Sample records for matrix element vertical

  1. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2005-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  2. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  3. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2002-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  4. Matrix addressable vertical cavity surface emitting laser array

    NASA Astrophysics Data System (ADS)

    Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.

    1991-02-01

    The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.

  5. Some properties of the two-body effective interaction in the /sup 208/Pb region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groleau, R.

    The (/sup 3/He,d) and (/sup 4/He,t) single proton transfer reactions on /sup 208/Pb and /sup 209/Bi were studied using 30 and 40 MeV He beams from the Princeton Cyclotron Laboratory. The outgoing d and t were detected by a position sensitive proportional counter in the focal plane of a Q-3D spectrometer. The resolution varied between 10 and 14 keV (FWHM). Using the ratio of the cross-sections for the (/sup 3/He,d) and (/sup 4/He,t) reactions to determine the magnitude of the angular momentum transfers, the spectroscopic factors for the reaction on /sup 209/Bi have been measured relative to the transitions tomore » the single particle states in these reactions on /sup 208/Pb. Sum rules as developed by Bansal and French are used to study the configurations vertical bar h/sub 9/2 x h/sub 9/2/>, vertical bar h/sub 9/2/ x f/sub 7/2/>, vertical bar h/sub 9/2 x i/sub 13/2/>, vertical bar h/sub 9/2/ x f/sub 5/2/>and part of vertical bar h/sub 9/2/ x p/sub 3/2/> and vertical bar h/sub 9/2/ x p/sub 1/2>. Using the linear energy weighted sum rule, the diagonal matrix elements of the effective interaction between valence protons around the /sup 208/Pb core are deduced. The matrix elements obtained from a simple empirical interaction V/sub I//sup T=1/ of a pure Wigner type are compared to the extracted matrix elements. The interaction is characterized by an attractive short-range (0.82j and a repulsive long-range (8.2fm) potential: V/sub I//sup T = 1/ (MeV =-/96 e/sup - (r/0.82) /sup 2// + 0.51 e/sup -(r/8.2)/sup 2/. The core polarization is studied using the experimental static electric quadrupole and magnetic dipole moments of the nuclei in the /sup 208/Pb region. In general, the magnetic moments of multiple valence nucleon nuclei are well predicted by simple rules of Racah algebra. The three and four valence proton spectra (/sup 211/At and /sup 212/Rn) calculated with the experimental two particle matrix elements agree well with the experimental spectra.« less

  6. MARS: A protein family involved in the formation of vertical skeletal elements.

    PubMed

    Abehsera, Shai; Peles, Shani; Tynyakov, Jenny; Bentov, Shmuel; Aflalo, Eliahu D; Li, Shihao; Li, Fuhua; Xiang, Jianhai; Sagi, Amir

    2017-05-01

    Vertical organizations of skeletal elements are found in various vertebrate teeth and invertebrate exoskeletons. The molecular mechanism behind the development of such structural organizations is poorly known, although it is generally held that organic matrix proteins play an essential role. While most crustacean cuticular organizations exhibit horizontal chitinous layering, a typical vertical organization is found towards the surface of the teeth in the mandibles of the crayfish Cherax quadricarinatus. Candidate genes encoding for mandible-forming structural proteins were mined in C. quadricarinatus molt-related transcriptomic libraries by using a binary patterning approach. A new protein family, termed the Mandible Alanine Rich Structural (MARS) protein family, with a modular sequence design predicted to form fibers, was found. Investigations of spatial and temporal expression of the different MARS genes suggested specific expression in the mandibular teeth-forming epithelium, particularly during the formation of the chitinous vertical organization. MARS loss-of-function RNAi experiments resulted in the collapse of the organization of the chitin fibers oriented vertically to the surface of the crayfish mandibular incisor tooth. A general search of transcriptomic libraries suggested conservation of MARS proteins across a wide array of crustaceans. Our results provide a first look into the molecular mechanism used to build the complex crustacean mandible and into the specialized vertical structural solution that has evolved in skeletal elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  8. Major and trace element chemistry of Boulder 1 at Station 2, Apollo 17

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Haskin, L. A.; Jacobs, J. W.; Brannon, J. C.; Korotev, R. L.

    1975-01-01

    Twenty-seven samples from Boulder 1 at Station 2 are analyzed for major and trace elements by atomic absorption spectrophotometry and neutron activation analysis. Two types of matrix and several types of clast materials are characterized on the basis of their chemistry. It is shown that one matrix type is a common material at the Apollo 17 site, while the other is probably exotic to that site. The most unusual clast materials found are coarse norite (an old rock no longer found in millimeter fragments at the site) and pigeonite basalt (possibly a highland volcanic rock). It is concluded that the boulder-forming process combined materials from at least two different localities or vertical strata.

  9. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  10. ``Dressing'' lines and vertices in calculations of matrix elements with the coupled-cluster method and determination of Cs atomic properties

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Porsev, Sergey G.

    2005-03-01

    We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally involve infinite number of terms and we devise a method of partial summation (dressing) of the resulting series. Our formalism is built upon an expansion of the product C†C of cluster amplitudes C into a sum of n -body insertions. We consider two types of insertions: particle (hole) line insertion and two-particle (two-hole) random-phase-approximation-like insertion. We demonstrate how to “dress” these insertions and formulate iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We illustrate our formalism with relativistic calculations of the hyperfine constant A(6s) and the 6s1/2-6p1/2 electric-dipole transition amplitude for the Cs atom. Finally, we augment the truncated coupled-cluster calculations with otherwise omitted fourth order diagrams. The resulting analysis for Cs is complete through the fourth order of many-body perturbation theory and reveals an important role of triple and disconnected quadruple excitations.

  11. Configuring High Frequency Radar Observations in the Southern Chukchi Sea

    DTIC Science & Technology

    2013-02-24

    latitude regions (e.g., Barth et al., 2010; Chavanne et al., 2007 ; Hisaki et al., 2001; Sentchev and Yaremchuk, 2007 ; Shay et al., 2008). During the...using the method of Köhl and Stammer (2004). Technically, this analysis is quite similar to the computation of the representative matrix elements that...et al., 2007 ). The model was configured on a spherical grid with a mean resolution of 10 km in the horizontal, and 11 vertical levels with spacing

  12. Effect of partial heating at mid of vertical plate adjacent to porous medium

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.

    2018-05-01

    Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.

  13. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  14. On the gauge chosen by the bosonic open string

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2017-05-01

    String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.

  15. Tailorable Dielectric Material with Complex Permittivity Characteristics

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Elliott, Holly A (Inventor); Delozier, Donavon Mark (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Dudley, Kenneth L. (Inventor)

    2014-01-01

    A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.

  16. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  17. Classical r matrix of the su(2 vertical bar 2) super Yang-Mills spin chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrielli, Alessandro

    2007-05-15

    In this note we straightforwardly derive and make use of the quantum R matrix for the su(2 vertical bar 2) super Yang-Mills spin chain in the manifest su(1 vertical bar 2)-invariant formulation, which solves the standard quantum Yang-Baxter equation, in order to obtain the correspondent (undressed) classical r matrix from the first order expansion in the 'deformation' parameter 2{pi}/{radical}({lambda}) and check that this last solves the standard classical Yang-Baxter equation. We analyze its bialgebra structure, its dependence on the spectral parameters, and its pole structure. We notice that it still preserves an su(1 vertical bar 2) subalgebra, thereby admitting anmore » expression in terms of a combination of projectors, which spans only a subspace of su(1 vertical bar 2)xsu(1 vertical bar 2). We study the residue at its simple pole at the origin and comment on the applicability of the classical Belavin-Drinfeld type of analysis.« less

  18. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki

    2007-02-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontallymore » placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine.« less

  19. Complete horizontal skin cell resurfacing and delayed vertical cell infiltration into porcine reconstructive tissue matrix compared to bovine collagen matrix and human dermis.

    PubMed

    Mirastschijski, Ursula; Kerzel, Corinna; Schnabel, Reinhild; Strauss, Sarah; Breuing, Karl-Heinz

    2013-10-01

    Xenogenous dermal matrices are used for hernia repair and breast reconstruction. Full-thickness skin replacement is needed after burn or degloving injuries with exposure of tendons or bones. The authors used a human skin organ culture model to study whether porcine reconstructive tissue matrix (Strattice) is effective as a dermal tissue replacement. Skin cells or split-thickness skin grafts were seeded onto human deepidermized dermis, Strattice, and Matriderm. Cellular resurfacing and matrix infiltration were monitored by live fluorescence imaging, histology, and electron microscopy. Proliferation, apoptosis, cell differentiation, and adhesion were analyzed by immunohistochemistry. Epithelial resurfacing and vertical proliferation were reduced and delayed with both bioartificial matrices compared with deepidermized dermis; however, no differences in apoptosis, cell differentiation, or basement membrane formation were found. Vertical penetration was greatest on Matriderm, whereas no matrix infiltration was found on Strattice in the first 12 days. Uncompromised horizontal resurfacing was greatest with Strattice but was absent with Matriderm. Strattice showed no stimulatory effect on cellular inflammation. Matrix texture and surface properties governed cellular performance on tissues. Although dense dermal compaction delayed vertical cellular ingrowth for Strattice, it allowed uncompromised horizontal resurfacing. Dense dermal compaction may slow matrix decomposition and result in prolonged biomechanical stability of the graft. Reconstructive surgeons should choose the adequate matrix substitute depending on biomechanical requirements at the recipient site. Strattice may be suitable as a dermal replacement at recipient sites with high mechanical load requirements.

  20. Beyond standard model calculations with Sherpa

    DOE PAGES

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; ...

    2015-03-24

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  1. Beyond standard model calculations with Sherpa.

    PubMed

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  2. Method and apparatus for adding electrolyte to a fuel cell stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.V.; English, J.G.

    1986-06-24

    A process is described for adding electrolyte to a fuel cell stack, the stack comprising sheet-like elements defining a plurality of fuel cell units disposed one atop the other in abutting relationship, the units defining a substantially flat, vertically extending face, each unit including a cell comprising a pair of sheet-like spaced apart gas porous electrodes with a porous matrix layer sandwiched therebetween for retaining electrolyte during cell operation, each unit also including a sheet-like substantially non-porous separator, the separator being sandwiched between the cells of adjacent units. The improvement described here consists of: extending at least one of themore » sheet-like elements of each of a plurality of the fuel cell units outwardly from the stack face to define horizontal tabs disposed one above the other; depositing dilute electrolyte directly from electrolyte supply means upon substantially the full length, parallel to the stack face, of at least the uppermost tab, the tabs being constructed and arranged such that at least a portion of the deposited electrolyte cascades from tab to tab and down the face of the stack, the deposited electrolyte being absorbed by capillary action into the elements of the stack, the step of depositing continuing until all of the electrodes and matrix layers of the stack are fully saturated with the dilute electrolyte; and thereafter evaporating liquid from the saturated elements under controlled conditions of humidity and temperature until the stack has a desired electrolyte volume and electrolyte concentration therein.« less

  3. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  4. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S.

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.

  5. Isotropic matrix elements of the collision integral for the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-09-01

    We have proposed an algorithm for constructing matrix elements of the collision integral for the nonlinear Boltzmann equation isotropic in velocities. These matrix elements have been used to start the recurrent procedure for calculating matrix elements of the velocity-nonisotropic collision integral described in our previous publication. In addition, isotropic matrix elements are of independent interest for calculating isotropic relaxation in a number of physical kinetics problems. It has been shown that the coefficients of expansion of isotropic matrix elements in Ω integrals are connected by the recurrent relations that make it possible to construct the procedure of their sequential determination.

  6. Rupture in cemented granular media: application to wheat endosperm

    NASA Astrophysics Data System (ADS)

    Topin, V.; Delenne, J.-Y.; Radjai, F.

    2009-06-01

    The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.

  7. The use of acellular dermal matrix membrane for vertical soft tissue augmentation during submerged implant placement: a case series.

    PubMed

    Puisys, Algirdas; Vindasiute, Egle; Linkevciene, Laura; Linkevicius, Tomas

    2015-04-01

    To evaluate the efficiency of acellular dermal matrix membrane to augment vertical peri-implant soft tissue thickness during submerged implant placement. Forty acellular dermal matrix-derived allogenic membranes (AlloDerm, BioHorizons, Birmingham, AL, USA) and 42 laser-modified surface internal hex implants (BioHorizons Tapered Laser Lok, Birmingham, AL, USA) were placed in submerged approach in 40 patients (15 males and 25 females, mean age 42.5 ± 1.7) with a thin vertical soft tissue thickness of 2 mm or less. After 3 months, healing abutments were connected to implants, and the augmented soft tissue thickness was measured with periodontal probe. The gain in vertical soft tissue volume was calculated. Mann-Whitney U-test was applied and significance was set to 0.05. All 40 allografts healed successfully. Thin soft tissue before augmentation had an average thickness of 1.54 ± 0.51 mm SD (range, 0.5-2.0 mm, median 1.75 mm), and after soft tissue augmentation with acellular dermal matrix, thickness increased to 3.75 ± 0.54 mm SD (range, 3.0-5.0 mm, median 4.0 mm) at 3 months after placement. This difference between medians was found to be statistically significant (P < 0.001). Mean increase in soft tissue thickness was 2.21 ± 0.85 mm SD (range, 1.0-4.5 mm, median 2.0 mm). It can be concluded that acellular dermal matrix membrane can be successfully used for vertical soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Double diffusion in arbitrary porous cavity: Part II

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Kamangar, Sarfaraz; Salman Ahmed N., J.; Soudagar, Manzoor Elahi M.; Khan, T. M. Yunus

    2017-07-01

    Heat and mass transfer in porous medium is one of the fundamental topics of interest. The present article is dedicated to study the effect of a small block placed at center of left vertical surface of the cavity. The block is maintained at isothermal temperature That three of its edges attached with porous medium. The left surface of cavity is maintained at highest concentration and right surface at lowest concentration. The right surface of cavity is at cold isothermal temperature Tc. Governing equations are converted into matrix form of equations with the help of finite element method and solved iteratively by using a computer code generated in MATLAB.

  9. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  10. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  11. Reasons of different colors in the ignimbrite lithology: micro-XRF and confocal Raman spectrometry method.

    PubMed

    Koralay, Tamer; Kadioglu, Yusuf Kagan

    2008-03-01

    Medium to large volume ignimbrites usually show vertical changes in terms of color, mineral components, texture and geochemistry. Determination of vertical changes in single extensive ignimbrite flow unit is difficult and requires careful studies. Color changes in ignimbrite flow units are very important for earth scientists. This may cause to identify the same ignimbrite series with different definition. Incesu ignimbrite has a wide distribution in the Central Anatolian Volcanic Province (CAVP). It is classified into three levels as lower, middle and upper according to color and welding degree. There is a sharp contact between the lower and middle level. The lower level is dark brown to black in color and the middle level has pinkish red to red color. The present paper focuses on the investigation of color changes between the ignimbrite levels by using micro-XRF and confocal Raman spectrometry. Micro-XRF and Raman spectrometry studies were performed on the polished thin sections of the lower and middle levels with different compositions. These differences were because of the compositional changes of K and slightly Fe elements distribution within the matrix. The dark brown to black color of the lower level was related to the high concentration of the K and Fe relatively to the middle level. Confocal Raman spectrometry investigations exhibited the matrix of the lower level mainly composed of anorthoclase, supporting the results of the micro-XRF.

  12. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    PubMed

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.

  13. Orbit on demand - Structural analysis finds vertical launchers weigh less

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Cruz, C. I.; Jackson, L. R.; Naftel, J. C.; Wurster, K. E.; Cerro, J. A.

    1985-01-01

    Structural considerations arising from favored design concepts for the next generation on-demand launch vehicles are explored. The two emerging concepts are a two stage fully reusable vertical take-off vehicle (V-2) and a horizontal take-off, two stage subsonic boost launch vehicle (H-2-Sub). Both designs have an 1100 n. mi. cross-range capability, with the V-2 orbiter having small wings with winglets for hypersonic trim and the H-2-Sub requiring larger, swept wings. The rockets would be cryogenic, while airbreathing initial boosters would be either turbofans, turbojets and/or ramjets. Dynamic loading is lower in the launch of a V-2. The TPS is a critical factor due to thinner leading edges than on the Shuttle and may require heat-pipe cooling. Airframe structures made of metal matrix composites have passed finite element simulations of projected loads and can now undergo proof-of-concept tests, although whisker-reinforced materials may be superior once long-whisker technology is developed.

  14. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    DOEpatents

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  15. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  16. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2

    NASA Astrophysics Data System (ADS)

    Bentalha, Zine el abidine

    2018-06-01

    Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.

  17. Aquarius - A Modelling Package for Groundwater Flow and Coupled Heat Transport in the Range 0.1 to 100 MPa and 0.1 to 1000 C

    NASA Astrophysics Data System (ADS)

    Cook, S. J.

    2009-05-01

    Aquarius is a Windows application that models fluid flow and heat transport under conditions in which fluid buoyancy can significantly impact patterns and magnitudes of fluid flow. The package is designed as a visualization tool through which users can examine flow systems in environments, both low temperature aquifers and regions with elevated PT regimes such as deep sedimentary basins, hydrothermal systems, and contact thermal aureoles. The package includes 4 components: (1) A finite-element mesh generator/assembler capable of representing complex geologic structures. Left-hand, right-hand and alternating linear triangles can be mixed within the mesh. Planer horizontal, planer vertical and cylindrical vertical coordinate sections are supported. (2) A menu-selectable system for setting properties and boundary/initial conditions. The design retains mathematical terminology for all input parameters such as scalars (e.g., porosity), tensors (e.g., permeability), and boundary/initial conditions (e.g., fixed potential). This makes the package an effective instructional aide by linking model requirements with the underlying mathematical concepts of partial differential equations and the solution logic of boundary/initial value problems. (3) Solution algorithms for steady-state and time-transient fluid flow/heat transport problems. For all models, the nonlinear global matrix equations are solved sequentially using over-relaxation techniques. Matrix storage design allows for large (e.g., 20000) element models to run efficiently on a typical PC. (4) A plotting system that supports contouring nodal data (e.g., head), vector plots for flux data (e.g., specific discharge), and colour gradient plots for elemental data (e.g., porosity), water properties (e.g., density), and performance measures (e.g., Peclet numbers). Display graphics can be printed or saved in standard graphic formats (e.g., jpeg). This package was developed from procedural codes in C written originally to model the hydrothermal flow system responsible for contact metamorphism of Utah's Alta Stock (Cook et al., AJS 1997). These codes were reprogrammed in Microsoft C# to take advantage of object oriented design and the capabilities of Microsoft's .NET framework. The package is available at no cost by e-mail request from the author.

  18. Placing three-dimensional isoparametric elements into NASTRAN. [alterations in matrix assembly to simplify generation of higher order elements

    NASA Technical Reports Server (NTRS)

    Newman, M. B.; Filstrup, A. W.

    1973-01-01

    Linear (8 node), parabolic (20 node), cubic (32 node) and mixed (some edges linear, some parabolic and some cubic) have been inserted into NASTRAN, level 15.1. First the dummy element feature was used to check out the stiffness matrix generation routines for the linear element in NASTRAN. Then, the necessary modules of NASTRAN were modified to include the new family of elements. The matrix assembly was changed so that the stiffness matrix of each isoparametric element is only generated once as the time to generate these higher order elements tends to be much longer than the other elements in NASTRAN. This paper presents some of the experiences and difficulties of inserting a new element or family of elements into NASTRAN.

  19. Double Stokes-Mueller polarimetry in KTP (Potassium Titanyl Phosphate) crystal

    NASA Astrophysics Data System (ADS)

    Shaji, Chitra; S B, Sruthil Lal; Sharan, Alok

    2017-04-01

    Ultra-structural properties of material are being probed by Double Stokes-Mueller polarimetry (DSMP) technique. It makes use of higher dimensions of Stokes vector (9 X 1) and Mueller matrix (4 X9) to characterize the nonlinear optical properties of a material. Second harmonic generation (SHG) at 532nm using 1064nm as fundamental cw beam from Nd: YAG laser in type II phase matched KTP (Potassium Titanyl Phosphate) crystal is studied using DSMP. The experimental measurements for determining double Mueller matrix are carried out in the ``Polarization In Polarization Out'' (PIPO) arrangement. Nine input polarization states are incident on the sample and the linear Stokes vector of the emerging light from the sample is measured. The KTP crystal is oriented such that the SHG signal efficiency at the incident horizontal and vertical polarizations is high as compared to diagonal polarization states. The susceptibility tensor components and the phase difference between them at this orientation are determined from the double Mueller matrix elements. These determined values give information regarding the crystal axis orientations. To our knowledge, this is the first report of the use of DSMP technique to determine the crystal orientations of a biaxial crystal.

  20. An Algebraic Approach to the Evolution of Emittances upon Crossing the Linear Coupling Difference Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner,C.

    One of the hallmarks of linear coupling is the resonant exchange of oscillation amplitude between the horizontal and vertical planes when the difference between the unperturbed tunes is close to an integer. The standard derivation of this phenomenon (known as the difference resonance) can be found, for example, in the classic papers of Guignard [1, 2]. One starts with an uncoupled lattice and adds a linear perturbation that couples the two planes. The equations of motion are expressed in hamiltonian form. As the difference between the unperturbed tunes approaches an integer, one finds that the perturbing terms in the hamiltonianmore » can be divided into terms that oscillate slowly and ones that oscillate rapidly. The rapidly oscillating terms are discarded or transformed to higher order with an appropriate canonical transformation. The resulting approximate hamiltonian gives equations of motion that clearly exhibit the exchange of oscillation amplitude between the two planes. If, instead of the hamiltonian, one is given the four-by-four matrix for one turn around a synchrotron, then one has the complete solution for the turn-by-turn (TBT) motion. However, the conditions for the phenomenon of amplitude exchange are not obvious from a casual inspection of the matrix. These conditions and those that give rise to the related sum resonance are identified in this report. The identification is made using the well known formalism of Edwards and Teng [3, 4, 5] and, in particular, the normalized coupling matrix of Sagan and Rubin [6]. The formulae obtained are general in that no particular hamiltonian or coupling elements are assumed. The only assumptions are that the one-turn matrix is symplectic and that it has distinct eigenvalues on the unit circle in the complex plane. Having identified the conditions of the one-turn matrix that give rise to the resonances, we focus on the difference resonance and apply the formulae to the evolution of the horizontal and vertical emittances of a beam distribution upon passing through the resonance. Exact and approximate expressions for the TBT evolution of the emittances are derived and applied to a number of examples.« less

  1. UFO - The Universal FEYNRULES Output

    NASA Astrophysics Data System (ADS)

    Degrande, Céline; Duhr, Claude; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

    2012-06-01

    We present a new model format for automatized matrix-element generators, the so-called Universal FEYNRULES Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a PYTHON module that can easily be linked to other computer codes. We then describe an interface for the MATHEMATICA package FEYNRULES that allows for an automatic output of models in the UFO format.

  2. Papers presented to the Conference on Chondrules and the Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) producing chondrules; (2) carbons, CAI's, and chondrules; (3) large scale processes in the solar nebula; (4) chondrule-matrix relationships in chondritic meteorites; (5) overview of nebula models; (6) constraints placed on the nature of chondrule precursors; (7) turbulent diffusion and concentration of chondrules in the protoplanetary nebula; (8) heating and cooling in the solar nebula; (9) crystallization trends of precursor pyroxene in ordinary chondrites; (10) precipitation induced vertical lightning in the protoplanetary nebula; (11) the role of chondrules in nebular fractionations of volatiles and other elements; (12) astronomical observations of phenomena in disks; (13) experimental constraints on models for origins of chondrules, and various other topics.

  3. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  4. Performance of an underwater acoustic volume array using time-reversal focusing.

    PubMed

    Root, Joseph A; Rogers, Peter H

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.

  5. Performance of an underwater acoustic volume array using time-reversal focusing

    NASA Astrophysics Data System (ADS)

    Root, Joseph A.; Rogers, Peter H.

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3 x3 x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications. copyright 2002 Acoustical Society of America.

  6. A Three-Dimensional Finite-Element Model for Simulating Water Flow in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.

    1986-12-01

    A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.

  7. VIEW OF PDP TANK TOP, LEVEL 0’, WITH VERTICAL ELEMENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP, LEVEL 0’, WITH VERTICAL ELEMENTS IN BACKGROUND, LTR TANK TOP ON LEFT, AND SHEAVE RACK ELEMENTS AT TOP, LOOKING NORTH - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  8. Addressable test matrix for measuring analog transfer characteristics of test elements used for integrated process control and device evaluation

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor)

    1988-01-01

    A set of addressable test structures, each of which uses addressing schemes to access individual elements of the structure in a matrix, is used to test the quality of a wafer before integrated circuits produced thereon are diced, packaged and subjected to final testing. The electrical characteristic of each element is checked and compared to the electrical characteristic of all other like elements in the matrix. The effectiveness of the addressable test matrix is in readily analyzing the electrical characteristics of the test elements and in providing diagnostic information.

  9. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    NASA Astrophysics Data System (ADS)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  10. Combined fast multipole-QR compression technique for solving electrically small to large structures for broadband applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram (Inventor); Chowdhury, Indranil (Inventor)

    2011-01-01

    An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter.

  11. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.

  12. Coulomb matrix elements in multi-orbital Hubbard models.

    PubMed

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  13. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Wang, Dongdong

    2017-10-01

    Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.

  14. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  15. Correlation of AH-1G airframe flight vibration data with a coupled rotor-fuselage analysis

    NASA Technical Reports Server (NTRS)

    Sangha, K.; Shamie, J.

    1990-01-01

    The formulation and features of the Rotor-Airframe Comprehensive Analysis Program (RACAP) is described. The analysis employs a frequency domain, transfer matrix approach for the blade structural model, a time domain wake or momentum theory aerodynamic model, and impedance matching for rotor-fuselage coupling. The analysis is applied to the AH-1G helicopter, and a correlation study is conducted on fuselage vibration predictions. The purpose of the study is to evaluate the state-of-the-art in helicopter fuselage vibration prediction technology. The fuselage vibration predicted using RACAP are fairly good in the vertical direction and somewhat deficient in the lateral/longitudinal directions. Some of these deficiencies are traced to the fuselage finite element model.

  16. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  17. Take the Red Pill: A New Matrix of Literacy

    ERIC Educational Resources Information Center

    Brabazon, Tara

    2011-01-01

    Using "The Matrix" film series as an inspiration, aspiration and model, this article integrates horizontal and vertical models of literacy. My goal is to create a new matrix for media literacy, aligning the best of analogue depth models for meaning making with the rapid scrolling, clicking and moving through the read-write web. To…

  18. A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric

    2018-03-01

    The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.

  19. Sparsity of the normal matrix in the refinement of macromolecules at atomic and subatomic resolution.

    PubMed

    Jelsch, C

    2001-09-01

    The normal matrix in the least-squares refinement of macromolecules is very sparse when the resolution reaches atomic and subatomic levels. The elements of the normal matrix, related to coordinates, thermal motion and charge-density parameters, have a global tendency to decrease rapidly with the interatomic distance between the atoms concerned. For instance, in the case of the protein crambin at 0.54 A resolution, the elements are reduced by two orders of magnitude for distances above 1.5 A. The neglect a priori of most of the normal-matrix elements according to a distance criterion represents an approximation in the refinement of macromolecules, which is particularly valid at very high resolution. The analytical expressions of the normal-matrix elements, which have been derived for the coordinates and the thermal parameters, show that the degree of matrix sparsity increases with the diffraction resolution and the size of the asymmetric unit.

  20. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  1. Theoretical study of solvent effects on the electronic coupling matrix elements in rigidly linked donor-acceptor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, R.J.; Newton, M.D.; Kumar, K.

    1995-12-07

    The recently developed generalized Mulliken-Hush approach for the calculation of the electronic coupling matrix element for electron-transfer processes is applied to two rigidly linked donor-bridge-acceptor systems having dimethoxyanthracene as the donor and a dicarbomethoxycyclobutene unit as the acceptor. The dependence of the electronic coupling matrix element as a function of bridge type is examined with and without solvent molecules present. For clamp-shaped bridge structures solvent can have a dramatic effect on the electronic coupling matrix element. The behavior with variation of solvent is in good agreement with that observed experimentally for these systems. 23 refs., 2 tabs.

  2. Double Charge Exchange Reactions and Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  3. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the region are responsible for the low hygroscopicity. In addition, transported smoke remnants from wildfires in the Pacific Northwest were detected as the elemental and organic carbon concentrations increased. The P11 and P12 elements from smoke and local sources are discussed as well as the vertical distribution by airborne and ground comparisons.

  4. System and method for the adaptive mapping of matrix data to sets of polygons

    NASA Technical Reports Server (NTRS)

    Burdon, David (Inventor)

    2003-01-01

    A system and method for converting bitmapped data, for example, weather data or thermal imaging data, to polygons is disclosed. The conversion of the data into polygons creates smaller data files. The invention is adaptive in that it allows for a variable degree of fidelity of the polygons. Matrix data is obtained. A color value is obtained. The color value is a variable used in the creation of the polygons. A list of cells to check is determined based on the color value. The list of cells to check is examined in order to determine a boundary list. The boundary list is then examined to determine vertices. The determination of the vertices is based on a prescribed maximum distance. When drawn, the ordered list of vertices create polygons which depict the cell data. The data files which include the vertices for the polygons are much smaller than the corresponding cell data files. The fidelity of the polygon representation can be adjusted by repeating the logic with varying fidelity values to achieve a given maximum file size or a maximum number of vertices per polygon.

  5. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  6. The Linear Parameters and the Decoupling Matrix for Linearly Coupled Motion in 6 Dimensional Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, George

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4- dimensional phase space, wheremore » R has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, the β i,α i, i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters,β i,α i, i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters α i and β i, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programing procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  7. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space. Informal report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, G.

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 {times} 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 {times} 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4-dimensional phase space, where Rmore » has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, {beta}{sub i}, {alpha}{sub i} = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters, the {beta}{sub i}, {alpha}{sub i} i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters {alpha}{sub i} and {beta}{sub i}, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programming procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  8. Modular Exhaust Design and Manufacturing Techniques for Low Cost Mid Volume Rapid Buidl to Order Systems

    DTIC Science & Technology

    2014-08-06

    the pressure field is uniform across them, but which allow mass flow to be diverted. Series elements have a constant mass flow across the ports...they can be used to calculate the pressure and mass flow after the element from the pressure and mass flow prior to the element, as shown in...the matrix product of each transfer matrix in turn. The final matrix gives no information about the pressures and mass flows within the element

  9. Sparse matrix multiplications for linear scaling electronic structure calculations in an atom-centered basis set using multiatom blocks.

    PubMed

    Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin

    2003-04-15

    A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003

  10. Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation

    DTIC Science & Technology

    2001-06-01

    Algorithms for Vertical Fin Buffeting Using Strain Actuation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...UNCLASSIFIED 8-1 Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation Fred Nitzsche...groups), the disturbance (buffet load), and the two output variables (a choice among four Introduction accelerometers and five strain - gauge positions

  11. Refractive index inversion based on Mueller matrix method

    NASA Astrophysics Data System (ADS)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  12. Matrix management in hospitals: testing theories of matrix structure and development.

    PubMed

    Burns, L R

    1989-09-01

    A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.

  13. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  14. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  15. Determining Optimal Evacuation Decision Policies for Disasters

    DTIC Science & Technology

    2012-03-01

    18 3.3 Calculating the Hit Probability ( Phit ) . . . . . . . . . . . . . . . . . . 20 3.4 Phit versus Vertical...23 Figure 3.13 Large Probability Matrix (Map) . . . . . . . . . . . . . . . . . . . . . 24 Figure 3.14 Particle Trajectory with Phit data...26 Figure 3.15 Phit versus Vertical Volatility . . . . . . . . . . . . . . . . . . . . . . 27 Figure 4.1 Cost-To

  16. A pedagogical derivation of the matrix element method in particle physics data analysis

    NASA Astrophysics Data System (ADS)

    Sumowidagdo, Suharyo

    2018-03-01

    The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.

  17. Recurrent procedure for constructing nonisotropic matrix elements of the collision integral of the nonlinear Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-08-01

    We have proposed an algorithm for the sequential construction of nonisotropic matrix elements of the collision integral, which are required to solve the nonlinear Boltzmann equation using the moments method. The starting elements of the matrix are isotropic and assumed to be known. The algorithm can be used for an arbitrary law of interactions for any ratio of the masses of colliding particles.

  18. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  19. Rephasing invariants of the Cabibbo-Kobayashi- Maskawa matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez R, H.; Kielanowski, P., E-mail: kiel@fis.cinvestav.mx; Juárez W, S. R., E-mail: rebeca@esfm.ipn.mx

    2016-03-15

    The paper is motivated by the importance of the rephasing invariance of the CKM (Cabibbo-Kobayashi-Maskawa) matrix observables. These observables appear in the discussion of the CP violation in the standard model (Jarlskog invariant) and also in the renormalization group equations for the quark Yukawa couplings. Our discussion is based on the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In the mainmore » theorem we show that a general rephasing invariant monomial can be expressed as a product of at most five factors: four of them are fundamental phase invariant monomials and the fifth factor consists of powers of squares of absolute values of the CKM matrix elements. We also show that the imaginary part of any rephasing invariant monomial is proportional to the Jarlskog’s invariant J or is 0.« less

  20. Vertical Subsurface Flow Mixing and Horizontal Anisotropy in Coarse Fluvial Aquifers: Structural Aspects

    NASA Astrophysics Data System (ADS)

    Huggenberger, P.; Huber, E.

    2014-12-01

    Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams and horizontal time-slices from GPR data are used to construct simplified 3D hydraulic properties distribution models and to derive anisotropy patterns. On the basis of this work, conceptual models could be designed and implemented into numerical models to simulate the flow field and mixing in heterogeneous braided-river deposits.

  1. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  2. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  3. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    PubMed

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal modes of initial and final states in adiabatic approaches. We highlight that such a dependence of G on s is also an issue in vertical models, due to the necessity to approximate the kinetic term in the Hamiltonian when setting up the so-called GF problem. When large structural differences exist between the initial and the final-state minima, the changes in the G matrix can become too large to be disregarded.

  4. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  5. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    NASA Astrophysics Data System (ADS)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  6. Eigenvalue computations with the QUAD4 consistent-mass matrix

    NASA Technical Reports Server (NTRS)

    Butler, Thomas A.

    1990-01-01

    The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.

  7. Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements

    NASA Astrophysics Data System (ADS)

    Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.

    2017-07-01

    Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Finally we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.

  8. Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements

    DOE PAGES

    Briceno, Raul A.; Hansen, Maxwell T.; Monahan, Christopher J.

    2017-07-11

    Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate thatmore » the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Lastly, we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.« less

  9. Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: the role of nuclear structure correlations

    NASA Astrophysics Data System (ADS)

    Menéndez, J.

    2018-01-01

    Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.

  10. Computing Fiber/Matrix Interfacial Effects In SiC/RBSN

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1996-01-01

    Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.

  11. Uncertainties in nuclear transition matrix elements for neutrinoless {beta}{beta} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, P. K.

    Uncertainties in nuclear transition matrix elements M{sup (0{nu})} and M{sub N}{sup (0{nu})} due to the exchange of light and heavy Majorana neutrinos, respectively have been estimated by calculating sets of twelve nuclear transition matrix elements for the neutrinoless {beta}{beta} decay of {sup 94,96}Zr, {sup 98,100}Mo, {sup 104}Ru, {sup 110}Pd, {sup 128,130}Te and {sup 150}Nd isotopes in the case of 0{sup +}{yields}0{sup +} transition by considering four different parameterizations of a Hamiltonian with pairing plus multipolar effective two-body interaction and three different parameterizations of Jastrow short range correlations. Exclusion of nuclear transition matrix elements calculated with the Miller-Spencer parametrization reduces themore » uncertainties by 10%-15%.« less

  12. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  13. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Baritzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  14. Systems and methods for deactivating a matrix converter

    DOEpatents

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  15. Guidance of Autonomous Aerospace Vehicles for Vertical Soft Landing using Nonlinear Control Theory

    DTIC Science & Technology

    2015-08-11

    Measured and Kalman filter Estimate of the Roll Attitude of the Quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4...and faster Hart- ley et al. [2013]. With availability of small, light, high fidelity sensors (Inertial Measurement Units IMU ) and processors on board...is a product of inverse of rotation matrix and inertia matrix for the quad frame. Since both the matrix are invertible at all times except when roll

  16. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In addition to the VE-3D model, we explore simplifications of the rock matrix domain by using sugar-cube and matchstick conceptualizations and develop VE-dual porosity and VE-matchstick models. These vertically-integrated dual-permeability and dual-porosity models provide a range of computationally efficient tools to model CO2 storage in fractured saline aquifers.

  17. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  18. Second level semi-degenerate fields in W_3 Toda theory: matrix element and differential equation

    NASA Astrophysics Data System (ADS)

    Belavin, Vladimir; Cao, Xiangyu; Estienne, Benoit; Santachiara, Raoul

    2017-03-01

    In a recent study we considered W_3 Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl_3 . We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.

  19. Trace Element Cycling in Lithogenic Particles at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").

  20. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  1. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  2. Simulation of sparse matrix array designs

    NASA Astrophysics Data System (ADS)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  3. Semistochastic approach to many electron systems

    NASA Astrophysics Data System (ADS)

    Grossjean, M. K.; Grossjean, M. F.; Schulten, K.; Tavan, P.

    1992-08-01

    A Pariser-Parr-Pople (PPP) Hamiltonian of an 8π electron system of the molecule octatetraene, represented in a configuration-interaction basis (CI basis), is analyzed with respect to the statistical properties of its matrix elements. Based on this analysis we develop an effective Hamiltonian, which represents virtual excitations by a Gaussian orthogonal ensemble (GOE). We also examine numerical approaches which replace the original Hamiltonian by a semistochastically generated CI matrix. In that CI matrix, the matrix elements of high energy excitations are choosen randomly according to distributions reflecting the statistics of the original CI matrix.

  4. Immediate Implant-based Prepectoral Breast Reconstruction Using a Vertical Incision

    PubMed Central

    Lind, Jeffrey G.; Hopkins, Elizabeth G.

    2015-01-01

    Background: Ideally, breast reconstruction is performed at the time of mastectomy in a single stage with minimal scarring. However, postoperative complications with direct-to-implant subpectoral reconstruction remain significant. These include asymmetry, flap necrosis, animation deformity, and discomfort. We report on a series of patients who have undergone immediate single-stage prepectoral, implant-based breast reconstruction with a smooth, adjustable saline implant covered with mesh/acellular dermal matrix for support using a vertical mastectomy incision. This technique, when combined with an adjustable implant, addresses the complications related to subpectoral implant placement of traditional expanders. Our follow-up time, 4.6 years (55 months), shows a low risk of implant loss and elimination of animation deformity while also providing patients with a safe and aesthetically pleasing result. Methods: All patients who underwent immediate implant-based prepectoral breast reconstruction using a vertical mastectomy incision as a single-staged procedure were included. Charts were reviewed retrospectively. Adjustable smooth round saline implants and mesh/acellular dermal matrix were used for fixation in all cases. Results: Thirty-one patients (62 breasts) underwent single-staged implant-based prepectoral breast reconstruction using a vertical mastectomy incision. Postoperative complications occurred in 9 patients, 6 of which were resolved with postoperative intervention while only 2 cases resulted in implant loss. Conclusions: There can be significant morbidity associated with traditional subpectoral implant-based breast reconstruction. As an alternative, the results of this study show that an immediate single-stage prepectoral breast reconstruction with a smooth saline adjustable implant, using a vertical incision, in conjunction with mesh/matrix support can be performed with excellent aesthetic outcomes and minimal complications. PMID:26180713

  5. Numerical analysis of the cylindrical rigidity of the vertical steel tank shell

    NASA Astrophysics Data System (ADS)

    Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr

    2017-10-01

    The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.

  6. Reduction of matrix effects in inductively coupled plasma mass spectrometry by flow injection with an unshielded torch.

    PubMed

    Gross, Cory T; McIntyre, Sally M; Houk, R S

    2009-06-15

    Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.

  7. Mobile, stationary and mixed phase tracers: consequences to sea ice biogeochemistry

    NASA Astrophysics Data System (ADS)

    Jeffery, N.; Elliott, S.; Hunke, E. C.; Deal, C.; Jin, M.

    2016-02-01

    Models of brine motion in sea ice have offered mechanisms for transporting biogeochemical compounds vertically within the ice and between the ice-ocean interface. In these models, sea ice microstructure and/or gross physical properties determine the resupply of nitrate, for example, to sympagic algae and that resupply, in large part, constrains sea ice primary production. The assumption of brine transport models is that the transported matter exists in a purely mobile phase within the ice brine channels. As a result, non-reacting, mobile phase tracers evolve like salinity in dynamic sea ice. Field and laboratory observations indicate that this is a good approximation for the primary algal macronutrients - nitrate, silicate and phosphate, but clear deviations are evident for ammonium, micronutrients such as iron, humic substances, algal bi-products such as gels and extracellular polysaccharides, and the algae themselves. This wide range of biogeochemical matter resists brine motion and is present in both the mobile and stationary phases, i.e. these tracers are "mixed" with respect to their transport phases. Although the precise mechanism for this resistance may be due to attachment by frustules, "stickiness" of the material surface, adsorption, or, in the case of microorganisms, active motility, a key common element in all cases is the presence of the ice matrix. In this presentation we investigate the consequences of mixed phase tracers in sea ice on algal concentrations, vertical distributions, and the potential accumulation of biogeochemical matter within the ice. We assume that sea ice growth promotes retention to the stationary phase, while melt and the disintegration of the ice matrix promotes release into the mobile phase. By varying the retention and release timescales of this formulation, we retrieve the purely mobile and maximal accumulation limits.

  8. Benchmark matrix and guide: Part III.

    PubMed

    1992-01-01

    The final article in the "Benchmark Matrix and Guide" series developed by Headquarters Air Force Logistics Command completes the discussion of the last three categories that are essential ingredients of a successful total quality management (TQM) program. Detailed behavioral objectives are listed in the areas of recognition, process improvement, and customer focus. These vertical categories are meant to be applied to the levels of the matrix that define the progressive stages of the TQM: business as usual, initiation, implementation, expansion, and integration. By charting the horizontal progress level and the vertical TQM category, the quality management professional can evaluate the current state of TQM in any given organization. As each category is completed, new goals can be defined in order to advance to a higher level. The benchmarking process is integral to quality improvement efforts because it focuses on the highest possible standards to evaluate quality programs.

  9. A Coupled/Uncoupled Computational Scheme for Deformation and Fatigue Damage Analysis of Unidirectional Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.

    1997-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.

  10. Fracture control of ground water flow and water chemistry in a rock aquitard.

    PubMed

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  11. Fracture control of ground water flow and water chemistry in a rock aquitard

    USGS Publications Warehouse

    Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.

  12. The Influence of Non-spectral Matrix Effects on the Accuracy of Isotope Ratio Measurement by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Barling, J.; Shiel, A.; Weis, D.

    2006-12-01

    Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del/amu for measured & mass bias corrected data that disagree outside of error. Either or both values can be incorrect. For samples, unlike experiments, the correct del/amu is not known in advance. Therefore, for sample analyses to be considered accurate, both measured and exponentially corrected del/amu should agree.

  13. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    PubMed

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Using a multifrontal sparse solver in a high performance, finite element code

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Lucas, Robert; Raefsky, Arthur

    1990-01-01

    We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.

  15. Decay of correlations between cross-polarized electromagnetic waves in a two-dimensional random medium.

    PubMed

    Gorodnichev, E E

    2018-04-01

    The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.

  16. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    NASA Astrophysics Data System (ADS)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  17. Abundance stratification in the atmospheres of blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    LeBlanc, F.

    2013-12-01

    Horizontal-branch stars with effective temperatures larger than approximately 11 500 K show abundance anomalies as well as other peculiar observational properties believed to be due to atomic diffusion in their atmosphere. These stars possess low rotational velocities that makes it possible for atomic diffusion to come into play and are therefore of great interest with respect to diffusion theory. Observational anomalies of blue horizontal-branch stars found in globular clusters such as photometric jumps and gaps are reviewed. Recent detections of vertical stratification of elements are also discussed. These results are compared to predictions of atmospheric modeling while including vertical stratification of the elements. The atmospheric structure of these models is calculated self-consistently while taking into account vertical stratification of the elements.

  18. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  19. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.

  20. Dimension-six matrix elements for meson mixing and lifetimes from sum rules

    NASA Astrophysics Data System (ADS)

    Kirk, M.; Lenz, A.; Rauh, T.

    2017-12-01

    The hadronic matrix elements of dimension-six Δ F = 0, 2 operators are crucial inputs for the theory predictions of mixing observables and lifetime ratios in the B and D system. We determine them using HQET sum rules for three-point correlators. The results of the required three-loop computation of the correlators and the one-loop computation of the QCD-HQET matching are given in analytic form. For mixing matrix elements we find very good agreement with recent lattice results and comparable theoretical uncertainties. For lifetime matrix elements we present the first ever determination in the D meson sector and the first determination of Δ B = 0 matrix elements with uncertainties under control — superseeding preliminary lattice studies stemming from 2001 and earlier. With our state-of-the-art determination of the bag parameters we predict: τ( B +)/ τ( B d 0 ) = 1.082 - 0.026 + 0.022 , τ( B s 0 )/ τ( B d 0 ) = 0.9994 ± 0.0025, τ( D +)/ τ( D 0) = 2. 7 - 0.8 + 0.7 and the mixing-observables in the B s and B d system, in good agreement with the most recent experimental averages.

  1. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  2. Aeroelastic analysis of a troposkien-type wind turbine blade

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1981-01-01

    The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.

  3. Calculation of Collisional Cross Sections for the 2P3/2 - 2P1/2 Transition in Alkali-Noble Gas Systems

    DTIC Science & Technology

    2010-03-01

    matrix elements. From scattering matrix elements for several different effective potential values and using the Method of Partial Waves[7], the...scattering matrix elements. Through the Method of Par- tial Waves[7], the procedure was repeated for several different effective potentials. The...section calculations. It is important to note that lmax may differ for σel and σi→f . This method may only be used if both σi→f and σel have

  4. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  5. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates

    NASA Astrophysics Data System (ADS)

    Protasevich, Alexander E.; Nikitin, Andrei V.

    2018-01-01

    In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.

  6. Low-energy measurements of electron-photon angular correlation in electron-impact excitation of the 2/sup 1/P state of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steph, N.C.; Golden, D.E.

    1983-03-01

    Electron-photon angular correlations between electrons which have excited the 2/sup 1/P state of He and photons from the 2/sup 1/P..-->..1/sup 1/S transition have been studied for 27-, 30-, 35-, and 40-eV incident electrons. Values of lambda and Vertical BarchiVertical Bar obtained from these measurements are compared to values obtained in distorted-wave and R-matrix calculations. The values of lambda and Vertical BarchiVertical Bar have been combined to examine the behavior of Vertical BarO/sub 1//sub -//sup colvertical-bar/ (lambda(1-lambda)sinVertical BarchiVertical Bar), the nonvanishing component of orientation. At 27 eV, a substantial decrease was observed in the values of lambda and Vertical BarO/sub 1//submore » -//sup colvertical-bar/, compared with their values for E> or =30 eV.« less

  7. Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.

    2014-10-01

    Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.

  8. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    DOEpatents

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  9. $$B^0_{(s)}$$-mixing matrix elements from lattice QCD for the Standard Model and beyond

    DOE PAGES

    Bazavov, A.; Bernard, C.; Bouchard, C. M.; ...

    2016-06-28

    We calculate—for the first time in three-flavor lattice QCD—the hadronic matrix elements of all five local operators that contribute to neutral B 0- and B s-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral B-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ=1.206(18)(6), where themore » second error stems from the omission of charm-sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from B mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light-valence quarks and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral B-meson oscillation frequencies to determine the CKM matrix elements |V td| = 8.00(34)(8)×10 -3, |V ts| = 39.0(1.2)(0.4)×10 -3, and |V td/V ts| = 0.2052(31)(10), which differ from CKM-unitarity expectations by about 2σ. In addition, these results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.« less

  10. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  11. Transferring elements of a density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdyan, Armen E.; Hovhannisyan, Karen V.; Yerevan State University, A. Manoogian Street 1, Yerevan

    2010-01-15

    We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices lambda and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown lambda into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign){sub aa}=lambda{sub aa}, the memory on each nondiagonal elementmore » lambda{sub an}ot ={sub b} is completely eliminated from the final density operator of A. Consider the following three quantities, Relambda{sub an}ot ={sub b}, Imlambda{sub an}ot ={sub b}, and lambda{sub aa}-lambda{sub bb} (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign){sub an}ot ={sub b}=Relambda{sub an}ot ={sub b}, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.« less

  12. Constraining anomalous Higgs boson couplings to the heavy-flavor fermions using matrix element techniques

    NASA Astrophysics Data System (ADS)

    Gritsan, Andrei V.; Röntsch, Raoul; Schulze, Markus; Xiao, Meng

    2016-09-01

    In this paper, we investigate anomalous interactions of the Higgs boson with heavy fermions, employing shapes of kinematic distributions. We study the processes p p →t t ¯+H , b b ¯+H , t q +H , and p p →H →τ+τ- and present applications of event generation, reweighting techniques for fast simulation of anomalous couplings, as well as matrix element techniques for optimal sensitivity. We extend the matrix element likelihood approach (MELA) technique, which proved to be a powerful matrix element tool for Higgs boson discovery and characterization during Run I of the LHC, and implement all analysis tools in the JHU generator framework. A next-to-leading-order QCD description of the p p →t t ¯+H process allows us to investigate the performance of the MELA in the presence of extra radiation. Finally, projections for LHC measurements through the end of Run III are presented.

  13. Relativistic, model-independent, multichannel 2 → 2 transition amplitudes in a finite volume

    DOE PAGES

    Briceno, Raul A.; Hansen, Maxwell T.

    2016-07-13

    We derive formalism for determining 2 + J → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of themore » $$\\rho$$-meson form factor, in which the unstable nature of the $$\\rho$$ is rigorously accommodated. In conclusion, we also discuss how this work will impact future extractions of nuclear parity and hadronic long-range matrix elements from lattice QCD.« less

  14. Predicting the properties of the lead alloys from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.

    2015-12-23

    We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less

  15. Partial restoration of isospin symmetry for neutrinoless double β decay in the deformed nuclear system of 150Nd

    NASA Astrophysics Data System (ADS)

    Fang, Dong-Liang; Faessler, Amand; Simkovic, Fedor

    2015-10-01

    In this work, we calculate the matrix elements for the 0 ν β β decay of 150Nd using the deformed quasiparticle random-phase approximation (p n -QRPA) method. We adopted the approach introduced by Rodin and Faessler [Phys. Rev. C 84, 014322 (2011), 10.1103/PhysRevC.84.014322] and Simkovic et al. [Phys. Rev. C 87, 045501 (2013), 10.1103/PhysRevC.87.045501] to restore the isospin symmetry by enforcing MF2 ν=0 . We found that with this restoration, the Fermi matrix elements are reduced in the strongly deformed 150Nd by about 15 to 20%, while the more important Gamow-Teller matrix elements remain the same. The results of an enlarged model space are also presented. This enlargement increases the total (Fermi plus Gamow-Teller) matrix elements by less than 10%.

  16. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.

  17. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    NASA Astrophysics Data System (ADS)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  18. Evaluation of atomic constants for optical radiation, volume 2

    NASA Technical Reports Server (NTRS)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.

  19. PSD-95 is required to sustain the molecular organization of the postsynaptic density

    PubMed Central

    Chen, Xiaobing; Nelson, Christopher D; Li, Xiang; Winters, Christine A.; Azzam, Rita; Sousa, Alioscka A.; Leapman, Richard D.; Gainer, Harold; Sheng, Morgan; Reese, Thomas S.

    2011-01-01

    PSD-95, a membrane-associated guanylate kinase (MAGUK), is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. Here we show that PSD-95 is in an extended configuration and positioned into regular arrays of vertical filaments that contact both glutamate receptors and orthogonal horizontal elements layered deep inside the PSD in rat hippocampal spine synapses. RNAi knockdown of PSD-95 leads to loss of entire patches of PSD material, and EM tomography shows that the patchy loss correlates with loss of PSD-95-containing vertical filaments, horizontal elements associated with the vertical filaments, and putative AMPA, but not NMDA receptor type structures. These observations show that the orthogonal molecular scaffold constructed from PSD-95-containing vertical filaments and their associated horizontal elements is essential for sustaining the three dimensional molecular organization of the PSD. Our findings provide a structural basis for understanding the functional role of PSD-95 at the PSD. PMID:21525273

  20. Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.

    PubMed

    Huang, Yuanyuan; Lu, Xingjie; Shi, Zheng; Lawrence, David; Koven, Charles D; Xia, Jianyang; Du, Zhenggang; Kluzek, Erik; Luo, Yiqi

    2018-03-01

    The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is also computationally expensive, limiting the ability to conduct comprehensive parametric sensitivity analyses. To overcome these challenges, we have developed a matrix approach, which reorganizes the C balance equations in the original ESM into one matrix equation without changing any modeled C cycle processes and mechanisms. We applied the matrix approach to the Community Land Model (CLM4.5) with vertically-resolved biogeochemistry. The matrix equation exactly reproduces litter and soil organic carbon (SOC) dynamics of the standard CLM4.5 across different spatial-temporal scales. The matrix approach enables effective diagnosis of system properties such as C residence time and attribution of global change impacts to relevant processes. We illustrated, for example, the impacts of CO 2 fertilization on litter and SOC dynamics can be easily decomposed into the relative contributions from C input, allocation of external C into different C pools, nitrogen regulation, altered soil environmental conditions, and vertical mixing along the soil profile. In addition, the matrix tool can accelerate model spin-up, permit thorough parametric sensitivity tests, enable pool-based data assimilation, and facilitate tracking and benchmarking of model behaviors. Overall, the matrix approach can make a broad range of future modeling activities more efficient and effective. © 2017 John Wiley & Sons Ltd.

  1. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    NASA Astrophysics Data System (ADS)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced nature of the scheme and its convergence properties. We conclude with well-known benchmark problems including the Malpasset dam break (see the attached figure). All numerical experiments are performed and available in the Proteus toolkit, which is an open source python package for modeling continuum mechanical processes and fluid flow.

  2. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  3. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  4. Enclosed, off-axis solar concentrator

    DOEpatents

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  5. Texture zeros and hierarchical masses from flavour (mis)alignment

    NASA Astrophysics Data System (ADS)

    Hollik, W. G.; Saldana-Salazar, U. J.

    2018-03-01

    We introduce an unconventional interpretation of the fermion mass matrix elements. As the full rotational freedom of the gauge-kinetic terms renders a set of infinite bases called weak bases, basis-dependent structures as mass matrices are unphysical. Matrix invariants, on the other hand, provide a set of basis-independent objects which are of more relevance. We employ one of these invariants to give a new parametrisation of the mass matrices. By virtue of it, one gains control over its implicit implications on several mass matrix structures. The key element is the trace invariant which resembles the equation of a hypersphere with a radius equal to the Frobenius norm of the mass matrix. With the concepts of alignment or misalignment we can identify texture zeros with certain alignments whereas Froggatt-Nielsen structures in the matrix elements are governed by misalignment. This method allows further insights of traditional approaches to the underlying flavour geometry.

  6. The network level reproduction number for infectious diseases with both vertical and horizontal transmission.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2013-05-01

    A wide range of infectious diseases are both vertically and horizontally transmitted. Such diseases are spatially transmitted via multiple species in heterogeneous environments, typically described by complex meta-population models. The reproduction number, R0, is a critical metric predicting whether the disease can invade the meta-population system. This paper presents the reproduction number for a generic disease vertically and horizontally transmitted among multiple species in heterogeneous networks, where nodes are locations, and links reflect outgoing or incoming movement flows. The metapopulation model for vertically and horizontally transmitted diseases is gradually formulated from two species, two-node network models. We derived an explicit expression of R0, which is the spectral radius of a matrix reduced in size with respect to the original next generation matrix. The reproduction number is shown to be a function of vertical and horizontal transmission parameters, and the lower bound is the reproduction number for horizontal transmission. As an application, the reproduction number and its bounds for the Rift Valley fever zoonosis, where livestock, mosquitoes, and humans are the involved species are derived. By computing the reproduction number for different scenarios through numerical simulations, we found the reproduction number is affected by livestock movement rates only when parameters are heterogeneous across nodes. To summarize, our study contributes the reproduction number for vertically and horizontally transmitted diseases in heterogeneous networks. This explicit expression is easily adaptable to specific infectious diseases, affording insights into disease evolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Nuclear physics from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2017-09-01

    I will discuss the current state and future scope of numerical Lattice Quantum Chromodynamics (LQCD) calculations of nuclear matrix elements. The goal of the program is to provide direct QCD calculations of nuclear observables relevant to experimental programs, including double-beta decay matrix elements, nuclear corrections to axial matrix elements relevant to long-baseline neutrino experiments and nuclear sigma terms needed for theory predictions of dark matter cross-sections at underground detectors. I will discuss the progress and challenges on these fronts, and also address recent work constraining a gluonic analogue of the EMC effect, which will be measurable at a future electron-ion collider.

  8. On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements

    DOE PAGES

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten; ...

    2017-07-12

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  9. Method of determining lanthanidies in a transition element host

    DOEpatents

    De Kalb, Edward L.; Fassel, Velmer A.

    1976-02-03

    A phosphor composition contains a lanthanide activator element within a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO.sub.4 with a portion of the rare earth replaced with one or more of the transition elements. On X-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence.

  10. Historical trace element distribution in sediments from the Mississippi River delta

    USGS Publications Warehouse

    Swarzenski, P.W.; Baskaran, M.; Rosenbauer, R.J.; Orem, W.H.

    2006-01-01

    Five sediment cores were collected on the shelf of the inner Mississippi Bight in June 2003 for a suite of radionuclides to establish geochronologies and trace elements to examine patterns of contaminant deposition and accumulation. Core sites were chosen to reflect a matrix of variable water depths, proximity to the Mississippi River mouth as the primary source for terrigenous particles, and extent and duration of summertime water column hypoxia. The vertical distribution of 239,240Pu and 210Pbxs (= 210Pbtotal - 226Ra) provided reliable geochronological age constraints to develop models for mass accumulation rates and historic trace element inputs and variations. Mass accumulation rates ranged from 0.27 to 0.87 g cm-2 yr-1 and were internally consistent using either 210Pbxs or 239,240Pu. Measured inventories of 137Cs, 239,240Pu, and 210Pbxs were compared to atmospheric deposition rates to quantify potential sediment focusing or winnowing. Observed variability in calculated mass accumulation rates may be attributed foremost to site-specific proximity to the river mouth (i.e., sediment source), variability in water depth, and enhanced sediment focusing at the Mississippi River canyon site. Trace element concentrations were first normalized to Al, and then Al-normalized enrichment factors (ANEF) were calculated based on preanthropogenic and crustal trace element abundances. These ANEFs were typically > 1 for V and Ba, while for most other elements studied, either no enrichment or depletion was observed. The enrichment of Ba may be related, in part, to the seasonal occurrence of oxygen-depleted subsurface waters off the Mississippi River delta, as well as being an ubiquitous by-product of the petroleum industry. ?? 2006 Estuarine Research Federation.

  11. Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kump, P.; Vogel-Mikuš, K.

    2018-05-01

    Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.

  12. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  13. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  14. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  15. Effects of Selected Filmic Coding Elements of TV on the Development of the Euclidean Concepts of Horizontality and Verticality in Adolescents.

    ERIC Educational Resources Information Center

    Lynch, Beth Eloise

    This study was conducted to determine whether the filmic coding elements of split screen, slow motion, generated line cues, the zoom of a camera, and rotation could aid in the development of the Euclidean space concepts of horizontality and verticality, and to explore presence and development of spatial skills involving these two concepts in…

  16. Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.

    2017-12-01

    The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.

  17. Computationally Efficient Modeling and Simulation of Large Scale Systems

    NASA Technical Reports Server (NTRS)

    Jain, Jitesh (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Vankataramanan (Inventor); Cauley, Stephen F (Inventor); Li, Hong (Inventor)

    2014-01-01

    A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations.

  18. Trace element analysis of extraterrestrial metal samples by inductively coupled plasma mass spectrometry: the standard solutions and digesting acids.

    PubMed

    Wang, Guiqin; Wu, Yangsiqian; Lin, Yangting

    2016-02-28

    Nearly 99% of the total content of extraterrestrial metals is composed of Fe and Ni, but with greatly variable trace element contents. The accuracy obtained in the inductively coupled plasma mass spectrometry (ICP-MS) analysis of solutions of these samples can be significantly influenced by matrix contents, polyatomic ion interference, and the concentrations of external standard solutions. An ICP-MS instrument (X Series 2) was used to determine 30 standard solutions with different concentrations of trace elements, and different matrix contents. Based on these measurements, the matrix effects were determined. Three iron meteorites were dissolved separately in aqua regia and HNO3. Deviations due to variation of matrix contents in the external standard solutions were evaluated and the analysis results of the two digestion methods for iron meteorites were assessed. Our results show obvious deviations due to unmatched matrix contents in the external standard solutions. Furthermore, discrepancy in the measurement of some elements was found between the sample solutions prepared with aqua regia and HNO3, due to loss of chloride during sample preparation and/or incomplete digestion of highly siderophile elements in iron meteorites. An accurate ICP-MS analysis method for extraterrestrial metal samples has been established using external standard solutions with matched matrix contents and digesting the samples with HNO3 and aqua regia. Using the data from this work, the Mundrabilla iron meteorite previously classified as IAB-ung is reclassified as IAB-MG. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L =1

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-01

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  20. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  1. Computationally efficient modeling and simulation of large scale systems

    NASA Technical Reports Server (NTRS)

    Jain, Jitesh (Inventor); Cauley, Stephen F. (Inventor); Li, Hong (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Venkataramanan (Inventor)

    2010-01-01

    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P.

  2. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    USGS Publications Warehouse

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  3. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Wang, Wenzhong (Inventor); Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  4. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng [Newton, MA; Chen, Gang [Carlisle, MA; Poudel, Bed [West Newton, MA; Kumar, Shankar [Newton, MA; Wang, Wenzhong [Beijing, CN; Dresselhaus, Mildred [Arlington, MA

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  5. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  6. Vertical Hegelianism and Beyond: Digital Cinema Editing.

    ERIC Educational Resources Information Center

    Wyatt, Roger B.

    Cinema as an art and communication form is entering its second century of development. Sergei Eisenstein conceived of editing in horizontal and vertical terms. He saw vertical editing patterns primarily as the synchronization of simultaneous image and sound elements, particularly music, no create cinematic meaning by means of the relationship…

  7. Transversing the Vertical Case Study: A Methodological Approach to Studies of Educational Policy as Practice

    ERIC Educational Resources Information Center

    Bartlett, Lesley; Vavrus, Frances

    2014-01-01

    How can scholars trace the global production and circulation of educational policies? The vertical case study incorporates three elements: "vertical" attention across micro-, meso-, and macro-levels, or scales; a "horizontal" comparison of how policies unfold in distinct locations; and a "transversal," processual…

  8. Representing k-graphs as Matrix Algebras

    NASA Astrophysics Data System (ADS)

    Rosjanuardi, R.

    2018-05-01

    For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.

  9. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  10. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  11. Double-beta decay processes from lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Davoudi, Zohreh; Tiburzi, Brian; Wagman, Michael; Winter, Frank; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Savage, Martin; Shanahan, Phiala; Nplqcd Collaboration

    2017-09-01

    While an observation of neutrinoless double-beta decay in upcoming experiments will establish that the neutrinos are Majorana particles, the underlying new physics responsible for this decay can only be constrained if the theoretical predictions of the rate are substantially refined. This talk demonstrates the roadmap in connecting the underlying high-scale theory to the corresponding nuclear matrix elements, focusing mainly on the nucleonic matrix elements in the simplest extension of Standard Model in which a light Majorana neutrino is mediating the process. The role of lattice QCD and effective field theory in this program, in particular, the prospect of a direct matching of the nn to pp amplitude to lattice QCD will be discussed. As a first step towards this goal, the results of the first lattice QCD calculation of the relevant matrix element for neutrinofull double-beta decay will be presented, albeit with unphysical quark masses, along with important lessons that could impact the calculations of nuclear matrix elements involved in double-beta decays of realistic nuclei.

  12. Finite-element time evolution operator for the anharmonic oscillator

    NASA Technical Reports Server (NTRS)

    Milton, Kimball A.

    1995-01-01

    The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.

  13. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-09-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  14. Transfer matrix calculation for ion optical elements using real fields

    NASA Astrophysics Data System (ADS)

    Mishra, P. M.; Blaum, K.; George, S.; Grieser, M.; Wolf, A.

    2018-03-01

    With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient transport of ion species from the ion source area to the experimental setup becomes essential. Some available, powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from the standard first order transfer matrix based ion optical simulation program implementing the derived transfer matrix is compared with the real field beam tracking simulations.

  15. Constant covariance in local vertical coordinates for near-circular orbits

    NASA Technical Reports Server (NTRS)

    Shepperd, Stanley W.

    1991-01-01

    A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.

  16. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less

  17. Numerical investigations on the effect of slenderness ratio of matrix elements in cryogenic chill down process

    NASA Astrophysics Data System (ADS)

    Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.

    2017-02-01

    Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.

  18. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  19. Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Mark D.; Isaac, Phillip S.; Werry, Jason L.

    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities.

  20. Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Alexander, Steven; Coldwell, R. L.

    2015-03-01

    The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.

  1. Collision for Li++He System. I. Potential Curves and Non-Adiabatic Coupling Matrix Elements

    NASA Astrophysics Data System (ADS)

    Yoshida, Junichi; O-Ohata, Kiyosi

    1984-02-01

    The potential curves and the non-adiabatic coupling matrix elements for the Li++He collision system were computed. The SCF molecular orbitals were constructed with the CGTO atomic bases centered on each nucleus and the center of mass of two nuclei. The SCF and CI calculations were done at various internuclear distances in the range of 0.1˜25.0 a.u. The potential energies and the wavefunctions were calculated with good approximation over whole internuclear distance. The non-adiabatic coupling matrix elements were calculated with the tentative method in which the ETF are approximately taken into account.

  2. Double β-decay nuclear matrix elements for the A=48 and A=58 systems

    NASA Astrophysics Data System (ADS)

    Skouras, L. D.; Vergados, J. D.

    1983-11-01

    The nuclear matrix elements entering the double β decays of the 48Ca-48Ti and 58Ni-58Fe systems have been calculated using a realistic two nucleon interaction and realistic shell model spaces. Effective transition operators corresponding to a variety of gauge theory models have been considered. The stability of such matrix elements against variations of the nuclear parameters is examined. Appropriate lepton violating parameters are extracted from the A=48 data and predictions are made for the lifetimes of the positron decays of the A=58 system. RADIOACTIVITY Double β decay. Gauge theories. Lepton nonconservation. Neutrino mass. Shell model calculations.

  3. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  4. Comparison between Adaptive and Uniform Discontinuous Galerkin Simulations in Dry 2D Bubble Experiments

    DTIC Science & Technology

    2012-11-08

    ψk with the mass matrix Mik = ∫ Ωe ψiψkdΩ; for the sake of simplicity, we did not write the dependence on x of the basis functions although it should...polynomial order N throughout all the elements Ωe in the domain Ω = ⋃Ne e =1 Ωe and if we insist that the elements have straight edges, then the matrix M−1...constant within each element of our grid but we allow µlim to change between different elements. The total viscosity parameter for each element e is

  5. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  6. Features of quark and lepton mixing from differential geometry of curves on surfaces

    NASA Astrophysics Data System (ADS)

    Bordes, José; Hong-Mo, Chan; Pfaudler, Jakov; Sheung Tsun, Tsou

    1998-09-01

    It is noted that the Cabibbo-Kobayashi-Moskawa (CKM) matrix elements for both quarks and leptons as conceived in the dualized standard model (DSM) can be interpreted as direction cosines obtained by moving the Darboux trihedron (a 3-frame) along a trajectory on a sphere traced out through changing energy scales by a 3-vector factorized from the mass matrix. From the Darboux analogues of the well-known Serret-Frenet formulas for space curves, it is seen that the corner elements (Vub,Vtd for quarks, and Ue3,Uτ1 for leptons) are associated with the (geodesic) torsion, while the other off-diagonal elements (Vus,Vcd and Vcb,Vts for quarks, and Ue2,Uμ1 and Uμ3,Uτ2 for leptons) with the (respectively, geodesic and normal) curvatures of the trajectory. From this it follows that (i) the corner elements in both matrices are much smaller than the other elements, and (ii) the Uμ3,Uτ2 elements for the lepton CKM matrix are much larger than their counterparts in the quark matrix. Both these conclusions are strongly borne out by experiment, for quarks in hadron decays and for leptons in neutrino oscillations, and by previous explicit calculations within the DSM scheme.

  7. Vertical motion simulator familiarization guide

    NASA Technical Reports Server (NTRS)

    Danek, George L.

    1993-01-01

    The Vertical Motion Simulator Familiarization Guide provides a synoptic description of the Vertical Motion Simulator (VMS) and descriptions of the various simulation components and systems. The intended audience is the community of scientists and engineers who employ the VMS for research and development. The concept of a research simulator system is introduced and the building block nature of the VMS is emphasized. Individual sections describe all the hardware elements in terms of general properties and capabilities. Also included are an example of a typical VMS simulation which graphically illustrates the composition of the system and shows the signal flow among the elements and a glossary of specialized terms, abbreviations, and acronyms.

  8. A 3/D finite element approach for metal matrix composites based on micromechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.

    Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less

  9. Fundamental and Applied Investigations in Atomic Spectrometric Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).

  10. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the onemore » from LOCO (Linear Optics from Closed Orbits) response matrix correction.« less

  11. Polarization-interference Jones-matrix mapping of biological crystal networks

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Dubolazov, O. V.; Pidkamin, L. Y.; Sidor, M. I.; Pavlyukovich, N.; Pavlyukovich, O.

    2018-01-01

    The paper consists of two parts. The first part presents short theoretical basics of the method of Jones-matrix mapping with the help of reference wave. It was provided experimentally measured coordinate distributions of modulus of Jones-matrix elements of polycrystalline film of bile. It was defined the values and ranges of changing of statistic moments, which characterize such distributions. The second part presents the data of statistic analysis of the distributions of matrix elements of polycrystalline film of urine of donors and patients with albuminuria. It was defined the objective criteria of differentiation of albuminuria.

  12. Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analysis

    NASA Astrophysics Data System (ADS)

    JøRgensen, Peter R.; Hoffmann, Martin; Kistrup, Jens P.; Bryde, Claus; Bossi, Rossana; Villholth, Karen G.

    2002-11-01

    This study investigates vertical flow and pesticide transport along fractures in water saturated unoxidized clayey till. From two experimental fields, each 40 m2, 96% and 98%, respectively, of total vertical flow was conducted along fractures in the till, while the remaining 2-4% of flow occurred in the clay matrix at very slow flow rate. An applied dye tracer was observed only along 10-26% of the total fracture length measured on the horizontal surface of the experimental fields. In vertical sections the dyed fracture portions constituted root channels, which penetrated the till vertically along the fractures into the local aquifer at 5 m depth. No dye tracer was observed in the fractures without root channels or in the unfractured clay matrix, suggesting that root growth along the fracture surfaces was the principal agent of fracture aperture enhancement. Using hydraulic fracture aperture values determined from large undisturbed column (LUC) collected from one of the experimental fields, it was estimated that 94% of flow in the fractures was conducted along the fracture root channels, while only 6% of flow was conducted along the fracture sections without root channels. For natural vertical hydraulic gradients (0.8-2.3 at the site), flow rates of 0.8-2 km/d were determined for a fracture root channel, while fracture sections without root channels revealed flow rates of 9-22 m/d. Corresponding flow rates in the unfractured matrix were 7-19 mm/yr. For infiltrated bromide (nonreactive tracer) and mobile pesticides mecoprop (MCPP) and metsulfuron, very rapid migration (0.28-0.5 m/d) and high relative breakthrough concentrations (30-60%) into the aquifer were observed to occur along the fracture root channels using a constant hydraulic gradient of 1. Only traces were measured from infiltration of the strongly sorbed pesticide prochloraz. The concentrations of the bromide and pesticides in the monitoring wells were modeled with a discrete fracture matrix diffusion (DFDM) model coupled with a single porosity model (SP) for the till and aquifer, respectively. Using effective fracture spacings and mean fracture apertures for the fracture channel sections as modeling input parameters for the till, the concentrations observed in the wells of the aquifer could be reasonably approximated.

  13. On the Singularity in the Estimation of the Quaternion-of-Rotation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Thienel, Julie K.

    2003-01-01

    It has been claimed in the archival literature that the covariance matrix of a Kalman filter, which is designed to estimate the quaternion-of-rotation, is necessarily rank deficient because the normality constraint of the quaternion produces dependence between the quaternion elements. In reality, though, this phenomenon does not occur. The covariance matrix is not singular, and the filter is well behaved. Several simple examples are presented that demonstrate the regularity of the covariance matrix. First, estimation cases are presented where a relationship exists between the estimated variables, and yet the covariance matrix is not singular. Then the particular problem of quaternion estimation is analyzed. It is shown that the discrepancy stems from the fact that a functional relationship exists between the elements of the true quaternion but not between its estimated elements.

  14. Simplified equation for Young's modulus of CNT reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chandran, RameshBabu; Gifty Honeyta A, Maria

    2017-12-01

    This research investigation focuses on finite element modeling of carbon nanotube (CNT) reinforced concrete matrix for three grades of concrete namely M40, M60 and M120. Representative volume element (RVE) was adopted and one-eighth model depicting the CNT reinforced concrete matrix was simulated using FEA software ANSYS17.2. Adopting random orientation of CNTs, with nine fibre volume fractions from 0.1% to 0.9%, finite element modeling simulations replicated exactly the CNT reinforced concrete matrix. Upon evaluations of the model, the longitudinal and transverse Young's modulus of elasticity of the CNT reinforced concrete was arrived. The graphical plots between various fibre volume fractions and the concrete grade revealed simplified equation for estimating the young's modulus. It also exploited the fact that the concrete grade does not have significant impact in CNT reinforced concrete matrix.

  15. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  16. Coil-to-coil physiological noise correlations and their impact on fMRI time-series SNR

    PubMed Central

    Triantafyllou, C.; Polimeni, J. R.; Keil, B.; Wald, L. L.

    2017-01-01

    Purpose Physiological nuisance fluctuations (“physiological noise”) are a major contribution to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. Theory and Methods We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal intensity vectors S. Results Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SSH. Conclusion Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. PMID:26756964

  17. ICAN/PART: Particulate composite analyzer, user's manual and verification studies

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Murthy, Pappu L. N.; Mital, Subodh K.

    1996-01-01

    A methodology for predicting the equivalent properties and constituent microstresses for particulate matrix composites, based on the micromechanics approach, is developed. These equations are integrated into a computer code developed to predict the equivalent properties and microstresses of fiber reinforced polymer matrix composites to form a new computer code, ICAN/PART. Details of the flowchart, input and output for ICAN/PART are described, along with examples of the input and output. Only the differences between ICAN/PART and the original ICAN code are described in detail, and the user is assumed to be familiar with the structure and usage of the original ICAN code. Detailed verification studies, utilizing dim dimensional finite element and boundary element analyses, are conducted in order to verify that the micromechanics methodology accurately models the mechanics of particulate matrix composites. ne equivalent properties computed by ICAN/PART fall within bounds established by the finite element and boundary element results. Furthermore, constituent microstresses computed by ICAN/PART agree in average sense with results computed using the finite element method. The verification studies indicate that the micromechanics programmed into ICAN/PART do indeed accurately model the mechanics of particulate matrix composites.

  18. A three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices

    PubMed Central

    Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.

    2013-01-01

    High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918

  19. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  20. VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK TOP, WITH VERTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK TOP, WITH VERTICAL ELEMENTS IN BACKGROUND, LEVEL 0’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  1. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis.

    PubMed

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced ( P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant ( P > 0/05). Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended.

  2. Scattering Matrix for Typical Urban Anthropogenic Origin Cement Dust and Discrimination of Representative Atmospheric Particulates

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Zhang, Yongming; Zhang, Qixing; Wang, Jinjun

    2018-03-01

    The complete scattering matrix for cement dust was measured as a function of scattering angle from 5° to 160° at a wavelength of 532 nm, as a representative of mineral dust of anthropogenic origin in urban areas. Other related characteristics of cement dust, such as particle size distribution, chemical composition, refractive index, and micromorphology, were also analyzed. For this objective, a newly improved apparatus was built and calibrated using water droplets. Measurements of water droplets were in good agreement with Lorenz-Mie calculations. To facilitate the direct applicability of measurements for cement dust in radiative transfer calculation, the synthetic scattering matrix was computed and defined over the full scattering angle range from 0° to 180°. The scattering matrices for cement dust and typical natural mineral dusts were found to be similar in trends and angular behaviors. Angular distributions of all matrix elements were confined to rather limited domains. To promote the application of light-scattering matrix in atmospheric observation and remote sensing, discrimination methods for various atmospheric particulates (cement dust, soot, smolder smoke, and water droplets) based on the angular distributions of their scattering matrix elements are discussed. The ratio -F12/F11 proved to be the most effective discrimination method when a single matrix element is employed; aerosol identification can be achieved based on -F12/F11 values at 90° and 160°. Meanwhile, the combinations of -F12/F11 with F22/F11 (or (F11 - F22)/(F11 + F22)) or -F12/F11 with F44/F11 at 160° can be used when multiple matrix elements at the same scattering angle are selected.

  3. Simplified microstrip discontinuity modeling using the transmission line matrix method interfaced to microwave CAD

    NASA Astrophysics Data System (ADS)

    Thompson, James H.; Apel, Thomas R.

    1990-07-01

    A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.

  4. Evaluation of Vertical Integrated Nanogenerator Performances in Flexion

    NASA Astrophysics Data System (ADS)

    Tao, R.; Hinchet, R.; Ardila, G.; Mouis, M.

    2013-12-01

    Piezoelectric nanowires have attracted great interest as new building blocks of mechanical energy harvesting systems. This paper presents the design improvements of mechanical energy harvesters integrating vertical ZnO piezoelectric nanowires onto a Silicon or plastic membrane. We have calculated the energy generation and conversion performance of ZnO nanowires based vertical integrated nanogenerators in flexion mode. We show that in flexion mode ZnO nanowires are superior to bulk ZnO layer. Both mechanical and electrical effects of matrix materials on the potential generation and energy conversion are discussed, in the aim of guiding further improvement of nanogenerator performance.

  5. Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1983-01-01

    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.

  6. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1996-01-01

    A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.

  7. Discoveries far from the lamppost with matrix elements and ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipsikha; Gainer, James S.; Matchev, Konstantin T.

    2015-04-01

    The prevalence of null results in searches for new physics at the LHC motivates the effort to make these searches as model-independent as possible. We describe procedures for adapting the Matrix Element Method for situations where the signal hypothesis is not known a priori. We also present general and intuitive approaches for performing analyses and presenting results, which involve the flattening of background distributions using likelihood information. The first flattening method involves ranking events by background matrix element, the second involves quantile binning with respect to likelihood (and other) variables, and the third method involves reweighting histograms by the inversemore » of the background distribution.« less

  8. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  9. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  10. Determining Diagonal Branches in Mine Ventilation Networks

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej

    2014-12-01

    The present paper discusses determining diagonal branches in a mine ventilation network by means of a method based on the relationship A⊗ PT(k, l) = M, which states that the nodal-branch incidence matrix A, modulo-2 multiplied by the transposed path matrix PT(k, l ) from node no. k to node no. l, yields the matrix M where all the elements in rows k and l - corresponding to the start and the end node - are 1, and where the elements in the remaining rows are 0, exclusively. If a row of the matrix M is to contain only "0" elements, the following condition has to be fulfilled: after multiplying the elements of a row of the matrix A by the elements of a column of the matrix PT(k, l), i.e. by the elements of a proper row of the matrix P(k, l ), the result row must display only "0" elements or an even number of "1" entries, as only such a number of "1" entries yields 0 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the path nodes level is 2 (apart from the nodes k and l, whose level is 1), then the number of "1" elements in a row has to be 0 or 2. If, in turn, the rows k and l of the matrix M are to contain only "1" elements, the following condition has to be fulfilled: after multiplying the elements of the row k or l of the matrix A by the elements of a column of the matrix PT(k, l), the result row must display an uneven number of "1" entries, as only such a number of "1" entries yields 1 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the level of the i and j path nodes is 1, then the number of "1" elements in a row has to be 1. The process of determining diagonal branches by means of this method was demonstrated using the example of a simple ventilation network with two upcast shafts and one downcast shaft. W artykule przedstawiono metodę wyznaczania bocznic przekątnych w sieci wentylacyjnej kopalni metodą bazującą na zależności A⊗PT(k, l) = M, która podaje, że macierz incydencji węzłowo bocznicowej A pomnożona modulo 2 przez transponowaną macierz ścieżek PT(k, l) od węzła nr k do węzła nr l daje w wyniku macierz M o takich własnościach że ma same jedynki w wierszach k i l, odpowiadającym węzłom początkowemu i końcowemu i same zera w pozostałych wierszach. Warunkiem na to, aby w wierszu macierzy M były same zera jest aby po pomnożeniu elementów wiersza macierzy A przez elementy kolumny macierzy PT(k, l), czyli przez elementy odpowiedniego wiersza macierzy P(k, l), w wierszu wynikowym były same zera lub parzysta liczba jedynek, ponieważ tylko taka liczba jedynek zsumowana modulo 2 daje w wyniku 0, a ponieważ wiersze macierzy A odpowiadają węzłom grafu, a węzły ścieżki są stopnia 2 (oprócz węzłów k i l, które są stopnia 1), to liczba jedynek w wierszu musi być równa 0 lub 2. Natomiast warunkiem na to, aby w wierszach k i l macierzy M były same jedynki jest aby po pomnożeniu elementów wiersza k lub l macierzy A przez elementy kolumny macierzy PT(k, l) w wierszu wynikowym była nieparzysta liczba jedynek, ponieważ tylko taka liczba jedynek zsumowana modulo 2 daje w wyniku 1, a ponieważ wiersze macierzy A odpowiadają węzłom grafu, a węzły k i j ścieżki są stopnia 1, to liczba jedynek w wierszu musi być równa 1. Wyznaczanie bocznic przekątnych tą metodą pokazano na przykładzie prostej sieci wentylacyjnej z dwoma szybami wydechowymi i jednym wdechowym.

  11. Fast calculation of the sensitivity matrix in magnetic induction tomography by tetrahedral edge finite elements and the reciprocity theorem.

    PubMed

    Hollaus, K; Magele, C; Merwa, R; Scharfetter, H

    2004-02-01

    Magnetic induction tomography of biological tissue is used to reconstruct the changes in the complex conductivity distribution by measuring the perturbation of an alternating primary magnetic field. To facilitate the sensitivity analysis and the solution of the inverse problem a fast calculation of the sensitivity matrix, i.e. the Jacobian matrix, which maps the changes of the conductivity distribution onto the changes of the voltage induced in a receiver coil, is needed. The use of finite differences to determine the entries of the sensitivity matrix does not represent a feasible solution because of the high computational costs of the basic eddy current problem. Therefore, the reciprocity theorem was exploited. The basic eddy current problem was simulated by the finite element method using symmetric tetrahedral edge elements of second order. To test the method various simulations were carried out and discussed.

  12. 25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate route 1 Severe X Moderate Minimal No accidents. Years since last IRR construction project completed... elements Addresses 1 element. 1 National Highway Traffic Safety Board standards. 2 Total funds requested...

  13. Some Factor Analytic Approximations to Latent Class Structure.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Denton, William T.

    Three procedures, alpha, image, and uniqueness rescaling, were applied to a joint occurrence probability matrix. That matrix was the basis of a well-known latent class structure. The values of the recurring subscript elements were varied as follows: Case 1 - The known elements were input; Case 2 - The upper bounds to the recurring subscript…

  14. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  15. Neutrinoless double-β decay of 48Ca in the shell model: Closure versus nonclosure approximation

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.

    2013-12-01

    Neutrinoless double-β decay (0νββ) is a unique process that could reveal physics beyond the Standard Model. Essential ingredients in the analysis of 0νββ rates are the associated nuclear matrix elements. Most of the approaches used to calculate these matrix elements rely on the closure approximation. Here we analyze the light neutrino-exchange matrix elements of 48Ca 0νββ decay and test the closure approximation in a shell-model approach. We calculate the 0νββ nuclear matrix elements for 48Ca using both the closure approximation and a nonclosure approach, and we estimate the uncertainties associated with the closure approximation. We demonstrate that the nonclosure approach has excellent convergence properties which allow us to avoid unmanageable computational cost. Combining the nonclosure and closure approaches we propose a new method of calculation for 0νββ decay rates which can be applied to the 0νββ decay rates of heavy nuclei, such as 76Ge or 82Se.

  16. Neutrinoless double beta decay and chiral SU(3)

    DOE PAGES

    Cirigliano, Vincenzo; Dekens, Wouter Gerard; Graesser, Michael Lawrence; ...

    2017-04-14

    TeV-scale lepton number violation can affect neutrinoless double beta decay through dimension-9 ΔL=ΔI=2 operators involving two electrons and four quarks. Since the dominant effects within a nucleus are expected to arise from pion exchange, the π -→π +ee matrix elements of the dimension-9 operators are a key hadronic input. Here in this letter we provide estimates for the π -→π + matrix elements of all Lorentz scalar ΔI=2 four-quark operators relevant to the study of TeV-scale lepton number violation. The analysis is based on chiral SU(3) symmetry, which relates the π -→π + matrix elements of the ΔI=2 operators to themore » $K$ 0→$$\\bar{K}$$ 0 and K→ππ matrix elements of their ΔS=2 and ΔS=1 chiral partners, for which lattice QCD input is available. The inclusion of next-to-leading order chiral loop corrections to all symmetry relations used in the analysis makes our results robust at the 30% level or better, depending on the operator.« less

  17. A computer code for calculations in the algebraic collective model of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Welsh, T. A.; Rowe, D. J.

    2016-03-01

    A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.

  18. Multipole expansions and Fock symmetry of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Meremianin, A. V.; Rost, J.-M.

    2006-10-01

    The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.

  19. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD.

    PubMed

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S; Orginos, Kostas; Savage, Martin J; Shanahan, Phiala E; Wagman, Michael L; Winter, Frank

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806  MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Hansen, Maxwell T.; Monahan, Christopher J.

    Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate thatmore » the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Lastly, we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.« less

  1. MOON for neutrino-less {beta}{beta} decays and {beta}{beta} nuclear matrix elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.

    2009-11-09

    The MOON project aims at spectroscopic 0v{beta}{beta} studies with the v-mass sensitivity of 100-30 meV by measuring two beta rays from {sup 100}Mo and/or {sup 82}Se. The detector is a compact super-module of multi-layer PL scintillator plates. R and D works made by the pro to-type MOON-1 and the small PL plate show the possible energy resolution of around {sigma}{approx}2.2%, as required for the mass sensitivity. Nuclear matrix elements M{sup 2v} for 2v{beta}{beta} are shown to be given by the sum {sigma}{sub L}M{sub k} of the 2v{beta}{beta} matrix elements M{sub k} through intermediate quasi-particle states in the Fermi-surface, where Mimore » is obtained experimentally by using the GT(J{sup {pi}} = 1{sup +}) matrix elements of M{sub i}(k) and M{sub f}(k) for the successive single-{beta} transitions through the k-th intermediate state.« less

  2. 0 ν β β -decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for 76Ge, 82Se, 130Te, 136Xe, and 150Nd with isospin restoration

    NASA Astrophysics Data System (ADS)

    Fang, Dong-Liang; Faessler, Amand; Šimkovic, Fedor

    2018-04-01

    In this paper, with restored isospin symmetry, we evaluated the neutrinoless double-β -decay nuclear matrix elements for 76Ge, 82Se, 130Te, 136Xe, and 150Nd for both the light and heavy neutrino mass mechanisms using the deformed quasiparticle random-phase approximation approach with realistic forces. We give detailed decompositions of the nuclear matrix elements over different intermediate states and nucleon pairs, and discuss how these decompositions are affected by the model space truncations. Compared to the spherical calculations, our results show reductions from 30 % to about 60 % of the nuclear matrix elements for the calculated isotopes mainly due to the presence of the BCS overlap factor between the initial and final ground states. The comparison between different nucleon-nucleon (NN) forces with corresponding short-range correlations shows that the choice of the NN force gives roughly 20 % deviations for the light exchange neutrino mechanism and much larger deviations for the heavy neutrino exchange mechanism.

  3. Effects of multiple scattering and surface albedo on the photochemistry of the troposphere

    NASA Technical Reports Server (NTRS)

    Augustsson, T. R.; Tiwari, S. N.

    1981-01-01

    The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included

  4. Effects of multiple scattering and surface albedo on the photochemistry of the troposphere. Final report, period ending 30 Nov 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustsson, T.R.; Tiwari, S.N.

    The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfermore » code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included« less

  5. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  6. Assessment of a hybrid finite element-transfer matrix model for flat structures with homogeneous acoustic treatments.

    PubMed

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2014-05-01

    Modeling complex vibroacoustic systems including poroelastic materials using finite element based methods can be unfeasible for practical applications. For this reason, analytical approaches such as the transfer matrix method are often preferred to obtain a quick estimation of the vibroacoustic parameters. However, the strong assumptions inherent within the transfer matrix method lead to a lack of accuracy in the description of the geometry of the system. As a result, the transfer matrix method is inherently limited to the high frequency range. Nowadays, hybrid substructuring procedures have become quite popular. Indeed, different modeling techniques are typically sought to describe complex vibroacoustic systems over the widest possible frequency range. As a result, the flexibility and accuracy of the finite element method and the efficiency of the transfer matrix method could be coupled in a hybrid technique to obtain a reduction of the computational burden. In this work, a hybrid methodology is proposed. The performances of the method in predicting the vibroacoutic indicators of flat structures with attached homogeneous acoustic treatments are assessed. The results prove that, under certain conditions, the hybrid model allows for a reduction of the computational effort while preserving enough accuracy with respect to the full finite element solution.

  7. Determinant representations of spin-operator matrix elements in the XX spin chain and their applications

    NASA Astrophysics Data System (ADS)

    Wu, Ning

    2018-01-01

    For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.

  8. Proton-Proton Fusion and Tritium β Decay from Lattice Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Savage, Martin J.; Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Beane, Silas R.; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Nplqcd Collaboration

    2017-08-01

    The nuclear matrix element determining the p p →d e+ν fusion cross section and the Gamow-Teller matrix element contributing to tritium β decay are calculated with lattice quantum chromodynamics for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3) flavor-symmetric value of the quark masses, corresponding to a pion mass of mπ˜806 MeV . The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is within 2 σ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the calculated p p →d e+ν transition matrix element leads to a fusion cross section at the physical quark masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial counterterm of pionless effective field theory is determined to be L1 ,A=3.9 (0.2 )(1.0 )(0.4 )(0.9 ) fm3 at a renormalization scale set by the physical pion mass, also agreeing within the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and opens the way for subsequent investigations of many important quantities in nuclear physics.

  9. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    PubMed

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  10. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, John

    A measurement of the top quark mass in tmore » $$\\bar{t}$$ → l + jets candidate events, obtained from p$$\\bar{p}$$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$$\\bar{t}$$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb -1 data sample, using events with a high-p T lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M meas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c 2.« less

  11. Cellular reflectarray antenna and method of making same

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R (Inventor)

    2011-01-01

    A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n.

  12. Cellular reflectarray antenna and method of making same

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R (Inventor)

    2010-01-01

    A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n..

  13. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  14. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.

    PubMed

    Veis, Arthur

    2011-06-01

    The camarodont echinoderms have five distinct mineralized skeletal elements: embryonic spicules, mature test, spines, lantern stereom and teeth. The spicules are transient structural elements whereas the spines, and test plates are permanent. The teeth grow continuously. The mineral is a high magnesium calcite, but the magnesium content is different in each type of skeletal element, varying from 5 to 40 mole% Mg. The organic matrix creates the spaces and environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but acidic and phosphorylated matrix proteins may be of special importance. Biochemical studies, sequencing of the complete genome, and high-throughput proteomic analysis have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. The embryonic spicules are not representative of the mature skeletal elements. The next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Bernard, C.; Bouchard, C. M.

    We calculate—for the first time in three-flavor lattice QCD—the hadronic matrix elements of all five local operators that contribute to neutral B 0- and B s-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral B-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ=1.206(18)(6), where themore » second error stems from the omission of charm-sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from B mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light-valence quarks and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral B-meson oscillation frequencies to determine the CKM matrix elements |V td| = 8.00(34)(8)×10 -3, |V ts| = 39.0(1.2)(0.4)×10 -3, and |V td/V ts| = 0.2052(31)(10), which differ from CKM-unitarity expectations by about 2σ. In addition, these results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.« less

  16. Experimental study of auxetic behavior of cellular structure

    NASA Astrophysics Data System (ADS)

    Chentsov, A. V.; Lisovenko, D. S.

    2018-04-01

    The uniaxial tension of two-dimensional auxetic cellular constructions is studied experimentally. Samples were made of nonauxetic polyethylene terephthalate (PET-A amorphous) and subjected to monotonous uniaxial tension until the last moment when they still remained plane. As a result of the experimental data analysis, comparison of the mechanical properties is given for a faultless sample and constructions in which one horizontal or vertical element in the central area of the sample was removed. It is shown that the lack of one horizontal element of the construction has little influence on the auxetic properties of these constructions unlike the structures with one vertical element being absent.

  17. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  18. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  19. Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio.

    PubMed

    Triantafyllou, Christina; Polimeni, Jonathan R; Keil, Boris; Wald, Lawrence L

    2016-12-01

    Physiological nuisance fluctuations ("physiological noise") are a major contribution to the time-series signal-to-noise ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR 0 ), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. We extend the theoretical relationship between tSNR and SNR 0 to include a time-series noise covariance matrix Ψ t , distinct from the thermal noise covariance matrix Ψ 0 , and compare its structure to Ψ 0 and the signal coupling matrix SS H formed from the signal intensity vectors S. Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR 0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ 0 or SS H . Time-series noise covariances in array coils are found to differ from Ψ 0 and more surprisingly, from the signal coupling matrix SS H . Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. Magn Reson Med 76:1708-1719, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Minimally invasive flap surgery and enamel matrix derivative in the treatment of localized aggressive periodontitis: case report.

    PubMed

    Kaner, Doğan; Bernimoulin, Jean-Pierre; Kleber, Bernd-Michael; Friedmann, Anton

    2009-02-01

    Localized aggressive periodontitis is a distinct entity of periodontal disease and is characterized by deep vertical bony defects that typically affect the first molars and incisors of young patients. Therapy is usually aimed at reducing the pathogenic microflora through scaling and root planing and the administration of systemic antibiotics. However, conservative periodontal therapy may result in reparative wound healing with limited regeneration of the lost tissues. Periodontal surgery combined with enamel matrix derivative has been introduced as a method to promote regeneration of the lost periodontium and has been studied extensively in the treatment of chronic periodontitis. This case report describes the treatment of a 27-year-old patient displaying severe localized aggressive periodontitis with documented disease progression. After initial therapy consisting of scaling and root planing and systemic administration of amoxicillin and metronidazole, the vertical defects were treated by minimally invasive access flaps combined with application of enamel matrix derivative. Clinical, microbiologic, and radiographic findings are reported for up to 1.5 years after initial therapy, indicating good efficacy of the therapeutic strategy and stability of the treatment outcome.

  1. Testing Refinement Criteria in Adaptive Discontinuous Galerkin Simulations of Dry Atmospheric Convection

    DTIC Science & Technology

    2011-12-22

    matrix Mik = ∫ Ωe ψiψkdΩ; for the sake of simplicity, we did not write the dependence on x of the basis functions although it should be understood that the...polynomial order N throughout all the elements Ωe in the domain Ω = ⋃Ne e =1 Ωe and if we insist that the elements have straight edges, then the matrix M−1...µlim to change between different elements. The total viscosity parameter for each element e is given by µe = max (µtc, µlim, e ) , (25) 7 where µtc is

  2. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis.

    PubMed

    Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N

    2018-01-01

    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Experimental and analytical analysis of stress-strain behavior in a (90/0 deg)2s, SiC/Ti-15-3 laminate

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike

    1991-01-01

    The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.

  4. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, W. A.; Mkhize, S.; Brown, B. Alex

    The new Hamiltonians USDA and USDB for the sd shell are used to calculate M1 and E2 moments and transition matrix elements, Gamow-Teller {beta}-decay matrix elements, and spectroscopic factors for sd-shell nuclei from A=17 to A=39. The results are compared with those obtained with the older USD Hamiltonian and with experiment to explore the interaction sensitivity of these observables.

  6. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    PubMed

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  7. Battery element and method for making same

    NASA Technical Reports Server (NTRS)

    Clough, Thomas J. (Inventor); Pinsky, Naum (Inventor)

    1989-01-01

    In a method for producing a battery element useful as at least a positive plate in a lead-acid battery, the element comprising a fluid impervious, electrically conductive matrix having mutually opposing first and second surfaces and positive active electrode material associated with the first surface of the matrix, the improvement which comprises: conditioning the first surface to enhance the association of the positive active electrode material and the first surface; and applying and associating the positive active electrode material to the first surface.

  8. Activated phosphors having matrices of yttrium-transition metal compound

    DOEpatents

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  9. Adinkras from ordered quartets of BC4 Coxeter group elements and regarding 1,358,954,496 matrix elements of the Gadget

    NASA Astrophysics Data System (ADS)

    Gates, S. James; Guyton, Forrest; Harmalkar, Siddhartha; Kessler, David S.; Korotkikh, Vadim; Meszaros, Victor A.

    2017-06-01

    We examine values of the Adinkra Holoraumy-induced Gadget representation space metric over all possible four-color, four-open node, and four-closed node adinkras. Of the 1,358,954,496 gadget matrix elements, only 226,492,416 are non-vanishing and take on one of three values: -1/3, 1/3, or 1 and thus a subspace isomorphic to a description of a body-centered tetrahedral molecule emerges.

  10. Conceptions of Height and Verticality in the History of Skyscrapers and Skylines

    NASA Astrophysics Data System (ADS)

    Maslovskaya, Oksana; Ignatov, Grigoriy

    2018-03-01

    The main goal of this article is to reveal the significance of height and verticality history of skyscrapers and skylines. The objectives are as follows: 1. trace the origin of design concepts related to skyscraper; 2. discuss the perceived experience of the cultural aspects of skyscrapers and skylines; 3. describe the differences and similarities of the profiles of with comparable skylines. The methodology of study is designed to explore the perceived theory and principals of skyscraper and skyline development phenomenon and its key features. The skyscraper reveals an assertive creative form of vertical design. Skyscraper construction also relates to the origin of ancient cultural symbolism as the dominant vertical element as the main features of an ordered space. The historical idea of height reaches back to the earliest civilization such as the Tower of Babel. Philosophical approaches of elements of such post-structuralism have been included in studying of skyscraper phenomenon. The analysis of skyscraper and their resulting skyline are examined to show the connection to their origins with their concepts of height and verticality. From the historical perspective, cities with skyscrapers and a skyline turn out to be an assertive manifestation of common ideas of height and verticality.

  11. Apical stress distribution under vertical compaction of gutta-percha and occlusal loads in canals with varying apical sizes: a three-dimensional finite element analysis.

    PubMed

    Yuan, K; Niu, C; Xie, Q; Jiang, W; Gao, L; Ma, R; Huang, Z

    2018-02-01

    To investigate and compare the effects of two apical canal instrumentation protocols on apical stress distribution at the root apex under vertical compaction of gutta-percha and occlusal loads using finite element analysis. Three finite element analysis models of a mandibular first premolar were reconstructed: an original canal model, a size 35, .04 taper apical canal enlargement model and a Lightspeed size 60 apical canal enlargement model. A 15 N compaction force was applied vertically to the gutta-percha 5 mm from the apex. A 175 N occlusal load in two directions (vertical and 45° to the longitudinal axis of the tooth) was simulated. Stresses in the apical 2 mm of the root were calculated and compared among the three models. Under vertical compaction, stresses in the apical canal instrumented by Lightspeed size 60 (maximal 3.3 MPa) were higher than that of the size 35, .04 taper model (maximal 1.3 MPa). In the case of the two occlusal forces, the Lightspeed size 60 apical enlargement was associated with the greatest stress distribution in the apical region. The greatest stress and the most obvious stress difference between the models appeared at the tip of the root when occlusal and vertical compaction loads were applied. Apical enlargement caused stress distribution changes in the apical region of roots. The larger apical size led to higher stress concentration at the root apex. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis

    PubMed Central

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    Background: One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Materials and Methods: Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Results: Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced (P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant (P > 0/05). Conclusion: Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended. PMID:28584535

  13. The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament--a finite element study.

    PubMed

    Sardarian, Ahmadreza; Danaei, Shahla Momeni; Shahidi, Shoaleh; Boushehri, Sahar Ghodsi; Geramy, Allahyar

    2014-01-01

    The ideal built-in tip and torque values of the straight wire appliance reduce the need for wire bending and hence reduce chair time. The vertical position of the bracket on the tooth surface can alter the torque exerted on the tooth. This is a result of the altered surface curvature observed at each vertical position. To further clarify the role of vertical bracket positioning on the applied torque and the resultant stresses in the periodontal ligament (PDL), we designed a mandibular first premolar using finite element modeling. Cone beam computed tomography of 52 patients (83 lower first premolars) was selected to be included in the study. Curvature was measured for points along the labial surface with increasing distances (0.5 mm increments) from the cusp tip by calculating the angle between tangents drawn from these points and the axis joining the cusp tip and the root apex. The mean values for each distance were calculated, and a finite element model was designed incorporating these mean values. The resultant stress and hydrostatic pressure in the PDL were calculated using finite element analysis. The labial surface of the mandibular first premolar demonstrated a 26.39° change from 2.5 to 6 mm from the cusp tip. The maximum Von-Mises stress and hydrostatic pressure in the PDL were observed at the root apex for all of the bracket positions, and these values demonstrated, respectively, a change of up to 0.059 and 0.186 MPa between two successive points. It can be concluded that the variation in the vertical position of the bracket can have an important effect on the torque and subsequently on the stresses and pressures in the PDL.

  14. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  15. Local delamination in laminates with angle ply matrix cracks. Part 1: Tension tests and stress analysis

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Hooper, S. J.

    1991-01-01

    Quasi-static tension tests were conducted on AS4/3501-6 graphite epoxy laminates. Dye penetrant enhanced x-radiography was used to document the onset of matrix cracking and the onset of local delaminations at the intersection of the matrix cracks and the free edge. Edge micrographs taken after the onset of damage were used to verify the location of the matrix cracks and local delamination through the laminate thickness. A quasi-3D finite element analysis was conducted to calculate the stresses responsible for matrix cracking in the off-axis plies. Laminated plate theory indicated that the transverse normal stresses were compressive. However, the finite element analysis yielded tensile transverse normal stresses near the free edge. Matrix cracks formed in the off-axis plies near the free edge where in-plane transverse stresses were tensile and had their greatest magnitude. The influence of the matrix crack on interlaminar stresses is also discussed.

  16. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology.

    PubMed

    Cao, Li; Guilak, Farshid; Setton, Lori A

    2011-02-01

    Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress-strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell-PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell-matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9-3.7 and 1.4-2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell-matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Matrix laser IR-visible image converter

    NASA Astrophysics Data System (ADS)

    Lipatov, N. I.; Biryukov, A. S.

    2006-04-01

    A new type of a focal matrix IR-visible image converter is proposed. The pixel IR detectors of the matrix are tunable microcavities of VCSEL (vertical-cavity surface emitting laser) semiconductor microstructures. The image conversion is performed due to the displacements of highly reflecting cavity mirrors caused by thermoelastic stresses in their microsuspensions appearing upon absorption of IR radiation. Analysis of the possibilities of the converter shows that its sensitivity is 10-3-10-2 K and the time response is 10-4-10-3 s. These characteristics determine the practical application of the converter.

  18. Trajectory Control and Optimization for Responsive Spacecraft

    DTIC Science & Technology

    2012-03-22

    Orbital Elements and Local-Vertical-Local-Horizontal Frame 10 2.3 Equinoctial Frame with respect to ECI Frame [17] . . . . . . . . . 14 3.1...position and velocity, classical orbital elements , and equinoctial elements . These methods are detailed in the following sections. 2.1.1 Inertial Position...trajectory. However, if the singularities are unavoidable equinoctial orbital elements could be used. 2.1.3 Equinoctial Elements . Equinoctial

  19. Verification of a Non-Hydrostatic Dynamical Core Using Horizontally Spectral Element Vertically Finite Difference Method: 2D Aspects

    DTIC Science & Technology

    2014-04-01

    hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In

  20. Laboratory glassware rack for seismic safety

    NASA Technical Reports Server (NTRS)

    Cohen, M. M. (Inventor)

    1985-01-01

    A rack for laboratory bottles and jars for chemicals and medicines has been designed to provide the maximum strength and security to the glassware in the event of a significant earthquake. The rack preferably is rectangular and may be made of a variety of chemically resistant materials including polypropylene, polycarbonate, and stainless steel. It comprises a first plurality of parallel vertical walls, and a second plurality of parallel vertical walls, perpendicular to the first. These intersecting vertical walls comprise a self-supporting structure without a bottom which sits on four legs. The top surface of the rack is formed by the top edges of all the vertical walls, which are not parallel but are skewed in three dimensions. These top edges form a grid matrix having a number of intersections of the vertical walls which define a number of rectangular compartments having varying widths and lengths and varying heights.

  1. Distributed support modelling for vertical track dynamic analysis

    NASA Astrophysics Data System (ADS)

    Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.

    2018-04-01

    The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.

  2. Project VeSElkA: results of abundance analysis for HD 53929 and HD 63975

    NASA Astrophysics Data System (ADS)

    Ndiaye, M. L.; LeBlanc, F.; Khalack, V.

    2018-03-01

    Project VeSElkA (Vertical Stratification of Element Abundances) has been initiated with the aim to detect and study the vertical stratification of element abundances in the atmosphere of chemically peculiar stars. Abundance stratification occurs in hydrodynamically stable stellar atmospheres due to the migration of the elements caused by atomic diffusion. Two HgMn stars, HD 53929 and HD 63975 were selected from the VeSElkA sample and analysed with the aim to detect some abundance peculiarities employing the ZEEMAN2 code. We present the results of abundance analysis of HD 53929 and HD 63975 observed recently with the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope. Evidence of phosphorus vertical stratification was detected in the atmosphere of these two stars. In both cases, phosphorus abundance increases strongly towards the superficial layers. The strong overabundance of Mn found in stellar atmosphere of both stars confirms that they are HgMn type stars.

  3. Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

    2016-10-01

    R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.

  4. VIEW OF PDP TANK TOP AT LEVEL 0’, WITH VERTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP AT LEVEL 0’, WITH VERTICAL ELEMENTS IN BACKGROUND AND PART OF SHEAVE RACK ABOVE THE TANK, LOOKING NORTH - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  5. Simulation of Optical Resonators for Vertical-Cavity Surface-Emitting Lasers (vcsel)

    NASA Astrophysics Data System (ADS)

    Mansour, Mohy S.; Hassen, Mahmoud F. M.; El-Nozahey, Adel M.; Hafez, Alaa S.; Metry, Samer F.

    2010-04-01

    Simulation and modeling of the reflectivity and transmissivity of the multilayer DBR of VCSEL, as well as inside the active region quantum well are analyzed using the characteristic matrix method. The electric field intensity distributions inside such vertical-cavity structure are calculated. A software program under MATLAB environment is constructed for the simulation. This study was performed for two specific Bragg wavelengths 980 nm and 370 nm for achieving a resonant periodic gain (RPG)

  6. Symmetry considerations in the scattering of identical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method.

  7. Thouless energy and multifractality across the many-body localization transition

    NASA Astrophysics Data System (ADS)

    Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.

    2017-09-01

    Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.

  8. An efficient basis set representation for calculating electrons in molecules

    DOE PAGES

    Jones, Jeremiah R.; Rouet, Francois -Henry; Lawler, Keith V.; ...

    2016-04-27

    The method of McCurdy, Baertschy, and Rescigno, is generalised to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. Themore » calculation of contracted two-electron matrix elements among orbitals requires only O( Nlog (N)) multiplication operations, not O( N 4), where N is the number of basis functions; N = n 3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionisation potentials are reported for 1- (He +, H + 2), 2- (H 2, He), 10- (CH 4), and 56-electron (C 8H 8) systems.« less

  9. A momentum-space formulation without partial wave decomposition for scattering of two spin-half particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus

    2016-03-11

    A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  11. A NASTRAN model of a large flexible swing-wing bomber. Volume 2: NASTRAN model development-horizontal stabilzer, vertical stabilizer and nacelle structures

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.; Tisher, E. D.

    1982-01-01

    The NASTRAN model plans for the horizontal stabilizer, vertical stabilizer, and nacelle structure were expanded in detail to generate the NASTRAN model for each of these substructures. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. Each substructure model was thoroughly checked out for continuity, connectivity, and constraints. These substructures were processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail models. Finally, a demonstration and validation processing of these substructures was accomplished using the NASTRAN finite element program installed at NASA/DFRC facility.

  12. A Discontinuous Galerkin Method for Parabolic Problems with Modified hp-Finite Element Approximation Technique

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    A recent paper is generalized to a case where the spatial region is taken in R(sup 3). The region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional h- as well as hp-finite element methods are applied to the surface defined in the x - y variables, while, through the thickness, the technique of the p-element is employed. Time and spatial discretization scheme based upon an assumption of certain weak singularity of double vertical line u(sub t) double vertical line 2, is used to derive an optimal a priori error estimate for the current method.

  13. Heating equipment installation system

    DOEpatents

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  14. The decline of soil due to the pile of highway project Medan-Kualanamu (STA 35 + 901) with the finite element method

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Sihite, A. B.

    2018-02-01

    Consolidation is the process of discharge of water from the ground through the pore cavity. Consolidation occurs in soft soil or unstable soil that allows an improvement in order to make the soil more stable. The method of using Prefabricated Vertical Drain (PVD) is one way to improve unstable soils. PVD works like a sand column that can drain water vertically. This study aims to determine the decrease, pore water pressure and soil consolidation rate with Prefabricated Vertical Drain (PVD) and without PVD analytically and using finite element method that affect the duration of soil decline to reach 90% consolidation or in other words soil does not decline anymore. Based on the analytical calculation, the decrease obtained is equal to 0.47 m meanwhile the result of calculation using finite element method is 0.45 m. The consolidation rate obtained from analytical calculation is 19 days with PVD and 115 days without PVD. The consolidation rate obtained from finite element method is 63 days with PVD and 110 days without PVD. And the pore water pressure is 0.92 KN/m2.

  15. Gradient-based stochastic estimation of the density matrix

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  16. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  17. Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite

    NASA Technical Reports Server (NTRS)

    Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.

    2010-01-01

    A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.

  18. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  19. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  20. A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation

    NASA Technical Reports Server (NTRS)

    Crivelli, Luis A.; Felippa, Carlos A.

    1992-01-01

    A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.

  1. Locally smeared operator product expansions in scalar field theory

    DOE PAGES

    Monahan, Christopher; Orginos, Kostas

    2015-04-01

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less

  2. On the Singularity in the Estimation of the Quaternion-of-Rotation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Thienel, Julie K.; Bauer, Frank (Technical Monitor)

    2002-01-01

    It has been claimed in the archival literature that the covariance matrix of a Kalman filter, which is designed to estimate the quaternion-of-rotation, is necessarily rank, deficient because the normality constraint of the quaternion produces dependence between the quaternion elements. In reality, though, this phenomenon does not occur. The covariance matrix is not singular, and the filter is well behaved. Several simple examples are presented th at demonstrate the regularity of the covariance matrix. First, a Kalman filter is designed to estimate variables subject to a functional relationship. Then the particular problem of quaternion estimation is analyzed. It is shown that the discrepancy stems from the fact that the functional relationship exists between the elements of the quaternion but not between its estimate elements.

  3. Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia Cheng

    2015-01-01

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N f = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a 2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a 2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We reportmore » values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.« less

  4. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Frank E., E-mail: harris@qtp.ufl.edu

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validatedmore » by showing that they yield correct results for a large number of integrals published by other investigators.« less

  5. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  6. Approximate method of variational Bayesian matrix factorization/completion with sparse prior

    NASA Astrophysics Data System (ADS)

    Kawasumi, Ryota; Takeda, Koujin

    2018-05-01

    We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.

  7. Vertical Transmission of the Retrotransposable Elements R1 and R2 during the Evolution of the Drosophila Melanogaster Species Subgroup

    PubMed Central

    Eickbush, D. G.; Eickbush, T. H.

    1995-01-01

    R1 and R2 are non-long-terminal repeat retrotransposable elements that insert into specific sequences of insect 28S ribosomal RNA genes. These elements have been extensively described in Drosophila melanogaster. To determine whether these elements have been horizontally or vertically transmitted, we characterized R1 and R2 elements from the seven other members of the melanogaster species subgroup by genomic blotting and nucleotide sequencing. Each species was found to have homogeneous families of R1 and R2 elements with the exception of erecta and orena, which have no R2 elements. The DNA sequences of multiple R1 and R2 copies from each species indicated nucleotide divergence within each species averaged only 0.48% for R1 and 0.35% for R2, well below the level of divergence among the species. Most copies of R1 and R2 (40 of 47) sequenced from the seven species were potentially functional, as indicated by the absence of premature termination codons or translational frameshifts that would destroy the open reading frame of the element. The sequence relationships of both the R1 and R2 elements from the various members of the melanogaster subgroup closely followed that of the species phylogeny, suggesting that R1 and R2 have been stably maintained by vertical transmission since the origin of this species subgroup 17-20 million years ago. The remarkable stability of R1 and R2, compared to what has been suggested for transposable elements that insert at multiple locations in these same species, may be due to their unique specificity for sites in the rRNA gene locus. Under low copy number conditions, when it is essential for any mobile element to transpose, the insertion specificities of R1 and R2 ensure uniform developmentally regulated target sites that can be occupied with little or no detrimental effect on the host. PMID:7713424

  8. Use of the maximum entropy method to retrieve the vertical atmospheric ozone profile and predict atmospheric ozone content

    NASA Technical Reports Server (NTRS)

    Turner, B. Curtis

    1992-01-01

    A method is developed for prediction of ozone levels in planetary atmospheres. This method is formulated in terms of error covariance matrices, and is associated with both direct measurements, a priori first guess profiles, and a weighting function matrix. This is described by the following linearized equation: y = A(matrix) x X + eta, where A is the weighting matrix and eta is noise. The problems to this approach are: (1) the A matrix is near singularity; (2) the number of unknowns in the profile exceeds the number of data points, therefore, the solution may not be unique; and (3) even if a unique solution exists, eta may cause the solution to be ill conditioned.

  9. Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes

    NASA Astrophysics Data System (ADS)

    Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John

    2012-05-01

    High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.

  10. Quantitative tissue polarimetry using polar decomposition of 3 x 3 Mueller matrix

    NASA Astrophysics Data System (ADS)

    Swami, M. K.; Manhas, S.; Buddhiwant, P.; Ghosh, N.; Uppal, A.; Gupta, P. K.

    2007-05-01

    Polarization properties of any optical system are completely described by a sixteen-element (4 x 4) matrix called Mueller matrix, which transform the Stokes vector describing the polarization properties of incident light to the stokes vector of scattered light. Measurement of all the elements of the matrix requires a minimum of sixteen measurements involving both linear and circularly polarized light. However, for many diagnostic applications, it would be useful if all the polarization parameters of the medium (depolarization (Δ), differential attenuation of two orthogonal polarizations, that is, diattenuation (d), and differential phase retardance of two orthogonal polarizations, i.e., retardance (δ )) can be quantified with linear polarization measurements alone. In this paper we show that for a turbid medium, like biological tissue, where the depolarization of linearly polarized light arises primarily due to the randomization of the field vector's direction by multiple scattering, the polarization parameters of the medium can be obtained from the nine Mueller matrix elements involving linear polarization measurements only. Use of the approach for measurement of polarization parameters (Δ, d and δ) of normal and malignant (squamous cell carcinoma) tissues resected from human oral cavity are presented.

  11. Reflection K-matrices for a nineteen vertex model with Uq [ osp (2 | 2) (2) ] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima Santos, A.

    2017-09-01

    We derive the solutions of the boundary Yang-Baxter equation associated with a supersymmetric nineteen vertex model constructed from the three-dimensional representation of the twisted quantum affine Lie superalgebra Uq [ osp (2 | 2) (2) ]. We found three classes of solutions. The type I solution is characterized by three boundary free-parameters and all elements of the corresponding reflection K-matrix are different from zero. In the type II solution, the reflection K-matrix is even (every element of the K-matrix with an odd parity is null) and it has only one boundary free-parameter. Finally, the type III solution corresponds to a diagonal reflection K-matrix with two boundary free-parameters.

  12. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-01

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  13. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-14

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  14. Processing of a nine-component near-offset VSP for seismic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacBeth, C.; Li, X.Y.; Zeng, X.

    1997-03-01

    A convolutional sequence of matrix operators is offered as a convenient deterministic scheme for processing a multicomponent vertical seismic profile (VSP). This sequence is applied to a nine-component near-offset VSP recorded at the Conoco borehole test facility, Kay County, Oklahoma. These data are corrected for tool spin and near-surface anisotropy together with source coupling or imbalance. After wave-field separation using a standard f-k filter, each source and receiver pair for the upgoing waves is adjusted to a common reference depth using a matrix operator based on the downgoing wavefield. The up- and downgoing waves are then processed for anisotropy bymore » a similarity transformation, to separate the qS1 and qS2 waves, from which the anisotropic properties are estimated. These estimates reveal a strong (apparent) vertical birefringence in the near-surface, but weak or moderate values for the majority of the subsurface. The target zone consists of a thin sandstone and deeper shale layer, both of which possess a strong vertical birefringence. The sandstone corresponds to a zone of known fluid flow. An observed qS2 attenuation and polarization change in the shale suggest it contains large fractures.« less

  15. Preparation of ordered mesoporous alumina-doped titania films with high thermal stability and their application to high-speed passive-matrix electrochromic displays.

    PubMed

    Jiang, Xiangfen; Bastakoti, Bishnu Prasad; Weng, Wu; Higuchi, Tetsuya; Oveisi, Hamid; Suzuki, Norihiro; Chen, Wei-Jung; Huang, Yu-Tzu; Yamauchi, Yusuke

    2013-08-12

    Ordered mesoporous alumina-doped titania thin films with anatase crystalline structure were prepared by using triblock copolymer Pluronic P123 as structure-directing agent. Uniform Al doping was realized by using aluminum isopropoxide as a dopant source which can be hydrolyzed together with titanium tetraisopropoxide. Aluminum doping into the titania framework can prevent rapid crystallization to the anatase phase, thereby drastically increasing thermal stability. With increasing Al content, the crystallization temperatures tend to increase gradually. Even when the Al content doped into the framework was increased to 15 mol %, a well-ordered mesoporous structure was obtained, and the mesostructural ordering was still maintained after calcination at 550 °C. During the calcination process, large uniaxial shrinkage occurred along the direction perpendicular to the substrate with retention of the horizontal mesoscale periodicity, whereby vertically oriented nanopillars were formed in the film. The resulting vertical porosity was successfully exploited to fabricate a high-speed and high-quality passive-matrix electrochromic display by using a leuco dye. The vertical nanospace in the films can effectively prevent drifting of the leuco dye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A consumer`s guide to lattice QCD results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, T.

    1994-12-01

    The author presents an overview of recent lattice QCD results on hadron spectroscopy and matrix elements. Case studies include light quark spectroscopy, the determination of {alpha}{sub s} from heavy quark spectroscopy, the D-meson decay constant, a calculation of the Isgur-Wise function, and some examples of the (lack of) effect of sea quarks on matrix elements. The review is intended for the nonexpert.

  17. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-14

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  18. Matrix management in a rehabilitation centre.

    PubMed

    Eldar, R; Ring, H

    1989-01-01

    This paper considers an old topic from a newer perspective, that of current management theory. A high degree of differentiation is intrinsic to most rehabilitation inpatient facilities. At Loewenstein, patients are accommodated according to medical categories in purpose departments, of which medical and nursing staff are a part. Allied health professionals are organized in functional departments. Care is provided by a team derived from both types of department. A matrix organization is thus established, superimposing a patient care team (for lateral horizontal co-ordination) on the organization of functional departments (for vertical hierarchical co-ordination) and built around a temporary project, the individual patient. This organizational structure maximizes the advantages and minimizes the disadvantages of both types of department in solving the conflict between specialization and integration. It has facilitated effective and efficient vertical and horizontal co-ordination and enhanced the provision of care by a multidisciplinary rehabilitation team.

  19. Additional results on space environmental effects on polymer matrix composites: Experiment A0180

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1992-01-01

    Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure.

  20. Matrix Management in DoD: An Annotated Bibliography

    DTIC Science & Technology

    1984-04-01

    ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS ACSC/EDCC, MAXWELL AFB AL 36112 1 1. CONTROLLING OFFICE NAME AND ADDRESS 12 ...completes their message that matrix orga- nization is the likely format of the multiprogram Program Office. 12 The text’s discussion of matrix is...manager, and functional specialist are of vital importance to the effective operation of the matrix .... Matrix management will not achieve its

  1. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  2. The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study.

    PubMed

    Sengers, B G; Van Donkelaar, C C; Oomens, C W J; Baaijens, F P T

    2004-12-01

    Assessment of the functionality of tissue engineered cartilage constructs is hampered by the lack of correlation between global measurements of extra cellular matrix constituents and the global mechanical properties. Based on patterns of matrix deposition around individual cells, it has been hypothesized previously, that mechanical functionality arises when contact occurs between zones of matrix associated with individual cells. The objective of this study is to determine whether the local distribution of newly synthesized extracellular matrix components contributes to the evolution of the mechanical properties of tissue engineered cartilage constructs. A computational homogenization approach was adopted, based on the concept of a periodic representative volume element. Local transport and immobilization of newly synthesized matrix components were described. Mechanical properties were taken dependent on the local matrix concentration and subsequently the global aggregate modulus and hydraulic permeability were derived. The transport parameters were varied to assess the effect of the evolving matrix distribution during culture. The results indicate that the overall stiffness and permeability are to a large extent insensitive to differences in local matrix distribution. This emphasizes the need for caution in the visual interpretation of tissue functionality from histology and underlines the importance of complementary measurements of the matrix's intrinsic molecular organization.

  3. An efficient approach to CI: General matrix element formulas for spin-coupled particle-hole excitations

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1980-03-01

    A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.

  4. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2011-09-12

    We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.

  5. Use of Rare Earth Elements in investigations of aeolian processes

    USDA-ARS?s Scientific Manuscript database

    The representation of the dust cycle in atmospheric circulation models hinges on an accurate parameterization of the vertical dust flux at emission. However, existing parameterizations of the vertical dust flux vary substantially in their scaling with wind friction velocity, require input parameters...

  6. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  7. Performance evaluation of matrix gradient coils.

    PubMed

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  8. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  9. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  10. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  11. Direct Measurement of the Density Matrix of a Quantum System

    NASA Astrophysics Data System (ADS)

    Thekkadath, G. S.; Giner, L.; Chalich, Y.; Horton, M. J.; Banker, J.; Lundeen, J. S.

    2016-09-01

    One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.

  12. Direct Measurement of the Density Matrix of a Quantum System.

    PubMed

    Thekkadath, G S; Giner, L; Chalich, Y; Horton, M J; Banker, J; Lundeen, J S

    2016-09-16

    One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.

  13. Determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by ICP-OES

    NASA Astrophysics Data System (ADS)

    Yong, Cheng

    2018-03-01

    The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.

  14. Differentiation characteristics and source analysis of heavy metals in typical brown soil under different vegetation

    NASA Astrophysics Data System (ADS)

    Dong, Zhicheng; Zhang, Lina; Li, Xueshuang; Lv, Shuangyan; He, Shijie; Liu, Ying; Ma, Xuanxuan

    2017-08-01

    Anomalous enrichment of soil elements (especially heavy metals) has aroused popular attention in China. In order to discuss distribution characteristics and analyze sources of elements in brown soil, field investigation and sample collection were carried out under different vegetation (cherry, apple, bamboos and pine) in Qixia, a typical apple production base in China. Element contents, pH, electrical conductivity (EC) and magnetic susceptibility (MS) were tested. Results showed that element concentrations were about roughly 2.48 times as China’s background values, while significantly lower than the class ii of National soil Environment Quality Standard (Ni excepted). Meanwhile, vertical distribution and accumulation characteristics of elements in typical brown soil were significantly different under different vegetation. In detail, elements (Zn excepted) of Pine soil accumulated in surface, while they (Cd, Arsenic excepted) increased with depth under other vegetation. Moreover, pH and EC changed like elements, while MS was exactly opposite. It was found that those differences above were mainly caused by human activities (such as improper use of fertilizer, pesticide and inadequate use of organic fertilizer, etc.). Additionally, differences in composition and decomposition rate of vegetation litter also resulted in vertical differentiations of soil elements under different vegetation.

  15. Surface tension mediated conversion of light to work

    DOEpatents

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  16. High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application

    NASA Astrophysics Data System (ADS)

    Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.

    2017-12-01

    The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.

  17. Violations of K-Conservation in 178Hf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, A. B.; Cline, D.; Wu, C. Y.

    2006-03-13

    Coulomb excitation of K{pi}=6+(t1/2=77 ns), 8-(t1/2=4.0 s) and 16+(t1/2=31 y) 178Hf isomers has led to the measurement of a set of E{lambda} matrix elements, coupling the isomer bands to the {gamma}- and ground state bands. The resulting matrix elements, derived using a coupled-channel semiclassical Coulomb excitation search code, have been used to probe the K-components in the wave functions and revealed the onset and saturation of K-mixing in low-K bands, whereas K-mixing is negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei. An upper limit on the Coulomb depopulation yield of the 16+ isomer wasmore » calculated based on the present set of matrix elements.« less

  18. Density-matrix description of heteronuclear decoupling in A mX n systems

    NASA Astrophysics Data System (ADS)

    McClung, R. E. D.; John, Boban K.

    A detailed investigation of the effects of ordinary noise decoupling and spherical randomization decoupling on the elements of the density matrix for A mX n spin systems is presented. The elements are shown to reach steady-state values in the rotating frame of the decoupled nuclei when the decoupling field is strong and is applied for a sufficient time interval. The steady-state values are found to be linear combinations of the density-matrix elements at the beginning of the decoupling period, and often involve mixing of populations with multiple-quantum coherences, and mixing of the perpendicular components of the magnetization with higher coherences. This description of decoupling is shown to account for the "illusions" of spin decoupling in 2D gated-decoupler 13C J-resolved spectra reported by Levitt et al.

  19. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  20. Modelling the oscillations of the thermocline in a lake by means of a fully consistent and conservative 3D finite-element model with a vertically adaptive mesh

    NASA Astrophysics Data System (ADS)

    Delandmeter, Philippe; Lambrechts, Jonathan; Vallaeys, Valentin; Naithani, Jaya; Remacle, Jean-François; Legat, Vincent; Deleersnijder, Eric

    2017-04-01

    Vertical discretisation is crucial in the modelling of lake thermocline oscillations. For finite element methods, a simple way to increase the resolution close to the oscillating thermocline is to use vertical adaptive coordinates. With an Arbitrary Lagrangian-Eulerian (ALE) formulation, the mesh can be adapted to increase the resolution in regions with strong shear or stratification. In such an application, consistency and conservativity must be strictly enforced. SLIM 3D, a discontinuous-Galerkin finite element model for shallow-water flows (www.climate.be/slim, e.g. Kärnä et al., 2013, Delandmeter et al., 2015), was designed to be strictly consistent and conservative in its discrete formulation. In this context, special care must be paid to the coupling of the external and internal modes of the model and the moving mesh algorithm. In this framework, the mesh can be adapted arbitrarily in the vertical direction. Two moving mesh algorithms were implemented: the first one computes an a-priori optimal mesh; the second one diffuses vertically the mesh (Burchard et al., 2004, Hofmeister et al., 2010). The criteria used to define the optimal mesh and the diffusion function are related to a suitable measure of shear and stratification. We will present in detail the design of the model and how the consistency and conservativity is obtained. Then we will apply it to both idealised benchmarks and the wind-forced thermocline oscillations in Lake Tanganyika (Naithani et al. 2002). References Tuomas Kärnä, Vincent Legat and Eric Deleersnijder. A baroclinic discontinuous Galerkin finite element model for coastal flows, Ocean Modelling, 61:1-20, 2013. Philippe Delandmeter, Stephen E Lewis, Jonathan Lambrechts, Eric Deleersnijder, Vincent Legat and Eric Wolanski. The transport and fate of riverine fine sediment exported to a semi-open system. Estuarine, Coastal and Shelf Science, 167:336-346, 2015. Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids in one-dimensional numerical ocean models. Ocean Modelling, 6:51-81, 2004. Richard Hofmeister, Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids for 3d numerical ocean models. Ocean Modelling, 33:70-86, 2010. Jaya Naithani, Eric Deleersnijder and Pierre-Denis Plisnier. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters, 29(23), doi:10.1029/2002GL015843, 2002.

  1. A comparison between different finite elements for elastic and aero-elastic analyses.

    PubMed

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  2. Novel method of optical image registration in wide wavelength range using matrix of piezoelectric crystals

    NASA Astrophysics Data System (ADS)

    Pigarev, Aleksey V.; Bazarov, Timur O.; Fedorov, Vladimir V.; Ryabushkin, Oleg A.

    2018-02-01

    Most modern systems of the optical image registration are based on the matrices of photosensitive semiconductor heterostructures. However, measurement of radiation intensities up to several MW/cm2 -level using such detectors is a great challenge because semiconductor elements have low optical damage threshold. Reflecting or absorbing filters that can be used for attenuation of radiation intensity, as a rule, distort beam profile. Furthermore, semiconductor based devices have relatively narrow measurement wavelength bandwidth. We introduce a novel matrix method of optical image registration. This approach doesn't require any attenuation when measuring high radiation intensities. A sensitive element is the matrix made of thin transparent piezoelectric crystals that absorb just a small part of incident optical power. Each crystal element has its own set of intrinsic (acoustic) vibration modes. These modes can be exited due to the inverse piezoelectric effect when the external electric field is applied to the crystal sample providing that the field frequency corresponds to one of the vibration mode frequencies. Such piezoelectric resonances (PR) can be observed by measuring the radiofrequency response spectrum of the crystal placed between the capacitor plates. PR frequencies strongly depend on the crystal temperature. Temperature calibration of PR frequencies is conducted in the uniform heating conditions. In the case a crystal matrix is exposed to the laser radiation the incident power can be obtained separately for each crystal element by measuring its PR frequency kinetics providing that the optical absorption coefficient is known. The operating wavelength range of such sensor is restricted by the transmission bandwidth of the applied crystals. A plane matrix constituting of LiNbO3 crystals was assembled in order to demonstrate the possibility of application of the proposed approach. The crystal elements were placed between two electrodes forming a capacitor which was interconnected to the lock-in detection system. The radiofrequency response to the applied voltage from the generator was measured simultaneously for all elements.

  3. Studies on transport phenomena in electrothermal vaporization sample introduction applied to inductively coupled plasma for optical emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C.

    2005-10-01

    In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl 2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20-800 pg mass range by ICP-MS and in the 1-50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl 2 matrix concentration (loaded amount of 2-10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.

  4. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  5. Computer assisted generation of the matrix elements between contracted wavefunctions in a Complete Active Space scheme

    NASA Astrophysics Data System (ADS)

    Angeli, C.; Cimiraglia, R.

    2005-02-01

    Starting from a CAS-SCF calculation a sequence of contracted functions can be generated by applying strings of spin-traced replacement operators to the CAS-SCF solution. The laborious task of producing the Hamiltonian matrix elements between such functions can be substantially reduced making use of a computer algebra system. An implementation employing the MuPAD system is presented and illustrated.

  6. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  7. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefer, René; Schad, Ariane; Roth, Markus

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies.more » If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.« less

  8. Double-β decay matrix elements from lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration

    2017-09-01

    A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the n n →p p e e ν¯eν¯e transition is described in detail, expanding on the results presented in Ref. [P. E. Shanahan et al., Phys. Rev. Lett. 119, 062003 (2017), 10.1103/PhysRevLett.119.062003]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-β decay rates of nuclei. From this exploratory study, performed using unphysical values of the quark masses, the long-distance deuteron-pole contribution to the matrix element is separated from shorter-distance hadronic contributions. This polarizability, which is only accessible in double-weak processes, cannot be constrained from single-β decay of nuclei, and is found to be smaller than the long-distance contributions in this calculation, but non-negligible. In this work, technical aspects of the LQCD calculations, and of the relevant formalism in the pionless effective field theory, are described. Further calculations of the isotensor axial polarizability, in particular near and at the physical values of the light-quark masses, are required for precise determinations of both two-neutrino and neutrinoless double-β decay rates in heavy nuclei.

  9. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    NASA Astrophysics Data System (ADS)

    Kiefer, René; Schad, Ariane; Roth, Markus

    2017-09-01

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  10. Contactor/filter improvements

    DOEpatents

    Stelman, D.

    1988-06-30

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

  11. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  12. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  13. Growth of cultured corneal endothelial cells onto a vitreous carbon matrix.

    PubMed

    Wickham, M G; Cleveland, P H; Binder, P S; Akers, P H

    1983-01-01

    Fourth passage cells of a rabbit corneal endothelial line were grown for 1 week in flasks containing pieces of a reticulated vitreous carbon matrix. The rate of cell growth in flasks containing the matrix was consistent with that in control flasks. Small fragments of the vitreous carbon material lying on the flask floor were covered by the monolayers as the cells grew to confluency. Vertical growth of cells onto larger pieces of the matrix proceeded in a staged fashion with maximum cell density on pieces of the matrix closest to the floor of the flask. As defined by scanning electron microscopy, cell growth occurred to a level at least 600 microns above the floor of the flask and the confluent monolayer. This novel culture procedure should be a model situation for study of many different aspects of the in vitro capabilities of corneal endothelial cells.

  14. Soil settlement analysis in soft soil by using preloading system and prefabricated vertical draining runway of Kualanamu Airport

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah

    2018-02-01

    The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.

  15. Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials: effects of the matrix and simultaneous determination.

    PubMed

    Anzano, Jesús M; Villoria, Mark A; Ruíz-Medina, Antonio; Lasheras, Roberto J

    2006-08-11

    A microscopic laser-induced breakdown spectrometer was used to evaluate the analytical matrix effect commonly observed in the analysis of geological materials. Samples were analyzed in either the powder or pressed pellet forms. Calibration curves of a number of iron and aluminum compounds showed a linear relationship between the elemental concentration and peak intensity. A direct determination of elemental content can thus be made from extrapolation on these calibration curves. To investigate matrix effects, synthetic model samples were prepared from various iron and aluminum compounds spiked with SiO2 and CaCO3. The addition of these matrices had a pronounced analytical effect on those compounds prepared as pressed pellets. However, results indicated the absence of matrix effects when the samples were presented to the laser as loose powders on tape and results were compared to certified values, indicating the reliability of this approach for accurate analysis, provided the sample particle diameters are greater than approximately 100 microm. Finally, the simultaneous analysis of two different elements was demonstrated using powders on tape.

  16. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  17. 0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simkovic, Fedor; Bogoliubov Laboratory of Theoretical Physics, JINR, RU-141 980 Dubna, Moscow region; Department of Nuclear Physics, Comenius University, Mlynska dolina F1, SK-842 15 Bratislava

    A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elementsmore » for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.« less

  18. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE PAGES

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; ...

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  19. Development of an X-ray surface analyzer for planetary exploration

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1972-01-01

    An ultraminiature X-ray fluorescence spectrometer was developed which can obtain data on element composition not provided by present spacecraft instrumentation. The apparatus employs two radioisotope sources (Fe-55 and Cd-109) which irradiate adjacent areas on a soil sample. Fluorescent X-rays emitted by the sample are detected by four thin-window proportional counters. Using pulse-height discrimination, the energy spectra are determined. Virtually all elements above sodium in the periodic table are detected if present at sufficient levels. Minimum detection limits range from 30 ppm to several percent, depending upon the element and the matrix. For most elements, they are below 0.5 percent. Accuracies likewise depend upon the matrix, but are generally better than plus or minus 0.5 percent for all elements of atomic number greater than 14. Elements below sodium are also detected, but as a single group.

  20. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  1. Comparison of humus and till as prospecting material in areas of thick overburden and multiple ice-flow events: An example from northeastern New Brunswick

    USGS Publications Warehouse

    Broster, Bruce E.; Dickson, M.L.; Parkhill, M.A.

    2009-01-01

    Thirty-nine elements in humus and till matrix were compared at 109 sites overlying Ag-As-Cu-Mo-Pb-Zn mineralized occurrences in northeastern New Brunswick to assess humus for anomaly identification. Humus element concentrations were not consistently correlative with maximum or minimum concentrations found in the underlying till or bedrock. The humus demonstrated significantly higher mean elemental concentrations than the till for six specific elements: 9 times greater for Mn, 6 times greater for Cd, 5 times greater for Ag and Pb, 3 times greater for Hg, and double the concentration of Zn. Spatial dispersal patterns for these elements were much larger for humus content than that exhibited by the till matrix analysis, but did not delineate a point source. For elements in till, the highest concentrations were commonly found directly overlying the underlying mineralized bedrock source or within one km down-glacier of the source. The complexity of the humus geochemical patterns is attributed to the effects of post-glacial biogenic, down-slope hydrodynamic and solifluction modification of dispersed mineralization in the underlying till, and the greater capacity of humus to adsorb cations and form complexes with some elements, relative to the till matrix. Humus sampling in areas of glaciated terrain is considered to be mostly valuable for reconnaissance exploration as elements can be spatially dispersed over a much larger area than that found in the till or underlying bedrock. ?? 2009 Elsevier B.V. All rights reserved.

  2. A finite volume method for trace element diffusion and partitioning during crystal growth

    NASA Astrophysics Data System (ADS)

    Hesse, Marc A.

    2012-09-01

    A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.

  3. Robust Assignment Of Eigensystems For Flexible Structures

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.

    1992-01-01

    Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.

  4. Graphene and PbS quantum dot hybrid vertical phototransistor

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  5. Efficient Computation of Atmospheric Flows with Tempest: Validation of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge; Ullrich, Paul

    2016-04-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  6. Application of symbolic/numeric matrix solution techniques to the NASTRAN program

    NASA Technical Reports Server (NTRS)

    Buturla, E. M.; Burroughs, S. H.

    1977-01-01

    The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.

  7. Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Guo, Weixing; Missimer, Thomas

    2007-11-01

    Deep well injection is widely used in South Florida, USA for wastewater disposal largely because of the presence of an injection zone (“boulder zone” of Floridan Aquifer System) that is capable of accepting very large quantities of fluids, in some wells over 75,000 m3/day. The greatest potential risk to public health associated with deep injection wells in South Florida is vertical migration of wastewater, containing pathogenic microorganisms and pollutants, into brackish-water aquifer zones that are being used for alternative water-supply projects such as aquifer storage and recovery. Upwards migration of municipal wastewater has occurred in a minority of South Florida injection systems. The results of solute-transport modeling using the SEAWAT program indicate that the measured vertical hydraulic conductivities of the rock matrix would allow for only minimal vertical migration. Fracturing at some sites increased the equivalent average vertical hydraulic conductivity of confining zone strata by approximately four orders of magnitude and allowed for vertical migration rates of up 80 m/year. Even where vertical migration was rapid, the documented transit times are likely long enough for the inactivation of pathogenic microorganisms.

  8. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  9. The matrix effect in secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  10. Finite-element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    1982-10-01

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  11. Finite element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  12. Biosorption of metal elements by exopolymer nanofibrils excreted from Leptothrix cells.

    PubMed

    Kunoh, Tatsuki; Nakanishi, Makoto; Kusano, Yoshihiro; Itadani, Atsushi; Ando, Kota; Matsumoto, Syuji; Tamura, Katsunori; Kunoh, Hitoshi; Takada, Jun

    2017-10-01

    Leptothrix species, aquatic Fe-oxidizing bacteria, excrete nano-scaled exopolymer fibrils. Once excreted, the fibrils weave together and coalesce to form extracellular, microtubular, immature sheaths encasing catenulate cells of Leptothrix. The immature sheaths, composed of aggregated nanofibrils with a homogeneous-looking matrix, attract and bind aqueous-phase inorganics, especially Fe, P, and Si, to form seemingly solid, mature sheaths of a hybrid organic-inorganic nature. To verify our assumption that the organic skeleton of the sheaths might sorb a broad range of other metallic and nonmetallic elements, we examined the sorption potential of chemically and enzymatically prepared protein-free organic sheath remnants for 47 available elements. The sheath remnants were found by XRF to sorb each of the 47 elements, although their sorption degree varied among the elements: >35% atomic percentages for Ti, Y, Zr, Ru, Rh, Ag, and Au. Electron microscopy, energy dispersive x-ray spectroscopy, electron and x-ray diffractions, and Fourier transform infrared spectroscopy analyses of sheath remnants that had sorbed Ag, Cu, and Pt revealed that (i) the sheath remnants comprised a 5-10 nm thick aggregation of fibrils, (ii) the test elements were distributed almost homogeneously throughout the fibrillar aggregate, (iii) the nanofibril matrix sorbing the elements was nearly amorphous, and (iv) these elements plausibly were bound to the matrix by ionic binding, especially via OH. The present results show that the constitutive protein-free exopolymer nanofibrils of the sheaths can contribute to creating novel filtering materials for recovering and recycling useful and/or hazardous elements from the environment. Copyright © 2017. Published by Elsevier Ltd.

  13. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  14. Constraints on scattering amplitudes in multistate Landau-Zener theory

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Lin, Jeffmin; Chernyak, Vladimir Y.

    2017-01-01

    We derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints into nontrivial relations between elements of the transition probability matrix. This observation can be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number of independent elements of the transition probability matrix.

  15. Measurement of the matrix elements for the decays η'→η π+π- and η'→η π0π0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Magnoni, A. S.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-01-01

    Based on a sample of 1.31 ×109 J /ψ events collected with the BESIII detector, the matrix elements for the decays η'→η π+π- and η'→η π0π0 are determined using 351,016 η'→(η →γ γ )π+π- and 56,249 η'→(η →γ γ )π0π0 events with background levels less than 1%. Two commonly used representations are used to describe the Dalitz plot density. We find that an assumption of a linear amplitude does not describe the data well. A small deviation of the obtained matrix elements between η'→η π+π- and η'→η π0π0 is probably caused by the mass difference between charged and neutral pions or radiative corrections. No cusp structure in η'→η π0π0 is observed.

  16. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  17. Inert matrix fuel in dispersion type fuel elements

    NASA Astrophysics Data System (ADS)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  18. Laser diagnostics of native cervix dabs with human papilloma virus in high carcinogenic risk

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Karpenko, Ju. G.; Burkovets, D. N.; Ivashko, P. V.; Nikorych, A. V.; Yermolenko, S. B.; Gruia, Ion; Gruia, M. J.

    2015-11-01

    The results of experimental studies of coordinate distributions of Mueller matrix elements of the following types of cervical scraping tissue are presented: rate- low-grade - highly differentiated dysplasia (CIN1-CIN3) - adenocarcinoma of high, medium and low levels of differentiation (G1-G3). The rationale for the choice of statistical points 1-4 orders polarized coherent radiation field, transformed as a result of interaction with the oncologic modified biological layers "epithelium-stroma" as a quantitative criterion of polarimetric optical differentiation state of human biological tissues are shown here. The analysis of the obtained Mueller matrix elements and statistical correlation methods, the systematized by types studied tissues is accomplished. The results of research images of Mueller matrix elements m34 for this type of pathology as low-grade dysplasia (CIN2), the results of its statistical and correlation analysis are presented.

  19. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  20. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.

    2008-02-01

    A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data, etc.:131 396 Distribution format:tar.gz Programming language:FORTRAN 77 Computer:Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system:OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM:Depends on the number of radial differential equations; the number and order of finite elements; the number of radial points. Test run requires 4 MB Classification:2.5 External routines:POTHMF uses some Lapack routines, copies of which are included in the distribution (see README file for details). Nature of problem:In the multi-channel adiabatic approach the Schrödinger equation for a hydrogen-like atom in a homogeneous magnetic field of strength γ ( γ=B/B, B≅2.35×10 T is a dimensionless parameter which determines the field strength B) is reduced by separating the radial coordinate, r, from the angular variables, (θ,φ), and using a basis of the angular oblate spheroidal functions [3] to a system of second-order ordinary differential equations which contain first-derivative coupling terms [4]. The purpose of this program is to calculate potential curves and matrix elements of radial coupling needed for calculating the low-lying bound and scattering states of hydrogen-like atoms in a homogeneous magnetic field of strength 0<γ⩽1000 within the adiabatic approach [5]. The program evaluates also asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem needed to extract from the R-matrix a required symmetric shortrange open-channel reaction matrix K [6] independent from matching point [7]. In addition, the program computes the dipole transition matrix elements in the length form between the basis functions that are needed for calculating the dipole transitions between the low-lying bound and scattering states and photoionization cross sections [8]. Solution method:The angular oblate spheroidal eigenvalue problem depending on the radial variable is solved using a series expansion in the Legendre polynomials [3]. The resulting tridiagonal symmetric algebraic eigenvalue problem for the evaluation of selected eigenvalues, i.e. the potential curves, is solved by the LDLT factorization using the DSTEVR program [2]. Derivatives of the eigenfunctions with respect to the radial variable which are contained in matrix elements of the coupled radial equations are obtained by solving the inhomogeneous algebraic equations. The corresponding algebraic problem is solved by using the LDLT factorization with the help of the DPTTRS program [2]. Asymptotics of the matrix elements at large values of radial variable are computed using a series expansion in the associated Laguerre polynomials [9]. The corresponding matching points between the numeric and asymptotic solutions are found automatically. These asymptotics are used for the evaluation of the asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem [7]. As a test desk, the program is applied to the calculation of the energy values of the ground and excited bound states and reaction matrix of multi-channel scattering problem for a hydrogen atom in a homogeneous magnetic field using the KANTBP program [10]. Restrictions:The computer memory requirements depend on: the number of radial differential equations; the number and order of finite elements; the total number of radial points. Restrictions due to dimension sizes can be changed by resetting a small number of PARAMETER statements before recompiling (see Introduction and listing for details). Running time:The running time depends critically upon: the number of radial differential equations; the number and order of finite elements; the total number of radial points on interval [r,r]. The test run which accompanies this paper took 7 s required for calculating of potential curves, radial matrix elements, and dipole transition matrix elements on a finite-element grid on interval [ r=0, r=100] used for solving discrete and continuous spectrum problems and obtaining asymptotic regular and irregular matrix radial solutions at r=100 for continuous spectrum problem on the Intel Pentium IV 2.4 GHz. The number of radial differential equations was equal to 6. The accompanying test run using the KANTBP program took 2 s for solving discrete and continuous spectrum problems using the above calculated potential curves, matrix elements and asymptotic regular and irregular matrix radial solutions. Note, that in the accompanied benchmark calculations of the photoionization cross-sections from the bound states of a hydrogen atom in a homogeneous magnetic field to continuum we have used interval [ r=0, r=1000] for continuous spectrum problem. The total number of radial differential equations was varied from 10 to 18. References:W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. http://www.netlib.org/lapack/. M. Abramovits, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965. U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127; A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640; C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (Eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320; U. Fano, A.R.P. Rau, Atomic Collisions and Spectra, Academic Press, Florida, 1986. M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352; O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, V.V. Serov, T.V. Tupikova, S.I. Vinitsky, Proc. SPIE 6537 (2007) 653706-1-18. M.J. Seaton, Rep. Prog. Phys. 46 (1983) 167-257. M. Gailitis, J. Phys. B 9 (1976) 843-854; J. Macek, Phys. Rev. A 30 (1984) 1277-1278; S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, M.S. Kaschiev, V.A. Rostovtsev, V.N. Samoylov, T.V. Tupikova, O. Chuluunbaatar, Programming and Computer Software 33 (2007) 105-116. H. Friedrich, Theoretical Atomic Physics, Springer, New York, 1991. R.J. Damburg, R.Kh. Propin, J. Phys. B 1 (1968) 681-691; J.D. Power, Phil. Trans. Roy. Soc. London A 274 (1973) 663-702. O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675.

  1. Vertical viewing angle enhancement for the 360  degree integral-floating display using an anamorphic optic system.

    PubMed

    Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam

    2014-04-15

    We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.

  2. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies

    NASA Technical Reports Server (NTRS)

    Winget, J. M.; Hughes, T. J. R.

    1985-01-01

    The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

  3. Correlating PMC-MMC Bonded Joint 3D FEA with Test

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy; Rodini, Benjamin; Chen, Wayne C.; Flom, Yury A.; Posey, Alan J.

    2005-01-01

    A viewgraph presentation on the correlation of Polymer Matrix Composites (PMC) and Metal Matrix Composites (MMC) bonded joints using three dimensional finite element analyses with materials tests is shown.

  4. Ion processing element with composite media

    DOEpatents

    Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand

    2003-02-04

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  5. Ion processing element with composite media

    DOEpatents

    Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ

    2009-03-24

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  6. A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan

    2015-04-01

    The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.

  7. Energy Dissipation of Rayleigh Waves due to Absorption Along the Path by the Use of Finite Element Method

    DTIC Science & Technology

    1979-07-31

    3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is

  8. Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz.

    PubMed

    Egard, M; Johansson, S; Johansson, A-C; Persson, K-M; Dey, A W; Borg, B M; Thelander, C; Wernersson, L-E; Lind, E

    2010-03-10

    In this letter we report on high-frequency measurements on vertically standing III-V nanowire wrap-gate MOSFETs (metal-oxide-semiconductor field-effect transistors). The nanowire transistors are fabricated from InAs nanowires that are epitaxially grown on a semi-insulating InP substrate. All three terminals of the MOSFETs are defined by wrap around contacts. This makes it possible to perform high-frequency measurements on the vertical InAs MOSFETs. We present S-parameter measurements performed on a matrix consisting of 70 InAs nanowire MOSFETs, which have a gate length of about 100 nm. The highest unity current gain cutoff frequency, f(t), extracted from these measurements is 7.4 GHz and the maximum frequency of oscillation, f(max), is higher than 20 GHz. This demonstrates that this is a viable technique for fabricating high-frequency integrated circuits consisting of vertical nanowires.

  9. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  10. Inventory of available data elements for the San Bernardino, California region

    NASA Technical Reports Server (NTRS)

    Christenson, J.; Michel, R.

    1981-01-01

    Elements of data sets that are available to be integrated for the San Bernardino vertical data integration project are given. Each of the data sets has specified for it the ownership, validity, accuracy and technical requirements for integration.

  11. Coupled BE/FE/BE approach for scattering from fluid-filled structures

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.

    1990-01-01

    NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.

  12. Instantaneous relationship between solar inertial and local vertical local horizontal attitudes

    NASA Technical Reports Server (NTRS)

    Vickery, S. A.

    1977-01-01

    The instantaneous relationship between the Solar Inertial (SI) and Local Vertical Local Horizontal (LVLH) coordinate systems is derived. A method is presented for computation of the LVLH to SI rotational transformation matrix as a function of an input LVLH attitude and the corresponding look angles to the sun. Logic is provided for conversion between LVLH and SI attitudes expressed in terms of a pitch, yaw, roll Euler sequence. Documentation is included for a program which implements the logic on the Hewlett-Packard 97 programmable calculator.

  13. Consistent latent position estimation and vertex classification for random dot product graphs.

    PubMed

    Sussman, Daniel L; Tang, Minh; Priebe, Carey E

    2014-01-01

    In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.

  14. Heliostat design for the daylighting system.

    PubMed

    Chang, Chih-Hung; Hsiso, Horng-Ching; Chang, Cheng-Ming; Wang, Chen-You; Lin, Tzung-Han; Chen, Yi-Yung; Lai, Yi-Lung; Yen, Cho-Jung; Chen, Kuan-Yu; Whang, Allen Jong-Woei

    2014-10-10

    The daylighting system is designed to guide sunlight into buildings for illumination. It has the best illumination performance when sunlight vertically impinges on the collector of the daylighting system, while it has low performance when sunlight impinges obliquely. To overcome the problem, this paper investigates the design of a heliostat that reflects sunlight vertically onto a daylighting system. This study proposes a 3×3 mirror matrix heliostat, which is different from the traditional heliostat with one single mirror. With the heliostat, the system efficiency increases as high as 3.32 times.

  15. Superfund Chemical Data Matrix (SCDM) Query - Popup

    EPA Pesticide Factsheets

    This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazardous Ranking System (HRS) factor values, benchmarks, and data elements that you need.

  16. Superfund Chemical Data Matrix (SCDM) Query

    EPA Pesticide Factsheets

    This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazard Ranking System (HRS) factor values, benchmarks, and data elements that you need.

  17. A unique set of micromechanics equations for high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1985-01-01

    A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.

  18. Matrix multiplication operations using pair-wise load and splat operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E.; Gschwind, Michael K.; Gunnels, John A.

    Mechanisms for performing a matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A pair-wise load and splat operation is performed to load a pair of scalar values of a second vector operand and replicate the pair of scalar values within a second target vector register. An operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product is accumulatedmore » with other partial products and a resulting accumulated partial product is stored. This operation may be repeated for a second pair of scalar values of the second vector operand.« less

  19. Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays

    NASA Technical Reports Server (NTRS)

    Godara, Lal C.

    1990-01-01

    The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.

  20. Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings

    DTIC Science & Technology

    2016-08-01

    Matrix Composites Using Novel Glass Fibers and Sizings by Steven E Boyd Approved for public release; distribution is...Research Laboratory Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings...p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  1. Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Liang, Y.-Z.

    1984-01-01

    A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.

  2. Multi-jet Merging with NLO Matrix Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegert, Frank; /Freiburg U.; Hoche, Stefan

    2011-08-18

    In the algorithm presented here, the ME+PS approach to merge samples of tree-level matrix elements into inclusive event samples is combined with the POWHEG method, which includes exact next-to-leading order matrix elements in the parton shower. The advantages of the method are discussed and the quality of its implementation in SHERPA is exemplified by results for e{sup +}e{sup -} annihilation into hadrons at LEP, for deep-inelastic lepton-nucleon scattering at HERA, for Drell-Yan lepton-pair production at the Tevatron and for W{sup +}W{sup -}-production at LHC energies. The simulation of hard QCD radiation in parton-shower Monte Carlos has seen tremendous progress overmore » the last years. It was largely stimulated by the need for more precise predictions at LHC energies where the large available phase space allows additional hard QCD radiation alongside known Standard Model processes or even signals from new physics. Two types of algorithms have been developed, which allow to improve upon the soft-collinear approximations made in the parton shower, such that hard radiation is simulated according to exact matrix elements. In the ME+PS approach [1] higher-order tree-level matrix elements for different final-state jet multiplicity are merged with each other and with subsequent parton shower emissions to generate an inclusive sample. Such a prescription is invaluable for analyses which are sensitive to final states with a large jet multiplicity. The only remaining deficiency of such tree-level calculations is the large uncertainty stemming from scale variations. The POWHEG method [2] solves this problem for the lowest multiplicity subprocess by combining full NLO matrix elements with the parton shower. While this leads to NLO accuracy in the inclusive cross section and the exact radiation pattern for the first emission, it fails to describe higher-order emissions with improved accuracy. Thus it is not sufficient if final states with high jet multiplicities are considered. With the complementary advantages of these two approaches, the question arises naturally whether it would be possible to combine them into an even more powerful one. Such a combined algorithm was independently developed in [5] and [6]. Here a summary of the algorithm is given and predictions from corresponding Monte-Carlo predictions are presented.« less

  3. New Technical Solution for Vertical Shaft Equipping Using Steel Headframe of Multifunction Purpose

    NASA Astrophysics Data System (ADS)

    Kassikhina, Elena; Pershin, Vladimir; Glazkov, Yurij

    2017-11-01

    The article reviews a novel approach to the design of steel angle headframe for vertical shafts of coal and ore mines on the basis of rational design solutions. Practice of construction of coal and ore mines provides application of various designs for steel angle headframes which are divided into separate large assembly blocks and constructive elements during assembling operations. Design of these blocks and elements, their weight and dimensions effect the chose of the method of assembling on which economic and technological indicators, as well as duration of down-time, depend on during performance of construction operations in shaft. The technical solution on equipment provision for mine vertical shaft using headframe of multifunctional purpose will allow changing the management construction of vertical shaft. The constructive design of the headgear allows application of the effective method of assembly and thus to provide improvement of the technical and economic indexes, and high calendar time rate of the shaft construction due to reduction of duration of works on equipment provision for the shaft and to refurbishment of the shaft in order to carry out horizontal mining.

  4. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices.

    PubMed

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-05-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.

  5. Five-minute Oscillation Power within Magnetic Elements in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin

    2014-12-01

    It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.

  6. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    PubMed Central

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  7. Time Dependent Channel Packet Calculation of Two Nucleon Scattering Matrix Elements

    DTIC Science & Technology

    2010-03-01

    solutions, 46 ( ) ( )1 1 11 ( ) cos sinL L L L Lr Akr j kr krψ δ η δ= −   (3.70) Here, A is an arbitrary constant, Lδ is the phase shift...iv AFIT/DS/ENP/10-M03 Abstract A new approach to calculating nucleon-nucleon scattering matrix...elements using a proven atomic time-dependent wave packet technique is investigated. Using this technique, reactant and product wave packets containing

  8. Finite-element grid improvement by minimization of stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1989-01-01

    A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.

  9. Finite-element grid improvement by minimization of stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1987-01-01

    A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.

  10. Constraints on scattering amplitudes in multistate Landau-Zener theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, Nikolai A.; Lin, Jeffmin; Chernyak, Vladimir Y.

    2017-01-30

    Here, we derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints into nontrivial relations between elements of the transition probability matrix. This observation can be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number of independent elements of the transition probability matrix.

  11. Quasiparticle random phase approximation uncertainties and their correlations in the analysis of 0{nu}{beta}{beta} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faessler, Amand; Rodin, V.; Fogli, G. L.

    2009-03-01

    The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.

  12. A stochastic method for computing hadronic matrix elements

    DOE PAGES

    Alexandrou, Constantia; Constantinou, Martha; Dinter, Simon; ...

    2014-01-24

    In this study, we present a stochastic method for the calculation of baryon 3-point functions which is an alternative to the typically used sequential method offering more versatility. We analyze the scaling of the error of the stochastically evaluated 3-point function with the lattice volume and find a favorable signal to noise ratio suggesting that the stochastic method can be extended to large volumes providing an efficient approach to compute hadronic matrix elements and form factors.

  13. (q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe

    2010-10-15

    From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.

  14. Geochemical Comparison of Four Cores from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.

    1996-01-01

    Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.

  15. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ma, Q.

    2015-12-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  16. Electronic coupling between Watson-Crick pairs for hole transfer and transport in desoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Jortner, Joshua; Bixon, M.; Rösch, Notker

    2001-04-01

    Electronic matrix elements for hole transfer between Watson-Crick pairs in desoxyribonucleic acid (DNA) of regular structure, calculated at the Hartree-Fock level, are compared with the corresponding intrastrand and interstrand matrix elements estimated for models comprised of just two nucleobases. The hole transfer matrix element of the GAG trimer duplex is calculated to be larger than that of the GTG duplex. "Through-space" interaction between two guanines in the trimer duplexes is comparable with the coupling through an intervening Watson-Crick pair. The gross features of bridge specificity and directional asymmetry of the electronic matrix elements for hole transfer between purine nucleobases in superstructures of dimer and trimer duplexes have been discussed on the basis of the quantum chemical calculations. These results have also been analyzed with a semiempirical superexchange model for the electronic coupling in DNA duplexes of donor (nuclobases)-acceptor, which incorporates adjacent base-base electronic couplings and empirical energy gaps corrected for solvation effects; this perturbation-theory-based model interpretation allows a theoretical evaluation of experimental observables, i.e., the absolute values of donor-acceptor electronic couplings, their distance dependence, and the reduction factors for the intrastrand hole hopping or trapping rates upon increasing the size of the nucleobases bridge. The quantum chemical results point towards some limitations of the perturbation-theory-based modeling.

  17. The petrology and geochemistry of impact melts, granulites, and hornfelses from consortium breccia 61175

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.; Meyerhoff, M.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Lindstrom, D. J.; Lum, R. K. L.; Lindstrom, M. M.; Schuhmann, P.

    1977-01-01

    The matrix and 58 clasts from breccia 61175 were analyzed for major, minor, and trace elements. The matrix is anorthositic and has lithophile trace element abundances 20 to 40 times chondrite. Clasts comprise impact melt rocks, xenocryst and xenolith-free very high aluminum (VHA) and anorthositic basalts, anorthosite, anorthosite-norite-troctolite granulites, and hornfelses. The VHA and anorthositic basalts are considered to be impact melts, and the hornfelses were probably formed by incorporation of breccias or preexisting melt rocks into a melt sheet prior to cooling. The range of melt-rock lithophile trace element abundances might indicate more than one melt sheet.

  18. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  19. HFEM3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J

    Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less

  20. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  1. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Hagendorf, Christian; Liénardy, Jean

    2018-03-01

    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  2. Vertical velocity structure and geometry of clear air convective elements

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.; Arnold, A.

    1975-01-01

    The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.

  3. Tempest: Mesoscale test case suite results and the effect of order-of-accuracy on pressure gradient force errors

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2014-12-01

    Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.

  4. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  5. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran

    2017-01-01

    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  6. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  7. Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Albro, Michael B.; Maas, Steve; Weiss, Jeffrey A.

    2011-01-01

    Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software). PMID:21950898

  8. Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Mital, Subodh; Lang, Jerry

    2010-01-01

    Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.

  9. Superfund Chemical Data Matrix (SCDM) Query - April 2016

    EPA Pesticide Factsheets

    This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazardous Ranking System (HRS) factor values, benchmarks, and data elements that you need.

  10. Comparison of procedures for correction of matrix interferences in the analysis of soils by ICP-OES with CCD detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, D.A.; Sun, F.; Littlejohn, D.

    1995-12-31

    ICP-OES is a useful technique for multi-element analysis of soils. However, as a number of elements are present in relatively high concentrations, matrix interferences can occur and examples have been widely reported. The availability of CCD detectors has increased the opportunities for rapid multi-element, multi-wave-length determination of elemental concentrations in soils and other environmental samples. As the composition of soils from industrial sites can vary considerably, especially when taken from different pit horizons, procedures are required to assess the extent of interferences and correct the effects, on a simultaneous multi-element basis. In single element analysis, plasma operating conditions can sometimesmore » be varied to minimize or even remove multiplicative interferences. In simultaneous multi-element analysis, the scope for this approach may be limited, depending on the spectrochemical characteristics of the emitting analyte species. Matrix matching, by addition of major sample components to the analyte calibrant solutions, can be used to minimize inaccuracies. However, there are also limitations to this procedure, when the sample composition varies significantly. Multiplicative interference effects can also be assessed by a {open_quotes}single standard addition{close_quotes} of each analyte to the sample solution and the information obtained may be used to correct the analyte concentrations determined directly. Each of these approaches has been evaluated to ascertain the best procedure for multi-element analysis of industrial soils by ICP-OES with CCD detection at multiple wavelengths. Standard reference materials and field samples have been analyzed to illustrate the efficacy of each procedure.« less

  11. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  12. Spin-memory loss due to spin-orbit coupling at ferromagnet/heavy-metal interfaces: Ab initio spin-density matrix approach

    NASA Astrophysics Data System (ADS)

    Dolui, Kapildeb; Nikolić, Branislav K.

    2017-12-01

    Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.

  13. Platinum and Palladium Exsolution Textures in Quenched Sulfide Melts

    NASA Astrophysics Data System (ADS)

    Reo, G.; Frank, M. R.; Loocke, M. P.; Macey, C. J.

    2017-12-01

    Magmatic sulfide ore deposits account for over 80% of the world's platinum group element (PGE) reserves. Layered mafic intrusions (LMIs), a type of magmatic sulfide ore deposit, contain alternating layers of silicate and sulfide mineralization that are thought to have coexisted as an immiscible silicate + sulfide melt pair. Platinum and palladium, the most common PGEs found in LMIs, heavily favor the sulfide melt. Nernst partition coefficients for Pt (D = wt% of Pt in sulfide/wt% of Pt in silicate) range from 102 to 109. This study examined the Pt- and Pd-bearing phases that formed from the quenched sulfide melts to better constrain the PGE-rich sulfide layers of LMIs system. Experiments were conducted with a basalt melt, sulfide melt, and Pt-Pd metal in a vertical tube furnace at 1100°C and 1 atm and with oxygen fugacity buffered to QFM (quartz-fayalite-magnetite). Following the experiments, run products containing both sulfide and silicate glasses (quenched melts) were analyzed by a Shimadzu EPMA-1720HT Electron Probe Microanalyzer. The focus here is on the quenched Fe-rich sulfides whereas data on the partitioning of Pt and Pd between the coexisting silicate and sulfide melts will be presented in the future. The sulfide samples were imaged in back-scattering mode and major and trace element concentrations of separate metal-rich phases in the sulfide matrix were ascertained through wavelength-dispersive x-ray spectroscopy. Three discernable PGE-rich phases were found to have exsolved from the sulfide matrix upon quenching of the sulfide melt. All of these phases had Fe and S of 21-24 and 16-22 wt.%, respectively. An irregularly shaped Pd- and Cu-rich sulfide phase ( 36 and 14 wt.%, respectively) makes up the majority of the exsolution product. A separate Pd- and Ni-rich phase ( 22 and 14 wt%, respectively) can be found as grains or rims adjacent to the exsolved Pd- and Cu-rich phase. A third Pd- and Pt-rich phase ( 26 and 18 wt.%, respectively) exhibits a dendritic quench texture and is usually surrounded by the sulfide matrix. These data indicate that multiple phases, each with a different Pt:Pd ratio can form upon quench of a homogenous sulfide melt. Thus, the analysis of PGE-rich sulfide domains within LMI may be best considered as a single phase when conducting exploration efforts.

  14. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  15. Kirchhoff index of linear hexagonal chains

    NASA Astrophysics Data System (ADS)

    Yang, Yujun; Zhang, Heping

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, according to the decomposition theorem of Laplacian polynomial, we obtain that the Laplacian spectrum of linear hexagonal chain Ln consists of the Laplacian spectrum of path P2n+1 and eigenvalues of a symmetric tridiagonal matrix of order 2n + 1. By applying the relationship between roots and coefficients of the characteristic polynomial of the above matrix, explicit closed-form formula for Kirchhoff index of Ln is derived in terms of Laplacian spectrum. To our surprise, the Krichhoff index of Ln is approximately to one half of its Wiener index. Finally, we show that holds for all graphs G in a class of graphs including Ln.0

  16. Performance of ZnO based piezo-generators under controlled compression

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille

    2017-06-01

    This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.

  17. Root coverage with cultured gingival dermal substitute composed of gingival fibroblasts and matrix: a case series.

    PubMed

    Murata, Masashi; Okuda, Kazuhiro; Momose, Manabu; Kubo, Kentarou; Kuroyanagi, Yoshimitsu; Wolff, Larry F

    2008-10-01

    Cultured gingival dermal substitute (CGDS), composed of gingival fibroblasts and matrix and fabricated using tissue-engineering techniques, has been used for root coverage procedures. Fourteen sites from four patients with > or = 2 mm of Miller Class I or II facial gingival tissue recession were treated. The autologous CGDS sheet, prepared prior to surgical treatment, was grafted over the teeth with gingival recession and then covered with a coronally positioned flap. Vertical and horizontal recession was measured at baseline (prior to the surgical procedure) and 13 to 40 weeks (average: 30.7 +/- 9.6 weeks) after surgery. The average vertical and horizontal root coverage after surgery was 79.1% +/- 25.7% and 75.2% +/- 31.4%, respectively. Moreover, there was a significant increase of keratinized and attached gingival tissue at the final clinical evaluation compared with preoperative measurements (P < .05). These results demonstrate CGDS as a promising grafting material for use with root coverage procedures in periodontal therapy.

  18. Multigrid Equation Solvers for Large Scale Nonlinear Finite Element Simulations

    DTIC Science & Technology

    1999-01-01

    purpose of the second partitioning phase , on each SMP, is to minimize the communication within the SMP; even if a multi - threaded matrix vector product...8.7 Comparison of model with experimental data for send phase of matrix vector product on ne grid...140 8.4 Matrix vector product phase times : : : : : : : : : : : : : : : : : : : : : : : 145 9.1 Flat and

  19. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  20. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  1. Vibration transmission through rolling element bearings in geared rotor system, part 1. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Lim, Teik Chin

    1989-01-01

    A mathematical model is proposed to examine the vibration transmission through rolling element bearings in geared rotor systems. Current bearing models, based on either ideal boundary conditions for the shaft or purely translational stiffness element description, cannot explain how the vibratory motion may be transmitted from the rotating shaft to the casing. This study clarifies this issue qualitatively and quantitatively by developing a comprehensive bearing stiffness matrix of dimension 6 model for the precision rolling element bearings from basic principles. The proposed bearing formulation is extended to analyze the overall geared rotor system dynamics including casing and mounts. The bearing stiffness matrix is included in discrete system models using lumped parameter and/or dynamic finite element techniques. Eigensolution and forced harmonic response due to rotating mass unbalance or kinematic transmission error excitation for a number of examples are computed.

  2. Determination of low-Z elements in individual environmental particles using windowless EPMA.

    PubMed

    Ro, C U; Osán, J; Van Grieken, R

    1999-04-15

    The determination of low-Z elements such as carbon, nitrogen, and oxygen in atmospheric aerosol particles is of interest in studying environmental pollution. Conventional electron probe microanalysis technique has a limitation for the determination of the low-Z elements, mainly because the Be window in an energy-dispersive X-ray (EDX) detector hinders the detection of characteristic X-rays from light elements. The feasibility of low-Z element determination in individual particles using a windowless EDX detector is investigated. To develop a method capable of identifying chemical species of individual particles, both the matrix and the geometric effects of particles have to be evaluated. X-rays of low-Z elements generated by an electron beam are so soft that important matrix effects, mostly due to X-ray absorption, exist even within particles in the micrometer size range. Also, the observed radiation, especially that of light elements, experiences different extents of absorption, depending on the shape and size of the particles. Monte Carlo calculation is applied to explain the variation of observed X-ray intensities according to the geometric and chemical compositional variation of individual particles, at different primary electron beam energies. A comparison is carried out between simulated and experimental data, collected for standard individual particles with chemical compositions as generally observed in marine and continental aerosols. Despite the many fundamental problematic analytical factors involved in the observation of X-rays from low-Z elements, the Monte Carlo calculation proves to be quite reliable to evaluate those matrix and geometric effects. Practical aspects of the Monte Carlo calculation for the determination of light elements in individual particles are also considered.

  3. Short-distance matrix elements for D 0 -meson mixing from N f = 2 + 1 lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Bernard, C.; Bouchard, C. M.

    We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s N f=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as M π≈180 MeV and lattice spacings as fine as a≈0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in themore » $$\\overline{MS}$$-NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, $$\\langle$$D 0|O i|$$\\bar{D}$$ 0 $$\\rangle$$={0.0805(55)(16),-0.1561(70)(31),0.0464(31)(9),0.2747(129)(55),0.1035(71)(21)} GeV 4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D 0 mixing, finding lower limits of about 10–50×10 3 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban.« less

  4. Short-distance matrix elements for D 0 -meson mixing from N f = 2 + 1 lattice QCD

    DOE PAGES

    Bazavov, A.; Bernard, C.; Bouchard, C. M.; ...

    2018-02-28

    We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s N f=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as M π≈180 MeV and lattice spacings as fine as a≈0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in themore » $$\\overline{MS}$$-NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, $$\\langle$$D 0|O i|$$\\bar{D}$$ 0 $$\\rangle$$={0.0805(55)(16),-0.1561(70)(31),0.0464(31)(9),0.2747(129)(55),0.1035(71)(21)} GeV 4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D 0 mixing, finding lower limits of about 10–50×10 3 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban.« less

  5. Design of a Matrix Transducer for Three-Dimensional Second Harmonic Transesophageal Echocardiography

    NASA Astrophysics Data System (ADS)

    Blaak, Sandra; van Neer, Paul L. M. J.; Prins, Christian; Bosch, Johan G.; Lancée, Charles T.; van der Steen, Antonius F. W.; de Jong, Nico

    Three-dimensional (3D) echocardiography visualizes the 3D anatomy and function of the heart. For 3D imaging an ultrasound matrix of several thousands of elements is required. To connect the matrix to an external imaging system, smart signal processing with integrated circuitry in the tip of the TEE probe is required for channel reduction. To separate the low voltage integrated receive circuitry from the high voltages required for transmission, our design features a separate transmit and receive subarray. In this study we focus on the transmit subarray. A 3D model of an individual element was developed using the finite element method (FEM). The model was validated by laser interferometer and acoustic measurements. Measurement and simulations matched well. The maximum transmit transfer was 3 nm/V at 2.4 MHz for both the FEM simulation of an element in air and the laser interferometer measurement. The FEM simulation of an element in water resulted in a maximum transfer of 43 kPa/V at 2.3 MHz and the acoustic measurement in 55 kPa/V at 2.5 MHz. The maximum pressure is ~1 MPa/120Vpp, which is sufficient pressure for second harmonic imaging. The proposed design of the transmit subarray is suitable for its role in a 3D 2H TEE probe.

  6. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    PubMed

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  7. Rack for storing spent nuclear fuel elements

    DOEpatents

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  8. A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension

    NASA Astrophysics Data System (ADS)

    Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli

    2016-06-01

    In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.

  9. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization

    PubMed Central

    Fan, Guangyi; Jiao, Yu; Zhang, He; Huang, Ronglian; Zheng, Zhe; Bian, Chao; Deng, Yuewen; Wang, Qingheng; Wang, Zhongduo; Liang, Xinming; Liang, Haiying; Shi, Chengcheng; Zhao, Xiaoxia; Sun, Fengming; Hao, Ruijuan; Bai, Jie; Liu, Jialiang; Chen, Wenbin; Liang, Jinlian; Liu, Weiqing; Xu, Zhe; Shi, Qiong; Xu, Xun

    2017-01-01

    Abstract Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems. PMID:28873964

  10. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    NASA Technical Reports Server (NTRS)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  11. Memristor comprising film with comb-like structure of nanocolumns of metal oxide embedded in a metal oxide matrix

    DOEpatents

    Driscoll, Judith L; Lee, ShinBuhm; Jia, Quanxi

    2015-05-12

    Films having a comb-like structure of nanocolumns of Sm.sub.2O.sub.3 embedded in a SrTiO.sub.3 formed spontaneously on a substrate surface by pulsed laser deposition. In an embodiment, the nanocolumns had a width of about 20 nm with spaces between nanocolumns of about 10 nm. The films exhibited memristive behavior, and were extremely uniform and tunable. Oxygen deficiencies were located at vertical interfaces between the nanocolumns and the matrix. The substrates may be single-layered or multilayered.

  12. On the use of finite difference matrix-vector products in Newton-Krylov solvers for implicit climate dynamics with spectral elements

    DOE PAGES

    Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.

    2015-01-01

    Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh

    We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to performmore » $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $$1.6 \\times 10^{-2}$$ seconds on an Intel Xeon processor.« less

  14. Operational alternatives for LANDSAT in California

    NASA Technical Reports Server (NTRS)

    Wilson, P.; Gialdini, M. J.

    1981-01-01

    Data integration is defined and examined as the means of promoting data sharing among the various governmental and private geobased information systems in California. Elements of vertical integration considered included technical factors (such as resolution and classification) and institutional factors (such as organizational control, and legal and political barriers). Attempts are made to fit the theoretical elements of vertical integration into a meaningful structure for looking at the problem from a statewide focus. Both manual (mapped) and machine readable data systems are included. Special attention is given to LANDSAT imagery because of its strong potential for integrated use and its primary in the California Integrated Remote Sensing System program.

  15. The effects of tunnel horizontal distance on the vertical deformations of an adjacent building

    NASA Astrophysics Data System (ADS)

    Balkaya, Müge

    2015-12-01

    Due to the rapid development of urbanization and the need for effective transportation, it became a common application to construct subway tunnels in modern cities. However, these construction activities may lead to undesirable deformations on the adjacent buildings. In this study, the effect of tunnel horizontal distance on the deformations of an adjacent building is investigated using 2D finite element analysis. The results of the finite element analysis showed that, although high settlement values were not observed for the cases investigated in this study, the vertical deformations of the building decreased as the tunnel moved away from the building.

  16. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers

    NASA Astrophysics Data System (ADS)

    Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos

    2018-01-01

    Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.

  17. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  18. A generalized graph-theoretical matrix of heterosystems and its application to the VMV procedure.

    PubMed

    Mozrzymas, Anna

    2011-12-14

    The extensions of generalized (molecular) graph-theoretical matrix and vector-matrix-vector procedure are considered. The elements of the generalized matrix are redefined in order to describe molecules containing heteroatoms and multiple bonds. The adjacency, distance, detour and reciprocal distance matrices of heterosystems, and corresponding vectors are derived from newly defined generalized graph matrix. The topological indices, which are most widely used in predicting physicochemical and biological properties/activities of various compounds, can be calculated from the new generalized vector-matrix-vector invariant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data

    NASA Astrophysics Data System (ADS)

    Esfandiari, M.; Shirmardi, S. P.; Medhat, M. E.

    2014-06-01

    In this study, element analysis and the mass attenuation coefficient for matrixes of gold, bronze and water with various impurities and the concentrations of heavy metals (Cu, Mn, Pb and Zn) are evaluated and calculated by the MCNP simulation code for photons emitted from Barium-133, Americium-241 and sources with energies between 1 and 100 keV. The MCNP data are compared with the experimental data and WinXCom code simulated results by Medhat. The results showed that the obtained results of bronze and gold matrix are in good agreement with the other methods for energies above 40 and 60 keV, respectively. However for water matrixes with various impurities, there is a good agreement between the three methods MCNP, WinXCom and the experimental one in low and high energies.

  20. An Optimization Code for Nonlinear Transient Problems of a Large Scale Multidisciplinary Mathematical Model

    NASA Astrophysics Data System (ADS)

    Takasaki, Koichi

    This paper presents a program for the multidisciplinary optimization and identification problem of the nonlinear model of large aerospace vehicle structures. The program constructs the global matrix of the dynamic system in the time direction by the p-version finite element method (pFEM), and the basic matrix for each pFEM node in the time direction is described by a sparse matrix similarly to the static finite element problem. The algorithm used by the program does not require the Hessian matrix of the objective function and so has low memory requirements. It also has a relatively low computational cost, and is suited to parallel computation. The program was integrated as a solver module of the multidisciplinary analysis system CUMuLOUS (Computational Utility for Multidisciplinary Large scale Optimization of Undense System) which is under development by the Aerospace Research and Development Directorate (ARD) of the Japan Aerospace Exploration Agency (JAXA).

  1. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  2. A Measurement of the Top Quark Mass with the D0 Detector at s**(1/2) = 1.96-TeV using the Matrix Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeninger, Kevin Alexander; /Bonn U.

    2004-04-01

    Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.

  3. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  4. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  5. Derivation of a formula for the resonance integral for a nonorthogonal basis set

    PubMed Central

    Yim, Yung-Chang; Eyring, Henry

    1981-01-01

    In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009

  6. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, p{sup N}, and d{sup N} configurations and the SL-jj transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.J.

    1997-09-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.

  7. Nucleon matrix elements with Nf=2+1+1 maximally twisted fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon Dinter, Constantia Alexandrou, Martha Constantinou, Vincent Drach, Karl Jansen, Dru Renner

    2010-06-01

    We present the first lattice calculation of nucleon matrix elements using four dynamical flavors. We use the Nf=2+1+1 maximally twisted mass formulation. The renormalization is performed non-perturbatively in the RI'-MOM scheme and results are given for the vector and axial vector operators with up to one-derivative. Our calculation of the average momentum of the unpolarized non-singlet parton distribution is presented and compared to our previous results obtained from the Nf=2 case.

  8. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    NASA Astrophysics Data System (ADS)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  9. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  10. Foot use during vertical climbing in chimpanzees (Pan troglodytes).

    PubMed

    Wunderlich, R E; Ischinger, S B

    2017-08-01

    Upright bipedalism is a hallmark of hominin locomotion, however debates continue regarding the extent of arboreal locomotion and the nature of bipedalism practiced by early hominins. Pedal form and function play a prominent role in these debates, as the foot is the element that directly interacts with the locomotor substrate. Recent finds have substantially increased the availability of associated foot remains of early hominins and emphasized the enigmatic nature of the early evolution of human bipedalism. New discoveries of associated forefoot remains have afforded the opportunity to assess relative proportions across the forefoot of fossil hominins and illuminated the need for data on relative loading across the forefoot in extant hominoids. In order to provide functional data with which to examine the relationship between bony features and load distribution across the forefoot during climbing, we present the first analysis of plantar pressure distribution across the forefoot of chimpanzees climbing a vertical support. Chimpanzees load the medial metatarsals and first toe disproportionately during vertical climbing. Peak pressures on these elements occur at the end of stance phase during climbing and are higher than on any other elements of the foot. Toe pressures are considerably higher during vertical climbing than during knuckle-walking or movement on horizontal poles, supporting the notion that the plantarly-broad and dorsally-narrow metatarsal heads in chimpanzees and some early hominins are associated with close-packing of the metatarsophalangeal joint during climbing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investigating the Greenland ice sheet evolution under changing climate using a three-dimensional full-Stokes model

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Gillet-Chaulet, F.; Gagliardini, O.

    2010-12-01

    A three-dimensional, thermo-mechanically coupled model is applied to the Greenland ice sheet. The model implements the full-Stokes equations for the ice dynamics, and the system is solved with the finite-element method (FEM) using the open source multi-physics package Elmer (http://www.csc.fi/elmer/). The finite-element mesh for the computational domain has been created using the Greenland surface and bedrock DEM data with a spatial resolution of 5 km (SeaRise community effort, based on Bamber and others, 2001). The study is particularly aimed at better understanding the ice dynamics near the major Greenland ice streams. The meshing procedure starts with the bedrock footprint where a mesh with triangle elements and a resolution of 5 km is constructed. Since the resulting mesh is unnecessarily dense in areas with slow ice dynamics, an anisotropic mesh adaptation procedure has been introduced. Using the measured surface velocities to evaluate the Hessian matrix of the velocities, a metric tensor is computed at the mesh vertices in order to define the adaptation scheme. The resulting meshed footprint obtained with the automatic tool YAMS shows a high density of elements in the vicinities of the North-East Greenland Ice Stream (NEGIS), the Jakobshavn ice stream (JIS) and the Kangerdlugssuaq (KL) and Helheim (HH) glaciers. On the other hand, elements with a coarser resolution are generated away from the ice streams and domain margins. The final three-dimensional mesh is obtained by extruding the 2D footprint with 21 vertical layers, so that the resulting mesh contains 400860 wedge elements and 233583 nodes. The numerical solution of the Stokes and the heat transfer equations involves direct and iterative solvers depending on the simulation case, and both methods are coupled with stabilization procedures. The boundary conditions are such that the temperature at the surface uses the present-day mean annual air temperature given by a parameterization or directly from the available data, the geothermal heat flux at the bedrock is prescribed as spatially constant and the lateral sides are open boundaries. A non-linear Weertman law is used for the basal sliding. The project goal is to better assess the effects of dynamical changes of the Greenland ice sheet on sea level rise under global-warming conditions. Hence, the simulations have been conducted in order to investigate the ice sheet evolution using the climate forcing experiments defined in the SeaRISE project. For that purpose, four different experiments have been conducted, (i) constant climate control run beginning at present (epoch 2004-1-1 0:0:0) and running up to 500 years holding the climate constant to its present state, (ii) constant climate forcing with increased basal lubrication, (iii) AR4 climate run forced by anomalies derived from results given in the IPCC 4th Assessment Report (AR4) for the A1B emission scenario, (iv) AR4 climate run with increased basal lubrication.

  12. Electrically Controlled Coherent Excitonic Steady States in Semiconductor Bilayers

    NASA Astrophysics Data System (ADS)

    Xie, Ming; MacDonald, Allan

    Spatially indirect excitons are long lived bosonic quasiparticles that can form quasi-equilibrium condensed states. Optical access to these excitons has been limited by their small optical matrix elements. Here we propose a promising electrical process that can be used both to populate and to probe fluids of indirect excitons, and is analogous to the crossed Andreev reflection (CAR) process of Cooper pairs in superconductors. We consider vertically stacked multilayer heterostructures containing two transition metal dichalcogenide (TMD) layers that host the indirect excitons, graphene layers on the top and the bottom of the heterostructure, and hBN tunnel barrier layers of variable thickness. When the bias voltage between the graphene leads is smaller than the indirect gap, tunneling between the graphene leads and the TMD hetero-bilayer is possible only through the CAR process. Both DC and low frequency AC bias cases are explored and establish that electrical measurements can be used to determine crucial properties such as the condensate density, interaction strength and CAR tunneling amplitudes. We have also proposed a way to electrically manipulate another type of bosonic quasiparticles, cavity exciton-polaritons, in a laterally contacted structure.

  13. Handling Qualities of a Large Civil Tiltrotor in Hover using Translational Rate Command

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos A.; Theodore, Colin R.; Lawrence, Ben; Lindsey, James; Blanken, Chris

    2012-01-01

    A Translational Rate Command (TRC) control law has been developed to enable low speed maneuvering of a large civil tiltrotor with minimal pitch changes by means of automatic nacelle angle deflections for longitudinal velocity control. The nacelle actuator bandwidth required to achieve Level 1 handling qualities in hover and the feasibility of additional longitudinal cyclic control to augment low bandwidth nacelle actuation were investigated. A frequency-domain handling qualities criterion characterizing TRC response in terms of bandwidth and phase delay was proposed and validated against a piloted simulation conducted on the NASA-Ames Vertical Motion Simulator. Seven experimental test pilots completed evaluations in the ADS-33E-PRF Hover Mission Task Element (MTE) for a matrix of nacelle actuator bandwidths, equivalent rise times and control response sensitivities, and longitudinal cyclic control allocations. Evaluated against this task, longitudinal phase delay shows the Level 1 boundary is around 0.4 0.5 s. Accordingly, Level 1 handling qualities were achieved either with a nacelle actuator bandwidth greater than 4 rad/s, or by employing longitudinal cyclic control to augment low bandwidth nacelle actuation.

  14. SevenOperators, a Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions

    NASA Astrophysics Data System (ADS)

    Haxton, Wick; Lunardini, Cecilia

    2008-09-01

    Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2227 No. of bytes in distributed program, including test data, etc.: 19 382 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer running Mathematica; tested on Mac OS X PowerPC (32-bit) running Mathematica 6.0.0 Operating system: Any running Mathematica RAM: Memory requirements determined by Mathematica; 512 MB or greater RAM and hard drive space of at least 3.0 GB recommended Classification: 17.16, 17.19 Nature of problem: Algebraic evaluation of harmonic oscillator nuclear matrix elements for the one-body multipole operators governing semi-leptonic weak interactions, such as charged- or neutral-current neutrino scattering off nuclei. Solution method: Mathematica evaluation of associated angular momentum algebra and spherical Bessel function radial integrals. Running time: Depends on the complexity of the one-body density matrix employed, but times of a few seconds are typical.

  15. Benchmark matrix and guide: Part II.

    PubMed

    1991-01-01

    In the last issue of the Journal of Quality Assurance (September/October 1991, Volume 13, Number 5, pp. 14-19), the benchmark matrix developed by Headquarters Air Force Logistics Command was published. Five horizontal levels on the matrix delineate progress in TQM: business as usual, initiation, implementation, expansion, and integration. The six vertical categories that are critical to the success of TQM are leadership, structure, training, recognition, process improvement, and customer focus. In this issue, "Benchmark Matrix and Guide: Part II" will show specifically how to apply the categories of leadership, structure, and training to the benchmark matrix progress levels. At the intersection of each category and level, specific behavior objectives are listed with supporting behaviors and guidelines. Some categories will have objectives that are relatively easy to accomplish, allowing quick progress from one level to the next. Other categories will take considerable time and effort to complete. In the next issue, Part III of this series will focus on recognition, process improvement, and customer focus.

  16. Seismic Analysis of the 2017 Oroville Dam Spillway Erosion Crisis

    NASA Astrophysics Data System (ADS)

    Goodling, P.; Lekic, V.; Prestegaard, K. L.

    2017-12-01

    The outflow channel of the northern California (USA) Oroville Dam suffered catastrophic erosion damage in February and March, 2017. High discharges released through the spillway (up to 3,000 m3/s) caused rapid spillway erosion, forming a deep chasm. A repeat LiDAR survey obtained from the California Department of Water Resources indicates that the chasm eroded to a depth of 48 meters. A three-component broadband seismometer (STS-1) operated by the Berkeley Digital Seismological Network recorded microseismic energy produced by the flowing water, providing a natural laboratory to test methods for seismically monitoring sudden catastrophic floods and erosion. In this study, we evaluate the three-component waveforms recorded during five constant-discharge periods - before, during, and after the spillway crisis - each of which had a different channel geometry. We apply frequency-dependent polarization analysis (FDPA; following Park, 1987), which characterizes particle motion at each frequency. The method is based on principal component analysis on a spectral covariance matrix in one-hour windows and it produces the horizontal azimuth, vertical tilt, horizontal phase, and vertical phase of the dominant particle motion. The results indicate a greater vertical component (perhaps roughness-induced) of power at a broad range of frequencies at a given discharge after the formation of the chasm. As the outflow crater developed, the back-azimuth of the primary source of seismic energy changed from the nearby Thermalito Diversion Pool (188 degrees) to the center of the outflow channel (170 degrees). To further analyze FDPA results, we apply the 2D spectral-element solver package SPECFEM2D (Tromp et al. 2008), and find that local topography should be considered when interpreting the surface waveforms predicted by FDPA results. This research suggests that monitoring changing channel geometry and erosion in large-scale flood events may be enhanced by seismic FDPA analysis. The results of this work are compared and contrasted with 3-component seismic observations of cobble-bed stream floods in Maryland.

  17. A Deep Stochastic Model for Detecting Community in Complex Networks

    NASA Astrophysics Data System (ADS)

    Fu, Jingcheng; Wu, Jianliang

    2017-01-01

    Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.

  18. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  19. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE PAGES

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...

    2016-06-30

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  20. Three-dimensional finite element analysis of vertical and angular misfit in implant-supported fixed prostheses.

    PubMed

    Assunção, Wirley Gonçalves; Gomes, Erica Alves; Rocha, Eduardo Passos; Delben, Juliana Aparecida

    2011-01-01

    Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 μm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 μm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 μm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system.

  1. Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica

    ERIC Educational Resources Information Center

    Acosta, César R.; Tapia, J. Alejandro; Cab, César

    2014-01-01

    Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…

  2. Risk Management using Dependency Stucture Matrix

    NASA Astrophysics Data System (ADS)

    Petković, Ivan

    2011-09-01

    An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.

  3. Estimation of a cover-type change matrix from error-prone data

    Treesearch

    Steen Magnussen

    2009-01-01

    Coregistration and classification errors seriously compromise per-pixel estimates of land cover change. A more robust estimation of change is proposed in which adjacent pixels are grouped into 3x3 clusters and treated as a unit of observation. A complete change matrix is recovered in a two-step process. The diagonal elements of a change matrix are recovered from...

  4. High density associative memory

    NASA Technical Reports Server (NTRS)

    Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)

    1989-01-01

    A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.

  5. Neutrinoless double-β decay of Se82 in the shell model: Beyond the closure approximation

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.; Brown, B. A.

    2014-05-01

    We recently proposed a method [R. A. Senkov and M. Horoi, Phys. Rev. C 88, 064312 (2013), 10.1103/PhysRevC.88.064312] to calculate the standard nuclear matrix elements for neutrinoless double-β decay (0νββ) of Ca48 going beyond the closure approximation. Here we extend this analysis to the important case of Se82, which was chosen as the base isotope for the upcoming SuperNEMO experiment. We demonstrate that by using a mixed method that considers information from closure and nonclosure approaches, one can get excellent convergence properties for the nuclear matrix elements, which allows one to avoid unmanageable computational costs. We show that in contrast with the closure approximation the mixed approach has a very weak dependence on the average closure energy. The matrix elements for the heavy neutrino-exchange mechanism that could contribute to the 0νββ decay of Se82 are also presented.

  6. A Model for Siderophile Element Distribution in Planetary Differentiation

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.

    2005-01-01

    Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.

  7. Diagrammatic technique for calculating matrix elements of collective operators in superradiance. [eigenstates for N two-level atom systems

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1975-01-01

    Adopting the so-called genealogical construction, one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicity the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes.

  8. Reorientation-effect measurement of the <21+∥E2̂∥21+> matrix element in 10Be

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2012-10-01

    The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the <21+∥E2̂∥21+> diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.

  9. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  10. Measurement of the matrix elements for the decays η ' → η π + π - and η ' → η π 0 π 0

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2018-01-10

    Based on a sample of 1.31 × 10 9 J/ψ events collected with the BESIII detector, the matrix elements for the decays η' → ηπ +π - and η' → ηπ 0π 0 are determined using 351,016 η' → (η → γγ)π +π - and 56,249 η' → (η → γγ)π 0π 0 events with background levels less than 1%. Two commonly used representations are used to describe the Dalitz plot density. We find that an assumption of a linear amplitude does not describe the data well. A small deviation of the obtained matrix elements between η' → ηπ +πmore » - and η' → ηπ 0π 0 is probably caused by the mass difference between charged and neutral pions or radiative corrections. No cusp structure in η' → ηπ 0π 0 is observed.« less

  11. b matrix errors in echo planar diffusion tensor imaging

    PubMed Central

    Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel

    2001-01-01

    Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015

  12. Modeling and simulation of the debonding process of composite solid propellants

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Xu, Jin-sheng; Han, Long; Chen, Xiong

    2017-07-01

    In order to study the damage evolution law of composite solid propellants, the molecular dynamics particle filled algorithm was used to establish the mesoscopic structure model of HTPB(Hydroxyl-terminated polybutadiene) propellants. The cohesive element method was employed for the adhesion interface between AP(Ammonium perchlorate) particle and HTPB matrix and the bilinear cohesive zone model was used to describe the mechanical response of the interface elements. The inversion analysis method based on Hooke-Jeeves optimization algorithm was employed to identify the parameters of cohesive zone model(CZM) of the particle/binder interface. Then, the optimized parameters were applied to the commercial finite element software ABAQUS to simulate the damage evolution process for AP particle and HTPB matrix, including the initiation, development, gathering and macroscopic crack. Finally, the stress-strain simulation curve was compared with the experiment curves. The result shows that the bilinear cohesive zone model can accurately describe the debonding and fracture process between the AP particles and HTPB matrix under the uniaxial tension loading.

  13. Characterizing microstructural features of biomedical samples by statistical analysis of Mueller matrix images

    NASA Astrophysics Data System (ADS)

    He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui

    2017-03-01

    As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.

  14. Experimental Detection and Visualization of the Extracellular Matrix in Macrocolony Biofilms.

    PubMed

    Serra, Diego O; Hengge, Regine

    2017-01-01

    By adopting elaborate three-dimensional morphologies that vary according to their extracellular matrix composition, macrocolony biofilms offer a unique opportunity to interrogate about the roles of specific matrix components in shaping biofilm architecture. Here, we describe two methods optimized for Escherichia coli that profit from morphology and the high level of structural organization of macrocolonies to gain insight into the production and assembly of amyloid curli and cellulose-the two major biofilm matrix elements of E. coli-in biofilms. The first method, the macrocolony morphology assay, is based on the ability of curli and cellulose-either alone or in combination-to generate specific morphological and Congo Red-staining patterns in E. coli macrocolonies, which can then be used as a direct visual readout for the production of these matrix components. The second method involves thin sectioning of macrocolonies, which along with in situ staining of amyloid curli and cellulose and microscopic imaging allows gaining fine details of the spatial arrangement of both matrix elements inside macrocolonies. Beyond their current use with E. coli and related curli and cellulose-producing Enterobacteriaceae, both the methods offer the potential to be adapted to other bacterial species.

  15. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Cheng, Ron-Bin; Hsu, Su-Yuen

    2012-01-01

    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  16. Adinkras from ordered quartets of BC4 Coxeter group elements and regarding another Gadget’s 1,358,954,496 matrix elements

    NASA Astrophysics Data System (ADS)

    Gates, S. James; Kang, Lucas; Kessler, David S.; Korotkikh, Vadim

    2018-04-01

    A Gadget, more precisely a scalar Gadget, is defined as a mathematical calculation acting over a domain of one or more adinkra graphs and whose range is a real number. A 2010 work on the subject of automorphisms of adinkra graphs, implied the existence of multiple numbers of Gadgets depending on the number of colors under consideration. For four colors, this number is two. In this work, we verify the existence of a second such Gadget and calculate (both analytically and via explicit computer-enabled algorithms) its 1,358,954,496 matrix elements over 36,864 minimal valise adinkras related to the Coxeter Group BC4.

  17. Renormalization of composite operators in Yang-Mills theories using a general covariant gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, J.C.; Scalise, R.J.

    Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear whenmore » gluonic matrix elements are taken on shell at zero momentum transfer.« less

  18. Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Fleck, J. N.

    1979-01-01

    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.

  19. Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed

    2017-11-01

    This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.

  20. Scattering Properties of Needle-Like and plate-like Ice Spheroids with Moderate Size Parameters

    NASA Technical Reports Server (NTRS)

    Zakharova, Nadia T.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    We use the current advanced version of the T-matrix method to compute the optical cross sections, the asymmetry parameter of the phase function, and the scattering matrix elements of ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. We demonstrate that plate-like and needle-like particles with moderate size parameters possess unique scattering properties: their asymmetry parameters and phase functions are similar to those of surface-equivalent spheres, whereas all other elements of the scattering matrix are typical of particles much smaller than the wavelength (Rayleigh scatterers). This result may have important implications for optical particle sizing and remote sensing of the terrestrial and planetary atmospheres.

  1. Organic non-volatile resistive photo-switches for flexible image detector arrays.

    PubMed

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W

    2015-02-01

    A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Matrix Effects on Boron Containing Materials due to Laser Ablation Molecular Isotopic Spectrometry (LAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA

  3. Direct determination of trace refractory elements in human serum by ETV-ICP-MS with in-situ matrix removal.

    PubMed

    Li, Shengqing; Hu, Bin; Jiang, Zucheng; Chen, Rui

    2004-08-01

    A method for in-situ removal of matrix is proposed for direct determination of trace refractory elements in human serum by ETV-ICP-MS with the use of poly(tetrafluoroethylene) (PTFE) as fluorinating reagent. Attention has been paid to investigating the vaporization behavior both of refractory elements of interest and of matrix elements (Na, K, Ca, Mg, Cl, S, and P) in a graphite furnace with the PTFE modifier present or not. It was shown that potential interferences from the organic and inorganic matrices in the serum sample could be eliminated or reduced to a negligible level by appropriate dilution of the serum and deliberate optimization of the ETV temperature program. The proposed method has been applied to the direct simultaneous determination of V, Cr, Mo, Ba, La, Ce, and W in human serum. The limits of detection for fivefold diluted serum were 0.18 (V), 0.229 (Cr), 0.050 (Mo), 0.328 (Ba), 0.031 (La), 0.038 (Ce), and 0.019 ng mL(-1) (W), respectively, and the relative standard deviations of the method were in the range 4-15% (2 ng mL(-1) in serum, n=3).

  4. Matrix Formalism of Synchrobetatron Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; /SLAC

    In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and themore » Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.« less

  5. Extracellular matrix directions estimation of the heart on micro-focus x-ray CT volumes

    NASA Astrophysics Data System (ADS)

    Oda, Hirohisa; Oda, Masahiro; Kitasaka, Takayuki; Akita, Toshiaki; Mori, Kensaku

    2017-03-01

    In this paper we propose an estimation method of extracellular matrix directions of the heart. Myofiber are surrounded by the myocardial cell sheets whose directions have strong correspondence between heart failure. Estimation of the myocardial cell sheet directions is difficult since they are very thin. Therefore, we estimate the extracellular matrices which are touching to the sheets as if piled up. First, we perform a segmentation of the extracellular matrices by using the Hessian analysis. Each extracellular matrix region has sheet-like shape. We estimate the direction of each extracellular matrix region by the principal component analysis (PCA). In our experiments, mean inclination angles of two normal canine hearts were 50.6 and 46.2 degrees, while the angle of a failing canine heart was 57.4 degrees. This results well fit the anatomical knowledge that failing hearts tend to have vertical myocardical cell sheets.

  6. The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.; Wildeman, T.R.

    1984-01-01

    Demand is increasing for the determination of the rare-earth elements (REE) and yttrium in geologic materials. Due to their low natural abundance in many materials and the interferences that occur in many methods of determination, a separation procedure utilizing gradient strong-acid cation-exchange chromatography is often used to preconcentrate and isolate these elements from the host-rock matrix. Two separate gradient strong-acid cation-exchange procedures were characterized and the major elements as well as those elements thought to provide the greatest interference for the determination of the REE in geologic materials were tested for separation from the REE. Simultaneous inductively coupled argon plasma-atomic emission spectroscopy (ICAP-AES) measurements were used to construct the chromatograms for the elution studies, allowing the elution patterns of all the elements of interest to be determined in a single fraction of eluent. As a rock matrix, U.S. Geological Survey standard reference BCR-1 basalt was digested using both an acid decomposition procedure and a lithium metaborate fusion. Hydrochloric and nitric acids were tested as eluents and chromatograms were plotted using the ICAP-AES data; and we observed substantial differences in the elution patterns of the REE and as well as in the solution patterns of Ba, Ca, Fe and Sr. The nitric acid elution required substantially less eluent to elute the REE and Y as a group when compared to the hydrochloric acid elution, and provided a clearer separation of the REE from interfering and matrix elements. ?? 1984.

  7. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  8. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    PubMed

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  9. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  10. Mathematical modelling of anisotropy of illite-rich shale

    USGS Publications Warehouse

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the singularity point may even vanish. The Thomsen parameters are helpful in fluid type indication in shale. An indicator of gas-filled aligned cracks is ?? > ??. If aligned cracks in illite-rich shale are brine-filled, ?? < ??. Negative value of ?? indicates brine-filled cracks in illite-rich shale. A shale with brine-filled cracks exhibits higher Vp/Vs ratio in the vertical direction as compared to the gas-filled shale. A disorientation of clay platelets and brine-filled cracks may lead to that the singularity point is absent for brine-saturated shale as well. In this case one can also observe ?? > ?? and decreased values of Vp/Vs in the vertical direction as in the case of gas-filled cracks. In the presence of vertically aligned cracks, shales exhibit distinctly revealed features of orthorhombic symmetry. The results have important applications where seismic measurements are applied to predict the maturity state of the shale. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  11. Efficient low static-volume water heater

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1976-01-01

    Calrod heating element is surrounded by matrix of fused sintered copper or brass balls, and assembly is then installed in piping of water system. As water flows through matrix, sintered balls cause turbulent flow and heating. Applications include laundromats, laboratories, and photographic labs.

  12. Le Châtelier reciprocal relations and the mechanical analog

    NASA Astrophysics Data System (ADS)

    Gilmore, Robert

    1983-08-01

    Le Châtelier's principle is discussed carefully in terms of two sets of simple thermodynamic examples. The principle is then formulated quantitatively for general thermodynamic systems. The formulation is in terms of a perturbation-response matrix, the Le Châtelier matrix [L]. Le Châtelier's principle is contained in the diagonal elements of this matrix, all of which exceed one. These matrix elements describe the response of a system to a perturbation of either its extensive or intensive variables. These response ratios are inverses of each other. The Le Châtelier matrix is symmetric, so that a new set of thermodynamic reciprocal relations is derived. This quantitative formulation is illustrated by a single simple example which includes the original examples and shows the reciprocities among them. The assumptions underlying this new quantitative formulation of Le Châtelier's principle are general and applicable to a wide variety of nonthermodynamic systems. Le Châtelier's principle is formulated quantitatively for mechanical systems in static equilibrium, and mechanical examples of this formulation are given.

  13. Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, O.; Karimi, F.; Knezevic, I.

    2016-08-01

    We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less

  14. Structural-Thermal-Optical Program (STOP)

    NASA Technical Reports Server (NTRS)

    Lee, H. P.

    1972-01-01

    A structural thermal optical computer program is developed which uses a finite element approach and applies the Ritz method for solving heat transfer problems. Temperatures are represented at the vertices of each element and the displacements which yield deformations at any point of the heated surface are interpolated through grid points.

  15. Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns

    USDA-ARS?s Scientific Manuscript database

    Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...

  16. MOFAT: A TWO-DIMENSIONAL FINITE ELEMENT PROGRAM FOR MULTIPHASE FLOW AND MULTICOMPONENT TRANSPORT - PROGRAM DOCUMENTATION AND USER'S GUIDE

    EPA Science Inventory

    This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...

  17. Low temperature chemical processing of graphite-clad nuclear fuels

    DOEpatents

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  18. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.

    PubMed

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng

    2018-04-01

    2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.

  19. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures

    PubMed Central

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng

    2018-01-01

    Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428

  20. Exploring and Making Sense of Large Graphs

    DTIC Science & Technology

    2015-08-01

    and bold) are n × n ; vectors (lower-case bold) are n × 1 column vectors, and scalars (in lower-case plain font) typically correspond to strength of...graph is often denoted as |V| or n . Edges or Links: A finite set E of lines between objects in a graph. The edges represent relationships between the...Adjacency matrix of a simple, unweighted and undirected graph. Adjacency matrix: The adjacency matrix of a graph G is an n × n matrix A, whose element aij

Top