NASA Technical Reports Server (NTRS)
2001-01-01
Langley Research Center has licensed a new high-temperature polyimide with versatile applications to Unitech LLC, of Hampton, Virginia, and J. D. Lincoln, Inc., of Costa Mesa, California. Through a Memorandum of Agreement (MOA) and its license, Unitech, a client of the NASA Hampton Roads Technology Incubator (HRTI), is now selling the new polyimide, better known as RP46. Dr. Ruth Pater, of NASA Langley, developed RP46 for aerospace applications. The material was designed for re-entry vehicles and high-temperature engine components; however, its versatile nature makes it applicable as a molding, adhesive, coating, composite matrix resin, foam, or film. Available in liquid and powder forms, RP46 can also be fabricated over mesh for use in molds. RP46 presents a profitable option to manufacturers, because the ease of manufacturing the resin and the reduction in curing time saves money. Consumers save money because RP46 is more durable than similar products that are susceptible to microcracking when used as a coating or adhesive in high-temperature situations and often required reapplication. The chances of microcracking are significantly reduced with RP46 because of its unsurpased ability to resist heat and corrosion.
[Cloning and analysis of highly repetitive sequence fragments from takin (Budorcas taxicolor)].
Qian, Min; Dou, Zhen; Gu, Yong Xi; Zhang, Qin; Lu, Run Long; Zhu, Xue Liang
2002-03-01
Takin (Budorcas taxicolor) is a large animal living in China and other adjacent countries, which belongs to Bovidae of Artiodactyla. The anatomy, morphology and behavior of takin are between species of the subfamily Bovinae and Caprinae. It is now in a separated genus or in the same genus with muskox (Ovibos moschatus). To gain insight into the evolution of takin, we purified and cloned its highly repetitive BamHI fragments from the genomic DNA. The sequences of three fragments were highly homologous, indicative of units of a large repetitive DNA arrays. Southern hybridization using these fragments as probes showed identical patterns among individuals in both the same and different subspecies, implying conserved sequences and distributions of the BamHI clusters in takin genome. Sequence comparison with 1.714 and 1.715 satellite DNA of other species in Bovidae supports that takin has a closer relationship with the subfamily Caprinae than with Bovinae. It also suggests that these BamHI fragments may represent repeat units of the centromeric satellite DNA of takin. PMID:15344315
Cytochrome B sequences suggest convergent evolution of the Asian takin and Arctic muskox.
Groves, P; Shields, G F
1997-12-01
Relationships of the takin (Budorcas taxicolor) and muskox (Ovibos moschatus) have been speculated upon for many years. Morphological and behavioral similarities between these species have led to suggestions that they are closely related. To test the hypothesis that characteristics shared by the takin and muskox stem from a recent common ancestor, we compared sequences of their mitochondrial cytochrome b genes with those of three other species of Caprinae. We present data that may support rejection of the hypothesis of recent common ancestry and suggest that similarities in behavior and morphology in these two species might be attributed to convergent evolution rather than shared phylogeny.
Cytochrome B sequences suggest convergent evolution of the Asian takin and Arctic muskox.
Groves, P; Shields, G F
1997-12-01
Relationships of the takin (Budorcas taxicolor) and muskox (Ovibos moschatus) have been speculated upon for many years. Morphological and behavioral similarities between these species have led to suggestions that they are closely related. To test the hypothesis that characteristics shared by the takin and muskox stem from a recent common ancestor, we compared sequences of their mitochondrial cytochrome b genes with those of three other species of Caprinae. We present data that may support rejection of the hypothesis of recent common ancestry and suggest that similarities in behavior and morphology in these two species might be attributed to convergent evolution rather than shared phylogeny. PMID:9417894
Li, Yanxin; Dai, Yunping; Du, Weihua; Zhao, Chunjiang; Wang, Haiping; Wang, Lili; Li, Rong; Liu, Ying; Wan, Rong; Li, Ning
2006-02-01
Interspecies cloning might be used as an effective method to conserve endangered species and to support the study of nuclear-cytoplasm interaction. In this study, we describe the development of takin-bovine embryos in vitro produced by fusing takin ear fibroblasts with enucleated bovine oocytes and examine the fate of mitochondrial DNA in these embryos. We also compare the blastocyst development of takin-bovine embryos with yak-bovine and bovine-bovine embryos and compare the cell numbers of the blastocyst. Our results indicate that: (1) takin-bovine cloned embryos can develop to the blastocyst stage in vitro (5%), (2) blastocyst mitochondria DNA are derived primarily from bovine oocytes in spite of a little takin donor cell mitochondrial DNA, (3) using the same cloned protocol, development efficiency is significantly different between bovine-bovine cloning, yak-bovine, and takin-bovine cloning (48 vs. 28% vs. 5%, P < 0.01), and (4) cell numbers in the blastocysts of the three species of embryos were not different. These results suggest that the bovine oocytes can reprogram the takin, yak, and bovine fibroblast nuclei. However, the development efficiency of intra-species cloning tends to be higher than inter-species cloning; the more close the species of the donor cell is to the recipient oocyte (yak versus takin), the greater the blastocyst development in vitro.
Li, Wang; Huan, Xiajuan; Zhou, Ying; Ma, Qingyi; Chen, Yulin
2009-06-12
A bacterial strain with high cellulase activity was isolated of feces sample of Golden Takin (Budorcas taxicolor Bedfordi). The bacterium was classified and designated Bacillus subtilis LN by morphological and 16SrDNA gene sequence analysis. Two putative cellulase genes, CelL15 and CelL73, were simultaneously cloned from the isolated strain by PCR. The putative gene CelL15 consisted of an open reading frame (ORF) of 1470 nucleotides and encoded a protein of 490 amino acids with a molecular weight of 54 kDa. The CelL73 gene consisted of an open reading frame (ORF) of 741 nucleotides and encoded a protein of 247 amino acids with a molecular weight of 27 kDa. Both genes were purified and cloned into pET-28a for expression in Escherichia coli BL21 (DE3). The ability of E. coli to degrade cellulose was enhanced when the two recombinants were cultured together.
Design of channeled partial Mueller matrix polarimeters.
Alenin, Andrey S; Scott Tyo, J
2016-06-01
In this paper, we introduce a novel class of systems called channeled partial Mueller matrix polarimeters (c-pMMPs). Their analysis benefits greatly by drawing from the concepts of generalized construction of channeled polarimeters as described by the modulation matrix. The modulation matrix resembles that of the data reduction method of a conventional polarimeter, but instead of using Mueller vectors as the bases, attention is focused on the Fourier properties of the measurement conditions. By leveraging the understanding of the measurement's structure, its decomposition can be manipulated to reveal noise resilience and information about the polarimeter's ability to measure the aspect of polarization that are important for any given task. We demonstrate the theory with a numerical optimization that designs c-pMMPs for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)APOPAI0003-693510.1364/AO.46.008364]. We select several example systems that produce a fewer-than-full-system number of channels yet retain the ability to discriminate objects of interest. Their respective trade-offs are discussed. PMID:27409432
Teaching Improvement Model Designed with DEA Method and Management Matrix
ERIC Educational Resources Information Center
Montoneri, Bernard
2014-01-01
This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…
Analytical techniques for instrument design - matrix methods
Robinson, R.A.
1997-09-01
We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalisation to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6- dimensional Cooper-Nathans matrix: diagonalisation (Moller-Nielsen method), coordinate changes e.g. from ({Delta}k{sub I},{Delta}k{sub F} to {Delta}E, {Delta}Q & 2 dummy variables), integration of one or more variables (e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg`s Law for analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. We will argue that a generalised program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. We will also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question.
Analytical techniques for instrument design -- Matrix methods
Robinson, R.A.
1997-12-31
The authors take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalization to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, they discuss a toolbox of matrix manipulations that can be performed on the 6-dimensional Cooper-Nathans matrix. They show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. They will argue that a generalized program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. They also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question.
Matrix Transfer Function Design for Flexible Structures: An Application
NASA Technical Reports Server (NTRS)
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Matrix formalism for current-independent optics design.
Wang, C.-x.; Kim, K.-J.; Accelerator Systems Division
2006-01-01
Matrix formalism has been a powerful tool for beam optics designs. It not only facilitates computations but also plays an important role in formulating various design concepts. Here we extend the standard matrix formalism for the purpose of designing an optics that transports space-charge-dominated intense beam. Furthermore, we explore the concept of current-independent optics, which can be useful for systems such as high-brightness injectors and space-charge-dominated rings. Our discussion here is preliminary and limited to axisymmetric systems.
Airbreathing/Rocket Single-Stage-to-Orbit Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.
1995-01-01
A definitive design/performance study was performed on a single-stage-to-orbit (SSTO) airbreathing propelled orbital vehicle with rocket propulsion augmentation in the Access to Space activities during 1993. A credible reference design was established, but by no means an optimum. The results supported the viability of SSTO airbreathing/rocket vehicles for operational scenarios and indicated compelling reasons to continue to explore the design matrix. This paper will (1) summarize the Access to Space design activity from the SSTO airbreathing/rocket perspective, (2) present an airbreathing/rocket SSTO design matrix established for continued optimization of the design space, and (3) focus on the compelling reasons for airbreathing vehicles in Access to Space scenarios.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and
Direct design of 2D RF pulses using matrix inversion
NASA Astrophysics Data System (ADS)
Schulte, Rolf F.; Wiesinger, Florian
2013-10-01
Multi-dimensional pulses are frequently used in MRI for applications such as targeted excitation, fat-water separation or metabolic imaging with hyperpolarised 13C compounds. For the design, the problem is typically separated into the different dimensions. In this work, a method to directly design two-dimensional pulses using the small-tip angle approximation is introduced based on a direct matrix representation. The numerical problem is solved in a single step directly in two dimensions by matrix inversion. Exemplary spectral-spatial excitation and spatio-temporal encoding (SPEN) pulses are designed and validated. The main benefits of the direct design approach include a reduction of artefacts in case of spectral-spatial pulses, a simple and straightforward computer implementation and high flexibility in the pulse design.
Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.
1999-01-01
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.
Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.
1999-01-01
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.
Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms.
Aas, Lars Martin Sandvik; Ellingsen, Pål Gunnar; Fladmark, Bent Even; Letnes, Paul Anton; Kildemo, Morten
2013-04-01
This paper reports on the design and implementation of a liquid crystal variable retarder based overdetermined spectroscopic Mueller matrix polarimeter, with parallel processing of all wavelengths. The system was designed using a modified version of a recently developed genetic algorithm [Letnes et al. Opt. Express 18, 22, 23095 (2010)]. A generalization of the eigenvalue calibration method is reported that allows the calibration of such overdetermined polarimetric systems. Out of several possible designs, one of the designs was experimentally implemented and calibrated. It is reported that the instrument demonstrated good performance, with a measurement accuracy in the range of 0.1% for the measurement of air. PMID:23571964
Motorcycle suspension design using matrix inequalities and passivity constraints
NASA Astrophysics Data System (ADS)
Sharma, Amrit; Limebeer, David J. N.
2012-03-01
This paper presents a design methodology for the suspension system of a novel aerodynamically efficient motorcycle. Since the machine's layout and the rider's seating position are unconventional, several aspects of the machine design, including the suspension, must be reviewed afresh. The design process is based on matrix inequalities that are used to optimise a road-grip objective function - others could be used equally well. The design problem is cast as the minimisation of an H 2 cost with passivity constraints imposed on the suspension transference. The resulting bilinear matrix inequality problem is solved using a locally optimal iterative algorithm. The matrix inequality-type characterisation of positive real functions permits the optimisation of the suspension system over an entire class of passive admittances. Torsional springs, dampers and inerters are then used to construct networks corresponding to the optimal (positive real) admittances. Networks of first, second, third and fourth orders are considered, and an argument based on the compromise between complexity and improved grip is made for the most suitable suspension configuration. Finally, the effects of improved road grip on the stability of the vehicle's lateral dynamics are analysed.
Control-matrix approach to stellarator design and control
Mynick, H.E.; Pomphrey, N.
2000-02-09
The full space Z always equal to {l{underscore}brace}Zj=1,..Nz{r{underscore}brace} of independent variables defining a stellarator configuration is large. To find attractive design points in this space, or to understand operational flexibility about a given design point, one needs insight into the topography in Z-space of the physics figures of merit Pi which characterize the machine performance, and means of determining those directions in Z-space which give one independent control over the Pi, as well as those which affect none of them, and so are available for design flexibility. The control matrix (CM) approach described here provides a mathematical means of obtaining these. In this work, the authors describe the CM approach and use it in studying some candidate Quasi-Axisymmetric (QA) stellarator configurations the NCSX design group has been considering. In the process of the analysis, a first exploration of the topography of the configuration space in the vicinity of these candidate systems has been performed, whose character is discussed.
The influence of electrospray ion source design on matrix effects.
Stahnke, Helen; Kittlaus, Stefan; Kempe, Günther; Hemmerling, Christlieb; Alder, Lutz
2012-07-01
This study investigates to which extent the design of electrospray ion sources influences the susceptibility to matrix effects (MEs) in liquid chromatography-tandem mass spectrometry (LC-MS/MS). For this purpose, MEs were measured under comparable conditions (identical sample extracts, identical LC column, same chromatographic method and always positive ion mode) on four LC-MS/MS instrument platforms. The instruments were combined with five electrospray ion sources, viz. Turbo Ion Spray, Turbo V(TM) Source, Standard ESI, Jet Stream ESI and Standard Z-Spray Source. The comparison of MEs could be made at all retention times because the method of permanent postcolumn infusion was applied. The MEs ascertained for 45 pesticides showed for each electrospray ion source the same pattern, i.e. the same number of characteristic signal suppressions at equivalent retention times in the chromatogram. The Turbo Ion Spray (off-axis geometry), Turbo V(TM) Source (orthogonal geometry) and the Standard Z-Spray Source (double orthogonal geometry) did not differ much in their susceptibility to MEs. The Jet Stream ESI (orthogonal geometry) reaches a higher sensitivity by an additional heated sheath gas, but suffers at the same time from significantly stronger signal suppressions than the comparable Standard ESI (orthogonal geometry) without sheath gas. No relation between source geometry and extent of signal suppression was found in this study.
Designing a Calibrated Full Matrix Capture Based Inspection
NASA Astrophysics Data System (ADS)
Duxbury, D.; Russell, J.; Lowe, M.
2011-06-01
Full Matrix Capture (FMC) technology is becoming increasingly attractive to industry. The development of FMC based inspection techniques is an active area of research, offering benefits in terms of defect detection and sizing and increased flexibility. However, before this technology can be fully transferred into industry there must be a method of reliably and robustly selecting the most appropriate inspection technique. A suitable calibration procedure must also be developed. A Huygens based array beam model has been developed and validated against the commercial software CIVA in a number of test cases. The model has been used as a tool to quickly allow visualisation of beams currently not supported by CIVA, or other available packages. A method of calibration is also presented that allows DAC curves to be extracted from a single scan of a calibration block for any beam type. The calibration algorithm is also used to set inspection sensitivity. This paper demonstrates through the use of a case study how a fully calibrated FMC based inspection can be designed, using the array beam model, to detect and accurately size a defect using multiple beam types.
Pattern representation in feature extraction and classifier design: matrix versus vector.
Wang, Zhe; Chen, Songcan; Liu, Jun; Zhang, Daoqiang
2008-05-01
The matrix, as an extended pattern representation to the vector, has proven to be effective in feature extraction. However, the subsequent classifier following the matrix-pattern- oriented feature extraction is generally still based on the vector pattern representation (namely, MatFE + VecCD), where it has been demonstrated that the effectiveness in classification just attributes to the matrix representation in feature extraction. This paper looks at the possibility of applying the matrix pattern representation to both feature extraction and classifier design. To this end, we propose a so-called fully matrixized approach, i.e., the matrix-pattern-oriented feature extraction followed by the matrix-pattern-oriented classifier design (MatFE + MatCD). To more comprehensively validate MatFE + MatCD, we further consider all the possible combinations of feature extraction (FE) and classifier design (CD) on the basis of patterns represented by matrix and vector respectively, i.e., MatFE + MatCD, MatFE + VecCD, just the matrix-pattern-oriented classifier design (MatCD), the vector-pattern-oriented feature extraction followed by the matrix-pattern-oriented classifier design (VecFE + MatCD), the vector-pattern-oriented feature extraction followed by the vector-pattern-oriented classifier design (VecFE + VecCD) and just the vector-pattern-oriented classifier design (VecCD). The experiments on the combinations have shown the following: 1) the designed fully matrixized approach (MatFE + MatCD) has an effective and efficient performance on those patterns with the prior structural knowledge such as images; and 2) the matrix gives us an alternative feasible pattern representation in feature extraction and classifier designs, and meanwhile provides a necessary validation for "ugly duckling" and "no free lunch" theorems.
Blade system design studies volume II : preliminary blade designs and recommended test matrix.
Griffin, Dayton A.
2004-06-01
As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.
The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire
NASA Astrophysics Data System (ADS)
Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.
2016-02-01
The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.
The design of reversible hydrogels to capture extracellular matrix dynamics
NASA Astrophysics Data System (ADS)
Rosales, Adrianne M.; Anseth, Kristi S.
2016-02-01
The extracellular matrix (ECM) is a dynamic environment that constantly provides physical and chemical cues to embedded cells. Much progress has been made in engineering hydrogels that can mimic the ECM, but hydrogel properties are, in general, static. To recapitulate the dynamic nature of the ECM, many reversible chemistries have been incorporated into hydrogels to regulate cell spreading, biochemical ligand presentation and matrix mechanics. For example, emerging trends include the use of molecular photoswitches or biomolecule hybridization to control polymer chain conformation, thereby enabling the modulation of the hydrogel between two states on demand. In addition, many non-covalent, dynamic chemical bonds have found increasing use as hydrogel crosslinkers or tethers for cell signalling molecules. These reversible chemistries will provide greater temporal control of adhered cell behaviour, and they allow for more advanced in vitro models and tissue-engineering scaffolds to direct cell fate.
Life Modeling and Design Analysis for Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
2005-01-01
The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic matrix composite (CMC) components are being designed, fabricated, and tested for a number of high temperature, high performance applications in aerospace and ground based systems. The critical need for and the role of reliable and robust databases for the design and manufacturing of ceramic matrix composites are presented. A number of issues related to engineering design, manufacturing technologies, joining, and attachment technologies, are also discussed. Examples of various ongoing activities in the area of composite databases. designing to codes and standards, and design for manufacturing are given.
Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance.
Wang, Zhenggong; Wang, Dong; Zhang, Shenxiang; Hu, Liang; Jin, Jian
2016-05-01
High-performance metal-organic framework (MOF)/polyimide (PI) mixed matrix membranes (MMMs) are fabricated by a facile strategy by designing the MOF/PI matrix interface via poly dopamine coating. The overall separation performance of the designed MMMs surpasses the state-of-the-art 2008 Robeson upper bound for the H2 /CH4 and H2 /N2 gas pairs and approaches the 2008 upper bound for the O2 /N2 gas pair. PMID:26936293
Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes
NASA Technical Reports Server (NTRS)
Boyle, Robert
2014-01-01
This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.
Resistive homogeneous MRI magnet design by matrix subset selection.
Morgan, P N; Conolly, S M; Macovski, A
1999-06-01
A new technique for designing resistive homogeneous multicoil magnets for magnetic resonance imaging (MRI) is presented. A linearly independent subset of coils is chosen from a user-defined feasible set using an efficient numerical algorithm. The coil currents are calculated using a linear least squares algorithm to minimize the deviation of the actual magnetic field from the target field. The solutions are converted to practical coils by rounding the currents to integer ratios, selecting the wire gauge, and optimizing the coil cross-sections. To illustrate the technique, a new design of a short, homogeneous MRI magnet suitable for low-field human torso imaging is presented. Magnets that satisfy other constraints on access and field uniformity can also be designed. Compared with conventional techniques that employ harmonic expansions, this technique is flexible, simple to implement, and numerically efficient.
Library designs for generic C++ sparse matrix computations of iterative methods
Pozo, R.
1996-12-31
A new library design is presented for generic sparse matrix C++ objects for use in iterative algorithms and preconditioners. This design extends previous work on C++ numerical libraries by providing a framework in which efficient algorithms can be written *independent* of the matrix layout or format. That is, rather than supporting different codes for each (element type) / (matrix format) combination, only one version of the algorithm need be maintained. This not only reduces the effort for library developers, but also simplifies the calling interface seen by library users. Furthermore, the underlying matrix library can be naturally extended to support user-defined objects, such as hierarchical block-structured matrices, or application-specific preconditioners. Utilizing optimized kernels whenever possible, the resulting performance of such framework can be shown to be competitive with optimized Fortran programs.
2013-01-01
An intuitionistic method is proposed to design shadow masks to achieve thickness profile control for evaporation coating processes. The proposed method is based on the concept of the shadow matrix, which is a matrix that contains coefficients that build quantitive relations between shape parameters of masks and shadow quantities of substrate directly. By using the shadow matrix, shape parameters of shadow masks could be derived simply by solving a matrix equation. Verification experiments were performed on a special case where coating materials have different condensation characteristics. By using the designed mask pair with complementary shapes, thickness uniformities of better than 98% are demonstrated for MgF2 (m = 1) and LaF3 (m = 0.5) simultaneously on a 280 mm diameter spherical substrate with the radius curvature of 200 mm. PMID:24227996
Design verification test matrix development for the STME thrust chamber assembly
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.
1993-01-01
This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.
NASA Technical Reports Server (NTRS)
1974-01-01
A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.
Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen
2015-01-01
In a previous Method Article, we have presented the 'Structure-Activity Relationship (SAR) Matrix' (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a "chemical space envelope" around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808
NASA Astrophysics Data System (ADS)
Atrey, M. D.; Bapat, S. L.; Narayankhedkar, K. G.
The performance of Stirling cryocooler is governed by principal designparameters. The optimum combination of these design parameters gives maximum refrigeration effect and minimum desired efforts. The performance of the cryocooler depends significantly on the regenerator functioning and the working fluids. The mesh size of the regenerator affects dead space, pressure drop, regenerator effectiveness, etc. The working fluids differ in their thermal properties and therefore affect the performance significantly, The present paper aims to study the influence of regenerator matrix and working fluids on these design parameters. The matrix material considered is Phosphor Bronze while the working fluids considered are Helium and Hydrogen.
Information Architecture for the Web: The IA Matrix Approach to Designing Children's Portals.
ERIC Educational Resources Information Center
Large, Andrew; Beheshti, Jamshid; Cole, Charles
2002-01-01
Presents a matrix that can serve as a tool for designing the information architecture of a Web portal in a logical and systematic manner. Highlights include interfaces; metaphors; navigation; interaction; information retrieval; and an example of a children's Web portal to provide access to museum information. (Author/LRW)
Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)
Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.
2015-03-01
The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.
NASA Astrophysics Data System (ADS)
Lewis, Frank L.; Huang, H. H.; Tacconi, D.; Guerel, Ayla; Pastravanu, O. C.
1995-11-01
A new matrix formulation is given that allows fast, direct design and reconfiguration of rule- based controllers for manufacturing systems. Given a bill of materials or assembly tree, Steward's sequencing matrix is constructed. Then, resources and agents are added through `resource matrices' such as those used by Kusiak, and extra inputs are added to resolve shared-resource conflicts. The result is a multiloop DE controller with outer loops for dispatching of shared resources. The matrix formulation allows a rigorous analysis of deadlock in terms of circular blockings, siphons, and the numbers of resources available; this allows efficient dispatching and routing with deadlock avoidance. An assembly task is used to illustrate the concepts introduced.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709
Tosetto, Thaís; Camarotto, João Alberto
2012-01-01
The paper presents a correlation between the parameters of classical TRIZ and variables of analysis of the EWA to construct a matrix of contradictions in ergonomics, with the objective of assisting the designing processes in the Brazilian agricultural sector. Given the representativeness of the sector in the economy, the boundary conditions in which the activities are developed and their impact on the health of workers, this proposal should contribute to the development of adaptable solutions and the promotion of Decent Work. PMID:22317547
Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System
LECHELT, J.A.
2000-10-17
The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System, Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.
Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Klapp, Iftach; Mendlovic, David
2009-07-01
The problem of image restoration of space variant blur is common and important. One of the most useful descriptions of this problem is in its algebraic form I=H*O, where O is the object represented as a column vector, I is the blur image represented as a column vector and H is the PSF matrix that represents the optical system. When inverting the problem to restore the geometric object from the blurred image and the known system matrix, restoration is limited in speed and quality by the system condition. Current optical design methods focus on image quality, therefore if additional image processing is needed the matrix condition is taken "as is". In this paper we would like to present a new optical approach which aims to improve the system condition by proper optical design. In this new method we use Singular Value Decomposition (SVD) to define the weak parts of the matrix condition. We design a second optical system based on those weak SVD parts and then we add the second system parallel to the first one. The original and second systems together work as an improved parallel optics system. Following that, we present a method for designing such a "parallel filter" for systems with a spread SVD pattern. Finally we present a study case in which by using our new method we improve a space variant image system with an initial condition number of 8.76e4, down to a condition number of 2.29e3. We use matrix inversion to simulate image restoration. Results show that the new parallel optics immunity to Additive White Gaussian Noise (AWGN) is much better then that of the original simple lens. Comparing the original and the parallel optics systems, the parallel optics system crosses the MSEIF=0 [db] limit in SNR value which is more than 50db lower then the SNR value in the case of the original simple lens. The new parallel optics system performance is also compared to another method based on the MTF approach.
Design and development of high frequency matrix phased-array ultrasonic probes
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Spencer, Roger L.
2012-05-01
High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.
Covariance Matrix Adapted Evolution Strategy Based Design of Mixed H2/H ∞ PID Controller
NASA Astrophysics Data System (ADS)
Willjuice Iruthayarajan, M.; Baskar, S.
This paper discusses the application of the covariance matrix adapted evolution strategy (CMAES) technique to the design of the mixed H2/H ∞ PID controller. The optimal robust PID controller is designed by minimizing the weighted sum of integral squared error (ISE) and balanced robust performance criterion involving robust stability and disturbance attenuation performance subjected to robust stability and disturbance attenuation constraints. In CMAES algorithm, these constraints are effectively handled by penalty parameter-less scheme. In order to test the performance of CMAES algorithm, MIMO distillation column model is considered. For the purpose of comparison, reported intelligent genetic algorithm (IGA) method is used. The statistical performances of combined ISE and balanced robust performance criterion in ten independent simulation runs show that a performance of CMAES is better than IGA method. Robustness test conducted on the system also shows that the robust performance of CMAES designed controller is better than IGA based controller under model uncertainty and external disturbances.
Singh, Inderbir; Saini, Vikrant
2016-03-01
The purpose of the present study was to prepare floating matrix tablets of clarithromycin employing simplex lattice design. Hydroxypropyl methylcellulose (HPMC) and Ethyl Cellulose (EC) were used as matrix forming agents; sodium bicarbonate and citric acid as effervescence producing agents. Simplex lattice design was used as optimization technique employing three independent formulation variables viz. concentration of HPMC (X1), Citric Acid (X2), EC (X3) whereas floating lag time, t50%, t90%, and MDT (Mean Dissolution Time) were the response (dependent) variables. Seven formulations (F1-F7) were prepared and evaluated for dissolution studies, floating characteristics, weight variation, hardness, thickness, friability.t50% of the formulations was found to be ranging from 317±2.54 to 522±2.39 minutes. The t90% and MDT of the tablets were found to be ranging between 659.65±1.89 to 967.35±1.67 minutes and 527.20±1.22 to 846.78±2.61 minutes respectively. Total floating time of the formulations was more than 12 hours and the drug content was in the range of 98.54±0.46 to 99.92±0.32. The amount of both HPMC and EC were found to play a dominating role in controlling the release of the drug from the formulation whereas ratios of sodium bicarbonate and citric acid were showing significant effect on the floating lag time. The release exponent (n) from Korsmeyer-Peppas model was found to be between 0.62 and 0.75 indicating non-Fickian or anomalous drug release behavior from the formulated floating matrix tablets. Simplex lattice design was reported to be an effective optimization technique for optimizing pharmaceutical formulations against desired responses. PMID:27087096
Madgulkar, Ashwini R.; Bhalekar, Mangesh R.; Padalkar, Rahul R.; Shaikh, Mohseen Y.
2013-01-01
The aim was to determine the release-modifying effect of carboxymethyl xyloglucan for oral drug delivery. Sustained release matrix tablets of tramadol HCl were prepared by wet granulation method using carboxymethyl xyloglucan as matrix forming polymer. HPMC K100M was used in a small amount to control the burst effect which is most commonly seen with natural hydrophilic polymers. A simplex centroid design with three independent variables and two dependent variables was employed to systematically optimize drug release profile. Carboxymethyl xyloglucan (X1), HPMC K100M (X2), and dicalcium phosphate (X3) were taken as independent variables. The dependent variables selected were percent of drug release at 2nd hour (Y1) and at 8th hour (Y2). Response surface plots were developed, and optimum formulations were selected on the basis of desirability. The formulated tablets showed anomalous release mechanism and followed matrix drug release kinetics, resulting in regulated and complete release from the tablets within 8 to 10 hours. The polymer carboxymethyl xyloglucan and HPMC K100M had significant effect on drug release from the tablet (P > 0.05). Polynomial mathematical models, generated for various response variables using multiple regression analysis, were found to be statistically significant (P > 0.05). The statistical models developed for optimization were found to be valid. PMID:26555977
Design of Cell-Matrix Interactions in Hyaluronic Acid Hydrogel Scaffolds
Segura, Tatiana
2013-01-01
The design of hyaluronic acid-based hydrogel scaffolds to elicit highly controlled and tunable cell response and behavior is a major field of interest in developing tissue engineering and regenerative medicine applications. This review will begin with an overview of the biological context of hyaluronic acid, knowledge needed to better understand how to engineer cell-matrix interactions in the scaffolds via the incorporation of different types of signals in order to direct and control cell behavior. Specifically, recent methods of incorporating various bioactive, mechanical, and spatial signals are reviewed, as well as novel hyaluronic acid modifications and crosslinking schemes with a focus on specificity. PMID:23899481
Becker, G.K.
1996-09-01
Regulatory compliance programs associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) require the collection of waste characterization data of known quality to support repository performance assessment, permitting, and associated activities. Blind audit samples, referred to as PDP (performance demonstration program) samples, are devices used in the NDA PDP program to acquire waste NDA system performance data per defined measurement routines. As defined under the current NDA PDP Program Plan, a PDP sample consists of a DOT 17C 55-gallon PDP matrix drum configured with insertable radioactive standards, working reference materials (WRMs). The particular manner in which the matrix drum and PDP standard(s) are combined is a function of the waste NDA system performance test objectives of a given cycle. The scope of this document is confined to the design of the PDP drum radioactive standard internal support structure, the matrix type and the as installed configuration. The term benign is used to designate a matrix possessing properties which are nominally non-interfering to waste NDA measurement techniques. Measurement interference sources are technique specific but include attributes such as: high matrix density, heterogeneous matrix distributions, matrix compositions containing high moderator/high Z element concentrations, etc. To the extent practicable the matrix drum design should not unduly bias one NDA modality over another due to the manner in which the matrix drum configuration manifests itself to the measurement system. To this end the PDP matrix drum configuration and composition detailed below is driven primarily by the intent to minimize the incorporation of matrix attributes known to interfere with fundamental waste NDA modalities, i.e. neutron and gamma based techniques.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2009-01-01
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed
NASA Astrophysics Data System (ADS)
Theodore, Zachary B.
A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.
Study of mould design and forming process on advanced polymer-matrix composite complex structure
NASA Astrophysics Data System (ADS)
Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.
2015-07-01
Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.
Design, analysis, and testing of a metal matrix composite web/flange intersection
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.
1992-01-01
An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.
Bannwart, Flávio C; Penelet, Guillaume; Lotton, Pierrick; Dalmont, Jean-Pierre
2013-05-01
The successful design of a thermoacoustic engine depends on the appropriate description of the processes involved inside the thermoacoustic core (TAC). This is a difficult task when considering the complexity of both the heat transfer phenomena and the geometry of the porous material wherein the thermoacoustic amplification process occurs. An attempt to getting round this difficulty consists in measuring the TAC transfer matrix under various heating conditions, the measured transfer matrices being exploited afterward into analytical models describing the complete apparatus. In this paper, a method based on impedance measurements is put forward, which allows the accurate measurement of the TAC transfer matrix, contrarily to the classical two-load method. Four different materials are tested, each one playing as the porous element allotted inside the TAC, which is submitted to different temperature gradients to promote thermoacoustic amplification. The experimental results are applied to the modeling of basic standing-wave and traveling-wave engines, allowing the prediction of the engine operating frequency and thermoacoustic amplification gain, as well as the optimum choice of the components surrounding the TAC.
Designing metallic glass matrix composites with high toughness and tensile ductility.
Hofmann, Douglas C; Suh, Jin-Yoo; Wiest, Aaron; Duan, Gang; Lind, Mary-Laura; Demetriou, Marios D; Johnson, William L
2008-02-28
The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of approximately 1 GPa, tensile ductility of approximately 2-3 per cent, and an enhanced mode I fracture toughness of K(1C) approximately 40 MPa m(1/2) were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K(1C) up to approximately 170 MPa m(1/2), and fracture energies for crack propagation as high as G(1C) approximately 340 kJ m(-2). The K(1C) and G(1C) values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials. PMID:18305540
Matrix Design: An Alternative Model for Organizing the School or Department.
ERIC Educational Resources Information Center
Salem, Philip J.; Gratz, Robert D.
1984-01-01
Explains the matrix organizational structure and describes conditions or pressures that lead an administrator to consider the matrix approach. Provides examples of how it operates in a department or school. (PD)
NASA Astrophysics Data System (ADS)
Li, Bo; Petropulu, Athina P.; Trappe, Wade
2016-09-01
Recently proposed multiple input multiple output radars based on matrix completion (MIMO-MC) employ sparse sampling to reduce the amount of data that need to be forwarded to the radar fusion center, and as such enable savings in communication power and bandwidth. This paper proposes designs that optimize the sharing of spectrum between a MIMO-MC radar and a communication system, so that the latter interferes minimally with the former. First, the communication system transmit covariance matrix is designed to minimize the effective interference power (EIP) to the radar receiver, while maintaining certain average capacity and transmit power for the communication system. Two approaches are proposed, namely a noncooperative and a cooperative approach, with the latter being applicable when the radar sampling scheme is known at the communication system. Second, a joint design of the communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves even further EIP reduction.
Kabir, Khairul; Haidar, Azzam; Tomov, Stanimire; Dongarra, Jack J
2015-01-01
The manycore paradigm shift, and the resulting change in modern computer architectures, has made the development of optimal numerical routines extremely challenging. In this work, we target the development of numerical algorithms and implementations for Xeon Phi coprocessor architecture designs. In particular, we examine and optimize the general and symmetric matrix-vector multiplication routines (gemv/symv), which are some of the most heavily used linear algebra kernels in many important engineering and physics applications. We describe a successful approach on how to address the challenges for this problem, starting with our algorithm design, performance analysis and programing model and moving to kernel optimization. Our goal, by targeting low-level and easy to understand fundamental kernels, is to develop new optimization strategies that can be effective elsewhere for use on manycore coprocessors, and to show significant performance improvements compared to existing state-of-the-art implementations. Therefore, in addition to the new optimization strategies, analysis, and optimal performance results, we finally present the significance of using these routines/strategies to accelerate higher-level numerical algorithms for the eigenvalue problem (EVP) and the singular value decomposition (SVD) that by themselves are foundational for many important applications.
Higashi, Shouichi; Hirose, Tomokazu; Takeuchi, Tomoka; Miyazaki, Kaoru
2013-03-29
Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Ki(app) = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.
SURVEY DESIGN FOR SPECTRAL ENERGY DISTRIBUTION FITTING: A FISHER MATRIX APPROACH
Acquaviva, Viviana; Gawiser, Eric; Bickerton, Steven J.; Grogin, Norman A.; Guo Yicheng; Lee, Seong-Kook
2012-04-10
The spectral energy distribution (SED) of a galaxy contains information on the galaxy's physical properties, and multi-wavelength observations are needed in order to measure these properties via SED fitting. In planning these surveys, optimization of the resources is essential. The Fisher Matrix (FM) formalism can be used to quickly determine the best possible experimental setup to achieve the desired constraints on the SED-fitting parameters. However, because it relies on the assumption of a Gaussian likelihood function, it is in general less accurate than other slower techniques that reconstruct the probability distribution function (PDF) from the direct comparison between models and data. We compare the uncertainties on SED-fitting parameters predicted by the FM to the ones obtained using the more thorough PDF-fitting techniques. We use both simulated spectra and real data, and consider a large variety of target galaxies differing in redshift, mass, age, star formation history, dust content, and wavelength coverage. We find that the uncertainties reported by the two methods agree within a factor of two in the vast majority ({approx}90%) of cases. If the age determination is uncertain, the top-hat prior in age used in PDF fitting to prevent each galaxy from being older than the universe needs to be incorporated in the FM, at least approximately, before the two methods can be properly compared. We conclude that the FM is a useful tool for astronomical survey design.
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.
2013-01-01
Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.
NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu
2011-06-01
In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
Guo, Yin; Sun, LiQun; Yang, Zheng; Liu, Zilong
2016-02-20
During this study we constructed a generalized parametric modified four-objective multipass matrix system (MMS). We used an optical system comprising four asymmetrical spherical mirrors to improve the alignment process. The use of a paraxial equation for the design of the front transfer optics yielded the initial condition for modeling our MMS. We performed a ray tracing simulation to calculate the significant aberration of the system (astigmatism). Based on the calculated meridional and sagittal focus positions, the complementary focusing mirror was easily designed to provide an output beam free of astigmatism. We have presented an example of a 108-transit multipass system (5×7 matrix arrangement) with a relatively larger numerical aperture source (xenon light source). The whole system exhibits zero theoretical geometrical loss when simulated with Zemax software. The MMS construction strategy described in this study provides an anastigmatic output beam and the generalized approach to design a controllable matrix spot pattern on the field mirrors. Asymmetrical reflective mirrors aid in aligning the whole system with high efficiency. With the generalized design strategy in terms of optics configuration and asymmetrical fabrication method in this paper, other kinds of multipass matrix system coupled with different sources and detector systems also can be achieved. PMID:26906598
NASA Astrophysics Data System (ADS)
Deng, Meng
The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were
Design and Development of Polyethylene Oxide Based Matrix Tablets for Verapamil Hydrochloride
Vidyadhara, S.; Sasidhar, R. L. C.; Nagaraju, R.
2013-01-01
In the present investigation an attempt has been made to increase therapeutic efficacy, reduced frequency of administration and improved patient compliance by developing controlled release matrix tablets of verapamil hydrochloride. Verapamil hydrochloride was formulated as oral controlled release matrix tablets by using the polyethylene oxides (Polyox WSR 303). The aim of this study was to investigate the influence of polymer level and type of fillers namely lactose (soluble filler), swellable filler (starch 1500), microcrystalline cellulose and dibasic calcium phosphate (insoluble fillers) on the release rate and mechanism of release for verapamil hydrochloride from matrix tablets prepared by direct compression process. Higher polymeric content in the matrix decreased the release rate of drug. On the other hand, replacement of lactose with anhydrous dibasic calcium phosphate and microcrystalline cellulose has significantly retarded the release rate of verapamil hydrochloride. Biopharmaceutical evaluation of satisfactory formulations were also carried out on New Zealand rabbits and parameters such as maximum plasma concentration, time to reach peak plasma concentration, area under the plasma concentration time curve(0-t) and area under first moment curve(0-t) were determined. In vivo pharmacokinetic study proves that the verapamil hydrochloride from matrix tablets showed prolonged release and were be able to sustain the therapeutic effect up to 24 h. PMID:24019567
Design and development of polyethylene oxide based matrix tablets for verapamil hydrochloride.
Vidyadhara, S; Sasidhar, R L C; Nagaraju, R
2013-03-01
In the present investigation an attempt has been made to increase therapeutic efficacy, reduced frequency of administration and improved patient compliance by developing controlled release matrix tablets of verapamil hydrochloride. Verapamil hydrochloride was formulated as oral controlled release matrix tablets by using the polyethylene oxides (Polyox WSR 303). The aim of this study was to investigate the influence of polymer level and type of fillers namely lactose (soluble filler), swellable filler (starch 1500), microcrystalline cellulose and dibasic calcium phosphate (insoluble fillers) on the release rate and mechanism of release for verapamil hydrochloride from matrix tablets prepared by direct compression process. Higher polymeric content in the matrix decreased the release rate of drug. On the other hand, replacement of lactose with anhydrous dibasic calcium phosphate and microcrystalline cellulose has significantly retarded the release rate of verapamil hydrochloride. Biopharmaceutical evaluation of satisfactory formulations were also carried out on New Zealand rabbits and parameters such as maximum plasma concentration, time to reach peak plasma concentration, area under the plasma concentration time curve(0-t) and area under first moment curve(0-t) were determined. In vivo pharmacokinetic study proves that the verapamil hydrochloride from matrix tablets showed prolonged release and were be able to sustain the therapeutic effect up to 24 h. PMID:24019567
NASA Astrophysics Data System (ADS)
Greer, James A.
2011-11-01
Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis
NASA Astrophysics Data System (ADS)
Greer, James A.
2011-11-01
Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis
Performance and Safety Tests of Lithium-Ion Cells Arranged in a Matrix Design Configuration
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith; Tracinski, Walt
2010-01-01
Matrix Packs display large variations in cell bank voltages at the charge and discharge current (C/2) used in this test program. The voltage difference is larger at the end of discharge than at the end of charge under the conditions studied. Disconnection of a cell from the pack leads to a larger voltage difference during discharge (greater than 2.0 V) between the bank that has one less cell and the other banks. Thermal profile does not show any significant changes or increase in temperature after one cell was disconnected from the bank in spite of falling to very low voltages at the end of discharge. All tests on the matrix pack with the HAM displayed lower max in general due to the placement of thermocouple on the outside of the HAM rather than on the cells. Disconnection of cells has almost no influence on the performance of the packs and does not show any abnormal thermal changes for the 100 cycles obtained in this test program. Longer cycle life may influence the performance especially if the low voltage cell goes into reversal. Overcharge leads to CID activation of cells. If the matrix configuration has a larger number of cells in series, (more than 5 S configuration), the limitations of protective devices may manifest itself irrespective of it being in a matrix configuration. External short circuit causes a fire with expulsion of content from some cells. The fire does not propagate itself laterally, but if there was cell module stacking, then the fire would cause the cells above it to also go into flames/thermal runaway. Limitations of protective devices are observed in this case as the PTCs in the cells did not protect under this abusive condition. Matrix configurations seem to provide protection against lateral propagation of fire and flame. Matrix pack configuration seems to provide good performance in spite of losing cell connections; at least for the configuration tested under this program.
NASA Astrophysics Data System (ADS)
Kozhina, T. D.; Eroshkov, V. Yu
2016-04-01
The paper highlights the methods to assign technological conditions for machining providing the required performance characteristics due to control of quality parameters of a surface layer and machining accuracy. Assignment of technological conditions for machining is performed at the design stage of technological conditions in accordance with the methods developed based on the matrix system of analysis and computation of groups of technological and operational factors.
Duncan, Neil A; Bruehlmann, Sabina B; Hunter, Christopher J; Shao, Xinxin; Kelly, Elizabeth J
2014-01-01
Designing biomaterials to mimic and function within the complex mechanobiological conditions of connective tissues requires a detailed understanding of the micromechanical environment of the cell. The objective of our study was to measure the in situ cell-matrix strains from applied tension in both tendon fascicles and cell-seeded type I collagen scaffolds using laser scanning confocal microscopy techniques. Tendon fascicles and collagen gels were fluorescently labelled to simultaneously visualise the extracellular matrix and cell nuclei under applied tensile strains of 5%. There were significant differences observed in the micromechanics at the cell-matrix scale suggesting that the type I collagen scaffold did not replicate the pattern of native tendon strains. In particular, although the overall in situ tensile strains in the matrix were quite similar (∼2.5%) between the tendon fascicles and the collagen scaffolds, there were significant differences at the cell-matrix boundary with visible shear across cell nuclei of >1 μm measured in native tendon which was not observed at all in the collagen scaffolds. Similarly, there was significant non-uniformity of intercellular strains with relative sliding observed between cell rows in tendon which again was not observed in the collagen scaffolds where the strain environment was much more uniform. If the native micromechanical environment is not replicated in biomaterial scaffolds, then the cells may receive incorrect or mixed mechanical signals which could affect their biosynthetic response to mechanical load in tissue engineering applications. This study highlights the importance of considering the microscale mechanics in the design of biomaterial scaffolds and the need to incorporate such features in computational models of connective tissues.
NASA Astrophysics Data System (ADS)
Souza, Luiz C. G.; Bigot, P.
2016-10-01
One of the most well-known techniques of optimal control is the theory of Linear Quadratic Regulator (LQR). This method was originally applied only to linear systems but has been generalized for non-linear systems: the State Dependent Riccati Equation (SDRE) technique. One of the advantages of SDRE is that the weight matrix selection is the same as in LQR. The difference is that weights are not necessarily constant: they can be state dependent. Then, it gives an additional flexibility to design the control law. Many are applications of SDRE for simulation or real time control but generally SDRE weights are chosen constant so no advantage of this flexibility is taken. This work serves to show through simulation that state dependent weights matrix can improve SDRE control performance. The system is a non-linear flexible rotatory beam. In a brief first part SDRE theory will be explained and the non-linear model detailed. Then, influence of SDRE weight matrix associated with the state Q will be analyzed to get some insight in order to assume a state dependent law. Finally, these laws are tested and compared to constant weight matrix Q. Based on simulation results; one concludes showing the benefits of using an adaptive weight Q rather than a constant one.
Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.
Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas
2016-08-16
Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment.
Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.
Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas
2016-08-16
Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment. PMID:27410200
Fabra, Mariana; Laguens, Andrés G; Demarchi, Darío A
2007-08-01
In this study we test several hypotheses about the peopling of the central territory of Argentina, archaeologically known as Sierras Centrales, by testing the association between four alternative models of the peopling of the area and cranial morphological variation through distance and matrix correlation analyses. Our results show that the ancient inhabitants of Sierras Centrales demonstrated close morphological similarities with the Patagonian and Tierra del Fuego populations. Moreover, the correlation and partial correlation analyses suggest that the peopling of the Sierras Centrales most likely took place as a migratory wave proceeding from the present area of Northeastern Argentina, and continued southward to Patagonia and Tierra del Fuego.
Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E
2015-12-01
Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.
Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E
2015-12-01
Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems. PMID:26250812
NASA Astrophysics Data System (ADS)
Poria, Suswagata; Sahoo, Prasanta; Sutradhar, Goutam
2016-09-01
The present study outlines the use of Taguchi parameter design to minimize the wear performance of Al-TiB2 metal matrix composites by optimizing tribological process parameters. Different weight percentages of micro-TiB2 powders with average sizes of 5-40 micron are incorporated into molten LM4 aluminium matrix by stir casting method. The wear performance of Al-TiB2 composites is evaluated in a block-on-roller type Multitribo tester at room temperature. Three parameters viz. weight percentage of TiB2, load and speed are considered with three levels each at the time of experiment. A L27 orthogonal array is used to carry out experiments accommodating all the factors and their levels including their interaction effects. Optimal combination of parameters for wear performance is obtained by Taguchi analysis. Analysis of variance (ANOVA) is used to find out percentage contribution of each parameter and their interaction also on wear performance. Weight percentage of TiB2 is forced to be the most effective parameter in controlling wear behaviour of Al-TiB2 metal matrix composite.
Jatav, Vijay Singh; Saggu, Jitender Singh; Sharma, Ashish Kumar; Sharma, Anil; Jat, Rakesh Kumar
2013-01-01
Background: Nebivolol hydrochloride is a third generation β-blocker with highly selective β1-receptor antagonist with antihypertensive properties having plasma half life of 10 h and 12% oral bioavailability. The aim of the present investigation was to form matrix type transdermal patches containing Nebivolol hydrochloride to avoid its extensive hepatic first pass metabolism, lesser side effect and increase bioavailability of drug. Materials and Methods: Matrix type transdermal patches containing Nebivolol hydrochloride were prepared using EudragitRS100, HPMC K100M (2:8) polymers by solvent evaporation technique. Aluminum foil was used as a backing membrane. Polyethylene glycol (PEG) 400 was used as plasticizer and Dimethyl sulfoxide (DMSO) was used as a penetration enhancer. Drug polymer interactions determined by FTIR and standard calibration curve of Nebivolol hydrochloride were determined by using UV estimation. Result: The systems were evaluated physicochemical parameters and drug present in the patches was determined by scanning electron microscopy. All prepared formulations indicated good physical stability. In vitro drug permeation studies of formulations were performed by using Franz diffusion cells using abdomen skin of Wistar albino rat. Result showed best in vitro skin permeation through rat skin as compared to all other formulations prepared with hydrophilic polymer containing permeation enhancer. Conclusions: It was observed that the formulation containing HPMC: EudragitRS100 (8:2) showed ideal higuchi release kinetics. On the basis of in vitro drug release through skin permeation performance, Formulation F1 was found to be better than other formulations and it was selected as the optimized formulation. PMID:24223377
Al-Zein, Hind; Sakeer, Khalil; Alanazi, Fars K.
2011-01-01
Aim The current study aimed to prepare a sustained release tablet for a drug which has poor solubility in alkaline medium using complexation with cyclodextrin. Nicardipine hydrochloride (NC) a weak basic drug was chosen as a model drug for this study. Method Firstly the most suitable binary system NC-HPβCD was selected in order to improve drug solubility in the intestinal media and then embedding the complexed drug into a plastic matrix, by fusion method, consists of glycerol monostearate (GMS) as an inert waxy substance and polyethylene glycol 4000 (PEG4000) as a channeling agent, after that the final solid dispersion [(NC:HPβCD):GMS:PEG4000] which was prepared at different ratios was mixed with other excipients, avicel PH101, lactose, and talc, to get a tablet owning dissolution profile complying with the FDA and USP requirements for the extended release solid dosage forms. Results Infrared spectroscopy (IR), differential scanning colorimetry (DSC), polarized microscopy and X-ray diffractometry proved that the coevaporation technique was effective in preparing amorphous cyclodextrin complexes with NC and trapping of NC within the HPβCD cavity by dissolving both in ethanol and evaporate the solvent using a rotavapor at 65 °C. Dissolution profile of NC enhanced significantly in pH 6.8 from NC:HPβCD inclusion complex prepared by the rotavapor (t-test Student p < 0.05). The release of NC from tablet containing [(NC:HPβCD):GMS:PEG4000] [(1):0.75:0.5] (w/w/w) solid dispersion (F8) was complying with the FDA dissolution requirements for extended release dosage forms, and studying the kinetics of the release showed that the diffusional contribution is the major factor controlling the drug release from that formula. Conclusion The prepared waxy matrix tablet containing NC complexes with CD shows promising results as extended release tablets. PMID:23960765
NASA Astrophysics Data System (ADS)
Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng
2014-05-01
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
Hamza, Yassin El-Said; Aburahma, Mona Hassan
2010-01-01
The short half-life of lornoxicam, a potent non-steroidal anti-inflammatory drug, makes the development of sustained-release (SR) forms extremely advantageous. However, due to its weak acidic nature, its release from SR delivery systems is limited to the lower gastrointestinal tract which consequently leads to a delayed onset of its analgesic action. Accordingly, the aim of this study was to develop lornoxicam SR matrix tablets that provide complete drug release that starts in the stomach to rapidly alleviate the painful symptoms and continues in the intestine to maintain protracted analgesic effect as well as meets the reported SR specifications. The proposed strategy was based on preparing directly compressed hydroxypropylmethylcellulose matrix tablets to sustain lornoxicam release. Basic pH-modifiers, either sodium bicarbonate or magnesium oxide, were incorporated into these matrix tablets to create basic micro-environmental pH inside the tablets favorable to drug release in acidic conditions. All the prepared matrix tablets containing basic pH-modifiers showed acceptable physical properties before and after storage. Release studies, performed in simulated gastric and intestinal fluids used in sequence to mimic the GI transit, demonstrate the possibility of sustaining lornoxicam release by combining hydrophilic matrix formers and basic pH-Modifiers to prepare tablets that meet the reported sustained-release specifications. PMID:19895367
ERIC Educational Resources Information Center
Tsai, Kuan Chen
2016-01-01
The purpose of the present study is to explore to what extent the use of a more structured mode of assessing creative products--specifically, the CPAM--could beneficially influence design students' product creativity and creative processes. For this qualitative inquiry, following our CPAM-based intervention, students wrote reflective papers in…
Cilurzo, Francesco; Minghetti, Paola; Pagani, Stefania; Casiraghi, Antonella; Montanari, Luisa
2008-01-01
The main issue in the development of transdermal patches made of poly(ethyl acrylate, methyl methacrylate) (Eudragit NE 40D, PMM) is the shrinkage phenomenon during the spreading of the latex onto the release liner. To solve this problem, the latex is usually freeze-dried and then re-dissolved in an organic solvent (method 1). To simplify the production process, we prepared an adhesive matrix by adding to the commercial PMM latex a plasticizer and an additive (anti-shrinkage agent) that avoids the shrinkage of the water dispersion spread onto the release liner (method 2). In some cases the active ingredient itself, such as potassium diclofenac (DK) and nicotine (NT), works as anti-shrinkage agent. In this work, the effects of the preparation method, types and concentrations of the plasticizer (triacetin and tributyl citrate) on the adhesive properties of the transdermal patches were investigated. The adhesive properties of the prepared patch were determined by texture analysis, peel adhesion test and shear adhesion. The PMM/plasticizer interactions were evaluated by ATR-FTIR spectroscopy. Furthermore, the in vitro skin permeation profiles of DK and NT released from the patch were determined by Franz cell method. Generally speaking, the variables that mainly modify the adhesive properties are the concentration and type of the plasticizer. The skin permeation profiles of DK and NT from the patch prepared by method 2 overlapped with those obtained with the commercial products. The results underline that the PMM latex can be used conveniently in the development of transdermal patches. PMID:18563579
NASA Astrophysics Data System (ADS)
Heilshorn, Sarah
Synthetic small-diameter vascular grafts often fail within three years of implantation. The underlying causes of graft failure are thought to be (i) a mismatch in the mechanical properties between the graft and host material and (ii) an inability of the graft to support the adhesion of endothelial cells. To address these two issues, artificial extracellular matrix (aECM) proteins contain elastin-like regions to provide physical integrity and cell-binding domains derived from fibronectin to promote endothelial cell attachment. Using recombinant protein technology, a family of artificial proteins was created with differing ratios of elastin-like regions to cell-binding domains, with variable placement of amino acid crosslinking residues, and with differing identity of cell-binding domain. Human umbilical vein endothelial cells (HUVEC) adhere in a sequence-specific manner to aECM proteins, secrete basal levels of key fibrinolytic regulators, and are capable of resisting a physiologically relevant detachment force. HUVEC spread more quickly and adhere more firmly to aECM proteins that contain the RGD versus the CS5 cell-binding domain. Decreasing the density of RGD cell-binding domains results in decreased HUVEC adhesion. Furthermore, amino acid selection even at sites up to 16 residues away from the cell-binding domain impacts HUVEC spreading and adhesion. HUVEC also adhere more strongly to stiffer aECM films. Therefore, the identity, density, and context of the cell-binding domain as well as the elastic modulus of the substrate are all important variables in influencing cell-substrate interactions. Proper amino acid sequence choice also influences the susceptibility of aECM proteins to elastase proteolysis; modifying 3% of the amino acid side chains results in a 7-fold reduction in degradation rate. An alternative strategy to decrease degradation involves incorporation of the noncanonical amino acid, 5,5,5-trifluoroisoleucine, into the favored proteolytic cut site
NASA Technical Reports Server (NTRS)
Crivello, James V.
2000-01-01
Several new series of novel, high reactivity epoxy resins are described which are designed specifically for the fabrication of high performance carbon fiber reinforced composites for commercial aircraft structural applications using cationic UV and e-beam curing. The objective of this investigation is to provide resin matrices which rapidly and efficiently cure under low e-beam doses which are suitable to high speed automated composite fabrication techniques such as automated tape and tow placement. It was further the objective of this work to provide resins with superior thermal, oxidative and atomic oxygen resistance.
The design and testing of a dual fiber textile matrix for accelerating surface hemostasis.
Fischer, Thomas H; Vournakis, John N; Manning, James E; McCurdy, Shane L; Rich, Preston B; Nichols, Timothy C; Scull, Christopher M; McCord, Marian G; Decorta, Joseph A; Johnson, Peter C; Smith, Carr J
2009-10-01
The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.
2010-11-01
A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.
Low, Pearlie S J; Tjin, Monica S; Fong, Eileen
2015-06-11
Recombinant technology is a versatile platform to create novel artificial proteins with tunable properties. For the last decade, many artificial proteins that have incorporated functional domains derived from nature (or created de novo) have been reported. In particular, artificial extracellular matrix (aECM) proteins have been developed; these aECM proteins consist of biological domains taken from fibronectin, laminins and collagens and are combined with structural domains including elastin-like repeats, silk and collagen repeats. To date, aECM proteins have been widely investigated for applications in tissue engineering and wound repair. Recently, Tjin and coworkers developed integrin-specific aECM proteins designed for promoting human skin keratinocyte attachment and propagation. In their work, the aECM proteins incorporate cell binding domains taken from fibronectin, laminin-5 and collagen IV, as well as flanking elastin-like repeats. They demonstrated that the aECM proteins developed in their work were promising candidates for use as substrates in artificial skin. Here, we outline the design and construction of such aECM proteins as well as their purification process using the thermo-responsive characteristics of elastin.
Fuin, Niccolo; Pedemonte, Stefano; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F
2014-03-01
System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant
Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca
2016-09-01
Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties.
Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca
2016-09-01
Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. PMID:27219851
Di Bucchianico, Giuseppe; Camplone, Stefania; Picciani, Stefano; Vallese, Valeria
2012-01-01
The widespread sense of spatial disorientation that can be experienced in many public places (buildings and open spaces),generally depends on a design approach that doesn't take into account both the "communication skills" of the different parts of the spatial organization, both the variability of people and their ways of interacting with environments, orienteering themselves. Nevertheless, "not find the way" often has some obvious practical costs (loss of time, failure to achieve a target) and some more intangible, but no less important, emotional costs. That's why the design of signage systems must take into account both the specificities of places and the extreme variability of its users. The paper presents the results of a study on this specific issue. In particular, the study focuses on the description of some tools useful for the analysis and design of a signage system that is truly "for All".
NASA Astrophysics Data System (ADS)
Jayaraman, Arthi; Nair, Nitish
2011-03-01
Significant interest has grown around the ability to create hybrid materials with controlled spatial arrangement of nanoparticles mediated by a polymer matrix. By functionalizing or grafting polymers on to nanoparticle surfaces and systematically tuning the composition, chemistry, molecular weight and grafting density of the grafted polymers one can tailor the inter-particle interactions and control the assembly/dispersion of the particles in the polymer matrix. In our recent work using self-consistent Polymer Reference Interaction Site Model (PRISM) theory- Monte Carlo simulations we have shown that tailoring the monomer sequences in the grafted copolymers provides a novel route to tuning the effective inter-particle interactions between the functionalized nanoparticles in a polymer matrix. In this talk I will present how monomer sequence and molecular weights (with and without polydispersity) of the grafted polymers, compatibility of the graft and matrix polymers, and nanoparticle size affect the chain conformations of the grafted polymers and the potential of mean force between the grafted nanoparticles in the matrix.
NASA Technical Reports Server (NTRS)
Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.
NASA Astrophysics Data System (ADS)
Wanasekara, Nandula; Stone, David; Wnek, Gary; Korley, Lashanda
2013-03-01
A new class of all-organic, stimuli-responsive and mechanically-adaptive electrospun nanocomposites, which have the ability to alter their stiffness upon hydration, were developed. These materials were fabricated by incorporating an electrospun mat of poly(vinyl alcohol) (PVA) as the filler in a polymeric matrix consisting of either poly(vinyl acetate) (PVAc) or ethylene oxide-epicholorohydrin copolymer (EO-EPI). The incorporation of high stiffness, high aspect ratio PVA filler mat significantly enhanced the tensile storage modulus of EO-EPI based composites, while modulus enhancement was only noticed above the glass transition for PVAc-based composites. Composite materials based on a rubbery EO-EPI host polymer and PVA filler exhibit an irreversible reduction by a factor of 12 of the tensile modulus upon hydration. In contrast, composites comprised of PVAc show a reversible reduction of modulus by a factor of 280 upon water uptake. The mechanical morphing of the electrospun composites is the result of the filler crystallinity, and matrix-filler interactions facilitated by the surface hydroxyl groups of the PVA filler. The choice of polymer matrix and electrospun nanofiber fillers allow control of matrix-filler interactions in a new series of all-organic composites to achieve desired stimuli-responsiveness and mechanical-adaptability upon exposure to various stimuli.
A new sample chamber was developed that can be used in the measurement of the effects of moisture on the room-temperature solid-matrix phosphorescence of phosphors adsorbed onto filter paper. The sample chamber consists of a sealed quartz cell that contains a special teflon sampl...
Kosik, Ivan; Raess, Avery
2015-01-01
Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177
Patel, Dm; Patel, Bk; Patel, Ha; Patel, Cn
2011-07-01
The objective of the present study was to evaluate the effect of sintering condition on matrix formation and subsequent drug release from polymer matrix tablet for controlled release. The present study highlights the use of a microwave oven for the sintering process in order to achieve more uniform heat distribution with reduction in time required for sintering. We could achieve effective sintering within 8 min which is very less compared to conventional hot air oven sintering. The tablets containing the drug (propranolol hydrochloride) and sintering polymer (eudragit S-100) were prepared and kept in a microwave oven at 540 watt, 720 watt and 900 watt power for different time periods for sintering. The sintered tablets were evaluated for various tablet characteristics including dissolution study. Tablets sintered at 900 watt power for 8 min gave better dissolution profile compared to others. We conclude that microwave oven sintering is better than conventional hot air oven sintering process in preparation of controlled release tablets. PMID:21897655
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung
2014-01-01
For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.
NASA Astrophysics Data System (ADS)
1982-02-01
A matrix representation of the ion optics of the analyzing stage has been used in a computer model of a tandem mass spectrometer with simultaneous detection for CAD. The matrix algorithm of this model is discussed here as an elegant way of describing the ion optics in a first-order approximation. The accuracy of the calculations is illustrated by comparing calculated and measured adjustments of the instrument under normal experiment conditions. The ion-optical possibilities with respect to transmission, mass resolution influence of several ion optical parameters on the shape and position of the mass focal plane is discussed. The experimental values of mass range, mass resolution and ion transmission agree very well with the calculations. Moreover, the computer model appears to be a useful tool for giving clear insight into the operation of the rather complex ion optics of the instrument. The calculations have been further developed towards higher accuracy, making possible automatic focusing of the mass focal plane onto the detector.
Scarano, S; Dausse, E; Crispo, F; Toulmé, J-J; Minunni, M
2015-10-15
MMP-9, human matrix metalloproteinase 9, belongs to the family of zinc-dependent peptide-bond hydrolases and is involved in the degradation of the extracellular matrix (ECM). In clinics, it is well known that elevated MMP-9 serum levels are associated with cardiovascular dysfunctions, several aspects of the physiology and pathology of the central nervous system, neuropsychiatric disorders and degenerative diseases related to brain tumors, and excitotoxic/neuroinflammatory processes. Due to the large interest of diagnostics in this protein, efforts to set up sensitive methods to detect MMP-9 for early diagnosis of a number of metabolic alterations are rapidly increasing. In this panorama, biosensors could play a key role; therefore we explored for the first time the development of an aptamer-based piezoelectric biosensor for a sensitive, label free, and real time detection of MMP-9. The detecting strategy involved two different aptamers in a sandwich-like approach able to detect down to 100 pg mL(-1) (1.2 pM) of MMP-9 as detection limit in standard solution. As proof of principle, commercial serum was investigated in terms of possible interferents, their identification and role in MMP-9 detection. The estimated detection limit for MMP-9 is about 560 pg mL(-1) (6.8 pM) in untreated serum.
Ulu, Ahmet; Koytepe, Suleyman; Ates, Burhan
2016-11-20
We prepared biodegradable P(MAA-co-MMA)-starch composite as carrier matrix for the immobilization of l-asparaginase (l-ASNase), an important chemotherapeutic agent in acute lymphoblastic leukemia. Chemical characteristics and thermal stability of the prepared composites were determined by FT-IR, TGA, DTA and, DSC, respectively. Also, biodegradability measurements of P(MAA-co-MMA)-starch composites were carried out to examine the effects of degradation of the starch. Then, l-ASNase was immobilized on the P(MAA-co-MMA)-starch composites. The surface morphology of the composite before and after immobilization was characterized by SEM, EDX, and AFM. The properties of the immobilized l-ASNase were investigated and compared with the free enzyme. The immobilized l-ASNase had better showed thermal and pH stability, and remained stable after 30days of storage at 25°C. Thus, based on the findings of the present work, the P(MAA-co-MMA)-starch composite can be exploited as the biocompatible matrix used for l-ASNase immobilization for medical applications due to biocompatibility and biodegradability. PMID:27561529
Nelson, Clarke; Khan, Yusuf; Laurencin, Cato T.
2014-01-01
Bone is an essential organ for health and quality of life. Due to current shortfalls in therapy for bone tissue engineering, scientists have sought the application of synthetic materials as bone graft substitutes. As a composite organic/inorganic material with significant extra cellular matrix (ECM), one way to improve bone graft substitutes may be to engineer a synthetic matrix that is influenced by the physical appearance of natural ECM networks. In this work, the authors evaluate composite, hybrid scaffolds for bone tissue engineering based on composite ceramic/polymer microsphere scaffolds with synthetic ECM-mimetic networks in their pore spaces. Using thermally induced phase separation, nanoscale fibers were deposited in the pore spaces of structurally sound microsphere-based scaffold with a density proportionate to the initial polymer concentration. Porosimetry and mechanical testing indicated no significant changes in overall pore characteristics or mechanical integrity as a result of the fiber deposition process. These scaffolds displayed adequate mechanical integrity on the scale of human trabecular bone and supported the adhesion and proliferation of cultured mouse calvarial osteoblasts. Drawing from natural cues, these scaffolds may represent a new avenue forward for advanced bone tissue engineering scaffolds. PMID:26816620
Design and in vitro/in vivo evaluation of extended release matrix tablets of nateglinide
Sharma, Pushkar R.; Lewis, Shaila A.
2013-01-01
Aim Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. PMID:24563597
Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero
2015-06-15
This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering.
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M; Beretvas, S Natasha; Van den Noortgate, Wim
2014-09-01
The quantitative methods for analyzing single-subject experimental data have expanded during the last decade, including the use of regression models to statistically analyze the data, but still a lot of questions remain. One question is how to specify predictors in a regression model to account for the specifics of the design and estimate the effect size of interest. These quantitative effect sizes are used in retrospective analyses and allow synthesis of single-subject experimental study results which is informative for evidence-based decision making, research and theory building, and policy discussions. We discuss different design matrices that can be used for the most common single-subject experimental designs (SSEDs), namely, the multiple-baseline designs, reversal designs, and alternating treatment designs, and provide empirical illustrations. The purpose of this article is to guide single-subject experimental data analysts interested in analyzing and meta-analyzing SSED data.
Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero
2015-06-15
This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering. PMID:25778738
NASA Technical Reports Server (NTRS)
Whitacre, J.; West, W. C.; Mojarradi, M.; Sukumar, V.; Hess, H.; Li, H.; Buck, K.; Cox, D.; Alahmad, M.; Zghoul, F. N.; Jackson, J.; Terry, S.; Blalock, B.
2003-01-01
This paper presents a design approach to help attain any random grouping pattern between the microbatteries. In this case, the result is an ability to charge microbatteries in parallel and to discharge microbatteries in parallel or pairs of microbatteries in series.
2012-01-01
Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy. PMID:22747956
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Antonuk, Larry E.; Zhao Qihua; El-Mohri, Youcef; Du Hong; Wang Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William
2009-07-15
Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and/or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 {mu}m. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 {mu}m pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of {approx}80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 {mu}m pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or
Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William
2009-01-01
Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous
Design of driving circuit for 64 × 64 dot matrix nano-diamond coating field emission display
NASA Astrophysics Data System (ADS)
Yang, Yanning; Li, Weixia; Liu, Qiaoping; Dong, Juntang; Zhang, Fuchun; Zhang, Weihu
2014-07-01
In order to solve the problem of high voltage driving of nano-diamond coating field emission display, a driving circuit with gray-scale modulation and high-low voltage conversion is designed. Hardware circuits are based on assembled data driving chips of HV632PG and HV5308, which form the framework of gray-scale modulation and scanning display circuit; as well as, the framework of before and after low-level high-low voltage isolated and converted circuit is assembled based on half-bridge driving chip IR2235. Test the whole characteristics of software and hardware circuits, the dynamic display of simple image and character is realized on the screen of LED, which lays a certain foundation of theory and experiment for developing the application of nano-diamond coating FED of large screen.
NASA Astrophysics Data System (ADS)
Lopes, D. F.; Oliveira, M. D.; Costa, C. A. Bana e.
2015-05-01
Risk matrices (RMs) are commonly used to evaluate health and safety risks. Nonetheless, they violate some theoretical principles that compromise their feasibility and use. This study describes how multiple criteria decision analysis methods have been used to improve the design and the deployment of RMs to evaluate health and safety risks at the Occupational Health and Safety Unit (OHSU) of the Regional Health Administration of Lisbon and Tagus Valley. ‘Value risk-matrices’ (VRMs) are built with the MACBETH approach in four modelling steps: a) structuring risk impacts, involving the construction of descriptors of impact that link risk events with health impacts and are informed by scientific evidence; b) generating a value measurement scale of risk impacts, by applying the MACBETH-Choquet procedure; c) building a system for eliciting subjective probabilities that makes use of a numerical probability scale that was constructed with MACBETH qualitative judgments on likelihood; d) and defining a classification colouring scheme for the VRM. A VRM built with OHSU members was implemented in a decision support system which will be used by OHSU members to evaluate health and safety risks and to identify risk mitigation actions.
2004-12-31
Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.
Orbe, Josune; Sánchez-Arias, Juan A; Rabal, Obdulia; Rodríguez, José A; Salicio, Agustina; Ugarte, Ana; Belzunce, Miriam; Xu, Musheng; Wu, Wei; Tan, Haizhong; Ma, Hongyu; Páramo, José A; Oyarzabal, Julen
2015-03-12
Growing evidence suggests that matrix metalloproteinases (MMP) are involved in thrombus dissolution; then, considering that new therapeutic strategies are required for controlling hemorrhage, we hypothesized that MMP inhibition may reduce bleeding by delaying fibrinolysis. Thus, we designed and synthesized a novel series of MMP inhibitors to identify potential candidates for acute treatment of bleeding. Structure-based and knowledge-based strategies were utilized to design this novel chemical series, α-spiropiperidine hydroxamates, of potent and soluble (>75 μg/mL) pan-MMP inhibitors. The initial hit, 12, was progressed to an optimal lead 19d. Racemic 19d showed a remarkable in vitro phenotypic response and outstanding in vivo efficacy; in fact, the mouse bleeding time at 1 mg/kg was 0.85 min compared to 29.28 min using saline. In addition, 19d displayed an optimal ADME and safety profile (e.g., no thrombus formation). Its corresponding enantiomers were separated, leading to the preclinical candidate 5 (described in Drug Annotations series, J. Med. Chem. 2015, ). PMID:25686153
Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L
2011-02-01
Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.
2004-01-01
Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.
Sanches, Livia Rentas; Seulin, Saskia Carolina; Leyton, Vilma; Paranhos, Beatriz Aparecida Passos Bismara; Pasqualucci, Carlos Augusto; Muñoz, Daniel Romero; Osselton, Michael David; Yonamine, Mauricio
2012-04-01
Undoubtedly, whole blood and vitreous humor have been biological samples of great importance in forensic toxicology. The determination of opiates and their metabolites has been essential for better interpretation of toxicological findings. This report describes the application of experimental design and response surface methodology to optimize conditions for enzymatic hydrolysis of morphine-3-glucuronide and morphine-6-glucuronide. The analytes (free morphine, 6-acetylmorphine and codeine) were extracted from the samples using solid-phase extraction on mixed-mode cartridges, followed by derivatization to their trimethylsilyl derivatives. The extracts were analysed by gas chromatography-mass spectrometry with electron ionization and full scan mode. The method was validated for both specimens (whole blood and vitreous humor). A significant matrix effect was found by applying the F-test. Different recovery values were also found (82% on average for whole blood and 100% on average for vitreous humor). The calibration curves were linear for all analytes in the concentration range of 10-1,500 ng/mL. The limits of detection ranged from 2.0 to 5.0 ng/mL. The method was applied to a case in which a victim presented with a previous history of opiate use.
Boti, Vasiliki I; Sakkas, Vasilios A; Albanis, Triantafyllos A
2009-02-27
Matrix solid-phase dispersion (MSPD) as a sample preparation method for the determination of two potential endocrine disruptors, linuron and diuron and their common metabolites, 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU), 1-(3,4-dichlorophenyl) urea (DCPU) and 3,4-dichloroaniline (3,4-DCA) in food commodities has been developed. The influence of the main factors on the extraction process yield was thoroughly evaluated. For that purpose, a 3 fractional factorial design in further combination with artificial neural networks (ANNs) was employed. The optimal networks found were afterwards used to identify the optimum region corresponding to the highest average recovery displaying at the same time the lowest standard deviation for all analytes. Under final optimal conditions, potato samples (0.5 g) were mixed and dispersed on the same amount of Florisil. The blend was transferred on a polypropylene cartridge and analytes were eluted using 10 ml of methanol. The extract was concentrated to 50 microl of acetonitrile/water (50:50) and injected in a high performance liquid chromatography coupled to UV-diode array detector system (HPLC/UV-DAD). Recoveries ranging from 55 to 96% and quantification limits between 5.3 and 15.2 ng/g were achieved. The method was also applied to other selected food commodities such as apple, carrot, cereals/wheat flour and orange juice demonstrating very good overall performance.
Haffar, Omar; Dubrovsky, Larisa; Lowe, Richard; Berro, Reem; Kashanchi, Fatah; Godden, Jeffrey; Vanpouille, Christophe; Bajorath, Jürgen; Bukrinsky, Michael
2005-01-01
Despite recent progress in anti-human immunodeficiency virus (HIV) therapy, drug toxicity and emergence of drug-resistant isolates during long-term treatment of HIV-infected patients necessitate the search for new targets that can be used to develop novel antiviral agents. One such target is the process of nuclear translocation of the HIV preintegration complex. Previously we described a class of arylene bis(methylketone) compounds that inhibit HIV-1 nuclear import by targeting the nuclear localization signal (NLS) in the matrix protein (MA). Here we report a different class of MA NLS-targeting compounds that was selected using computer-assisted drug design. The leading compound from this group, ITI-367, showed potent anti-HIV activity in cultures of T lymphocytes and macrophages and also inhibited HIV-1 replication in ex vivo cultured lymphoid tissue. The virus carrying inactivating mutations in MA NLS was resistant to ITI-367. Analysis by real-time PCR demonstrated that the compound specifically inhibited nuclear import of viral DNA, measured by two-long terminal repeat circle formation. Evidence of the existence of this mechanism was provided by immunofluorescent microscopy, using fluorescently labeled HIV-1, which demonstrated retention of the viral DNA in the cytoplasm of drug-treated macrophages. Compounds inhibiting HIV-1 nuclear import may be attractive candidates for further development. PMID:16189005
Barry, Jeremy A; Muddiman, David C
2011-12-15
Design of experiments (DOE) is a systematic and cost-effective approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response can be measured in few experiments. Herein, we describe the use of statistical DOE to improve a few of the analytical figures of merit of the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for mass spectrometry. In a typical experiment, bovine cytochrome c was ionized via electrospray, and equine cytochrome c was desorbed and ionized by IR-MALDESI such that the ratio of equine:bovine was used as a measure of the ionization efficiency of IR-MALDESI. This response was used to rank the importance of seven source parameters including flow rate, laser fluence, laser repetition rate, ESI emitter to mass spectrometer inlet distance, sample stage height, sample plate voltage, and the sample to mass spectrometer inlet distance. A screening fractional factorial DOE was conducted to designate which of the seven parameters induced the greatest amount of change in the response. These important parameters (flow rate, stage height, sample to mass spectrometer inlet distance, and laser fluence) were then studied at higher resolution using a full factorial DOE to obtain the globally optimized combination of parameter settings. The optimum combination of settings was then compared with our previously determined settings to quantify the degree of improvement in detection limit. The limit of detection for the optimized conditions was approximately 10 attomoles compared with 100 femtomoles for the previous settings, which corresponds to a four orders of magnitude improvement in the detection limit of equine cytochrome c.
Performance Appraisal for Matrix Management.
ERIC Educational Resources Information Center
Edwards, M. R.; Sproull, J. Ruth
1985-01-01
A matrix management system designed for use by a highly technical nuclear weapons research and development facility to improve productivity and flexibility by the use of multiple authority, responsibility, and accountability relationships is described. (MSE)
Shekhar, R.; Karunasagar, D.; Ranjit, M.; Arunachalam, J.
2009-10-15
An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL{sup -1}. At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 {mu} L of 200 ng mL{sup -1} mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury.
Shekhar, R; Karunasagar, D; Ranjit, Manjusha; Arunachalam, J
2009-10-01
An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL(-1). At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 microL of 200 ng mL(-1) mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury. PMID:19715301
Matrix market: a web resource for test matrix collection
Boisvert, R.F.; Pozo, R.; Remington, K.; Barrett, R.F.; Dongarra, J.J. /
1996-05-30
We describe a repository of data for the testing of numerical algorithms and mathematical software for matrix computations. The repository is designed to accommodate both dense and sparse matrices, as well as software to generate matrices. It has been seeded with the well known Harwell-Boeing sparse matrix collection. The raw data files have been augmented with an integrated World Wide Web interface which describes the matrices in the collection quantitatively and visually, For example, each matrix has a Web page which details its attributes, graphically depicts its sparsity pattern, and provides access to the matrix itself in several formats. In addition, a search mechanism is included which allows retrieval of matrices based on a variety of attributes, such as type and size, as well as through free-text search in abstracts. The URL is http://math.nist.gov/MatrixMarket.
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.
1988-01-01
A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).
Oriented Matrix Promotes Directional Tubulogenesis
Soucy, Patricia A.; Hoh, Maria; Heinz, Will; Hoh, Jan; Romer, Lewis
2014-01-01
Detailed control over the structural organization of scaffolds and engineered tissue constructs is a critical need in the quest to engineer functional tissues using biomaterials. This work presents a new approach to the spatial direction of endothelial tubulogenesis. Micropatterned fibronectin substrates were used to control lung fibroblast adhesion and growth and the subsequent deposition of fibroblast-derived matrix during culture. The fibroblast-derived matrix produced on the micropatterned substrates was tightly oriented by these patterns, with an average variation of only 8.5°. Further, regions of this oriented extracellular matrix provided directional control of developing endothelial tubes to within 10° of the original micropatterned substrate design. Endothelial cells seeded directly onto the micropatterned substrate did not form tubes. A metric for matrix anisotropy showed a relationship between the fibroblast-derived matrix and the endothelial tubes that were subsequently developed on the same micropatterns with a resulting aspect ratio over 1.5 for endothelial tubulogenesis. Micropatterns in “L” and “Y” shapes were used to direct endothelial tubes to turn and branch with the same level of precision. These data demonstrate that anisotropic fibroblast-derived matrices instruct the alignment and shape of endothelial tube networks, thereby introducing an approach that could be adapted for future design of microvascular implants featuring organ-specific natural matrix that patterns microvascular growth. PMID:25219769
Hybrid matrix fiber composites
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2003-07-15
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.
1972-01-01
The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.
The Community Mental Health Center as a Matrix Organization.
ERIC Educational Resources Information Center
White, Stephen L.
1978-01-01
This article briefly reviews the literature on matrix organizational designs and discusses the ways in which the matrix design might be applied to the special features of a community mental health center. The phases of one community mental health center's experience in adopting a matrix organizational structure are described. (Author)
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid
2015-02-01
In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.
NASA Astrophysics Data System (ADS)
Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid
2015-02-01
In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.
Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid
2015-02-01
In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse. PMID:25725890
NASA Astrophysics Data System (ADS)
Mason, A. J.
Multichannel sound systems are being studied as part of the Eureka 95 and Radio-communication Bureau TG10-1 investigations into high definition television. One emerging sound system has five channels; three at the front and two at the back. This raises some compatibility issues. The listener might have only, say, two loudspeakers or the material to be broadcast may have fewer than five channels. The problem is how best to produce a set of signals to be broadcast, which is suitable for all listeners, from those that are available. To investigate this area, a device has been designed and built which has six input channels and six output channels. Each output signal is a linear combination of the input signals. The inputs and outputs are in AES/EBU digital audio format using BBC-designed AESIC chips. The matrix operation, to produce the six outputs from the six inputs, is performed by a Motorola DSP56001. The user interface and 'housekeeping' is managed by a T222 transputer. The operator of the matrix uses a VDU to enter sets of coefficients and a rotary switch to select which set to use. A set of analog controls is also available and is used to control operations other than the simple compatibility matrixing. The matrix has been very useful for simple tasks: mixing a stereo signal into mono, creating a stereo signal from a mono signal, applying a fixed gain or attenuation to a signal, exchanging the A and B channels of an AES/EBU bitstream, and so on. These are readily achieved using simple sets of coefficients. Additions to the user interface software have led to several more sophisticated applications which still consist of a matrix operation. Different multichannel panning laws have been evaluated. The analog controls adjust the panning; the audio signals are processed digitally using a matrix operation. A digital SoundField microphone decoder has also been implemented.
Shekhter, Anatoly B; Rudenko, Tatyana G; Istranov, Leonid P; Guller, Anna E; Borodulin, Rostislav R; Vanin, Anatoly F
2015-10-12
Composites of a collagen matrix and dinitrosyl iron complexes with glutathione (DNIC-GS) (in a dose of 4.0 μmoles per item) in the form of spongy sheets (DNIC-Col) were prepared and then topically applied in rat excisional full-thickness skin wound model. The effects of DNIC-Col were studied in comparison with spontaneously healing wounds (SpWH) and wounds treated with collagen sponges (Col) without DNIC-GS. The composites induced statistically and clinically significant acceleration of complete wound closure (21±1 day versus 23±1 day and 26±1 day for DNIC-Col, Col and SpWH, respectively). Histological examination of wound tissues on days 4, 14, 18 and 21 after surgery demonstrated that this improvement was supported by enhanced growth, maturation and fibrous transformation of granulation tissue and earlier epithelization of the injured area in rats treated with DNIC-Col composites benchmarked against Col and SpWH. It is suggested that the positive effect of the new pharmaceutical material on wound healing is based on the release of NO from decomposing DNIC. This effect is believed to be potentiated by the synergy of DNIC and collagen.
Farooque, Mohammad; Yuh, Chao-Yi
1996-01-01
A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.
Farooque, M.; Yuh, C.Y.
1996-12-03
A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
Matrix with Prescribed Eigenvectors
ERIC Educational Resources Information Center
Ahmad, Faiz
2011-01-01
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan
2010-01-12
Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Wang, Zhongkai; Jiang, Feng; Zhang, Yaqiong; You, Yezi; Wang, Zhigang; Guan, Zhibin
2015-01-27
Human skin exhibits highly nonlinear elastic properties that are essential to its physiological functions. It is soft at low strain but stiff at high strain, thereby protecting internal organs and tissues from mechanical trauma. However, to date, the development of materials to mimic the unique mechanical properties of human skin is still a great challenge. Here we report a bioinspired design of nanostructured elastomers combining two abundant plant-based biopolymers, stiff cellulose and elastic polyisoprene (natural rubber), to mimic the mechanical properties of human skin. The nanostructured elastomers show highly nonlinear mechanical properties closely mimicking that of human skin. Importantly, the mechanical properties of these nanostructured elastomers can be tuned by adjusting cellulose content, providing the opportunity to synthesize materials that mimic the mechanical properties of different types of skins. Given the simplicity, efficiency, and tunability, this design may provide a promising strategy for creating artificial skin for both general mechanical and biomedical applications.
Apollonio, Luigino G; Whittall, Ian R; Pianca, Dennis J; Kyd, Jennelle M; Maher, William A
2007-05-01
The aim of this study was to evaluate the Bio-Quant Direct ELISA assays for amphetamine and methamphetamine in the routine presumptive screening of biological fluids. Standard concentration curves of the target analytes were assayed to assess sensitivity, and known concentrations of common amphetamine-type substances (ephedrine, pseudoephedrine, phentermine), designer analogues (MDA, MDMA, MDEA, MBDB, PMA, 4-MTA, 2CB), and putrefactive amines (phenylethylamine, putrescine, tryptamine, tyramine) were analyzed to determine cross-reactivity. Results of the standard curve studies show the capacity of both Direct ELISA kits to confidently detect down to 3 ng/mL interday (PBS matrix; CVs 6.3-15.5%). Cross-reactivity relative to that of 50 ng/mL preparations of the target compounds demonstrated that the Direct ELISA kit for amphetamine also detected MDA (282%), PMA (265%), 4-MTA (280%), and phentermine (61%), and the Direct ELISA for methamphetamine also assayed positive for MDMA (73%), MDEA (18%), pseudoephedrine (19%), MBDB (8%), and ephedrine (9%). Matrix studies demonstrated that both ELISA kits could be applied to screening of blood, urine, and saliva to a concentration of 6 ng/mL or lower. In conclusion, the Bio-Quant Direct ELISA kits for amphetamine and methamphetamine are fast and accurate and have demonstrated themselves to be useful tools in routine toxicological testing.
Nara, Hiroshi; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2014-11-13
Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.
Finding Nonoverlapping Substructures of a Sparse Matrix
Pinar, Ali; Vassilevska, Virginia
2005-08-11
Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.
NASA Technical Reports Server (NTRS)
Noton, B. R. (Editor); Kreider, K. G.; Chamis, C. C.
1974-01-01
This volume discusses a vaety of applications of both low- and high-cost composite materials in a number of selected engineering fields. The text stresses the use of fiber-reinforced composites, along with interesting material systems used in the electrical and nuclear industries. As to technology transfer, a similarity is noted between many of the reasons responsible for the utilization of composites and those problems requiring urgent solution, such as mechanized fabrication processes and design for production. Features topics include road transportation, rail transportation, civil aircraft, space vehicles, builing industry, chemical plants, and appliances and equipment. The laminate orientation code devised by Air Force materials laboratory is included. Individual items are announced in this issue.
Fong, Jiunn N. C.; Yildiz, Fitnat H.
2015-01-01
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709
Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil
1982-01-01
An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.
Mixed matrix membrane development.
Kulprathipanja, Santi
2003-03-01
Two types of mixed matrix membranes were developed by UOP in the late 1980s. The first type includes adsorbent polymers, such as silicalite-cellulose acetate (CA), NaX-CA, and AgX-CA mixed matrix membranes. The silicalite-CA has a CO(2)/H(2) selectivity of 5.15 +/- 2.2. In contrast, the CA membrane has a CO(2)/H(2) selectivity of 0.77 +/- 0.06. The second type of mixed matrix membrane is PEG-silicone rubber. The PEG-silicone rubber mixed matrix membrane has high selectivity for polar gases, such as SO(2), NH(3), and H(2)S.
Ferreira, S L C; dos Santos, W N L; Bezerra, M A; Lemos, V A; Bosque-Sendra, J M
2003-02-01
A system for on-line preconcentration and determination of lead by flame atomic absorption spectrometry (FAAS) was proposed. It was based on the sorption of lead(II) ions on a minicolumn of polyurethane foam loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation step was carried out using two-level full factorial and Doehlert designs for the determination of the optimum conditions for lead preconcentration. The proposed procedure allowed the determination of lead with a detection limit of 2.2 microg L(-1), and a precision, calculated as relative standard deviation (RSD), of 2.4 and 6.8 for a lead concentration of 50.0 and 10.0 microg L(-1), respectively. A preconcentration factor of 45 and a sampling frequency of 27 samples per hour were obtained. The recovery achieved for lead determination in the presence of several cations demonstrated that this procedure has enough selectivity for analysis of environmental samples. The validation was carried out by analysis of certified reference material. This procedure was applied to lead determination in natural food. PMID:12589511
Development, implementation, and test results on integrated optics switching matrix
NASA Technical Reports Server (NTRS)
Rutz, E.
1982-01-01
A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.
Grassmann matrix quantum mechanics
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-21
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less
Finding nonoverlapping substructures of a sparse matrix
Pinar, Ali; Vassilevska, Virginia
2004-08-09
Many applications of scientific computing rely on computations on sparse matrices, thus the design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of non overlapping rectangular dense blocks in a sparse matrix, which has not been studied in the sparse matrix community. We show that the maximum non overlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm for 2 times 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation algorithms.
Parallel algorithms for matrix computations
Plemmons, R.J.
1990-01-01
The present conference on parallel algorithms for matrix computations encompasses both shared-memory systems and distributed-memory systems, as well as combinations of the two, to provide an overall perspective on parallel algorithms for both dense and sparse matrix computations in solving systems of linear equations, dense or structured problems related to least-squares computations, eigenvalue computations, singular-value computations, and rapid elliptic solvers. Specific issues addressed include the influence of parallel and vector architectures on algorithm design, computations for distributed-memory architectures such as hypercubes, solutions for sparse symmetric positive definite linear systems, symbolic and numeric factorizations, and triangular solutions. Also addressed are reference sources for parallel and vector numerical algorithms, sources for machine architectures, and sources for programming languages.
Polymer Matrix Composite Material Oxygen Compatibility
NASA Technical Reports Server (NTRS)
Owens, Tom
2001-01-01
Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.
Construction of the Dependence Matrix Based on the TRIZ Contradiction Matrix in OOD
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Quan; Wang, Yanling; Luo, Tao
In the Object-Oriented software design (OOD), design of the class and object, definition of the classes’ interface and inheritance levels and determination of dependent relations have a serious impact on the reusability and flexibility of the system. According to the concrete problems of design, how to select the right solution from the hundreds of the design schemas which has become the focus of attention of designers. After analyzing lots of software design schemas in practice and Object-Oriented design patterns, this paper constructs the dependence matrix of Object-Oriented software design filed, referring to contradiction matrix of TRIZ (Theory of Inventive Problem Solving) proposed by the former Soviet Union innovation master Altshuller. As the practice indicates, it provides a intuitive, common and standardized method for designers to choose the right design schema. Make research and communication more effectively, and also improve the software development efficiency and software quality.
Martens, J.S.; Hietala, V.M.; Plut, T.A.
1995-01-03
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.
Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.
1995-01-01
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.
Mueller matrix differential decomposition.
Ortega-Quijano, Noé; Arce-Diego, José Luis
2011-05-15
We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The differential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently resolved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples. The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization. This decomposition is particularly appropriate for studying media in which several polarization effects take place simultaneously. PMID:21593943
Measurement matrix optimization method based on matrix orthogonal similarity transformation
NASA Astrophysics Data System (ADS)
Pan, Jinfeng
2016-05-01
Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.
ERIC Educational Resources Information Center
Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene
2013-01-01
Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…
The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.
NASA Astrophysics Data System (ADS)
Tenreiro Machado, J. A.
2015-08-01
This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.
Optical coherency matrix tomography
NASA Astrophysics Data System (ADS)
Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.
2015-10-01
The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes.
Optical coherency matrix tomography
Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.
2015-01-01
The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452
Stabilisation of matrix polynomials
NASA Astrophysics Data System (ADS)
Galindo, R.
2015-10-01
A state feedback is proposed to analyse the stability of a matrix polynomial in closed loop. First, it is shown that a matrix polynomial is stable if and only if a state space realisation of a ladder form of certain transfer matrix is stable. Following the ideas of the Routh-Hurwitz stability procedure for scalar polynomials, certain continued-fraction expansions of polynomial matrices are carrying out by unimodular matrices to achieve the Euclid's division algorithm which leads to an extension of the well-known Routh-Hurwitz stability criteria but this time in terms of matrix coefficients. After that, stability of the closed-loop matrix polynomial is guaranteed based on a Corollary of a Lyapunov Theorem. The sufficient stability conditions are: (i) The matrices of one column of the presented array must be symmetric and positive definite and (ii) the matrices of the cascade realisation must satisfy a commutative condition. These stability conditions are also necessary for matrix polynomial of second order. The results are illustrated through examples.
Optimal matrix approximants in structural identification
NASA Technical Reports Server (NTRS)
Beattie, C. A.; Smith, S. W.
1992-01-01
Problems of model correlation and system identification are central in the design, analysis, and control of large space structures. Of the numerous methods that have been proposed, many are based on finding minimal adjustments to a model matrix sufficient to introduce some desirable quality into that matrix. In this work, several of these methods are reviewed, placed in a modern framework, and linked to other previously known ideas in computational linear algebra and optimization. This new framework provides a point of departure for a number of new methods which are introduced here. Significant among these is a method for stiffness matrix adjustment which preserves the sparsity pattern of an original matrix, requires comparatively modest computational resources, and allows robust handling of noisy modal data. Numerical examples are included to illustrate the methods presented herein.
Pan, Feng; Kasiviswanathan, Shiva
2010-01-01
In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.
Matrixed business support comparison study.
Parsons, Josh D.
2004-11-01
The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.
Foster, James A; Gerton, George L
2016-01-01
The acrosome, a single exocytotic vesicle on the head of sperm, has an essential role in fertilization, but the exact mechanisms by which it facilitates sperm-egg interactions remain unresolved. The acrosome contains dozens of secretory proteins that are packaged into the forming structure during spermatogenesis; many of these proteins are localized into specific topographical areas of the acrosome, while others are more diffusely distributed. Acrosomal proteins can also be biochemically classified as components of the acrosomal matrix, a large, relatively insoluble complex, or as soluble proteins. This review focuses on recent findings using genetically modified mice (gene knockouts and transgenic "green acrosome" mice) to study the effects of eliminating acrosomal matrix-associated proteins on sperm structure and function. Some gene knockouts produce infertile phenotypes with obviously missing, specific activities that affect acrosome biogenesis during spermatogenesis or interfere with acrosome function in mature sperm. Mutations that delete some components produce fertile phenotypes with subtler effects that provide useful insights into acrosomal matrix function in fertilization. In general, these studies enable the reassessment of paradigms to explain acrosome formation and function and provide novel, objective insights into the roles of acrosomal matrix proteins in fertilization. The use of genetically engineered mouse models has yielded new mechanistic information that complements recent, important in vivo imaging studies. PMID:27194348
NASA Astrophysics Data System (ADS)
Elliott, John
2012-09-01
As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.
Matrix Embedded Organic Synthesis
NASA Astrophysics Data System (ADS)
Kamakolanu, U. G.; Freund, F. T.
2016-05-01
In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n- and call them proto-organics.
A high capacity satellite switched TDMA microwave switch matrix
NASA Technical Reports Server (NTRS)
Cory, B. J.; Berkowitz, M.
1981-01-01
A description is given of the conceptual design of a high-capacity satellite switched-time division multiple access (SS-TDMA) microwave switch matrix fabricated with GaAs monolithic microwave integrated circuits (MMICs), including integration of both microwave and control logic circuits into the monolithic design. The technology required for a 30/20 GHz communications system includes an on-board SS-TDMA switch matrix. A conceptual design study that has been completed for a wideband, high-capacity (typically 100 x 100) channel switch matrix using technology anticipated for 1987 is described, noting that the study resulted in a switch matrix design concept using a coupled crossbar architecture implemented with MMIC. The design involves basic building block MMIC, permitting flexible growth and efficient wraparound redundancy to increase reliability.
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
Integrating Sustainability in Higher Education: A Generic Matrix
ERIC Educational Resources Information Center
Rusinko, Cathy A.
2010-01-01
Purpose: The purpose of this paper is to develop a framework in the form of a generic matrix of options for integrating sustainability in higher education (SHE) so that university faculty and administrators can make more appropriate and strategic choices with respect to SHE. Design/methodology/approach: This original matrix draws from and extends…
Optical shutter switching matrix
NASA Technical Reports Server (NTRS)
Grove, Charles H.
1991-01-01
The interface switching systems are discussed which are related to those used in the Space Shuttle ground control system, transmission systems, communications systems, and airborne radar electronic countermeasure systems. The main goal is to identify a need that exists throughout the comprehensive information processing and communications disciplines supporting the Space Shuttle and Space Station programs, and introduce one viable approach to satisfy that need. The proposed device, described in NASA patent entitled 'Optical Shutter Switch Matrix', is discussed.
t matrix of metallic wire structures
Zhan, T. R. Chui, S. T.
2014-04-14
To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.
Snapshot retinal imaging Mueller matrix polarimeter
NASA Astrophysics Data System (ADS)
Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael
2015-09-01
Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.
MOP /Matrix Operation Programs system/
NASA Technical Reports Server (NTRS)
Muller, P. M.
1968-01-01
MOP /Matrix Operation Programs/ system consists of a set of FORTRAN 4 subroutines which are related through a small common allocation. The system accomplishes all matrix algebra operations plus related input-output and housekeeping details.
Matrix Theory of Small Oscillations
ERIC Educational Resources Information Center
Chavda, L. K.
1978-01-01
A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)
Matrix of educational and training materials in remote sensing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Lube, B. M.
1976-01-01
Remote sensing educational and training materials developed by LARS have been organized in a matrix format. Each row in the matrix represents a subject area in remote sensing and the columns represent different types of instructional materials. This format has proved to be useful for displaying in a concise manner the subject matter content, prerequisite requirements and technical depth of each instructional module in the matrix. A general description of the matrix is followed by three examples designed to illustrate how the matrix can be used to synthesize training programs tailored to meet the needs of individual students. A detailed description of each of the modules in the matrix is contained in a catalog section.
On the Matrix Exponential Function
ERIC Educational Resources Information Center
Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai
2006-01-01
A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.
The cellulose resource matrix.
Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G
2013-03-01
The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the
The cellulose resource matrix.
Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G
2013-03-01
The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the
On Hermite Matrix Polynomials of Two Variables
NASA Astrophysics Data System (ADS)
Kahmmash, Ghazi S.
This study deals with the two-variable Hermite matrix polynomials, some relevant matrix functions appear interims of the two-variable Hermite matrix polynomials the relationships with Hermite matrix polynomials of one variable, Chepyshev matrix polynomials of the second kind have been obtained and expansion of the. Gegenbauer matrix polynomials as series of Hermite matrix polynomials.
An Innovative Carbonate Fuel Cell Matrix, Abstract #188
Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi
2015-05-28
The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix design that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.
Supported Molecular Matrix Electrophoresis.
Matsuno, Yu-Ki; Kameyama, Akihiko
2015-01-01
Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique. PMID:26139278
Review of fracture and fatigue in ceramic matrix composites
Birman, V.; Byrd, L.W.
2000-06-01
A review of recent developments and state-of-the-art in research and understanding of damage and fatigue of ceramic matrix composites is presented. Both laminated as well as woven configurations are considered. The work on the effects of high temperature on fracture and fatigue of ceramic matrix composites is emphasized, because these materials are usually designed to operate in hostile environments. Based on a detailed discussion of the mechanisms of failure, the problems that have to be addressed for a successful implementation of ceramic matrix composites in design and practical operational structures are outlined. This review article includes 317 references.
Advanced Integration Matrix Education Outreach
NASA Technical Reports Server (NTRS)
Paul Heather L.
2004-01-01
The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution. Allowing students to experience and contribute to real-world development, research, and scientific studies of ground-based simulations for complex exploration missions will stimulate interest in the space program, and bring NASA's challenges to the student level. By enhancing existing educational programs and developing innovative activities and presentations, AIM will support NASA s endeavor to "inspire the next generation of explorers.. .as only NASA can."
Maia, F Raquel; Fonseca, Keila B; Rodrigues, Gabriela; Granja, Pedro L; Barrias, Cristina C
2014-07-01
Mesenchymal stem cells (MSCs) can be made to rearrange into microtissues in response to specific matrix cues, a process that depends on a balance between cell-matrix and cell-cell interactions. The effect of such cues, and especially their interplay, is still not fully understood, particularly in three-dimensional (3-D) systems. Here, the behaviour of human MSCs cultured within hydrogel matrices with tailored stiffness and composition was evaluated. MSC aggregation occurred only in more compliant matrices (G'≤ 120 Pa), when compared to stiffer ones, both in the presence and in the absence of matrix-bound arginine-glycine-aspartic acid cell-adhesion ligands (RGD; 0, 100 and 200 μM). Fibronectin assembly stabilized cell-cell contacts within aggregates, even in non-adhesive matrices. However, MSCs were able to substantially contract the artificial matrix only when RGD was present. Moreover, compliant matrices facilitated cell proliferation and provided an environment conducive for MSC osteogenic differentiation, even without RGD. Cell interactions with the original matrix became less important as time progressed, while the de novo-produced extracellular matrix became a more critical determinant of cell fate. These data provide further insights into the mechanisms by which MSCs sense their microenvironment to organize into tissues, and provide new clues to the design of cell-instructive 3-D matrices.
Maia, F Raquel; Fonseca, Keila B; Rodrigues, Gabriela; Granja, Pedro L; Barrias, Cristina C
2014-07-01
Mesenchymal stem cells (MSCs) can be made to rearrange into microtissues in response to specific matrix cues, a process that depends on a balance between cell-matrix and cell-cell interactions. The effect of such cues, and especially their interplay, is still not fully understood, particularly in three-dimensional (3-D) systems. Here, the behaviour of human MSCs cultured within hydrogel matrices with tailored stiffness and composition was evaluated. MSC aggregation occurred only in more compliant matrices (G'≤ 120 Pa), when compared to stiffer ones, both in the presence and in the absence of matrix-bound arginine-glycine-aspartic acid cell-adhesion ligands (RGD; 0, 100 and 200 μM). Fibronectin assembly stabilized cell-cell contacts within aggregates, even in non-adhesive matrices. However, MSCs were able to substantially contract the artificial matrix only when RGD was present. Moreover, compliant matrices facilitated cell proliferation and provided an environment conducive for MSC osteogenic differentiation, even without RGD. Cell interactions with the original matrix became less important as time progressed, while the de novo-produced extracellular matrix became a more critical determinant of cell fate. These data provide further insights into the mechanisms by which MSCs sense their microenvironment to organize into tissues, and provide new clues to the design of cell-instructive 3-D matrices. PMID:24607421
Luneburg lens and optical matrix algebra research
NASA Technical Reports Server (NTRS)
Wood, V. E.; Busch, J. R.; Verber, C. M.; Caulfield, H. J.
1984-01-01
Planar, as opposed to channelized, integrated optical circuits (IOCs) were stressed as the basis for computational devices. Both fully-parallel and systolic architectures are considered and the tradeoffs between the two device types are discussed. The Kalman filter approach is a most important computational method for many NASA problems. This approach to deriving a best-fit estimate for the state vector describing a large system leads to matrix sizes which are beyond the predicted capacities of planar IOCs. This problem is overcome by matrix partitioning, and several architectures for accomplishing this are described. The Luneburg lens work has involved development of lens design techniques, design of mask arrangements for producing lenses of desired shape, investigation of optical and chemical properties of arsenic trisulfide films, deposition of lenses both by thermal evaporation and by RF sputtering, optical testing of these lenses, modification of lens properties through ultraviolet irradiation, and comparison of measured lens properties with those expected from ray trace analyses.
Ceramic Matrix Composites for Rotorcraft Engines
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2011-01-01
Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.
Ceramic matrix and resin matrix composites: A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Matrix membranes and integrability
Zachos, C.; Fairlie, D.; Curtright, T.
1997-06-01
This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.
Mixed Mode Matrix Multiplication
Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall
2004-09-30
In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.
Hastings, Matthew B
2009-01-01
We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.
Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.
2008-06-15
We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.
Matrix computations on systolic-type meshes
Moreno, J.H.; Lang, T. )
1990-04-01
This article focuses on the execution of matrix computations on systolic-type arrays in an application-specific environment. The authors first present an extension to the concept of a systolic cell by incorporating a small, fixed amount of storage inside the cells, and they discuss the trade-offs this storage gives rise to. Then they review different approaches to decomposing (partitioning) large problems, highlighting their bandwidth requirements and their capabilities for using the storage in the cells. Finally, the authors discuss the basic characteristics of methods for the design of systolic-type arrays, describe the multimesh graph (MMG) design method, and illustrate its application to the transitive closure algorithm.
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We study a U( N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.
Systematic errors for a Mueller matrix dual rotating compensator ellipsometer.
Broch, Laurent; En Naciri, Aotmane; Johann, Luc
2008-06-01
The characterization of anisotropic materials and complex systems by ellipsometry has pushed the design of instruments to require the measurement of the full reflection Mueller matrix of the sample with a great precision. Therefore Mueller matrix ellipsometers have emerged over the past twenty years. The values of some coefficients of the matrix can be very small and errors due to noise or systematic errors can induce distored analysis. We present a detailed characterization of the systematic errors for a Mueller Matrix Ellipsometer in the dual-rotating compensator configuration. Starting from a general formalism, we derive explicit first-order expressions for the errors on all the coefficients of the Mueller matrix of the sample. The errors caused by inaccuracy of the azimuthal arrangement of the optical components and residual ellipticity introduced by imperfect optical elements are shown. A new method based on a four-zone averaging measurement is proposed to vanish the systematic errors.
Historical perspective of matrix metalloproteases.
Pulkoski-Gross, Ashleigh E
2015-06-01
Matrix metalloproteinases (MMPs) were identified as early as 1962. Since this seminal finding, this family of zinc-dependent endopeptidases has been studied extensively. This collective work has resulted in delineation of MMP gene and protein structures, the mechanisms of control of MMPs, the action of MMPs on both extracellular matrices and other proteins such as growth factors and cytokines, naturally-occurring mechanisms of control, and of course their role in normal physiology and their crucial roles in pathophysiology. Stemming from the discovery that MMPs contribute to arthritis, heart disease, and cancer, amongst other diseases, attempts to develop treatment strategies incorporating MMP inhibition have been undertaken. The results of these endeavours have been mediocre, resulting in few FDA-approved MMP inhibitors mostly due to the broad-spectrum nature of these early inhibitors and unwanted side effects of MMP inhibition. The future of exploitation of MMPs in disease lies in the design of more targeted inhibitors; in order to accomplish this, we must all understand the subtle differences between each MMP and their contextual roles. In this chapter, we aim to overview major topics regarding MMPs and what direction we may go in the future.
Calkins, Noel C.
1991-01-01
An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.
1987-01-01
The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.
Emergency Response Synchronization Matrix
1999-06-01
An emergency response to a disaster is complex, requiring the rapid integration, coordination, and synchronization of multiple levels of governmental and non-governmental organizations from numerous jurisdictions into a unified community response. For example, a communitys response actions to a fixed site hazardous materials incident could occur in an area extending from an on-site storage location to points 25 or more miles away. Response actions are directed and controlled by local governments and agencies situated withinmore » the response area, as well as by state and federal operaticns centers quite removed from the area of impact. Time is critical and the protective action decision-making process is greatly compressed. The response community must carefully plan and coordinate response operations in order to have confidence that they will be effectively implemented when faced with the potentially catastrophic nature of such releases. A graphical depiction of the entire response process via an emergency response synchronization matrix is an effective tool in optimizing the planning, exercising, and implementation of emergency plans. This systembased approach to emergency planning depicts how a community organizes its response tasks across space and time in relation to hazard actions. It provides the opportunity to make realtime adjustments as necessary for maximizing the often limited resources in protecting area residents. A response must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization.« less
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
House, E. E.; Hoggatt, J. T.; Symonds, W. A.
1980-01-01
The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Matrix Methods to Analytic Geometry.
ERIC Educational Resources Information Center
Bandy, C.
1982-01-01
The use of basis matrix methods to rotate axes is detailed. It is felt that persons who have need to rotate axes often will find that the matrix method saves considerable work. One drawback is that most students first learning to rotate axes will not yet have studied linear algebra. (MP)
Synthetic Division and Matrix Factorization
ERIC Educational Resources Information Center
Barabe, Samuel; Dubeau, Franc
2007-01-01
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.
ERIC Educational Resources Information Center
Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng
2012-01-01
This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…
On quantization of matrix models
NASA Astrophysics Data System (ADS)
Starodubtsev, Artem
2002-12-01
The issue of non-perturbative background independent quantization of matrix models is addressed. The analysis is carried out by considering a simple matrix model which is a matrix extension of ordinary mechanics reduced to 0 dimension. It is shown that this model has an ordinary mechanical system evolving in time as a classical solution. But in this treatment the action principle admits a natural modification which results in algebraic relations describing quantum theory. The origin of quantization is similar to that in Adler's generalized quantum dynamics. The problem with extension of this formalism to many degrees of freedom is solved by packing all the degrees of freedom into a single matrix. The possibility to apply this scheme to various matrix models is discussed.
Cell–material interactions on biphasic polyurethane matrix
Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan
2013-01-01
Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285
METCAN: The metal matrix composite analyzer
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Murthy, Pappu L. N.
1988-01-01
Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Interphase layer optimization for metal matrix composites with fabrication considerations
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.
Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix
Dr. Ronald Baney
2008-12-15
The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process.l
NASA supercritical airfoils: A matrix of family-related airfoils
NASA Technical Reports Server (NTRS)
Harris, Charles D.
1990-01-01
The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
London, A.
1981-01-01
Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.
NASA Astrophysics Data System (ADS)
Grassi, Alba; Mariño, Marcos
2015-02-01
Some matrix models admit, on top of the usual 't Hooft expansion, an M-theory-like expansion, i.e. an expansion at large N but where the rest of the parameters are fixed, instead of scaling with N . These models, which we call M-theoretic matrix models, appear in the localization of Chern-Simons-matter theories, and also in two-dimensional statistical physics. Generically, their partition function receives non-perturbative corrections which are not captured by the 't Hooft expansion. In this paper, we discuss general aspects of these type of matrix integrals and we analyze in detail two different examples. The first one is the matrix model computing the partition function of supersymmetric Yang-Mills theory in three dimensions with one adjoint hypermultiplet and N f fundamentals, which has a conjectured M-theory dual, and which we call the N f matrix model. The second one, which we call the polymer matrix model, computes form factors of the 2d Ising model and is related to the physics of 2d polymers. In both cases we determine their exact planar limit. In the N f matrix model, the planar free energy reproduces the expected behavior of the M-theory dual. We also study their M-theory expansion by using Fermi gas techniques, and we find non-perturbative corrections to the 't Hooft expansion.
NASA Astrophysics Data System (ADS)
Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.
2005-04-01
perform this exchange, as a matrix, understood as source, of new ideas.
Canonical density matrix perturbation theory.
Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias
2015-12-01
Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847
High Temperature Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
1985-01-01
These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.
Genotype imputation via matrix completion.
Chi, Eric C; Zhou, Hua; Chen, Gary K; Del Vecchyo, Diego Ortega; Lange, Kenneth
2013-03-01
Most current genotype imputation methods are model-based and computationally intensive, taking days to impute one chromosome pair on 1000 people. We describe an efficient genotype imputation method based on matrix completion. Our matrix completion method is implemented in MATLAB and tested on real data from HapMap 3, simulated pedigree data, and simulated low-coverage sequencing data derived from the 1000 Genomes Project. Compared with leading imputation programs, the matrix completion algorithm embodied in our program MENDEL-IMPUTE achieves comparable imputation accuracy while reducing run times significantly. Implementation in a lower-level language such as Fortran or C is apt to further improve computational efficiency. PMID:23233546
Matrix Elements for Hylleraas CI
NASA Astrophysics Data System (ADS)
Harris, Frank E.
The limitation to at most a single interelectron distance in individual configurations of a Hylleraas-type multiconfiguration wave function restricts significantly the types of integrals occurring in matrix elements for energy calculations, but even then if the formulation is not handled efficiently the angular parts of these integrals escalate to create expressions of great complexity. This presentation reviews ways in which the angular-momentum calculus can be employed to systematize and simplify the matrix element formulas, particularly those for the kinetic-energy matrix elements.
Canonical density matrix perturbation theory.
Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias
2015-12-01
Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures.
Solid oxide fuel cell matrix and modules
Riley, B.
1988-04-22
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.
Electronic nose with an air sensor matrix for detecting beef freshness
Technology Transfer Automated Retrieval System (TEKTRAN)
The design of an electronic nose includes the design of a matrix of chemical sensors such as gas sensors, and development of a pattern-recognition algorithm. The sensor matrix sniffs the vapor from a sample and provides a set of measurements. The pattern-recognizer compares the pattern of the meas...
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Aggrecanases and cartilage matrix degradation
Nagase, Hideaki; Kashiwagi, Masahide
2003-01-01
The loss of extracellular matrix macromolecules from the cartilage results in serious impairment of joint function. Metalloproteinases called 'aggrecanases' that cleave the Glu373–Ala374 bond of the aggrecan core protein play a key role in the early stages of cartilage destruction in rheumatoid arthritis and in osteoarthritis. Three members of the ADAMTS family of proteinases, ADAMTS-1, ADAMTS-4 and ADAMTS-5, have been identified as aggrecanases. Matrix metalloproteinases, which are also found in arthritic joints, cleave aggrecans, but at a distinct site from the aggrecanases (i.e. Asn341–Phe342). The present review discuss the enzymatic properties of the three known aggrecanases, the regulation of their activities, and their role in cartilage matrix breakdown during the development of arthritis in relation to the action of matrix metalloproteinases. PMID:12718749
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Extracellular matrix and wound healing.
Maquart, F X; Monboisse, J C
2014-04-01
Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524
Universal Keplerian state transition matrix
NASA Technical Reports Server (NTRS)
Shepperd, S. W.
1985-01-01
A completely general method for computing the Keplerian state transition matrix in terms of Goodyear's universal variables is presented. This includes a new scheme for solving Kepler's problem which is a necessary first step to computing the transition matrix. The Kepler problem is solved in terms of a new independent variable requiring the evaluation of only one transcendental function. Furthermore, this transcendental function may be conveniently evaluated by means of a Gaussian continued fraction.
Molybdenum disilicide alloy matrix composite
Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.
1991-12-03
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1991-01-01
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1990-01-01
Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Staggered chiral random matrix theory
Osborn, James C.
2011-02-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
Whittum, David H.; Tantawi, Sami G.
2001-01-01
We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.
Whittum, David H
2000-10-04
We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
Henshaw, J.
1983-01-01
Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.
Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.
Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T
2016-01-01
This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy. PMID:27560675
The transfer matrix approach to circular graphene quantum dots
NASA Astrophysics Data System (ADS)
Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien
2016-07-01
We adapt the transfer matrix (T-matrix) method originally designed for one-dimensional quantum mechanical problems to solve the circularly symmetric two-dimensional problem of graphene quantum dots. Similar to one-dimensional problems, we show that the generalized T-matrix contains rich information about the physical properties of these quantum dots. In particular, it is shown that the spectral equations for bound states as well as quasi-bound states of a circular graphene quantum dot and related quantities such as the local density of states and the scattering coefficients are all expressed exactly in terms of the T-matrix for the radial confinement potential. As an example, we use the developed formalism to analyse physical aspects of a graphene quantum dot induced by a trapezoidal radial potential. Among the obtained results, it is in particular suggested that the thermal fluctuations and electrostatic disorders may appear as an obstacle to controlling the valley polarization of Dirac electrons.
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
2007-12-01
SME is an emergency response planning and exercise design and management software. SME implements an innovative approach of hosting its data in a customized Windows SharPoint Services (WSS) 3.0 site, and uses a Microsoft Win Forms technology as front-end to access the backend SharePoint list data as a client-server application. The utilization of WSS 3.0 allowed for a light weight application with the pwoer or project, data, document and user management tools that can linkmore » with everyday application such as Microsoft Office products, especially Outlook. The WinForms front-end application programmatically accesses the SharePoint List data through the exposed SharePoint Web Services application programming inerface (API). The SharePoint environment includes customized Web Parts that programmatically create new SharePoint sites with custom lists. The application also takes advantage of AJAX and Silverlight technologies to create a richer user experience for the SharePoint users.« less
2007-12-01
SME is an emergency response planning and exercise design and management software. SME implements an innovative approach of hosting its data in a customized Windows SharPoint Services (WSS) 3.0 site, and uses a Microsoft Win Forms technology as front-end to access the backend SharePoint list data as a client-server application. The utilization of WSS 3.0 allowed for a light weight application with the pwoer or project, data, document and user management tools that can link with everyday application such as Microsoft Office products, especially Outlook. The WinForms front-end application programmatically accesses the SharePoint List data through the exposed SharePoint Web Services application programming inerface (API). The SharePoint environment includes customized Web Parts that programmatically create new SharePoint sites with custom lists. The application also takes advantage of AJAX and Silverlight technologies to create a richer user experience for the SharePoint users.
Han, Sang Won; Koh, Won-Gun
2016-06-21
Matrix metalloproteinases (MMPs) play a pivotal role in regulating the composition of the extracellular matrix and have a critical role in vascular disease, cancer progression, and bone disorders. This paper describes the design and fabrication of a microdevice as a new platform for highly sensitive MMP-9 detection. In this sensing platform, fluorescein isocyanate (FITC)-labeled MMP-9 specific peptides were covalently immobilized on an electrospun nanofiber matrix to utilize an enzymatic cleavage strategy. Prior to peptide immobilization, the nanofiber matrix was incorporated into hydrogel micropatterns for easy size control and handling of the nanofiber matrix. The resultant hydrogel-framed nanofiber matrix immobilizing the peptides was inserted into microfluidic devices consisting of reaction chambers and detection zones. The immobilized peptides were reacted with the MMP-9-containing solution in a reaction chamber, which resulted in the cleavage of the FITC-containing peptide fragments and subsequently generated fluorescent flow at the detection zone. As higher concentrations of the MMP-9 solution were introduced or larger peptide-immobilizing nanofiber areas were used, more peptides were cleaved, and a stronger fluorescence signal was observed. Due to the huge surface area of the nanofiber and small dimensions of the microsystem, a faster response time (30 min) and lower detection limit (10 pM) could be achieved in this study. The hydrogel-framed nanofiber matrix is disposable and can be replaced with new ones immobilizing either the same or different biomolecules for various bioassays, while the microfluidic system can be continuously reused. PMID:27214657
Han, Sang Won; Koh, Won-Gun
2016-06-21
Matrix metalloproteinases (MMPs) play a pivotal role in regulating the composition of the extracellular matrix and have a critical role in vascular disease, cancer progression, and bone disorders. This paper describes the design and fabrication of a microdevice as a new platform for highly sensitive MMP-9 detection. In this sensing platform, fluorescein isocyanate (FITC)-labeled MMP-9 specific peptides were covalently immobilized on an electrospun nanofiber matrix to utilize an enzymatic cleavage strategy. Prior to peptide immobilization, the nanofiber matrix was incorporated into hydrogel micropatterns for easy size control and handling of the nanofiber matrix. The resultant hydrogel-framed nanofiber matrix immobilizing the peptides was inserted into microfluidic devices consisting of reaction chambers and detection zones. The immobilized peptides were reacted with the MMP-9-containing solution in a reaction chamber, which resulted in the cleavage of the FITC-containing peptide fragments and subsequently generated fluorescent flow at the detection zone. As higher concentrations of the MMP-9 solution were introduced or larger peptide-immobilizing nanofiber areas were used, more peptides were cleaved, and a stronger fluorescence signal was observed. Due to the huge surface area of the nanofiber and small dimensions of the microsystem, a faster response time (30 min) and lower detection limit (10 pM) could be achieved in this study. The hydrogel-framed nanofiber matrix is disposable and can be replaced with new ones immobilizing either the same or different biomolecules for various bioassays, while the microfluidic system can be continuously reused.
Calculating the GONG Leakage Matrix
NASA Astrophysics Data System (ADS)
Hill, F.; Howe, R.
Since spherical harmonics do not form a complete orthonormal basis set over a portion of a sphere, helioseismic spectra computed for a specific target mode with degree ellt and azimuthal degree mt also contain modes with nearby ell'' and m''. These spatial leaks greatly increase the complexity of the observed spectrum, complicating the spectral fitting and degrading the resulting mode parameter estimates. This is particularly true where the target mode and the leaks have similar frequencies. Some strategies for fitting helioseismic spectra explicitly include the leakage matrix which estimates the relative strength of a mode (ell'' and m'') in the spectrum at (ellt,mt). Since the fitting methods assume that the matrix is correct and apply it as a constraint, an inaccurate matrix introduces systematic errors in the estimated mode parameters. It is thus important to have as accurate a matrix as possible. Here we report on the calculation of the leakage matrix for the GONG observations. The matrix elements are essentially the integrals (over the observed portion of the solar surface) of the crossproducts of the two spherical harmonics. However, several effects have been included to increase the accuracy of the matrix. These include the projection factor of the observable (velocity, intensity, modulation), the spatial apodization applied to the data, the finite rectangular pixel dimensions of the observations, and possible errors in the estimated image geometry. Other factors to be incorporated are the observed MTF, the merging of the GONG images, and the horizontal components of the oscillatory velocity field. We will compare the latest calculation with the observed spectrum and assess the relative importance of the input factors. We will also compare the leakage matrices for velocity and intensity to estimate their contribution to the large apparent differences in the helioseismic spectra obtained from these observables.
The Astrobiology Matrix and the "Drake Matrix" in Education
NASA Technical Reports Server (NTRS)
Mizser, A.; Kereszturi, A.
2003-01-01
We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.
Matrix factorizations and elliptic fibrations
NASA Astrophysics Data System (ADS)
Omer, Harun
2016-09-01
I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU (5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.
Relativistic Dipole Matrix Element Zeros
NASA Astrophysics Data System (ADS)
Lajohn, L. A.; Pratt, R. H.
2002-05-01
There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).
Inert matrix fuel behaviour in test irradiations
NASA Astrophysics Data System (ADS)
Hellwig, Ch.; Streit, M.; Blair, P.; Tverberg, T.; Klaassen, F. C.; Schram, R. P. C.; Vettraino, F.; Yamashita, T.
2006-06-01
Among others, three large irradiation tests on inert matrix fuels have been performed during the last five years: the two irradiation tests IFA-651 and IFA-652 in the OECD Halden Material Test Reactor and the OTTO irradiation in the High Flux Reactor in Petten. While the OTTO irradiation is already completed, the other two irradiations are still ongoing. The objectives of the experiments differ: for OTTO, the focus was on the comparison of different concepts of IMF, i.e. homogeneous fuel versus different types of heterogeneous fuel. In IFA-651, single phase yttria stabilized zirconia (YSZ) doped with Pu is compared with MOX. In IFA-652, the potential of calcia stabilized zirconia (CSZ) as a matrix with and without thoria is evaluated. The design of the three experiments is explained and the current status is reviewed. The experiments show that the homogeneous, single phase YSZ-based or CSZ-based fuel show good and stable irradiation behaviour. It can be said that homogeneous stabilized zirconia based fuel is the most promising IMF concept for an LWR environment. Nevertheless, the fuel temperatures were relatively high due to the low thermal conductivity, potentially leading to high fission gas release, and must be taken into account in the fuel design.
Fisher Matrix Preloaded — FISHER4CAST
NASA Astrophysics Data System (ADS)
Bassett, Bruce A.; Fantaye, Yabebal; Hlozek, Renée; Kotze, Jacques
The Fisher Matrix is the backbone of modern cosmological forecasting. We describe the Fisher4Cast software: A general-purpose, easy-to-use, Fisher Matrix framework. It is open source, rigorously designed and tested and includes a Graphical User Interface (GUI) with automated LATEX file creation capability and point-and-click Fisher ellipse generation. Fisher4Cast was designed for ease of extension and, although written in Matlab, is easily portable to open-source alternatives such as Octave and Scilab. Here we use Fisher4Cast to present new 3D and 4D visualizations of the forecasting landscape and to investigate the effects of growth and curvature on future cosmological surveys. Early releases have been available at since mid-2008. The current release of the code is Version 2.2 which is described here. For ease of reference a Quick Start guide and the code used to produce the figures in this paper are included, in the hope that it will be useful to the cosmology and wider scientific communities.
Active Matrix OLED Test Report
NASA Technical Reports Server (NTRS)
Salazar, George
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits
Matrix Formalism of Synchrobetatron Coupling
Huang, Xiaobiao; /SLAC
2006-10-06
In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and the Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.
Extracellular matrix in ovarian follicles.
Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L
2000-05-25
A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877
NASA Astrophysics Data System (ADS)
Zhu, Yonghui; Zhan, Hongbin; Jin, Menggui
2016-08-01
This study deals with the problem of reactive solute transport in a fracture-matrix system using both analytical and numerical modeling methods. The groundwater flow velocity in the fracture is assumed to be high enough (no less than 0.1 m/day) to ensure the advection-dominant transport in the fracture. The problem includes advection along the fracture, transverse diffusion in the matrix, with linear sorption as well as first-order reactions operative in both the fracture and the matrix. A constant-concentration boundary condition and a decay source boundary condition in the fracture are considered. With a constant-concentration source, we obtain closed-form analytical solutions that account for the transport without reaction as well as steady-state solutions with different first-order reactions in the two media. With a decay source, a semi-analytical solution is obtained. The analytical and semi-analytical solutions are in excellent agreement with the numerical simulation results obtained using COMSOL Multiphysics. Sensitivity analysis is conducted to assess the relative importance of matrix diffusion coefficient, fracture aperture, and matrix porosity. We conclude that the first-order reaction as well as the matrix diffusion in the fractured rock would decrease the solute peak concentration and shorten the penetration distance into the fracture. The solutions can be applied to assess the spatial-temporal distribution of concentrations in the fracture and the matrix as well as to assess the contaminant mass stored in the rock matrix. All of these are useful for designing remediation plans for contaminated fractured rocks or for risk assessment of contaminated fracture-matrix systems.
Matrix model approach to cosmology
NASA Astrophysics Data System (ADS)
Chaney, A.; Lu, Lei; Stern, A.
2016-03-01
We perform a systematic search for rotationally invariant cosmological solutions to toy matrix models. These models correspond to the bosonic sector of Lorentzian Ishibashi, Kawai, Kitazawa and Tsuchiya (IKKT)-type matrix models in dimensions d less than ten, specifically d =3 and d =5 . After taking a continuum (or commutative) limit they yield d -1 dimensional Poisson manifolds. The manifolds have a Lorentzian induced metric which can be associated with closed, open, or static space-times. For d =3 , we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a resolution of cosmological singularities, at least within the context of the toy matrix models. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the d =3 solutions have analogues in higher dimensions. The case of d =5 , in particular, has the potential for yielding realistic four-dimensional cosmologies in the continuum limit. We find four-dimensional de Sitter d S4 or anti-de Sitter AdS4 solutions when a totally antisymmetric term is included in the matrix action. A nontrivial Poisson structure is attached to these manifolds which represents the lowest order effect of noncommutativity. For the case of AdS4 , we find one particular limit where the lowest order noncommutativity vanishes at the boundary, but not in the interior.
Spectral decomposition of a matrix using the generalized sign matrix
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.
1981-01-01
An algorithm for spectral decomposition is presented which does not require knowledge of eigenvalues and eigenvectors. A set of eigenprojectors are defined which covers the entire spectrum of a matrix, and special attention is given to the projection on the zero eigenvalue. Some useful applications are discussed in the paper.
ERIC Educational Resources Information Center
Wilson, Linda L.; Mott, Donald W.; Batman, Deb
2004-01-01
This article provides a description of the "Asset-Based Context Matrix" (ABC Matrix). The ABC Matrix is an assessment tool for designing interventions for children in natural learning environments. The tool is based on research evidence indicating that children's learning is enhanced in contextually meaningful learning environments. The ABC Matrix…
Shrinkage estimation of the realized relationship matrix
Technology Transfer Automated Retrieval System (TEKTRAN)
The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...
Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems
Price, Nathan D; Joyce, Andrew R; Palsson, Bernhard O
2006-01-01
Complex regulatory networks control the transcription state of a genome. These transcriptional regulatory networks (TRNs) have been mathematically described using a Boolean formalism, in which the state of a gene is represented as either transcribed or not transcribed in response to regulatory signals. The Boolean formalism results in a series of regulatory rules for the individual genes of a TRN that in turn can be used to link environmental cues to the transcription state of a genome, thereby forming a complete transcriptional regulatory system (TRS). Herein, we develop a formalism that represents such a set of regulatory rules in a matrix form. Matrix formalism allows for the systemic characterization of the properties of a TRS and facilitates the computation of the transcriptional state of the genome under any given set of environmental conditions. Additionally, it provides a means to incorporate mechanistic detail of a TRS as it becomes available. In this study, the regulatory network matrix, R, for a prototypic TRS is characterized and the fundamental subspaces of this matrix are described. We illustrate how the matrix representation of a TRS coupled with its environment (R*) allows for a sampling of all possible expression states of a given network, and furthermore, how the fundamental subspaces of the matrix provide a way to study key TRS features and may assist in experimental design. PMID:16895435
A Screening Matrix for an Initial Line of Inquiry
ERIC Educational Resources Information Center
Nordness, Philip D.; Swain, Kristine D.; Haverkost, Ann
2012-01-01
The Screening for Understanding: Initial Line of Inquiry was designed to be used in conjunction with the child study team planning process for dealing with continuous problem behaviors prior to conducting a formal functional behavioral assessment. To conduct the initial line of inquiry a one-page reproducible screening matrix was used during child…
An Analysis of Variance Framework for Matrix Sampling.
ERIC Educational Resources Information Center
Sirotnik, Kenneth
Significant cost savings can be achieved with the use of matrix sampling in estimating population parameters from psychometric data. The statistical design is intuitively simple, using the framework of the two-way classification analysis of variance technique. For example, the mean and variance are derived from the performance of a certain grade…
Evaluation of a Matrix Management Approach to School Organizations.
ERIC Educational Resources Information Center
Gogolin, Marilyn T.; Martois, John S.
The Management Responsibility Guidance (MRG) process is a matrix management program designed to clarify roles and improve staff integration, decision-making, effectiveness, and productivity. In 1976-77, Los Angeles County (California) used this approach in four pilot special education schools. As part of the MRG process, each staff member…
Roux, Kalya Cravo Di Pietro; Maltez, Heloisa França; Carletto, Jeferson Schneider; Martendal, Edmar; Carasek, Eduardo
2008-03-01
In this study a new method for Pb determination in water using solid phase extraction coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Pb preconcentration and extraction was silica gel chemically modified with niobium(V) oxide. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were buffer type, eluent concentration, and sample and eluent flow rates. It was verified that the aforementioned factors as well as their interactions were statistically significant at the 95% confidence level. The effect of foreign ions was evaluated using a fractionary factorial experimental design. The detection limit was 0.35 microg L(-1) and the precision was 1.6%. Results for recovery tests using different environmental samples were between 90 and 104%. Certified reference materials were analyzed in order to check the accuracy of the proposed method. PMID:18332544
Matrix Treatment of Ray Optics.
ERIC Educational Resources Information Center
Quon, W. Steve
1996-01-01
Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…
NASA Astrophysics Data System (ADS)
Kuhapatanakul, Kantaphon
2015-11-01
In this note, we study the Fibonacci and Lucas p-numbers. We introduce the Lucas p-matrix and companion matrices for the sums of the Fibonacci and Lucas p-numbers to derive some interesting identities of the Fibonacci and Lucas p-numbers.
Student Transfer Matrix, Fall 1996.
ERIC Educational Resources Information Center
Oklahoma State Regents for Higher Education, Oklahoma City.
The Student Transfer Matrix provides data on the numbers of students transferring from Oklahoma public and private institutions of higher education to other Oklahoma institutions, using data from receiving institutions. Among the highlights are: the number of students who transferred to four-year and two-year institutions remained steady at 57.8…
Integrability and generalized monodromy matrix
Lhallabi, T.; Moujib, A.
2007-09-15
We construct the generalized monodromy matrix M-circumflex({omega}) of two-dimensional string effective action by introducing the T-duality group properties. The integrability conditions with general solutions depending on spectral parameter are given. This construction is investigated for the exactly solvable Wess, Zumino, Novikov, and Witten model in pp-wave limit when B=0.
Matrix metalloproteinases in fish biology and matrix turnover.
Pedersen, Mona E; Vuong, Tram T; Rønning, Sissel B; Kolset, Svein O
2015-01-01
Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies.
NASA Astrophysics Data System (ADS)
Lü, Ling; Liu, Shuo; Li, Gang; Zhao, Guannan; Gu, Jiajia; Tian, Jing; Wang, Zhouyang
2016-11-01
In this paper, we research the outer synchronization among discrete networks with different topologies. Based on Lyapunov theorem, a novel synchronization technique is designed. Further, the control inputs of the networks and the adaptive laws of configuration matrix element are obtained. In the end, a numerical example is given to illustrate the effectiveness of the synchronization technique. It is found that the designed control input of the networks ensures the convergence of the errors among the networks to zero. And the designed adaptive law of configuration matrix element can replace effectively configuration matrix element in networks.
Biodegradable magnesium-hydroxyapatite metal matrix composites.
Witte, Frank; Feyerabend, Frank; Maier, Petra; Fischer, Jens; Störmer, Michael; Blawert, Carsten; Dietzel, Wolfgang; Hort, Norbert
2007-04-01
Recent studies indicate that there is a high demand to design magnesium alloys with adjustable corrosion rates and suitable mechanical properties. An approach to this challenge might be the application of metal matrix composite (MMC) based on magnesium alloys. In this study, a MMC made of magnesium alloy AZ91D as a matrix and hydroxyapatite (HA) particles as reinforcements have been investigated in vitro for mechanical, corrosive and cytocompatible properties. The mechanical properties of the MMC-HA were adjustable by the choice of HA particle size and distribution. Corrosion tests revealed that HA particles stabilised the corrosion rate and exhibited more uniform corrosion attack in artificial sea water and cell solutions. The phase identification showed that all samples contained hcp-Mg, Mg(17)Al(12), and HA before and after immersion. After immersion in artificial sea water CaCO3 was found on MMC-HA surfaces, while no formation of CaCO3 was found after immersion in cell solutions with and without proteins. Co-cultivation of MMC-HA with human bone derived cells (HBDC), cells of an osteoblasts lineage (MG-63) and cells of a macrophage lineage (RAW264.7) revealed that RAW264.7, MG-63 and HBDC adhere, proliferate and survive on the corroding surfaces of MMC-HA. In summary, biodegradable MMC-HA are cytocompatible biomaterials with adjustable mechanical and corrosive properties.
MATRIX METALLOPROTEASES IN HEAD AND NECK CANCER
Rosenthal, Eben L.; Matrisian, Lynn M.
2010-01-01
Matrix metalloproteases (MMPs) are a collection of enzymes capable of cleaving extracellular matrix components, growth factors, and cell-surface receptors. MMPs modulate most aspects of tumorigenesis and are highly expressed in cancer compared with normal tissues. Preclinical studies have demonstrated that head and neck squamous cell carcinomas (HNSCCs) express high levels of MMPs in vivo and that inhibition of these enzymes in vitro and in mouse models decreases invasion and metastasis. However, the clinical trials for MMP inhibitors have failed to demonstrate a significant survival advantage in most cancers. The disparity between preclinical and clinical studies has led to the reevaluation of how MMP functions in cancer and the design of clinical trials for molecularly targeted agents. Mouse model data and analysis of HNSCC tumor specimens suggests that membrane type-1 MMP (MT1-MMP) may be a critical enzyme in tumor cell invasion and survival in vivo. This accumulated data provide evidence for development of selective MT1-MMP inhibitors as therapy in HNSCC. PMID:16470875
Content addressable systolic array for sparse matrix computation
Wing, O.
1983-01-01
A systolic array is proposed which is specifically designed to solve a system of sparse linear equations. The array consists of a number of processing elements connected in a ring. Each processing element has its own content addressable memory where the nonzero elements of the sparse matrix are stored. Matrix elements to which elementary operations are applied are extracted from the memory by content addressing. The system of equations is solved in a systolic fashion and the solution is obtained in nz+5n-2 steps where nz is the number of nonzero elements along and below the diagonal and n is the number of equations. 13 references.
Printing microstructures in a polymer matrix using a ferrofluid droplet
NASA Astrophysics Data System (ADS)
Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.
2016-03-01
We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry.
Advanced composites: Fabrication processes for selected resin matrix materials
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.
Turbine Air-Flow Test Rig CFD Results for Test Matrix
NASA Technical Reports Server (NTRS)
Wilson, Josh
2003-01-01
This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.
ERIC Educational Resources Information Center
Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee
2004-01-01
We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…
An Early Childhood Program Matrix: Pulling the Pieces Together for Illinois
ERIC Educational Resources Information Center
Beneke, Sallee; Ruther, Gina; Fowler, Susan
2009-01-01
The early childhood program matrix in this article delineates the various requirements of nine publicly funded programs in Illinois that provide services to young children and families. The first section of the matrix addresses the design of each program and logistics, such as funding, payment, eligibility, and amount of services. The second…
Sapphire reinforced alumina matrix composites
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Setlock, John A.
1994-01-01
Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.
High temperature polymer matrix composites
NASA Technical Reports Server (NTRS)
Meador, Michael A.
1987-01-01
With the increased emphasis on high performance aircraft the need for lightweight, thermal/oxidatively stable materials is growing. Because of their ease of fabrication, high specific strength, and ability to be tailored chemically to produce a variety of mechanical and physical properties, polymers and polymer matrix composites present themselves as attractive materials for a number of aeropropulsion applications. In the early 1970s researchers at the NASA Lewis Research Center developed a highly processable, thermally stable (600 F) polyimide, PMR-15. Since that time, PMR-15 has become commercially available and has found use in military aircraft, in particular, the F-404 engine for the Navy's F/A-18 strike fighter. The NASA Lewis'contributions to high temperature polymer matrix composite research will be discussed as well as current and future directions.
Corrosion of Titanium Matrix Composites
Covino, B.S., Jr.; Alman, D.E.
2002-09-22
The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.
SnapShot: Mechanosensing Matrix.
Irianto, Jerome; Pfeifer, Charlotte R; Xia, Yuntao; Discher, Dennis E
2016-06-16
Cells sense and respond to properties of their microenvironment that can affect cell morphology, protein levels and localization, gene expression, and even nuclear integrity. Tissue micro-stiffness, largely influenced by extracellular matrix, varies dramatically within an organism and can be a useful parameter to both clarify and organize a wide range of cell and molecular processes, such as genomic changes in cancer. PMID:27315485
SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS
Langton, C.
2009-07-30
less than that expected for saltstone containing the reference amount of slag (45 wt.% of the total cementitious mixture versus 21 wt.% used in the SIMCO samples). Consequently the SIMCO saltstone samples are expected to have lower strengths, and tortuosity and higher porosity, water diffusivity, and intrinsic permeability compared to the reference case MCU saltstone. MCU reference saltstone contains nonradioactive salt solution with a composition designed to simulate the product of the Modular Caustic Side Solvent Extraction (MCU) Unit [Harbour, 2009]. The SIMCO saltstone samples were cast in molds and cured for three days under plastic with a source of water to prevent drying. Details of the sample preparation process are presented in Attachment 2. The molds were then removed and the samples were cured at a constant temperature (76 F, 24 C) and 100 percent relative humidity for up to one year. Selected samples were periodically removed and characterized the evolution of the matrix as a function of age. In order to preserve the age dependent microstructure at the specified curing times it is necessary to stop hydration. This was accomplished by immersing the samples in isopropanol for 5 days to replace water with alcohol. The microstructure of the matrix material was also characterized as a function of aging. This information was used as a base line for comparison with leached microstructures. After curing for 137 days, specimens were cut into 20 mm disks and exposed to deionized water with a pH maintained at 10.5. Microstructure and calcium sulfur leaching results for samples leached for 31 days are presented in this report. Insufficient leached material was generated during the testing to date to obtain physical and mineralogical properties for leached saltstone. Longer term experiments are required because the matrix alteration rate due to immersion in deionized water is slow.
Chemical Biology for Understanding Matrix Metalloproteinase Function
Knapinska, Anna; Fields, Gregg B.
2013-01-01
The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action. PMID:22933318
Integrable matrix theory: Level statistics
NASA Astrophysics Data System (ADS)
Scaramazza, Jasen A.; Shastry, B. Sriram; Yuzbashyan, Emil A.
2016-09-01
We study level statistics in ensembles of integrable N ×N matrices linear in a real parameter x . The matrix H (x ) is considered integrable if it has a prescribed number n >1 of linearly independent commuting partners Hi(x ) (integrals of motion) "]Hi(x ) ,Hj(x ) ]">H (x ) ,Hi(x ) =0 , for all x . In a recent work [Phys. Rev. E 93, 052114 (2016), 10.1103/PhysRevE.93.052114], we developed a basis-independent construction of H (x ) for any n from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the N →∞ limit provided n scales at least as logN ; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values x =x0 or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at O (N-0.5) deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest-neighbor level statistics.
Integrin Dynamics and Matrix Assembly
Pankov, Roumen; Cukierman, Edna; Katz, Ben-Zion; Matsumoto, Kazue; Lin, Diane C.; Lin, Shin; Hahn, Cornelia; Yamada, Kenneth M.
2000-01-01
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor αvβ3 remains within focal contacts, the fibronectin receptor α5β1 translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 ± 0.7 μm/h and is independent of cell migration. It is induced by ligation of α5β1 integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied α5β1 integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating α5β1 integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly. PMID:10704455
MALDI Matrix Research for Biopolymers
Fukuyama, Yuko
2015-01-01
Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908
Assessment of Synthetic Matrix Metalloproteinase Inhibitors by Fluorogenic Substrate Assay.
Lively, Ty J; Bosco, Dale B; Khamis, Zahraa I; Sang, Qing-Xiang Amy
2016-01-01
Matrix metalloproteinases (MMPs) are a family of metzincin enzymes that act as the principal regulators and remodelers of the extracellular matrix (ECM). While MMPs are involved in many normal biological processes, unregulated MMP activity has been linked to many detrimental diseases, including cancer, neurodegenerative diseases, stroke, and cardiovascular disease. Developed as tools to investigate MMP function and as potential new therapeutics, matrix metalloproteinase inhibitors (MMPIs) have been designed, synthesized, and tested to regulate MMP activity. This chapter focuses on the use of enzyme kinetics to characterize inhibitors of MMPs. MMP activity is measured via fluorescence spectroscopy using a fluorogenic substrate that contains a 7-methoxycoumarin-4-acetic acid N-succinimidyl ester (Mca) fluorophore and a 2,4-dinitrophenyl (Dpa) quencher separated by a scissile bond. MMP inhibitor (MMPI) potency can be determined from the reduction in fluorescent intensity when compared to the absence of the inhibitor. This chapter describes a technique to characterize a variety of MMPs through enzyme inhibition assays.
Solid oxide fuel cell matrix and modules
Riley, Brian
1990-01-01
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.
Fast polar decomposition of an arbitrary matrix
NASA Technical Reports Server (NTRS)
Higham, Nicholas J.; Schreiber, Robert S.
1988-01-01
The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.
R&D of MCFC matrix for long term operation
Nishimura, Takashi; Fujita, Yoji; Urushibata, Hiroaki; Sasaki, Akira
1996-12-31
Long term operation is an essential subject in the commercialization of the Molten Carbonate Fuel Cell (MCFC). Material stability is important for the development of the MCFC. particularly for long term operation. In this paper, the specification and the stabilization of MCFC matrix arc investigated, with the aim of producing 40000 hours of operation. It is common knowledge that matrix thickness has a large influence on shorting time, as shorting is caused by the dissolution of the nickel oxide cathodes. Therefore, the optimum thickness of a matrix designed for 40000 hours operation without the nickel shorting was sought. The influences of different electrolytes and matrix specifications on the shorting time were measured with accelerated cell tests. The internal resistance of the matrix was also estimated. Gamma( {gamma} )-lithium aluminate (LiAlO{sub 2}) powder with a sub-micron particle diameter is commonly used for a raw material of matrix to retain molten carbonate electrolytes. This is because most researchers found that {gamma}-LiA1O{sub 2} was the most stable material in the MCFC environment among the three allotropic forms alpha ( {alpha} ), beta ( {beta} ), and {gamma}. However. two problems with the stability of {gamma} -LiAlO{sub 2} are being vigorously discussed. especially in Japan: particle growth causes decreasing electrolyte retention, and the transformation of {gamma} to {alpha}. This transformation contradicts the accepted opinion that {gamma} is the most stable form. In this paper, the particle growth and the phase transformation of LiAlO{sub 2} are examined with post-test analyses. The influence of matrix degradation on cell performance is also considered.
A quenched c = 1 critical matrix model
Qiu, Zongan; Rey, Soo-Jong
1990-12-01
We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: `quenched` matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our `quenched` matrix model satisfy Virasoro algebra constraints.
A quenched c = 1 critical matrix model
Qiu, Zongan; Rey, Soo-Jong.
1990-12-01
We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our quenched' matrix model satisfy Virasoro algebra constraints.
Brigido, Stephen A; Boc, Steven F; Lopez, Ramon C
2004-01-01
Wound healing is a significant problem in orthopedics. Graftjacket tissue matrix (Wright Medical Technology, Inc, Arlington, Tenn), a novel acellular regenerative tissue matrix, has been designed to aid wound closure. A prospective, randomized study was initiated to determine the efficacy of this tissue product in wound repair compared with conventional treatment. Lower extremity wounds are refractile to healing in patients with diabetes mellitus. Therefore, researchers used diabetic foot ulcers to evaluate the efficacy of GraftJacket tissue matrix in wound repair. Only a single administration of the tissue matrix was required. After 1 month of treatment, preliminary results demonstrate that this novel tissue matrix promotes faster healing at a statistically significant rate over conventional treatment. Because wounds in this series of patients are deep and circulation around the wound is poor, the preliminary results suggest that this tissue matrix will be applicable to other types of orthopedic wounds.
Geometry of the Mueller matrix spectral decomposition.
Sheppard, Colin J R
2016-07-01
An arbitrary Mueller matrix can be decomposed into a sum of up to four deterministic Mueller-Jones matrices, with strengths given by the eigenvalues of an associated Hermitian matrix. A geometrical representation of the eigenvalues in terms of the matrix invariants, using a barycentric (quaternary) plot, is presented. Different polarization purity measures can be expressed in terms of the barycentric coordinates.
Metal-matrix composites: Status and prospects
NASA Technical Reports Server (NTRS)
1974-01-01
Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.
Improved Underwater Excitation-Emission Matrix Fluorometer
NASA Technical Reports Server (NTRS)
Moore, Casey; daCunha, John; Rhoades, Bruce; Twardowski, Michael
2007-01-01
A compact, high-resolution, two-dimensional excitation-emission matrix fluorometer (EEMF) has been designed and built specifically for use in identifying and measuring the concentrations of organic compounds, including polluting hydrocarbons, in natural underwater settings. Heretofore, most EEMFs have been designed and built for installation in laboratories, where they are used to analyze the contents of samples collected in the field and brought to the laboratories. Because the present EEMF can be operated in the field, it is better suited to measurement of spatially and temporally varying concentrations of substances of interest. In excitation-emission matrix (EEM) fluorometry, fluorescence is excited by irradiating a sample at one or more wavelengths, and the fluorescent emission from the sample is measured at multiple wavelengths. When excitation is provided at only one wavelength, the technique is termed one-dimensional (1D) EEM fluorometry because the resulting matrix of fluorescence emission data (the EEM) contains only one row or column. When excitation is provided at multiple wavelengths, the technique is termed two-dimensional (2D) EEM fluorometry because the resulting EEM contains multiple rows and columns. EEM fluorometry - especially the 2D variety - is well established as a means of simultaneously detecting numerous dissolved and particulate compounds in water. Each compound or pool of compounds has a unique spectral fluorescence signature, and each EEM is rich in information content, in that it can contain multiple fluorescence signatures. By use of deconvolution and/or other mixture-analyses techniques, it is often possible to isolate the spectral signature of compounds of interest, even when their fluorescence spectra overlap. What distinguishes the present 2D EEMF over prior laboratory-type 2D EEMFs are several improvements in packaging (including a sealed housing) and other aspects of design that render it suitable for use in natural underwater
Teaching Tip: When a Matrix and Its Inverse Are Stochastic
ERIC Educational Resources Information Center
Ding, J.; Rhee, N. H.
2013-01-01
A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.
Ideals of generalized matrix rings
Budanov, Aleksandr V
2011-01-31
Let R and S be rings, and {sub R}M{sub S} and {sub S}N{sub R} bimodules. In the paper, in terms of isomorphisms of lattices, relationships between the lattices of one-sided and two-sided ideals of the generalized matrix ring and the corresponding lattices of ideals of the rings R and S are described. Necessary and sufficient conditions for a pair of ideals I, J of rings R and S, respectively, to be the main diagonal of some ideal of the ring K are also obtained. Bibliography: 8 titles.
Random Matrix Theory and Econophysics
NASA Astrophysics Data System (ADS)
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory
Regenerator matrix physical property data
NASA Technical Reports Server (NTRS)
Fucinari, C. A.
1980-01-01
Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.
Matrix management for aerospace 2000
NASA Technical Reports Server (NTRS)
Mccarthy, J. F., Jr.
1980-01-01
The martix management approach to program management is an organized effort for attaining program objectives by defining and structuring all elements so as to form a single system whose parts are united by interaction. The objective of the systems approach is uncompromisingly complete coverage of the program management endeavor. Starting with an analysis of the functions necessary to carry out a given program, a model must be defined; a matrix of responsibility assignment must be prepared; and each operational process must be examined to establish how it is to be carried out and how it relates to all other processes.
Brain Extracellular Matrix in Neurodegeneration
Bonneh-Barkay, Dafna; Wiley, Clayton A.
2009-01-01
The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss. PMID:18662234
Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds.
Hortensius, Rebecca A; Ebens, Jill H; Harley, Brendan A C
2016-06-01
Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016.
The q-Laguerre matrix polynomials.
Salem, Ahmed
2016-01-01
The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given. PMID:27190749
DESIGN AND EVALUATION OF A METRONIDAZOLE CENTRAL CORE MATRIX TABLET
Nagaich, Upendra; Chaudhary, Vandana; Tonpay, S.D.; Karki, Roopa
2010-01-01
In this paper, a study of different concentration of HPMC K 15 M exerts influence on the drug release process from a new controlled drug delivery system has been realized in order to obtain a constant release rate during a prolonged period of time, for a programmed drug release. The drug release profiles obtained for the different batches have shown an interesting relationship between the particle size of the channeling agent used and the length of different operational periods. PMID:22247836
Matrix management in hospitals: testing theories of matrix structure and development.
Burns, L R
1989-09-01
A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.
On matrix Painlevé hierarchies
NASA Astrophysics Data System (ADS)
Gordoa, P. R.; Pickering, A.; Zhu, Z. N.
2016-07-01
We define a matrix first Painlevé hierarchy and a matrix second Painlevé (PII) hierarchy. For our matrix PII hierarchy we also give auto-Bäcklund transformations and consider the iteration of solutions. This is the first paper to define matrix Painlevé hierarchies and to give auto-Bäcklund transformations for a matrix Painlevé hierarchy. We also consider, amongst other results, the derivation of sequences of special integrals and autonomous limits. Until now it has been unknown how to connect the known matrix PII equation to the obvious candidates for related completely integrable matrix partial differential equations. Our matrix PII hierarchy is placed firmly within the context of a matrix modified Korteweg-de Vries (mKdV) hierarchy. In deriving our matrix PII hierarchy we make use of the Hamiltonian structure of this matrix mKdV hierarchy. We thus see once again the importance for Painlevé hierarchies of the integrability structures of related completely integrable equations.
Characterization of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Chun, H. J.; Karalekas, D.
1994-01-01
Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.
Solid-matrix luminescence analysis
Hurtubise, R.J.
1993-01-15
Several interactions with lumiphors adsorbed on filter paper were elucidated from experiments with moisture, modulus and heavy-atom salts. The data were interpreted using static and dynamic quenching models, heavy-atom theory, and a theory related to the modulus of paper. With cyclodextrin-salt matrices, it was shown that 10% [alpha]-cyclodextrin/NaCl was very effective for obtaining strong room-temperature fluorescence and moderate room-temperature phosphorescence from adsorbed stereoisomeric tetrols. Extensive photophysical information was obtained for the four tetrols on 10% [alpha]-cyclodextrin/NaCl. The photophysical information acquired was used to develop a method for characterizing two of the tetrols. Work with model compounds adsorbed on deuterated sodium acetate showed that C-H vibrations in the undeuterated sodium acetate were not responsible for the deactivation of the excited triplet state in the model phosphors investigated. A considerable amount of solution luminescence and solid-matrix luminescence data were compared. The most important finding was that in several cases the room-temperature solid-matrix luminescence quantum yields were greater than the solution low-temperature quantum yield values.
Extracellular Matrix and Liver Disease
Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana
2014-01-01
Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114
Continuous analogues of matrix factorizations
Townsend, Alex; Trefethen, Lloyd N.
2015-01-01
Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618
Thermoplastic matrix composite processing model
NASA Technical Reports Server (NTRS)
Dara, P. H.; Loos, A. C.
1985-01-01
The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.
Intermetallic bonded ceramic matrix composites
Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A.
1995-07-01
A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.
Evaluation of metal matrix composites
NASA Technical Reports Server (NTRS)
Okelly, K. P.
1971-01-01
The results of an evaluation of candidate metal-matrix composite materials for shuttle space radiators mounted to external structure are presented. The evaluation was specifically applicable to considerations of the manufacturing and properties of a potential space radiator. Two candidates, boron/aluminum and graphite/aluminum were obtained or made in various forms and tested in sufficient depth to allow selection of one of the two for future scale-up programs. The effort accomplished on this program verified that aluminum reinforced with boron was within the state-of-the-art in industry and possessed properties usable in the external skin areas available for shuttle radiators where re-entry temperatures will not exceed 800 F. It further demonstrated that graphite/aluminum has an apparently attractive future for space applications but requires extension development prior to scale-up.
Applications of matrix inversion tomosynthesis
NASA Astrophysics Data System (ADS)
Warp, Richard J.; Godfrey, Devon J.; Dobbins, James T., III
2000-04-01
The improved image quality and characteristics of new flat- panel x-ray detectors have renewed interest in advanced algorithms such as tomosynthesis. Digital tomosynthesis is a method of acquiring and reconstructing a three-dimensional data set with limited-angle tube movement. Historically, conventional tomosynthesis reconstruction has suffered contamination of the planes of interest by blurred out-of- plane structures. This paper focuses on a Matrix Inversion Tomosynthesis (MITS) algorithm to remove unwanted blur from adjacent planes. The algorithm uses a set of coupled equations to solve for the blurring function in each reconstructed plane. This paper demonstrates the use of the MITS algorithm in three imaging applications: small animal microscopy, chest radiography, and orthopedics. The results of the MITS reconstruction process demonstrate an improved reduction of blur from out-of-plane structures when compared to conventional tomosynthesis. We conclude that the MITS algorithm holds potential in a variety of applications to improve three-dimensional image reconstruction.
Matrix composition in opossum esophagus.
Schulze, K; Ellerbroek, S; Martin, J
2001-05-01
The esophagus of mammalian species is organized into mucosa, connective tissue, and muscle, but little is known about the matrix of these layers. We studied by immunohistochemistry the distribution of collagens, fibronectin, versican, and elastin in the smooth muscle segment of the American opossum. Cryosections were exposed to specific antibodies and fluorescent-stained using conjugates of rhodamine or isothiocyanate. Staining was scored by two observers. We found that collagen I was prominent in the submucosa and in the muscular septa; collagen III formed fibrillar meshes in the lamina propria and the submucosa but was virtually absent from the epithelial and muscular layers; collagen IV was restricted to the base of the epithelium; collagen V, in contrast to collagen III, was prominent in epithelium and muscularis mucosae and sparse in muscular septa and submucosa. Fibronectin distribution followed collagen III; it formed layers in lamina propria and submucosa and strands in muscle septa and between individual muscle cells. Versican distribution followed collagen V; it was prominent in large muscle septa and formed thick sheets at the boundaries of submucosa/circular muscle and of circular/longitudinal muscle. We also determined the tissue contents of protein, hexuronic acid, and fibronectin. The mucosal layers exceeded the muscular layers in their content of hexuronic acid and fibronectin but not protein. We conclude that individual layers of the smooth muscle esophagus each have their own characteristic matrix. Lamina propria and submucosa are similar with regard to fiber orientation but lamina propria contains relatively more collagen III (small fibril) and submucosa comparatively more collagen I (large fibril). Nonfibrillar collagen V and versican are particularly prominent specifically on the boundaries between contracting muscle tissue and connective tissue framework.
Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells
Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk
2005-01-01
Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137
Xu, Hui; Sandor, Maryellen; Lombardi, Jared
2013-01-01
Extracellular matrices derived from animal tissues for human tissue repairs are processed by various methods of physical, chemical, or enzymatic decellularization, viral inactivation, and terminal sterilization. The mechanisms of action in tissue repair vary among bioscaffolds and are suggested to be associated with process-induced extracellular matrix modifications. We compared three non-cross-linked, commercially available extracellular matrix scaffolds (Strattice, Veritas, and XenMatrix), and correlated extracellular matrix alterations to in vivo biological responses upon implantation in non-human primates. Structural evaluation showed significant differences in retaining native tissue extracellular matrix histology and ultrastructural features among bioscaffolds. Tissue processing may cause both the condensation of collagen fibers and fragmentation or separation of collagen bundles. Calorimetric analysis showed significant differences in the stability of bioscaffolds. The intrinsic denaturation temperature was measured to be 51°C, 38°C, and 44°C for Strattice, Veritas, and XenMatrix, respectively, demonstrating more extracellular matrix modifications in the Veritas and XenMatrix scaffolds. Consequently, the susceptibility to collagenase degradation was increased in Veritas and XenMatrix when compared to their respective source tissues. Using a non-human primate model, three bioscaffolds were found to elicit different biological responses, have distinct mechanisms of action, and yield various outcomes of tissue repair. Strattice permitted cell repopulation and was remodeled over 6 months. Veritas was unstable at body temperature, resulting in rapid absorption with moderate inflammation. XenMatrix caused severe inflammation and sustained immune reactions. This study demonstrates that extracellular matrix alterations significantly affect biological responses in soft tissue repair and regeneration. The data offer useful insights into the rational design of
The Extracellular Matrix of Fungal Biofilms.
Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R
2016-01-01
A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field. PMID:27271680
Universality of Quark-Lepton Mass Matrix
NASA Astrophysics Data System (ADS)
Fukuyama, Takeshi; Nishiura, Hiroyuki
2013-03-01
The recently observed lepton mixing angle θ13 of the MNS mixing matrix is well incorporated in a universal mixing hypothesis between quark and lepton sectors. This hypothesis asserts that, in the charged lepton diagonal base, all other mass matrices for up- and down-type quarks and light neutrinos are diagonalized by the same unitary matrix except for the phase elements. It is expressed as VCKM = UMNS(δ‧)†PUMNS(δ) for quark mixing matrix VCKM and lepton mixing matrix UMNS(δ) in the phenomenological level. Here P is a diagonal phase mass matrix. δ‧ is a slightly different phase parameter from the Dirac CP-violating phase δ = 1.1π (best fit) in the MNS lepton mixing matrix.
Extracellular matrix component signaling in cancer.
Multhaupt, Hinke A B; Leitinger, Birgit; Gullberg, Donald; Couchman, John R
2016-02-01
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.
Extracellular matrix component signaling in cancer.
Multhaupt, Hinke A B; Leitinger, Birgit; Gullberg, Donald; Couchman, John R
2016-02-01
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. PMID:26519775
Charge Resolution of the Silicon Matrix of the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Ganel, O.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)
2002-01-01
ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CRT particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. The silicon matrix of the ATIC spectrometer is designed to resolve individual elements from proton to iron. To provide this resolution careful calibration of each pixel of the silicon matrix is required. Firstly, for each electronic channel of the matrix the pedestal value was subtracted taking into account its drift during the flight. The muon calibration made before the flight was used then to convert electric signals (in ADC channel number) to energy deposits in each pixel. However, the preflight muon calibration was not accurate enough for the purpose, because of lack of statistics in each pixel. To improve charge resolution the correction was done for the position of Helium peak in each pixel during the flight . The other way to set electric signals in electronics channels of the Si-matrix to one scale was correction for electric channel gains accurately measured in laboratory. In these measurements it was found that small different nonlinearities for different channels are present in the region of charge Z > 20. The correction for these non-linearities was not done yet. In linear approximation the method provides practically the same resolution as muon calibration plus He-peak correction. For searching a pixel with the signal of primary particle an indication from the cascade in the calorimeter was used. For this purpose a trajectory was reconstructed using weight centers of energy deposits in BGO layers. The point of intersection
ANALYSIS OF A CLASSIFICATION ERROR MATRIX USING CATEGORICAL DATA TECHNIQUES.
Rosenfield, George H.; Fitzpatrick-Lins, Katherine
1984-01-01
Summary form only given. A classification error matrix typically contains tabulation results of an accuracy evaluation of a thematic classification, such as that of a land use and land cover map. The diagonal elements of the matrix represent the counts corrected, and the usual designation of classification accuracy has been the total percent correct. The nondiagonal elements of the matrix have usually been neglected. The classification error matrix is known in statistical terms as a contingency table of categorical data. As an example, an application of these methodologies to a problem of remotely sensed data concerning two photointerpreters and four categories of classification indicated that there is no significant difference in the interpretation between the two photointerpreters, and that there are significant differences among the interpreted category classifications. However, two categories, oak and cottonwood, are not separable in classification in this experiment at the 0. 51 percent probability. A coefficient of agreement is determined for the interpreted map as a whole, and individually for each of the interpreted categories. A conditional coefficient of agreement for the individual categories is compared to other methods for expressing category accuracy which have already been presented in the remote sensing literature.
Key Issues for Aerospace Applications of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Levine, S. R.
1998-01-01
Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.
Autologous Matrix-Induced Chondrogenesis in the Knee
Suzer, Ferzan; Thermann, Hajo
2014-01-01
Objective: Autologous matrix-induced chondrogenesis (AMIC) is a 1-step cartilage restoration technique that combines microfracture with the use of an exogenous scaffold. This matrix covers and mechanically stabilizes the clot. There have been an increasing number of studies performed related to the AMIC technique and an update of its use and results is warranted. Design and methods: Using the PubMed database, a literature search was performed using the terms “AMIC” or “Autologous Matrix Induced Chondrogenesis.” A total of 19 basic science and clinical articles were identified. Results: Ten studies that were published on the use of AMIC for knee chondral defects were identified and the results of 219 patients were analyzed. The improvements in Knee Injury and Osteoarthritis Outcome Score, International Knee Documentation Committee Subjective, Lysholm and Tegner scores at 2 years were comparable to the published results from autologous chondrocyte implantation (ACI) and matrix ACI techniques for cartilage repair. Conclusions: Our systematic review of the current state of the AMIC technique suggests that it is a promising 1-stage cartilage repair technique. The short-term clinical outcomes and magnetic resonance imaging results are comparable to other cell-based methods. Further studies with AMIC in randomized studies versus other repair techniques such as ACI are needed in the future. PMID:26069694
Myelinating glia differentiation is regulated by extracellular matrix elasticity
Urbanski, Mateusz M.; Kingsbury, Lyle; Moussouros, Daniel; Kassim, Imran; Mehjabeen, Saraf; Paknejad, Navid; Melendez-Vasquez, Carmen V.
2016-01-01
The mechanical properties of living tissues have a significant impact on cell differentiation, but remain unexplored in the context of myelin formation and repair. In the PNS, the extracellular matrix (ECM) incorporates a basal lamina significantly denser than the loosely organized CNS matrix. Inhibition of non-muscle myosin II (NMII) enhances central but impairs peripheral myelination and NMII has been implicated in cellular responses to changes in the elasticity of the ECM. To directly evaluate whether mechanotransduction plays a role in glial cell differentiation, we cultured Schwann cells (SC) and oligodendrocytes (OL) on matrices of variable elastic modulus, mimicking either their native environment or conditions found in injured tissue. We found that a rigid, lesion-like matrix inhibited branching and differentiation of OL in NMII-dependent manner. By contrast, SC developed normally in both soft and stiffer matrices. Although SC differentiation was not significantly affected by changes in matrix stiffness alone, we found that expression of Krox-20 was potentiated on rigid matrices at high laminin concentration. These findings are relevant to the design of biomaterials to promote healing and regeneration in both CNS and PNS, via transplantation of glial progenitors or the implantation of tissue scaffolds. PMID:27646171
Sandia Generated Matrix Tool (SGMT) v. 1.0
2010-03-24
Provides a tool with which create and characterize a very large set of matrix-based visual analogy problems that have properties that are similar to Ravens Progressive Matrices (RPMs). The software uses the same underlying patterns found in RPMs to generate large numbers of unique matrix problems using parameters chosen by the researcher. Specifically, the software is designed so that researchers can choose the type, direction, and number of relations in a problem and then createmore » any number of unique matrices that share the same underlying structure (e.g. changes in numerosity in a diagonal pattern) but have different surface features (e.g. shapes, colors).Ravens Progressive Matrices (RPMs) are a widely-used test for assessing intelligence and reasoning ability. Since the test is non-verbal, it can be applied to many different populations and has been used all over the world. However, there are relatively few matrices in the sets developed by Raven, which limits their use in experiments requiring large numbers of stimuli. This tool creates a matrix set in a systematic way that allows researchers to have a great deal of control over the underlying structure, surface features, and difficulty of the matrix problems while providing a large set of novel matrices with which to conduct experiments.« less
FPGA implementation of sparse matrix algorithm for information retrieval
NASA Astrophysics Data System (ADS)
Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio
2005-06-01
Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.
GPLOM: the generalized plot matrix for visualizing multidimensional multivariate data.
Im, Jean-François; McGuffin, Michael J; Leung, Rock
2013-12-01
Scatterplot matrices (SPLOMs), parallel coordinates, and glyphs can all be used to visualize the multiple continuous variables (i.e., dependent variables or measures) in multidimensional multivariate data. However, these techniques are not well suited to visualizing many categorical variables (i.e., independent variables or dimensions). To visualize multiple categorical variables, 'hierarchical axes' that 'stack dimensions' have been used in systems like Polaris and Tableau. However, this approach does not scale well beyond a small number of categorical variables. Emerson et al. [8] extend the matrix paradigm of the SPLOM to simultaneously visualize several categorical and continuous variables, displaying many kinds of charts in the matrix depending on the kinds of variables involved. We propose a variant of their technique, called the Generalized Plot Matrix (GPLOM). The GPLOM restricts Emerson et al.'s technique to only three kinds of charts (scatterplots for pairs of continuous variables, heatmaps for pairs of categorical variables, and barcharts for pairings of categorical and continuous variable), in an effort to make it easier to understand. At the same time, the GPLOM extends Emerson et al.'s work by demonstrating interactive techniques suited to the matrix of charts. We discuss the visual design and interactive features of our GPLOM prototype, including a textual search feature allowing users to quickly locate values or variables by name. We also present a user study that compared performance with Tableau and our GPLOM prototype, that found that GPLOM is significantly faster in certain cases, and not significantly slower in other cases.
Myelinating glia differentiation is regulated by extracellular matrix elasticity.
Urbanski, Mateusz M; Kingsbury, Lyle; Moussouros, Daniel; Kassim, Imran; Mehjabeen, Saraf; Paknejad, Navid; Melendez-Vasquez, Carmen V
2016-01-01
The mechanical properties of living tissues have a significant impact on cell differentiation, but remain unexplored in the context of myelin formation and repair. In the PNS, the extracellular matrix (ECM) incorporates a basal lamina significantly denser than the loosely organized CNS matrix. Inhibition of non-muscle myosin II (NMII) enhances central but impairs peripheral myelination and NMII has been implicated in cellular responses to changes in the elasticity of the ECM. To directly evaluate whether mechanotransduction plays a role in glial cell differentiation, we cultured Schwann cells (SC) and oligodendrocytes (OL) on matrices of variable elastic modulus, mimicking either their native environment or conditions found in injured tissue. We found that a rigid, lesion-like matrix inhibited branching and differentiation of OL in NMII-dependent manner. By contrast, SC developed normally in both soft and stiffer matrices. Although SC differentiation was not significantly affected by changes in matrix stiffness alone, we found that expression of Krox-20 was potentiated on rigid matrices at high laminin concentration. These findings are relevant to the design of biomaterials to promote healing and regeneration in both CNS and PNS, via transplantation of glial progenitors or the implantation of tissue scaffolds. PMID:27646171
Matrix interactions modulate neurotrophin-mediated neurite outgrowth and pathfinding.
Madl, Christopher M; Heilshorn, Sarah C
2015-04-01
Both matrix biochemistry and neurotrophic factors are known to modulate neurite outgrowth and pathfinding; however, the interplay between these two factors is less studied. While previous work has shown that the biochemical identity of the matrix can alter the outgrowth of neurites in response to neurotrophins, the importance of the concentration of cell-adhesive ligands is unknown. Using engineered elastin-like protein matrices, we recently demonstrated a synergistic effect between matrix-bound cell-adhesive ligand density and soluble nerve growth factor treatment on neurite outgrowth from dorsal root ganglia. This synergism was mediated by Schwann cell-neurite contact through L1CAM. Cell-adhesive ligand density was also shown to alter the pathfinding behavior of dorsal root ganglion neurites in response to a gradient of nerve growth factor. While more cell-adhesive matrices promoted neurite outgrowth, less cell-adhesive matrices promoted more faithful neurite pathfinding. These studies emphasize the importance of considering both matrix biochemistry and neurotrophic factors when designing biomaterials for peripheral nerve regeneration. PMID:26170800
Matrix interactions modulate neurotrophin-mediated neurite outgrowth and pathfinding
Madl, Christopher M.; Heilshorn, Sarah C.
2015-01-01
Both matrix biochemistry and neurotrophic factors are known to modulate neurite outgrowth and pathfinding; however, the interplay between these two factors is less studied. While previous work has shown that the biochemical identity of the matrix can alter the outgrowth of neurites in response to neurotrophins, the importance of the concentration of cell-adhesive ligands is unknown. Using engineered elastin-like protein matrices, we recently demonstrated a synergistic effect between matrix-bound cell-adhesive ligand density and soluble nerve growth factor treatment on neurite outgrowth from dorsal root ganglia. This synergism was mediated by Schwann cell-neurite contact through L1CAM. Cell-adhesive ligand density was also shown to alter the pathfinding behavior of dorsal root ganglion neurites in response to a gradient of nerve growth factor. While more cell-adhesive matrices promoted neurite outgrowth, less cell-adhesive matrices promoted more faithful neurite pathfinding. These studies emphasize the importance of considering both matrix biochemistry and neurotrophic factors when designing biomaterials for peripheral nerve regeneration. PMID:26170800
Extracellular Matrix: Functions in the Nervous System
Barros, Claudia S.; Franco, Santos J.; Müller, Ulrich
2011-01-01
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system. PMID:21123393
A random matrix theory of decoherence
NASA Astrophysics Data System (ADS)
Gorin, T.; Pineda, C.; Kohler, H.; Seligman, T. H.
2008-11-01
Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.
Third Intermetallic Matrix Composites Symposium, volume 350
Graves, J.A.; Bowman, R.R.; Lewandowski, J.J.
1994-04-01
Partial contents include: issues in potential IMC application for aerospace structures; powder metallurgy processing of intermetallic matrix composites; microstructure and properties of intermetallic matrix composites produced by reaction synthesis; combustion synthesis of niobium aluminide matrix composites; ambient temperature synthesis of bulk intermetallics; wear behavior of SHS intermetallic matrix composites; fracture characteristics of metal-intermetallic laminates produced by SHS reactions; and vapor phase synthesis of Ti aluminides and the interfacial bonding effect on the mechanical property of micro-composites reinforced by pyrolized SiC fibers.
Multiscale Modeling of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
Reconstituted asbestos matrix for fuel cells
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1975-01-01
Method is described for reprocessing commercially available asbestos matrix stock to yield greater porosity and bubble pressure (due to increased surface tension), improved homogeneity, and greater uniformity.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; Jones, Clyde S. (Technical Monitor)
2002-01-01
This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.
Vascular Extracellular Matrix and Arterial Mechanics
WAGENSEIL, JESSICA E.; MECHAM, ROBERT P.
2009-01-01
An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments. PMID:19584318
The evolution of extracellular matrix.
Ozbek, Suat; Balasubramanian, Prakash G; Chiquet-Ehrismann, Ruth; Tucker, Richard P; Adams, Josephine C
2010-12-01
We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or "adhesome" also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology.
The Evolution of Extracellular Matrix
Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.
2010-01-01
We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071
Queering Participatory Design Research
ERIC Educational Resources Information Center
McWilliams, Jacob
2016-01-01
This article offers a way forward for educators and researchers interested in drawing on the principles of "queer theory" to inform participatory design. In this article, I aim to achieve two related goals: To introduce new concepts within a critical conceptual practice of questioning and challenging the "heterosexual matrix"…
The Molecules of the Cell Matrix.
ERIC Educational Resources Information Center
Weber, Klaus; Osborn, Mary
1985-01-01
Cytoplasmic proteins form a highly structured yet changeable matrix that affects cell shape, division, motion, and transport of vesicles and organelles. Types of microfilaments, research techniques, actin and myosin, tumor cells, and other topics are addressed. Evidence indicates that the cell matrix might have a bearing on metabolism. (DH)
Differentiating Instruction Using a Matrix Plan.
ERIC Educational Resources Information Center
Distad, Linda; Heacox, Diane
2000-01-01
Describes the Matrix Plan that is a planning grid with operational verbs related to Bloom's taxonomy and acts as a means for assisting teachers in differentiating instruction in the regular classroom. Explores a case where pre-service teachers utilized the Matrix Plan in order to help them learn about differential instruction. (CMK)
Improvements in sparse matrix operations of NASTRAN
NASA Technical Reports Server (NTRS)
Harano, S.
1980-01-01
A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.
Weak matrix elements for CP violation.
Lee, W.; Gupta, R.; Christ, N.; Fleming, G. T.; Kilcup, G.; Liu, G.; Mawhinney, R.; Sharpe, S.; Wu, L.; Bhattacharya, T.
2001-01-01
We present preliminary results of matrix elements of four fermion operators relevant to the determination of e and E ' / E using staggered fermions. To calculate the matrix elements relevant to CP violation in Kaon decays it is important to use a lattice formulation which preserves (some) chiral symmetry.
Counseling Uses of the Hill Interaction Matrix.
ERIC Educational Resources Information Center
Boyd, Robert E.
While the Hill Interaction Matrix was developed as a research instrument to assess interview process, it is also generally useful in any undertaking requiring the evaluation of verbal interaction and, hence, can be used as an aid in modifying communication in order to increase its therapeutic effect. The Hill Interaction Matrix with accompanying…
Risk Management using Dependency Stucture Matrix
NASA Astrophysics Data System (ADS)
Petković, Ivan
2011-09-01
An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.
Matrix model description of baryonic deformations
Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu
2003-03-13
We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.
Metal matrix composites microfracture: Computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Caruso, John J.; Chamis, Christos C.
1990-01-01
Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system.
Matrix Management: An Organizational Alternative for Libraries.
ERIC Educational Resources Information Center
Johnson, Peggy
1990-01-01
Describes various organizational structures and models, presents matrix management as an alternative to traditional hierarchical structures, and suggests matrix management as an appropriate organizational alternative for academic libraries. Benefits that are discussed include increased flexibility, a higher level of professional independence, and…
A marketing matrix for health care organizations.
Weaver, F J; Gombeski, W R; Fay, G W; Eversman, J J; Cowan-Gascoigne, C
1986-06-01
Irrespective of the formal marketing structure successful marketing for health care organizations requires the input on many people. Detailed here is the Marketing Matrix used at the Cleveland Clinic Foundation in Cleveland, Ohio. This Matrix is both a philosophy and a tool for clarifying and focusing the organization's marketing activities.
A review of failure models for unidirectional ceramic matrix composites under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
A review of failure models for ceramic matrix composite laminates under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
Development of Ceramic Matrix Composites For High Temperature Applications
NASA Technical Reports Server (NTRS)
Heimann, Paula
2004-01-01
The microstructure and mechanical properties of carbon fiber reinforced silicon carbide (C/SiC) composites that incorporated molecular-level oxidation inhibitors designed to increase the material s high temperature durability were characterized. The viability of a fiber-level inhibitor incorporated as part of a layered interface system as well as a molecularly-integrated matrix-level oxidation inhibitor that is co-deposited with the SiC matrix during Chemical Vapor Infiltration (CVI) was determined. It was expected that the inhibitor would act as a glass former that will getter the oxygen and form a crack sealant to reduce further ingress of oxygen into the composite. Three composites were examined. Composite A was a baseline C(sub f)/SiC(sub m) composite that incorporated a approx. 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, and a CVI-derived SiC matrix. Composite B was a C(sub f)/SiC(sub m) composite incorporating a approx 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, a approx. 0.6 micron B4C fiber-level oxidation barrier coating, and a CVI-derived SiC matrix. Composite C was a C(sub f) /SiC(sub m) composite that incorporated a approx. 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, a approx. 0.6 micron B4C fiber-level oxidation barrier coating, and a BxC-SiC oxidation-inhibited matrix produced by CVI co-deposition. All composites were reinforced with 10 plies of T-300 balanced plain weave carbon fabric with 3K tows at 12.5 ends per inch.
Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2003-01-01
Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Fiber-matrix interfaces in ceramic composites
Besmann, T.M.; Stinton, D.P.; Kupp, E.R.; Shanmugham, S.; Liaw, P.K.
1996-12-31
The mechanical properties of ceramic matrix composites (CMCs) are governed by the relationships between the matrix, the interface material, and the fibers. In non-oxide matrix systems compliant pyrolytic carbon and BN have been demonstrated to be effective interface materials, allowing for absorption of mismatch stresses between fiber and matrix and offering a poorly bonded interface for crack deflection. The resulting materials have demonstrated remarkable strain/damage tolerance together with high strength. Carbon or BN, however, suffer from oxidative loss in many service environments, and thus there is a major search for oxidation resistant alternatives. This paper reviews the issues related to developing a stable and effective interface material for non-oxide matrix CMCs.
Noncoherent matrix inversion methods for Scansar processing
NASA Astrophysics Data System (ADS)
Dendal, Didier
1995-11-01
The aim of this work is to develop some algebraic reconstruction techniques for low resolution power SAR imagery, as in the Scansar or QUICKLOOK imaging modes. The traditional reconstruction algorithms are indeed not well fit to low resolution power purposes, since Fourier constraints impose a computational load of the same order as the one of the usual SAR azimuthal resolution. Furthermore, the range migration balancing is superfluous, as it does not cover a tenth of the resolution cell in the less favorable situations. There are several possibilities for using matrices in the azimuthal direction. The most direct alternative leads to a matrix inversion. Unfortunately, the numerical conditioning of the problem is far from being excellent, since each line of the matrix is an image of the antenna radiating pattern with a shift between two successive lines corresponding to the distance covered by the SAR between two pulses transmission (a few meters for satellite ERS1). We'll show how it is possible to turn a very ill conditioned problem into an equivalent one, but without any divergence risk, by a technique of successive decimation by two (resolution power increased by two at each step). This technique leads to very small square matrices (two lines and two columns), the good numeric conditioning of which is certified by a well-known theorem of numerical analysis. The convergence rate of the process depends on the circumstances (mainly the distance between two impulses transmissions) and on the required accuracy, but five or six iterations already give excellent results. The process is applicable at four or five levels (number of decimations) which corresponds to initial matrices of 16 by 16 or 32 by 32. The azimuth processing is performed on the basis of the projection function concept (tomographic analogy of radar principles). This integrated information results from classical coherent range compression. The aperture synthesis is obtained by non-coherent processing
Maximizing sparse matrix vector product performance in MIMD computers
McLay, R.T.; Kohli, H.S.; Swift, S.L.; Carey, G.F.
1994-12-31
A considerable component of the computational effort involved in conjugate gradient solution of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP), and hence it is the focus of most efforts at improving performance. Such efforts are hindered on MIMD machines due to constraints on memory, cache and speed of memory-cpu data transfer. This paper describes a strategy for maximizing the performance of the local computations associated with the MVP. The method focuses on single stride memory access, and the efficient use of cache by pre-loading it with data that is re-used while bypassing it for other data. The algorithm is designed to behave optimally for varying grid sizes and number of unknowns per gridpoint. Results from an assembly language implementation of the strategy on the iPSC/860 show a significant improvement over the performance using FORTRAN.
Mechanism of regulation of stem cell differentiation by matrix stiffness.
Lv, Hongwei; Li, Lisha; Sun, Meiyu; Zhang, Yin; Chen, Li; Rong, Yue; Li, Yulin
2015-05-27
Stem cell behaviors are regulated by multiple microenvironmental cues. As an external signal, mechanical stiffness of the extracellular matrix is capable of governing stem cell fate determination, but how this biophysical cue is translated into intracellular signaling remains elusive. Here, we elucidate mechanisms by which stem cells respond to microenvironmental stiffness through the dynamics of the cytoskeletal network, leading to changes in gene expression via biophysical transduction signaling pathways in two-dimensional culture. Furthermore, a putative rapid shift from original mechanosensing to de novo cell-derived matrix sensing in more physiologically relevant three-dimensional culture is pointed out. A comprehensive understanding of stem cell responses to this stimulus is essential for designing biomaterials that mimic the physiological environment and advancing stem cell-based clinical applications for tissue engineering.
MATRIX City: A Multi-Risk Platform
NASA Astrophysics Data System (ADS)
Euchner, F.; Mignan, A.
2012-04-01
MATRIX City (the MATRIX Common IT sYstem) is the computational platform that is being developed in the course of the New Multi-Hazard and Multi-Risk Assessment Methods for Europe (MATRIX) project. MATRIX aims to develop multi-type hazard and risk assessment and mitigation tools suited to the European context. The core of MATRIX City is a risk engine of a novel type that is based on a sequential simulation approach, which allows to quantify interactions and other time-dependent processes at the hazard, exposure, vulnerability and risk levels. For risk estimation in realistic scenarios, data availability is crucial. To overcome this limitation, MATRIX City provides a component called Virtual City. It is a collection of heuristic databases, which provides a generic approach to quantifying multi-type hazard and risk when data coverage is poor, and for sensitivity analysis. MATRIX City results are intended to provide a "big picture" of the expected impact of multi-type hazard and risk modelling (as opposed to static modelling), thus being a valuable tool for decision support. MATRIX City development uses a modern software engineering approach (test-driven development, continuous integration). The architecture is flexible, so that new perils, new models and large datasets can be accommodated easily. However, it should be noted that hazard computation is not part of MATRIX City. Hazard footprints have to be provided as input data, as well as exposure and vulnerability. The data model used in MATRIX City is an enhancement of the Natural hazards' Risk Markup Language (NRML). An XML serialization of this data model, which is a GML (Geographic Markup Language) application schema, is used for data interchange.
Experimental observations of a nuclear matrix.
Nickerson, J
2001-02-01
Nuclei are intricately structured, and nuclear metabolism has an elaborate spatial organization. The architecture of the nucleus includes two overlapping and nucleic-acid-containing structures - chromatin and a nuclear matrix. The nuclear matrix is observed by microscopy in live, fixed and extracted cells. Its ultrastructure and composition show it to be, in large part, the ribonucleoprotein (RNP) network first seen in unfractionated cells more than 30 years ago. At that time, the discovery of this RNP structure explained surprising observations that RNA, packaged in proteins, is attached to an intranuclear, non-chromatin structure. Periodic and specific attachments of chromatin fibers to the nuclear matrix create the chromatin loop domains that can be directly observed by microscopy or inferred from biochemical experiments. The ultrastructure of the nuclear matrix is well characterized and consists of a nuclear lamina and an internal nuclear network of subassemblies linked together by highly structured fibers. These complex fibers are built on an underlying scaffolding of branched 10-nm filaments that connect to the nuclear lamina. The structural proteins of the nuclear lamina have been well characterized, but the structural biochemistry of the internal nuclear matrix has received less attention. Many internal matrix proteins have been identified, but far less is known about how these proteins assemble to make the fibers, filaments and other assemblies of the internal nuclear matrix. Correcting this imbalance will require the combined application of biochemistry and electron microscopy. The central problem in trying to define nuclear matrix structure is to identify the proteins that assemble into the 10-nm filaments upon which the interior architecture of the nucleus is constructed. Only by achieving a biochemical characterization of the nuclear matrix will we advance beyond simple microscopic observations of structure to a better understanding of nuclear matrix
Combination detergent/MALDI matrix: functional cleavable detergents for mass spectrometry.
Norris, Jeremy L; Porter, Ned A; Caprioli, Richard M
2005-08-01
This study reports the synthesis of the first functional cleavable detergent designed specifically for applications in mass spectrometry. Upon cleavage, two inert compounds and the MALDI matrix are formed, eliminating sources of potential interference originating from traditional cleavable detergents. Analysis of peptides demonstrates that MALDI matrix generated in situ results in MALDI spectra equivalent to those prepared using established protocols. Analysis of the membrane protein diacylglycerol kinase was accomplished using the combination detergent/MALDI matrix. Applications of the functional cleavable detergents to the profiling of whole cell lysates results in increased signal-to-noise ratios of many ions and the detection of additional proteins previously not observed.
Instruments for Reading Direct-Marked Data-Matrix Symbols
NASA Technical Reports Server (NTRS)
Schramm, Harry F.; Corder, Eric L.
2006-01-01
Improved optoelectronic instruments (specially configured digital cameras) for reading direct-marked data-matrix symbols on the surfaces of optically reflective objects (including specularly reflective ones) are undergoing development. Data-matrix symbols are two-dimensional binary patterns that are used, like common bar codes, for automated identification of objects. The first data-matrix symbols were checkerboard-like patterns of black-and-white rectangles, typically existing in the forms of paint, ink, or detachable labels. The major advantage of direct marking (the marks are more durable than are painted or printed symbols or detachable labels) is offset by a major disadvantage (the marks generated by some marking methods do not provide sufficient contrast to be readable by optoelectronic instruments designed to read black-and-white data-matrix symbols). Heretofore, elaborate lighting, lensing, and software schemes have been tried in efforts to solve the contrast problem in direct-mark matrix- symbol readers. In comparison with prior readers based on those schemes, the readers now undergoing development are expected to be more effective while costing less. All of the prior direct-mark matrix-symbol readers are designed to be aimed perpendicularly to marked target surfaces, and they tolerate very little angular offset. However, the reader now undergoing development not only tolerates angular offset but depends on angular offset as a means of obtaining the needed contrast, as described below. The prototype reader (see Figure 1) includes an electronic camera in the form of a charge-coupled-device (CCD) image detector equipped with a telecentric lens. It also includes a source of collimated visible light and a source of collimated infrared light for illuminating a target. The visible and infrared illumination complement each other: the visible illumination is more useful for aiming the reader toward a target, while the infrared illumination is more useful for
ERIC Educational Resources Information Center
Anuar, Azad Athahiri; Rozubi, Norsayyidatina Che; Abdullah, Haslee Sharil
2015-01-01
The aims of this study were to develop and validate a MCC training module for trainee counselor based on MCC matrix model by Sue et al. (1992). This module encompassed five sub modules and 11 activities developed along the concepts and components of the MCC matrix model developed by Sue, Arredondo dan McDavis (1992). The design method used in this…
Creep of plain weave polymer matrix composites
NASA Astrophysics Data System (ADS)
Gupta, Abhishek
Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the
ERIC Educational Resources Information Center
Jacobs, James A.
1994-01-01
This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)
Matrix evaluation of science objectives
NASA Technical Reports Server (NTRS)
Wessen, Randii R.
1994-01-01
The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.
Detection of functional matrix metalloproteinases by zymography.
Hu, Xueyou; Beeton, Christine
2010-01-01
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary
[Modern polymers in matrix tablets technology].
Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa
2014-01-01
Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.
Bone Matrix Turnover And Balance In Vitro
Flanagan, Barry; Nichols, George
1969-01-01
Labeled proline from incubation media has been shown to be incorporated into living bone matrix collagen in vitro. Hydroxyproline is released from fresh bone slices in similar systems in a characteristic curve against time. This hydroxyproline is derived from three distinct sources, each of which may be separately quantitated. Part of the total represents passive solubilization of matrix collagen, part is derived from new synthesis of soluble collagen occurring in vitro, and the remainder is released by cell-mediated resorptive action. The latter two processes are linear with time up to 8 hr; the former decays to zero at about 2 hr. Consequently, rates of collagen synthesis and of new collagen deposition and resorption can be quantitated simultaneously in the same system. The ability to measure these parameters of bone collagen metabolism provides methods both for the accurate evaluation of organic matrix resorption in vitro and for the accurate measurement of rates of collagen synthesis and collagen deposition. The application of the method is illustrated using parathyroid hormone and thyrocalcitonin. Parathyroid hormone diminishes collagen synthesis and stimulates collagen resorption. It reduces slightly the deposition of newly formed collagen in stable matrix. The net effect of these changes is to produce a marked negative balance. It does not significantly affect the solubility of matrix collagen. Thyrocalcitonin does not affect collagen synthesis or its deposition. It causes a marked fall in resorption rate. It has no effect on matrix collagen solubility. The net effect is to produce a marked positive balance of matrix collagen. Images PMID:5774102
Cardiac matrix: a clue for future therapy.
Mishra, Paras Kumar; Givvimani, Srikanth; Chavali, Vishalakshi; Tyagi, Suresh C
2013-12-01
Cardiac muscle is unique because it contracts ceaselessly throughout the life and is highly resistant to fatigue. The marvelous nature of the cardiac muscle is attributed to its matrix that maintains structural and functional integrity and provides ambient micro-environment required for mechanical, cellular and molecular activities in the heart. Cardiac matrix dictates the endothelium myocyte (EM) coupling and contractility of cardiomyocytes. The matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) regulate matrix degradation that determines cardiac fibrosis and myocardial performance. We have shown that MMP-9 regulates differential expression of micro RNAs (miRNAs), calcium cycling and contractility of cardiomyocytes. The differential expression of miRNAs is associated with angiogenesis, hypertrophy and fibrosis in the heart. MMP-9, which is involved in the degradation of cardiac matrix and induction of fibrosis, is also implicated in inhibition of survival and differentiation of cardiac stem cells (CSC). Cardiac matrix is distinct because it renders mechanical properties and provides a framework essential for differentiation of cardiac progenitor cells (CPC) into specific lineage. Cardiac matrix regulates myocyte contractility by EM coupling and calcium transients and also directs miRNAs required for precise regulation of continuous and synchronized beating of cardiomyocytes that is indispensible for survival. Alteration in the matrix homeostasis due to induction of MMPs, altered expression of specific miRNAs or impaired signaling for contractility of cardiomyocytes leads to catastrophic effects. This review describes the mechanisms by which cardiac matrix regulates myocardial performance and suggests future directions for the development of treatment strategies in cardiovascular diseases. PMID:24055000
A new look at the nuclear matrix.
Hancock, R
2000-07-01
The concept of the nuclear matrix, a karyoskeletal structure that serves as a support for the genome and its activities, has stimulated many studies of the association of nuclear components and functions with this structure. However, certain experimental findings are not consistent with the existence of the nuclear matrix in vivo, including our inability to visualise a corresponding structure in intact cells, the demonstrated mobility in vivo of chromatin and messenger ribonucleoprotein particles, which are claimed to be bound to the nuclear matrix, the paradoxical extractability from nuclei in low ionic strength buffers of enzymes that are found in the 2 M NaCl-insoluble matrix, and the extractability, in conditions which reproduce the intranuclear milieu, of regions of DNA (matrix or scaffold attachment regions, MAR/SARs) postulated to be bound to the nuclear matrix in vivo. This review considers the nuclear matrix model in the light of sometimes overlooked evidence that each step in its isolation may cause nuclear components to bind to it by new liaisons that do not exist in vivo. This is illustrated by experiments where nuclear-targeted green fluorescent protein is found in the nuclear matrix, and raises the possibility that MAR/SARs actually bind to DNA-binding proteins or multiprotein complexes, including replicational, transcriptional and processing machinery, and topoisomerases that are incorporated into the nuclear matrix during its preparation. Considering that the nuclear lamina forms a rigid exoskeleton, the necessity for internal skeletal structures is raised; the major roles that macromolecular crowding, phase partitioning, and charge effects are likely to play in organisation of the intranuclear space may provide new models for the compartmentalisation of proteins and functions into different nuclear domains and of chromosomes into territories. PMID:10968250
A new look at the nuclear matrix.
Hancock, R
2000-07-01
The concept of the nuclear matrix, a karyoskeletal structure that serves as a support for the genome and its activities, has stimulated many studies of the association of nuclear components and functions with this structure. However, certain experimental findings are not consistent with the existence of the nuclear matrix in vivo, including our inability to visualise a corresponding structure in intact cells, the demonstrated mobility in vivo of chromatin and messenger ribonucleoprotein particles, which are claimed to be bound to the nuclear matrix, the paradoxical extractability from nuclei in low ionic strength buffers of enzymes that are found in the 2 M NaCl-insoluble matrix, and the extractability, in conditions which reproduce the intranuclear milieu, of regions of DNA (matrix or scaffold attachment regions, MAR/SARs) postulated to be bound to the nuclear matrix in vivo. This review considers the nuclear matrix model in the light of sometimes overlooked evidence that each step in its isolation may cause nuclear components to bind to it by new liaisons that do not exist in vivo. This is illustrated by experiments where nuclear-targeted green fluorescent protein is found in the nuclear matrix, and raises the possibility that MAR/SARs actually bind to DNA-binding proteins or multiprotein complexes, including replicational, transcriptional and processing machinery, and topoisomerases that are incorporated into the nuclear matrix during its preparation. Considering that the nuclear lamina forms a rigid exoskeleton, the necessity for internal skeletal structures is raised; the major roles that macromolecular crowding, phase partitioning, and charge effects are likely to play in organisation of the intranuclear space may provide new models for the compartmentalisation of proteins and functions into different nuclear domains and of chromosomes into territories.
Learned fusion operators based on matrix completion
NASA Astrophysics Data System (ADS)
Risko, Kelly K. D.; Hester, Charles F.
2011-05-01
The efficient and timely management of imagery captured in the battlefield requires methods capable of searching the voluminous databases and extracting highly symbolic concepts. When processing images, a semantic and definition gap exists between machine representations and the user's language. Based on matrix completion techniques, we present a fusion operator that fuses imagery and expert knowledge provided by user inputs during post analysis. Specifically, an information matrix is formed from imagery and a class map as labeled by an expert. From this matrix an image operator is derived for the extraction/prediction of information from future imagery. We will present results using this technique on single mode data.
[Progress on matrix metalloproteinase in axonal regeneration].
Li, Yu-Ying; Ding, Yue-Min; Zhang, Xiong
2015-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases. MMPs can degrade and remodel extracellular matrix, also active or inactive many molecules attaching to matrix including receptors, growth factors and cytokines, so that injury-induced MMPs can change the extracellular environment to affect the axonal regeneration in central nervous system. In this review, with spinal cord injury (SCI) as an example we discuss the effects of MMPs on inflammation, neuronal viability, extracellular molecules, glial scar and axonal remyelination, which are all important to axonal regeneration.
A transilient matrix for moist convection
Romps, D.; Kuang, Z.
2011-08-15
A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
[Progress on matrix metalloproteinase in axonal regeneration].
Li, Yu-Ying; Ding, Yue-Min; Zhang, Xiong
2015-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases. MMPs can degrade and remodel extracellular matrix, also active or inactive many molecules attaching to matrix including receptors, growth factors and cytokines, so that injury-induced MMPs can change the extracellular environment to affect the axonal regeneration in central nervous system. In this review, with spinal cord injury (SCI) as an example we discuss the effects of MMPs on inflammation, neuronal viability, extracellular molecules, glial scar and axonal remyelination, which are all important to axonal regeneration. PMID:25851983
A matrix model from string field theory
NASA Astrophysics Data System (ADS)
Zeze, Syoji
2016-09-01
We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Visual Matrix Clustering of Social Networks
Wong, Pak C.; Mackey, Patrick S.; Foote, Harlan P.; May, Richard A.
2013-07-01
The prevailing choices to graphically represent a social network in today’s literature are a node-link graph layout and an adjacency matrix. Both visualization techniques have unique strengths and weaknesses when applied to different domain applications. In this article, we focus our discussion on adjacency matrix and how to turn the matrix-based visualization technique from merely showing pairwise associations among network actors (or graph nodes) to depicting clusters of a social network. We also use node-link layouts to supplement the discussion.
glybochko, P V; Aliaev, Iu G; Nikolenko, V N; Shekhter, A B; Vinarov, A Z; Istranov, L P; Istranova, E V; Aboiants, R K; Liunup, A V; Danilevskiĭ, M I; Guller, A E; Elistratov, P A; Butnaru, D V; Kantimerov, D F; Mashin, G A; Titov, A S; Proskura, A V; Kudrichevskaia, K V
2014-01-01
Urethral strictures are urgent urological problem. Anastomotic and substitution urethroplasty are the most effective treatments. For substitution urethroplasty, buccal mucosa is most often used. There are the following difficulties associated with the substitution urethroplasty: complications in the donor area, the lack of tissue for substitution, an additional incision, and increased timing of surgery due to the need to obtain a flap or graft. Tissue engineering can be useful in solving the above problems. Tissue engineering involves the use a matrix without cells and matrix with one or more types of cells (tissue-engineering designs). In our study we have evaluated the ability to create a matrix for the substitution urethroplasty in animal experiments. The decellularized cadaveric arterial wall was used as a matrix. Decellularization was performed using enzymatic method. At the first stage, we transplanted matrix fragments in interscapular region in rats. An extremely weak bioactivity dof decellularized matrix of cadaveric arterial wall (DMCAW) due to the low immunogenicity of the material was revealed. Thus resorption of DMCAW was quite slow (60-90 days). At the second stage, in an experiment on rabbits, substitution urethroplasty using tubular DMCAW was successfully performed. Intraoperative urethral defect up to 1.8 cm was created, which was replaced by a tubular DMCAW. The use of this type of matrix has showed good structural and functional results: urethral strictures did not arise, the rejection of the matrix was not observed. A slow degradation of the matrix and progressive epithelialization of onnective tissue capsule were revealed. Decellularized matrix based on cadaveric arterial wall can be considered as a material for substitution urethroplasty.
Taking correlations in GPS least squares adjustments into account with a diagonal covariance matrix
NASA Astrophysics Data System (ADS)
Kermarrec, Gaël; Schön, Steffen
2016-09-01
Based on the results of Luati and Proietti (Ann Inst Stat Math 63:673-686, 2011) on an equivalence for a certain class of polynomial regressions between the diagonally weighted least squares (DWLS) and the generalized least squares (GLS) estimator, an alternative way to take correlations into account thanks to a diagonal covariance matrix is presented. The equivalent covariance matrix is much easier to compute than a diagonalization of the covariance matrix via eigenvalue decomposition which also implies a change of the least squares equations. This condensed matrix, for use in the least squares adjustment, can be seen as a diagonal or reduced version of the original matrix, its elements being simply the sums of the rows elements of the weighting matrix. The least squares results obtained with the equivalent diagonal matrices and those given by the fully populated covariance matrix are mathematically strictly equivalent for the mean estimator in terms of estimate and its a priori cofactor matrix. It is shown that this equivalence can be empirically extended to further classes of design matrices such as those used in GPS positioning (single point positioning, precise point positioning or relative positioning with double differences). Applying this new model to simulated time series of correlated observations, a significant reduction of the coordinate differences compared with the solutions computed with the commonly used diagonal elevation-dependent model was reached for the GPS relative positioning with double differences, single point positioning as well as precise point positioning cases. The estimate differences between the equivalent and classical model with fully populated covariance matrix were below the mm for all simulated GPS cases and below the sub-mm for the relative positioning with double differences. These results were confirmed by analyzing real data. Consequently, the equivalent diagonal covariance matrices, compared with the often used elevation
Imide modified epoxy matrix resins
NASA Technical Reports Server (NTRS)
Scola, D. A.
1984-01-01
The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.
Influence of the mode of matrix porosity determination on matrix diffusion calculations.
Ota, K; Möri, A; Alexander, W R; Frieg, B; Schild, M
2003-03-01
The theoretical basis for matrix diffusion in fractured rocks and the methodology for the determination of diffusion coefficients in the laboratory are well established. One significant problem, however, remains in that it is difficult to quantify the degree of sample disturbance affecting the geometrical, geophysical and hydraulic properties of the rock matrix. A new technique, with in situ rock impregnation with resin, for examining the diffusion-accessible rock matrix has been developed and successfully adopted to the rock matrix behind a water-conducting fracture in host crystalline rocks at Nagra's Grimsel Test Site in Switzerland and JNC's Kamaishi In Situ Test Site in Japan. In line with the results of a large number of natural analogue and laboratory studies, the existence of an in situ interconnected pore network was substantiated. Matrix porosities determined on the laboratory samples from both the sites are 1.5-3 times higher than in situ values, irrespective of the technique applied. On the Grimsel granodiorite matrix, matrix porosity existing in situ and artefacts of stress release and physical disturbance, induced by sampling and sample preparation, were clearly distinguished, allowing in situ porosity to be quantified. Laboratory work with conventional techniques tends to overestimate the porosity of the rock matrix, hence leading to an overestimation of in situ matrix diffusion. The implications of these differences to a repository performance assessment are assessed with a couple of examples from existing assessments, and recommendations for future approaches to the examination of in situ matrix porosity are made.
Thin film transistor circuits for active matrix liquid crystal displays
NASA Astrophysics Data System (ADS)
Edwards, Martin John
The demand for a high quality flat panel video display device for use in consumer and professional products has led to the rapid development of Active Matrix Liquid Crystal Displays (AMLCD). The majority of these displays use Thin Film Transistors (TFTs) as the active devices and improvements in the performance of these transistors is creating the opportunity to integrate increasingly sophisticated circuits onto the glass substrates of the displays. This thesis describes a number of aspects of the use of thin film transistor circuits for active matrix liquid crystal displays. The electrical characteristics of TFTs differ in a number of respects from those of conventional MOS devices. This is illustrated with measurements of transistors and simple circuits fabricated using two different low temperature poly-Si TFT technologies. At present the key application for TFT circuits is integration of the row and column drive circuits for active matrix liquid crystal displays. The issues which arise in the design of TFT drive circuits are discussed and the design and operation of a prototype display with integrated drive circuits is described. The availability of high mobility TFTs makes it possible to integrate signal processing functions within the pixels of a display. A novel technique employing digital to analogue conversion of the video data within the pixels of a display is presented. This technique allows the display to be addressed with digital column drive waveforms simplifying the column drive circuit. Operation of the pixel data converters has been demonstrated by the design and measurement of small arrays of test pixels.
Axial grading of inert matrix fuels
Recktenwald, G. D.; Deinert, M. R.
2012-07-01
Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)
Matrix Gla protein in tumoral pathology
GHEORGHE, SIMONA ROXANA; CRĂCIUN, ALEXANDRA MĂRIOARA
2016-01-01
Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology. Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis. The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors. PMID:27547048
Amyloid Structures as Biofilm Matrix Scaffolds.
Taglialegna, Agustina; Lasa, Iñigo; Valle, Jaione
2016-10-01
Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications. PMID:27185827
Amyloid Structures as Biofilm Matrix Scaffolds.
Taglialegna, Agustina; Lasa, Iñigo; Valle, Jaione
2016-10-01
Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications.
Measuring strangeness matrix elements of the nucleon
Henley, E.M.; Pollock, S.J. ); Krein, G. Instituto de Fisica Teorica , Sao Paulo, SP ); Williams, A.G. Florida State Univ., Tallahassee, FL )
1991-01-01
Experiments are proposed to measure various strangeness matrix elements of the nucleon. Examples are electro- and neutrino- production of phi mesons and the difference between neutrino and antineutrino scattering from isospin zero targets, e.g., deuterons.
Measuring strangeness matrix elements of the nucleon
Henley, E.M.; Pollock, S.J.; Krein, G. |; Williams, A.G. |
1991-12-31
Experiments are proposed to measure various strangeness matrix elements of the nucleon. Examples are electro- and neutrino- production of phi mesons and the difference between neutrino and antineutrino scattering from isospin zero targets, e.g., deuterons.
Matrix Models, Monopoles and Modified Moduli
NASA Astrophysics Data System (ADS)
Erlich, Joshua; Hong, Sungho; Unsal, Mithat
2004-09-01
Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of Script N = 1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an Script N = 2 nonrenormalization theorem which is inherited by these Script N = 1 theories. Specializing to the case Nf = Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.
Matrix Gla protein in tumoral pathology.
Gheorghe, Simona Roxana; Crăciun, Alexandra Mărioara
2016-01-01
Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology. Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis. The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors. PMID:27547048
Integrated optic vector-matrix multiplier
Watts, Michael R.
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
Celsian Glass-Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Dicarlo, James A.
1996-01-01
Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.
Matrix Models, Emergent Spacetime and Symmetry Breaking
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2009-12-15
We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.
Whitby Mudstone, flow from matrix to fractures
NASA Astrophysics Data System (ADS)
Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.
Cryogenic regenerator including sarancarbon heat conduction matrix
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)
1989-01-01
A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.
Mechanisms balancing skeletal matrix synthesis and degradation.
Blair, Harry C; Zaidi, Mone; Schlesinger, Paul H
2002-01-01
Bone is regulated by evolutionarily conserved signals that balance continuous differentiation of bone matrix-producing cells against apoptosis and matrix removal. This is continued from embryogenesis, where the skeleton differentiates as a solid mass and is shaped into separate bones by cell death and proteolysis. The two major tissues of the skeleton are avascular cartilage, with an extracellular matrix based on type II collagen and hydrophilic proteoglycans, and bone, a stronger and lighter material based on oriented type I collagen and hydroxyapatite. Both differentiate from the same mesenchymal stem cells. This differentiation is regulated by a family of related signals centred on bone morphogenic proteins. Fibroblast growth factors, Indian hedgehog and parathyroid hormone-related protein are important in determining the type of matrix and the relation of skeletal and non-skeletal structures. Removal of mineralized matrix involves apoptosis of matrix cells and differentiation of acid-secreting cells (osteoclasts) from macrophage precursors. Key regulators of matrix removal are signals in the tumour-necrosis-factor family. Osteoclasts dissolve bone by isolating a region of the matrix and secreting HCl and proteinases at that site. Successive cycles of removal and replacement allow growth, repair and remodelling. The signals for bone turnover are predominantly cell-membrane-associated, allowing very specific spatial regulation. In addition to its support function, bone is a reservoir of Ca2+, PO3-(4) and OH-. Secondary modulation of mineral secretion and bone degradation are mediated by humoral signals, including parathyroid hormone and vitamin D, as well as the cytokines that also regulate the underlying cell differentiation. PMID:12023876
Characteristic Numbers of Matrix Lie Algebras
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Fan, En-Gui
2008-04-01
A notion of characteristic number of matrix Lie algebras is defined, which is devoted to distinguishing various Lie algebras that are used to generate integrable couplings of soliton equations. That is, the exact classification of the matrix Lie algebras by using computational formulas is given. Here the characteristic numbers also describe the relations between soliton solutions of the stationary zero curvature equations expressed by various Lie algebras.
Fibre-Matrix Interaction in Soft Tissue
Guo, Zaoyang
2010-05-21
Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.
On Quark Mixings and CKM Matrix
NASA Astrophysics Data System (ADS)
Senju, H.
1991-05-01
Inspired by unique features of the preon-subpreon model, we study quark mixings and the CKM matrix. The resultant CKM matrix has very nice properties. V_{cb} =~ - V_{ts} is predicted. Our scheme has a strong possibility to explain that V_{us} and V_{cd} are remarkably large compared with other off-diagonal elements and that V_{ub} and V_{td} are much smaller than V_{cb}.
Micromechanical Modeling of Woven Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity
Nanophosphor composite scintillator with a liquid matrix
McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark
2010-03-16
An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.
Fuel cell with electrolyte matrix assembly
Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.
1988-01-01
This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.
Extracellular Matrix Modulation: Optimizing Skin Care and Rejuvenation Procedures.
Widgerow, Alan D; Fabi, Sabrina G; Palestine, Roberta F; Rivkin, Alexander; Ortiz, Arisa; Bucay, Vivian W; Chiu, Annie; Naga, Lina; Emer, Jason; Chasan, Paul E
2016-04-01
Normal aging and photoaging of the skin are chronic processes that progress gradually. The extracellular matrix (ECM), constituting over 70% of the skin, is the central hub for repair and regeneration of the skin. As such, the ECM is the area where changes related to photodamage are most evident. Degradation of the ECM with fragmentation of proteins significantly affects cross talk and signaling between cells, the matrix, and its constituents. The accumulation of collagen fragments, amorphous elastin agglutinations, and abnormal cross-linkages between the collagen fragments impedes the ECM from its normal repair and regenerative capacity, which manifests as wrinkled, non-elastic skin. Similar to how the chronic wound healing process requires wound bed preparation before therapeutic intervention, treatment of chronic aging of the skin would likely benefit from a "skin bed preparation" to optimize the outcome of rejuvenation procedures and skin maintenance programs. This involves introducing agents that can combat stress-induced oxidation, proteasome dysfunction, and non-enzymatic cross linkages involved in glycation end products, to collectively modulate this damaged ECM, and upregulate neocollagenesis and elastin production. Agents of particular interest are matrikines, peptides originating from the fragmentation of matrix proteins that exhibit a wide range of biological activities. Peptides of this type (tripeptide and hexapeptide) are incorporated in ALASTIN™ Skin Nectar with TriHex™ technology (ALASTIN Skincare, Inc., Carlsbad, CA), which is designed to target ECM modulation with a goal of optimizing results following invasive and non-invasive dermal rejuvenating procedures. PMID:27050707
Magnetic properties of iron cluster/chromium matrix nanocomposites
Kruk, Robert; Wang, Di; Hahn, Horst
2015-01-01
Summary A custom-designed apparatus was used for the fine-tuned co-deposition of preformed Fe clusters into antiferromagnetic Cr matrices. Three series of samples with precisely defined cluster sizes, with accuracy to a few atoms, and controlled concentrations were fabricated, followed by a complete characterization of structure and magnetic performance. Relevant magnetic characteristics, reflecting the ferromagnetic/antiferromagnetic coupling between Fe clusters and the Cr matrix, i.e., blocking temperature, coercivity field, and exchange bias were measured and their dependence on cluster size and cluster concentration in the matrix was analyzed. It is evident that the blocking temperatures are clearly affected by both the cluster size and their concentration in the Cr matrix. In contrast the coercivity shows hardly any dependence on size or inter-cluster distance. The exchange bias was found to be strongly sensitive to the cluster size but not to the inter-cluster distances. Therefore, it was concluded to be an effect that is purely localized at the interfaces. PMID:26171292
Parallel distance matrix computation for Matlab data mining
NASA Astrophysics Data System (ADS)
Skurowski, Przemysław; Staniszewski, Michał
2016-06-01
The paper presents utility functions for computing of a distance matrix, which plays a crucial role in data mining. The goal in the design was to enable operating on relatively large datasets by overcoming basic shortcoming - computing time - with an interface easy to use. The presented solution is a set of functions, which were created with emphasis on practical applicability in real life. The proposed solution is presented along the theoretical background for the performance scaling. Furthermore, different approaches of the parallel computing are analyzed, including shared memory, which is uncommon in Matlab environment.
Laminated active matrix organic light-emitting devices
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Sun, Runguang
2008-02-01
Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.
TRAC-P validation test matrix. Revision 1.0
Hughes, E.D.; Boyack, B.E.
1997-09-05
This document briefly describes the elements of the Nuclear Regulatory Commission`s (NRC`s) software quality assurance program leading to software (code) qualification and identifies a test matrix for qualifying Transient Reactor Analysis Code (TRAC)-Pressurized Water Reactor Version (-P), or TRAC-P, to the NRC`s software quality assurance requirements. Code qualification is the outcome of several software life-cycle activities, specifically, (1) Requirements Definition, (2) Design, (3) Implementation, and (4) Qualification Testing. The major objective of this document is to define the TRAC-P Qualification Testing effort.
Emerging Applications of Ceramic and Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena
2012-07-01
Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.
Ubiquitination of specific mitochondrial matrix proteins.
Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron
2016-06-17
Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. PMID:27157140
Analysis of matrix damage in unidirectional composites
Mukunda, V.G.
1992-01-01
The fracture behavior of composites in the presence of a flaw needs to be studied in order to exploit their vast structural potential. Thus analytical models were developed using shear lag concepts to determine the displacement and stress field in a fiber-reinforced unidirectional composite with various damage configurations. The effect of friction on the initiation and growth of longitudinal matrix damage is studied for center-noticed specimens. A consistent shear lag constitutive relationship is employed to take into account the load carrying capacity of the matrix. The results show that the introduction of friction within the matrix split in the form of a closed crack retards the split growth. Further, this model is employed to study the splitting mechanism in edge-noticed unidirectional composite specimens. The model predictions are shown to agree with the experimental results. Finally, a comparison is made between the classical shear lag model and a consistent shear lag model for different damage configurations. This comparison shows that the classical shear lag model predicts acceptable results if the ratio of Young's modulus of the fiber to the Young's modulus of the matrix is large. However, for composites in which fiber and matrix are comparable, the consistent shear lag formulations yields better results, especially in predicting some of the matrix-dominant failure modes.
NASA Astrophysics Data System (ADS)
Smirnov, Andrey
2016-08-01
A torus action on a symplectic variety allows one to construct solutions to the quantum Yang-Baxter equations ( R-matrices). For a torus action on cotangent bundles over flag varieties the resulting R-matrices are the standard rational solutions of the Yang-Baxter equation, well known in the theory of quantum integrable systems. The torus action on the instanton moduli space leads to more complicated R-matrices, depending additionally on two equivariant parameters t 1 and t 2. In this paper we derive an explicit expression for the R-matrix associated with the instanton moduli space. We study its matrix elements and its Taylor expansion in the powers of the spectral parameter. Certain matrix elements of this R-matrix give a generating function for the characteristic classes of tautological bundles over the Hilbert schemes in terms of the bosonic cut-and-join operators. In particular we rederive from the R-matrix the well known Lehn's formula for the first Chern class. We explicitly compute the first several coefficients for the power series expansion of the R-matrix in the spectral parameter. These coefficients are represented by simple contour integrals of some symmetrized bosonic fields.
Pseudomonas biofilm matrix composition and niche biology
Mann, Ethan E.; Wozniak, Daniel J.
2014-01-01
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072
Ubiquitination of specific mitochondrial matrix proteins.
Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron
2016-06-17
Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins.
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort. PMID:21859587
Genetic Relationships Between Chondrules, Rims and Matrix
NASA Technical Reports Server (NTRS)
Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.
2004-01-01
The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.
Endothelial Matrix Assembly during Capillary Morphogenesis
Chang, Fumin; Lemmon, Christopher A.; Nilaratanakul, Voraphoj; Rotter, Varda
2014-01-01
Biologically relevant, three-dimensional extracellular matrix is an essential component of in vitro vasculogenesis models. WI-38 fibroblasts assemble a 3D matrix that induces endothelial tubulogenesis, but this model is challenged by fibroblast senescence and the inability to distinguish endothelial cell-derived matrix from matrix made by WI-38 fibroblasts. Matrices produced by hTERT-immortalized WI-38 recapitulated those produced by wild type fibroblasts. ECM fibrils were heavily populated by tenascin-C, fibronectin, and type VI collagen. Nearly half of the total type I collagen, but only a small fraction of the type IV collagen, were incorporated into ECM. Stable hTERT-WI-38 transfectants expressing TagRFP-fibronectin incorporated TagRFP into ~90% of the fibronectin in 3D matrices. TagRFP-fibronectin colocalized with tenascin-C and with type I collagen in a pattern that was similar to that seen in matrices from wild type WI-38. Human Umbilical Vein Endothelial Cells (HUVEC) formed 3D adhesions and tubes on WI38-hTERT-TagRFP-FN-derived matrices, and the TagRFP-fibronectin component of this new 3D human fibroblast matrix model facilitated the demonstration of concentrated membrane type 1 metalloprotease and new HUVEC FN and collagen type IV fibrils during EC tubulogenesis. These findings indicate that WI-38-hTERT- and WI-38-hTERT-TagRFP-FN-derived matrices provide platforms for the definition of new matrix assembly and remodeling events during vasculogenesis. PMID:25063001
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
NASA Astrophysics Data System (ADS)
Schauer, Kevin L.; Lemoine, Christophe M. R.; Pelin, Adrian; Corradi, Nicolas; Warren, Wesley C.; Grosell, Martin
2016-10-01
Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species.
Schauer, Kevin L.; LeMoine, Christophe M. R.; Pelin, Adrian; Corradi, Nicolas; Warren, Wesley C.; Grosell, Martin
2016-01-01
Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species. PMID:27694946
Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks.
Lang, Nadine R; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E; Fabry, Ben
2015-02-01
When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a three-dimensional (3-D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3-D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3-D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes >5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3-D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in two dimensions, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3-D invasion models in cancer research.
Stiffness matrix determination of composite materials using lamb wave group velocity measurements
NASA Astrophysics Data System (ADS)
Putkis, O.; Croxford, A. J.
2013-04-01
The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.
Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks
Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben
2015-01-01
When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839
Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering.
Won, Jong-Eun; Yun, Ye-Rang; Jang, Jun-Hyeog; Yang, Sung-Hee; Kim, Joong-Hyun; Chrzanowski, Wojciech; Wall, Ivan B; Knowles, Jonathan C; Kim, Hae-Won
2015-07-01
Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctional and structurally-stable biomatrices. The hybrid protein, integrated homogeneously with collagen fibrillar networks, preserved structural stability over a month. Biological efficacy of the hybrid matrix was proven onto tethered surface of biopolymer porous scaffolds. Mesenchymal stem cells quickly anchored to the hybrid matrix, forming focal adhesions, and substantially conformed to cytoskeletal extensions, benefited from the fibronectin adhesive domains. Cells achieved high proliferative capacity to reach confluence rapidly and switched to a mature and osteogenic phenotype more effectively, resulting in greater osteogenic matrix syntheses and mineralization, driven by the engineered osteocalcin. The hybrid biomimetic matrix significantly improved in vivo bone formation in calvarial defects over 6 weeks. Based on the series of stimulated biological responses in vitro and in vivo the novel hybrid proteinaceous composition will be potentially useful as stem cell interfacing matrices for osteogenesis and bone regeneration.
Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry.
Baluya, Dodge L; Garrett, Timothy J; Yost, Richard A
2007-09-01
Careful matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is critical for producing reproducible analyte ion signals. Traditional methods for matrix deposition are often considered an art rather than a science, with significant sample-to-sample variability. Here we report an automated method for matrix deposition, employing a desktop inkjet printer (<$200) with 5760 x 1440 dpi resolution and a six-channel piezoelectric head that delivers 3 pL/drop. The inkjet printer tray, designed to hold CDs and DVDs, was modified to hold microscope slides. Empty ink cartridges were filled with MALDI matrix solutions, including DHB in methanol/water (70:30) at concentrations up to 40 mg/mL. Various samples (including rat brain tissue sections and standards of small drug molecules) were prepared using three deposition methods (electrospray, airbrush, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed that matrix crystals were formed evenly across the sample. There was minimal background signal after storing the matrix in the cartridges over a 6-month period. Overall, the mass spectral images gathered from inkjet-printed tissue specimens were of better quality and more reproducible than from specimens prepared by the electrospray and airbrush methods.
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*
Katsevich, E.; Katsevich, A.; Singer, A.
2015-01-01
In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132
Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens
NASA Technical Reports Server (NTRS)
Liu, H. K.; Liang, Y.-Z.
1984-01-01
A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.
Stout, David A.; Bar-Kochba, Eyal; Estrada, Jonathan B.; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S.; Franck, Christian
2016-01-01
Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress–strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels. PMID:26929377
Stout, David A; Bar-Kochba, Eyal; Estrada, Jonathan B; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S; Franck, Christian
2016-03-15
Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress-strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels. PMID:26929377
Method of producing a hybrid matrix fiber composite
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2006-03-28
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
Auger analysis of a fiber/matrix interface in a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Honecy, Frank S.; Pepper, Stephen V.
1988-01-01
Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1
NASA Technical Reports Server (NTRS)
2003-01-01
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 3
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1
NASA Technical Reports Server (NTRS)
2003-01-01
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.
Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions.
Kurniawan, Nicholas A; Chaudhuri, Parthiv Kant; Lim, Chwee Teck
2016-05-24
Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior.
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.
Positioning matrix of economic efficiency and complexity: a case study in a university hospital.
Ippolito, Adelaide; Viggiani, Vincenzo
2014-01-01
At the end of 2010, the Federico II University Hospital in Naples, Italy, initiated a series of discussions aimed at designing and applying a positioning matrix to its departments. This analysis was developed to create a tool able to extract meaningful information both to increase knowledge about individual departments and to inform the choices of general management during strategic planning. The name given to this tool was the positioning matrix of economic efficiency and complexity. In the matrix, the x-axis measures the ratio between revenues and costs, whereas the y-axis measures the index of complexity, thus showing "profitability" while bearing in mind the complexity of activities. By using the positioning matrix, it was possible to conduct a critical analysis of the characteristics of the Federico II University Hospital and to extract useful information for general management to use during strategic planning at the end of 2010 when defining medium-term objectives.
Imide modified epoxy matrix resins
NASA Technical Reports Server (NTRS)
Scola, D. A.; Pater, R. H.
1981-01-01
High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.
Imide modified epoxy matrix resins
NASA Technical Reports Server (NTRS)
Scola, D. A.
1982-01-01
Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear
Modeling mechanophore activation within a crosslinked glassy matrix
NASA Astrophysics Data System (ADS)
Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.
2013-07-01
Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.
Elongated Polyproline Motifs Facilitate Enamel Evolution through Matrix Subunit Compaction
Luan, Xianghong; Dangaria, Smit; Walker, Cameron; Allen, Michael; Kulkarni, Ashok; Gibson, Carolyn; Braatz, Richard; Liao, Xiubei; Diekwisch, Thomas G. H.
2009-01-01
Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem repeat fragment
METCAN-PC - METAL MATRIX COMPOSITE ANALYZER
NASA Technical Reports Server (NTRS)
Murthy, P. L.
1994-01-01
High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN
Thermal shock resistance of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Carper, D. M.; Nied, H. F.
1993-01-01
The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.
Matrix Metalloproteinase Control of Capillary Morphogenesis
Ghajar, Cyrus M; George, Steven C; Putnam, Andrew J
2010-01-01
Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g. blood vessel formation, bone development) and pathophysiological (e.g. wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and anti-angiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. While it was initially thought that MMPs were strictly pro-angiogenic, new functions for this proteolytic family such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities have been discovered in the last decade. These findings cast MMPs as multi-faceted pro- and anti-angiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane; proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules; maturation of these nascent vessels; and the pruning and regression of the vascular network. PMID:18540825
Phylogenetic Stochastic Mapping Without Matrix Exponentiation
Irvahn, Jan; Minin, Vladimir N.
2014-01-01
Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812
Estimating the Inertia Matrix of a Spacecraft
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Keim, Jason; Shields, Joel
2007-01-01
A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.
Thermal stress effects in intermetallic matrix composites
NASA Technical Reports Server (NTRS)
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-01-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
Transfer matrix representation for periodic planar media
NASA Astrophysics Data System (ADS)
Parrinello, A.; Ghiringhelli, G. L.
2016-06-01
Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.
Inelastic deformation of metal matrix composites
NASA Technical Reports Server (NTRS)
Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.
1993-01-01
A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.
Thermal stress effects in intermetallic matrix composites
NASA Astrophysics Data System (ADS)
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-09-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
Matrix Metalloproteinases in Primary Culture of Cardiomyocytes.
Bildyug, N B; Voronkina, I V; Smagina, L V; Yudintseva, N M; Pinaev, G P
2015-10-01
The highly organized contractile apparatus of cardiomyocytes in heart tissue allows for their continuous contractility, whereas extracellular matrix components are synthesized and spatially organized by fibroblasts and endothelial cells. However, reorganization of the cardiomyocyte contractile apparatus occurs upon their 2D cultivation, which is accompanied by transient loss of their contractility and acquired capability of extracellular matrix synthesis (Bildyug, N. B., and Pinaev, G. P. (2013) Tsitologiya, 55, 713-724). In this study, matrix metalloproteinases were investigated at different times of cardiomyocyte 2D cultivation and 3D cultivation in collagen gels. It was found that cardiomyocytes in 2D culture synthesize matrix metalloproteinases MMP-2 and MMP-9, wherein their amount varies with the cultivation time. The peak MMP-9 amount is at early cultivation time, when the reorganization of cardiomyocyte contractile apparatus occurs, and the MMP-2 peak precedes the recovery of the initial organization of their contractile apparatus. Upon cardiomyocyte cultivation in 3D collagen gels, in which case their contractile apparatus does not rearrange, a steady small amount of MMP-2 and MMP-9 is observed. These data indicate that the cardiomyocyte contractile apparatus reorganization in culture is associated with synthesis and spatial organization of their own extracellular matrix.
Probabilistic micromechanics of woven ceramic matrix composites
NASA Astrophysics Data System (ADS)
Goldsmith, Marlana
Woven ceramic matrix composites are a special class of composite materials that are of current interest for harsh thermo-structural conditions such as those encountered by hypersonic vehicle systems and turbine engine components. Testing of the materials is expensive, especially as materials are constantly redesigned. Randomness in the tow architecture, as well as the randomly shaped and spaced voids that are produced as a result of the manufacturing process, are features that contribute to variability in stiffness and strength. The goal of the research is to lay a foundation in which characteristics of the geometry can be translated into material properties. The research first includes quantifying the architectural variability based on 2D micrographs of a 5 harness satin CVI (Chemical Vapor Infiltration) SiC/SiC composite. The architectural variability is applied to a 2D representative volume element (RVE) in order to evaluate which aspects of the architecture are important to model in order to capture the variability found in the cross sections. Tow width, tow spacing, and tow volume fraction were found to have some effect on the variability, but voids were found to have a large influence on transverse stiffness, and a separate study was conducted to determine which characteristics of the voids are most critical to model. It was found that the projected area of the void perpendicular to the transverse direction and the number of voids modeled had a significant influence on the stiffness. The effect of varying architecture on the variability of in-plane tensile strength was also studied using the Brittle Cracking Model for Concrete in the commercial finite element software, Abaqus. A maximum stress criterion is used to evaluate failure, and the stiffness of failed elements is gradually degraded such that the energy required to open a crack (fracture energy) is dissipated during this degradation process. While the varying architecture did not create variability in
Development of Ceramic Matrix Composite Turbine Blisks for Rocket Engines
NASA Technical Reports Server (NTRS)
Effinger, Mike; Genge, Gary; Kiser, J. Douglas; Munafo, Paul M. (Technical Monitor)
2000-01-01
Ceramic matrix composite (CMC) integrally bladed turbine disks (blisks) are being considered for use in various advanced propulsion systems for space vehicles. The successful development of this technology can significantly impact National Aeronautics and Space Administration (NASA) space transportation missions, by enabling new efficient systems that can operate at higher temperatures, while reducing costs. Composite blisks comprised of carbon (C) fibers and a silicon carbide (SiC) ceramic matrix were designed, fabricated, characterized, and tested by a multidisciplinary team involving materials, design, structural analysis, turbomachinery, and nondestructive evaluation representatives from government, academia, and industry during a 4.5 year effort led by the NASA Marshall Space Flight Center (MSFC). The testing of several of these blisks, which were developed in the Simplex Turbopump CMC Blisk ]Program for use in rocket engine turbopumps, was recently completed. CMC blisks offer potential advantages in rocket engine turbopumps including increased safety resulting from increased operating temperature margins and greater pump reliability, and decreased costs resulting from improved turbopump performance. The progress that was achieved in that development effort is reviewed, and some of the technology that could be applied to other advanced space transportation propulsion systems is discussed.
Numerical methods on some structured matrix algebra problems
Jessup, E.R.
1996-06-01
This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was to translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.
Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.
2004-01-01
Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.
Quaternion from rotation matrix. [four-parameter representation of coordinate transformation matrix
NASA Technical Reports Server (NTRS)
Shepperd, S. W.
1978-01-01
A quaternion is regarded as a four-parameter representation of a coordinate transformation matrix, where the four components of the quaternion are treated on an equal basis. This leads to a unified, compact, and singularity-free approach to determining the quaternion when the matrix is given.
Cache oblivious storage and access heuristics for blocked matrix-matrix multiplication
Bock, Nicolas; Rubensson, Emanuel H; Niklasson, Anders M N; Challacombe, Matt; Salek, Pawel
2008-01-01
The authors investigate effects of ordering in blocked matrix-matrix multiplication. They find that submatrices do not have to be stored contiguously in memory in order to achieve near optimal performance. They also find a good choice of execution order of submatrix operations can lead to a speedup of up to four times for small block sizes.
Space transportation vehicle design evaluation using saturated designs
NASA Technical Reports Server (NTRS)
Unal, Resit
1993-01-01
An important objective in the preliminary design and evaluation of space transportation vehicles is to find the best values of design variables that optimize the performance characteristic (e.g. dry weight). For a given configuration, the vehicle performance can be determined by the use of complex sizing and performance evaluation computer programs. These complex computer programs utilize iterative algorithms and they are generally too expensive and/or difficult to use directly in multidisciplinary design optimization. An alternative is to use response surface methodology (RSM) and obtain quadratic polynomial approximations to the functional relationships between performance characteristics and design variables. In RSM, these approximation models are then used to determine optimum design parameter values and for rapid sensitivity studies. Constructing a second-order model requires that 'n' design parameters be studied at least at 3 levels (values) so that the coefficients in the model can be estimated. There, 3(n) factorial experiments (point designs or observations) may be necessary. For small values of 'n' such as two or three, this design works well. However, when a large number of design parameters are under study, the number of design points required for a full-factorial design may become excessive. Fortunately, these quadratic polynomial approximations can be obtained by selecting an efficient design matrix using central composite designs (CCD) from design of experiments theory. Each unique point design from the CCD matrix is then conducted using computerized analysis tools (e.g. POST, CONSIZ, etc.). In the next step, least squares regression analysis is used to calculate the quadratic polynomial coefficients from the data. However, in some multidisciplinary applications involving a large number of design variables and several disciplines, the computerized performance synthesis programs may get too time consuming and expensive to run even with the use of
Nanomechanics of the Cartilage Extracellular Matrix
NASA Astrophysics Data System (ADS)
Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine
2011-08-01
Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.
Matrix models as CFT: Genus expansion
NASA Astrophysics Data System (ADS)
Kostov, Ivan
2010-10-01
We show how the formulation of the matrix models as conformal field theories on a Riemann surfaces can be used to compute the genus expansion of the observables. Here we consider the simplest example of the Hermitian matrix model, where the classical solution is described by a hyperelliptic Riemann surface. To each branch point of the Riemann surface we associate an operator which represents a twist field dressed by the modes of the twisted boson. The partition function of the matrix model is computed as a correlation function of such dressed twist fields. The perturbative construction of the dressing operators yields a set of Feynman rules for the genus expansion, which involve vertices, propagators and tadpoles. The vertices are universal, the propagators and the tadpoles depend on the Riemann surface. As a demonstration we evaluate the genus-two free energy using the Feynman rules.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available.
Google matrix analysis of directed networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
Electrolyte matrix for molten carbonate fuel cells
Huang, C.M.; Yuh, C.Y.
1999-02-09
A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.
Dentin Matrix Proteins in Bone Tissue Engineering.
Ravindran, Sriram; George, Anne
2015-01-01
Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.
Decorin modulates matrix mineralization in vitro
NASA Technical Reports Server (NTRS)
Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo
2003-01-01
Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.
Electrolyte matrix for molten carbonate fuel cells
Huang, Chao M.; Yuh, Chao-Yi
1999-01-01
A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.
Propulsive matrix of a helical flagellum
NASA Astrophysics Data System (ADS)
Zhang, He-Peng; Liu, Bin; Bruce, Rodenborn; Harry, L. Swinney
2014-11-01
We study the propulsion matrix of bacterial flagella numerically using slender body theory and the regularized Stokeslet method in a biologically relevant parameter regime. All three independent elements of the matrix are measured by computing propulsive force and torque generated by a rotating flagellum, and the drag force on a translating flagellum. Numerical results are compared with the predictions of resistive force theory, which is often used to interpret micro-organism propulsion. Neglecting hydrodynamic interactions between different parts of a flagellum in resistive force theory leads to both qualitative and quantitative discrepancies between the theoretical prediction of resistive force theory and the numerical results. We improve the original theory by empirically incorporating the effects of hydrodynamic interactions and propose new expressions for propulsive matrix elements that are accurate over the parameter regime explored.
Improved high temperature resistant matrix resins
NASA Technical Reports Server (NTRS)
Chang, G. E.; Powell, S. H.; Jones, R. J.
1983-01-01
The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.
Achondrogenesis type II, abnormalities of extracellular matrix.
Horton, W A; Machado, M A; Chou, J W; Campbell, D
1987-09-01
Immune and lectin histochemical and microchemical methods were employed to study growth cartilage from seven cases of achondrogenesis type II (Langer-Saldino). The normal architecture of the epiphyseal and growth plate cartilage was replaced by a morphologically heterogeneous tissue. Some areas were comprised of vascular canals surrounded by extensive fibrous tissue and enlarged cells that had the appearance and histochemical characteristics of hypertrophic chondrocytes. Other areas contained a mixture of cells ranging from small to the enlarged chondrocytes. The extracellular matrix in the latter areas was more abundant and had characteristics of both precartilage mesenchymal matrix and typical cartilage matrix; it contained types I and II collagen, cartilage proteoglycan, fibronectin, and peanut agglutinin binding glycoconjugate(s). Peptide mapping of cyanogen bromide cartilage collagen peptides revealed the presence of types I and II collagen. These observations could be explained by a defect in the biosynthesis of type II collagen or in chondrocyte differentiation. PMID:3309860
Ethynylated aromatics as high temperature matrix resins
NASA Technical Reports Server (NTRS)
Hurwitz, F. I.
1987-01-01
Difunctional and trifunctional arylacetylenes were used as monomers to form thermoset matrix resin composites. Composites can be hot-pressed at 180 C to react 80 percent of the acetylene groups. Crosslinking is completed by postcuring at 350 C. The postcured resins are thermally stable to nominally 460 C in air. As a result of their high crosslink density, the matrix exhibits brittle failure when uniaxial composites are tested in tension. Failure of both uniaixial tensile and flexural specimens occurs in shear at the fiber-matrix interface. Tensile fracture stresses for 0-deg composites fabricated with 60 v/o Celion 6K graphite fiber were 827 MPa. The strain to failure was 0.5 percent. Composites fabricated with 8 harness satin Celion cloth (Fiberite 1133) and tested in tension also failed in shear at tensile stresses of 413 MPa.
Metal Matrix Microencapsulated (M3) fuel neutronics performance in PWRs
Fratoni, Massimiliano; Terrani, Kurt A
2012-01-01
Metal Matrix Microencapsulated (M3) fuel consists of TRISO or BISO coated fuel particles directly dispersed in a matrix of zirconium metal to form a solid rod (Fig. 1). In this integral fuel concept the cladding tube and the failure mechanisms associated with it have been eliminated. In this manner pellet-clad-interactions (PCI), thin tube failure due to oxidation and hydriding, and tube pressurization and burst will be absent. M3 fuel, given the high stiffness of the integral rod design, could as well improve grid-to-rod wear behavior. Overall M3 fuel, compared to existing fuel designs, is expected to provide greatly improved operational performance. Multiple barriers to fission product release (ceramic coating layers in the coated fuel particle and te metal matrix) and the high thermal conductivity zirconium alloy metal matrix contribute to the enhancement in fuel behavior. The discontinuous nature of fissile material encapsulated in coated particles provides additional assistance; for instance if the M3 fuel rod is snapped into multiple pieces, only the limited number of fuel particles at the failure cross section are susceptible to release fission products. This is in contrast to the conventional oxide fuel where the presence of a small opening in the cladding provides the pathway for release of the entire inventory of fission products from the fuel rod. While conventional metal fuels (e.g. U-Zr and U-Mo) are typically expected to experience large swelling under irradiation due to the high degree of damage from fission fragments and introduction of fission gas into the lattice, this is not the case for M3 fuels. The fissile portion of the fuel is contained within the coated particle where enough room is available to accommodate fission gases and kernel swelling. The zirconium metal matrix will not be exposed to fission products and its swelling is known to be very limited when exposed solely to neutrons. Under design basis RIA and LOCA, fuel performance will be
Thermal and mechanical behavior of metal matrix and ceramic matrix composites
Kennedy, J.M.; Moeller, H.H.; Johnson, W.S.
1990-01-01
The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; Schwartz, Oded
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; Schwartz, Oded
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computation to improve application-specific algorithms for multiplying sparse matrices.
A matrix safety frame approach to robot safety for space applications. Thesis
NASA Technical Reports Server (NTRS)
Montgomery, T. D.; Lauderbaugh, L. Ken
1988-01-01
The planned use of autonomous robots in space applications has generated many new safety problems. This thesis assesses safety of autonomous robot systems through the structure of a proposed three-dimensional matrix safety frame. By identifying the common points of accidents and fatalities involving terrestrial robots, reviewing terrestrial robot safety standards, and modifying and extending these results to space applications, hazards are identified and their associated risks assessed. Three components of the safeguarding dimension of the matrix safety frame, safeguarding through design and operation for intrinsic safety, and incorporation of add-on safety systems are explained through examples for both terrestrial and space robots. A space robot hazard identification checklist, a qualitative tool for robot systems designers, is developed using the structure imparted by the matrix safety frame. The development of an expert system from the contents of the checklist is discussed.
CWGSCAT - SCATTERING MATRIX PROGRAM FOR CIRCULAR WAVEGUIDE JUNCTIONS
NASA Technical Reports Server (NTRS)
Hoppe, D. J.
1994-01-01
Accurate computer modeling of passive circular waveguide components is often required during the design phase for optimizing frequency response and/or determining the tolerance required on components in order to meet radio frequency specifications. Many circular waveguide devices can be represented either exactly or approximately as a series of circular waveguide sections which have a common center. In addition, smooth tapers and horns of arbitrary profile may be approximated by a series of small steps. The Scattering Matrix Program for Circular Waveguide Junctions, CWGSCAT, computes the scattering matrix for a series of circular waveguide sections. These sections must possess the same center, but the radius and length of each section is completely arbitrary. Devices that may be analyzed include a simple waveguide step discontinuity, such as that used in a dual mode horn, a stepped matching section, or a corrugated waveguide section with constant varying slot depth. Certain types of corrugated horns may also be analyzed with this program. The model used will accurately predict the reflection and transmission characteristics of such devices, taking into account higher order mode excitation if it occurs as well as multiple reflections and stored energy at each discontinuity. For large devices, with respect to a wavelength where many modes may propagate, the reflection and transmission properties may be required for a higher order mode or series of modes exciting the device. Such interactions are represented best by defining a scattering matrix for the device. The matrix can be determined by using mode matching at each discontinuity present. The results for individual discontinuities are then cascaded to get the matrix for the entire device. CWGSCAT is written in FORTRAN to run on IBM PC series computers and compatibles running MS-DOS. It requires 355K of RAM. The standard distribution medium is a 5.25 inch 360K MS-DOS format diskette. CWGSCAT was developed in 1987
Invariant properties and rotation transformations of the GPR scattering matrix
NASA Astrophysics Data System (ADS)
Villela, Almendra; Romo, José M.
2013-03-01
We analyze the properties of the scattering matrix associated with the incident and scattered electric fields used in GPR. The elements of the scattering matrix provide information produced by different polarizations of the incident wave field. Rotationally invariant quantities such as trace, determinant and Frobenius norm lead to images that combine the information contained in the four elements of the scattering matrix in a mathematically simple and sound manner. The invariant quantities remove the directional properties implicit in the dipolar field used in GPR allowing the application of standard processing techniques designed for scalar fields, such as those used in seismic data processing. We illustrate the non-directional properties of the invariants using a 3D simulation of the wavefield produced by a point scatterer. The estimation of the azimuth angle of elongated targets is also explored using rotation transformations that maximize alternatively the co-polarized or the cross-polarized responses. The angle estimation is essentially an unstable process, particularly if low amplitudes or noisy data are involved. We apply the Frobenius norm ‖S‖F as a criterion for selection of the best amplitudes to use for a more stable and significant angle estimation. The performance of our formulation was tested with synthetic data produced by a 3D model of an air-filled metal pipe buried in a homogeneous halfspace. The images resulting from the invariants show a clear diffraction hyperbola suitable for a scalar wavefield migration, while the azimuth of the pipe is neatly resolved for amplitudes selected with ‖S‖F ≥ 0.4. A field experiment conducted above an aqueduct pipe illustrates the proposed methods with real data. The images obtained from the invariants are better than those from the individual elements of the scattering matrix. The azimuth estimated using our formulation is in agreement with the probable orientation of the aqueduct. Finally, a field