Covariance expressions for eigenvalue and eigenvector problems
NASA Astrophysics Data System (ADS)
Liounis, Andrew J.
There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.
Matrix with Prescribed Eigenvectors
ERIC Educational Resources Information Center
Ahmad, Faiz
2011-01-01
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2018-01-01
A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Zhaojun; Yang, Chao
What is common among electronic structure calculation, design of MEMS devices, vibrational analysis of high speed railways, and simulation of the electromagnetic field of a particle accelerator? The answer: they all require solving large scale nonlinear eigenvalue problems. In fact, these are just a handful of examples in which solving nonlinear eigenvalue problems accurately and efficiently is becoming increasingly important. Recognizing the importance of this class of problems, an invited minisymposium dedicated to nonlinear eigenvalue problems was held at the 2005 SIAM Annual Meeting. The purpose of the minisymposium was to bring together numerical analysts and application scientists to showcasemore » some of the cutting edge results from both communities and to discuss the challenges they are still facing. The minisymposium consisted of eight talks divided into two sessions. The first three talks focused on a type of nonlinear eigenvalue problem arising from electronic structure calculations. In this type of problem, the matrix Hamiltonian H depends, in a non-trivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigenvectors also minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints. In other applications, the nonlinearity of the matrix eigenvalue problem is restricted to the dependency of the matrix on the eigenvalues to be computed. These problems are often called polynomial or rational eigenvalue problems In the second session, Christian Mehl from Technical University of Berlin described numerical techniques for solving a special type of polynomial eigenvalue problem arising from vibration analysis of rail tracks excited by high-speed trains.« less
Calculation of transmission probability by solving an eigenvalue problem
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Varga, Kálmán
2010-11-01
The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.
Cucheb: A GPU implementation of the filtered Lanczos procedure
NASA Astrophysics Data System (ADS)
Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef
2017-11-01
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.
NASA Astrophysics Data System (ADS)
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
A divide and conquer approach to the nonsymmetric eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1991-01-01
Serial computation combined with high communication costs on distributed-memory multiprocessors make parallel implementations of the QR method for the nonsymmetric eigenvalue problem inefficient. This paper introduces an alternative algorithm for the nonsymmetric tridiagonal eigenvalue problem based on rank two tearing and updating of the matrix. The parallelism of this divide and conquer approach stems from independent solution of the updating problems. 11 refs.
EvArnoldi: A New Algorithm for Large-Scale Eigenvalue Problems.
Tal-Ezer, Hillel
2016-05-19
Eigenvalues and eigenvectors are an essential theme in numerical linear algebra. Their study is mainly motivated by their high importance in a wide range of applications. Knowledge of eigenvalues is essential in quantum molecular science. Solutions of the Schrödinger equation for the electrons composing the molecule are the basis of electronic structure theory. Electronic eigenvalues compose the potential energy surfaces for nuclear motion. The eigenvectors allow calculation of diople transition matrix elements, the core of spectroscopy. The vibrational dynamics molecule also requires knowledge of the eigenvalues of the vibrational Hamiltonian. Typically in these problems, the dimension of Hilbert space is huge. Practically, only a small subset of eigenvalues is required. In this paper, we present a highly efficient algorithm, named EvArnoldi, for solving the large-scale eigenvalues problem. The algorithm, in its basic formulation, is mathematically equivalent to ARPACK ( Sorensen , D. C. Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations ; Springer , 1997 ; Lehoucq , R. B. ; Sorensen , D. C. SIAM Journal on Matrix Analysis and Applications 1996 , 17 , 789 ; Calvetti , D. ; Reichel , L. ; Sorensen , D. C. Electronic Transactions on Numerical Analysis 1994 , 2 , 21 ) (or Eigs of Matlab) but significantly simpler.
Marek, A; Blum, V; Johanni, R; Havu, V; Lang, B; Auckenthaler, T; Heinecke, A; Bungartz, H-J; Lederer, H
2014-05-28
Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for problem sizes arising in the field of electronic structure theory is demonstrated for current high-performance computer architectures such as Cray or Intel/Infiniband. For a matrix of dimension 260,000, scalability up to 295,000 CPU cores has been shown on BlueGene/P.
NASA Astrophysics Data System (ADS)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao
2017-12-01
We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.
A comparison of matrix methods for calculating eigenvalues in acoustically lined ducts
NASA Technical Reports Server (NTRS)
Watson, W.; Lansing, D. L.
1976-01-01
Three approximate methods - finite differences, weighted residuals, and finite elements - were used to solve the eigenvalue problem which arises in finding the acoustic modes and propagation constants in an absorptively lined two-dimensional duct without airflow. The matrix equations derived for each of these methods were solved for the eigenvalues corresponding to various values of wall impedance. Two matrix orders, 20 x 20 and 40 x 40, were used. The cases considered included values of wall admittance for which exact eigenvalues were known and for which several nearly equal roots were present. Ten of the lower order eigenvalues obtained from the three approximate methods were compared with solutions calculated from the exact characteristic equation in order to make an assessment of the relative accuracy and reliability of the three methods. The best results were given by the finite element method using a cubic polynomial. Excellent accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 x 20 order matrix.
Iterative Methods for Elliptic Problems and the Discovery of ’q’.
1984-07-01
K = M’IlN LN 12 is a nonnegative irreducible matrix. Hence the Perron - Frobenius theory [19] tells us that there is exactly one eigenvalue A with W = p...earlier, the Perron - Frobenius theory implies that p is itself an eigenvalue. However, as we have said, in this instance the eigenvalue problem (l.12a
NASA Astrophysics Data System (ADS)
Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula
2018-07-01
Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-12-01
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-08-24
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems
Li, Ruipeng; Xi, Yuanzhe; Vecharynski, Eugene; ...
2016-08-16
Polynomial filtering can provide a highly effective means of computing all eigenvalues of a real symmetric (or complex Hermitian) matrix that are located in a given interval, anywhere in the spectrum. This paper describes a technique for tackling this problem by combining a thick-restart version of the Lanczos algorithm with deflation ("locking'') and a new type of polynomial filter obtained from a least-squares technique. Furthermore, the resulting algorithm can be utilized in a “spectrum-slicing” approach whereby a very large number of eigenvalues and associated eigenvectors of the matrix are computed by extracting eigenpairs located in different subintervals independently from onemore » another.« less
Density-matrix-based algorithm for solving eigenvalue problems
NASA Astrophysics Data System (ADS)
Polizzi, Eric
2009-03-01
A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.
NASA Technical Reports Server (NTRS)
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Multitasking the Davidson algorithm for the large, sparse eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umar, V.M.; Fischer, C.F.
1989-01-01
The authors report how the Davidson algorithm, developed for handling the eigenvalue problem for large and sparse matrices arising in quantum chemistry, was modified for use in atomic structure calculations. To date these calculations have used traditional eigenvalue methods, which limit the range of feasible calculations because of their excessive memory requirements and unsatisfactory performance attributed to time-consuming and costly processing of zero valued elements. The replacement of a traditional matrix eigenvalue method by the Davidson algorithm reduced these limitations. Significant speedup was found, which varied with the size of the underlying problem and its sparsity. Furthermore, the range ofmore » matrix sizes that can be manipulated efficiently was expended by more than one order or magnitude. On the CRAY X-MP the code was vectorized and the importance of gather/scatter analyzed. A parallelized version of the algorithm obtained an additional 35% reduction in execution time. Speedup due to vectorization and concurrency was also measured on the Alliant FX/8.« less
The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices
NASA Technical Reports Server (NTRS)
Beam, Richard M.; Warming, Robert F.
1991-01-01
Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.
On the cross-stream spectral method for the Orr-Sommerfeld equation
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Hodge, Steven L.
1993-01-01
Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
Fast Eigensolver for Computing 3D Earth's Normal Modes
NASA Astrophysics Data System (ADS)
Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.
2017-12-01
We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2017-11-01
We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).
Sensitivity analysis and approximation methods for general eigenvalue problems
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1986-01-01
Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S.
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems asmore » well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of« less
Graph theory approach to the eigenvalue problem of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, P. M.
1981-01-01
Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less
A Problem-Centered Approach to Canonical Matrix Forms
ERIC Educational Resources Information Center
Sylvestre, Jeremy
2014-01-01
This article outlines a problem-centered approach to the topic of canonical matrix forms in a second linear algebra course. In this approach, abstract theory, including such topics as eigenvalues, generalized eigenspaces, invariant subspaces, independent subspaces, nilpotency, and cyclic spaces, is developed in response to the patterns discovered…
Eigensolver for a Sparse, Large Hermitian Matrix
NASA Technical Reports Server (NTRS)
Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris
2003-01-01
A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).
Inflationary dynamics for matrix eigenvalue problems
Heller, Eric J.; Kaplan, Lev; Pollmann, Frank
2008-01-01
Many fields of science and engineering require finding eigenvalues and eigenvectors of large matrices. The solutions can represent oscillatory modes of a bridge, a violin, the disposition of electrons around an atom or molecule, the acoustic modes of a concert hall, or hundreds of other physical quantities. Often only the few eigenpairs with the lowest or highest frequency (extremal solutions) are needed. Methods that have been developed over the past 60 years to solve such problems include the Lanczos algorithm, Jacobi–Davidson techniques, and the conjugate gradient method. Here, we present a way to solve the extremal eigenvalue/eigenvector problem, turning it into a nonlinear classical mechanical system with a modified Lagrangian constraint. The constraint induces exponential inflationary growth of the desired extremal solutions. PMID:18511564
Eigenvalue statistics for the sum of two complex Wishart matrices
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2014-09-01
The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Calculation of normal modes of the closed waveguides in general vector case
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.
2018-04-01
The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.
Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao
2018-02-01
In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2014-10-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em
2017-09-01
We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we analyze the performance of the method in the presence of eigenvalue crossing and zero eigenvalues; (ii) stochastic Kovasznay flow: we examine the method in the presence of a singular covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.
A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.
Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan
2015-06-01
Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.
Comparison of eigensolvers for symmetric band matrices.
Moldaschl, Michael; Gansterer, Wilfried N
2014-09-15
We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.
Shape sensitivity analysis of flutter response of a laminated wing
NASA Technical Reports Server (NTRS)
Bergen, Fred D.; Kapania, Rakesh K.
1988-01-01
A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561
Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation
NASA Astrophysics Data System (ADS)
Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.
2012-09-01
The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.
Survey of methods for calculating sensitivity of general eigenproblems
NASA Technical Reports Server (NTRS)
Murthy, Durbha V.; Haftka, Raphael T.
1987-01-01
A survey of methods for sensitivity analysis of the algebraic eigenvalue problem for non-Hermitian matrices is presented. In addition, a modification of one method based on a better normalizing condition is proposed. Methods are classified as Direct or Adjoint and are evaluated for efficiency. Operation counts are presented in terms of matrix size, number of design variables and number of eigenvalues and eigenvectors of interest. The effect of the sparsity of the matrix and its derivatives is also considered, and typical solution times are given. General guidelines are established for the selection of the most efficient method.
Sensitivity analysis of hydrodynamic stability operators
NASA Technical Reports Server (NTRS)
Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.
1992-01-01
The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.
NASA Astrophysics Data System (ADS)
Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua
2018-03-01
Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1984-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1985-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method
NASA Technical Reports Server (NTRS)
Tischler, V. A.; Venkayya, Vipperla B.
1993-01-01
The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Ichitaro; Wu, Kesheng; Simon, Horst
2008-10-27
The original software package TRLan, [TRLan User Guide], page 24, implements the thick restart Lanczos method, [Wu and Simon 2001], page 24, for computing eigenvalues {lambda} and their corresponding eigenvectors v of a symmetric matrix A: Av = {lambda}v. Its effectiveness in computing the exterior eigenvalues of a large matrix has been demonstrated, [LBNL-42982], page 24. However, its performance strongly depends on the user-specified dimension of a projection subspace. If the dimension is too small, TRLan suffers from slow convergence. If it is too large, the computational and memory costs become expensive. Therefore, to balance the solution convergence and costs,more » users must select an appropriate subspace dimension for each eigenvalue problem at hand. To free users from this difficult task, nu-TRLan, [LNBL-1059E], page 23, adjusts the subspace dimension at every restart such that optimal performance in solving the eigenvalue problem is automatically obtained. This document provides a user guide to the nu-TRLan software package. The original TRLan software package was implemented in Fortran 90 to solve symmetric eigenvalue problems using static projection subspace dimensions. nu-TRLan was developed in C and extended to solve Hermitian eigenvalue problems. It can be invoked using either a static or an adaptive subspace dimension. In order to simplify its use for TRLan users, nu-TRLan has interfaces and features similar to those of TRLan: (1) Solver parameters are stored in a single data structure called trl-info, Chapter 4 [trl-info structure], page 7. (2) Most of the numerical computations are performed by BLAS, [BLAS], page 23, and LAPACK, [LAPACK], page 23, subroutines, which allow nu-TRLan to achieve optimized performance across a wide range of platforms. (3) To solve eigenvalue problems on distributed memory systems, the message passing interface (MPI), [MPI forum], page 23, is used. The rest of this document is organized as follows. In Chapter 2 [Installation], page 2, we provide an installation guide of the nu-TRLan software package. In Chapter 3 [Example], page 3, we present a simple nu-TRLan example program. In Chapter 4 [trl-info structure], page 7, and Chapter 5 [trlan subroutine], page 14, we describe the solver parameters and interfaces in detail. In Chapter 6 [Solver parameters], page 21, we discuss the selection of the user-specified parameters. In Chapter 7 [Contact information], page 22, we give the acknowledgements and contact information of the authors. In Chapter 8 [References], page 23, we list reference to related works.« less
Capabilities of Fully Parallelized MHD Stability Code MARS
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2016-10-01
Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Expendable launch vehicle studies
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reiss, Robert
1995-01-01
Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.
Aeroelastic analysis of a troposkien-type wind turbine blade
NASA Technical Reports Server (NTRS)
Nitzsche, F.
1981-01-01
The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.
Krylov subspace methods - Theory, algorithms, and applications
NASA Technical Reports Server (NTRS)
Sad, Youcef
1990-01-01
Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.
Comparison of two Galerkin quadrature methods
Morel, Jim E.; Warsa, James; Franke, Brian C.; ...
2017-02-21
Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less
Comparison of two Galerkin quadrature methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, Jim E.; Warsa, James; Franke, Brian C.
Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less
NASA Technical Reports Server (NTRS)
Walden, H.
1974-01-01
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.
Some Results on Proper Eigenvalues and Eigenvectors with Applications to Scaling.
ERIC Educational Resources Information Center
McDonald, Roderick P.; And Others
1979-01-01
Problems in avoiding the singularity problem in analyzing matrices for optimal scaling are addressed. Conditions are given under which the stationary points and values of a ratio of quadratic forms in two singular matrices can be obtained by a series of simple matrix operations. (Author/JKS)
Eigenvalue density of cross-correlations in Sri Lankan financial market
NASA Astrophysics Data System (ADS)
Nilantha, K. G. D. R.; Ranasinghe; Malmini, P. K. C.
2007-05-01
We apply the universal properties with Gaussian orthogonal ensemble (GOE) of random matrices namely spectral properties, distribution of eigenvalues, eigenvalue spacing predicted by random matrix theory (RMT) to compare cross-correlation matrix estimators from emerging market data. The daily stock prices of the Sri Lankan All share price index and Milanka price index from August 2004 to March 2005 were analyzed. Most eigenvalues in the spectrum of the cross-correlation matrix of stock price changes agree with the universal predictions of RMT. We find that the cross-correlation matrix satisfies the universal properties of the GOE of real symmetric random matrices. The eigen distribution follows the RMT predictions in the bulk but there are some deviations at the large eigenvalues. The nearest-neighbor spacing and the next nearest-neighbor spacing of the eigenvalues were examined and found that they follow the universality of GOE. RMT with deterministic correlations found that each eigenvalue from deterministic correlations is observed at values, which are repelled from the bulk distribution.
Generalized Eigenvalues for pairs on heritian matrices
NASA Technical Reports Server (NTRS)
Rublein, George
1988-01-01
A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less
An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1989-01-01
An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.
On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices
NASA Technical Reports Server (NTRS)
Fischer, Bernd; Freund, Roland W.
1992-01-01
The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.
M-matrices with prescribed elementary divisors
NASA Astrophysics Data System (ADS)
Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar
2017-09-01
A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.
Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.
Tanaka, Takashi
2017-04-15
A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.
A nonperturbative light-front coupled-cluster method
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2012-10-01
The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Sztepanacz, Jacqueline L; Blows, Mark W
2017-07-01
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.
Statistical properties of cross-correlation in the Korean stock market
NASA Astrophysics Data System (ADS)
Oh, G.; Eom, C.; Wang, F.; Jung, W.-S.; Stanley, H. E.; Kim, S.
2011-01-01
We investigate the statistical properties of the cross-correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The β_{473} coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function E(σ) with the portfolio risk σ for the original and filtered cross-correlation matrices are consistent with a power-law function, E( σ) σ^{-γ}, with the exponent γ 2.92 and those for Asian currency crisis decreases significantly.
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
NASA Astrophysics Data System (ADS)
Han, Rui-Qi; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
The correlation structure of a stock market contains important financial contents, which may change remarkably due to the occurrence of financial crisis. We perform a comparative analysis of the Chinese stock market around the occurrence of the 2008 crisis based on the random matrix analysis of high-frequency stock returns of 1228 Chinese stocks. Both raw correlation matrix and partial correlation matrix with respect to the market index in two time periods of one year are investigated. We find that the Chinese stocks have stronger average correlation and partial correlation in 2008 than in 2007 and the average partial correlation is significantly weaker than the average correlation in each period. Accordingly, the largest eigenvalue of the correlation matrix is remarkably greater than that of the partial correlation matrix in each period. Moreover, each largest eigenvalue and its eigenvector reflect an evident market effect, while other deviating eigenvalues do not. We find no evidence that deviating eigenvalues contain industrial sectorial information. Surprisingly, the eigenvectors of the second largest eigenvalues in 2007 and of the third largest eigenvalues in 2008 are able to distinguish the stocks from the two exchanges. We also find that the component magnitudes of the some largest eigenvectors are proportional to the stocks’ capitalizations.
a Unified Matrix Polynomial Approach to Modal Identification
NASA Astrophysics Data System (ADS)
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic.
Tremblay, Jean Christophe; Carrington, Tucker
2005-06-22
We introduce new ideas for calculating resonance energies and widths. It is shown that a non-Hermitian-Lanczos approach can be used to compute eigenvalues of H+W, where H is the Hamiltonian and W is a complex absorbing potential (CAP), without evaluating complex matrix-vector products. This is done by exploiting the link between a CAP-modified Hamiltonian matrix and a real but nonsymmetric matrix U suggested by Mandelshtam and Neumaier [J. Theor. Comput. Chem. 1, 1 (2002)] and using a coupled-two-term Lanczos procedure. We use approximate resonance eigenvectors obtained from the non-Hermitian-Lanczos algorithm and a very good CAP to obtain very accurate energies and widths without solving eigenvalue problems for many values of the CAP strength parameter and searching for cusps. The method is applied to the resonances of HCO. We compare properties of the method with those of established approaches.
Approximate equiangular tight frames for compressed sensing and CDMA applications
NASA Astrophysics Data System (ADS)
Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.
2017-12-01
Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.
Divergence and Necessary Conditions for Extremums
NASA Technical Reports Server (NTRS)
Quirein, J. A.
1973-01-01
The problem is considered of finding a dimension reducing transformation matrix B that maximizes the divergence in the reduced dimension for multi-class cases. A comparitively simple expression for the gradient of the average divergence with respect to B is developed. The developed expression for the gradient contains no eigenvectors or eigenvalues; also, all matrix inversions necessary to evaluate the gradient are available from computing the average divergence.
The analytical transfer matrix method for PT-symmetric complex potential
NASA Astrophysics Data System (ADS)
Naceri, Leila; Hammou, Amine B.
2017-07-01
We have extended the analytical transfer matrix (ATM) method to solve quantum mechanical bound state problems with complex PT-symmetric potentials. Our work focuses on a class of models studied by Bender and Jones, we calculate the energy eigenvalues, discuss the critical values of g and compare the results with those obtained from other methods such as exact numerical computation and WKB approximation method.
Overview of Krylov subspace methods with applications to control problems
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.
Extension of modified power method to two-dimensional problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919; Lee, Hyunsuk
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. Themore » stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.« less
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
NASA Astrophysics Data System (ADS)
Benner, Peter; Dolgov, Sergey; Khoromskaia, Venera; Khoromskij, Boris N.
2017-04-01
In this paper, we propose and study two approaches to approximate the solution of the Bethe-Salpeter equation (BSE) by using structured iterative eigenvalue solvers. Both approaches are based on the reduced basis method and low-rank factorizations of the generating matrices. We also propose to represent the static screen interaction part in the BSE matrix by a small active sub-block, with a size balancing the storage for rank-structured representations of other matrix blocks. We demonstrate by various numerical tests that the combination of the diagonal plus low-rank plus reduced-block approximation exhibits higher precision with low numerical cost, providing as well a distinct two-sided error estimate for the smallest eigenvalues of the Bethe-Salpeter operator. The complexity is reduced to O (Nb2) in the size of the atomic orbitals basis set, Nb, instead of the practically intractable O (Nb6) scaling for the direct diagonalization. In the second approach, we apply the quantized-TT (QTT) tensor representation to both, the long eigenvectors and the column vectors in the rank-structured BSE matrix blocks, and combine this with the ALS-type iteration in block QTT format. The QTT-rank of the matrix entities possesses almost the same magnitude as the number of occupied orbitals in the molecular systems, No
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
Statistical classification techniques for engineering and climatic data samples
NASA Technical Reports Server (NTRS)
Temple, E. C.; Shipman, J. R.
1981-01-01
Fisher's sample linear discriminant function is modified through an appropriate alteration of the common sample variance-covariance matrix. The alteration consists of adding nonnegative values to the eigenvalues of the sample variance covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new linear discriminant function over Fisher's function. This study is limited to the two-group discriminant problem.
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less
Rich structure in the correlation matrix spectra in non-equilibrium steady states
NASA Astrophysics Data System (ADS)
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.
2017-01-01
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Rich structure in the correlation matrix spectra in non-equilibrium steady states.
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H
2017-01-17
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Zhang, Tianxu; Deng, Lihua; Fang, Hao; Li, Qian
2015-12-01
Total variation(TV) based on regularization has been proven as a popular and effective model for image restoration, because of its ability of edge preserved. However, as the TV favors a piece-wise constant solution, the processing results in the flat regions of the image are easily produced "staircase effects", and the amplitude of the edges will be underestimated; the underlying cause of the problem is that the regularization parameter can not be changeable with spatial local information of image. In this paper, we propose a novel Scatter-matrix eigenvalues-based TV(SMETV) regularization with image blind restoration algorithm for deblurring medical images. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish edges from flat areas. The proposed algorithm can effectively reduce the noise in flat regions as well as preserve the edge and detailed information. Moreover, it becomes more robust with the change of the regularization parameter. Extensive experiments demonstrate that the proposed approach produces results superior to most methods in both visual image quality and quantitative measures.
Multicomponent diffusion in basaltic melts at 1350 °C
NASA Astrophysics Data System (ADS)
Guo, Chenghuan; Zhang, Youxue
2018-05-01
Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.
Gaussian quadrature for multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Coussement, Jonathan; van Assche, Walter
2005-06-01
We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1981-01-01
The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.
NASA Astrophysics Data System (ADS)
Chuvakhov, P. V.
2014-01-01
An exact expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for a convective two-equation differential closure RANS operator split along a curvilinear coordinate is derived. It is shown by examples of numerical modeling of supersonic flows over a flat plate and a compression corner with separation that application of the exact system of eigenvalues and eigenvectors to the Roe approach for approximate solution of the Riemann problem gives rise to an increase in the convergence rate, better stability and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics.
Vivo, Pierpaolo; Pato, Mauricio P; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≤M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N,M. Then, we focus on the moments E{K^{a}} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1,N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{K^{a}} for N=2 and 3 and arbitrary M, and also for square N=M systems by spotting for the latter a connection with the probability P(x_{min}^{GUE}≥sqrt[2N]ξ) that the smallest eigenvalue x_{min}^{GUE} of an N×N matrix belonging to the Gaussian unitary ensemble is larger than sqrt[2N]ξ. As a by-product, we present an exact asymptotic expansion for P(x_{min}^{GUE}≥sqrt[2N]ξ) for finite N as ξ→∞. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
Brown, James; Carrington, Tucker
2015-07-28
Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.
Two-faced property of a market factor in asset pricing and diversification effect
NASA Astrophysics Data System (ADS)
Eom, Cheoljun
2017-04-01
This study empirically investigates the test hypothesis that a market factor acting as a representative common factor in the pricing models has a negative influence on constructing a well-diversified portfolio from the Markowitz mean-variance optimization function (MVOF). We use the comparative correlation matrix (C-CM) method to control a single eigenvalue among all eigenvalues included in the sample correlation matrix (S-CM), through the random matrix theory (RMT). In particular, this study observes the effect of the largest eigenvalue that has the property of the market factor. According to the results, the largest eigenvalue has the highest explanatory power on the stock return changes. The C-CM without the largest eigenvalue in the S-CM constructs a more diversified portfolio capable of improving the practical applicability of the MVOF. Moreover, the more diversified portfolio constructed from this C-CM has better out-of-sample performance in the future period. These results support the test hypothesis for the two-faced property of the market factor, defined by the largest eigenvalue.
Control theory and splines, applied to signature storage
NASA Technical Reports Server (NTRS)
Enqvist, Per
1994-01-01
In this report the problem we are going to study is the interpolation of a set of points in the plane with the use of control theory. We will discover how different systems generate different kinds of splines, cubic and exponential, and investigate the effect that the different systems have on the tracking problems. Actually we will see that the important parameters will be the two eigenvalues of the control matrix.
NASA Astrophysics Data System (ADS)
Hamed, Haikel Ben; Bennacer, Rachid
2008-08-01
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de
2016-11-15
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need formore » matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.« less
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; Lin, Lin; Shao, Meiyue
We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
Brabec, Jiri; Lin, Lin; Shao, Meiyue; ...
2015-10-06
We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less
Level repulsion and band sorting in phononic crystals
NASA Astrophysics Data System (ADS)
Lu, Yan; Srivastava, Ankit
2018-02-01
In this paper we consider the problem of avoided crossings (level repulsion) in phononic crystals and suggest a computationally efficient strategy to distinguish them from normal cross points. This process is essential for the correct sorting of the phononic bands and, subsequently, for the accurate determination of mode continuation, group velocities, and emergent properties which depend on them such as thermal conductivity. Through explicit phononic calculations using generalized Rayleigh quotient, we identify exact locations of exceptional points in the complex wavenumber domain which results in level repulsion in the real domain. We show that in the vicinity of the exceptional point the relevant phononic eigenvalue surfaces resemble the surfaces of a 2 by 2 parameter-dependent matrix. Along a closed loop encircling the exceptional point we show that the phononic eigenvalues are exchanged, just as they are for the 2 by 2 matrix case. However, the behavior of the associated eigenvectors is shown to be more complex in the phononic case. Along a closed loop around an exceptional point, we show that the eigenvectors can flip signs multiple times unlike a 2 by 2 matrix where the flip of sign occurs only once. Finally, we exploit these eigenvector sign flips around exceptional points to propose a simple and efficient method of distinguishing them from normal crosses and of correctly sorting the band-structure. Our proposed method is roughly an order-of-magnitude faster than the zoom-in method and correctly identifies > 96% of the cases considered. Both its speed and accuracy can be further improved and we suggest some ways of achieving this. Our method is general and, as such, would be directly applicable to other eigenvalue problems where the eigenspectrum needs to be correctly sorted.
The behaviour of resonances in Hecke triangular billiards under deformation
NASA Astrophysics Data System (ADS)
Howard, P. J.; O'Mahony, P. F.
2007-08-01
The right-hand boundary of Artin's billiard on the Poincaré half-plane is continuously deformed to generate a class of chaotic billiards which includes fundamental domains of the Hecke groups Γ(2, n) at certain values of the deformation parameter. The quantum scattering problem in these open chaotic billiards is described and the distributions of both real and imaginary parts of the resonant eigenvalues are investigated. The transitions to arithmetic chaos in the cases n ∈ {4, 6} are closely examined and the explicit analytic form for the scattering matrix is given together with the Fourier coefficients for the scattered wavefunction. The n = 4 and 6 cases have an additional set of regular equally spaced resonances compared to Artin's billiard (n = 3). For a general deformation, a numerical procedure is presented which generates the resonance eigenvalues and the evolution of the eigenvalues is followed as the boundary is varied continuously which leads to dramatic changes in their distribution. For deformations away from the non-generic arithmetic cases, including that of the tiling Hecke triangular billiard n = 5, the distributions of the positions and widths of the resonances are consistent with the predictions of a random matrix theory.
Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem
Shao, Meiyue; da Jornada, Felipe H.; Yang, Chao; ...
2015-10-02
The Bethe–Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe–Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. In this paper, we establish the equivalence between Bethe–Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe–Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm–Dancoff approximation are overestimated. In order to solve large scale problemsmore » of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Finally, several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms.« less
A New Measure of Wireless Network Connectivity
2014-10-31
matrix QG. From Lemma 1, QG is a non-zero nonnegative matrix. Thus from the Perron - Frobenius Theorem, [24], its largest magni- tude eigenvalue, known as...the Perron - Frobenius eigenvalue is real and positive. Further as QG is symmetric, all its eigenval- ues are real, and its largest magnitude...eigenvalue λmax(QG) is also its largest singular value. Also from the Perron - Frobenius Theorem, should the network be connected, i.e. QG is positive as opposed
On Dynamics of Spinning Structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Ibrahim, A.
2012-01-01
This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.
The Performance Analysis Based on SAR Sample Covariance Matrix
Erten, Esra
2012-01-01
Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976
Gravitational lensing by eigenvalue distributions of random matrix models
NASA Astrophysics Data System (ADS)
Martínez Alonso, Luis; Medina, Elena
2018-05-01
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.
Spectral properties of Google matrix of Wikipedia and other networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2013-05-01
We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites.
Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Recurrence quantity analysis based on matrix eigenvalues
NASA Astrophysics Data System (ADS)
Yang, Pengbo; Shang, Pengjian
2018-06-01
Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.
Numerical methods on some structured matrix algebra problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-06-01
This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less
Instability of the cored barotropic disc: the linear eigenvalue formulation
NASA Astrophysics Data System (ADS)
Polyachenko, E. V.
2018-05-01
Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.
Li, Lifeng
2015-10-01
An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.
Parallel-vector unsymmetric Eigen-Solver on high performance computers
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Jiangning, Qin
1993-01-01
The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased.
Robust Assignment Of Eigensystems For Flexible Structures
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.
1992-01-01
Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.
Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jeon, G. J.
1983-01-01
Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.
Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia
2017-03-01
The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Parallel solution of the symmetric tridiagonal eigenproblem. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-10-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-memory Multiple Instruction, Multiple Data multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speed up, and accuracy. Experiments on an IPSC hypercube multiprocessor reveal that Cuppen's method ismore » the most accurate approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effect of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptions of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
Parallel solution of the symmetric tridiagonal eigenproblem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-01-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed memory MIMD multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues, and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speedup, and accuracy. Experiments on an iPSC hyper-cube multiprocessor reveal that Cuppen's method is the most accuratemore » approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effects of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptations of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
Computing singularities of perturbation series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kvaal, Simen; Jarlebring, Elias; Michiels, Wim
2011-03-15
Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalugin, A. V., E-mail: Kalugin-AV@nrcki.ru; Tebin, V. V.
The specific features of calculation of the effective multiplication factor using the Monte Carlo method for weakly coupled and non-asymptotic multiplying systems are discussed. Particular examples are considered and practical recommendations on detection and Monte Carlo calculation of systems typical in numerical substantiation of nuclear safety for VVER fuel management problems are given. In particular, the problems of the choice of parameters for the batch mode and the method for normalization of the neutron batch, as well as finding and interpretation of the eigenvalue spectrum for the integral fission matrix, are discussed.
Matrix eigenvalue method for free-oscillations modelling of spherical elastic bodies
NASA Astrophysics Data System (ADS)
Zábranová, E.; Hanyk, L.; Matyska, C.
2017-11-01
Deformations and changes of the gravitational potential of pre-stressed self-gravitating elastic bodies caused by free oscillations are described by means of the momentum and Poisson equations and the constitutive relation. For spherically symmetric bodies, the equations and boundary conditions are transformed into ordinary differential equations of the second order by the spherical harmonic decomposition and further discretized by highly accurate pseudospectral difference schemes on Chebyshev grids; we pay special attention to the conditions at the centre of the models. We thus obtain a series of matrix eigenvalue problems for eigenfrequencies and eigenfunctions of the free oscillations. Accuracy of the presented numerical approach is tested by means of the Rayleigh quotients calculated for the eigenfrequencies up to 500 mHz. Both the modal frequencies and eigenfunctions are benchmarked against the output from the Mineos software package based on shooting methods. The presented technique is a promising alternative to widely used methods because it is stable and with a good capability up to high frequencies.
CCOMP: An efficient algorithm for complex roots computation of determinantal equations
NASA Astrophysics Data System (ADS)
Zouros, Grigorios P.
2018-01-01
In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.
NASA Astrophysics Data System (ADS)
Bradde, Serena; Bialek, William
A system with many degrees of freedom can be characterized by a covariance matrix; principal components analysis (PCA) focuses on the eigenvalues of this matrix, hoping to find a lower dimensional description. But when the spectrum is nearly continuous, any distinction between components that we keep and those that we ignore becomes arbitrary; it then is natural to ask what happens as we vary this arbitrary cutoff. We argue that this problem is analogous to the momentum shell renormalization group (RG). Following this analogy, we can define relevant and irrelevant operators, where the role of dimensionality is played by properties of the eigenvalue density. These results also suggest an approach to the analysis of real data. As an example, we study neural activity in the vertebrate retina as it responds to naturalistic movies, and find evidence of behavior controlled by a nontrivial fixed point. Applied to financial data, our analysis separates modes dominated by sampling noise from a smaller but still macroscopic number of modes described by a non-Gaussian distribution.
Zhang, Hong; Zapol, Peter; Dixon, David A.; ...
2015-11-17
The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Zapol, Peter; Dixon, David A.
The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less
NASA Astrophysics Data System (ADS)
Bradde, Serena; Bialek, William
2017-05-01
A system with many degrees of freedom can be characterized by a covariance matrix; principal components analysis focuses on the eigenvalues of this matrix, hoping to find a lower dimensional description. But when the spectrum is nearly continuous, any distinction between components that we keep and those that we ignore becomes arbitrary; it then is natural to ask what happens as we vary this arbitrary cutoff. We argue that this problem is analogous to the momentum shell renormalization group. Following this analogy, we can define relevant and irrelevant operators, where the role of dimensionality is played by properties of the eigenvalue density. These results also suggest an approach to the analysis of real data. As an example, we study neural activity in the vertebrate retina as it responds to naturalistic movies, and find evidence of behavior controlled by a nontrivial fixed point. Applied to financial data, our analysis separates modes dominated by sampling noise from a smaller but still macroscopic number of modes described by a non-Gaussian distribution.
NASA Technical Reports Server (NTRS)
Newman, M. B.; Pipano, A.
1973-01-01
A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes.
Asymmetric correlation matrices: an analysis of financial data
NASA Astrophysics Data System (ADS)
Livan, G.; Rebecchi, L.
2012-06-01
We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.
Computation of free oscillations of the earth
Buland, Raymond P.; Gilbert, F.
1984-01-01
Although free oscillations of the Earth may be computed by many different methods, numerous practical considerations have led us to use a Rayleigh-Ritz formulation with piecewise cubic Hermite spline basis functions. By treating the resulting banded matrix equation as a generalized algebraic eigenvalue problem, we are able to achieve great accuracy and generality and a high degree of automation at a reasonable cost. ?? 1984.
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
tutoring, and mentoring experience as an undergraduate. Last but not least, I thank my family for their love and support. v TABLE OF CONTENTS Page LIST...34 4.6.2 Choice of the Ritz shifts . . . . . . . . . . . . . . . . . . . . 38 4.7 Relationship between TraceMin and...which are determined by the Ritz values of the matrix pencil. We conclude with a discussion of the relationship between TraceMin and simultaneous
A Multivariate Randomization Text of Association Applied to Cognitive Test Results
NASA Technical Reports Server (NTRS)
Ahumada, Albert; Beard, Bettina
2009-01-01
Randomization tests provide a conceptually simple, distribution-free way to implement significance testing. We have applied this method to the problem of evaluating the significance of the association among a number (k) of variables. The randomization method was the random re-ordering of k-1 of the variables. The criterion variable was the value of the largest eigenvalue of the correlation matrix.
Financial time series: A physics perspective
NASA Astrophysics Data System (ADS)
Gopikrishnan, Parameswaran; Plerou, Vasiliki; Amaral, Luis A. N.; Rosenow, Bernd; Stanley, H. Eugene
2000-06-01
Physicists in the last few years have started applying concepts and methods of statistical physics to understand economic phenomena. The word ``econophysics'' is sometimes used to refer to this work. One reason for this interest is the fact that Economic systems such as financial markets are examples of complex interacting systems for which a huge amount of data exist and it is possible that economic problems viewed from a different perspective might yield new results. This article reviews the results of a few recent phenomenological studies focused on understanding the distinctive statistical properties of financial time series. We discuss three recent results-(i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes-from tiny fluctuations to very drastic events, such as market crashes, eg., the crash of October 19th 1987, sometimes referred to as ``Black Monday''. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ by as much as 8 orders of magnitude. In addition, this distribution preserves its functional form for fluctuations on time scales that differ by 3 orders of magnitude, from 1 min up to approximately 10 days. (ii) Correlations in financial time series: While price fluctuations themselves have rapidly decaying correlations, the magnitude of fluctuations measured by either the absolute value or the square of the price fluctuations has correlations that decay as a power-law and persist for several months. (iii) Correlations among different companies: The third result bears on the application of random matrix theory to understand the correlations among price fluctuations of any two different stocks. From a study of the eigenvalue statistics of the cross-correlation matrix constructed from price fluctuations of the leading 1000 stocks, we find that the largest 5-10% of the eigenvalues and the corresponding eigenvectors show systematic deviations from the predictions for a random matrix, whereas the rest of the eigenvalues conform to random matrix behavior-suggesting that these 5-10% of the eigenvalues contain system-specific information about correlated behavior. .
Properties of networks with partially structured and partially random connectivity
NASA Astrophysics Data System (ADS)
Ahmadian, Yashar; Fumarola, Francesco; Miller, Kenneth D.
2015-01-01
Networks studied in many disciplines, including neuroscience and mathematical biology, have connectivity that may be stochastic about some underlying mean connectivity represented by a non-normal matrix. Furthermore, the stochasticity may not be independent and identically distributed (iid) across elements of the connectivity matrix. More generally, the problem of understanding the behavior of stochastic matrices with nontrivial mean structure and correlations arises in many settings. We address this by characterizing large random N ×N matrices of the form A =M +L J R , where M ,L , and R are arbitrary deterministic matrices and J is a random matrix of zero-mean iid elements. M can be non-normal, and L and R allow correlations that have separable dependence on row and column indices. We first provide a general formula for the eigenvalue density of A . For A non-normal, the eigenvalues do not suffice to specify the dynamics induced by A , so we also provide general formulas for the transient evolution of the magnitude of activity and frequency power spectrum in an N -dimensional linear dynamical system with a coupling matrix given by A . These quantities can also be thought of as characterizing the stability and the magnitude of the linear response of a nonlinear network to small perturbations about a fixed point. We derive these formulas and work them out analytically for some examples of M ,L , and R motivated by neurobiological models. We also argue that the persistence as N →∞ of a finite number of randomly distributed outlying eigenvalues outside the support of the eigenvalue density of A , as previously observed, arises in regions of the complex plane Ω where there are nonzero singular values of L-1(z 1 -M ) R-1 (for z ∈Ω ) that vanish as N →∞ . When such singular values do not exist and L and R are equal to the identity, there is a correspondence in the normalized Frobenius norm (but not in the operator norm) between the support of the spectrum of A for J of norm σ and the σ pseudospectrum of M .
A parametric method for determining the number of signals in narrow-band direction finding
NASA Astrophysics Data System (ADS)
Wu, Qiang; Fuhrmann, Daniel R.
1991-08-01
A novel and more accurate method to determine the number of signals in the multisource direction finding problem is developed. The information-theoretic criteria of Yin and Krishnaiah (1988) are applied to a set of quantities which are evaluated from the log-likelihood function. Based on proven asymptotic properties of the maximum likelihood estimation, these quantities have the properties required by the criteria. Since the information-theoretic criteria use these quantities instead of the eigenvalues of the estimated correlation matrix, this approach possesses the advantage of not requiring a subjective threshold, and also provides higher performance than when eigenvalues are used. Simulation results are presented and compared to those obtained from the nonparametric method given by Wax and Kailath (1985).
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
1999-11-01
Modern stellarators are designed using J. Nuehrenberg’s method of varying Fourier coefficients in the shape of the plasma boundary to maximize a target function. The matrix of second derivatives of the target function at the optimum determines a quality matrix. This matrix gives the degradation in the quality of the configuration as the normal magnetic field is varied on a control surface, which lies on or outside the plasma surface. The task is finding saddle coils that produce the desired configuration in the presence of a given toroidal field. An eigenvector of the quality matrix can be important for two reasons: (1) the normal field that must be produced by the saddles is large or (2) the eigenvalue is large (an island-causing resonant perturbation). The rank of the important part of the quality matrix is the number of important eigenvectors. The current in each saddle coil produces a normal field on the control surface, which can be described by an inductance matrix. The relevant part of the inductance matrix has large eigenvalues. The coils can produce the configuration if the rank of the important part of the quality matrix and its product with the relevant part of the inductance matrix are the same. Existing coil design codes, pioneered by P. Merkel, approximate the quality matrix by the unit matrix. Stellarator flexibility could be enhanced by using a more realistic quality matrix and by using trim coils to balance large eigenvalues.
Volatility and correlation-based systemic risk measures in the US market
NASA Astrophysics Data System (ADS)
Civitarese, Jamil
2016-10-01
This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of "correlation" risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.
Swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2014-11-01
A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude, swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.
Group identification in Indonesian stock market
NASA Astrophysics Data System (ADS)
Nurriyadi Suparno, Ervano; Jo, Sung Kyun; Lim, Kyuseong; Purqon, Acep; Kim, Soo Yong
2016-08-01
The characteristic of Indonesian stock market is interesting especially because it represents developing countries. We investigate the dynamics and structures by using Random Matrix Theory (RMT). Here, we analyze the cross-correlation of the fluctuations of the daily closing price of stocks from the Indonesian Stock Exchange (IDX) between January 1, 2007, and October 28, 2014. The eigenvalue distribution of the correlation matrix consists of noise which is filtered out using the random matrix as a control. The bulk of the eigenvalue distribution conforms to the random matrix, allowing the separation of random noise from original data which is the deviating eigenvalues. From the deviating eigenvalues and the corresponding eigenvectors, we identify the intrinsic normal modes of the system and interpret their meaning based on qualitative and quantitative approach. The results show that the largest eigenvector represents the market-wide effect which has a predominantly common influence toward all stocks. The other eigenvectors represent highly correlated groups within the system. Furthermore, identification of the largest components of the eigenvectors shows the sector or background of the correlated groups. Interestingly, the result shows that there are mainly two clusters within IDX, natural and non-natural resource companies. We then decompose the correlation matrix to investigate the contribution of the correlated groups to the total correlation, and we find that IDX is still driven mainly by the market-wide effect.
FastSKAT: Sequence kernel association tests for very large sets of markers.
Lumley, Thomas; Brody, Jennifer; Peloso, Gina; Morrison, Alanna; Rice, Kenneth
2018-06-22
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n 3 . As SKAT is often used when n>104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker. © 2018 WILEY PERIODICALS, INC.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less
NASA Astrophysics Data System (ADS)
Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.
2017-06-01
TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.
Flutter analysis using transversality theory
NASA Technical Reports Server (NTRS)
Afolabi, D.
1993-01-01
A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.
Complex Langevin simulation of a random matrix model at nonzero chemical potential
NASA Astrophysics Data System (ADS)
Bloch, J.; Glesaaen, J.; Verbaarschot, J. J. M.; Zafeiropoulos, S.
2018-03-01
In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.
NASA Astrophysics Data System (ADS)
Audibert, Lorenzo; Cakoni, Fioralba; Haddar, Houssem
2017-12-01
In this paper we develop a general mathematical framework to determine interior eigenvalues from a knowledge of the modified far field operator associated with an unknown (anisotropic) inhomogeneity. The modified far field operator is obtained by subtracting from the measured far field operator the computed far field operator corresponding to a well-posed scattering problem depending on one (possibly complex) parameter. Injectivity of this modified far field operator is related to an appropriate eigenvalue problem whose eigenvalues can be determined from the scattering data, and thus can be used to obtain information about material properties of the unknown inhomogeneity. We discuss here two examples of such modification leading to a Steklov eigenvalue problem, and a new type of the transmission eigenvalue problem. We present some numerical examples demonstrating the viability of our method for determining the interior eigenvalues form far field data.
Bienvenu, François; Akçay, Erol; Legendre, Stéphane; McCandlish, David M
2017-06-01
Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units. Copyright © 2017 Elsevier Inc. All rights reserved.
QCD dirac operator at nonzero chemical potential: lattice data and matrix model.
Akemann, Gernot; Wettig, Tilo
2004-03-12
Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
NASA Technical Reports Server (NTRS)
Antar, B. N.
1976-01-01
A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.
Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems
NASA Astrophysics Data System (ADS)
Xia, Changyu; Wang, Qiaoling
2018-05-01
We prove a sharp upper bound and a lower bound for the first nonzero eigenvalue of the Wentzell-Laplace operator on compact manifolds with boundary and an isoperimetric inequality for the same eigenvalue in the case where the manifold is a bounded domain in a Euclidean space. We study some fourth order Steklov problems and obtain isoperimetric upper bound for the first eigenvalue of them. We also find all the eigenvalues and eigenfunctions for two kind of fourth order Steklov problems on a Euclidean ball.
Bethe-Salpeter Eigenvalue Solver Package (BSEPACK) v0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHAO, MEIYEU; YANG, CHAO
2017-04-25
The BSEPACK contains a set of subroutines for solving the Bethe-Salpeter Eigenvalue (BSE) problem. This type of problem arises in this study of optical excitation of nanoscale materials. The BSE problem is a structured non-Hermitian eigenvalue problem. The BSEPACK software can be used to compute all or subset of eigenpairs of a BSE Hamiltonian. It can also be used to compute the optical absorption spectrum without computing BSE eigenvalues and eigenvectors explicitly. The package makes use of the ScaLAPACK, LAPACK and BLAS.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1980-01-01
Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.
NASA Astrophysics Data System (ADS)
Cooley, Christopher G.
2017-09-01
This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.
NASA Astrophysics Data System (ADS)
Cally, Paul S.; Xiong, Ming
2018-01-01
Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.
Resonance Extraction from the Finite Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doring, Michael; Molina Peralta, Raquel
2016-06-01
The spectrum of excited hadrons becomes accessible in simulations of Quantum Chromodynamics on the lattice. Extensions of Lüscher's method allow to address multi-channel scattering problems using moving frames or modified boundary conditions to obtain more eigenvalues in finite volume. As these are at different energies, interpolations are needed to relate different eigenvalues and to help determine the amplitude. Expanding the T- or the K-matrix locally provides a controlled scheme by removing the known non-analyticities of thresholds. This can be stabilized by using Chiral Perturbation Theory. Different examples to determine resonance pole parameters and to disentangle resonances from thresholds are dis-more » cussed, like the scalar meson f0(980) and the excited baryons N(1535)1/2^- and Lambda(1405)1/2^-.« less
Loosli, Gaelle; Canu, Stephane; Ong, Cheng Soon
2016-06-01
This paper presents a theoretical foundation for an SVM solver in Kreĭn spaces. Up to now, all methods are based either on the matrix correction, or on non-convex minimization, or on feature-space embedding. Here we justify and evaluate a solution that uses the original (indefinite) similarity measure, in the original Kreĭn space. This solution is the result of a stabilization procedure. We establish the correspondence between the stabilization problem (which has to be solved) and a classical SVM based on minimization (which is easy to solve). We provide simple equations to go from one to the other (in both directions). This link between stabilization and minimization problems is the key to obtain a solution in the original Kreĭn space. Using KSVM, one can solve SVM with usually troublesome kernels (large negative eigenvalues or large numbers of negative eigenvalues). We show experiments showing that our algorithm KSVM outperforms all previously proposed approaches to deal with indefinite matrices in SVM-like kernel methods.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1979-01-01
Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.
NASA Technical Reports Server (NTRS)
Sidi, Avram
1992-01-01
Let F(z) be a vectored-valued function F: C approaches C sup N, which is analytic at z=0 and meromorphic in a neighborhood of z=0, and let its Maclaurin series be given. We use vector-valued rational approximation procedures for F(z) that are based on its Maclaurin series in conjunction with power iterations to develop bona fide generalizations of the power method for an arbitrary N X N matrix that may be diagonalizable or not. These generalizations can be used to obtain simultaneously several of the largest distinct eigenvalues and the corresponding invariant subspaces, and present a detailed convergence theory for them. In addition, it is shown that the generalized power methods of this work are equivalent to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the theory provides a set of completely new results and constructions for these Krylov subspace methods. This theory suggests at the same time a new mode of usage for these Krylov subspace methods that were observed to possess computational advantages over their common mode of usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas
2014-08-01
The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems andmore » then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.« less
A numerical projection technique for large-scale eigenvalue problems
NASA Astrophysics Data System (ADS)
Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang
2011-10-01
We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.
Structural robustness with suboptimal responses for linear state space model
NASA Technical Reports Server (NTRS)
Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan
1989-01-01
A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
The use of an analytic Hamiltonian matrix for solving the hydrogenic atom
NASA Astrophysics Data System (ADS)
Bhatti, Mohammad
2001-10-01
The non-relativistic Hamiltonian corresponding to the Shrodinger equation is converted into analytic Hamiltonian matrix using the kth order B-splines functions. The Galerkin method is applied to the solution of the Shrodinger equation for bound states of hydrogen-like systems. The program Mathematica is used to create analytic matrix elements and exact integration is performed over the knot-sequence of B-splines and the resulting generalized eigenvalue problem is solved on a specified numerical grid. The complete basis set and the energy spectrum is obtained for the coulomb potential for hydrogenic systems with Z less than 100 with B-splines of order eight. Another application is given to test the Thomas-Reiche-Kuhn sum rule for the hydrogenic systems.
Determination of eigenvalues of dynamical systems by symbolic computation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1982-01-01
A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.
A Note on Asymptotic Joint Distribution of the Eigenvalues of a Noncentral Multivariate F Matrix.
1984-11-01
Krishnaiah (1982). Now, let us consider the samples drawn from the k multivariate normal popuiejons. Let (Xlt....Xpt) denote the mean vector of the t...to maltivariate problems. Sankh-ya, 4, 381-39(s. (71 KRISHNAIAH , P. R. (1982). Selection of variables in discrimlnant analysis. In Handbook of...Statistics, Volume 2 (P. R. Krishnaiah , editor), 805-820. North-Holland Publishing Company. 6. Unclassifie INSTRUCTIONS REPORT DOCUMENTATION PAGE
Crossover ensembles of random matrices and skew-orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in
2011-08-15
Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo
2013-02-01
We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [ λ -, λ +], where λ - and λ + are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.
NASA Astrophysics Data System (ADS)
Castro, María Eugenia; Díaz, Javier; Muñoz-Caro, Camelia; Niño, Alfonso
2011-09-01
We present a system of classes, SHMatrix, to deal in a unified way with the computation of eigenvalues and eigenvectors in real symmetric and Hermitian matrices. Thus, two descendant classes, one for the real symmetric and other for the Hermitian cases, override the abstract methods defined in a base class. The use of the inheritance relationship and polymorphism allows handling objects of any descendant class using a single reference of the base class. The system of classes is intended to be the core element of more sophisticated methods to deal with large eigenvalue problems, as those arising in the variational treatment of realistic quantum mechanical problems. The present system of classes allows computing a subset of all the possible eigenvalues and, optionally, the corresponding eigenvectors. Comparison with well established solutions for analogous eigenvalue problems, as those included in LAPACK, shows that the present solution is competitive against them. Program summaryProgram title: SHMatrix Catalogue identifier: AEHZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2616 No. of bytes in distributed program, including test data, etc.: 127 312 Distribution format: tar.gz Programming language: Standard ANSI C++. Computer: PCs and workstations. Operating system: Linux, Windows. Classification: 4.8. Nature of problem: The treatment of problems involving eigensystems is a central topic in the quantum mechanical field. Here, the use of the variational approach leads to the computation of eigenvalues and eigenvectors of real symmetric and Hermitian Hamiltonian matrices. Realistic models with several degrees of freedom leads to large (sometimes very large) matrices. Different techniques, such as divide and conquer, can be used to factorize the matrices in order to apply a parallel computing approach. However, it is still interesting to have a core procedure able to tackle the computation of eigenvalues and eigenvectors once the matrix has been factorized to pieces of enough small size. Several available software packages, such as LAPACK, tackled this problem under the traditional imperative programming paradigm. In order to ease the modelling of complex quantum mechanical models it could be interesting to apply an object-oriented approach to the treatment of the eigenproblem. This approach offers the advantage of a single, uniform treatment for the real symmetric and Hermitian cases. Solution method: To reach the above goals, we have developed a system of classes: SHMatrix. SHMatrix is composed by an abstract base class and two descendant classes, one for real symmetric matrices and the other for the Hermitian case. The object-oriented characteristics of inheritance and polymorphism allows handling both cases using a single reference of the base class. The basic computing strategy applied in SHMatrix allows computing subsets of eigenvalues and (optionally) eigenvectors. The tests performed show that SHMatrix is competitive, and more efficient for large matrices, than the equivalent routines of the LAPACK package. Running time: The examples included in the distribution take only a couple of seconds to run.
The tunneling effect for a class of difference operators
NASA Astrophysics Data System (ADS)
Klein, Markus; Rosenberger, Elke
We analyze a general class of self-adjoint difference operators H𝜀 = T𝜀 + V𝜀 on ℓ2((𝜀ℤ)d), where V𝜀 is a multi-well potential and 𝜀 is a small parameter. We give a coherent review of our results on tunneling up to new sharp results on the level of complete asymptotic expansions (see [30-35]).Our emphasis is on general ideas and strategy, possibly of interest for a broader range of readers, and less on detailed mathematical proofs. The wells are decoupled by introducing certain Dirichlet operators on regions containing only one potential well. Then the eigenvalue problem for the Hamiltonian H𝜀 is treated as a small perturbation of these comparison problems. After constructing a Finslerian distance d induced by H𝜀, we show that Dirichlet eigenfunctions decay exponentially with a rate controlled by this distance to the well. It follows with microlocal techniques that the first n eigenvalues of H𝜀 converge to the first n eigenvalues of the direct sum of harmonic oscillators on ℝd located at several wells. In a neighborhood of one well, we construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low-lying eigenvalues of H𝜀. These are obtained from eigenfunctions or quasimodes for the operator H𝜀, acting on L2(ℝd), via restriction to the lattice (𝜀ℤ)d. Tunneling is then described by a certain interaction matrix, similar to the analysis for the Schrödinger operator (see [22]), the remainder is exponentially small and roughly quadratic compared with the interaction matrix. We give weighted ℓ2-estimates for the difference of eigenfunctions of Dirichlet-operators in neighborhoods of the different wells and the associated WKB-expansions at the wells. In the last step, we derive full asymptotic expansions for interactions between two “wells” (minima) of the potential energy, in particular for the discrete tunneling effect. Here we essentially use analysis on phase space, complexified in the momentum variable. These results are as sharp as the classical results for the Schrödinger operator in [22].
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
NASA Astrophysics Data System (ADS)
Cakoni, Fioralba; Haddar, Houssem
2013-10-01
In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission eigenvalue problem. The need to answer these questions became important after a series of papers by Cakoni et al [5], and Cakoni et al [6] suggesting that these transmission eigenvalues could be used to obtain qualitative information about the material properties of the scattering object from far-field data. The first answer to the existence of transmission eigenvalues in the general case was given in 2008 when Päivärinta and Sylvester showed the existence of transmission eigenvalues for the index of refraction sufficiently large [7] followed in 2010 by the paper of Cakoni et al who removed the size restriction on the index of refraction [8]. More importantly, in the latter it was shown that transmission eigenvalues yielded qualitative information on the material properties of the scattering object and Cakoni et al established in [9] that transmission eigenvalues could be determined from the Tikhonov regularized solution of the far-field equation. Since the appearance of these papers there has been an explosion of interest in the transmission eigenvalue problem (we refer the reader to our recent survey paper [10] for a detailed account of the developments in this field up to 2012) and the papers in this special issue are representative of the myriad directions that this research has taken. Indeed, we are happy to see that many open theoretical and numerical questions raised in [10] have been answered (totally or partially) in the contributions of this special issue: the existence of transmission eigenvalues with minimal assumptions on the contrast, the numerical evaluation of transmission eigenvalues, the inverse spectral problem, applications to non-destructive testing, etc. In addition to these topics, many other new investigations and research directions have been proposed as we shall see in the brief content summary below. A number of papers in this special issue are concerned with the question of existence of transmission eigenvalues and the structure of the associated transmission eigenfunctions. The three papers by respectively Robbiano [11], Blasten and Päivärinta [12], and Lakshtanov and Vainberg [13] provide new complementary results on the existence of transmission eigenvalues for the scalar problem under weak assumptions on the (possibly complex valued) refractive index that mainly stipulates that the contrast does not change sign on the boundary. It is interesting here to see three different new methods to obtain these results. On the other hand, the paper by Bonnet-Ben Dhia and Chesnel [14] addresses the Fredholm properties of the interior transmission problem when the contrast changes sign on the boundary, exhibiting cases where this property fails. Using more standard approaches, the existence and structure of transmission eigenvalues are analyzed in the paper by Delbary [15] for the case of frequency dependent materials in the context of Maxwell's equations, whereas the paper by Vesalainen [16] initiates the study of the transmission eigenvalue problem in unbounded domains by considering the transmission eigenvalues for Schrödinger equation with non-compactly supported potential. The paper by Monk and Selgas [17] addresses the case where the dielectric is mounted on a perfect conductor and provides some numerical examples of the localization of associated eigenvalues using the linear sampling method. A series of papers then addresses the question of localization of transmission eigenvalues and the associated inverse spectral problem for spherically stratified media. More specifically, the paper by Colton and Leung [18] provides new results on complex transmission eigenvalues and a new proof for uniqueness of a solution to the inverse spectral problem, whereas the paper by Sylvester [19] provides sharp results on how to locate all the transmission eigenvalues associated with angular independent eigenfunctions when the index of refraction is constant. The paper by Gintides and Pallikarakis [20] investigates an iterative least square method to identify the spherically stratified index of refraction from transmission eigenvalues. On the characterization of transmission eigenvalues in terms of far-field measurements, a promising new result is obtained by Kirsch and Lechleiter [21] showing how one can identify the transmission eigenvalues using the eigenvalues of the scattering operator which are available in terms of measured scattering data. In the paper by Kleefeld [22], an accurate method for computing transmission eigenvalues based on a surface integral formulation of the interior transmission problem and numerical methods for nonlinear eigenvalue problems is proposed and numerically validated for the scalar problem in three dimensions. On the other hand, the paper by Sun and Xu [23] investigates the computation of transmission eigenvalues for Maxwell's equations using a standard iterative method associated with a variational formulation of the interior transmission problem with an emphasis on the effect of anisotropy on transmission eigenvalues. From the perspective of using transmission eigenvalues in non-destructive testing, the paper by Cakoni and Moskow [24] investigates the asymptotic behavior of transmission eigenvalues with respect to small inhomogeneities. The paper by Nakamura and Wang [25] investigates the linear sampling method for the time dependent heat equation and analyses the interior transmission problem associated with this equation. Finally, in the paper by Finch and Hickmann [26], the spectrum of the interior transmission problem is related to the unique determination of the acoustic properties of a body in thermoacoustic imaging. We hope that this collection of papers will stimulate further research in the rapidly growing area of transmission eigenvalues and inverse scattering theory.
Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory
NASA Astrophysics Data System (ADS)
Pato, Mauricio P.; Oshanin, Gleb
2013-03-01
We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.
Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.
Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung
2009-03-01
An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.
NASA Astrophysics Data System (ADS)
Pezelier, Baptiste
2018-02-01
In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the application of their results to the solution of the identification problem of systems whose excitation has a non-invertible autocorrelation matrix. Previous identification methods usually rely on the invertibility assumption of the input autocorrelation, therefore they can not be applied to this case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
The feasibility and stability of large complex biological networks: a random matrix approach.
Stone, Lewi
2018-05-29
In the 70's, Robert May demonstrated that complexity creates instability in generic models of ecological networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the "circular law" since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the "circular law" does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difficulty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population.
NASA Astrophysics Data System (ADS)
Movassagh, Ramis
2016-02-01
We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.
Analysis of the Pre-stack Split-Step Migration Operator Using Ritz Values
NASA Astrophysics Data System (ADS)
Kaplan, S. T.; Sacchi, M. D.
2009-05-01
The Born approximation for the acoustic wave-field is often used as a basis for developing algorithms in seismic imaging (migration). The approximation is linear, and, as such, can be written as a matrix-vector multiplication (Am=d). In the seismic imaging problem, d is seismic data (the recorded wave-field), and we aim to find the seismic reflectivity m (a representation of earth structure and properties) so that Am=d is satisfied. This is the often studied inverse problem of seismic migration, where given A and d, we solve for m. This can be done in a least-squares sense, so that the equation of interest is, AHAm = AHd. Hence, the solution m is largely dependent on the properties of AHA. The imaging Jacobian J provides an approximation to AHA, so that J-1AHA is, in a broad sense, better behaved then AHA. We attempt to quantify this last statement by providing an analysis of AHA and J-1AHA using their Ritz values, and for the particular case where A is built using a pre-stack split-step migration algorithm. Typically, one might try to analyze the behaviour of these matrices using their eigenvalue spectra. The difficulty in the analysis of AHA and J-1AHA lie in their size. For example, a subset of the relatively small Marmousi data set makes AHA a complex valued matrix with, roughly, dimensions of 45 million by 45 million (requiring, in single-precision, about 16 Peta-bytes of computer memory). In short, the size of the matrix makes its eigenvalues difficult to compute. Instead, we compute the leading principal minors of similar tridiagonal matrices, Bk=Vk-1AHAVk and Ck = Uk-1 J-1 AHAUk. These can be constructed using, for example, the Lanczos decomposition. Up to some value of k it is feasible to compute the eigenvalues of Bk and Ck which, in turn, are the Ritz values of, respectively, AHA and J-1 AHA, and may allow us to make quantitative statements about their behaviours.
Quantum chi-squared and goodness of fit testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temme, Kristan; Verstraete, Frank
2015-01-15
A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less
Random matrix approach to cross correlations in financial data
NASA Astrophysics Data System (ADS)
Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene
2002-06-01
We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices
On complex matrices with simple spectrum that are unitarily similar to real matrices
NASA Astrophysics Data System (ADS)
Ikramov, Khakim D.
2011-04-01
Suppose that one should verify whether a given complex n × n matrix can be converted into a real matrix by a unitary similarity transformation. Sufficient conditions for this property to hold were found in an earlier publication of this author. These conditions are relaxed in the following way: as before, the spectrum is required to be simple, but pairs of complex conjugate eigenvalues λ ,bar λ are now allowed. However, the eigenvectors corresponding to such eigenvalues must not be orthogonal.
Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis
NASA Technical Reports Server (NTRS)
Hasselman, T. K.
1972-01-01
The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.
Eigenvector dynamics: General theory and some applications
NASA Astrophysics Data System (ADS)
Allez, Romain; Bouchaud, Jean-Philippe
2012-10-01
We propose a general framework to study the stability of the subspace spanned by P consecutive eigenvectors of a generic symmetric matrix H0 when a small perturbation is added. This problem is relevant in various contexts, including quantum dissipation (H0 is then the Hamiltonian) and financial risk control (in which case H0 is the assets' return covariance matrix). We argue that the problem can be formulated in terms of the singular values of an overlap matrix, which allows one to define an overlap distance. We specialize our results for the case of a Gaussian orthogonal H0, for which the full spectrum of singular values can be explicitly computed. We also consider the case when H0 is a covariance matrix and illustrate the usefulness of our results using financial data. The special case where the top eigenvalue is much larger than all the other ones can be investigated in full detail. In particular, the dynamics of the angle made by the top eigenvector and its true direction defines an interesting class of random processes.
Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya
2013-07-01
A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.
Complex Langevin simulation of a random matrix model at nonzero chemical potential
Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus J. M.; ...
2018-03-06
In this study we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass ismore » inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.« less
Complex Langevin simulation of a random matrix model at nonzero chemical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus J. M.
In this study we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass ismore » inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.« less
Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.
2018-04-01
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
NASA Astrophysics Data System (ADS)
Li, Zhengguang; Lai, Siu-Kai; Wu, Baisheng
2018-07-01
Determining eigenvector derivatives is a challenging task due to the singularity of the coefficient matrices of the governing equations, especially for those structural dynamic systems with repeated eigenvalues. An effective strategy is proposed to construct a non-singular coefficient matrix, which can be directly used to obtain the eigenvector derivatives with distinct and repeated eigenvalues. This approach also has an advantage that only requires eigenvalues and eigenvectors of interest, without solving the particular solutions of eigenvector derivatives. The Symmetric Quasi-Minimal Residual (SQMR) method is then adopted to solve the governing equations, only the existing factored (shifted) stiffness matrix from an iterative eigensolution such as the subspace iteration method or the Lanczos algorithm is utilized. The present method can deal with both cases of simple and repeated eigenvalues in a unified manner. Three numerical examples are given to illustrate the accuracy and validity of the proposed algorithm. Highly accurate approximations to the eigenvector derivatives are obtained within a few iteration steps, making a significant reduction of the computational effort. This method can be incorporated into a coupled eigensolver/derivative software module. In particular, it is applicable for finite element models with large sparse matrices.
Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem
NASA Astrophysics Data System (ADS)
Belinschi, Serban; Nowak, Maciej A.; Speicher, Roland; Tarnowski, Wojciech
2017-03-01
We extend the so-called ‘single ring theorem’ (Feinberg and Zee 1997 Nucl. Phys. B 504 579), also known as the Haagerup-Larsen theorem (Haagerup and Larsen 2000 J. Funct. Anal. 176 331). We do this by showing that in the limit when the size of the matrix goes to infinity a particular correlator between left and right eigenvectors of the relevant non-hermitian matrix X, being the spectral density weighted by the squared eigenvalue condition number, is given by a simple formula involving only the radial spectral cumulative distribution function of X. We show that this object allows the calculation of the conditional expectation of the squared eigenvalue condition number. We give examples and provide a cross-check of the analytic prediction by the large scale numerics.
NASA Astrophysics Data System (ADS)
Tarai, Madhumita; Kumar, Keshav; Divya, O.; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-01
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix.
Sturm-Liouville eigenproblems with an interior pole
NASA Technical Reports Server (NTRS)
Boyd, J. P.
1981-01-01
The eigenvalues and eigenfunctions of self-adjoint Sturm-Liouville problems with a simple pole on the interior of an interval are investigated. Three general theorems are proved, and it is shown that as n approaches infinity, the eigenfunctions more and more closely resemble those of an ordinary Sturm-Liouville problem. The low-order modes differ significantly from those of a nonsingular eigenproblem in that both eigenvalues and eigenfunctions are complex, and the eigenvalues for all small n may cluster about a common value in contrast to the widely separated eigenvalues of the corresponding nonsingular problem. In addition, the WKB is shown to be accurate for all n, and all eigenvalues of a normal one-dimensional Sturm-Liouville equation with nonperiodic boundary conditions are well separated.
Eigentime identities for on weighted polymer networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Tang, Hualong; Zou, Jiahui; He, Di; Sun, Yu; Su, Weiyi
2018-01-01
In this paper, we first analytically calculate the eigenvalues of the transition matrix of a structure with very complex architecture and their multiplicities. We call this structure polymer network. Based on the eigenvalues obtained in the iterative manner, we then calculate the eigentime identity. We highlight two scaling behaviors (logarithmic and linear) for this quantity, strongly depending on the value of the weight factor. Finally, by making use of the obtained eigenvalues, we determine the weighted counting of spanning trees.
Bunch-Kaufman factorization for real symmetric indefinite banded matrices
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
Unreliable Retrial Queues in a Random Environment
2007-09-01
equivalent to the stochasticity of the matrix Ĝ. It is generally known from Perron - Frobenius theory that a given square ma- trix M is stochastic if and...only if its maximum positive eigenvalue (i.e., its Perron eigenvalue) sp(M) is equal to unity. A simple analytical condition that guarantees the
A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem
NASA Astrophysics Data System (ADS)
Willert, Jeffrey; Park, H.; Knoll, D. A.
2014-10-01
Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.
Sparse Covariance Matrix Estimation With Eigenvalue Constraints
LIU, Han; WANG, Lie; ZHAO, Tuo
2014-01-01
We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866
Effects of sources on time-domain finite difference models.
Botts, Jonathan; Savioja, Lauri
2014-07-01
Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.
An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
NASA Astrophysics Data System (ADS)
Kashkari, Bothayna S. H.; Syam, Muhammed I.
2018-06-01
This article is devoted to both theoretical and numerical study of the eigenvalues of nonsingular fractional second-order Sturm-Liouville problem. In this paper, we implement a fractional-order Legendre Tau method to approximate the eigenvalues. This method transforms the Sturm-Liouville problem to a sparse nonsingular linear system which is solved using the continuation method. Theoretical results for the considered problem are provided and proved. Numerical results are presented to show the efficiency of the proposed method.
Comment on ‘Numerical estimates of the spectrum for anharmonic PT symmetric potentials’
NASA Astrophysics Data System (ADS)
Amore, Paolo; Fernández, Francisco M.
2013-04-01
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the authors missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947).
NASA Technical Reports Server (NTRS)
Hashin, Z. (Editor); Herakovich, C. T. (Editor)
1983-01-01
The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.
Fast Kalman Filter for Random Walk Forecast model
NASA Astrophysics Data System (ADS)
Saibaba, A.; Kitanidis, P. K.
2013-12-01
Kalman filtering is a fundamental tool in statistical time series analysis to understand the dynamics of large systems for which limited, noisy observations are available. However, standard implementations of the Kalman filter are prohibitive because they require O(N^2) in memory and O(N^3) in computational cost, where N is the dimension of the state variable. In this work, we focus our attention on the Random walk forecast model which assumes the state transition matrix to be the identity matrix. This model is frequently adopted when the data is acquired at a timescale that is faster than the dynamics of the state variables and there is considerable uncertainty as to the physics governing the state evolution. We derive an efficient representation for the a priori and a posteriori estimate covariance matrices as a weighted sum of two contributions - the process noise covariance matrix and a low rank term which contains eigenvectors from a generalized eigenvalue problem, which combines information from the noise covariance matrix and the data. We describe an efficient algorithm to update the weights of the above terms and the computation of eigenmodes of the generalized eigenvalue problem (GEP). The resulting algorithm for the Kalman filter with Random walk forecast model scales as O(N) or O(N log N), both in memory and computational cost. This opens up the possibility of real-time adaptive experimental design and optimal control in systems of much larger dimension than was previously feasible. For a small number of measurements (~ 300 - 400), this procedure can be made numerically exact. However, as the number of measurements increase, for several choices of measurement operators and noise covariance matrices, the spectrum of the (GEP) decays rapidly and we are justified in only retaining the dominant eigenmodes. We discuss tradeoffs between accuracy and computational cost. The resulting algorithms are applied to an example application from ray-based travel time tomography.
Tarai, Madhumita; Kumar, Keshav; Divya, O; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-05
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
The nonconforming virtual element method for eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L 2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numericalmore » tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.« less
Solving complex band structure problems with the FEAST eigenvalue algorithm
NASA Astrophysics Data System (ADS)
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
Emergent spectral properties of river network topology: an optimal channel network approach.
Abed-Elmdoust, Armaghan; Singh, Arvind; Yang, Zong-Liang
2017-09-13
Characterization of river drainage networks has been a subject of research for many years. However, most previous studies have been limited to quantities which are loosely connected to the topological properties of these networks. In this work, through a graph-theoretic formulation of drainage river networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph theory model for river networks and explore the properties of the network through its adjacency matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite number of zero eigenvalues. We show that such spectral features are closely related to the branching topology of the associated river networks. In this regard, we find an empirical relation for the spectral gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, the eigenvalue distribution is found to follow a finite-width probability density function with certain skewness which is related to the drainage pattern. Our results are based on optimal channel network simulations and validated through examples obtained from physical experiments on landscape evolution. These results suggest the potential of the spectral graph techniques in characterizing and modeling river networks.
An Application of the Vandermonde Determinant
ERIC Educational Resources Information Center
Xu, Junqin; Zhao, Likuan
2006-01-01
Eigenvalue is an important concept in Linear Algebra. It is well known that the eigenvectors corresponding to different eigenvalues of a square matrix are linear independent. In most of the existing textbooks, this result is proven using mathematical induction. In this note, a new proof using Vandermonde determinant is given. It is shown that this…
NASA Technical Reports Server (NTRS)
Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy
1997-01-01
A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.
Evaluation of the eigenvalue method in the solution of transient heat conduction problems
NASA Astrophysics Data System (ADS)
Landry, D. W.
1985-01-01
The eigenvalue method is evaluated to determine the advantages and disadvantages of the method as compared to fully explicit, fully implicit, and Crank-Nicolson methods. Time comparisons and accuracy comparisons are made in an effort to rank the eigenvalue method in relation to the comparison schemes. The eigenvalue method is used to solve the parabolic heat equation in multidimensions with transient temperatures. Extensions into three dimensions are made to determine the method's feasibility in handling large geometry problems requiring great numbers of internal mesh points. The eigenvalue method proves to be slightly better in accuracy than the comparison routines because of an exact treatment, as opposed to a numerical approximation, of the time derivative in the heat equation. It has the potential of being a very powerful routine in solving long transient type problems. The method is not well suited to finely meshed grid arrays or large regions because of the time and memory requirements necessary for calculating large sets of eigenvalues and eigenvectors.
NASA Astrophysics Data System (ADS)
Kneller, James P.; McLaughlin, Gail C.
2009-09-01
We discuss the three neutrino flavor evolution problem with general, flavor-diagonal, matter potentials and a fully parametrized mixing matrix that includes CP violation, and derive expressions for the eigenvalues, mixing angles, and phases. We demonstrate that, in the limit that the mu and tau potentials are equal, the eigenvalues and matter mixing angles θ˜12 and θ˜13 are independent of the CP phase, although θ˜23 does have CP dependence. Since we are interested in developing a framework that can be used for S matrix calculations of neutrino flavor transformation, it is useful to work in a basis that contains only off-diagonal entries in the Hamiltonian. We derive the “nonadiabaticity” parameters that appear in the Hamiltonian in this basis. We then introduce the neutrino S matrix, derive its evolution equation and the integral solution. We find that this new Hamiltonian, and therefore the S matrix, in the limit that the μ and τ neutrino potentials are the same, is independent of both θ˜23 and the CP violating phase. In this limit, any CP violation in the flavor basis can only be introduced via the rotation matrices, and so effects which derive from the CP phase are then straightforward to determine. We then show explicitly that the electron neutrino and electron antineutrino survival probability is independent of the CP phase in this limit. Conversely, if the CP phase is nonzero and mu and tau matter potentials are not equal, then the electron neutrino survival probability cannot be independent of the CP phase.
Comparing the structure of an emerging market with a mature one under global perturbation
NASA Astrophysics Data System (ADS)
Namaki, A.; Jafari, G. R.; Raei, R.
2011-09-01
In this paper we investigate the Tehran stock exchange (TSE) and Dow Jones Industrial Average (DJIA) in terms of perturbed correlation matrices. To perturb a stock market, there are two methods, namely local and global perturbation. In the local method, we replace a correlation coefficient of the cross-correlation matrix with one calculated from two Gaussian-distributed time series, whereas in the global method, we reconstruct the correlation matrix after replacing the original return series with Gaussian-distributed time series. The local perturbation is just a technical study. We analyze these markets through two statistical approaches, random matrix theory (RMT) and the correlation coefficient distribution. By using RMT, we find that the largest eigenvalue is an influence that is common to all stocks and this eigenvalue has a peak during financial shocks. We find there are a few correlated stocks that make the essential robustness of the stock market but we see that by replacing these return time series with Gaussian-distributed time series, the mean values of correlation coefficients, the largest eigenvalues of the stock markets and the fraction of eigenvalues that deviate from the RMT prediction fall sharply in both markets. By comparing these two markets, we can see that the DJIA is more sensitive to global perturbations. These findings are crucial for risk management and portfolio selection.
A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1993-01-01
A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.
On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions
NASA Astrophysics Data System (ADS)
Hagendorf, Christian; Liénardy, Jean
2018-03-01
The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L = 2n + 1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.
JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices
NASA Astrophysics Data System (ADS)
Bollhöfer, Matthias; Notay, Yvan
2007-12-01
A new software code for computing selected eigenvalues and associated eigenvectors of a real symmetric matrix is described. The eigenvalues are either the smallest or those closest to some specified target, which may be in the interior of the spectrum. The underlying algorithm combines the Jacobi-Davidson method with efficient multilevel incomplete LU (ILU) preconditioning. Key features are modest memory requirements and robust convergence to accurate solutions. Parameters needed for incomplete LU preconditioning are automatically computed and may be updated at run time depending on the convergence pattern. The software is easy to use by non-experts and its top level routines are written in FORTRAN 77. Its potentialities are demonstrated on a few applications taken from computational physics. Program summaryProgram title: JADAMILU Catalogue identifier: ADZT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 101 359 No. of bytes in distributed program, including test data, etc.: 7 493 144 Distribution format: tar.gz Programming language: Fortran 77 Computer: Intel or AMD with g77 and pgf; Intel EM64T or Itanium with ifort; AMD Opteron with g77, pgf and ifort; Power (IBM) with xlf90. Operating system: Linux, AIX RAM: problem dependent Word size: real:8; integer: 4 or 8, according to user's choice Classification: 4.8 Nature of problem: Any physical problem requiring the computation of a few eigenvalues of a symmetric matrix. Solution method: Jacobi-Davidson combined with multilevel ILU preconditioning. Additional comments: We supply binaries rather than source code because JADAMILU uses the following external packages: MC64. This software is copyrighted software and not freely available. COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Councils. AMD. Copyright (c) 2004-2006 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. Source code is distributed by the authors under the GNU LGPL licence. BLAS. The reference BLAS is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. LAPACK. The complete LAPACK package or individual routines from LAPACK are freely available on netlib and can be obtained via the World Wide Web or anonymous ftp. For maximal benefit to the community, we added the sources we are proprietary of to the tar.gz file submitted for inclusion in the CPC library. However, as explained in the README file, users willing to compile the code instead of using binaries should first obtain the sources for the external packages mentioned above (email and/or web addresses are provided). Running time: Problem dependent; the test examples provided with the code only take a few seconds to run; timing results for large scale problems are given in Section 5.
Inverse eigenproblem for R-symmetric matrices and their approximation
NASA Astrophysics Data System (ADS)
Yuan, Yongxin
2009-11-01
Let be a nontrivial involution, i.e., R=R-1[not equal to]±In. We say that is R-symmetric if RGR=G. The set of all -symmetric matrices is denoted by . In this paper, we first give the solvability condition for the following inverse eigenproblem (IEP): given a set of vectors in and a set of complex numbers , find a matrix such that and are, respectively, the eigenvalues and eigenvectors of A. We then consider the following approximation problem: Given an n×n matrix , find such that , where is the solution set of IEP and ||[dot operator]|| is the Frobenius norm. We provide an explicit formula for the best approximation solution by means of the canonical correlation decomposition.
Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Bin; Chen, Luoping; Hu, Xiaozhe
2016-03-05
In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigatemore » the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.« less
Determination of poles and zeros of transfer functions for flexible spacecraft attitude control
NASA Technical Reports Server (NTRS)
Ohkami, Y.; Likins, P. W.
1976-01-01
The transfer function matrix is obtained for a three-input and three-output model of minimum sensors and actuators for the attitude control system of flexible spacecraft, and a method is described for determining the poles and zeros of this transfer function. Three cases are considered: (1) the actuators and the sensors are all attached to the primary body, (2) the actuators are on the primary body and the sensors are on the sub-body, and (3) the actuators are on the sub-body and the sensors are on the primary body. The zero-determination problem is shown to reduce to eigenvalue calculations of a matrix which is constructed from the inertial and modal matrices in a simple fashion.
NASA Astrophysics Data System (ADS)
Mascarenhas, Eduardo; Flayac, Hugo; Savona, Vincenzo
2015-08-01
We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure searches for the null eigenvalue of the Liouvillian superoperator by sweeping along the system while carrying out a partial diagonalization of the single-site stationary problem. It bears full analogy to the density-matrix renormalization-group approach to the ground state of isolated systems, and its numerical complexity scales as a power law with the bond dimension. The method brings considerable advantage when compared to the integration of the time-dependent problem via Trotter decomposition, as it can address arbitrarily long-ranged couplings. Additionally, it ensures numerical stability in the case of weakly dissipative systems thanks to a slow tuning of the dissipation rates along the sweeps. We have tested the method on a driven-dissipative spin chain, under various assumptions for the Hamiltonian, drive, and dissipation parameters, and compared the results to those obtained both by Trotter dynamics and Monte Carlo wave function methods. Accurate and numerically stable convergence was always achieved when applying the method to systems with a gapped Liouvillian and a nondegenerate steady state.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Lung, Shun-fat
2009-01-01
Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability known as flutter. ATW was a small-scale airplane wing comprised of an airfoil and wing tip boom. This wing was formulated based on a NACA-65A004 airfoil shape with a 3.28 aspect ratio. The wing had a span of 18 inch with root chord length of 13.2 inch and tip chord length of 8.7 inch. The total area of this wing was 197 square inch. The wing tip boom was a 1 inch diameter hollow tube of length 21.5 inch. The total weight of the wing was 2.66 lbs.
Akemann, G; Bloch, J; Shifrin, L; Wettig, T
2008-01-25
We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.
NASA Astrophysics Data System (ADS)
Sinha, Sitabhra; Pan, Raj Kumar
The cross-correlations between price fluctuations of 201 frequently traded stocks in the National Stock Exchange (NSE) of India are analyzed in this paper. We use daily closing prices for the period 1996-2006, which coincides with the period of rapid transformation of the market following liberalization. The eigenvalue distribution of the cross-correlation matrix, C, of NSE is found to be similar to that of developed markets, such as the New York Stock Exchange (NYSE): the majority of eigenvalues fall within the bounds expected for a random matrix constructed from mutually uncorrelated time series. Of the few largest eigenvalues that deviate from the bulk, the largest is identified with market-wide movements. The intermediate eigenvalues that occur between the largest and the bulk have been associated in NYSE with specific business sectors with strong intra-group interactions. However, in the Indian market, these deviating eigenvalues are comparatively very few and lie much closer to the bulk. We propose that this is because of the relative lack of distinct sector identity in the market, with the movement of stocks dominantly influenced by the overall market trend. This is shown by explicit construction of the interaction network in the market, first by generating the minimum spanning tree from the unfiltered correlation matrix, and later, using an improved method of generating the graph after filtering out the market mode and random effects from the data. Both methods show, compared to developed markets, the relative absence of clusters of co-moving stocks that belong to the same business sector. This is consistent with the general belief that emerging markets tend to be more correlated than developed markets.
Some Results on Mean Square Error for Factor Score Prediction
ERIC Educational Resources Information Center
Krijnen, Wim P.
2006-01-01
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
Entropy-driven phase transitions of entanglement
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya
2013-05-01
We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem
NASA Technical Reports Server (NTRS)
Ward, R. C.
1973-01-01
This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.
Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method
NASA Astrophysics Data System (ADS)
Bekhoucha, F.; Rechak, S.; Cadou, J. M.
2016-12-01
In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.
1982-01-01
A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.
NASA Astrophysics Data System (ADS)
Julaiti, Alafate; Wu, Bin; Zhang, Zhongzhi
2013-05-01
The eigenvalues of the normalized Laplacian matrix of a network play an important role in its structural and dynamical aspects associated with the network. In this paper, we study the spectra and their applications of normalized Laplacian matrices of a family of fractal trees and dendrimers modeled by Cayley trees, both of which are built in an iterative way. For the fractal trees, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities, with the eigenvalues provided by a recursive relation governing the eigenvalues of networks at two successive generations. For Cayley trees, we show that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. By using the relation between normalized Laplacian spectra and eigentime identity, we derive the explicit solution to the eigentime identity for random walks on the two treelike networks, the leading scalings of which follow quite different behaviors. In addition, we corroborate the obtained eigenvalues and their degeneracies through the link between them and the number of spanning trees.
On the Possibility of Ill-Conditioned Covariance Matrices in the First-Order Two-Step Estimator
NASA Technical Reports Server (NTRS)
Garrison, James L.; Axelrod, Penina; Kasdin, N. Jeremy
1997-01-01
The first-order two-step nonlinear estimator, when applied to a problem of orbital navigation, is found to occasionally produce first step covariance matrices with very low eigenvalues at certain trajectory points. This anomaly is the result of the linear approximation to the first step covariance propagation. The study of this anomaly begins with expressing the propagation of the first and second step covariance matrices in terms of a single matrix. This matrix is shown to have a rank equal to the difference between the number of first step states and the number of second step states. Furthermore, under some simplifying assumptions, it is found that the basis of the column space of this matrix remains fixed once the filter has removed the large initial state error. A test matrix containing the basis of this column space and the partial derivative matrix relating first and second step states is derived. This square test matrix, which has dimensions equal to the number of first step states, numerically drops rank at the same locations that the first step covariance does. It is formulated in terms of a set of constant vectors (the basis) and a matrix which can be computed from a reference trajectory (the partial derivative matrix). A simple example problem involving dynamics which are described by two states and a range measurement illustrate the cause of this anomaly and the application of the aforementioned numerical test in more detail.
Optimal Frequency-Domain System Realization with Weighting
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Maghami, Peiman G.
1999-01-01
Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation uses a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. Three different approaches are introduced to fine-tune the model using nonlinear programming methods to minimize the desired cost function. The first method uses an eigenvalue assignment technique to reassign a subset of system poles to improve the identified model. The second method deals with the model in the real Schur or modal form, reassigns a subset of system poles, and adjusts the columns (rows) of the input (output) influence matrix using a nonlinear optimizer. The third method also optimizes a subset of poles, but the input and output influence matrices are refined at every optimization step through least-squares procedures.
The Cr dependence problem of eigenvalues of the Laplace operator on domains in the plane
NASA Astrophysics Data System (ADS)
Haddad, Julian; Montenegro, Marcos
2018-03-01
The Cr dependence problem of multiple Dirichlet eigenvalues on domains is discussed for elliptic operators by regarding C r + 1-smooth one-parameter families of C1 perturbations of domains in Rn. As applications of our main theorem (Theorem 1), we provide a fairly complete description for all eigenvalues of the Laplace operator on disks and squares in R2 and also for its second eigenvalue on balls in Rn for any n ≥ 3. The central tool used in our proof is a degenerate implicit function theorem on Banach spaces (Theorem 2) of independent interest.
Maximizing algebraic connectivity in interconnected networks.
Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina
2016-03-01
Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
Periodic orbit spectrum in terms of Ruelle-Pollicott resonances
NASA Astrophysics Data System (ADS)
Leboeuf, P.
2004-02-01
Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.
Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
NASA Astrophysics Data System (ADS)
Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.
2017-11-01
Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.
Extension of the tridiagonal reduction (FEER) method for complex eigenvalue problems in NASTRAN
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1978-01-01
As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum were extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order was much lower than that of the full size problem. The reduction process was effected automatically, and thus avoided the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admitted mass, damping, and stiffness matrices which were unrestricted in character, i.e., they might be real, symmetric or nonsymmetric, singular or nonsingular.
Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems
NASA Technical Reports Server (NTRS)
Johnson, Duane
1996-01-01
Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.
Derivation of an eigenvalue probability density function relating to the Poincaré disk
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Krishnapur, Manjunath
2009-09-01
A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045-57) gives the eigenvalue probability density function for the top N × N sub-block of a Haar distributed matrix from U(N + n). In the case n >= N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A-1B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.
Projection methods for the numerical solution of Markov chain models
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.
Spectral simulation of unsteady compressible flow past a circular cylinder
NASA Technical Reports Server (NTRS)
Don, Wai-Sun; Gottlieb, David
1990-01-01
An unsteady compressible viscous wake flow past a circular cylinder was successfully simulated using spectral methods. A new approach in using the Chebyshev collocation method for periodic problems is introduced. It was further proved that the eigenvalues associated with the differentiation matrix are purely imaginary, reflecting the periodicity of the problem. It was been shown that the solution of a model problem has exponential growth in time if improper boundary conditions are used. A characteristic boundary condition, which is based on the characteristics of the Euler equations of gas dynamics, was derived for the spectral code. The primary vortex shedding frequency computed agrees well with the results in the literature for Mach = 0.4, Re = 80. No secondary frequency is observed in the power spectrum analysis of the pressure data.
Determining entire mean first-passage time for Cayley networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Dai, Meifeng; Chen, Yufei; Zong, Yue; Sun, Yu; Su, Weiyi
In this paper, we consider the entire mean first-passage time (EMFPT) with random walks for Cayley networks. We use Laplacian spectra to calculate the EMFPT. Firstly, we calculate the constant term and monomial coefficient of characteristic polynomial. By using the Vieta theorem, we then obtain the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix. Finally, we obtain the scaling of the EMFPT for Cayley networks by using the relationship between the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix and the EMFPT. We expect that our method can be adapted to other types of self-similar networks, such as vicsek networks, polymer networks.
A parallel algorithm for the eigenvalues and eigenvectors for a general complex matrix
NASA Technical Reports Server (NTRS)
Shroff, Gautam
1989-01-01
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this parallel typically display only linear convergence. Sequential norm-reducing algorithms also exit and they display quadratic convergence in most cases. The new algorithm is a parallel form of the norm-reducing algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures.
Statistical properties of the stock and credit market: RMT and network topology
NASA Astrophysics Data System (ADS)
Lim, Kyuseong; Kim, Min Jae; Kim, Sehyun; Kim, Soo Yong
We analyzed the dependence structure of the credit and stock market using random matrix theory and network topology. The dynamics of both markets have been spotlighted throughout the subprime crisis. In this study, we compared these two markets in view of the market-wide effect from random matrix theory and eigenvalue analysis. We found that the largest eigenvalue of the credit market as a whole preceded that of the stock market in the beginning of the financial crisis and that of two markets tended to be synchronized after the crisis. The correlation between the companies of both markets became considerably stronger after the crisis as well.
Eigenvalues of the Laplacian of a graph
NASA Technical Reports Server (NTRS)
Anderson, W. N., Jr.; Morley, T. D.
1971-01-01
Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.
Effective Perron-Frobenius eigenvalue for a correlated random map
NASA Astrophysics Data System (ADS)
Pool, Roman R.; Cáceres, Manuel O.
2010-09-01
We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.
An efficient solver for large structured eigenvalue problems in relativistic quantum chemistry
NASA Astrophysics Data System (ADS)
Shiozaki, Toru
2017-01-01
We report an efficient program for computing the eigenvalues and symmetry-adapted eigenvectors of very large quaternionic (or Hermitian skew-Hamiltonian) matrices, using which structure-preserving diagonalisation of matrices of dimension N > 10, 000 is now routine on a single computer node. Such matrices appear frequently in relativistic quantum chemistry owing to the time-reversal symmetry. The implementation is based on a blocked version of the Paige-Van Loan algorithm, which allows us to use the Level 3 BLAS subroutines for most of the computations. Taking advantage of the symmetry, the program is faster by up to a factor of 2 than state-of-the-art implementations of complex Hermitian diagonalisation; diagonalising a 12, 800 × 12, 800 matrix took 42.8 (9.5) and 85.6 (12.6) minutes with 1 CPU core (16 CPU cores) using our symmetry-adapted solver and Intel Math Kernel Library's ZHEEV that is not structure-preserving, respectively. The source code is publicly available under the FreeBSD licence.
Overview of the ArbiTER edge plasma eigenvalue code
NASA Astrophysics Data System (ADS)
Baver, Derek; Myra, James; Umansky, Maxim
2011-10-01
The Arbitrary Topology Equation Reader, or ArbiTER, is a flexible eigenvalue solver that is currently under development for plasma physics applications. The ArbiTER code builds on the equation parser framework of the existing 2DX code, extending it to include a topology parser. This will give the code the capability to model problems with complicated geometries (such as multiple X-points and scrape-off layers) or model equations with arbitrary numbers of dimensions (e.g. for kinetic analysis). In the equation parser framework, model equations are not included in the program's source code. Instead, an input file contains instructions for building a matrix from profile functions and elementary differential operators. The program then executes these instructions in a sequential manner. These instructions may also be translated into analytic form, thus giving the code transparency as well as flexibility. We will present an overview of how the ArbiTER code is to work, as well as preliminary results from early versions of this code. Work supported by the U.S. DOE.
State-independent uncertainty relations and entanglement detection
NASA Astrophysics Data System (ADS)
Qian, Chen; Li, Jun-Li; Qiao, Cong-Feng
2018-04-01
The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.
A multilevel finite element method for Fredholm integral eigenvalue problems
NASA Astrophysics Data System (ADS)
Xie, Hehu; Zhou, Tao
2015-12-01
In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.
An Eigenvalue Analysis of finite-difference approximations for hyperbolic IBVPs
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1989-01-01
The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L(sub 2) stability on a finite domain.
Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1977-01-01
An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.
Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul
2015-12-01
In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; Lin, Lin; Shao, Meiyue
We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less
Asymptotic theory of a slender rotating beam with end masses.
NASA Technical Reports Server (NTRS)
Whitman, A. M.; Abel, J. M.
1972-01-01
The method of matched asymptotic expansions is employed to solve the singular perturbation problem of the vibrations of a rotating beam of small flexural rigidity with concentrated end masses. The problem is complicated by the appearance of the eigenvalue in the boundary conditions. Eigenfunctions and eigenvalues are developed as power series in the perturbation parameter beta to the 1/2 power, and results are given for mode shapes and eigenvalues through terms of the order of beta.
Solution of the symmetric eigenproblem AX=lambda BX by delayed division
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Bains, N. J. C.
1986-01-01
Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.
Hessian eigenvalue distribution in a random Gaussian landscape
NASA Astrophysics Data System (ADS)
Yamada, Masaki; Vilenkin, Alexander
2018-03-01
The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.
Convergence to Diagonal Form of Block Jacobi-type Processes
NASA Astrophysics Data System (ADS)
Hari, Vjeran
2008-09-01
The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.
Fingerprint recognition of alien invasive weeds based on the texture character and machine learning
NASA Astrophysics Data System (ADS)
Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao
2008-11-01
Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.
NASA Astrophysics Data System (ADS)
Shy, L. Y.; Eichinger, B. E.
1989-05-01
Computer simulations of the formation of trifunctional and tetrafunctional polydimethyl-siloxane networks that are crosslinked by condensation of telechelic chains with multifunctional crosslinking agents have been carried out on systems containing up to 1.05×106 chains. Eigenvalue spectra of Kirchhoff matrices for these networks have been evaluated at two levels of approximation: (1) inclusion of all midchain modes, and (2) suppression of midchain modes. By use of the recursion method of Haydock and Nex, we have been able to effectively diagonalize matrices with 730 498 rows and columns without actually constructing matrices of this size. The small eigenvalues have been computed by use of the Lanczos algorithm. We demonstrate the following results: (1) The smallest eigenvalues (with chain modes suppressed) vary as μ-2/3 for sufficiently large μ, where μ is the number of junctions in the network; (2) the eigenvalue spectra of the Kirchhoff matrices are well described by McKay's theory for random regular graphs in the range of the larger eigenvalues, but there are significant departures in the region of small eigenvalues where computed spectra have many more small eigenvalues than random regular graphs; (3) the smallest eigenvalues vary as n-1.78 where n is the number of Rouse beads in the chains that comprise the network. Computations are done for both monodisperse and polydisperse chain length distributions. Large eigenvalues associated with localized motion of the junctions are found as predicted by theory. The relationship between the small eigenvalues and the equilibrium modulus of elasticity is discussed, as is the relationship between viscoelasticity and the band edge of the spectrum.
The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues
NASA Astrophysics Data System (ADS)
Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa
2009-01-01
The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.
Efficient, massively parallel eigenvalue computation
NASA Technical Reports Server (NTRS)
Huo, Yan; Schreiber, Robert
1993-01-01
In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.
The spectrum of a vertex model and related spin one chain sitting in a genus five curve
NASA Astrophysics Data System (ADS)
Martins, M. J.
2017-11-01
We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.
On functional determinants of matrix differential operators with multiple zero modes
NASA Astrophysics Data System (ADS)
Falco, G. M.; Fedorenko, Andrei A.; Gruzberg, Ilya A.
2017-12-01
We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of r× r matrix second order differential operators O with 0 < n ≤slant 2r linearly independent zero modes. We separately discuss the cases of the homogeneous Dirichlet boundary conditions, when the number of zero modes cannot exceed r, and the case of twisted boundary conditions, including the periodic and anti-periodic ones, when the number of zero modes is bounded above by 2r. In all cases the determinants with excluded zero eigenvalues can be expressed only in terms of the n zero modes and other r-n or 2r-n (depending on the boundary conditions) solutions of the homogeneous equation O h=0 , in the spirit of Gel’fand-Yaglom approach. In instanton calculations, the contribution of the zero modes is taken into account by introducing the so-called collective coordinates. We show that there is a remarkable cancellation of a factor (involving scalar products of zero modes) between the Jacobian of the transformation to the collective coordinates and the functional fluctuation determinant with excluded zero eigenvalues. This cancellation drastically simplifies instanton calculations when one uses our formulas.
Replica approach to mean-variance portfolio optimization
NASA Astrophysics Data System (ADS)
Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre
2016-12-01
We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r = N/T < 1, where N is the dimension of the portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r = 1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1 - r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.
Liquid-gas phase transitions and C K symmetry in quantum field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less
Liquid-gas phase transitions and C K symmetry in quantum field theories
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
2017-04-04
A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less
Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics
NASA Astrophysics Data System (ADS)
Fruhnert, Michael
This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.
2000-01-01
We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469
NASA Astrophysics Data System (ADS)
Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo
2017-12-01
This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
Biophotonic applications of eigenchannels in a scattering medium (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik
2016-03-01
When waves travel through disordered media such as ground glass and skin tissues, they are scattered multiple times. Most of the incoming energy bounces back at the superficial layers and only a small fraction can penetrate deep inside. This has been a limiting factor for the working depth of various optical techniques. We present a systematic method to enhance wave penetration to the scattering media. Specifically, we measured the reflection matrix of a disordered medium with wide angular coverage for each orthogonal polarization states. From the reflection matrix, we identified reflection eigenchannels of the medium, and shaped the incident wave into the reflection eigenchannel with smallest eigenvalue, which we call anti-reflection mode. This makes reflectance reduced and wave penetration increased as a result of the energy conservation. We demonstrated transmission enhancement by more than a factor of 3 by the coupling of the incident waves to the anti-reflection modes. Based on the uneven distribution of eigenvalues of reflection eigenchannels, we further developed an iterative feedback control method for finding and coupling light to anti-reflection modes. Since this adaptive control method can keep up with sample perturbation, it promotes the applicability of exploiting reflection eigenchannels. Our approach of delivering light deep into the scattering media will contribute to enhancing the sensitivity of detecting objects hidden under scattering layers, which is universal problem ranging from geology to life science.
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.
2008-02-01
A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data, etc.:131 396 Distribution format:tar.gz Programming language:FORTRAN 77 Computer:Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system:OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM:Depends on the number of radial differential equations; the number and order of finite elements; the number of radial points. Test run requires 4 MB Classification:2.5 External routines:POTHMF uses some Lapack routines, copies of which are included in the distribution (see README file for details). Nature of problem:In the multi-channel adiabatic approach the Schrödinger equation for a hydrogen-like atom in a homogeneous magnetic field of strength γ ( γ=B/B, B≅2.35×10 T is a dimensionless parameter which determines the field strength B) is reduced by separating the radial coordinate, r, from the angular variables, (θ,φ), and using a basis of the angular oblate spheroidal functions [3] to a system of second-order ordinary differential equations which contain first-derivative coupling terms [4]. The purpose of this program is to calculate potential curves and matrix elements of radial coupling needed for calculating the low-lying bound and scattering states of hydrogen-like atoms in a homogeneous magnetic field of strength 0<γ⩽1000 within the adiabatic approach [5]. The program evaluates also asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem needed to extract from the R-matrix a required symmetric shortrange open-channel reaction matrix K [6] independent from matching point [7]. In addition, the program computes the dipole transition matrix elements in the length form between the basis functions that are needed for calculating the dipole transitions between the low-lying bound and scattering states and photoionization cross sections [8]. Solution method:The angular oblate spheroidal eigenvalue problem depending on the radial variable is solved using a series expansion in the Legendre polynomials [3]. The resulting tridiagonal symmetric algebraic eigenvalue problem for the evaluation of selected eigenvalues, i.e. the potential curves, is solved by the LDLT factorization using the DSTEVR program [2]. Derivatives of the eigenfunctions with respect to the radial variable which are contained in matrix elements of the coupled radial equations are obtained by solving the inhomogeneous algebraic equations. The corresponding algebraic problem is solved by using the LDLT factorization with the help of the DPTTRS program [2]. Asymptotics of the matrix elements at large values of radial variable are computed using a series expansion in the associated Laguerre polynomials [9]. The corresponding matching points between the numeric and asymptotic solutions are found automatically. These asymptotics are used for the evaluation of the asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem [7]. As a test desk, the program is applied to the calculation of the energy values of the ground and excited bound states and reaction matrix of multi-channel scattering problem for a hydrogen atom in a homogeneous magnetic field using the KANTBP program [10]. Restrictions:The computer memory requirements depend on: the number of radial differential equations; the number and order of finite elements; the total number of radial points. Restrictions due to dimension sizes can be changed by resetting a small number of PARAMETER statements before recompiling (see Introduction and listing for details). Running time:The running time depends critically upon: the number of radial differential equations; the number and order of finite elements; the total number of radial points on interval [r,r]. The test run which accompanies this paper took 7 s required for calculating of potential curves, radial matrix elements, and dipole transition matrix elements on a finite-element grid on interval [ r=0, r=100] used for solving discrete and continuous spectrum problems and obtaining asymptotic regular and irregular matrix radial solutions at r=100 for continuous spectrum problem on the Intel Pentium IV 2.4 GHz. The number of radial differential equations was equal to 6. The accompanying test run using the KANTBP program took 2 s for solving discrete and continuous spectrum problems using the above calculated potential curves, matrix elements and asymptotic regular and irregular matrix radial solutions. Note, that in the accompanied benchmark calculations of the photoionization cross-sections from the bound states of a hydrogen atom in a homogeneous magnetic field to continuum we have used interval [ r=0, r=1000] for continuous spectrum problem. The total number of radial differential equations was varied from 10 to 18. References:W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. http://www.netlib.org/lapack/. M. Abramovits, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965. U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127; A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640; C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (Eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320; U. Fano, A.R.P. Rau, Atomic Collisions and Spectra, Academic Press, Florida, 1986. M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352; O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, V.V. Serov, T.V. Tupikova, S.I. Vinitsky, Proc. SPIE 6537 (2007) 653706-1-18. M.J. Seaton, Rep. Prog. Phys. 46 (1983) 167-257. M. Gailitis, J. Phys. B 9 (1976) 843-854; J. Macek, Phys. Rev. A 30 (1984) 1277-1278; S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, M.S. Kaschiev, V.A. Rostovtsev, V.N. Samoylov, T.V. Tupikova, O. Chuluunbaatar, Programming and Computer Software 33 (2007) 105-116. H. Friedrich, Theoretical Atomic Physics, Springer, New York, 1991. R.J. Damburg, R.Kh. Propin, J. Phys. B 1 (1968) 681-691; J.D. Power, Phil. Trans. Roy. Soc. London A 274 (1973) 663-702. O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675.
NASA Astrophysics Data System (ADS)
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
NASA Astrophysics Data System (ADS)
Livan, Giacomo; Alfarano, Simone; Scalas, Enrico
2011-07-01
We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Wang, Weichen; Fan, Jianqing
2017-06-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance
Wang, Weichen
2017-01-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies. PMID:28835726
Efficient swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2015-08-01
The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low-Reynolds-number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small-amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large-amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.
Derivatives of random matrix characteristic polynomials with applications to elliptic curves
NASA Astrophysics Data System (ADS)
Snaith, N. C.
2005-12-01
The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.
Partial transpose of random quantum states: Exact formulas and meanders
NASA Astrophysics Data System (ADS)
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-12-15
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less
Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi
2017-10-10
We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.
On Distributed Strategies in Defense of a High Value Unit (HVU) Against a Swarm Attack
2012-09-01
function [ lam ,U] = tqr(a,b,U) % [ lam u] = tqr(a,b) or [ lam U] = tqr(a,b,U... lam u] = tqr(a,b): % % The column lam contains the eigenvalues of the Hermitian tridiagonal % matrix T = mxt(a,b) computed by one version of the...computed. The computed eigenvalues are real and are sorted to be % nonincreasing. % % [ lam U] = tqr(a,b,U): % % This replaces the input U
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
NASA Astrophysics Data System (ADS)
2018-05-01
Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of eigenvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
On Graph Isomorphism and the PageRank Algorithm
2008-09-01
specifies the probability of visiting each node from any other node. The perturbed matrix satisfies the Perron - Frobenius theorem’s conditions. Therefore... Frobenius and Perron theorems establishes the matrix must yield the dominant eigenvalue, one. Normalizing the unique and associated dominant eigenvector...is constructed such that none of its entries equal zero. An arbitrary PageRank matrix, S, is irreducible and satisfies the Perron - Frobenius
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Pastor-Satorras, Romualdo
2017-10-01
The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto; ...
2017-09-15
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
ELSI: A unified software interface for Kohn-Sham electronic structure solvers
NASA Astrophysics Data System (ADS)
Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker
2018-01-01
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
NASA Technical Reports Server (NTRS)
Wunsche, A.
1993-01-01
The eigenvalue problem of the operator a + zeta(boson creation operator) is solved for arbitrarily complex zeta by applying a nonunitary operator to the vacuum state. This nonunitary approach is compared with the unitary approach leading for the absolute value of zeta less than 1 to squeezed coherent states.
Spectral analysis for weighted tree-like fractals
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Chen, Yufei; Wang, Xiaoqian; Sun, Yu; Su, Weiyi
2018-02-01
Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a study on the spectra of the normalized Laplacian of weighted tree-like fractals. We analytically obtain the relationship between the eigenvalues and their multiplicities for two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index and Kemeny's constant.
Umari, Amjad M.J.; Gorelick, Steven M.
1986-01-01
In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.
Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K
2018-01-01
Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint space control and work space control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
Mixed finite-difference scheme for free vibration analysis of noncircular cylinders
NASA Technical Reports Server (NTRS)
Noor, A. K.; Stephens, W. B.
1973-01-01
A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Spectral analysis of localized rotating waves in parabolic systems.
Beyn, Wolf-Jürgen; Otten, Denny
2018-04-13
In this paper, we study the spectra and Fredholm properties of Ornstein-Uhlenbeck operators [Formula: see text]where [Formula: see text] is the profile of a rotating wave satisfying [Formula: see text] as [Formula: see text], the map [Formula: see text] is smooth and the matrix [Formula: see text] has eigenvalues with positive real parts and commutes with the limit matrix [Formula: see text] The matrix [Formula: see text] is assumed to be skew-symmetric with eigenvalues (λ 1 ,…,λ d )=(±i σ 1 ,…,±i σ k ,0,…,0). The spectra of these linearized operators are crucial for the nonlinear stability of rotating waves in reaction-diffusion systems. We prove under appropriate conditions that every [Formula: see text] satisfying the dispersion relation [Formula: see text]belongs to the essential spectrum [Formula: see text] in L p For values Re λ to the right of the spectral bound for [Formula: see text], we show that the operator [Formula: see text] is Fredholm of index 0, solve the identification problem for the adjoint operator [Formula: see text] and formulate the Fredholm alternative. Moreover, we show that the set [Formula: see text]belongs to the point spectrum [Formula: see text] in L p We determine the associated eigenfunctions and show that they decay exponentially in space. As an application, we analyse spinning soliton solutions which occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated eigenfunctions. Our results form the basis for investigating the nonlinear stability of rotating waves in higher space dimensions and truncations to bounded domains. This article is part of the themed issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).
Modal interaction in linear dynamic systems near degenerate modes
NASA Technical Reports Server (NTRS)
Afolabi, D.
1991-01-01
In various problems in structural dynamics, the eigenvalues of a linear system depend on a characteristic parameter of the system. Under certain conditions, two eigenvalues of the system approach each other as the characteristic parameter is varied, leading to modal interaction. In a system with conservative coupling, the two eigenvalues eventually repel each other, leading to the curve veering effect. In a system with nonconservative coupling, the eigenvalues continue to attract each other, eventually colliding, leading to eigenvalue degeneracy. Modal interaction is studied in linear systems with conservative and nonconservative coupling using singularity theory, sometimes known as catastrophe theory. The main result is this: eigenvalue degeneracy is a cause of instability; in systems with conservative coupling, it induces only geometric instability, whereas in systems with nonconservative coupling, eigenvalue degeneracy induces both geometric and elastic instability. Illustrative examples of mechanical systems are given.
Noisy covariance matrices and portfolio optimization
NASA Astrophysics Data System (ADS)
Pafka, S.; Kondor, I.
2002-05-01
According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.
NASA Astrophysics Data System (ADS)
Mussardo, G.; Giudici, G.; Viti, J.
2017-03-01
In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j = (q - 2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .
A new approach to the method of source-sink potentials for molecular conduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha
2015-11-21
We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less
Wigner surmises and the two-dimensional homogeneous Poisson point process.
Sakhr, Jamal; Nieminen, John M
2006-04-01
We derive a set of identities that relate the higher-order interpoint spacing statistics of the two-dimensional homogeneous Poisson point process to the Wigner surmises for the higher-order spacing distributions of eigenvalues from the three classical random matrix ensembles. We also report a remarkable identity that equates the second-nearest-neighbor spacing statistics of the points of the Poisson process and the nearest-neighbor spacing statistics of complex eigenvalues from Ginibre's ensemble of 2 x 2 complex non-Hermitian random matrices.
New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation
NASA Astrophysics Data System (ADS)
Liu, Jianzhou; Wang, Li; Zhang, Juan
2017-11-01
The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.
The Theory of Quantized Fields. III
DOE R&D Accomplishments Database
Schwinger, J.
1953-05-01
In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.
NASA Astrophysics Data System (ADS)
Ernawati; Carnia, E.; Supriatna, A. K.
2018-03-01
Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.
Staggered chiral random matrix theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, James C.
2011-02-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Hughes, John P., E-mail: rsmith@cfa.harvard.ed, E-mail: jph@physics.rutgers.ed
2010-07-20
Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z inmore » a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.« less
A few shape optimization results for a biharmonic Steklov problem
NASA Astrophysics Data System (ADS)
Buoso, Davide; Provenzano, Luigi
2015-09-01
We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.
Implicity restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations
NASA Technical Reports Server (NTRS)
Sorensen, Danny C.
1996-01-01
Eigenvalues and eigenfunctions of linear operators are important to many areas of applied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fueled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now available, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large-scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted Arnoldi Method is presented here in some depth. This method is highlighted because of its suitability as a basis for software development.
RANDOM MATRIX DIAGONALIZATION--A COMPUTER PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchel, K.; Greibach, R.J.; Porter, C.E.
A computer prograra is described which generates random matrices, diagonalizes them and sorts appropriately the resulting eigenvalues and eigenvector components. FAP and FORTRAN listings for the IBM 7090 computer are included. (auth)
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
NASA Astrophysics Data System (ADS)
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
Using parallel banded linear system solvers in generalized eigenvalue problems
NASA Technical Reports Server (NTRS)
Zhang, Hong; Moss, William F.
1993-01-01
Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.
Population Control of Self-Replicating Systems: Option C
NASA Technical Reports Server (NTRS)
Mccord, R. L.
1983-01-01
From the conception and development of the theory of self-replicating automata by John von Neumann, others have expanded on his theories. In 1980, Georg von Tiesenhausen and Wesley A. Darbro developed a report which is a "first' in presenting the theories in a conceptualized engineering setting. In that report several options involving self-replicating systems are presented. One of the options allows each primary to generate n replicas, one in each sequential time frame after its own generation. Each replica is limited to a maximum of m ancestors. This study involves determining the state vector of the replicas in an efficient manner. The problem is cast in matrix notation, where F = fij is a non-diagonalizable matrix. Any element fij represents the number of elements of type j = (c,d) in time frame k+1 generated from type i = (a,b) in time frame k. It is then shown that the state vector is: bar F(k)=bar F (non-zero) X F sub K = bar F (non-zero) xmx J sub kx m sub-1 where J is a matrix in Jordan form having the same eigenvalues as F. M is a matrix composed of the eigenvectors and the generalized eigenvectors of F.
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-01-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-06-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
Spectral analysis of Chinese language: Co-occurrence networks from four literary genres
NASA Astrophysics Data System (ADS)
Liang, Wei; Chen, Guanrong
2016-05-01
The eigenvalues and eigenvectors of the adjacency matrix of a network contain essential information about its topology. For each of the Chinese language co-occurrence networks constructed from four literary genres, i.e., essay, popular science article, news report, and novel, it is found that the largest eigenvalue depends on the network size N, the number of edges, the average shortest path length, and the clustering coefficient. Moreover, it is found that their node-degree distributions all follow a power-law. The number of different eigenvalues, Nλ, is found numerically to increase in the manner of Nλ ∝ log N for novel and Nλ ∝ N for the other three literary genres. An ;M; shape or a triangle-like distribution appears in their spectral densities. The eigenvector corresponding to the largest eigenvalue is mostly localized to a node with the largest degree. For the above observed phenomena, mathematical analysis is provided with interpretation from a linguistic perspective.
On Fluctuations of Eigenvalues of Random Band Matrices
NASA Astrophysics Data System (ADS)
Shcherbina, M.
2015-10-01
We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-02-25
Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Products of random matrices from fixed trace and induced Ginibre ensembles
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Cikovic, Milan
2018-05-01
We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M ‑ m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.
Targeting functional motifs of a protein family
NASA Astrophysics Data System (ADS)
Bhadola, Pradeep; Deo, Nivedita
2016-10-01
The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.
Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N
2016-07-12
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.
Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...
2016-06-06
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less
Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials
NASA Astrophysics Data System (ADS)
Volkmer, Hans
2008-04-01
Sequences of polynomials, orthogonal with respect to signed measures, are associated with a class of differential equations including the Mathieu, Lame and Whittaker-Hill equation. It is shown that the zeros of pn form sequences which converge to the eigenvalues of the corresponding differential equations. Moreover, interlacing properties of the zeros of pn are found. Applications to the numerical treatment of eigenvalue problems are given.
A new mathematical adjoint for the modified SAAF -SN equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Wang, Yaqi; Martineau, Richard
2015-01-01
We present a new adjoint FEM weak form, which can be directly used for evaluating the mathematical adjoint, suitable for perturbation calculations, of the self-adjoint angular flux SN equations (SAAF -SN) without construction and transposition of the underlying coefficient matrix. Stabilization schemes incorporated in the described SAAF -SN method make the mathematical adjoint distinct from the physical adjoint, i.e. the solution of the continuous adjoint equation with SAAF -SN . This weak form is implemented into RattleSnake, the MOOSE (Multiphysics Object-Oriented Simulation Environment) based transport solver. Numerical results verify the correctness of the implementation and show its utility both formore » fixed source and eigenvalue problems.« less
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.
1991-01-01
The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An implementation is presented of a look-ahead version of the Lanczos algorithm that, except for the very special situation of an incurable breakdown, overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products as the standard Lanczos process without look-ahead.
A globally convergent MC algorithm with an adaptive learning rate.
Peng, Dezhong; Yi, Zhang; Xiang, Yong; Zhang, Haixian
2012-02-01
This brief deals with the problem of minor component analysis (MCA). Artificial neural networks can be exploited to achieve the task of MCA. Recent research works show that convergence of neural networks based MCA algorithms can be guaranteed if the learning rates are less than certain thresholds. However, the computation of these thresholds needs information about the eigenvalues of the autocorrelation matrix of data set, which is unavailable in online extraction of minor component from input data stream. In this correspondence, we introduce an adaptive learning rate into the OJAn MCA algorithm, such that its convergence condition does not depend on any unobtainable information, and can be easily satisfied in practical applications.
Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro
2016-11-01
Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.
Edge connectivity and the spectral gap of combinatorial and quantum graphs
NASA Astrophysics Data System (ADS)
Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio
2017-09-01
We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.
The method of trend analysis of parameters time series of gas-turbine engine state
NASA Astrophysics Data System (ADS)
Hvozdeva, I.; Myrhorod, V.; Derenh, Y.
2017-10-01
This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.
Direct structural parameter identification by modal test results
NASA Technical Reports Server (NTRS)
Chen, J.-C.; Kuo, C.-P.; Garba, J. A.
1983-01-01
A direct identification procedure is proposed to obtain the mass and stiffness matrices based on the test measured eigenvalues and eigenvectors. The method is based on the theory of matrix perturbation in which the correct mass and stiffness matrices are expanded in terms of analytical values plus a modification matrix. The simplicity of the procedure enables real time operation during the structural testing.
Correlation and volatility in an Indian stock market: A random matrix approach
NASA Astrophysics Data System (ADS)
Kulkarni, Varsha; Deo, Nivedita
2007-11-01
We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000 2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Research on the application of a decoupling algorithm for structure analysis
NASA Technical Reports Server (NTRS)
Denman, E. D.
1980-01-01
The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1986-01-01
A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.
NASA Technical Reports Server (NTRS)
Tal-Ezer, Hillel
1987-01-01
During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.
Ultrarelativistic bound states in the spherical well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żaba, Mariusz; Garbaczewski, Piotr
2016-07-15
We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator (−Δ){sup 1/2}, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral data for lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled E{sub (k,l)} series. For each orbital label l = 0, 1, 2, …, the label k = 1, 2, … enumerates consecutive lth seriesmore » eigenvalues. Each of them is 2l + 1-degenerate. The l = 0 eigenvalues series E{sub (k,0)} are identical with the set of even labeled eigenvalues for the d = 1 Cauchy well: E{sub (k,0)}(d = 3) = E{sub 2k}(d = 1). Likewise, the eigenfunctions ψ{sub (k,0)}(d = 3) and ψ{sub 2k}(d = 1) show affinity. We have identified the generic functional form of eigenfunctions of the spherical well which appear to be composed of a product of a solid harmonic and of a suitable purely radial function. The method to evaluate (approximately) the latter has been found to follow the universal pattern which effectively allows to skip all, sometimes involved, intermediate calculations (those were in usage, while computing the eigenvalues for l ≤ 3).« less
Spectral Analysis for Weighted Iterated Triangulations of Graphs
NASA Astrophysics Data System (ADS)
Chen, Yufei; Dai, Meifeng; Wang, Xiaoqian; Sun, Yu; Su, Weiyi
Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a first study on the spectra of the normalized Laplacian of weighted iterated triangulations of graphs. We analytically obtain all the eigenvalues, as well as their multiplicities from two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index, Kemeny’s constant and number of weighted spanning trees.
Random Matrix Theory and Econophysics
NASA Astrophysics Data System (ADS)
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory Analysis of Diffusion in Stock Price Dynamics, preprint
Reliable use of determinants to solve nonlinear structural eigenvalue problems efficiently
NASA Technical Reports Server (NTRS)
Williams, F. W.; Kennedy, D.
1988-01-01
The analytical derivation, numerical implementation, and performance of a multiple-determinant parabolic interpolation method (MDPIM) for use in solving transcendental eigenvalue (critical buckling or undamped free vibration) problems in structural mechanics are presented. The overall bounding, eigenvalue-separation, qualified parabolic interpolation, accuracy-confirmation, and convergence-recovery stages of the MDPIM are described in detail, and the numbers of iterations required to solve sample plane-frame problems using the MDPIM are compared with those for a conventional bisection method and for the Newtonian method of Simpson (1984) in extensive tables. The MDPIM is shown to use 31 percent less computation time than bisection when accuracy of 0.0001 is required, but 62 percent less when accuracy of 10 to the -8th is required; the time savings over the Newtonian method are about 10 percent.
Initial values for the integration scheme to compute the eigenvalues for propagation in ducts
NASA Technical Reports Server (NTRS)
Eversman, W.
1977-01-01
A scheme for the calculation of eigenvalues in the problem of acoustic propagation in a two-dimensional duct is described. The computation method involves changing the coupled transcendental nonlinear algebraic equations into an initial value problem involving a nonlinear ordinary differential equation. The simplest approach is to use as initial values the hardwall eigenvalues and to integrate away from these values as the admittance varies from zero to its actual value with a linear variation. The approach leads to a powerful root finding routine capable of computing the transverse and axial wave numbers for two-dimensional ducts for any frequency, lining, admittance and Mach number without requiring initial guesses or starting points.
Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft
NASA Technical Reports Server (NTRS)
Kvaternil, Raymond G.
2006-01-01
Proprotor Aeroelastic Stability Analysis, now at version 4.5 (PASTA 4.5), is a FORTRAN computer program for analyzing the aeroelastic stability of a tiltrotor aircraft in the airplane mode of flight. The program employs a 10-degree- of-freedom (DOF), discrete-coordinate, linear mathematical model of a rotor with three or more blades and its drive system coupled to a 10-DOF modal model of an airframe. The user can select which DOFs are included in the analysis. Quasi-steady strip-theory aerodynamics is employed for the aerodynamic loads on the blades, a quasi-steady representation is employed for the aerodynamic loads acting on the vibrational modes of the airframe, and a stability-derivative approach is used for the aerodynamics associated with the rigid-body DOFs of the airframe. Blade parameters that vary with the blade collective pitch can be obtained by interpolation from a user-defined table. Stability is determined by examining the eigenvalues that are obtained by solving the coupled equations of motions as a matrix eigenvalue problem. Notwithstanding the relative simplicity of its mathematical foundation, PASTA 4.5 and its predecessors have played key roles in a number of engineering investigations over the years.
Modelling of Rigid-Body and Elastic Aircraft Dynamics for Flight Control Development.
1986-06-01
AMAT MATSAV AUGMENT MI NV BMAT MMULT EVAL RLPLOT FASTCHG STABDER The subroutines are fairly well commented so that a person familiar with the theory...performed as in a typical flutter solution. C C Subroutine BMAT computes the B matrix from the forcing function C matrix Q. B is a function of dynamic...and BMAT multiplies matrices. C This is used to form the A and B matrices. C C Subroutine EVAL computes the eigenvalues of the A matrix C The
A case against a divide and conquer approach to the nonsymmetric eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1991-12-01
Divide and conquer techniques based on rank-one updating have proven fast, accurate, and efficient in parallel for the real symmetric tridiagonal and unitary eigenvalue problems and for the bidiagonal singular value problem. Although the divide and conquer mechanism can also be adapted to the real nonsymmetric eigenproblem in a straightforward way, most of the desirable characteristics of the other algorithms are lost. In this paper, we examine the problems of accuracy and efficiency that can stand in the way of a nonsymmetric divide and conquer eigensolver based on low-rank updating. 31 refs., 2 figs.
Flavor structure in F-theory compactifications
NASA Astrophysics Data System (ADS)
Hayashi, Hirotaka; Kawano, Teruhiko; Tsuchiya, Yoichi; Watari, Taizan
2010-08-01
F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of righthanded neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E 6 type point and one D 6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N gen × N gen CKM matrix is predicted to have only N gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. The hierarchy among the Yukawa eigenvalues of the down-type and charged lepton sector is predicted to be smaller than that of the up-type sector, and the Majorana masses of left-handed neutrinos generated through the see-saw mechanism have small hierarchy. All of these predictions agree with what we observe in the real world. We also obtained a precise description of zero mode wavefunctions near the E 6 type singularity points, where the up-type Yukawa couplings are generated.
SO(4) algebraic approach to the three-body bound state problem in two dimensions
NASA Astrophysics Data System (ADS)
Dmitrašinović, V.; Salom, Igor
2014-08-01
We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.
Material identification based on electrostatic sensing technology
NASA Astrophysics Data System (ADS)
Liu, Kai; Chen, Xi; Li, Jingnan
2018-04-01
When the robot travels on the surface of different media, the uncertainty of the medium will seriously affect the autonomous action of the robot. In this paper, the distribution characteristics of multiple electrostatic charges on the surface of materials are detected, so as to improve the accuracy of the existing electrostatic signal material identification methods, which is of great significance to help the robot optimize the control algorithm. In this paper, based on the electrostatic signal material identification method proposed by predecessors, the multi-channel detection circuit is used to obtain the electrostatic charge distribution at different positions of the material surface, the weights are introduced into the eigenvalue matrix, and the weight distribution is optimized by the evolutionary algorithm, which makes the eigenvalue matrix more accurately reflect the surface charge distribution characteristics of the material. The matrix is used as the input of the k-Nearest Neighbor (kNN)classification algorithm to classify the dielectric materials. The experimental results show that the proposed method can significantly improve the recognition rate of the existing electrostatic signal material recognition methods.
Random Matrix Approach to Quantum Adiabatic Evolution Algorithms
NASA Technical Reports Server (NTRS)
Boulatov, Alexei; Smelyanskiy, Vadier N.
2004-01-01
We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
NASA Astrophysics Data System (ADS)
Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.
2018-03-01
We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.
Optimal trajectories for aeroassisted orbital transfer
NASA Technical Reports Server (NTRS)
Miele, A.; Venkataraman, P.
1983-01-01
Consideration is given to classical and minimax problems involved in aeroassisted transfer from high earth orbit (HEO) to low earth orbit (LEO). The transfer is restricted to coplanar operation, with trajectory control effected by means of lift modulation. The performance of the maneuver is indexed to the energy expenditure or, alternatively, the time integral of the heating rate. Firist-order optimality conditions are defined for the classical approach, as are a sequential gradient-restoration algorithm and a combined gradient-restoration algorithm. Minimization techniques are presented for the aeroassisted transfer energy consumption and time-delay integral of the heating rate, as well as minimization of the pressure. It is shown that the eigenvalues of the Jacobian matrix of the differential system is both stiff and unstable, implying that the sequential gradient restoration algorithm in its present version is unsuitable. A new method, involving a multipoint approach to the two-poing boundary value problem, is recommended.
Isomorphism of dimer configurations and spanning trees on finite square lattices
NASA Astrophysics Data System (ADS)
Brankov, J. G.
1995-09-01
One-to-one mappings of the close-packed dimer configurations on a finite square lattice with free boundaries L onto the spanning trees of a related graph (or two-graph) G are found. The graph (two-graph) G can be constructed from L by: (1) deleting all the vertices of L with arbitrarily fixed parity of the row and column numbers; (2) suppressing all the vertices of degree 2 except those of degree 2 in L; (3) merging all the vertices of degree 1 into a single vertex g. The matrix Kirchhoff theorem reduces the enumeration problem for the spanning trees on G to the eigenvalue problem for the discrete Laplacian on the square lattice L'=G g with mixed Dirichlet-Neumann boundary conditions in at least one direction. That fact explains some of the unusual finite-size properties of the dimer model.
Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load
NASA Astrophysics Data System (ADS)
Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.
2017-03-01
The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.
On polynomial preconditioning for indefinite Hermitian matrices
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1989-01-01
The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.
Optical potential approach to the electron-atom impact ionization threshold problem
NASA Technical Reports Server (NTRS)
Temkin, A.; Hahn, Y.
1973-01-01
The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.
The difference between two random mixed quantum states: exact and asymptotic spectral analysis
NASA Astrophysics Data System (ADS)
Mejía, José; Zapata, Camilo; Botero, Alonso
2017-01-01
We investigate the spectral statistics of the difference of two density matrices, each of which is independently obtained by partially tracing a random bipartite pure quantum state. We first show how a closed-form expression for the exact joint eigenvalue probability density function for arbitrary dimensions can be obtained from the joint probability density function of the diagonal elements of the difference matrix, which is straightforward to compute. Subsequently, we use standard results from free probability theory to derive a relatively simple analytic expression for the asymptotic eigenvalue density (AED) of the difference matrix ensemble, and using Carlson’s theorem, we obtain an expression for its absolute moments. These results allow us to quantify the typical asymptotic distance between the two random mixed states using various distance measures; in particular, we obtain the almost sure asymptotic behavior of the operator norm distance and the trace distance.
Eigenvectors of optimal color spectra.
Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku
2013-09-01
Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.
Inflation with a graceful exit in a random landscape
NASA Astrophysics Data System (ADS)
Pedro, F. G.; Westphal, A.
2017-03-01
We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N ≪ 10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.
Coherence analysis of a class of weighted networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; He, Jiaojiao; Zong, Yue; Ju, Tingting; Sun, Yu; Su, Weiyi
2018-04-01
This paper investigates consensus dynamics in a dynamical system with additive stochastic disturbances that is characterized as network coherence by using the Laplacian spectrum. We introduce a class of weighted networks based on a complete graph and investigate the first- and second-order network coherence quantifying as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues. First, the recursive relationship of its eigenvalues at two successive generations of Laplacian matrix is deduced. Then, we compute the sum and square sum of reciprocal of all nonzero Laplacian eigenvalues. The obtained results show that the scalings of first- and second-order coherence with network size obey four and five laws, respectively, along with the range of the weight factor. Finally, it indicates that the scalings of our studied networks are smaller than other studied networks when 1/√{d }
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hintermueller, M., E-mail: hint@math.hu-berlin.de; Kao, C.-Y., E-mail: Ckao@claremontmckenna.edu; Laurain, A., E-mail: laurain@math.hu-berlin.de
2012-02-15
This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this thresholdmore » value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.« less
Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Lakshtanov, E.; Vainberg, B.
2013-10-01
The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).
Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory
NASA Astrophysics Data System (ADS)
Usselman, Austin
We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.
Analysis of spontaneous oscillations for a three-state power-stroke model.
Washio, Takumi; Hisada, Toshiaki; Shintani, Seine A; Higuchi, Hideo
2017-02-01
Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior. Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.
Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer
NASA Technical Reports Server (NTRS)
Fu, Yibin; Hall, Philip
1992-01-01
The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...
2018-04-30
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
NASA Astrophysics Data System (ADS)
Xu, Guo-Ming; Ni, Si-Dao
1998-11-01
The `auxiliary' symmetry properties of the system matrix (symmetry with respect to the trailing diagonal) for a general anisotropic dissipative medium and the special form for a monoclinic medium are revealed by rearranging the motion-stress vector. The propagator matrix of a single-layer general anisotropic dissipative medium is also shown to have auxiliary symmetry. For the multilayered case, a relatively simple matrix method is utilized to obtain the inverse of the propagator matrix. Further, Woodhouse's inverse of the propagator matrix for a transversely isotropic medium is extended in a clearer form to handle the monoclinic symmetric medium. The properties of a periodic layer system are studied through its system matrix Aly , which is computed from the propagator matrix P. The matrix Aly is then compared with Aeq , the system matrix for the long-wavelength equivalent medium of the periodic isotropic layers. Then we can find how the periodic layered medium departs from its long-wavelength equivalent medium when the wavelength decreases. In our numerical example, the results show that, when λ/D decreases to 6-8, the components of the two matrices will depart from each other. The component ratio of these two matrices increases to its maximum (more than 15 in our numerical test) when λ/D is reduced to 2.3, and then oscillates with λ/D when it is further reduced. The eigenvalues of the system matrix Aly show that the velocities of P and S waves decrease when λ/D is reduced from 6-8 and reach their minimum values when λ/D is reduced to 2.3 and then oscillate afterwards. We compute the time shifts between the peaks of the transmitted waves and the incident waves. The resulting velocity curves show a similar variation to those computed from the eigenvalues of the system matrix Aly , but on a smaller scale. This can be explained by the spectrum width of the incident waves.
Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.
Allefeld, Carsten; Bialonski, Stephan
2007-12-01
Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.
Exact solution of a one-dimensional model of strained epitaxy on a periodically modulated substrate
NASA Astrophysics Data System (ADS)
Tokar, V. I.; Dreyssé, H.
2005-03-01
We consider a one-dimensional lattice gas model of strained epitaxy with the elastic strain accounted for through a finite number of cluster interactions comprising contiguous atomic chains. Interactions of this type arise in the models of strained epitaxy based on the Frenkel-Kontorova model. Furthermore, the deposited atoms interact with the substrate via an arbitrary periodic potential of period L . This model is solved exactly with the use of an appropriately adopted technique developed recently in the theory of protein folding. The advantage of the proposed approach over the standard transfer-matrix method is that it reduces the problem to finding the largest eigenvalue of a matrix of size L instead of 2L-1 , which is vital in the case of nanostructures where L may measure in hundreds of interatomic distances. Our major conclusion is that the substrate modulation always facilitates the size calibration of self-assembled nanoparticles in one- and two-dimensional systems.
NASA Astrophysics Data System (ADS)
Morozov, A.
2012-08-01
Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
NASA Astrophysics Data System (ADS)
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2013-05-01
Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
On the Wigner law in dilute random matrices
NASA Astrophysics Data System (ADS)
Khorunzhy, A.; Rodgers, G. J.
1998-12-01
We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.
The inference of atmospheric ozone using satellite nadir measurements in the 1042/cm band
NASA Technical Reports Server (NTRS)
Russell, J. M., III; Drayson, S. R.
1973-01-01
A description and detailed analysis of a technique for inferring atmospheric ozone information from satellite nadir measurements in the 1042 cm band are presented. A method is formulated for computing the emission from the lower boundary under the satellite which circumvents the difficult analytical problems caused by the presence of atmospheric clouds and the watervapor continuum absorption. The inversion equations are expanded in terms of the eigenvectors and eigenvalues of a least-squares-solution matrix, and an analysis is performed to determine the information content of the radiance measurements. Under favorable conditions there are only two pieces of independent information available from the measurements: (1) the total ozone and (2) the altitude of the primary maximum in the ozone profile.
Field patterns without blow up
NASA Astrophysics Data System (ADS)
Mattei, Ornella; Milton, Graeme W.
2017-09-01
Field patterns, first proposed by the authors in Milton and Mattei (2017 Proc. R. Soc. A 473 20160819), are a new type of wave propagating along orderly patterns of characteristic lines which arise in specific space-time microstructures whose geometry in one spatial dimension plus time is somehow commensurate with the slope of the characteristic lines. In particular, in Milton and Mattei (2017 Proc. R. Soc. A 473 20160819) the authors propose two examples of space-time geometries in which field patterns occur: they are two-phase microstructures in which rectangular space-time inclusions of one material are embedded in another material. After a sufficiently long interval of time, field patterns have local periodicity both in time and space. This allows one to focus only on solving the problem on the discrete network on which a field pattern lives and to define a suitable transfer matrix that, given the solution at a certain time, provides the solution after one time period. For the aforementioned microstructures, many of the eigenvalues of this { P }{ T }-symmetric transfer matrix have unit norm and hence the corresponding eigenvectors correspond to propagating modes. However, there are also modes that blow up exponentially with time coupled with modes that decrease exponentially with time. The question arises as to whether there are space-time microstructures such that the transfer matrix only has eigenvalues on the unit circle, so that there are no growing modes (modes that blow-up)? The answer is found here, where we see that certain space-time checkerboards have the property that all the modes are propagating modes, within a certain range of the material parameters. Interestingly, when there is no blow-up, the waves generated by an instantaneous disturbance at a point look like shocks with a wake of oscillatory waves, whose amplitude, very remarkably, does not tend to zero away from the wave front.
A three dimensional point cloud registration method based on rotation matrix eigenvalue
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhou, Xiang; Fei, Zixuan; Gao, Xiaofei; Jin, Rui
2017-09-01
We usually need to measure an object at multiple angles in the traditional optical three-dimensional measurement method, due to the reasons for the block, and then use point cloud registration methods to obtain a complete threedimensional shape of the object. The point cloud registration based on a turntable is essential to calculate the coordinate transformation matrix between the camera coordinate system and the turntable coordinate system. We usually calculate the transformation matrix by fitting the rotation center and the rotation axis normal of the turntable in the traditional method, which is limited by measuring the field of view. The range of exact feature points used for fitting the rotation center and the rotation axis normal is approximately distributed within an arc less than 120 degrees, resulting in a low fit accuracy. In this paper, we proposes a better method, based on the invariant eigenvalue principle of rotation matrix in the turntable coordinate system and the coordinate transformation matrix of the corresponding coordinate points. First of all, we control the rotation angle of the calibration plate with the turntable to calibrate the coordinate transformation matrix of the corresponding coordinate points by using the least squares method. And then we use the feature decomposition to calculate the coordinate transformation matrix of the camera coordinate system and the turntable coordinate system. Compared with the traditional previous method, it has a higher accuracy, better robustness and it is not affected by the camera field of view. In this method, the coincidence error of the corresponding points on the calibration plate after registration is less than 0.1mm.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Kieburg, Mario; Guhr, Thomas
2017-06-01
The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.
Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays
NASA Astrophysics Data System (ADS)
Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.
2014-12-01
Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.
Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
2016-10-15
The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-ordermore » differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.« less
The method of fundamental solutions for computing acoustic interior transmission eigenvalues
NASA Astrophysics Data System (ADS)
Kleefeld, Andreas; Pieronek, Lukas
2018-03-01
We analyze the method of fundamental solutions (MFS) in two different versions with focus on the computation of approximate acoustic interior transmission eigenvalues in 2D for homogeneous media. Our approach is mesh- and integration free, but suffers in general from the ill-conditioning effects of the discretized eigenoperator, which we could then successfully balance using an approved stabilization scheme. Our numerical examples cover many of the common scattering objects and prove to be very competitive in accuracy with the standard methods for PDE-related eigenvalue problems. We finally give an approximation analysis for our framework and provide error estimates, which bound interior transmission eigenvalue deviations in terms of some generalized MFS output.
The Schrodinger Eigenvalue March
ERIC Educational Resources Information Center
Tannous, C.; Langlois, J.
2011-01-01
A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Yang, Bingjia; Zhang, Zhongzhi; Andrade, Roberto F. S.
2018-07-01
A deterministic network with tree structure is considered, for which the spectrum of its adjacency matrix can be exactly evaluated by a recursive renormalization approach. It amounts to successively increasing number of contributions at any finite step of construction of the tree, resulting in a causal chain. The resulting eigenvalues can be related the full energy spectrum of a nearest-neighbor tight-binding model defined on this structure. Given this association, it turns out that further properties of the eigenvectors can be evaluated, like the degree of quantum localization of the tight-binding eigenstates, expressed by the inverse participation ratio (IPR). It happens that, for the current model, the IPR's are also suitable to be analytically expressed in terms in corresponding eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails of eigenvalue chains as well.
Matrix Perturbation Techniques in Structural Dynamics
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1973-01-01
Matrix perturbation are developed techniques which can be used in the dynamical analysis of structures where the range of numerical values in the matrices extreme or where the nature of the damping matrix requires that complex valued eigenvalues and eigenvectors be used. The techniques can be advantageously used in a variety of fields such as earthquake engineering, ocean engineering, aerospace engineering and other fields concerned with the dynamical analysis of large complex structures or systems of second order differential equations. A number of simple examples are included to illustrate the techniques.
Finite element analysis of damped vibrations of laminated composite plates
NASA Astrophysics Data System (ADS)
Hu, Baogang
1992-11-01
Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.
Graczyk, Michelle B; Duarte Queirós, Sílvio M
2017-01-01
Employing Random Matrix Theory and Principal Component Analysis techniques, we enlarge our work on the individual and cross-sectional intraday statistical properties of trading volume in financial markets to the study of collective intraday features of that financial observable. Our data consist of the trading volume of the Dow Jones Industrial Average Index components spanning the years between 2003 and 2014. Computing the intraday time dependent correlation matrices and their spectrum of eigenvalues, we show there is a mode ruling the collective behaviour of the trading volume of these stocks whereas the remaining eigenvalues are within the bounds established by random matrix theory, except the second largest eigenvalue which is robustly above the upper bound limit at the opening and slightly above it during the morning-afternoon transition. Taking into account that for price fluctuations it was reported the existence of at least seven significant eigenvalues-and that its autocorrelation function is close to white noise for highly liquid stocks whereas for the trading volume it lasts significantly for more than 2 hours -, our finding goes against any expectation based on those features, even when we take into account the Epps effect. In addition, the weight of the trading volume collective mode is intraday dependent; its value increases as the trading session advances with its eigenversor approaching the uniform vector as well, which corresponds to a soar in the behavioural homogeneity. With respect to the nonstationarity of the collective features of the trading volume we observe that after the financial crisis of 2008 the coherence function shows the emergence of an upset profile with large fluctuations from that year on, a property that concurs with the modification of the average trading volume profile we noted in our previous individual analysis.
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
NASA Astrophysics Data System (ADS)
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
1987-06-01
Vibration of an Elastic Bar We are interested in studying the small, longitudinal vibra- tions of a longitudinally loaded, elastically supported, elastic...u 2 + + 2u O(( m,Q Uk .(J- MO In the study of eigenvalue problems, central use will be made of Rellich’s theorem (cf. Agmon [19651), which states...H , where a > 0. Sufficient conditions for (4.2) - (4.4) to hold were given in Section 3; cf. (3.15) -(3.17). For the study of (4.1) it is useful to
The Hölder continuity of spectral measures of an extended CMV matrix
NASA Astrophysics Data System (ADS)
Munger, Paul E.; Ong, Darren C.
2014-09-01
We prove results about the Hölder continuity of the spectral measures of the extended CMV matrix, given power law bounds of the solution of the eigenvalue equation. We thus arrive at a unitary analogue of the results of Damanik, Killip, and Lenz ["Uniform spectral properties of one-dimensional quasicrystals, III. α-continuity," Commun. Math. Phys. 212, 191-204 (2000)] about the spectral measure of the discrete Schrödinger operator.
The Hölder continuity of spectral measures of an extended CMV matrix.
Munger, Paul E; Ong, Darren C
2014-09-01
We prove results about the Hölder continuity of the spectral measures of the extended CMV matrix, given power law bounds of the solution of the eigenvalue equation. We thus arrive at a unitary analogue of the results of Damanik, Killip, and Lenz ["Uniform spectral properties of one-dimensional quasicrystals, III. α-continuity," Commun. Math. Phys.55, 191-204 (2000)] about the spectral measure of the discrete Schrödinger operator.
A generalization of random matrix theory and its application to statistical physics.
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
Method of locating related items in a geometric space for data mining
Hendrickson, B.A.
1999-07-27
A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity. 12 figs.
A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.
NASA Technical Reports Server (NTRS)
Harris, J. D.
1971-01-01
The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.
Method of locating related items in a geometric space for data mining
Hendrickson, Bruce A.
1999-01-01
A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.
McCollom, Brittany A; Collis, Jon M
2014-09-01
A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.
2014-06-01
For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.
2009-08-01
A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program calculates also potential matrix elements - integrals of the eigenfunctions multiplied by their first derivatives with respect to the parameter. Eigenvalues and matrix elements computed by the ODPEVP program can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Commun. 179 (2008) 685-693]. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials, a 3D-model of a hydrogen atom in a homogeneous magnetic field and a hydrogen atom on a three-dimensional sphere. Program summaryProgram title: ODPEVP Catalogue identifier: AEDV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 24 195 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on the number and order of finite elements; the number of points; and the number of eigenfunctions required. Test run requires 4 MB Classification: 2.1, 2.4 External routines: GAULEG [3] Nature of problem: The three-dimensional boundary problem for the elliptic partial differential equation with an axial symmetry similar to the Schrödinger equation with the Coulomb and transverse oscillator potentials is reduced to the two-dimensional one. The latter finds wide applications in modeling of photoionization and recombination of oppositively charged particles (positrons, antiprotons) in the magnet-optical trap [4], optical absorption in quantum wells [5], and channeling of likely charged particles in thin doped films [6,7] or neutral atoms and molecules in artificial waveguides or surfaces [8,9]. In the adiabatic approach [10] known in mathematics as Kantorovich method [11] the solution of the two-dimensional elliptic partial differential equation is expanded over basis functions with respect to the fast variable (for example, angular variable) and depended on the slow variable (for example, radial coordinate ) as a parameter. An averaging of the problem by such a basis leads to a system of the second-order ordinary differential equations which contain potential matrix elements and the first-derivative coupling terms (see, e.g., [12,13,14]). The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program developed calculates potential matrix elements - integrals of the eigenfunctions multiplied by their derivatives with respect to the parameter. These matrix elements can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [1,2]. Solution method: The parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions is solved by the finite element method using high-order accuracy approximations [15]. The generalized algebraic eigenvalue problem AF=EBF with respect to a pair of unknown ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [16]. First derivatives of the eigenfunctions with respect to the parameter which contained in potential matrix elements of the coupled system equations are obtained by solving the inhomogeneous algebraic equations. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials described in [1,17,18], a 3D-model of a hydrogen atom in a homogeneous magnetic field described in [14,19] and a hydrogen atom on a three-dimensional sphere [20]. Restrictions: The computer memory requirements depend on: the number and order of finite elements; the number of points; and the number of eigenfunctions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see sections below and listing for details). The user must also supply DOUBLE PRECISION functions POTCCL and POTCC1 for evaluating potential function U(ρ,z) of Eq. (1) and its first derivative with respect to parameter ρ. The user should supply DOUBLE PRECISION functions F1FUNC and F2FUNC that evaluate functions f(z) and f(z) of Eq. (1). The user must also supply subroutine BOUNCF for evaluating the parametric third type boundary conditions. Running time: The running time depends critically upon: the number and order of finite elements; the number of points on interval [z,z]; and the number of eigenfunctions required. The test run which accompanies this paper took 2 s with calculation of matrix potentials on the Intel Pentium IV 2.4 GHz. References:O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675 O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Comm. 179 (2008) 685-693. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, V.L. Derbov, L.A. Melnikov, V.V. Serov, Phys. Rev. A 77 (2008) 034702-1-4. E.M. Kazaryan, A.A. Kostanyan, H.A. Sarkisyan, Physica E 28 (2005) 423-430. Yu.N. Demkov, J.D. Meyer, Eur. Phys. J. B 42 (2004) 361-365. P.M. Krassovitskiy, N.Zh. Takibaev, Bull. Russian Acad. Sci. Phys. 70 (2006) 815-818. V.S. Melezhik, J.I. Kim, P. Schmelcher, Phys. Rev. A 76 (2007) 053611-1-15. F.M. Pen'kov, Phys. Rev. A 62 (2000) 044701-1-4. M. Born, X. Huang, Dynamical Theory of Crystal Lattices, The Clarendon Press, Oxford, England, 1954. L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 1964. U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127;A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640. C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320. O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524. A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64. K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982. O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269. Yu.A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361. O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Comm. 178 (2008) 301-330. A.G. Abrashkevich, M.S. Kaschiev, S.I. Vinitsky, J. Comp. Phys. 163 (2000) 328-348.
Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model
NASA Astrophysics Data System (ADS)
García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.
2018-05-01
We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.
A combined joint diagonalization-MUSIC algorithm for subsurface targets localization
NASA Astrophysics Data System (ADS)
Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon
2014-06-01
This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.
Network trending; leadership, followership and neutrality among companies: A random matrix approach
NASA Astrophysics Data System (ADS)
Mobarhan, N. S. Safavi; Saeedi, A.; Roodposhti, F. Rahnamay; Jafari, G. R.
2016-11-01
In this article, we analyze the cross-correlation between returns of different stocks to answer the following important questions. The first one is: If there exists collective behavior in a financial market, how could we detect it? And the second question is: Is there a particular company among the companies of a market as the leader of the collective behavior? Or is there no specified leadership governing the system similar to some complex systems? We use the method of random matrix theory to answer the mentioned questions. Cross-correlation matrix of index returns of four different markets is analyzed. The participation ratio quantity related to each matrices' eigenvectors and the eigenvalue spectrum is calculated. We introduce shuffled-matrix created of cross correlation matrix in such a way that the elements of the later one are displaced randomly. Comparing the participation ratio quantities obtained from a correlation matrix of a market and its related shuffled-one, on the bulk distribution region of the eigenvalues, we detect a meaningful deviation between the mentioned quantities indicating the collective behavior of the companies forming the market. By calculating the relative deviation of participation ratios, we obtain a measure to compare the markets according to their collective behavior. Answering the second question, we show there are three groups of companies: The first group having higher impact on the market trend called leaders, the second group is followers and the third one is the companies who have not a considerable role in the trend. The results can be utilized in portfolio construction.
Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Nakariakov, Valery
We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.
Detecting, anticipating, and predicting critical transitions in spatially extended systems.
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Detecting, anticipating, and predicting critical transitions in spatially extended systems
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1988-01-01
A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.
Aspects géométriques et intégrables des modèles de matrices aléatoires
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2010-12-01
This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Trinh, Allan K.
2018-05-01
The neighbourhood of the largest eigenvalue λmax in the Gaussian unitary ensemble (GUE) and Laguerre unitary ensemble (LUE) is referred to as the soft edge. It is known that there exists a particular centring and scaling such that the distribution of λmax tends to a universal form, with an error term bounded by 1/N2/3. We take up the problem of computing the exact functional form of the leading error term in a large N asymptotic expansion for both the GUE and LUE—two versions of the LUE are considered, one with the parameter a fixed and the other with a proportional to N. Both settings in the LUE case allow for an interpretation in terms of the distribution of a particular weighted path length in a model involving exponential variables on a rectangular grid, as the grid size gets large. We give operator theoretic forms of the corrections, which are corollaries of knowledge of the first two terms in the large N expansion of the scaled kernel and are readily computed using a method due to Bornemann. We also give expressions in terms of the solutions of particular systems of coupled differential equations, which provide an alternative method of computation. Both characterisations are well suited to a thinned generalisation of the original ensemble, whereby each eigenvalue is deleted independently with probability (1 - ξ). In Sec. V, we investigate using simulation the question of whether upon an appropriate centring and scaling a wider class of complex Hermitian random matrix ensembles have their leading correction to the distribution of λmax proportional to 1/N2/3.
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.
2007-10-01
A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831-843; U. Fano, Rep. Progr. Phys. 46 (1983) 97-165; C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311-339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations. Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361; O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513-L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005) 032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points; and (d) the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at the right boundary point in case of a boundary condition of the third type, respectively. Running time: The running time depends critically upon: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points on interval [0,ρ]; and (d) the number of eigensolutions required. The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
2013-10-01
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E
2013-10-21
We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.
Time scales involved in emergent market coherence
NASA Astrophysics Data System (ADS)
Kwapień, J.; Drożdż, S.; Speth, J.
2004-06-01
In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.
Chaotic, informational and synchronous behaviour of multiplex networks
NASA Astrophysics Data System (ADS)
Baptista, M. S.; Szmoski, R. M.; Pereira, R. F.; Pinto, S. E. De Souza
2016-03-01
The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac- terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- works with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.
HO2 rovibrational eigenvalue studies for nonzero angular momentum
NASA Astrophysics Data System (ADS)
Wu, Xudong T.; Hayes, Edward F.
1997-08-01
An efficient parallel algorithm is reported for determining all bound rovibrational energy levels for the HO2 molecule for nonzero angular momentum values, J=1, 2, and 3. Performance tests on the CRAY T3D indicate that the algorithm scales almost linearly when up to 128 processors are used. Sustained performance levels of up to 3.8 Gflops have been achieved using 128 processors for J=3. The algorithm uses a direct product discrete variable representation (DVR) basis and the implicitly restarted Lanczos method (IRLM) of Sorensen to compute the eigenvalues of the polyatomic Hamiltonian. Since the IRLM is an iterative method, it does not require storage of the full Hamiltonian matrix—it only requires the multiplication of the Hamiltonian matrix by a vector. When the IRLM is combined with a formulation such as DVR, which produces a very sparse matrix, both memory and computation times can be reduced dramatically. This algorithm has the potential to achieve even higher performance levels for larger values of the total angular momentum.
NASA Technical Reports Server (NTRS)
Gill, Doron; Tadmor, Eitan
1988-01-01
An efficient method is proposed to solve the eigenproblem of N by N Symmetric Tridiagonal (ST) matrices. Unlike the standard eigensolvers which necessitate O(N cubed) operations to compute the eigenvectors of such ST matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N squared) operations. The method is based on serial implementation of the recently introduced Divide and Conquer (DC) algorithm. It exploits the fact that by O(N squared) of DC operations, one can compute the eigenvalues of N by N ST matrix and a finite number of pairs of successive rows of its eigenvector matrix. The rest of the eigenvectors--all of them or one at a time--are computed by linear three-term recurrence relations. Numerical examples are presented which demonstrate the superiority of the proposed method by saving an order of magnitude in execution time at the expense of sacrificing a few orders of accuracy.
The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code.
Random discrete linear canonical transform.
Wei, Deyun; Wang, Ruikui; Li, Yuan-Min
2016-12-01
Linear canonical transforms (LCTs) are a family of integral transforms with wide applications in optical, acoustical, electromagnetic, and other wave propagation problems. In this paper, we propose the random discrete linear canonical transform (RDLCT) by randomizing the kernel transform matrix of the discrete linear canonical transform (DLCT). The RDLCT inherits excellent mathematical properties from the DLCT along with some fantastic features of its own. It has a greater degree of randomness because of the randomization in terms of both eigenvectors and eigenvalues. Numerical simulations demonstrate that the RDLCT has an important feature that the magnitude and phase of its output are both random. As an important application of the RDLCT, it can be used for image encryption. The simulation results demonstrate that the proposed encryption method is a security-enhanced image encryption scheme.
NASA Technical Reports Server (NTRS)
Ko, William L.
1996-01-01
Mechanical and thermal buckling behavior of monolithic and metal-matrix composite hat-stiffened panels were investigated. The panels have three types of face-sheet geometry: Flat face sheet, microdented face sheet, and microbulged face sheet. The metal-matrix composite panels have three types of face-sheet layups, each of which is combined with various types of hat composite layups. Finite-element method was used in the eigenvalue extractions for both mechanical and thermal buckling. The thermal buckling analysis required both eigenvalue and material property iterations. Graphical methods of the dual iterations are shown. The mechanical and thermal buckling strengths of the hat-stiffened panels with different face-sheet geometry are compared. It was found that by just microdenting or microbulging of the face sheet, the axial, shear, and thermal buckling strengths of both types of hat-stiffened panels could be enhanced considerably. This effect is more conspicuous for the monolithic panels. For the metal-matrix composite panels, the effect of fiber orientations on the panel buckling strengths was investigated in great detail, and various composite layup combinations offering, high panel buckling strengths are presented. The axial buckling strength of the metal-matrix panel was sensitive to the change of hat fiber orientation. However, the lateral, shear, and thermal buckling strengths were insensitive to the change of hat fiber orientation.
Matrix Results and Techniques in Quantum Information Science and Related Topics
NASA Astrophysics Data System (ADS)
Pelejo, Diane Christine
In this dissertation, we present several matrix-related problems and results motivated by quantum information theory. Some background material of quantum information science will be discussed in chapter 1, while chapter 7 gives a summary of results and concluding remarks. In chapter 2, we look at 2n x 2 n unitary matrices, which describe operations on a closed n-qubit system. We define a set of simple quantum gates, called controlled single qubit gates, and their associated operational cost. We then present a recurrence scheme to decompose a general 2n x 2n unitary matrix to the product of no more than 2n-12n-1 single qubit gates with small number of controls. In chapter 3, we address the problem of finding a specific element phi among a given set of quantum channels S that will produce the optimal value of a scalar function D(rho 1,phi(rho2)), on two fixed quantum states rho 1 and rho2. Some of the functions we considered for D(·,·) are the trace distance, quantum fidelity and quantum relative entropy. We discuss the optimal solution when S is the set of unitary quantum channels, the set of mixed unitary channels, the set of unital quantum channels, and the set of all quantum channels. In chapter 4, we focus on the spectral properties of qubit-qudit bipartite states with a maximally mixed qudit subsystem. More specifically, given positive numbers a1 ≥ ... ≥ a 2n ≥ 0, we want to determine if there exist a 2n x 2n density matrix rho having eigenvalues a1,..., a2n and satisfying tr 1(rho)=1/n In. This problem is a special case of the more general quantum marginal problem. We give the minimal necessary and sufficient conditions on a1,..., a2n for n ≤ 6 and state some observations on general values of n.. In chapter 5, we discuss the numerical method of alternating projections and illustrate its usefulness in: (a) constructing a quantum channel, if it exists, such that phi(rho(1))=sigma(1),...,phi(rho (k))=sigma(k) for given rho (1),...,rho(k) ∈ Dn and sigma(1),...,sigma (k) ∈ Dm, (b) constructing a multipartite state rho having a prescribed set of reduced states rho1,..., rhor on r of its subsystems, (c) constructing a multipartite staterho having prescribed reduced states and additional properties such as having prescribed eigenvalues, prescribed rank or low von Neuman entropy; and (d) determining if a square matrix A can be written as a product of two positive semidefinite contractions. In chapter 6, we examine the shape of the Minkowski product of convex subsets K1 and K2 of C given by K1K 2 = {ab: a ∈ K1, b ∈ K2}, which has applications in the study of the product numerical range and quantum error-correction. In Karol, it was conjectured that K1K 2 is star-shaped when K1 and K2 are convex. We give counterexamples to show that this conjecture does not hold in general but we show that the set K 1K2 is star-shaped if K 1 is a line segment or a circular disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcioni, P.; Bressan, M.; Perregrini, L.
1995-08-01
Computer codes for the electromagnetic analysis of arbitrarily shaped cavities are very important for many applications, in particular for the design of interaction structures for particle accelerators. The design of accelerating cavities results in complicated shapes, that are obtained carrying on repeated analyses to optimize a number of parameters, such as Q-factors, beam coupling impedances, higher-order-mode spectrum, and so on. The interest in the calculation of many normalized modes derives also from the important role they play in the eigenvector expansion of the electromagnetic field in a closed region. The authors present an efficient algorithm to determine the resonant frequenciesmore » and the normalized modal fields of arbitrarily shaped cavity resonators filled with a lossless, isotropic, and homogeneous medium. The algorithm is based on the boundary integral method (BIM). The unknown current flowing on the cavity wall is considered inside a spherical resonator, rather than in free-space, as it is usual in the standard BIM. The electric field is expressed using the Green`s function of the spherical resonator, approximated by a real rational function of the frequency. Consequently, the discretized problem can be cast into the form of a real matrix linear eigenvalue problem, whose eigenvalues and eigenvectors yield the resonant frequencies and the associated modal currents. Since the algorithm does not require any frequency-by-frequency recalculation of the system matrices, computing time is much shorter than in the standard BIM, especially when many resonances must be found.« less
Detecting level crossings without solving the Hamiltonian. I. Mathematical background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, M.; Raman, C.
2007-03-15
When the parameters of a physical system are varied, the eigenvalues of observables can undergo crossings and avoided crossings among themselves. It is relevant to be aware of such points since important physical processes often occur there. In a recent paper [M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405 (2006)] we introduced a powerful algebraic solution to the problem of finding (avoided) crossings in atomic and molecular spectra. This was done via a mapping to the problem of locating the roots of a polynomial in the parameters of interest. In this article we describe our method in detail.more » Given a physical system that can be represented by a matrix, we show how to find a bound on the number of (avoided) crossings in its spectrum, the scaling of this bound with the size of the Hilbert space and the parametric dependencies of the Hamiltonian, the interval in which the (avoided) crossings all lie in parameter space, the number of crossings at any given parameter value, and the minimum separation between the (avoided) crossings. We also show how the crossings can reveal the symmetries of the physical system, how (avoided) crossings can always be found without solving for the eigenvalues, how they may sometimes be found even in case the Hamiltonian is not fully known, and how crossings may be visualized in a more direct way than displayed by the spectrum. In the accompanying paper [M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033406 (2007)] we detail the application of these techniques to atoms and molecules.« less
An experimental SMI adaptive antenna array simulator for weak interfering signals
NASA Technical Reports Server (NTRS)
Dilsavor, Ronald S.; Gupta, Inder J.
1991-01-01
An experimental sample matrix inversion (SMI) adaptive antenna array for suppressing weak interfering signals is described. The experimental adaptive array uses a modified SMI algorithm to increase the interference suppression. In the modified SMI algorithm, the sample covariance matrix is redefined to reduce the effect of thermal noise on the weights of an adaptive array. This is accomplished by subtracting a fraction of the smallest eigenvalue of the original covariance matrix from its diagonal entries. The test results obtained using the experimental system are compared with theoretical results. The two show a good agreement.
Simple derivation of the Lindblad equation
NASA Astrophysics Data System (ADS)
Pearle, Philip
2012-07-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.
Random matrix theory and portfolio optimization in Moroccan stock exchange
NASA Astrophysics Data System (ADS)
El Alaoui, Marwane
2015-09-01
In this work, we use random matrix theory to analyze eigenvalues and see if there is a presence of pertinent information by using Marčenko-Pastur distribution. Thus, we study cross-correlation among stocks of Casablanca Stock Exchange. Moreover, we clean correlation matrix from noisy elements to see if the gap between predicted risk and realized risk would be reduced. We also analyze eigenvectors components distributions and their degree of deviations by computing the inverse participation ratio. This analysis is a way to understand the correlation structure among stocks of Casablanca Stock Exchange portfolio.
A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei
2014-09-02
At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that ismore » orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(α,β) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(α,β) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.« less
DOT National Transportation Integrated Search
1974-08-01
DYNALIST, a computer program that extracts complex eigenvalues and eigenvectors for dynamic systems described in terms of matrix equations of motion, has been acquired and made operational at TSC. In this report, simple dynamic systems are used to de...
Biological Applications in the Mathematics Curriculum
ERIC Educational Resources Information Center
Marland, Eric; Palmer, Katrina M.; Salinas, Rene A.
2008-01-01
In this article we provide two detailed examples of how we incorporate biological examples into two mathematics courses: Linear Algebra and Ordinary Differential Equations. We use Leslie matrix models to demonstrate the biological properties of eigenvalues and eigenvectors. For Ordinary Differential Equations, we show how using a logistic growth…
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
Lasing eigenvalue problems: the electromagnetic modelling of microlasers
NASA Astrophysics Data System (ADS)
Benson, Trevor; Nosich, Alexander; Smotrova, Elena; Balaban, Mikhail; Sewell, Phillip
2007-02-01
Comprehensive microcavity laser models should account for several physical mechanisms, e.g. carrier transport, heating and optical confinement, coupled by non-linear effects. Nevertheless, considerable useful information can still be obtained if all non-electromagnetic effects are neglected, often within an additional effective-index reduction to an equivalent 2D problem, and the optical modes viewed as solutions of Maxwell's equations. Integral equation (IE) formulations have many advantages over numerical techniques such as FDTD for the study of such microcavity laser problems. The most notable advantages of an IE approach are computational efficiency, the correct description of cavity boundaries without stair-step errors, and the direct solution of an eigenvalue problem rather than the spectral analysis of a transient signal. Boundary IE (BIE) formulations are more economic that volume IE (VIE) ones, because of their lower dimensionality, but they are only applicable to the constant cavity refractive index case. The Muller BIE, being free of 'defect' frequencies and having smooth or integrable kernels, provides a reliable tool for the modal analysis of microcavities. Whilst such an approach can readily identify complex-valued natural frequencies and Q-factors, the lasing condition is not addressed directly. We have thus suggested using a Muller BIE approach to solve a lasing eigenvalue problem (LEP), i.e. a linear eigenvalue solution in the form of two real-valued numbers (lasing wavelength and threshold information) when macroscopic gain is introduced into the cavity material within an active region. Such an approach yields clear insight into the lasing thresholds of individual cavities with uniform and non-uniform gain, cavities coupled as photonic molecules and cavities equipped with one or more quantum dots.
Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
Liu, Meiqin
2009-09-01
This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Maximum likelihood techniques applied to quasi-elastic light scattering
NASA Technical Reports Server (NTRS)
Edwards, Robert V.
1992-01-01
There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.
Pellacci, Benedetta; Verzini, Gianmaria
2018-05-01
We study the positive principal eigenvalue of a weighted problem associated with the Neumann spectral fractional Laplacian. This analysis is related to the investigation of the survival threshold in population dynamics. Our main result concerns the optimization of such threshold with respect to the fractional order [Formula: see text], the case [Formula: see text] corresponding to the standard Neumann Laplacian: when the habitat is not too fragmented, the principal positive eigenvalue can not have local minima for [Formula: see text]. As a consequence, the best strategy for survival is either following the diffusion with [Formula: see text] (i.e. Brownian diffusion), or with the lowest possible s (i.e. diffusion allowing long jumps), depending on the size of the domain. In addition, we show that analogous results hold for the standard fractional Laplacian in [Formula: see text], in periodic environments.
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
Linking matrices in systems with periodic boundary conditions
NASA Astrophysics Data System (ADS)
Panagiotou, Eleni; Millett, Kenneth C.
2018-06-01
We study the linking matrix, a measure of entanglement for a collection of closed or open chains in 3-space based on the Gauss linking number. Periodic boundary conditions (PBC) are often used in the simulation of physical systems of filaments. To measure entanglement of closed or open chains in systems employing PBC we use the periodic linking matrix, based on the periodic linking number, defined in Panagiotou (2015 J. Comput. Phys. 300 533–73). We study the properties of the periodic linking matrix as a function of cell size. We provide analytical results concerning the eigenvalues of the periodic linking matrix and show that some of them are invariant of cell-size.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
Properties of regular polygons of coupled microring resonators.
Chremmos, Ioannis; Uzunoglu, Nikolaos
2007-11-01
The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.
Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect
NASA Astrophysics Data System (ADS)
Chen, Jiangyi; Guo, Junhong; Pan, Ernian
2017-07-01
In this paper, analytical solutions for propagation of time-harmonic waves in three-dimensional, transversely isotropic, magnetoelectroelastic and multilayered plates with nonlocal effect are derived. We first convert the time-harmonic wave problem into a linear eigenvalue system, from which we obtain the general solutions of the extended displacements and stresses. The solutions are then employed to derive the propagator matrix which connects the field variables at the upper and lower interfaces of each layer. Making use of the continuity conditions of the physical quantities across the interface, the global propagator relation is assembled by propagating the solutions in each layer from the bottom to the top of the layered plate. From the global propagator matrix, the dispersion equation is obtained by imposing the traction-free boundary conditions on both the top and bottom surfaces of the layered plate. Dispersion curves and mode shapes in layered plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to show the influence of the nonlocal parameter, stacking sequence, as well as the orientation of incident wave on the time-harmonic field response.
NASA Astrophysics Data System (ADS)
Chen, Hao; Lv, Wen; Zhang, Tongtong
2018-05-01
We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.
Yang, Xujun; Li, Chuandong; Song, Qiankun; Chen, Jiyang; Huang, Junjian
2018-05-04
This paper talks about the stability and synchronization problems of fractional-order quaternion-valued neural networks (FQVNNs) with linear threshold neurons. On account of the non-commutativity of quaternion multiplication resulting from Hamilton rules, the FQVNN models are separated into four real-valued neural network (RVNN) models. Consequently, the dynamic analysis of FQVNNs can be realized by investigating the real-valued ones. Based on the method of M-matrix, the existence and uniqueness of the equilibrium point of the FQVNNs are obtained without detailed proof. Afterwards, several sufficient criteria ensuring the global Mittag-Leffler stability for the unique equilibrium point of the FQVNNs are derived by applying the Lyapunov direct method, the theory of fractional differential equation, the theory of matrix eigenvalue, and some inequality techniques. In the meanwhile, global Mittag-Leffler synchronization for the drive-response models of the addressed FQVNNs are investigated explicitly. Finally, simulation examples are designed to verify the feasibility and availability of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Lei; Wang, Xu
2017-12-01
Three-dimensional analytical solutions are derived for the structural instability of a parallel array of mutually attracting identical simply supported orthotropic piezoelectric rectangular microplates by means of a linear perturbation analysis. The two surfaces of each plate can be either insulating or conducting. By considering the fact that the shear stresses and the normal electric displacement (or electric potential) are zero on the two surfaces of each plate, a 2 × 2 transfer matrix for a plate can be obtained directly from the 8 × 8 fundamental piezoelectricity matrix without resolving the original Stroh eigenrelation. The critical interaction coefficient can be determined by solving the resulting generalized eigenvalue problem for the piezoelectric plate array. Also considered in our analysis is the in-plane uniform edge compression acting on the four sides of each piezoelectric plate. Our results indicate that the stabilizing influence of the piezoelectric effect on the structural instability is unignorable; the edge compression always plays a destabilizing role in the structural instability of the plate array with interactions.
World currency exchange rate cross-correlations
NASA Astrophysics Data System (ADS)
Droå¼dż, S.; Górski, A. Z.; Kwapień, J.
2007-08-01
World currency network constitutes one of the most complex structures that is associated with the contemporary civilization. On a way towards quantifying its characteristics we study the cross correlations in changes of the daily foreign exchange rates within the basket of 60 currencies in the period December 1998 May 2005. Such a dynamics turns out to predominantly involve one outstanding eigenvalue of the correlation matrix. The magnitude of this eigenvalue depends however crucially on which currency is used as a base currency for the remaining ones. Most prominent it looks from the perspective of a peripheral currency. This largest eigenvalue is seen to systematically decrease and thus the structure of correlations becomes more heterogeneous, when more significant currencies are used as reference. An extreme case in this later respect is the USD in the period considered. Besides providing further insight into subtle nature of complexity, these observations point to a formal procedure that in general can be used for practical purposes of measuring the relative currencies significance on various time horizons.
Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines
Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara; ...
2018-02-20
In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less
Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara
In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less
Quasinormal modes of Reissner-Nordstrom black holes
NASA Technical Reports Server (NTRS)
Leaver, Edward W.
1990-01-01
A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.
NASA Astrophysics Data System (ADS)
Muljarov, E. A.; Weiss, T.
2018-05-01
The resonant-state expansion, a recently developed powerful method in electrodynamics, is generalized here for open optical systems containing magnetic, chiral, or bi-anisotropic materials. It is shown that the key matrix eigenvalue equation of the method remains the same, but the matrix elements of the perturbation now contain variations of the permittivity, permeability, and bi-anisotropy tensors. A general normalization of resonant states in terms of the electric and magnetic fields is presented.
Generic Friedberg-Lee symmetry of Dirac neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo Shu; Xing Zhizhong; Li Xin
2008-12-01
We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we also show that the simplified ansatz is consistent with current experimental data and favors the normal neutrino mass hierarchy.
A robust multilevel simultaneous eigenvalue solver
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1993-01-01
Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smed, T.
Traditional eigenvalue sensitivity for power systems requires the formulation of the system matrix, which lacks sparsity. In this paper, a new sensitivity analysis, derived for a sparse formulation, is presented. Variables that are computed as intermediate results in established eigen value programs for power systems, but not used further, are given a new interpretation. The effect of virtually any control action can be assessed based on a single eigenvalue-eigenvector calculation. In particular, the effect of active and reactive power modulation can be found as a multiplication of two or three complex numbers. The method is illustrated in an example formore » a large power system when applied to the control design for an HVDC-link.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yongzheng, E-mail: yzsung@gmail.com; Li, Wang; Zhao, Donghua
In this paper, we propose a new consensus model in which the interactions among agents stochastically switch between attraction and repulsion. Such a positive-and-negative mechanism is described by the white-noise-based coupling. Analytic criteria for the consensus and non-consensus in terms of the eigenvalues of the noise intensity matrix are derived, which provide a better understanding of the constructive roles of random interactions. Specifically, we discover a positive role of noise coupling that noise can accelerate the emergence of consensus. We find that the converging speed of the multi-agent network depends on the square of the second smallest eigenvalue of itsmore » graph Laplacian. The influence of network topologies on the consensus time is also investigated.« less
Phase portraits of the full symmetric Toda systems on rank-2 groups
NASA Astrophysics Data System (ADS)
Sorin, A. S.; Chernyakov, Yu. B.; Sharygin, G. I.
2017-11-01
We continue investigations begun in our previous works where we proved that the phase diagram of the Toda system on special linear groups can be identified with the Bruhat order on the symmetric group if all eigenvalues of the Lax matrix are distinct or with the Bruhat order on permutations of a multiset if there are multiple eigenvalues. We show that the phase portrait of the Toda system and the Hasse diagram of the Bruhat order coincide in the case of an arbitrary simple Lie group of rank 2. For this, we verify this property for the two remaining rank-2 groups, Sp(4,ℝ) and the real form of G2.
Brain vascular image segmentation based on fuzzy local information C-means clustering
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie
2017-02-01
Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.
The Guderley problem revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D; Kamm, James R; Bolstad, John H
2009-01-01
The self-similar converging-diverging shock wave problem introduced by Guderley in 1942 has been the source of numerous investigations since its publication. In this paper, we review the simplifications and group invariance properties that lead to a self-similar formulation of this problem from the compressible flow equations for a polytropic gas. The complete solution to the self-similar problem reduces to two coupled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity exponent for the converging flow, and that of the second is a trajectory multiplier for the diverging regime. We provide a clear exposition concerning the reflected shockmore » configuration. Additionally, we introduce a new approximation for the similarity exponent, which we compare with other estimates and numerically computed values. Lastly, we use the Guderley problem as the basis of a quantitative verification analysis of a cell-centered, finite volume, Eulerian compressible flow algorithm.« less
Preconditioning for the Navier-Stokes equations with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.
1993-01-01
The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.
NASA Astrophysics Data System (ADS)
Deraemaeker, A.; Worden, K.
2018-05-01
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while allowing detection of all damaged cases.
Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, Mark D.; Isaac, Phillip S.; Werry, Jason L.
Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities.
NASA Astrophysics Data System (ADS)
Vachálek, Ján
2011-12-01
The paper compares the abilities of forgetting methods to track time varying parameters of two different simulated models with different types of excitation. The observed parameters in the simulations are the integral sum of the Euclidean norm, deviation of the parameter estimates from their true values and a selected band prediction error count. As supplementary information, we observe the eigenvalues of the covariance matrix. In the paper we used a modified method of Regularized Exponential Forgetting with Alternative Covariance Matrix (REFACM) along with Directional Forgetting (DF) and three standard regularized methods.
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
ERIC Educational Resources Information Center
Fontaine, Anne; Hurley, Susan
2011-01-01
This student research project explores the properties of a family of matrices of zeros and ones that arises from the study of the diagonal lengths in a regular polygon. There is one family for each n greater than 2. A series of exercises guides the student to discover the eigenvalues and eigenvectors of the matrices, which leads in turn to…
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
Analysis of cross-correlations between financial markets after the 2008 crisis
NASA Astrophysics Data System (ADS)
Sensoy, A.; Yuksel, S.; Erturk, M.
2013-10-01
We analyze the cross-correlation matrix C of the index returns of the main financial markets after the 2008 crisis using methods of random matrix theory. We test the eigenvalues of C for universal properties of random matrices and find that the majority of the cross-correlation coefficients arise from randomness. We show that the eigenvector of the largest deviating eigenvalue of C represents a global market itself. We reveal that high volatility of financial markets is observed at the same times with high correlations between them which lowers the risk diversification potential even if one constructs a widely internationally diversified portfolio of stocks. We identify and compare the connection and cluster structure of markets before and after the crisis using minimal spanning and ultrametric hierarchical trees. We find that after the crisis, the co-movement degree of the markets increases. We also highlight the key financial markets of pre and post crisis using main centrality measures and analyze the changes. We repeat the study using rank correlation and compare the differences. Further implications are discussed.
Ordering Unstructured Meshes for Sparse Matrix Computations on Leading Parallel Systems
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Li, Xiaoye; Heber, Gerd; Biswas, Rupak
2000-01-01
The ability of computers to solve hitherto intractable problems and simulate complex processes using mathematical models makes them an indispensable part of modern science and engineering. Computer simulations of large-scale realistic applications usually require solving a set of non-linear partial differential equations (PDES) over a finite region. For example, one thrust area in the DOE Grand Challenge projects is to design future accelerators such as the SpaHation Neutron Source (SNS). Our colleagues at SLAC need to model complex RFQ cavities with large aspect ratios. Unstructured grids are currently used to resolve the small features in a large computational domain; dynamic mesh adaptation will be added in the future for additional efficiency. The PDEs for electromagnetics are discretized by the FEM method, which leads to a generalized eigenvalue problem Kx = AMx, where K and M are the stiffness and mass matrices, and are very sparse. In a typical cavity model, the number of degrees of freedom is about one million. For such large eigenproblems, direct solution techniques quickly reach the memory limits. Instead, the most widely-used methods are Krylov subspace methods, such as Lanczos or Jacobi-Davidson. In all the Krylov-based algorithms, sparse matrix-vector multiplication (SPMV) must be performed repeatedly. Therefore, the efficiency of SPMV usually determines the eigensolver speed. SPMV is also one of the most heavily used kernels in large-scale numerical simulations.
Visualization-based analysis of multiple response survey data
NASA Astrophysics Data System (ADS)
Timofeeva, Anastasiia
2017-11-01
During the survey, the respondents are often allowed to tick more than one answer option for a question. Analysis and visualization of such data have difficulties because of the need for processing multiple response variables. With standard representation such as pie and bar charts, information about the association between different answer options is lost. The author proposes a visualization approach for multiple response variables based on Venn diagrams. For a more informative representation with a large number of overlapping groups it is suggested to use similarity and association matrices. Some aggregate indicators of dissimilarity (similarity) are proposed based on the determinant of the similarity matrix and the maximum eigenvalue of association matrix. The application of the proposed approaches is well illustrated by the example of the analysis of advertising sources. Intersection of sets indicates that the same consumer audience is covered by several advertising sources. This information is very important for the allocation of the advertising budget. The differences between target groups in advertising sources are of interest. To identify such differences the hypothesis of homogeneity and independence are tested. Recent approach to the problem are briefly reviewed and compared. An alternative procedure is suggested. It is based on partition of a consumer audience into pairwise disjoint subsets and includes hypothesis testing of the difference between the population proportions. It turned out to be more suitable for the real problem being solved.
Data-driven probability concentration and sampling on manifold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu
2016-09-15
A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less
Estimation and Control with Relative Measurements: Algorithms and Scaling Laws
2007-09-01
eigenvector of L −1 corre- sponding to its largest eigenvalue. Since L−1 is a positive matrix, Perron - Frobenius theory tells us that |u1| := {|u11...the Frobenius norm of a matrix, and a linear vector space SV as the space of all bounded node-functions with respect to the above defined 144 norm...je‖2F where Eu is the set edges in E that are incident on u. It can be shown from the relationship between the Frobenius norm and the singular
2010-05-01
irreducible, by the Perron - Frobenius theorem (see, for example, Theorem 8.4.4 in [28]), the eigenvalue 1 is simple. Next, the rank-one matrix Q has the...We refer to (2.1) as the scaling equation. Although algorithms must use A, existence and unique- ness theory need consider only the nonnegative matrix...B. If p = 1 and A is nonnegative , then A = B. We reserve the term binormalization for the case p = 2. We say A is scalable if there exists x > 0
Acoustooptic linear algebra processors - Architectures, algorithms, and applications
NASA Technical Reports Server (NTRS)
Casasent, D.
1984-01-01
Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.
A B-spline Galerkin method for the Dirac equation
NASA Astrophysics Data System (ADS)
Froese Fischer, Charlotte; Zatsarinny, Oleg
2009-06-01
The B-spline Galerkin method is first investigated for the simple eigenvalue problem, y=-λy, that can also be written as a pair of first-order equations y=λz, z=-λy. Expanding both y(r) and z(r) in the B basis results in many spurious solutions such as those observed for the Dirac equation. However, when y(r) is expanded in the B basis and z(r) in the dB/dr basis, solutions of the well-behaved second-order differential equation are obtained. From this analysis, we propose a stable method ( B,B) basis for the Dirac equation and evaluate its accuracy by comparing the computed and exact R-matrix for a wide range of nuclear charges Z and angular quantum numbers κ. When splines of the same order are used, many spurious solutions are found whereas none are found for splines of different order. Excellent agreement is obtained for the R-matrix and energies for bound states for low values of Z. For high Z, accuracy requires the use of a grid with many points near the nucleus. We demonstrate the accuracy of the bound-state wavefunctions by comparing integrals arising in hyperfine interaction matrix elements with exact analytic expressions. We also show that the Thomas-Reiche-Kuhn sum rule is not a good measure of the quality of the solutions obtained by the B-spline Galerkin method whereas the R-matrix is very sensitive to the appearance of pseudo-states.
Numerical methods for the unsymmetric tridiagonal eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-12-31
This report summarizes the results of our project {open_quotes}Numerical Methods for the Unsymmetric Tridiagonal Eigenvalue Problem{close_quotes}. It was funded by both by a DOE grant (No. DE-FG02-92ER25122, 6/1/92-5/31/94, $100,000) and by an NSF Research Initiation Award (No. CCR-9109785, 7/1/91-6/30/93, $46,564.) The publications resulting from that project during the DOE funding period are listed below. Two other journal papers and two other conference papers were produced during the NSF funding period. Most of the listed conference papers are early or partial versions of the listed journal papers.
ERIC Educational Resources Information Center
Cutchins, M. A.
1982-01-01
Presents programmable calculator solutions to selected problems, including area moments of inertia and principal values, the 2-D principal stress problem, C.G. and pitch inertia computations, 3-D eigenvalue problems, 3 DOF vibrations, and a complex flutter determinant. (SK)
NASA Astrophysics Data System (ADS)
Ge, Li; Feng, Liang
2017-01-01
It has been proposed and demonstrated that lasing and coherent perfect absorption (CPA or "antilasing") coexist in parity-time (PT ) symmetric photonic systems. In this work we show that the spectral signature of such a CPA laser displayed by the singular value spectrum of the scattering matrix (S ) can be orders of magnitude wider than that displayed by the eigenvalue spectrum of S . Since the former reflects how strongly light can be absorbed or amplified and the latter announces the spontaneous symmetry breaking of S , these contrasting spectral signatures indicate that near perfect absorption and extremely strong amplification can be achieved even in the PT -symmetric phase of S , which is known for and defined by its flux-conserving eigenstates. We also show that these contrasting spectral signatures are accompanied by strikingly different sensitivities to disorder and imperfection, suggesting that the eigenvalue spectrum is potentially suitable for sensing and the singular value spectrum for robust switching. A differential light amplifier may also be devised based on these two spectra.
The use of complete sets of orthogonal operators in spectroscopic studies
NASA Astrophysics Data System (ADS)
Raassen, A. J. J.; Uylings, P. H. M.
1996-01-01
Complete sets of orthogonal operators are used to calculate eigenvalues and eigenvector compositions in complex spectra. The latter are used to transform the LS-transition matrix into realistic intermediate coupling transition probabilities. Calculated transition probabilities for some close lying levels in Ni V and Fe III illustrate the power of the complete orthogonal operator approach.
Constraints and vibrations in static packings of ellipsoidal particles.
Schreck, Carl F; Mailman, Mitch; Chakraborty, Bulbul; O'Hern, Corey S
2012-06-01
We numerically investigate the mechanical properties of static packings of frictionless ellipsoidal particles in two and three dimensions over a range of aspect ratio and compression Δφ. While amorphous packings of spherical particles at jamming onset (Δφ=0) are isostatic and possess the minimum contact number z_{iso} required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally possess fewer contacts than expected for collective jamming (z
Computation of eigenpairs of Ax = lambda Bx for vibrations of spinning deformable bodies
NASA Technical Reports Server (NTRS)
Utku, S.; Clemente, J. L. M.
1984-01-01
It is shown that, when linear theory is used, the general eigenvalue problem related with the free vibrations of spinning deformable bodies is of the type AX = lambda Bx, where A is Hermitian, and B is real positive definite. Since the order n of the matrices may be large, and A and B are banded or block banded, due to the economics of the numerical solution, one is interested in obtaining only those eigenvalues which fall within the frequency band of interest of the problem. The paper extends the well known method of bisections and iteration of R to the n power to n dimensional complex spaces, i.e., to C to the n power, so that it can be applied to the present problem.
Pocrnic, Ivan; Lourenco, Daniela A L; Masuda, Yutaka; Misztal, Ignacy
2016-10-31
A genomic relationship matrix (GRM) can be inverted efficiently with the Algorithm for Proven and Young (APY) through recursion on a small number of core animals. The number of core animals is theoretically linked to effective population size (N e ). In a simulation study, the optimal number of core animals was equal to the number of largest eigenvalues of GRM that explained 98% of its variation. The purpose of this study was to find the optimal number of core animals and estimate N e for different species. Datasets included phenotypes, pedigrees, and genotypes for populations of Holstein, Jersey, and Angus cattle, pigs, and broiler chickens. The number of genotyped animals varied from 15,000 for broiler chickens to 77,000 for Holsteins, and the number of single-nucleotide polymorphisms used for genomic prediction varied from 37,000 to 61,000. Eigenvalue decomposition of the GRM for each population determined numbers of largest eigenvalues corresponding to 90, 95, 98, and 99% of variation. The number of eigenvalues corresponding to 90% (98%) of variation was 4527 (14,026) for Holstein, 3325 (11,500) for Jersey, 3654 (10,605) for Angus, 1239 (4103) for pig, and 1655 (4171) for broiler chicken. Each trait in each species was analyzed using the APY inverse of the GRM with randomly selected core animals, and their number was equal to the number of largest eigenvalues. Realized accuracies peaked with the number of core animals corresponding to 98% of variation for Holstein and Jersey and closer to 99% for other breed/species. N e was estimated based on comparisons of eigenvalue decomposition in a simulation study. Assuming a genome length of 30 Morgan, N e was equal to 149 for Holsteins, 101 for Jerseys, 113 for Angus, 32 for pigs, and 44 for broilers. Eigenvalue profiles of GRM for common species are similar to those in simulation studies although they are affected by number of genotyped animals and genotyping quality. For all investigated species, the APY required less than 15,000 core animals. Realized accuracies were equal or greater with the APY inverse than with regular inversion. Eigenvalue analysis of GRM can provide a realistic estimate of N e .
Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity
NASA Astrophysics Data System (ADS)
del Pino, Manuel; Felmer, Patricio L.; Sternberg, Peter
We examine the asymptotic behavior of the eigenvalue μ(h) and corresponding eigenfunction associated with the variational problem
Complex network approach to fractional time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manshour, Pouya
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacencymore » matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.« less
Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.
Ohkitani, Koji; Al Sulti, Fayeza
2010-06-01
A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.
Fokker-Planck analysis of transverse collective instabilities in electron storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, Ryan R.
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We first expand on the work of T. Suzuki, Part. Accel. 12, 237 (1982) to derive the theoretical model including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. We reduce the problem to a linear matrix equation, whose eigenvalues and eigenvectors determine the collective stability of the beam. We then show that various predictions of the theory agree quite well with results from particle tracking simulations, including the threshold current for transverse instability and the profilemore » of the unstable mode. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less
Compressed-sensing wavenumber-scanning interferometry
NASA Astrophysics Data System (ADS)
Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli
2018-01-01
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.