polymer nanocomposites, especially other types of high-performance thermosetting systems.

  19. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  20. A new classification system for all-ceramic and ceramic-like restorative materials.

    PubMed

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  1. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  2. Approaches to polymer-derived CMC matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.

  3. Effect of matrix material on the fracture behavior and toughness of high temperature polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenock, T.A.Jr.; Heshmet, A.

    1990-07-01

    The effect of matrix material on the strength, toughness, and fracture behavior of two high temperature polyimide/carbon fiber composites has been studied and compared. The polyimide matrix resins under investigation are PMR-II-20, PMR-15. Each system was reinforced with epoxy sized Celion G30-500 carbon fabric (8HSW, 3K tow). Un-notched and notched specimens were tested under 4-point bend loading in both translaminar and crosslaminar directions.

  4. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  5. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    PubMed

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  6. Bottom-Up and Top-Down Solid-State NMR Approaches for Bacterial Biofilm Matrix Composition

    PubMed Central

    Cegelski, Lynette

    2015-01-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial “parts lists” for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this Perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The “sum-of-theparts” bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by E. coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in V. cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture. PMID:25797008

  7. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition.

    PubMed

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

    NASA Astrophysics Data System (ADS)

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

  9. Fire test method for graphite fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  10. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.

  11. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  12. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    NASA Technical Reports Server (NTRS)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  13. Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness

    NASA Technical Reports Server (NTRS)

    Chapman, Andrew J.

    1984-01-01

    Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.

  14. Ceramic Matrix Composites (CMC) Life Prediction Development - 2003

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Opila, Elizabeth J.; Ellis, John R.

    2003-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMCs). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC.

  15. Manufacturing Technology Support (MATES II) Task Order 0005: Manufacturing Integration and Technology Evaluation to Enable Technology Transition. Subtask Phase 0 Study Task: Manufacturing Technology (ManTech) and Systems Engineering For Quick Reaction Systems

    DTIC Science & Technology

    2014-10-01

    Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for

  16. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  17. Constitutive modeling and control of 1D smart composite structures

    NASA Astrophysics Data System (ADS)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  18. Tough composite materials: Recent developments

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Editor); Johnston, N. J. (Editor); Teichman, L. A. (Editor); Blankenship, C. P. (Editor)

    1985-01-01

    The present volume broadly considers topics in composite fracture toughness and impact behavior characterization, composite system constituent properties and their interrelationships, and matrix systems' synthesis and characterization. Attention is given to the characterization of interlaminar crack growth in composites by means of the double cantilever beam specimen, the characterization of delamination resistance in toughened resin composites, the effect of impact damage and open holes on the compressive strength of tough resin/high strain fiber laminates, the effect of matrix and fiber properties on compression failure mechanisms and impact resistance, the relation of toughened neat resin properties to advanced composite mechanical properties, and constituent and composite properties' relationships in thermosetting matrices. Also treated are the effect of cross-link density on the toughening mechanism of elastomer-modified epoxies, the chemistry of fiber/resin interfaces, novel carbon fibers and their properties, the development of a heterogeneous laminating resin, solvent-resistant thermoplastics, NASA Lewis research in advanced composites, and opportunities for the application of composites in commercial aircraft transport structures.

  19. Filler particle size and composite resin classification systems.

    PubMed

    Lang, B R; Jaarda, M; Wang, R F

    1992-11-01

    The currently used composite resin classification systems need review if they are to continue to serve as descriptives and quantitative parameters denoting the filler particle content of these materials. Examination of the particles in 12 composite resins using a technique of washing the filler particles from the matrix of the composite resin was presented as yet another method of grouping composites according to filler particle content. Light microscopic examination of the filler particles that remained provided a separation of the 12 materials into four easily distinguished groups based on filler particle sizes. The wear of the 12 composite resins determined in a previous study was examined in relation to the classification of the materials by the currently available systems. The wear values were also examined using the groupings of the materials according to their filler particle sizes as determined by separating the particles from the matrix by the washing technique. Grouping composites on the basis of the filler particle sizes found after washing was easily correlated with wear and supported the suggestion that composites with smaller filler particles wear less.

  20. Mechanics of Platelet-Matrix Composites across Scales: Theory, Multiscale Modeling, and 3D Fabrication

    NASA Astrophysics Data System (ADS)

    Sakhavand, Navid

    Many natural and biomimetic composites - such as nacre, silk and clay-polymer - exhibit a remarkable balance of strength, toughness, and/or stiffness, which call for a universal measure to quantify this outstanding feature given the platelet-matrix structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures, which are composed of strong in-plane bonding networks but weak interplanar bonding matrices. In this regard, development of a universal composition-structure-property map for natural platelet-matrix composites, and stacked heterostructures opens up new doors for designing materials with superior mechanical performance. In this dissertation, a multiscale bottom-up approach is adopted to analyze and predict the mechanical properties of platelet-matrix composites. Design guidelines are provided by developing universally valid (across different length scales) diagrams for science-based engineering of numerous natural and synthetic platelet-matrix composites and stacked heterostructures while significantly broadening the spectrum of strategies for fabricating new composites with specific and optimized mechanical properties. First, molecular dynamics simulations are utilized to unravel the fundamental underlying physics and chemistry of the binding nature at the atomic-level interface of organic-inorganic composites. Polymer-cementitious composites are considered as case studies to understand bonding mechanism at the nanoscale and open up new venues for potential mechanical enhancement at the macro-scale. Next, sophisticated mathematical derivations based on elasticity and plasticity theories are presented to describe pre-crack (intrinsic) mechanical performance of platelet-matrix composites at the microscale. These derivations lead to developing a unified framework to construct series of universal composition-structure-property maps that decode the interplay between various geometries and inherent material features, encapsulated in a few dimensionless parameters. Finally, after crack mechanical properties (extrinsic) of platelet-matrix composites until ultimate failure of the material at the macroscale is investigated via combinatorial finite element simulations. The effect of different composition-structure-property parameters on mechanical properties synergies are depicted via 2D and 3D maps. 3D-printed specimens are fabricated and tested against the theoretical prediction. The combination of the presented diagrams and guidelines paves the path toward platelet-matrix composites and stacked-heterostructures with superior and optimized mechanical properties.

  1. Experimental Verification of Computational Models for Laminated Composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Coats, Timothy W.; Glaessgen, Edward H.

    1999-01-01

    The objective of the research reported herein is to develop a progressive damage methodology capable of predicting the residual strength of continuous fiber-reinforced, laminated, polymer matrix composites with through-penetration damage. The fracture behavior of center-notch tension panels with thin crack-like slits was studied. Since fibers are the major load-carrying constituent in polymer matrix composites, predicting the residual strength of a laminate requires a criterion for fiber fracture. The effects on fiber strain due to other damage mechanisms such as matrix cracking and delaminations must also be modeled. Therefore, the research herein examines the damage mechanisms involved in translaminate fracture and identifies the toughening mechanisms responsible for damage growth resistance in brittle epoxy matrix systems. The mechanics of matrix cracking and fiber fracture are discussed as is the mathematical framework for the progressive damage model developed by the authors. The progressive damage analysis algorithms have been implemented into a general purpose finite element code developed by NASA, the Computational Structural Mechanics Testbed (COMET). Damage growth is numerically simulated and the analytical residual strength predictions are compared to experimental results for a variety of notched panel configurations and materials systems.

  2. Micromechanics of composites with shape memory alloy fibers in uniform thermal fields

    NASA Technical Reports Server (NTRS)

    Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.

    1995-01-01

    Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.

  3. Eddy-Current Inspection Of Graphite-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1993-01-01

    NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).

  4. Mechanical properties of several neat polymer matrix materials and unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.

    1989-01-01

    The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.

  5. High Temperature Mechanical Characterization of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.

    1998-01-01

    A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory provides the best approximation of the first matrix cracking stress when residual stresses are ignored. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate strength. The enhanced SiC/SiC composite exhibited nonlinear stress/strain behavior from 24 C to 1370 C in air with increased ultimate strain when compared to monolithic SiC. The theory of Yang and Chou with the assumption of a frictional fiber/matrix interface provided the best estimate of the Young's modulus. The theory of Cao and Thouless gave the best estimate for the ultimate strength.

  6. Development of glass fibre reinforced composites using microwave heating technology

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  7. Design of a biomimetic self-healing superalloy composite

    NASA Astrophysics Data System (ADS)

    Files, Bradley Steven

    1997-10-01

    Use of systems engineering concepts to design technologically advanced materials has allowed ambitious goals of self-healing alloys to be realized. Shape memory alloy reinforcements are embedded in an alloy matrix to demonstrate concepts of stable crack growth and matrix crack closure. Computer methods are used to design thermodynamically compatible iron-based alloys using bio-inspired concepts of crack bridging and self-healing. Feasibility of crack closure and stable crack growth is shown in a prototype system with a Sn-Bi matrix and TiNi fibers. Design of Fe-Ni-Co-Ti-Al alloys using thermodynamic models to determine stabilities and phase equilibria allows for a methodical system designing compatible multicomponent alloys for composite systems. Final alloy computations for this project led to the alloy Fe-27.6Ni-18.2Co-4.1Ti-1.6Al as a compatible shape memory a with a 650sp°C 90 minute heat treatment leading to martensite and austenite start temperatures (Msbs and Asbs) near room temperature. Thin slices of this alloy were able to fully recover at least 5% strain upon unloading heating. Composites made from the designed shape memory alloy and a compatible Fe-based B2 matrix were used to test self-healing concepts in the superalloy system. Diffusion couple experiments verified thermodynamic compatibility between matrix and reinforcement alloys at the solution treatment temperature of 1100sp°C. Concepts of stable crack growth and crack bridging were demonstrated in the composite, leading to enhanced toughness of the brittle matrix. However, healing behavior in this system was limited by intergranular fracture of the reinforcement alloy. It is believed that use of rapidly solidified powders could eliminate intergranular fracture, leading to greatly enhanced properties of toughening and healing. Crack clamping and stable crack growth were achieved in a feasibility study using a Sn-Bi matrix reinforced with TiNi fibers. Tensile specimens with less than 1% fibers showed an ability upon heating to recover over 80% of the plastic deformation induced during a tensile test. Further straining proved that stable crack growth can be realized in this system due to crack bridging of the shape memory fibers. Macroscopic cracks were clamped shut after heating of the material above the TiNi reversion temperature.

  8. Functionalized gold nanoparticles as additive to form polymer/metal composite matrix for improved DNA sequencing by capillary electrophoresis.

    PubMed

    Zhou, Dan; Yang, Liping; Yang, Runmiao; Song, Weihua; Peng, Shuhua; Wang, Yanmei

    2009-11-15

    A new matrix additive, poly (N,N-dimethylacrylamide)-functionalized gold nanoparticle (GNP-PDMA), was prepared by "grafting-to" approach, and then incorporated into quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (LPA, 3.3 MDa) and PDMA to form novel polymer/metal composite sieving matrix (quasi-IPN/GNP-PDMA) for DNA sequencing by capillary electrophoresis. Without complete optimization, quasi-IPN/GNP-PDMA yielded a readlength of 801 bases at 98% accuracy in about 64 min by using the ABI 310 Genetic Analyzer at 50 degrees C and 150 V/cm. Compared with previous quasi-IPN/GNPs, quasi-IPN/GNP-PDMA can further improve DNA sequencing performances. This is because the presence of GNP-PDMA can improve the compatibility of GNPs with the whole sequencing system, enhance the entanglement degree of networks, and increase the GNP concentration in system, which consequently lead to higher restriction and stability, higher apparent molecular weight (MW), and smaller pore size of the total sieving networks. Furthermore, the composite matrix was also compared with quasi-IPN containing higher-MW LPA and commercial POP-6. The results indicate that the composite matrix is a promising one for DNA sequencing to achieve full automation due to the separation provided with high resolution, speediness, excellent reproducibility, and easy loading in the presence of GNP-PDMA.

  9. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  10. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  11. METCAN: The metal matrix composite analyzer

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Murthy, Pappu L. N.

    1988-01-01

    Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.

  12. Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-healing (SMASH) Technology

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate

    2015-01-01

    This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.

  13. Fire test method for graphite fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  14. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  15. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    DTIC Science & Technology

    2012-10-29

    up to 40%. Approach: Our approach was to work with conventional composite systems manufactured through the traditional prepreg and autoclave...structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated

  16. Influence of Binder in Iron Matrix Composites

    NASA Astrophysics Data System (ADS)

    Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.

    2010-03-01

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  17. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  18. Zero-order delivery of a highly soluble, low dose drug alfuzosin hydrochloride via gastro-retentive system.

    PubMed

    Liu, Quan; Fassihi, Reza

    2008-02-04

    A composite gastro-retentive matrix for zero-order delivery of highly soluble drug alfuzosin hydrochloride (10mg) has been designed and characterized. Two systems containing polyethylene oxide (PEO), hydroxypropylmethylcellulose (HPMC), sodium bicarbonate, citric acid and polyvinyl pyrrolidone were dry blended and compressed into triple layer and bi-layer composite matrices. Dissolution studies using the USP 27 paddle method at 100 and 50rpm in pH 2.0 and 6.8 were performed using UV spectroscopy at 244nm, with automatic sampling over a 24h period using a marketed product as a reference to calculate the "f(2)" factor. Textural characteristics of each layer, the composite matrix as a whole, and floatation potential were determined under conditions similar to dissolution. Percent matrix swelling and erosion along with digital images were also obtained. Both systems proved to be effective in providing prolonged floatation, zero-order release, and complete disentanglement and erosion based on the analysis of data with "f(2)" of 68 and 71 for PEO and HPMC based systems, respectively. The kinetics of drug release, swelling and erosion, and dynamics of textural changes during dissolution for the designed composite systems offer a novel approach for developing gastro-retentive drug delivery system that has potential to enhance bioavailability and site-specific delivery to the proximal small intestine.

  19. On stability of discrete composite systems.

    NASA Technical Reports Server (NTRS)

    Grujic, L. T.; Siljak, D. D.

    1973-01-01

    Conditions are developed under which exponential stability of a composite discrete system is implied by exponential stability of its subsystems and the nature of their interactions. Stability of the system is determined by testing positive definiteness property of a real symmetric matrix the dimension of which is equal to the number of subsystems.

  20. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  1. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  2. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  3. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  4. Tungsten wire-reinforced superalloys for 1093 C (2000 F) turbine blade applications

    NASA Technical Reports Server (NTRS)

    Friedman, G. I.; Fleck, J. N.

    1979-01-01

    Various combinations of fiber and matrix materials were fabricated and evaluated for the purpose of selecting a specific combination that exhibited the best overall properties for a turbine blade application. A total of seven matrix alloys, including Hastelloy X, Nimonic 80A, Inconel 600, Inconel 625, IN-102, FeCrA1Y, were investigated reinforced with either 218CS tungsten, or W-Hf-C fibers. Based on preliminary screening studies, FeCrA1Y, Inconel 600 and Inconel 625 matrix composites systems were selected for extended thermal cycle tests and for property evaluations which included stress rupture, impact, and oxidation resistance. Of those investigated, the FeCrA1Y matrix composite system exhibited the best overall properties required for a turbine blade application. The W-Hf-C/FeCrA1Y system was selected for further property evaluation. Tensile strength values of up to 724 MPa (105,000 psi) were obtained for this material at 982 C and 607 MPa at 1093 C.

  5. Ultrasonic Guided-Wave Scan System Used to Characterize Microstructure and Defects in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.; Bhatt, Ramakrishna T.

    2004-01-01

    Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause discrete flaws and distributed microdamage, significantly reducing desirable physical properties. Such microdamage includes fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second phase formation. A recent study (ref. 1) of the durability of a C/SiC CMC discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials. This year, an ultrasonic guided-wave scan system developed at the NASA Glenn Research Center was used to characterize various microstructural and flaw conditions in SiC/SiC (silicon carbide fiber in silicon carbide matrix) and C/SiC (carbon fiber in silicon carbide matrix) CMC samples.

  6. Microtensile Test of AN Ordered-Reinforced Electrophoretic Polymer Matrix Composite Fabricated by Surface Micromachining

    NASA Astrophysics Data System (ADS)

    Yang, Zhuoqing; Wang, Hong; Zhang, Zhenjie; Ding, Guifu; Zhao, Xiaolin

    A novel ordered-reinforced microscale polymer matrix composite based on electrophoresis and surface micromachining technologies has been proposed in the present work. The braid angle, volume content and width of the reinforcement in the composite has been designed and simulated by ANSYS finite element software. Based on the simulation and optimization, the Ni fibers reinforced polymer matrix composite sample (3 mm length × 0.6 mm width × 0.04 mm thickness) was successfully fabricated utilizing the surface micromachining process. The fabricated samples were characterized by microtensile test on the dynamic mechanical analysis (DMA) equipment. It is indicated that the tested tensile strength and Young's modulus are 285 MPa and 6.8 GPa, respectively. In addition, the fracture section of the composite sample has been observed by scanning electron microscope (SEM) and the corresponding fracture process was also explained and analyzed in detail. The new presented composite is promising for hot embossing mold in microfluidic chip and several transducers used in accurately controlled biomedical systems.

  7. CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1995-01-01

    Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these composites were examined.

  8. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  9. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2009-01-01

    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  10. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  11. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  12. Liquid oxygen-compatible filament-winding matrix resin

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1973-01-01

    Polyurethanes derived from hydroxy terminated polyperfluoro propylene oxide prepolymers were evaluated as matrix resins for filament wound composites which would be exposed to liquid (and 100% gaseous) oxygen environments. A number of structural modifications were brought about by variations in prepolymer molecular weight, and alternative curing agents which allowed retention of the oxygen compatibility. Although satisfactory performance was achieved at sub-ambient temperatures, the derived composites suffered considerable property loss at ambient or slightly elevated temperatures. To attain overall effectiveness of the composite system, upgrading of the polymer thermomechanical properties must first be achieved.

  13. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship

    PubMed Central

    Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.

    2013-01-01

    Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290

  14. Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions.

    PubMed

    Malho, Jani-Markus; Ouellet-Plamondon, Claudiane; Rüggeberg, Markus; Laaksonen, Päivi; Ikkala, Olli; Burgert, Ingo; Linder, Markus B

    2015-01-12

    Biological composites are typically based on an adhesive matrix that interlocks rigid reinforcing elements in fiber composite or brick-and-mortar assemblies. In nature, the adhesive matrix is often made up of proteins, which are also interesting model systems, as they are unique among polymers in that we know how to engineer their structures with atomic detail and to select protein elements for specific interactions with other components. Here we studied how fusion proteins that consist of cellulose binding proteins linked to proteins that show a natural tendency to form multimer complexes act as an adhesive matrix in combination with nanofibrillated cellulose. We found that the fusion proteins are retained with the cellulose and that the proteins mainly affect the plastic yield behavior of the cellulose material as a function of water content. Interestingly, the proteins increased the moisture absorption of the composite, but the well-known plastifying effect of water was clearly decreased. The work helps to understand the functional basis of nanocellulose composites as materials and aims toward building model systems for molecular biomimetic materials.

  15. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  16. Characterization of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Chun, H. J.; Karalekas, D.

    1994-01-01

    Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.

  17. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  18. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix.

    PubMed

    Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2015-12-01

    Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.

  19. Intermediate Temperature Strength Degradation in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Cawley, James D.; Levine, Stanley (Technical Monitor)

    2001-01-01

    Woven silicon carbide fiber-reinforced, silicon carbide matrix composites are leading candidate materials for an advanced jet engine combustor liner application. Although the use temperature in the hot region for this application is expected to exceed 1200 C, a potential life-limiting concern for this composite system exists at intermediate temperatures (800 +/- 200 C), where significant time-dependent strength degradation has been observed under stress-rupture loading. A number of factors control the degree of stress-rupture strength degradation, the major factor being the nature of the interphase separating the fiber and the matrix. BN interphases are superior to carbon interphases due to the slower oxidation kinetics of BN. A model for the intermediate temperature stress-rupture of SiC/BN/SiC composites is presented based on the observed mechanistic process that leads to strength degradation for the simple case of through-thickness matrix cracks. The approach taken has much in common with that used by Curtin and coworkers, for two different composite systems. The predictions of the model are in good agreement with the rupture data for stress-rupture of both precracked and as-produced composites. Also, three approaches that dramatically improve the intermediate temperature stress-rupture properties are described: Si-doped BN, fiber spreading, and 'outside debonding'.

  20. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components.

    PubMed

    Vidal, Sarah E Lightfoot; Tamamoto, Kasey A; Nguyen, Hanh; Abbott, Rosalyn D; Cairns, Dana M; Kaplan, David L

    2018-04-24

    Current commercially available human skin equivalents (HSEs) are used for relatively short term studies (∼1 week) due in part to the time-dependent contraction of the collagen gel-based matrix and the limited cell types and skin tissue components utilized. In contrast, here we describe a new matrix consisting of a silk-collagen composite system that provides long term, stable cultivation with reduced contraction and degradation over time. This matrix supports full thickness skin equivalents which include nerves. The unique silk-collagen composite system preserves cell-binding domains of collagen while maintaining the stability and mechanics of the skin system for long-term culture with silk. The utility of this new composite protein-based biomaterial was demonstrated by bioengineering full thickness human skin systems using primary cells, including nerves and immune cells to establish an HSE with a neuro-immuno-cutaneous system. The HSEs with neurons and hypodermis, compared to in vitro skin-only HSEs controls, demonstrated higher secretion of pro-inflammatory cytokines. Proteomics analysis confirmed the presence of several proteins associated with inflammation across all sample groups, but HSEs with neurons had the highest amount of detected protein due to the complexity of the model. This improved, in vitro full thickness HSE model system utilizes cross-linked silk-collagen as the biomaterial and allows reduced reliance on animal models and provides a new in vitro tissue system for the assessment of chronic responses related to skin diseases and drug discovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ceramic Matrix Composites (CMC) Life Prediction Development

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Calomino, Anthony M.; Ellis, John R.; Opila, Elizabeth J.

    1990-01-01

    Advanced launch systems will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion and airframe components. The use of CMC will save weight, increase operating margin, safety and performance, and improve reuse capability. For reusable and single mission use, accurate life prediction is critical to success. The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation.

  2. Elastic/plastic analyses of advanced composites investigating the use of the compliant layer concept in reducing residual stresses resulting from processing

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.

    1990-01-01

    High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.

  3. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  4. Investigation of reaction kinetics and interfacial phase formation in Ti3Al + Nb composites

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Gundel, D. B.

    1992-01-01

    Titanium aluminide metal matrix composites are prominent materials systems being considered for high temperature aerospace applications. One of the major problems with this material is the reactivity between existing reinforcements and the matrix after prolonged thermal exposure. This paper presents results from an investigation of reaction kinetics between Ti-14Al-21Nb (wt pct) and SCS-6 fibers and SiC fibers with surface coatings of TiB2, TiC, TiN, W, and Si. Microstructural evaluation of the reaction layers as well as matrix regions around the fibers is presented.

  5. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  6. Interfacial adhesion improvement in carbon fiber/carbon nanotube reinforced hybrid composites by the application of a reactive hybrid resin initiated by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Szebényi, G.; Faragó, D.; Lámfalusi, Cs.; Göbl, R.

    2018-04-01

    Interfacial adhesion is a key factor in composite materials. The effective co-working of the reinforcing materials and matrix is essential for the proper load transfer between them, and to achieve the desired reinforcing effect. In case of nanocomposites, especially carbon nanotube (CNT) reinforced nanocomposites the adhesion between the CNTs and the polymer matrix is poor. To improve the interfacial adhesion and exploit the reinforcing effect of these nanoparticles a two step curable epoxy (EP)/vinylester (VE) hybrid resin system was developed where the EP is cured using hardener in the first step, during the composite production, and in the second step the curing of the VE is initiated by gamma irradiation, which also activates the reinforcing materials and the cured matrix component. A total of six carbon fiber reinforced composite systems were compared with neat epoxy and EP/VE hybrid matrices with and without chemical initiator and MWCNT nano-reinforcement. The effect of gamma irradiation was investigated at four absorbed dose levels. According to our three point bending and interlaminar shear test results the adhesion has improved between all constituents of the composite system. It was demonstrated that gamma irradiation has beneficial effect on the static mechanical, especially interlaminar properties of both micro- and nanocomposites in terms of modulus, strength and interlaminar shear strength.

  7. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    PubMed

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  8. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on achievable CNT composite properties and yield some insight on the influence of processing conditions on the mechanical properties of CNT composites.

  9. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at high temperatures of high environmental resistance and high creep resistance, which in turn will result in long component life. Data are presented from a variety of laboratory tests on simple two-dimensional panels that examine these properties and compare the performance of the optimized full PIP system with those of the full CVI and CVI + PIP hybrid systems. Underlying mechanisms for performance differences in the various systems are discussed. Remaining issues for further property enhancement and for application of the full PIP approach for engine components are also discussed, as well as on-going approaches at NASA to solve these issues.

  10. Resin Systems and Chemistry-Degradation Mechanisms and Durability in Long-Term Durability of Polymeric Matrix Composites. Chapter 1

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Connell, John W.

    2012-01-01

    In choosing a polymer-matrix composite material for a particular application, a number of factors need to be weighed. Among these are mechanical requirements, fabrication method (e.g. press-molding, resin infusion, filament winding, tape layup), and use conditions. Primary among the environmental exposures encountered in aerospace structures are moisture and elevated temperatures, but certain applications may require resistance to other fluids and solvents, alkaline agents, thermal cycling, radiation, or rapid, localized heating (for example, lightning strike). In this chapter, the main classes of polymer resin systems found in aerospace composites will be discussed. Within each class, their responses to environmental factors and the associated degradation mechanisms will be reviewed.

  11. CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms

    NASA Astrophysics Data System (ADS)

    Torres-Roldan, Rafael L.; Garcia-Casco, Antonio; Garcia-Sanchez, Pedro A.

    2000-08-01

    CSpace is a program for the graphical and algebraic analysis of composition relations within chemical systems. The program is particularly suited to the needs of petrologists, but could also prove useful for mineralogists, geochemists and other environmental scientists. A few examples of what can be accomplished with CSpace are the mapping of compositions into some desired set of system/phase components, the estimation of reaction/mixing coefficients and assessment of phase-rule compatibility relations within or between complex mineral assemblages. The program also allows dynamic inspection of compositional relations by means of barycentric plots. CSpace provides an integrated workplace for data management, manipulation and plotting. Data management is done through a built-in spreadsheet-like editor, which also acts as a data repository for the graphical and algebraic procedures. Algebraic capabilities are provided by a mapping engine and a matrix analysis tool, both of which are based on singular-value decomposition. The mapping engine uses a general approach to linear mapping, capable of handling determined, underdetermined and overdetermined problems. The matrix analysis tool is implemented as a task "wizard" that guides the user through a number of steps to perform matrix approximation (finding nearest rank-deficient models of an input composition matrix), and inspection of null-reaction space relationships (i.e. of implicit linear relations among the elements of the composition matrix). Graphical capabilities are provided by a graph engine that directly links with the contents of the data editor. The graph engine can generate sophisticated 2-D ternary (triangular) and 3D quaternary (tetrahedral) barycentric plots and includes features such as interactive re-sizing and rotation, on-the-fly coordinate scaling and support for automated drawing of tie lines.

  12. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  13. Mesoporous Silica Matrix as a Tool for Minimizing Dipolar Interactions in NiFe2O4 and ZnFe2O4 Nanoparticles

    PubMed Central

    Virumbrales, Maider; Saez-Puche, Regino; Torralvo, María José; Blanco-Gutierrez, Veronica

    2017-01-01

    NiFe2O4 and ZnFe2O4 nanoparticles have been prepared encased in the MCM (Mobile Composition of Matter) type matrix. Their magnetic behavior has been studied and compared with that corresponding to particles of the same composition and of a similar size (prepared and embedded in amorphous silica or as bare particles). This study has allowed elucidation of the role exerted by the matrix and interparticle interactions in the magnetic behavior of each ferrite system. Thus, very different superparamagnetic behavior has been found in ferrite particles of similar size depending on the surrounding media. Also, the obtained results clearly provide evidence of the vastly different magnetic behavior for each ferrite system. PMID:28640197

  14. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  15. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  16. The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.

  17. Rheological Behavior and Microstructure of Ceramic Particulate/Aluminum Alloy Composites. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Moon, Hee-Kyung

    1990-01-01

    The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.

  18. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    NASA Astrophysics Data System (ADS)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  19. Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc

    2004-01-01

    Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.

  20. Investigation on Mechanical and Fatigue behaviour of Aluminium Based SiC/ZrO2 Particle Reinforced MMC

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.

    2018-04-01

    The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.

  1. Turbine component, turbine blade, and turbine component fabrication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less

  2. SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2008-01-01

    Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.

  3. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  4. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  5. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    PubMed

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    DTIC Science & Technology

    2016-09-01

    investigated. The unitized composite consisted of a polymer matrix composite (PMC) co-cured with a ceramic matrix composite (CMC). The PMC portion...ply non- crimp 3D orthogonal weave composite consisting of a ceramic matrix reinforced with glass fibers. In order to assess the performance and...2.3 Ceramic Matrix Composites ...................................................................................5  2.4 2D vs 3D Reinforcement

  7. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Diego, Peter; Zhang, James

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  8. Thermal shock resistance of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Carper, D. M.; Nied, H. F.

    1993-01-01

    The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.

  9. Understanding the interdiffusion behavior and determining the long term stability of tungsten fiber reinforced niobium-base matrix composite systems

    NASA Technical Reports Server (NTRS)

    Tien, John K.

    1990-01-01

    The long term interdiffusional stability of tungsten fiber reinforced niobium alloy composites is addressed. The matrix alloy that is most promising for use as a high temperature structural material for reliable long-term space power generation is Nb1Zr. As an ancillary project to this program, efforts were made to assess the nature and kinetics of interphase reaction between selected beryllide intermetallics and nickel and iron aluminides.

  10. Primitive Fine-Grained Matrix in the Unequilbrated Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Zolensky, M. E.; Kimura, M.; Ebel, D. S.

    2014-01-01

    Enstatite chondrites (EC) have important implications for constraining conditions in the early solar system and for understanding the evolution of the Earth and other inner planets. They are among the most reduced solar system materials as reflected in their mineral compositions and assemblage. They are the only chondrites with oxygen as well as Cr, Ti, Ni and Zn stable isotope compositions similar to the earth and moon and most are completely dry, lacking any evidence of hydrous alteration; the only exception are EC clasts in the Kaidun breccia which have hydrous minerals. Thus, ECs likely formed within the snow line and are good candidates to be building blocks of the inner planets. Our goals are to provide a more detailed characterization the fine-grained matrix in E3 chondrites, understand its origin and relationship to chondrules, decipher the relationship between EH and EL chondrites and compare E3 matrix to matrices in C and O chondrites as well as other fine-grained solar system materials. Is E3 matrix the dust remaining from chondrule formation or a product of parent body processing or both?

  11. Fabrication process development of SiC/superalloy composite sheet for exhaust system components

    NASA Technical Reports Server (NTRS)

    Cornie, J. A.; Cook, C. S.; Anderson, C. A.

    1976-01-01

    A chemical compatibility study was conducted between SiC filament and the following P/M matrix alloys: Waspaloy, Hastelloy-X, NiCrAlY, Ha-188, S-57, FeCrAlY, and Incoloy 800. None of the couples demonstrated sufficient chemical compatibility to withstand the minimum HIP consolidation temperatures (996 C) or intended application temperature of the composite (982 C). However, Waspaloy, Haynes 188, and Hastelloy-X were the least reactive with SiC of the candidate alloys. Chemical vapor deposited tungsten was shown to be an effective diffusion barrier between the superalloy matrix and SiC filament providing a defect-free coating of sufficient thickness. However, the coating breaks down when the tungsten is converted into intermetallic compounds by interdiffusion with matrix constituents. Waspaloy was demonstrated to be the most effective matrix alloy candidate in contact with the CVD tungsten barrier because of its relatively low growth rate constant of the intermediate compound and the lack of formation of Kirkendall voids at the matrix-barrier interface. Fabrication methods were developed for producing panels of uniaxial and angle ply composites utilizing CVD tungsten coated filament.

  12. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  13. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  14. Potential of Organic Matrix Composites for Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Herald, Stephen D.; Stolzfus, Joel M.; Engel, Carl D.; Bohlen, James W.; Palm, Tod; Robinson, Michael J.

    2005-01-01

    Composite materials are being considered for the tankage of cryogenic propellants in access to space because of potentially lower structural weights. A major hurdle for composites is an inherent concern about the safety of using flammable structural materials in contact with liquid and gaseous oxygen. A hazards analysis approach addresses a series of specific concerns that must be addressed based upon test data. Under the 2nd Generation Reusable Launch Vehicle contracts, testing was begun for a variety of organic matrix composite materials both to aid in the selection of materials and to provide needed test data to support hazards analyses. The work has continued at NASA MSFC and the NASA WSTF to provide information on the potential for using composite materials in oxygen systems. Appropriate methods for oxygen compatibility testing of structural materials and data for a range of composite materials from impact, friction, flammability and electrostatic discharge testing are presented. Remaining concerns and conclusions about composite tank structures, and recommendations for additional testing are discussed. Requirements for system specific hazards analysis are identified.

  15. Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options

    NASA Astrophysics Data System (ADS)

    Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn

    2007-01-01

    The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.

  16. High permittivity induced by interaction between PI matrix and graphite oxide filler

    NASA Astrophysics Data System (ADS)

    Lai, Maobai; Kou, Siwang; Yu, Shuhui; Sun, Rong; Wong, Ching-Ping

    2014-09-01

    Functionalized graphite oxide was introduced to polyimide and a colossal permittivity was obtained in the derived GO/PI composites. At 1 kHz, the permittivity of the composite with 3 wt% GO loading was up to 7179. In comparison, the permittivities of rGO/PI with 3 wt% rGO loading and GO/ER with 3 wt% GO loading were only 14.41 and 26.64, respectively. By analyzing the molecular structure and chemical bonding of GO/PI composites, we proposed that interaction occurred between the GO fillers carrying functional groups and the PI matrix with a conjugate system, which accounts for the high permittivity of GO/PI composites.

  17. Matrix resin effects in composite delamination - Mode I fracture aspects

    NASA Technical Reports Server (NTRS)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  18. Thermoplastic Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Roberts, Scott N. (Inventor); Schramm, Joseph P. (Inventor); Hofmann, Douglas C. (Inventor); Johnson, William L. (Inventor); Kozachkov, Henry (Inventor); Demetriou, Marios D. (Inventor)

    2015-01-01

    Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.

  19. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results compare reasonably well to experimental values, with some discrepancies. The discrepancies are at least partially caused by the method used to integrate the rate equations in the polymer constitutive model.

  20. Novel matrix resins for composites for aircraft primary structures, phase 1

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  1. The interface in tungsten fiber reinforced niobium metal-matrix composites. Final Report Ph.D. Thesis - Case Western Reserve Univ., Cleveland, OH

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1989-01-01

    The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.

  2. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.

  3. Mechanical behavior of glass and Blackglas{reg_sign} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawovy, R.H.; Kampe, S.L.; Curtin, W.A.

    Room temperature tensile tests are reported on two low-cost ceramic matrix composite materials, comprised of matrices of Blackglas{reg_sign} and a proprietary glass composition each reinforced with Nicalon{reg_sign} SiC-based fibers. The measured mechanical behaviors, supplemented by post-fracture analysis of fiber pullout and fiber fracture mirrors, are compared in detail to the performance predicted theoretically. This allows for an assessment of the roles of the matrix, fiber strength, residual stresses, fiber geometry, and the fiber/matrix interfacial properties in determining mechanical response. The Blackglas{reg_sign} matrix cracks extensively during processing, and so the mechanical response is controlled by the deformation and fracture of themore » fiber bundle. The interfacial sliding resistance, {tau}, is determined to be {approx} 17 MPa and the in-situ (post-processed) fiber characteristic strength, {sigma}{sub c} is found to be {approx} 2.0 GPa, both similar to values reported in the literature for Nicalon{reg_sign}/CAS-glass systems. For the glass matrix, the unidirectional and cross-ply materials show marked differences in mechanical behavior. In the cross-ply composites, {tau} {approx} 14 MPa and {sigma}{sub c} {approx} 2.9 GPa; in the unidirectional variants, these values were 1.7 MPa and 1.6 GPa, respectively. With these data and other derived micromechanical parameters, the stress-strain and failure point of these materials was predicted using existing models, and excellent agreement with the experiments was obtained. These materials thus perform as expected given the in-situ fiber and interface properties. Notably, the cross-ply glass matrix composites exhibit high fiber strength retention and hence show tensile strengths that are better than other Nicalon{reg_sign}-based materials tested to date.« less

  4. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  5. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-03-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  6. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  7. Method of joining metallic and composite components

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B. (Inventor)

    2010-01-01

    A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.

  8. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  9. Graphite fiber/copper matrix composites for space power heat pipe fin applications

    NASA Astrophysics Data System (ADS)

    McDanels, David L.; Baker, Karl W.; Ellis, David L.

    1991-01-01

    High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.

  10. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  11. Processing and properties of fiber reinforced polymeric matrix composites: I. IM7/LARC(TM)-PETI-7 polyimide composites

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    1995-01-01

    A phenylethynyl terminated imide oligomer formed from the reaction of benzophenone tetracarboxylic acid dianhydride, an 75:25 molar ratio of 4,4'-oxydianiline and meta-phenylenediamine and 4-phenylethynylphthalic anhydride as the endcapper at a theoretical number average molecular weight (Mn) of approximately 3,700 g/mol was evaluated as a composite resin matrix. A glass transition temperature (Tg) of 315 deg C was reached after 250 deg C/1 hr annealing of the matrix resin. Unidirectional prepreg was made by coating an N-methylpyrrolidinone solution of the amide acid oligomer onto unsized IM7 graphite fibers. The thermal and rheological properties and the solvent/volatile depletion rates of the amide acid/NMP system were determined. This information was used to successfully design a molding cycle for composite fabrication. Composites molded under 800 Psi at 371 C consistently yielded good consolidation as measured by C-scan and optical photomicrography. The composite's short beam shear strength (SBS), longitudinal and transverse flexural strengths and moduli were measured at various temperatures. These composites exhibited excellent room temperature (RT) longitudinal flexural strength and modulus and RT SBS strength retention at 177 C.

  12. In-situ poling and structurization of piezoelectric particulate composites.

    PubMed

    Khanbareh, H; van der Zwaag, S; Groen, W A

    2017-11-01

    Composites of lead zirconate titanate particles in an epoxy matrix are prepared in the form of 0-3 and quasi 1-3 with different ceramic volume contents from 10% to 50%. Two different processing routes are tested. Firstly a conventional dielectrophoretic structuring is used to induce a chain-like particle configuration, followed by curing the matrix and poling at a high temperature and under a high voltage. Secondly a simultaneous combination of dielectrophoresis and poling is applied at room temperature while the polymer is in the liquid state followed by subsequent curing. This new processing route is practiced in an uncured thermoset system while the polymer matrix still possess a relatively high electrical conductivity. Composites with different degrees of alignment are produced by altering the magnitude of the applied electric field. A significant improvement in piezoelectric properties of quasi 1-3 composites can be achieved by a combination of dielectrophoretic alignment of the ceramic particles and poling process. It has been observed that the degree of structuring as well as the functional properties of the in-situ structured and poled composites enhance significantly compared to those of the conventionally manufactured structured composites. Improving the alignment quality enhances the piezoelectric properties of the particulate composites.

  13. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    NASA Astrophysics Data System (ADS)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. Electronic supplementary information (ESI) available: Figures of LCST, polymerization kinetics, melt-processed films, DLS, TGA, precipitated fiber and powder, TEM (of isotropic GO), birefringence, OP-data, DMTA-data and DSC. See DOI: 10.1039/c6nr01502f

  14. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2012-08-03

    is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation

  15. Metal-matrix composites: Status and prospects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.

  16. Fabrication and characterization of amine terminated poly(arylene ether sulfone) modified epoxy-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.

    1987-01-01

    Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.

  17. Unified Viscoplastic Behavior of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Robinson, D. N.; Bartolotta, P. A.

    1992-01-01

    The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated.

  18. Effect of flaw size and temperature on the matrix cracking behavior of a brittle ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandakumar, U.; Webb, J.E.; Singh, R.N.

    The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less

  19. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.

  20. Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family

    NASA Astrophysics Data System (ADS)

    Mileiko, S. T.

    2001-09-01

    A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.

  1. Study of Erosive Wear Behaviour on SIC/SIC Composites

    NASA Astrophysics Data System (ADS)

    Suh, Min-Soo

    In the field of aerospace propulsion system, erosive wear on continuous silicon carbide (SiC) fibre-reinforced SiC (SiC/SiC) composites is of significant issue to achieve high energy efficiency. This paper proposes a crucial factor and a design guideline of SiC/SiC composites for higher erosion performance regarding cost effectiveness. Fabrication and evaluation of impacts and wear on SiC/SiC composites are successfully carried out. Erosive wear behaviours of the CVI and the LPS composites evidently show that the crucial fabrication factor against solid particle erosion (SPE). Erosive wear mechanisms on various SiC/SiC composites are determined based on the analysis of erosive wear behaviour. Designing guideline for the SiC/SiC composites for pursuit of high erosion performance is also proposed as focusing on the followings; volume fraction of matrix, strength of the matrix, bonding strength, and PyC interface.

  2. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    NASA Astrophysics Data System (ADS)

    You, Jeong-Ha

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  3. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  4. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  5. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  6. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  7. Continuous fiber-reinforced titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  8. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  9. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  10. Raman Spectroscopic Investigations of Some Bismuthate Oxide Glasses with Manganese Ions

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Todor, Ioana; PǍŞUŢǍ, P.; Ioncu, V.

    Glasses from xMnO·(100-x)Bi2O3 and xMnO·(100-x)[Bi2O3·MO] (MO⇒GeO2 and As2O3 systems, with 0≤x≤50 mol%) were prepared in the same conditions and investigated by Raman spectroscopy. The study is particularly focused on the influence of a gradual increase of MnO content on the glass structure and the effect of changing the glass matrix composition. The spectra obtained certify the presence of [BiO6] octahedral units for all systems and their content progressively increasing with the MnO content. The specific changes in the glass structure according to the matrix composition observed for each system were investigated.

  11. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  12. The effect of weak interface on transverse properties of a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Hahn, H. T.; Salamon, N. J.

    1990-01-01

    Experimental studies conducted at NASA Lewis on SiC reaction-bonded Si3N4 composite system showed that transverse stiffness and strength were much lower than those predicted from existing analytical models based on good interfacial bonding. It was believed that weakened interfaces were responsible for the decrease in tranverse properties. To support this claim, a two-dimensional FEM analysis was performed for a transverse representative volume element. Specifically, the effect of fiber/matrix displacement compatibility at the interface was studied under both tensile and compressive transverse loadings. Interface debonding was represented using active gap elements connecting the fiber and matrix. The analyses show that the transverse tensile strength and stiffness are best predicted when a debonded interface is assumed for the composite. In fact, the measured properties can be predicted by simply replacing the fibers by voids. Thus, it is found that little or no interfacial bonding exists in the composite, and that an elastic analysis can predict the transverse stiffness and strength.

  13. High strain rate behavior of a SiC particulate reinforced Al{sub 2}O{sub 3} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, I.W.; Guden, M.

    The high strain rate deformation behavior of composite materials is important for several reasons. First, knowledge of the mechanical properties of composites at high strain rates is needed for designing with these materials in applications where sudden changes in loading rates are likely to occur. Second, knowledge of both the dynamic and quasi-static mechanical responses can be used to establish the constitutive equations which are necessary to increase the confidence limits of these materials, particularly if they are to be used in critical structural applications. Moreover, dynamic studies and the knowledge gained form them are essential for the further developmentmore » of new material systems for impact applications. In this study, the high strain rate compressive deformation behavior of a ceramic matrix composite (CMC) consisting of SiC particles and an Al{sub 2}O{sub 3} matrix was studied and compared with its quasi-static behavior. Microscopic observations were conducted to investigate the deformation and fracture mechanism of the composite.« less

  14. Study on Preparing Al2O3 Particles Reinforced ZL109 Composite by in Situ Reaction of Fe2O3/Al System

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yu, Huashun; Zhao, Qi; Wang, Haitao; Min, Guanghui

    Al2O3 particles reinforced ZL109 composite was prepared by in situ reaction between Fe2O3 and Al. The phases were identified by XRD and the microstructures were observed by SEM and TEM. The Al2O3 particles in sub-micron size distribute uniformly in the matrix and Fe displaced from the in situ reaction forms net-like alloy phases with Cu, Ni, Al, Mn ect. The hardness and the tensile strength at room temperature of the composites have a small increase compared with the matrix. However, the tensile strength at 350°C can reach 92.18 MPa, which is 18.87 MPa higher than that of the matrix. The mechanism of the reaction in the Fe2O3/Al system was studied by DSC. The reaction between Fe2O3 and Al involves two steps. The first step in which Fe2O3 reacts with Al to form FeO and Al2O3 takes place at the matrix alloy melting temperature. The second step in which FeO reacts with Al to form Fe and Al2O3 takes place at a higher temperature.

  15. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  16. On the Constitutive Response Characterization for Composite Materials Via Data-Driven Design Optimization

    Treesearch

    John G. Michopoulos; John G. Hermanson; Athanasios lliopoulos; Samuel Lambrakos; Tomonari Furukawa

    2011-01-01

    In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to...

  17. A ceramic matrix composite thermal protection system for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Pitts, William C.

    1993-01-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bonded to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems.

  18. Comparison of Cyclic Hysteresis Behavior between Cross-Ply C/SiC and SiC/SiC Ceramic-Matrix Composites

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together. PMID:28787861

  19. Comparison of Cyclic Hysteresis Behavior between Cross-Ply C/SiC and SiC/SiC Ceramic-Matrix Composites.

    PubMed

    Li, Longbiao

    2016-01-19

    In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e. , the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together.

  20. Pendulum impact resistance of tungsten fiber/metal matrix composites.

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1972-01-01

    The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.

  1. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.

  2. Improvement of mechanical properties of polymeric composites: Experimental methods and new systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Felix Nhanchau

    Filler- (e.g., particulate or fiber) reinforced structural polymers or polymeric composites have changed the way things are made. Today, they are found, for example, in air/ground transportation vehicles, sporting goods, ballistic barrier applications and weapons, electronic packaging, musical instruments, fashion items, and more. As the demand increases, so does the desire to have not only well balanced mechanical properties, but also light weight and low cost. This leads to a constant search for novel constituents and additives, new fabrication methods and analytical techniques. To achieve new or improved composite materials requires more than the identification of the right reinforcements to be used with the right polymer matrix at the right loading. Also, an optimized adhesion between the two phases and a toughened matrix system are needed. This calls for new methods to predict, modify and assess the level of adhesion, and new developments in matrix tougheners to minimize compromises in other mechanical/thermal properties. Furthermore, structural optimization, associated with fabrication (e.g., avoidance of fiber-fiber touching or particle aggregation), and sometimes special properties, such as electrical conductivity or magnetic susceptibility are necessary. Finally, the composite system's durability, often under hostile conditions, is generally mandatory. The present study researches new predictive and experimental methods for optimizing and characterizing filler-matrix adhesion and develops a new type of epoxy tougheners. Specifically, (1) a simple thermodynamic parameter evaluated by UNIFAC is applied successfully to screen out candidate adhesion promoters, which is necessary for optimization of the physio-chemical interactions between the two phases; (2) an optical-acoustical mechanical test assisted with an acoustic emission technique is developed to de-convolute filler debonding/delamination among many other micro failure events, and (3) novel core (thermoplastic)-shell (dendrimer) nanoparticles are synthesized and incorporated in epoxy to enhance both stiffness and the polymer's fracture toughness or resistance to crack growth. This unique dendrimer has the possibility of acting both as an adhesion promoter and filler spacer, when applied to the filler surface, and as a matrix enhancer, when combined with other materials, with the unique ability to improve mechanical/thermal/electrical properties. These developments should help in the creation of the next generation of polymeric composites.

  3. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application.

  4. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    NASA Astrophysics Data System (ADS)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly reduced. By means of SEM, EDS and X-ray diffraction techniques, it was found that the longer and stronger SCW is more capable of reinforcing the microstructurally inhomogeneous geopolymer than the smaller diameter, shorter ANF. After heat treatment at 760 °C, the effectiveness of SCW as reinforcement in both fracture toughness and flexural strength was reduced by ~89% and ~43%, respectively, while, the ANF filled materials performed worse than the neat geopolymer. A strong interaction was suggested between ANF and geopolymer at high temperature by means of chemical reactions and diffusion. SEM & X-ray diffraction results suggested the formation of Al4C3 on the SCW surface, which could reduce the interface strength between SCW and geopolymer. Therefore it is suggested that the interface strength should be as high as required for load transfer and crack bridging. Finally, to investigate the potential synergy of a nano-filled matrix material and the fiber/matrix interface toughening mechanism of a continuous fiber composite, composite specimens were produced and tested. Flexural and shear strengths of Nextel 610 continuous fiber reinforced 2vol% SCW filled geopolymer matrix composites were investigated. Specimens were produced with cleaned Nextel fiber and with carbon-coated fibers to investigate the combinations of nano-filled matrix with continuous reinforcement that is well bonded (cleaned fiber) versus poorly bonded (carbon-coated fiber) to the matrix. The results showed that flexural strength of cleaned and coated fiber composites improved by ~35% and ~21% respectively, while shear strength of the similar composite systems improved by ~39.5% and ~24%. The results verified the effectiveness of SCW in toughening not only the neat geopolymer, but also continuous fiber reinforced geopolymer matrix composites.

  5. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  6. SiC/SiC Composites for 1200 C and Above

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.

  7. Polyhedral Oligomeric Silsesquioxane (POSS) Dianiline as a Replacement for Toxic Methylenedianiline in PMR-15: Chemistry and Properties

    DTIC Science & Technology

    2016-08-22

    POSS dinadic composite cross-section. Prior to aging, a few voids are seen in the matrix , but no cracks. After the same time aging as with the PMR-15...the composite , fiber and matrix , respectively; σc, σf, and σm are stress in the composite , fiber and matrix , respectively; Vf and Vm are volume...fraction of the fiber and matrix , respectively; Ec, Ef and Em are the moduli of the composite , fiber and matrix , respectively

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spellman, G.P.

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLAmore » RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.« less

  9. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  10. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  11. Method of making silicon carbide-silicon composite having improved oxidation resistance

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2002-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  12. Silicon carbide-silicon composite having improved oxidation resistance and method of making

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    1999-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  13. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    USDA-ARS?s Scientific Manuscript database

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  14. Application of Pulse Processes in Fabrication of Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sudnik, L. V.; Vityaz', P. A.; Il'yushchenko, A. F.; Smirnov, G. V.; Petrov, I. V.; Konoplyanik, V. N.; Komornyi, A. A.; Luchenok, A. R.

    2016-05-01

    Special features and advantages of metal matrix composites obtained by pulse loading are considered. Examples of effective use of metal matrix composites in various fields of engineering are presented.

  15. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    PubMed

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  16. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  17. A fluorescence lifetime spectroscopy study of matrix metalloproteinases -2 and -9 in human atherosclerotic plaque

    PubMed Central

    Phipps, Jennifer E.; Hatami, Nisa; Galis, Zorina S.; Baker, J. Dennis; Fishbein, Michael C.; Marcu, Laura

    2011-01-01

    Matrix metalloproteinase (MMP) -2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. PMID:21770037

  18. Siloxane containing addition polyimides. II - Acetylene terminated polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Acetylene terminated polyimide oligomers having a range of molecular weights have been synthesized by reacting bis (gamma-aminopropyl) tetramethyldisiloxane, aminophenylacetylene and 3, 3', 4, 4' benzophenonetetracarboxylic dianhydride in different molar ratios. The prepolymers were isolated and characterized for melt flow and cure properties. They show promise as adhesives for bonding titanium to titanium and as matrix resins for graphite cloth reinforced composites. The most promising system has been blended in varying proportions with Thermid 600, a commercially available acetylene terminated polyimide oligomer, and the mixtures have been tested for application as composite matrix resins.

  19. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  20. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  1. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  2. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers.

    DTIC Science & Technology

    1988-04-15

    physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S

  3. Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings

    DTIC Science & Technology

    2016-08-01

    Matrix Composites Using Novel Glass Fibers and Sizings by Steven E Boyd Approved for public release; distribution is...Research Laboratory Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings...p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  4. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.

    PubMed

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva

    2016-08-21

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.

  5. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  6. Testing of self-repairing composite airplane components by use of CAI and the release of the repair chemicals from carefully inserted small tubes

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2007-04-01

    The research on self repair of airplane components, under an SBIR phase II with Wright Patterson Air Force Base, has investigated the attributes and best end use applications for such a technology. These attributes include issues related to manufacturability, cost, potential benefits such as weight reduction, and cost reduction. The goal of our research has been to develop self-repairing composites with unique strength for air vehicles. Our revolutionary approach involves the autonomous release of repair chemicals from within the composite matrix itself. The repair agents are contained in hollow, structural fibers that are embedded within the matrix. Under stress, the composite senses external environmental factors and reacts by releasing the repair agents from within the hollow vessels. This autonomous response occurs wherever and whenever cracking, debonding or other matrix damage transpires. Superior performance over the life of the composite is achieved through this self-repairing mechanism. The advantages to the military would be safely executed missions, fewer repairs and eventually lighter vehicles. In particular the research has addressed the issues by correlating the impact of the various factors, such as 1) delivery vessel placement, shape/size and effect on composite strength, chemicals released and their effect on the matrix, release trigger and efficacy and any impact on matrix properties 2) impact of composite processing methods that involve heat and pressure on the repair vessels. Our self repairing system can be processed at temperatures of 300-350F, repairs in less than 30 seconds and does not damage the composite by repair fiber insertion or chemical release. Scaling up and manufacture of components has revealed that anticipating potential problems allowed us to avoid those associated with processing temperatures and pressures. The presentation will focus on compression after impact testing and the placement of repair fibers/tubes into prepreg laminates.

  7. Thermomechanical testing of high-temperature composites - Thermomechanical fatigue (TMF) behavior of SiC(SCS-6)/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Bartolotta, Paul; Ellis, John R.

    1992-01-01

    Thermomechanical testing techniques recently developed for monolithic structural alloys were successfully extended to continuous fiber reinforced composite materials in plate form. The success of this adaptation was verified on a model metal matrix composite (MMC) material, namely SiC(SCS-6)/Ti-15V-3Cr-3Al-3Sn. Effects of heating system type and specimen preparation are also addressed. Cyclic lives determined under full thermomechanical conditions were shown to be significantly reduced from those obtained under comparable isothermal and in-phase bi-thermal conditions. Fractography and metallography from specimens subjected to isothermal, out-of-phase and in-phase conditions reveal distinct differences in damage-failure modes. Isothermal metallography revealed extensive matrix cracking associated with fiber damage throughout the entire cross-section of the specimen. Out-of-phase metallography revealed extensive matrix damage associated with minimal (if any) fiber cracking. However, the damage was located exclusively at surface and near-surface locations. In-phase conditions produced extensive fiber cracking throughout the entire cross-section, associated with minimal (if any) matrix damage.

  8. Thermomechanical testing techniques for high-temparature composites: TMF behavior of SiC(SCS-6)/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Ellis, J. Rodney; Bartolotta, Paul A.

    1990-01-01

    Thermomechanical testing techniques recently developed for monolithic structural alloys were successfully extended to continuous fiber reinforced composite materials in plate form. The success of this adaptation was verified on a model metal matrix composite (MMC) material, namely SiC(SCS-6)/Ti-15V-3Cr-3Al-3Sn. Effects of heating system type and specimen preparation are also addressed. Cyclic lives determined under full thermo-mechanical conditions were shown to be significantly reduced from those obtained under comparable isothermal and in-phase bi-thermal conditions. Fractography and metallography from specimens subjected to isothermal, out-of-phase and in-phase conditions reveal distinct differences in damage-failure modes. Isothermal metallography revealed extensive matrix cracking associated with fiber damage throughout the entire cross-section of the specimen. Out-of-phase metallography revealed extensive matrix damage associated with minimal (if any) fiber cracking. However, the damage was located exclusively at surface and near-surface locations. In-phase conditions produced extensive fiber cracking throughout the entire cross-section, associated with minimal (if any) matrix damage.

  9. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  10. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  11. Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.

    1982-01-01

    The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.

  12. Polymer/clay/wood nanocomposites: The effect of incorporation of nanoclay into the wood/polymer composites

    NASA Astrophysics Data System (ADS)

    Hetzer, Max E.

    Thermoplastic composites play an important role in our society. The uses of these composites range from cookware to components for the space shuttle. In recent years, researchers at Toyota developed numerous methods of preparation for composites made from olefins and inorganic fillers such as clay and calcium carbonate. Wood fibers have been used as reinforcing filler in polymer matrices for the past several decades. The advantages of using wood fibers as reinforcing fillers are: the low cost of the fibers (or flour), low density, and resistance to breakage. The disadvantage of using wood as a filler is the thermal instability of wood above 200 °C. The majority of thermoplastics exhibit melting points between 160 and 220 °C, which is in the range of thermal decomposition of wood. Nanoclay was first successfully used as a filler in polyolefin materials by the Toyota research team in early 90s. It was found that the addition of a small amount (< 5 wt.%) of nanoclay increased the mechanical properties of a Nylon-6 matrix dramatically. Since Nylon-6 is a hydrophilic material no compatibilizer was necessary to exfoliate the nanoclay. The use of compatibilizers such as maleic modified polyethylenes (MAPEs) is necessary upon addition of nanoclay to a hydrophobic polyolefin systems such polyethylene (PE) or polypropylene (PP). Few researchers have attempted to reinforce the polymer matrix via the use of the nanoclay for use as a matrix in wood/polymer composites. High molecular weight and low molecular weight MAPEs have been used to enhance the bonding between the nanoclay and the polymer matrix as well as between the wood flour and the polymer matrix. The effects of combinations of the high and low molecular weight MAPEs on the mechanical and thermal properties of polymer/clay nanocomposites (PCNs) and of wood/polymer/clay composites (WPCs) were investigated. The effects of adding nanoclay to wood/polymer systems on the mechanical and thermal properties of the composites were also investigated. A model based on the Halpin-Tsai model was developed that predicts the (Young's) modulus-temperature relationship of the composites based on discontinuous fillers. It was found that the molecular weight of the compatibilizer significantly affects the exfoliation/dispersion of the nanoclay within the polymer matrix. A compatibilizer containing a high Mw fraction based on high density polyethylene (HDPE) and a low Mw fraction based on linear low density polyethylene (LLDPE) was found to be the most effective at enhancing the thermal and mechanical properties of PCNs and WPCs. A compatibilizer containing greater than 60 wt.% high Mw fraction resulted in a 30% increase of the modulus and a 15°C increase of the heat deflection temperature (HDT). The addition of the nanoclay had a detrimental effect on the moduli of PCNs and WPCs when a low Mw compatibilizer based on LLDPE was used. The moduli of these composites increased with increasing high Mw content of the compatibilizer and increasing nanoclay content. The addition of the nanoclay to wood/polymer composites resulted in an increased modulus of elasticity and HDT of these composites. The developed model quantitatively predicts the modulus-temperature relationship of the fiber containing composites. It was found that the modulus of the composites varies linearly with temperature and was highly dependent on the exfoliation of the nanoclay within the polymer matrix.

  13. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  14. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    NASA Astrophysics Data System (ADS)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  15. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.

    PubMed

    Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.

  16. Low-Earth orbit effects on organic composite materials flown on LDEF

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.

    1993-01-01

    Over 35 different types of organic matrix composites were flown as part of 11 different experiments onboard the NASA Long Duration Exposure Facility (LDEF) satellite. This materials and systems experiment satellite flew in low-earth orbit (LEO) for 69 months. For that period, the experiments were subjected to the LEO environment including atomic oxygen (AO), ultraviolet (UV) radiation, thermal cycling, microvacuum, meteoroid and space debris (M&D), and particle radiation. Since retrieval of the satellite in January of 1990, the principal experiment investigators have been deintegrating, examining, and testing the materials specimens flown. The most detrimental environmental effect on all organic matrix composites was material loss due to AO erosion. AO erosion of uncoated organic matrix composites (OMC) facing the satellite ram direction was responsible for significant mechanical property degradations. Also, thermal cycling-induced microcracking was observed in some nonunidirectional reinforced OMC's. Thermal cycling and outgassing caused significant but predictable dimensional changes as measured in situ on one experiment. Some metal and metal oxide-based coatings were found to be very effective at preventing AO erosion of OMC's. However, M&D impacts and coating fractures which compromised these coatings allowed AO erosion of the underlying OMC substrates. The findings for organic matrix composites flown on the LDEF are summarized and the LEO environmental factors, their effects, and the influence on space hardware design factors for LEO applications are identified.

  17. A ceramic matrix composite thermal protection system for hypersonic vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccitiello, S.R.; Love, W.L.; Pitts, W.C.

    1993-07-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bondedmore » to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems. 10 refs.« less

  18. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  19. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.

  20. Micromechanical combined stress analysis: MICSTRAN, a user manual

    NASA Technical Reports Server (NTRS)

    Naik, R. A.

    1992-01-01

    Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.

  1. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  2. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  3. Fibre reinforced ceramic matrix composite fabrication by electrophoretic infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooner, S.; Campaniello, J.J.; Pickering, S.

    Electrophoretic infiltration is a novel technique for the fabrication of fibre reinforced composites. The fibres are arranged as one of the electrodes such that deposition of the colloidal ceramic occurs in the fibre preform. This method has been investigated for the composite system of carbon fibre reinforced Si{sub 3}N{sub 4} and has produced green composite microstructures with good infiltration uniformity and fibre distribution and few macro defects.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speedmore » and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.« less

  5. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  6. Effect of Magnetic Inclusions on the Effective Magnetostriction of Bulk Superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Pan, Baocai; Liu, Zhiguo

    2018-07-01

    A simple model is presented based on the Kim-Anderson model to further investigate the dependence of the effective magnetostriction of magnetic inclusion-superconducting matrix system on both the elastic and magnetic parameters including the elastic modulus, permeability, and volume fraction. The effect of the permeability on the magnetostriction is also obtained by implementing the continuity conditions of displacement and strain at the interface between the inclusion and the matrix through the magnetostriction loop. The results indicate that a stiffer inclusion can decrease the effective magnetostriction no matter whether the inclusion is magnetic or not and a larger effective magnetostriction can be obtained by choosing the matrix with a higher permeability, which gives an explanation about why the composite made from a matrix with a high permeability but a negligibly small magnetostriction yields unexpectedly low magnetostriction. Of particular interest is that in a certain range the effective magnetostriction of composites can be enhanced until it is saturated by increasing the permeability of matrix.

  7. The application of symmetry and centricity to polychordal wedge harmony in "Motherchord"

    NASA Astrophysics Data System (ADS)

    Cathey, Tully J.

    This dissertation is in two volumes. Volume I is an analytical paper in two parts. Part I presents a polychordal harmonic system called the "The Desire Matrix Harmonic System," that was used to compose a work for large orchestra called "Motherchord" (Volume II). The polychords are comprised of two triadic units and of major triads only, built on two pairs of intersecting chromatic scales. The system embraces pitch-centric characteristics as well as symmetry. Scales, or tone sets, are derived from the polychords and used for melodic and contrapuntal purposes. Compositional procedures are developed, and a matrix of polychordal wedges is assembled that serves as a further compositional device. Part II of the paper is an analysis of the formal structure of "Motherchord." "Motherchord" is a one-movement composition of approximately seventeen minutes and forty seconds duration. It is divided into seven parts, but proceeds from beginning to end without a break in sound. The title of the work derives from the central tonic polychord.

  8. Program For Analysis Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Mital, S. K.

    1994-01-01

    METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.

  9. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  10. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  11. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify the surface of SiCWs to further investigate the epoxy nanocomposite system. The process of composites formation was studied to evaluate the effects of the surface modification on the epoxy curing reaction. The obtained composites were tested and analyzed to assess their thermal and thermo-mechanical properties. These properties were related to the dispersion and surface chemical composition of the fillers in the nanocomposites. It was determined that magnetically modified SiCWs have lower ability for interfacial stress transfer in the composite systems under consideration. The final portion of this work was focused on reinforcing the magnetic layer of the SiCWs. This was accomplished by structurally toughening the magnetic layer with poly(glycidyl methacrylate) (PGMA) layer. As a result, the thermal and mechanical properties of the magnetic composite system were improved significantly.

  12. Chemical composition of matrix-embedded ternary II-VI nanocrystals derived from first- and second-order Raman spectra

    NASA Astrophysics Data System (ADS)

    Azhniuk, Yu. M.; Hutych, Yu. I.; Lopushansky, V. V.; Prymak, M. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2016-12-01

    A one- and multiphonon Raman scattering study is performed for an extensive set of CdS1-xSex, Cd1-yZnyS, Cd1-yZnySe, and CdSe1-xTex nanocrystals to investigate the applicability of first- and second-order Raman spectra for the determination of the matrix-embedded ternary nanocrystal composition. For one-mode ternary systems both the LO and 2LO phonon frequencies in the Raman spectra are shown to be a good measure of the nanocrystal composition. For two-mode systems, the approaches based on the difference of the LO phonon frequencies (first-order Raman spectra) or double LO overtone and combination tone frequencies (second-order Raman spectra) as well as on the LO phonon band intensity ratios are analysed. The weak electron-phonon coupling in the II-VI nanocrystals and the polaron constant values for the nanocrystal sublattices are discussed.

  13. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  14. Coating effects on thermal properties of carbon carbon and carbon silicon carbide composites for space thermal protection systems

    NASA Astrophysics Data System (ADS)

    Albano, M.; Morles, R. B.; Cioeta, F.; Marchetti, M.

    2014-06-01

    Many are the materials for hot structures, but the most promising one are the carbon based composites nowadays. This is because they have good characteristics with a high stability at high temperatures, preserving their mechanical properties. Unfortunately, carbon reacts rapidly with oxygen and the composites are subjected to oxidation degradation. From this point of view CC has to be modified in order to improve its thermal and oxidative resistance. The most common solutions are the use of silicon carbide into the carbon composites matrix (SiC composites) to make the thermal properties increase and the use of coating on the surface in order to protect the composite from the space plasma effects. Here is presented an experimental study on coating effects on these composites. Thermal properties of coated and non coated materials have been studied and the thermal impact on the matrix and surface degradation is analyzed by a SEM analysis.

  15. Self repairing composites for drone air vehicles

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2015-04-01

    The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.

  16. Investigation on the properties of nano copper matrix composite via vacuum arc melting method

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Leng, Jinfeng; Wu, Qirui; Zhang, Shaochen; Teng, Xinying

    2017-10-01

    Copper and copper matrix composites (CMCs) are widely used as electrical contact materials in electrical switch systems due to their excellent electrical properties. Graphene has great mechanical, physical and electrical properties, which is competent as an attractive reinforcing material for fabricating CMCs. Therefore, graphene was added to CMCs to improve the mechanical properties. In this study, graphene-reinforced copper matrix composites (Gr/Cu composites) were obtained. The xGr/Cu (x  =  0, 0.1, 0.3 and 0.5 wt.%) composites were fabricated via the vacuum arc melting method and compared the performance of them. The mechanical properties and electrical properties were obtained by measuring the hardness and conductivity. The microstructure of Gr/Cu composites was observed by optical microscopy (OM) and scanning electron microscopy (SEM). With the addition of graphene from 0 wt.% to 0.5 wt.%, the densities of materials decreased from 97.0% to 95.7%. With the increasing of graphene content, the hardness of composites increased at beginning and then decreased. In this range of adding amount, the hardness of 0.3Gr/Cu composite was up to 66.8 HB and increased by 15.4% compared to Al2O3/Cu composites without graphene. With the addition of graphene powder, the international annealing copper standard IACS% of Gr/Cu composites decreased from 86.16 to 69.86. The range of decline and the percentage of decline range are middle and 18.9%, respectively.

  17. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  18. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  19. Properties of Organic Matrix Short Fiber Composites

    DTIC Science & Technology

    1982-02-01

    reinforced SMC composites ( Owens Corning Fiberglas System) ............... ........................ ... 37 4 Schematic of process used to manufacture XMC...71 Vi F, viii. TLST OF TABLES TABLEPAE 1 Material formulations and densitius of SMC materials (PPG-PPG Industries, OFC- Owens Corning Fiberglas) (refs...Composite Materials, 14 (April 1980) , 142-154. 16 ,. Table 1. Material formulations and densities of SMC materials. (PPG-PPG Industries, OFC- Owens

  20. An improved compression molding technology for continuous fiber reinforced composite laminate. Part 1: AS-4/LaRC-TPI 1500 (HFG) Prepreg system

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    Poor processability of fiber reinforced high performance polyimide thermoplastic resin composites is a well recognized issue which, in many cases, prohibits the fabrication of composite parts with satisfactorily consolidated quality. Without modifying the resin matrix chemistry, improved compression modeling procedures were proposed and investigated with the AS-4/LaRC-TPI 1500 High Flow Grade (HFG) prepreg system. Composite panels with excellent C-scans can be consistently molded by this method under 700 F and a consolidation pressure as low as 100 psi. A mechanism for the consolidation of the composite under this improved molding technique is discussed. This mechanism reveals that a certain degree of matrix shear and tow filament slippage and nesting between plies occur during consolidation, which leads to a reduction of the consolidating pressure necessary to offset the otherwise intimate inter fiber-fiber contact and consequently achieves a better consolidation quality. Outstanding short beam shear strength and flexural strength were obtained from the molded panels. A prolonged consolidation step under low pressure, i.e., 100 psi at 700 F for 75 minutes, was found to significantly enhance the composite mechanical properties.

  1. Revealing Slip Bands In A Metal-Matrix/Fiber Composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.

    1995-01-01

    Experimental procedure includes heat treatments and metallographic techniques developed to facilitate studies of deformation of metal-matrix/fiber composite under stress. Reveals slip bands, indicative of plastic flow occurring in matrix during mechanical tests of specimens of composite.

  2. Optical Sensing using Fiber Bragg Gratings for Monitoring Structural Damage in Composite Over-Wrapped Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    Composite Over-Wrap Vessels are widely used in the aerospace community. They are made of thin-walled bottles that are over wrapped with high strength fibers embedded in a matrix material. There is a strong drive to reduce the weight of space borne vehicles and thus pushes designers to adopt COPVs that are over wrapped with graphite fibers embedded in its epoxy matrix. Unfortunately, this same fiber-matrix configuration is more susceptible to impact damage than others and to make matters worse; there is a regime where impacts that damage the over wrap leave no visible scar on the COPV surface. In this paper FBG sensors are presented as a means of monitoring and detecting these types of damage. The FBG sensors are surface mounted to the COPVs and optically interrogated to explore the structural properties of these composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in the composite matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 4500 psi. A Fiber Optic Demodulation System built by Blue Road Research, is used for interrogation of the Bragg gratings.

  3. Off-axis impact of unidirectional composites with cracks: Dynamic stress intensification

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1979-01-01

    The dynamic response of unidirectional composites under off axis (angle loading) impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. The analytical method utilizes Fourier transform for the space variable and Laplace transform for the time variable. The off axis impact is separated into two parts, one being symmetric and the other skew-symmetric with reference to the crack plane. Transient boundary conditions of normal and shear tractions are applied to a crack embedded in the matrix of the unidirectional composite. The two boundary conditions are solved independently and the results superimposed. Mathematically, these conditions reduce the problem to a system of dual integral equations which are solved in the Laplace transform plane for the transformation of the dynamic stress intensity factor. The time inversion is carried out numerically for various combinations of the material properties of the composite and the results are displayed graphically.

  4. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  6. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  7. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  8. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    NASA Astrophysics Data System (ADS)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.

  9. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.

  10. Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers

    PubMed Central

    2013-01-01

    Background Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant. Results In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content. Conclusions The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low reinforcement loading. The affinity of the dispersant to PLA is important for the ultimate strength and stiffness of the composites. PMID:24341897

  11. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  12. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  13. Role of polysaccharides in Pseudomonas aeruginosa biofilm development

    PubMed Central

    Ryder, Cynthia; Byrd, Matthew; Wozniak, Daniel J.

    2008-01-01

    During the past decade, there has been a renewed interest in using P. aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a critical interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix. PMID:17981495

  14. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    NASA Astrophysics Data System (ADS)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  15. Finite element analysis of damped vibrations of laminated composite plates

    NASA Astrophysics Data System (ADS)

    Hu, Baogang

    1992-11-01

    Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.

  16. High Temperature Tolerant Ceramic Composites Having Porous Interphases

    DOEpatents

    Kriven, Waltraud M.; Lee, Sang-Jin

    2005-05-03

    In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.

  17. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  18. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  19. A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and -9 in human atherosclerotic plaque.

    PubMed

    Phipps, Jennifer E; Hatami, Nisa; Galis, Zorina S; Baker, J Dennis; Fishbein, Michael C; Marcu, Laura

    2011-09-01

    Matrix metalloproteinase (MMP)-2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Zhao, Xiaoliang; Qian, Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-03-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained.

  1. High rate deposition system for metal-cluster/SiO x C y H z -polymer nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Peter, T.; Rehders, S.; Schürmann, U.; Strunskus, T.; Zaporojtchenko, V.; Faupel, F.

    2013-06-01

    A system for deposition of nanocomposite materials consisting of a SiO x C y H z -polymer matrix and Ag nanoclusters is presented. Ag nanoclusters with sizes between 2 and 20 nm are produced in a gas aggregation cluster source and are deposited through a focused beam at a high rate. This cluster source is presented in detail and the characteristics of the produced nanoclusters are shown. Simultaneously, a SiO x C y H z -polymer matrix is grown from the precursor hexamethyldisiloxane in an RF plasma. The beam of clusters is deposited into the growing polymer, forming the composite material. This process allows the rapid deposition of composite material with varying metal nanocluster concentrations and properties. Since the cluster generation is separated from the matrix growth, the properties of both can be controlled independently. In this study, we present two types of nanocomposite samples, in the first the Ag nanoclusters are homogeneously distributed in the matrix, in the second type the Ag nanoclusters form a layer which is covered by the matrix. These samples are investigated using transmission electron micrography to determine the morphology. Furthermore, the optical properties are probed using optical transmission spectroscopy and the plasmonic resonance behavior is discussed.

  2. Hydrogels Derived from Central Nervous System Extracellular Matrix

    PubMed Central

    Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel

    2012-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935

  3. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  4. Continuous fiber ceramic matrix composites for heat engine components

    NASA Technical Reports Server (NTRS)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  5. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  6. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.

  7. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.

    PubMed

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-03-15

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles.

  8. The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles

    NASA Astrophysics Data System (ADS)

    Tang, Fei

    Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.

  9. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  10. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  11. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  12. Symposium Review: Metal and Polymer Matrix Composites at MS&T 2013

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    This article reflects on the presentations made during the Metal and Polymer Matrix Composites symposium at Materials Science and Technology 2013 (MS&T'13) held in Montreal (Quebec, Canada) from October 27 to 31. The symposium had three sessions on metal matrix composites and one session on polymer matrix composites containing a total of 23 presentations. While the abstracts and full-text papers are available through databases, the discussion that took place during the symposium is often not captured in writing and gets immediately lost. We have tried to recap some of the discussion in this article and hope that it will supplement the information present in the proceedings. The strong themes in the symposium were porous composites, aluminum matrix composites, and nanocomposites. The development of processing methods was also of interest to the speakers and attendees.

  13. Studies on microstructure and mechanical behaviour of A7075- Flyash/SiC hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR

    2018-02-01

    Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.

  14. Thermal expansion of selected graphite reinforced polyimide-, epoxy-, and glass-matrix composite

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.

    1985-01-01

    The thermal expansion of three epoxy-matrix composites, a polyimide-matrix composite and a borosilicate glass-matrix composite, each reinforced with continuous carbon fibers, has been measured and compared. The expansion of a composite with a rubber toughened epoxy-matrix and P75S carbon fibers was very different from the expansion of two different single phase epoxy-matrix composites with P75S fibers although all three had the same stacking sequence. Reasonable agreement was obtained between measured thermal-expansion data and results from classical laminate theory. The thermal expansion of a material may change markedly as a result of thermal cycling. Microdamage, induced by 250 cycles between -156 C and 121 C in the graphite/polyimide laminate, caused a 53 percent decrease in the coefficient of thermal expansion. The thermal expansion of the graphite/glass laminate was not changed by 100 thermal cycles from -129 C to 38 C; however, a residual strain of about 10 x 10 to the minus 6 power was measured for the laminate tested.

  15. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  16. Fracture surface analysis in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1985-01-01

    To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.

  17. Oriented nanofibers embedded in a polymer matrix

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  18. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  19. Test and evaluation of Apollo 14 composite casting demonstration specimens and flight and control samples

    NASA Technical Reports Server (NTRS)

    Fabiniak, R. C.; Fabiniak, T. J.

    1971-01-01

    The results of experiments 1, 2, and 10 of the Apollo 14 composite casting demonstration are discussed. The purpose of the demonstration, with regard to samples 1 and 2, was to obtain preliminary data on the liquid phase sintering process in a weightless environment. With regard to sample 10, the purpose was to obtain preliminary information on how to achieve uniform dispersion of dense particles on a metal matrix by employing shaking modes or forces in the system when the metal matrix is molten. Results of the demonstrations were interpreted in a quantitative and qualitative manner. For experiment 1 it was found that the tungsten particles were redistributed more uniformly in the flight sample than in the control sample. Experiment 2 results indicate that complete melting may not have occured and thus a high degree of significance cannot be associated with the qualitative results relating to particle redistribution data. The particle-matrix system of experiment 10 was found to be nonwetting.

  20. Effects of intra- and inter-laminar resin content on the mechanical properties of toughened composite materials

    NASA Technical Reports Server (NTRS)

    Grande, Dodd H.; Ilcewicz, Larry B.; Avery, William B.; Bascom, Willard D.

    1991-01-01

    Composite materials having multiphase toughened matrix systems and laminate architectures characterized by resin-rich interlaminar layers (RIL) have been the subject of much recent attention. Such materials are likely to find applications in thick compressively loaded structures such as the keel area of commercial aircraft fuselages. The effects of resin content and its interlaminar and intralaminar distribution on mechanical properties were investigated with test and analysis of two carbon-epoxy systems. The RIL was found to reduce the in situ strengthening effect for matrix cracking in laminates. Mode 2 fracture toughness was found to increase with increasing RIL thickness over the range investigated, and Mode 1 interlaminar toughness was negligibly affected. Compressive failure strains were found to increase with increasing resin content for specimens having no damage, holes, and impact damage. Analytical tools for predicting matrix cracking of off-axis plies and damage tolerance in compression after impact (CAI) were successfully applied to materials with RIL.

  1. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  2. Polymer blends based on epoxy resin and polyphenylene ether as a matrix material for high-performance composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venderbosch, R.W.; Nelissen, J.G.L.; Peijs, A.A.J.M.

    1993-12-31

    The application of poly(2,6-dimethyl-1,4-phenylene ether), PPE, as a matrix material for continuous carbon fiber reinforced composites was studied. PPE is an amorphous thermoplastic exhibiting a high glass transition temperature (220 C) and outstanding mechanical properties with respect to e.g. toughness. However, due to the limited thermal stability at temperatures above T{sub g}, PPE can be regarded as an intractable polymer. Consequently, the introduction of PPE in a composite structure via a melt impregnation route is not feasible. In this investigation a solution impregnation route, using epoxy resin as a reactive solvent, was developed. During impregnation epoxy resin acts as amore » solvent which results in enhanced flow and a reduced processing temperature enabling the preparation of high quality composites, avoiding any degradation. Upon curing of the neat system, phase separation and phase inversion occurs resulting in a continuous PPE matrix filled with glassy epoxy spheres. As a result of this morphology the mechanical and thermal properties of the final material are mainly dominated by the PPE component. In composite applications, a strong influence of the polarity of the carbon fiber surface on the resulting matrix morphology was found. Upon curing, phase separation is initiated at the fiber surface resulting in an epoxy `interlayer` at the fiber surface. This phenomenon can provide a high level of interfacial adhesion. A preliminary investigation of the resulting composite materials revealed outstanding mechanical properties with respect to e.g. interlaminar toughness and strength.« less

  3. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  4. The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix

    NASA Technical Reports Server (NTRS)

    Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.

    1989-01-01

    The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.

  5. The Application of Metal Matrix Composite Materials in Propulsion System Valves

    NASA Technical Reports Server (NTRS)

    Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris

    2003-01-01

    Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.

  6. Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda

    1998-01-01

    Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.

  7. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  8. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Zhang, Douglas; Kilian, Kristopher A

    2013-11-01

    There is a dynamic relationship between physical and biochemical signals presented in the stem cell microenvironment to guide cell fate determination. Model systems that modulate cell geometry, substrate stiffness or matrix composition have proved useful in exploring how these signals influence stem cell fate. However, the interplay between these physical and biochemical cues during differentiation remains unclear. Here, we demonstrate a microengineering strategy to vary single cell geometry and the composition of adhesion ligands - on substrates that approximate the mechanical properties of soft tissues - to study adipogenesis and neurogenesis in adherent mesenchymal stem cells. Cells cultured in small circular islands show elevated expression of adipogenesis markers while cells that spread in anisotropic geometries tend to express elevated neurogenic markers. Arraying different combinations of matrix protein in a myriad of 2D and pseudo-3D geometries reveals optimal microenvironments for controlling the differentiation of stem cells to these "soft" lineages without the use of media supplements. © 2013 Elsevier Ltd. All rights reserved.

  9. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons.

    PubMed

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-12-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  10. Composite sizing and ply orientation for stiffness requirements using a large finite element structural model

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Gentile, D. P.

    1989-01-01

    A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.

  11. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  12. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  13. Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.

  14. Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Yang, Wenhu; Yu, Shuhui; Sun, Rong; Ke, Shanming; Huang, Haitao; Du, Ruxu

    2011-11-01

    A type of Ni/CCTO/PVDF three-phase percolative composite was prepared, in which the filler content (volume fraction) of Ni and CCTO was set at 60 vol%. The dependence of permittivity, electrical modulus and ac conductivity on the concentration of Ni and CCTO fillers near the percolation threshold was investigated in detail. The permittivity of the composites dramatically increased as the Ni content approached 24 vol%. This unique physical mechanism was realized as the formation of conductive channels near the percolation threshold. Analysis on the electrical modulus showed that the conductive channels are governed by three relaxation processes induced by the fillers (Ni, CCTO) and PVDF matrix, which are the interfacial polarization derived from the interfaces between fillers (Ni, CCTO) and PVDF matrix, and the polarization of CCTO ceramic filler and PVDF matrix. The conductivity behaviour with various Ni loadings and temperature suggested that the transition from an insulating to a conducting state should be induced by charge tunnelling between Ni-Ni particles, Ni-CCTO fillers and Ni-PVDF matrix. These findings demonstrated that the tunnelling conduction in the composite can be attributed to the unique physical mechanism near the percolation threshold.

  15. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  16. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  17. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  18. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  19. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  20. Combined bending and thermal fatigue of high-temperature metal-matrix composites - Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.

    1992-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  1. Combined thermal and bending fatigue of high-temperature metal-matrix composites: Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.

    1991-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  2. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  3. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  4. Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system

    NASA Technical Reports Server (NTRS)

    Tso, W.; Hou, T. H.; Tiwari, S. N.

    1993-01-01

    Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables us to estimate the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance our knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.

  5. Self-Healing Laminate System

    NASA Technical Reports Server (NTRS)

    Keller, Michael W. (Inventor); White, Scott R. (Inventor); Beiermann, Brett A. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  6. Data-driven design optimization for composite material characterization

    Treesearch

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  7. Novel Precursor Approached for CMC Derived by Polymer Pyrolysis

    DTIC Science & Technology

    1994-02-15

    to remove signals from probe polymer materials. C. Pyrolysis Methods The conversion of polymeric PMVS to SiC -containing ceramic was studied by... Composite Fabrication Methods Ceramic matrix composites with different matrix compositions were fabricated using the Polymer Impregnation- Pyrolysis (PIP...Pyrolyzed composites were re- infiltrated with the appropriate polymer matrix source under vacuum, and cured in an autoclave under 100 psi overpressure of N2

  8. Factors Controlling Elevated Temperature Strength Degradation of Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    For 5 years, the cooperative agreement NCC3-763 has focused on the development and understanding of Sic-based composites. Most of the work was performed in the area of SiC fiber-reinforced composites for UEET and NGLT and in collaboration with Goodrich Corporation under a partially reimbursable Space Act Agreement. A smaller amount of work was performed on C fiber-reinforced SiC matrix composites for NGLT. Major accomplishments during this agreement included: Improvements to the interphase used in melt-infiltrated (MI) SiC/SiC composites which increases the life under stressed-oxidation at intermediate temperatures referred to as "outside-debonding". This concept is currently in the patent process and received a Space Act Award. Mechanistic-based models of intermediate temperature degradation for MI SiC/SiC Quantification and relatively robust relationships for matrix crack evolution under stress in SiC/SiC composites which serve as the basis for stress-strain and elevated temperature life models The furthering of acoustic emission as a useful tool in composite damage evolution and the extension of the technique to other composite systems Development of hybrid C-SiC fiber-reinforced SiC matrix composites Numerous presentations at conferences, industry partners, and government centers and publications in recognized proceedings and journals. Other recognition of the author's accomplishments by NASA with a TGIR award (2004), NASA's Medal for Public Service (2004), and The American Ceramic Society s Richard M. Fulrath Award (2005). The following will briefly describe the work of the past five years in the three areas of interest: SiC/SiC composite development, mechanistic understanding and modeling of SiC/SiC composites, and environmental durability of C/SiC composites. More detail can be found in the publications cited at the end of this report.

  9. Rheological characterization of addition polyimide matrix resins and prepregs

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Galeos, R. M.

    1984-01-01

    Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.

  10. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  11. A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system.

    PubMed

    Háková, Martina; Havlíková, Lucie Chocholoušová; Chvojka, Jiří; Erben, Jakub; Solich, Petr; Švec, František; Šatínský, Dalibor

    2018-09-06

    Three different approaches has been used to obtain nano/micro fibers and their diversity and extraction properties were examined. The effect of their structure on stability in an ultra-high-performance liquid chromatography (UHPLC) system during on-line SPE procedure was monitored. Five types of various nano/micro fiber polymers were used as sorbents: polyamide 6 nanofibers, polyvinylidene difluoride nanofibers, polyethylene microfibers, and two new polycaprolactone microfiber/nanofiber and polycaprolactone microfibers/polyvinylidene difluoride nanofibers composite polymers. The fiber polymers were filled in a cartridge directly connected to the UHPLC system and tested. For each polymer, the optimal conditions of the on-line extraction were found and potential applicability on real samples was tested. The determination of ochratoxin A (OTA) in beer matrix was chosen as a case study. Relevant factors such as the mechanical and chemical stability of the nano/microfibers, filling the cartridges, fiber reusability and the possibility and the repeatability of all processes were involved in the proposed study. A new nano/micro composite sorbent consisting of polycaprolactone microfibers/polyvinylidene difluoride nanofibers was chosen as the most suitable sorbent for the on-line extraction of OTA from a beer matrix. The tested validation parameters had the value of intra-day precision lower than 1.48%, linearity in the range from 0.5 to 100 μg L -1 with r 2  ≥ 0.9999 for standard and matrix calibration curve, and recovery in the range 99.1-103.9% at five concentration levels. Long-term precision evaluated for 31 analyses over the period of three months did not exceed 2.9% RSD. It confirmed the column reusability and perfect stability of nano/micro composite sorbent in the presence of organic solvents and after repeated injection of a complex beer matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Improved Joining of Metal Components to Composite Structures

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund

    2009-01-01

    Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The resulting "wet" assembly is then subjected to the composite-curing heat treatment, becoming a unitary structure. It should be noted that this new art will require different techniques for CMC s versus PMC's, but the final architecture and companion curing philosophy is the same. For instance, a chemical vapor infiltration (CVI) fabrication technique may require special integration of the pre-form and

  13. Spark plasma sintering of silicon carbide, multi-walled carbon nanotube and graphene reinforced zirconium diboride ceramic composite

    NASA Astrophysics Data System (ADS)

    Balaraman Yadhukulakrishnan, Govindaraajan

    Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.

  14. METCAN-PC - METAL MATRIX COMPOSITE ANALYZER

    NASA Technical Reports Server (NTRS)

    Murthy, P. L.

    1994-01-01

    High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN-PC is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. An 80286 machine with an 80287 math co-processor is required for execution. The executable requires at least 640K of RAM and DOS 3.1 or higher. The package includes sample executables which were compiled under Microsoft FORTRAN v. 5.1. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. METCAN-PC was developed in 1992.

  15. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    PubMed

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration.

  16. A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery

    NASA Astrophysics Data System (ADS)

    Neumeister, Jonas M.

    1993-08-01

    THE TENSILE BEHAVIOR of a brittle matrix composite is studied for post matrix crack saturation conditions. Scatter of fiber strength following the Weibull distribution as well as the influence of the major microstructural variables is considered. The stress in a fiber is assumed to recover linearly around a failure due to a fiber-matrix interface behavior mainly ruled by friction. The constitutive behavior for such a composite is analysed. Results are given for a simplified and a refined approximate description and compared with an analysis resulting from the exact analytical theory of fiber fragmentation. It is shown that the stress-strain relation for the refined model excellently follows the exact solution and gives the location of the maximum to within 1% in both stress and strain; for most materials the agreement is even better. Also it is shown that all relations can be normalized to depend on only two variables; a stress reference and the Weibull exponent. For systems with low scatter in fiber strength the simplified model is sufficient to determine the stress maximum but not the postcritical behavior. In addition, the simplified model gives explicit analytical expressions for the maximum stress and corresponding strain. None of the models contain any volume dependence or statistical scatter, but the maximum stress given by the stress-strain relation constitutes an upper bound for the ultimate tensile strength of the composite.

  17. Test method development for structural characterization of fiber composites at high temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Edwards, B.

    1985-01-01

    Test methods used for structural characterization of polymer matrix composites can be applied to glass and ceramic matrix composites only at low temperatures. New test methods are required for tensile, compressive, and shear properties of fiber composites at high temperatures. A tensile test which should be useful to at least 1000 C has been developed and used to characterize the properties of a Nicalon/glass composite up to the matrix limiting temperature of 600 C. Longitudinal and transverse unidirectional composite data are presented and discussed.

  18. Modeling Cyclic Fatigue Hysteresis Loops of 2D Woven Ceramic Matrix Composites at Elevated Temperatures in Steam

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544

  19. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  20. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  2. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  3. Durability of Waste Glass Flax Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  4. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  5. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  6. Interlaminar fracture toughness of thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Johnston, N. J.; Obrien, T. K.

    1988-01-01

    Edge delamination tension and double cantilever beam tests were used to characterize the interlaminar fracture toughness of continuous graphite-fiber composites made from experimental thermoplastic polyimides and a model thermoplastic. Residual thermal stresses, known to be significant in materials processed at high temperatures, were included in the edge delamination calculations. In the model thermoplastic system (polycarbonate matrix), surface properties of the graphite fiber were shown to be significant. Critical strain energy release rates for two different fibers having similar nominal tensile properties differed by 30 to 60 percent. The reason for the difference is not clear. Interlaminar toughness values for the thermoplastic polyimide composites (LARC-TPI and polyimidesulfone) were 3 to 4 in-lb/sq in. Scanning electron micrographs of the EDT fracture surfaces suggest poor fiber/matrix bonding. Residual thermal stresses account for up to 32 percent of the strain energy release in composites made from these high-temperature resins.

  7. Thermodynamic properties of water in confined environments: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  8. Wear study of Al-SiC metal matrix composites processed through microwave energy

    NASA Astrophysics Data System (ADS)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  9. Interfacial and capillary phenomena in solidification processing of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tewari, S. N.

    1993-01-01

    Chemical and hydrodynamic aspects of wetting and interfacial phenomena during the solidification processing of metal-matrix composites are reviewed. Significant experimental results on fiber-matrix interactions and wetting under equilibrium and non-equilibrium conditions in composites of engineering interest have been compiled, based on a survey of the recent literature. Finally, certain aspects of wetting relevant to stir-casting and infiltration processing of composites are discussed.

  10. Thermal analysis on Al7075/Al2O3 metal matrix composites fabricated by stir casting process

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Shajin, S.; Gnanavel, C.

    2017-03-01

    Metal matrix Composites (MMC’s) have evoked a keen interest in recent times for various applications in aerospace, renewable energy and automotive industries due to their superior strength, low cost, easy availability and high temperature resistance [1]. The crack and propagation occurs in conventional materials without any appreciable indication in a short span. Hence composite materials are preferred nowadays to overcome this problem [2]. The process of metal matrix composites (MMC’s) is to unite the enviable attributes of metals and ceramics. The Stir casting method is used for producing aluminium metal matrix composites (AMC’s). A key challenge of the process is to spread the ceramic particles to achieve a defect free microstructure [2]. By carefully selecting stir casting processing specification, such as stirring time, temperature of the melt and blade angle, the desired microstructure can be obtained. The focus of this work is to develop a high strength particulate strengthen aluminium metal matrix composites, and Al7075 was selected which can offer high strength without much disturbing ductility of metal matrix [4]. The composites will be examined using standard metallurgical and mechanical tests. The cast composites are analysed to Laser flash analysis (LFA) to determine Thermal conductivity [5]. Also changes in microstructure are determined by using SEM analysis.

  11. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less

  12. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  13. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-05-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  14. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  15. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  16. Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1985-01-01

    The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.

  17. Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, N.; Song, S.G.; Gray, G.T., III

    1996-05-01

    Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less

  18. Effect of Al content on impact resistance behavior of Al-Ti-B4C composite fabricated under air atmosphere.

    PubMed

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-12-01

    Reaction behavior, mechanical property and impact resistance of TiC-TiB 2 /Al composite reacted from Al-Ti-B 4 C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10wt.% and 20wt.% Al-Ti-B 4 C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30-50wt.% Al-Ti-B 4 C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB 2 /Al composite in impact resistance field of ceramic reinforced Al matrix composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.

    PubMed

    Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I

    2014-01-01

    The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.

  20. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lio, Wilber Yaote

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3)more » describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.« less

  1. A Porous Ceramic Interphase for SiC/Si(sub 3)N(sub 4) Composites

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1995-01-01

    A suitable interphase material for non-oxide ceramic-matrix composites must be resistant to oxidation. This means it must exhibit a slow rate of oxidation, and its oxidation product must be such as to ensure that the system survives oxidation when it does occur. Because the current benchmark interphase materials, carbon and boron nitride, lack these qualities, a porous fiber coating was developed to satisfy both the mechanical and oxidative requirements of an interphase for the SiC/SiC and SiC/Si2N4 composites that are of interest to NASA. This report presents the interphase microstructure achieved and the resulting characteristics of fiber push-out from a matrix of reaction-bonded silicon nitride (RBSN), both as-fabricated and after substantial annealing and oxidation treatments.

  2. A parametric study of variables that affect fiber microbuckling initiation in composite laminates. I - Analyses. II - Experiments

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Ochoa, Ozden O.; Bradley, Walter L.

    1992-01-01

    The effects of the stacking sequence (orientation of plies adjacent to the 0-deg plies), free surfaces, fiber/matrix interfacial bond strength, initial fiber waviness, resin-rich regions, and nonlinear shear constitutive behavior of the resin on the initiation of fiber microbuckling in thermoplastic composites were investigated using nonlinear geometric and nonlinear 2D finite-element analyses. Results show that reductions in the resin shear tangent modulus, large amplitudes of the initial fiber waviness, and debonds each cause increases in the localized matrix shear strains; these increases lead in turn to premature initiation of fiber microbuckling. The numerical results are compared to experimental data obtained using three thermoplastic composite material systems: (1) commercial APC-2, (2) QUADRAX Unidirectional Interlaced Tape, and AU4U/PEEK.

  3. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity, residual stresses, and imperfect fiber-matrix debonding, reasonably good qualitative and quantitative correlation is achieved between model and experiment.

  4. New ASTM Standards for Nondestructive Testing of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.

    2010-01-01

    Problem: Lack of consensus standards containing procedural detail for NDE of polymer matrix composite materials: I. Flat panel composites. II. Composite components with more complex geometries a) Pressure vessels: 1) composite overwrapped pressure vessels (COPVs). 2) composite pressure vessels (CPVs). III. Sandwich core constructions. Metal and brittle matrix composites are a possible subject of future effort.

  5. Particulate Titanium Matrix Composites Tested-Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Lerch, Bradley A.; Arnold, Steven M.

    2003-01-01

    New manufacturing technologies can now produce uniformly distributed particle strengthened titanium matrix composites (TMCs) at lower cost than many types of continuous-fiber composites. The innovative process results in near-final-shape components having a material stiffness up to 26-percent greater than that of components made with conventional titanium materials. This benefit is achieved with no significant increase in the weight of the component. The improved mechanical performance and low-cost manufacturing capability motivated a review of particulate-reinforced metal composite technology as a way to lower the cost and weight of space-access propulsion systems. Focusing on the elevated-temperature properties of titanium alloy Ti-6Al-4V as the matrix material, researchers at the NASA Glenn Research Center conducted experiments to verify the improved performance of the alloy containing 10 wt% of ceramic titanium carbide (TiC) particles. The appropriate blend of metal and ceramic powder underwent a series of cold and hot isostatic pressing procedures to yield bar stock. A set of round dogbone specimens was manufactured from a small sample of the bars. The TMC material proved to have good machinability at this particle concentration as there was no difficulty in producing high-quality specimens.

  6. Development of a method for fabricating metallic matrix composite shapes by a continuous mechanical process

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.

    1974-01-01

    Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.

  7. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  8. Multiple Concentric Cylinder Model (MCCM) user's guide

    NASA Technical Reports Server (NTRS)

    Williams, Todd O.; Pindera, Marek-Jerzy

    1994-01-01

    A user's guide for the computer program mccm.f is presented. The program is based on a recently developed solution methodology for the inelastic response of an arbitrarily layered, concentric cylinder assemblage under thermomechanical loading which is used to model the axisymmetric behavior of unidirectional metal matrix composites in the presence of various microstructural details. These details include the layered morphology of certain types of ceramic fibers, as well as multiple fiber/matrix interfacial layers recently proposed as a means of reducing fabrication-induced, and in-service, residual stress. The computer code allows efficient characterization and evaluation of new fibers and/or new coating systems on existing fibers with a minimum of effort, taking into account inelastic and temperature-dependent properties and different morphologies of the fiber and the interfacial region. It also facilitates efficient design of engineered interfaces for unidirectional metal matrix composites.

  9. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  10. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  11. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  12. Processing and property evaluation of metal matrix superconducting materials

    NASA Technical Reports Server (NTRS)

    Rao, Appajosula S.

    1995-01-01

    Metal - superconductor (YBCO) systems have been prepared and characterized by resistivity, ac susceptibility and dc SQUID magnetic moment measurements. The silver composites showed superconducting transition for all the composites processed and the superconducting transition temperature tends to depend upon the concentration of the silver in the composite. Aluminum composites showed an unusual resistivity results with two transitions around 90 K and 120 K. The superconducting property of silver composites can be explained qualitatively in terms of the proximity theory that has been suggested for the low temperature superconductors.

  13. A CMC database for use in the next generation launch vehicles (rockets)

    NASA Astrophysics Data System (ADS)

    Mahanta, Kamala

    1994-10-01

    Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.

  14. A CMC database for use in the next generation launch vehicles (rockets)

    NASA Technical Reports Server (NTRS)

    Mahanta, Kamala

    1994-01-01

    Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.

  15. Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.

    2004-01-01

    The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can display up to 18 different wave parameters. Multiple scans of the test specimen demonstrated excellent repeatability in the measurement of all the guided-wave parameters, far exceeding the traditional point-by-point technique. In addition, the scan was able to detect a subsurface defect that was confirmed using flash thermography This technology is being further refined to provide a more robust and efficient software environment. Future hardware upgrades will allow for multiple receiving transducers and the ability to scan more complex surfaces. This work supports composite materials development and testing under the Ultra-Efficient Engine Technology (UEET) Project, but it also will be applied to other material systems under development for a wide range of applications.

  16. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  17. Polycarbonate-Based Blends for Optical Non-linear Applications.

    PubMed

    Stanculescu, F; Stanculescu, A

    2016-12-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  18. Polycarbonate-Based Blends for Optical Non-linear Applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  19. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    NASA Astrophysics Data System (ADS)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  20. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    PubMed Central

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-01-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254

  1. Determination of Interlaminar Toughness of IM7/977-2 Composites at Temperature Extremes and Different Thicknesses

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Pavlick, M. M.; Oliver, M. S.

    2005-01-01

    Composite materials are being used in the aerospace industry as a means of reducing vehicle weight. In particular, polymer matrix composites (PMC) are good candidates due to their high strength-to-weight and high stiffness-to-weight ratios. Future reusable space launch vehicles and space exploration structures will need advanced light weight composites in order to minimize vehicle weight while demonstrating robustness and durability, guaranteeing high factors of safety. In particular, the implementation of composite cryogenic propellant fuel tanks (cryotanks) for future reusable launch vehicles (RLVs) could greatly reduce the vehicle's weight versus identically sized cryotanks constructed of metallic materials. One candidate composite material for future cryotank designs is IM7/977-2, which is a graphite/epoxy system. A successful candidate must demonstrate reasonable structural properties over a wide range of temperatures. Since the matrix material is normally the weak link in the composite, tests that emphasize matrix-dominated behavior need to be conducted. Therefore, the objective of this work is to determine the mode I interlaminar fracture toughness of "unidirectional" 8-ply and 16-ply IM7/977-2 through experimental testing. Tests were performed at -196 degrees Celsius (-320 degrees Fahrenheit), 22 degrees Celsius (72 degrees Fahrenheit), 93 degrees Celsius (200 degrees Fahrenheit) and 160 degrees C (320 degrees Fahrenheit). Low temperature testing was completed while the specimen was submerged in a liquid nitrogen bath. High temperature testing was completed in a temperature-controlled oven.

  2. Preparation of SiC based Aluminium metal matrix nano composites by high intensity ultrasonic cavitation process and evaluation of mechanical and tribological properties

    NASA Astrophysics Data System (ADS)

    Murthy, N. V.; Prasad Reddy, A.; Selvaraj, N.; Rao, C. S. P.

    2016-09-01

    Request augments on a worldwide scale for the new materials. The metal matrix nano composites can be used in numerous applications of helicopter structural parts, gas turbine exit guide vane's, space shuttle, and other structural applications. The key mailman to ameliorate performance of composite matrix in aluminium alloy metal reinforces nano particles in the matrix of alloy uniformly, which ameliorates composite properties without affecting limit of ductility. The ultrasonic assisted stir casting helped agitation was successfully used to fabricate Al 2219 metal matrix of alloy reinforced with (0.5, 1, 1.5 and 2) wt.% of nano silicon carbide (SiC) particles of different sizes 50nm and 150nm. The micrographs of scanning electron microscopy of nano composite were investigated it reveals that the uniform dispersion of nano particles silicon carbide in aluminium alloy 2219 matrix and with the low porosity. How the specific wear rate was vary with increasing weight percentage of nano particles at constant load and speed as shown in results and discussions. And the mechanical properties showed that the ultimate tensile strength and hardness of metal matrix nano composite AA 2219 / nano SiC of 50nm and 150nm lean to augment with increase weight percentage of silicon carbide content in the matrix alloy.

  3. Mechanical Properties of Steel Encapsulated Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying

    This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.

  4. Influence of fiber architecture on the elastic an d inelastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Wilt, Thomas E.

    1995-01-01

    This three part paper focuses on the effect of fiber architecture (i.e., shape and distribution) on the elastic and inelastic response of metal matrix composites. The first part provides an annotative survey of the literature, presented as a historical perspective, dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix and metal matrix composites. Previous investigations dealing with both continuously and discontinuously reinforced composites are included. A summary of the state-of-the-art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of metal matrix composites. This micromechanics model, referred to as the generalized method of cells (GMC), is capable of predicting the overall, inelastic behavior of unidirectional, multi-phased composites given the properties of the constituents. In particular, the model is sufficiently general to predict the response of unidirectional composites reinforced by either continuous or discontinuous fibers with different inclusion shapes and spatial arrangements in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments regarding this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third pan provides qualitative results generated using GMC for a representative titanium matix composite system, SCS-6/TlMETAL 21S. Results are presented that correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep response, with both strong and weak fiber/matrix interfacial bonds. The fiber arrangements include square, square diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes include circular, square and cross-shaped cross sections. The effect of fiber volume fraction on the observed stress-strain response is also discussed, as the thus-far poorly documented strain rate sensitivity effect. In addition to the well documented features of architecture dependent response of continuously reinforced two-phase MMC's, new results involving continuous multi-phase internal architectures are presented. Specifically, stress strain and creep response of composites with different size fibers having different internal arrangements and bond strengths are investigated with the aim of determining the feasibility of using this approach to enhance the transverse toughness and creep resistance of TMC's.

  5. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  6. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    NASA Astrophysics Data System (ADS)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  7. Effect of in-situ bonding system and surface modification of montmorillonite on the properties of butyl rubber/MMT composites

    NASA Astrophysics Data System (ADS)

    Halim, S. F.; Lawandy, S. N.; Nour, M. A.

    2012-07-01

    Isobutylene-isoprene rubber (IIR)/nanoclay composites were prepared by solution intercalation method. Cloisite Na+ nanoclays and organo-modified montmorillonite (OMT) Cloisite 10 A,.15 A and 20 A were used in this study. The effect of In-situ bonding system HRH (hexametylene tetramine: resorcinol: hydrated silica) on the dispersion of used nanoclays in the rubber matrix were examined by X-ray diffraction and atomic force microscopy (AFM). Characterization of the prepared composites was performed by studying the rheometeric and mechanical properties. The burning out behavior of the nanocomposites with and without the bonding system was also measured.

  8. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  9. Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.

  10. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal polymer processing techniques can turn these composite materials into unique, custom parts for ground support, Shuttle, and Constellation needs. We fabricated test specimens of the composite and base materials for thermal and mechanical characterization and found that the strength of the composite material at nominal-percentage loading remained relatively unchanged from the base material.

  11. Design and Development of a Composite Battery Box for Corrosion Control for Marine Corps Vehicles

    DTIC Science & Technology

    1989-11-01

    available from Owens - Corning Fiberglas Corporation and is designated as ECDE 751/0. DESIGN OF COMPOSITE BATTERY BOX After the material system and...fiberglass used was 2.57 g/cc, according to the manufacturer ( Owens - Corning Fiberglas Corp.)." The value used for the matrix density was 1.21. The

  12. MSFC Combustion Devices in 2001

    NASA Technical Reports Server (NTRS)

    Dexter, Carol; Turner, James (Technical Monitor)

    2001-01-01

    The objectives of the project detailed in this viewgraph presentation were to reduce thrust assembly weights to create lighter engines and to increase the cycle life and/or operating temperatures. Information is given on material options (metal matrix composites and polymer matrix composites), ceramic matrix composites subscale liners, lightweight linear chambers, lightweight injector development, liquid/liquid preburner tasks, and vortex chamber tasks.

  13. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    PubMed

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    NASA Astrophysics Data System (ADS)

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-06-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  15. Synthesis and characterization of polyaniline coated gold nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah

    2015-08-28

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emissionmore » scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix.« less

  16. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  17. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  18. Local stresses in metal matrix composites subjected to thermal and mechanical loading

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.

    1990-01-01

    An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.

  19. Effect of Matrix Multicracking on the Hysteresis Loops of Carbon-Fiber-Reinforced Cross-Ply Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2017-01-01

    The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.

  20. Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kokkada Ravindranath, Pruthul

    The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0°, 45° and 90°. This is further verified by making use of the Halpin-Tsai.

  1. Findings of the U.S. Department of Defense Technology Assessment Team on Japanese High-Temperature Composites February 1989 Visit

    DTIC Science & Technology

    1993-06-01

    I-4 1. Polymer Matrix Composites ................................................... r -4 2. Continuous-Fiber-Reinforced MMCs...Manufacturing CASTEM Casting Analysis System (KOBELCO) C-C Carbon-Carbon ( Composite ) CERASEP SiC - SiC CMC Made by SEP CF Carbon Fiber CFRP Carbon-Fiber...curing operations are done in clean rooms). Most operations are highly automated, with minimal manpower required. Some preceramic polymers appear to have

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liuyun, Jiang, E-mail: jlytxg@163.com; Chengdong, Xiong; Lixin, Jiang

    Graphical abstract: Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites was studied in details. The results showed that the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, as a result of worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future. Highlights: ► Themore » effect of n-HA content on the n-HA/PLGA composites was studied in detail. ► Isothermal crystallization, microstructure and mechanical property were studied. ► The relation between n-HA content and properties of n-HA/PLGA composite was found. ► An appropriate proportion of n-HA in n-HA/PLGA composite was obtained. - Abstract: A serials of g-n-HA/PLGA composites with surface-modified g-n-HA of 1%, 3%, 6%, 10% and 15% in weight were prepared by solution mixing. The isothermal crystallization, morphology and mechanical property of g-n-HA/PLGA composites were investigated by differential scanning calorimeter (DSC), scanning electron microscope (SEM) and electromechanical universal tester. The results showed that Avrami equation was suitable for describing the isothermal crystallization process in this system, and the crystallization rate of g-n-HA/PLGA composites containing more than 3 wt% g-n-HA was basically accord with the relational expression of T{sub 110} {sub °C} > T{sub 105°C} > T{sub 115°C} > T{sub 120°C}. Moreover, at the same Tc, crystallization rate was greatly enhanced with the increasing of g-n-HA acting as nucleate. However, the addition of higher content of g-n-HA would cause more agglomeration in PLGA matrix, so that the mechanical properties of g-n-HA/PLGA composites would gradually decrease. In conclusion, the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, result in worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future.« less

  3. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  4. Synchronized and sustained release of multiple components in silymarin from erodible glyceryl monostearate matrix system.

    PubMed

    Lu, Cheng; Lu, Yi; Chen, Jian; Zhang, Wentong; Wu, Wei

    2007-05-01

    Development of sustained delivery systems for herbal medicines was very difficult because of their complexity in composition. The concept of synchronized release from sustained release systems, which is characterized by release of multiple components in their original ratio that defines a herbal medicine, served as the basis for keeping the original pharmacological activity. In this study, erodible matrix systems based on glyceryl monostearate and polyethylene glycol 6000 or poloxamer 188 were prepared to perform strict control on synchronized release of the five active components of silymarin, i.e. taxifolin, silychrystin, silydianin, isosilybin and silybin. The matrix system was prepared by a melt fusion method. Synchronized release was achieved with high similarity factor f(2) values between each two of the five components. Erosion profiles of the matrix were in good correlation with release profiles of the five components, showing erosion-controlled release mechanisms. Through tuning some of the formulation variables, the system can be adjusted for synchronized and sustained release of silymarin for oral administration. In vitro hemolysis study indicated that the synchronized release samples showed a much better stabilizing effect on erythrocyte membrane.

  5. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties

    PubMed Central

    Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi

    2016-01-01

    In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites. PMID:27941839

  6. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi

    2016-12-01

    In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites.

  7. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  8. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  9. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  10. Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures

    DTIC Science & Technology

    2005-03-01

    size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report

  11. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  12. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  13. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    NASA Technical Reports Server (NTRS)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  14. The effect of matrix mechanical properties on (0)8 unidirectional SiC/Ti composite fatigue resistance

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.

    1991-01-01

    The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.

  15. Microstructure of Matrix in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan

    2011-01-01

    Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.

  16. Matrix Dominated Failure of Fiber-Reinforced Composite Laminates Under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Schaefer, Joseph Daniel

    Hierarchical material systems provide the unique opportunity to connect material knowledge to solving specific design challenges. Representing the quickest growing class of hierarchical materials in use, fiber-reinforced polymer composites (FRPCs) offer superior strength and stiffness-to-weight ratios, damage tolerance, and decreasing production costs compared to metals and alloys. However, the implementation of FRPCs has historically been fraught with inadequate knowledge of the material failure behavior due to incomplete verification of recent computational constitutive models and improper (or non-existent) experimental validation, which has severely slowed creation and development. Noted by the recent Materials Genome Initiative and the Worldwide Failure Exercise, current state of the art qualification programs endure a 20 year gap between material conceptualization and implementation due to the lack of effective partnership between computational coding (simulation) and experimental characterization. Qualification processes are primarily experiment driven; the anisotropic nature of composites predisposes matrix-dominant properties to be sensitive to strain rate, which necessitates extensive testing. To decrease the qualification time, a framework that practically combines theoretical prediction of material failure with limited experimental validation is required. In this work, the Northwestern Failure Theory (NU Theory) for composite lamina is presented as the theoretical basis from which the failure of unidirectional and multidirectional composite laminates is investigated. From an initial experimental characterization of basic lamina properties, the NU Theory is employed to predict the matrix-dependent failure of composites under any state of biaxial stress from quasi-static to 1000 s-1 strain rates. It was found that the number of experiments required to characterize the strain-rate-dependent failure of a new composite material was reduced by an order of magnitude, and the resulting strain-rate-dependence was applicable for a large class of materials. The presented framework provides engineers with the capability to quickly identify fiber and matrix combinations for a given application and determine the failure behavior over the range of practical loadings cases. The failure-mode-based NU Theory may be especially useful when partnered with computational approaches (which often employ micromechanics to determine constituent and constitutive response) to provide accurate validation of the matrix-dominated failure modes experienced by laminates during progressive failure.

  17. Control Systems with Pulse Width Modulation in Matrix Converters

    NASA Astrophysics Data System (ADS)

    Bondarev, A. V.; Fedorov, S. V.; Muravyova, E. A.

    2018-03-01

    In this article, the matrix frequency converter for the system of the frequency control of the electric drive is considered. Algorithms of formation of an output signal on the basis of pulse width modulation were developed for the quantitative analysis of quality of an output signal on the basis of mathematical models. On the basis of simulation models of an output signal, assessment of quality of this signal was carried out. The analysis of harmonic composition of the voltage output received on the basis of pulse width modulation was made for the purpose of determination of opportunities of the control system for improving harmonic composition. The result of such analysis led to the fact that the device formation of switching functions of the control system on the basis of PWM does not lead to a distortion reduction of a harmonic of the control signal, and leads to offset of harmonic in the field of frequencies, the multiple relatively carrier frequency.

  18. Residual thermal stresses in composites for dimensionally stable spacecraft applications

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Tompkins, Stephen S.; Funk, Joan G.

    1992-01-01

    An overview of NASA LaRC's research on thermal residual stresses and their effect on the dimensional stability of carbon fiber reinforced polymer-matrix composites is presented. The data show that thermal residual stresses can induce damage in polymer matrix composites and significantly affect the dimensional stability of these composites by causing permanent residual strains and changes in CTE. The magnitude of these stresses is primarily controlled by the laminate configuration and the applied temperature change. The damage caused by thermal residual stresses initiates at the fiber/matrix interface and micromechanics level analyses are needed to accurately predict it. An increased understanding of fiber/matrix interface interactions appears to be the best approach for improving a composite's resistance to thermally induced damage.

  19. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.

    1996-01-01

    This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.

  20. Prospects for using carbon-carbon composites for EMI shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.

  1. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  2. USE OF COMBUSTION SYNTHESIS IN PREPARING CERAMIC-MATRIX AND METAL-MATRIX COMPOSITE POWDERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, K. Scott; Hardy, John S.

    A standard combustion-based approach typically used to synthesize nanosize oxide powders has been modified to prepare composite oxide-metal powders for subsequent densification via sintering or hot-pressing into ceramic- or metal-matrix composites. Copper and cerium nitrate salts were dissolved in the appropriate ratio in water and combined with glycine, then heated to cause autoignition. The ratio of glycine-to-total nitrate concentration was found to have the largest effect on the composition, agglomerate size, crystallite size, and dispersivity of phases in the powder product. After consolidation and sintering under reducing conditions, the resulting composite compact consists of a well-dispersed mixture of sub-micron sizemore » reinforcement particles in a fine-grained matrix.« less

  3. Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Williams, Martha

    2008-01-01

    Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

  4. Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon

    DOEpatents

    Salyer, Ival O.

    1987-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyethylene matrix having a straight chain alkyl hydrocarbon incorporated therein, said polyethylene being crosslinked to such a degree that said polyethylene matrix is form stable and said polyethylene matrix is capable of absorbing at least 10% by weight of said straight chain alkyl hydrocarbon; the composite is useful in forming pellets or sheets having thermal energy storage characteristics.

  5. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  6. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  7. Dopant ink composition and method of fabricating a solar cell there from

    DOEpatents

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2017-10-25

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  8. Dopant ink composition and method of fabricating a solar cell there from

    DOEpatents

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  9. A review on the advances in 3D printing and additive manufacturing of ceramics and ceramic matrix composites for optical applications

    NASA Astrophysics Data System (ADS)

    Goodman, William A.

    2017-09-01

    This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.

  10. Fabrication of metal matrix composites by powder metallurgy: A review

    NASA Astrophysics Data System (ADS)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  11. Analysis of thermal mechanical fatigue in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Mirdamadi, Massoud

    1993-01-01

    Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.

  12. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties.

    PubMed

    Raghunathan, Sreejesh Poikavila; Narayanan, Sona; Poulose, Aby Cheruvathur; Joseph, Rani

    2017-02-10

    Flexible regenerated cellulose/polypyrrole (RC-PPy) conductive composite films were prepared by insitu polymerization of pyrrole on regenerated cellulose (RC) matrix using ammonium persulphate as oxidant. FTIR, XPS and XRD analysis of RC-PPy composite films revealed strong interaction between polypyrrole (PPy) and RC matrix. XRD results indicated that crystalline structure of RC matrix remains intact even after composite formation. SEM micrographs revealed the formation of a continuous conductive network of PPy particles in the RC matrix, leading to significant improvement in electrical and dielectric properties. The electrical conductivity of RC-PPy composites with 12wt% of PPy was 3.2×10 -5 S/cm, which is approximately seven fold higher than that of RC. Composites showed high dielectric constant and low dielectric loss values, which is essential in capacitor application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Using rapid infrared forming to control interfaces in titanium-matrix composites

    NASA Technical Reports Server (NTRS)

    Warrier, Sunil G.; Lin, Ray Y.

    1993-01-01

    Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques.

  14. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  15. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  16. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  17. Chemical Vapor Deposited SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.

  18. Depth of cure of proximal composite resin restorations using a new perforated metal matrix.

    PubMed

    Nguyen, Duke P; Motyka, Nancy C; Meyers, Erik J; Vandewalle, Kraig S

    2018-01-01

    The purpose of this study was to compare the depths of cure of a proximal box preparation filled in bulk with various approaches: filled with a bulk-fill or conventional composite; placed with a new perforated metal matrix, a traditional metal matrix, or a clear matrix; and polymerized with either occlusal-only or tri-sited light curing. After tri-sited curing, the use of the new perforated metal matrix band resulted in a depth of cure that was not significantly different from that achieved with the use of metal bands (removed during curing) or transparent matrix bands. Adequate polymerization was obtained at depths of more than 5.0 mm for the bulk-fill composite and more than 4.0 mm for the conventional composite when tri-sited light curing was used. Tri-sited light curing resulted in a significantly greater depth of cure than occlusal-only curing. The perforated metal band may be used as an alternative to the use of solid metal bands or transparent matrix bands to provide similar depths of cure for composite resins, with the possible benefits of malleability and the ability to leave the band in place during tri-sited light curing.

  19. Environmental durability of graphite.

    DOT National Transportation Integrated Search

    2002-01-01

    The increasing acceptance and incorporation of fiber-reinforced polymer matrix composites (PMCs) as engineering construction materials have led many to look to the infrastructure as an application for these versatile materials. One such system is pul...

  20. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Suman

    2011-12-01

    Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of the unknown mechanical and physical properties of the resin, the relaxation modulus (determined using nano-indentation) and coefficient of thermal expansion (determined using coherent gradient sensing). The adhesional pressure for 6F TGMDA-carbon fiber interface was found to be 135.48 MPa compared to 138.47 MPa for the Diamino diphenyl sulphone (DDS) cured TGMDA-carbon fiber interface. The fact that the adhesional pressure does not show significant decrease upon fluorination of the epoxy system is an advantage. The hydrophobicity of fluorine can be utilized to manufacture environmentally resistant composites while keeping the level of interfacial adhesion the same as in the case of conventional epoxy system, DDS cured TGMDA.

  1. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  2. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  3. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  4. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  5. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    NASA Technical Reports Server (NTRS)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  6. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    NASA Astrophysics Data System (ADS)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  7. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  8. Tensile behavior of unidirectional and cross-ply CMC`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, R.K.; Kampe, S.L.

    1996-12-31

    The tensile behavior of two ceramic matrix composites (CMC`s) was observed. The materials of interest in this study were a glass-ceramic matrix composite (GCMC) and a Blackglas{trademark} matrix composite, both reinforced with Nicalon (SiC) fibers. Both composites were produced in laminate form with a symmetric cross-ply layup. Microstructural observations indicated the presence of significant porosity and some cracking in the Blackglas{trademark} samples, while the GCMC samples showed considerably less damage. From the observed tensile behavior of the cross-ply composites, a {open_quote}back-out{close_quote} factor for determining the unidirectional, 0{degrees} ply data of the composites was calculated using Classical Lamination Theory (CLT) andmore » compared to actual data. While the tensile properties obtained from the Blackglas{trademark} composites showed good correlation with the back-calculated values, those from the GCMC did not. Analysis indicates that the applicability of this technique is strongly influenced by the initial matrix microstructure of the composite, i.e., porosity and cracking present following processing.« less

  9. Isothermal life prediction of composite lamina using a damage mechanics approach

    NASA Technical Reports Server (NTRS)

    Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.

    1989-01-01

    A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.

  10. A comprehensive study of woven carbon fiber-reinforced nylon 6 composites

    NASA Astrophysics Data System (ADS)

    Pillay, Selvum

    Liquid molding of thermoset composites has become very popular in all industry sectors, including aerospace, automotive, mass transit, and sporting goods, but the cost of materials and processing has limited the use to high-end applications. Thermoplastic composites are relatively cheap; however, the use has been limited to components with short fiber reinforcing. The high melt viscosity and short processing window precludes their use in the liquid molding of large structures and applications with continuous fiber reinforcement. The current research addresses the processing parameters, methodology, and limitations of vacuum assisted resin transfer molding (VARTM) of carbon fabric-reinforced, thermoplastic polyamide 6 (PA6). The material used is casting grade PA6. The process developed for using VARTM to produce carbon fabric-reinforced PA6 composites is explained in detail. The effects of infusion temperature and flow distance on the fiber weight fraction and crystallinity of the PA6 resin are presented. The degree of conversion from monomer to polymer was determined. Microscopic studies to show the wet-out of the fibers at the filament level are also presented. Tensile, flexural, short beam shear strength (SBSS), and low-velocity impact test results are presented and compared to a equivalent thermoset matrix composite. The rubber toughened epoxy system (SC-15) was chosen for the comparative study because the system has been especially developed to overcome the brittle nature of epoxy composites. The environmental effects of moisture and ultraviolet (UV) radiation on the carbon/nylon 6 composite were investigated. The samples were immersed in boiling water for 100 hr, and mechanical tests were conducted. Results showed that moisture causes plasticization of the matrix and attacks the fiber matrix interface. This leads to deterioration of the mechanical properties. The samples were also exposed to UV for up to 600 hr, and post exposure tests were conducted. The exposure to UV caused an increase in the degree of crystallinity of the PA6. The mechanical properties were not affected by the exposure to UV for 600 hr.

  11. Effect of Composite Fabrication on the Strength of Single Crystal Al2O3 Fibers in Two Fe-Base Alloy Composites

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Aiken, Beverly J. M.

    1998-01-01

    Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.

  12. Materials and structures for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.

    1988-01-01

    Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.

  13. Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, K., E-mail: khushbudash@gmail.com; Chaira, D.; Ray, B.C.

    Graphical abstract: The evolution of microstructure by varying the particle size of reinforcement in the matrix employing spark plasma sintering has been demonstrated here in Al–Al{sub 2}O{sub 3} system. An emphasis has been laid on varying the reinforcement particle size and evaluating the microstructural morphologies and their implications on mechanical performance of the composites. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size < 50 nm) reinforced in aluminium matrix were fabricated by powder metallurgy route using spark plasma sintering technique technique at a temperature of 773 K and pressure of 50 MPa. Another set of specimensmore » having composition 1, 5, 20 vol.% of alumina (average size ∼ 10 μm) had been fabricated to compare the physical as well as mechanical attributes of the microcomposite as well as the nanocomposites. These micro- and nano-composites have been characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy followed by density, microhardness and nanoindentation measurements. The alumina nanoparticles revealed an interface showing appreciable physical intimacy with the aluminium matrix compared to that of the alumina microparticles. The interfacial integrity in case of nanocomposites is better than in the microcomposite which has been studied using microscopic techniques. Spark plasma sintering imparts enhanced densification as well as matrix-reinforcement proximity which has been corroborated with the experimental results. - Highlights: • The Al–Al{sub 2}O{sub 3} micro- and nano-composites fabricated by spark plasma sintering. • Better matrix-reinforcement integrity in nanocomposites than microcomposites. • Spark plasma sintering method results in higher density and hardness values. • High density and hardness values of nanocomposites than microcomposites. • High dislocation density in spark plasma sintered Al–Al{sub 2}O{sub 3} composites. - Abstract: In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size < 50 nm) and microcomposites of 1, 5, 20 volume % of alumina (average size ∼ 10 μm) reinforced in aluminium matrix were fabricated by spark plasma sintering technique at a temperature of 773 K and pressure of 50 MPa. These micro- and nano-composites have been characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy followed by density, microhardness and nanoindentation hardness measurements. The alumina nanoparticles revealed appreciable physical intimacy with the aluminium matrix than that of alumina microparticles. The highest nanohardness recorded 0.85 GPa and 99% densification for 7 and 1 vol.% Al–Al{sub 2}O{sub 3} nancomposites respectively. Spark plasma sintering imparts enhanced densification and matrix-reinforcement proximity which have been corroborated with the experimental results.« less

  14. Bulk metallic glass matrix composites: Processing, microstructure, and application as a kinetic energy penetrator

    NASA Astrophysics Data System (ADS)

    Dandliker, Richard B.

    The development of alloys with high glass forming ability allows fabrication of bulk samples of amorphous metal. This capability makes these materials available for applications which require significant material thickness in all three dimensions. Superior mechanical properties and advantages in processing make metallic glass a choice candidate as a matrix material for composites. This study reports techniques for making composites by melt-infiltration casting using the alloy Zrsb{41.2}Tisb{13.8}Cusb{12.5}Nisb{10.0}Besb{22.5} (VitreloyspTM 1) as a matrix material. Composite rods 5 cm in length and 7 mm in diameter were made and found to have a nearly fully amorphous matrix; there was less than 3 volume percent crystallized matrix material. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed samples were made with uniaxially aligned tungsten and carbon steel continuous wire reinforcement; the majority of the analysis presented is of these samples. The measured porosity was typically less than 3%. The results also indicate necessary guidelines for developing processing techniques for large scale production, new reinforcement materials, and other metallic glass compositions. Analysis of the microstructure of the tungsten wire and steel wire reinforced composites was performed by x-ray diffraction, scanning electron microscopy, scanning Auger microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The most common phase in the crystallized matrix is most likely a Laves phase with the approximate formula Besb{12}Zrsb3TiNiCu. In tungsten-reinforced composites, a crystalline reaction layer 240 nm thick of tungsten nanocrystals in an amorphous matrix formed. In the steel reinforced composites, the reaction layer was primarily composed of a mixed metal carbide, mainly ZrC. One promising application of the metallic glass matrix composite is as a kinetic energy penetrator material. Ballistic tests show that a composite of 80 volume percent uniaxially aligned tungsten wires and a VitreloyspTM 1 matrix has self-sharpening behavior, which is a necessary characteristic of superior penetrator materials. Small-scale tests with both aluminum and steel targets show that this composite performs better than tungsten heavy alloys typically used for penetrator applications, and comparably with depleted uranium.

  15. Microgravity processing of particulate reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.

    1989-01-01

    The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.

  16. Behavior of a Quasi-Isotropic Ply Metal Matrix Composite under Thermo-Mechanical and Isothermal Fatigue Loading

    DTIC Science & Technology

    1992-12-01

    tensile strength of the composite (20:14). After the heat treatment was accomplished, polishing was performed. Using an automated MAXIMET polishing machine ...AD-A258 902 AFIT/GAE/.ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading...115 AFIT/GAE/ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading THESIS

  17. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  18. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  19. The oxidative stability of carbon fibre reinforced glass-matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Batt, J. A.

    1988-01-01

    The environmental stability of carbon fibre reinforced glass-matrix composites is assessed. Loss of composite strength due to oxidative exposure at elevated temperatures under no load, static load and cyclic fatigue as well as due to thermal cycling are all examined. It is determined that strength loss is gradual and predictable based on the oxidation of carbon fibres. The glass matrix was not found to prevent this degradation but simply to limit it to a gradual process progressing from the composite surfaces inward.

  20. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    DOEpatents

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

Top