Finding Imaging Patterns of Structural Covariance via Non-Negative Matrix Factorization
Sotiras, Aristeidis; Resnick, Susan M.; Davatzikos, Christos
2015-01-01
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. PMID:25497684
Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization.
Sotiras, Aristeidis; Resnick, Susan M; Davatzikos, Christos
2015-03-01
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Kevin C.; Bambot, Shabbir
2011-02-01
Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.
Evaluation of non-negative matrix factorization of grey matter in age prediction.
Varikuti, Deepthi P; Genon, Sarah; Sotiras, Aristeidis; Schwender, Holger; Hoffstaedter, Felix; Patil, Kaustubh R; Jockwitz, Christiane; Caspers, Svenja; Moebus, Susanne; Amunts, Katrin; Davatzikos, Christos; Eickhoff, Simon B
2018-06-01
The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations. This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50-690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples. Our results showed that our framework favorably compares with other approaches. They also demonstrated that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of another dataset and that granularities between 300 and 500 components give an optimal representation for age prediction. In addition to the good performance in healthy subjects our framework provided relatively localized brain regions as the features contributing to the prediction, thereby offering further insights into structural changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive to deviance from normal structural variations in pathological aging. Copyright © 2018 Elsevier Inc. All rights reserved.
1981-06-01
cOOOaaaN.4aO.4a~J aaaa.4’asasSSSasasasasaS ~ 5555 SS 55 5 55*5 5 5555a40.44090.490Sa5555 ’tea aCca -Na SSSCCNNO06440 C.4(40(4’ aaa.tNCA .4.4aaaaOOeaO.4NaSNON...8217f SS .4N’S C CN NN N h . 4 N N N N NNM4 4 nnMf - f n ’ f3 ~~~~~~~~~ C C .40.SNC r foo.N CNC’C*.C N C.N oCoNC CN. NSCNNNCCC000000toa, .. o.44.NN N
Motor modules during adaptation to walking in a powered ankle exoskeleton.
Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P
2018-01-03
Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.
Approximate method of variational Bayesian matrix factorization/completion with sparse prior
NASA Astrophysics Data System (ADS)
Kawasumi, Ryota; Takeda, Koujin
2018-05-01
We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.
Scalable non-negative matrix tri-factorization.
Čopar, Andrej; Žitnik, Marinka; Zupan, Blaž
2017-01-01
Matrix factorization is a well established pattern discovery tool that has seen numerous applications in biomedical data analytics, such as gene expression co-clustering, patient stratification, and gene-disease association mining. Matrix factorization learns a latent data model that takes a data matrix and transforms it into a latent feature space enabling generalization, noise removal and feature discovery. However, factorization algorithms are numerically intensive, and hence there is a pressing challenge to scale current algorithms to work with large datasets. Our focus in this paper is matrix tri-factorization, a popular method that is not limited by the assumption of standard matrix factorization about data residing in one latent space. Matrix tri-factorization solves this by inferring a separate latent space for each dimension in a data matrix, and a latent mapping of interactions between the inferred spaces, making the approach particularly suitable for biomedical data mining. We developed a block-wise approach for latent factor learning in matrix tri-factorization. The approach partitions a data matrix into disjoint submatrices that are treated independently and fed into a parallel factorization system. An appealing property of the proposed approach is its mathematical equivalence with serial matrix tri-factorization. In a study on large biomedical datasets we show that our approach scales well on multi-processor and multi-GPU architectures. On a four-GPU system we demonstrate that our approach can be more than 100-times faster than its single-processor counterpart. A general approach for scaling non-negative matrix tri-factorization is proposed. The approach is especially useful parallel matrix factorization implemented in a multi-GPU environment. We expect the new approach will be useful in emerging procedures for latent factor analysis, notably for data integration, where many large data matrices need to be collectively factorized.
A DEIM Induced CUR Factorization
2015-09-18
CUR approximate matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix A, such a factorization provides a...CUR approximations based on leverage scores. 1 Introduction This work presents a new CUR matrix factorization based upon the Discrete Empirical...SUPPLEMENTARY NOTES 14. ABSTRACT We derive a CUR approximate matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given
Geomagnetic field impacts on cryptochrome and phytochrome signaling.
Agliassa, Chiara; Narayana, Ravishankar; Christie, John M; Maffei, Massimo E
2018-05-29
The geomagnetic field (GMF) is an environmental element whose instability affects plant growth and development. Despite known plant responses to GMF direction and intensity, the mechanism of magnetoreception in plants is still not known. Magnetic field variations affect many light-dependent plant processes, suggesting that the magnetoreception could require light. The objective of this work was to comprehensively investigate the influence of GMF on Arabidopsis thaliana (Col-0) photoreceptor signaling. Wild-type Arabidopsis seedlings and photoreceptor-deficient mutants (cry1cry2, phot1, phyA and phyAphyB) were exposed to near null magnetic field (NNMF, ≤40 nT) and GMF (~43 μT) under darkness and different light wavelengths. The GMF did not alter skotomorphogenic or photomorphogenic seedling development but had a significant impact on gene expression pathways downstream of cryptochrome and phytochrome photoactivation. GMF-induced changes in gene expression observed under blue light were partially associated with an alteration of cryptochrome activation. GMF impacts on phytochrome-regulated gene expression could be attributed to alterations in phytochrome protein abundance that were also dependent on the presence of cry1, cry2 and phot1. Moreover, the GMF was found to impact photomorphogenic-promoting gene expression in etiolated seedlings, indicating the existence of a light-independent magnetoreception mechanism. In conclusion, our data shows that magnetoreception alters photoreceptor signaling in Arabidopsis, but it does not necessarily depend on light. Copyright © 2018. Published by Elsevier B.V.
EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide
Positive matrix factorization (PMF) is a multivariate factor analysis tool that decomposes a matrix of ambient data into two matrices - factor contributions and factor profiles - which then need to be interpreted by an analyst as to what source types are represented using measure...
Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
NASA Astrophysics Data System (ADS)
Zhou, Jian; Qi, Jinyi
2011-03-01
Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.
Rogosin, S.
2018-01-01
From the classic work of Gohberg & Krein (1958 Uspekhi Mat. Nauk. XIII, 3–72. (Russian).), it is well known that the set of partial indices of a non-singular matrix function may change depending on the properties of the original matrix. More precisely, it was shown that if the difference between the largest and the smallest partial indices is larger than unity then, in any neighbourhood of the original matrix function, there exists another matrix function possessing a different set of partial indices. As a result, the factorization of matrix functions, being an extremely difficult process itself even in the case of the canonical factorization, remains unresolvable or even questionable in the case of a non-stable set of partial indices. Such a situation, in turn, has became an unavoidable obstacle to the application of the factorization technique. This paper sets out to answer a less ambitious question than that of effective factorizing matrix functions with non-stable sets of partial indices, and instead focuses on determining the conditions which, when having known factorization of the limiting matrix function, allow to construct another family of matrix functions with the same origin that preserves the non-stable partial indices and is close to the original set of the matrix functions. PMID:29434502
Mishuris, G; Rogosin, S
2018-01-01
From the classic work of Gohberg & Krein (1958 Uspekhi Mat. Nauk. XIII , 3-72. (Russian).), it is well known that the set of partial indices of a non-singular matrix function may change depending on the properties of the original matrix. More precisely, it was shown that if the difference between the largest and the smallest partial indices is larger than unity then, in any neighbourhood of the original matrix function, there exists another matrix function possessing a different set of partial indices. As a result, the factorization of matrix functions, being an extremely difficult process itself even in the case of the canonical factorization, remains unresolvable or even questionable in the case of a non-stable set of partial indices. Such a situation, in turn, has became an unavoidable obstacle to the application of the factorization technique. This paper sets out to answer a less ambitious question than that of effective factorizing matrix functions with non-stable sets of partial indices, and instead focuses on determining the conditions which, when having known factorization of the limiting matrix function, allow to construct another family of matrix functions with the same origin that preserves the non-stable partial indices and is close to the original set of the matrix functions.
ERIC Educational Resources Information Center
Mittag, Kathleen Cage
Most researchers using factor analysis extract factors from a matrix of Pearson product-moment correlation coefficients. A method is presented for extracting factors in a non-parametric way, by extracting factors from a matrix of Spearman rho (rank correlation) coefficients. It is possible to factor analyze a matrix of association such that…
Computing row and column counts for sparse QR and LU factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, John R.; Li, Xiaoye S.; Ng, Esmond G.
2001-01-01
We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization. The row and column counts we compute are upper bounds on the actual counts. If the input matrix is strong Hall and theremore » is no coincidental numerical cancellation, the counts are exact for QR factorization and are the tightest bounds possible for LU factorization. These algorithms are based on our earlier work on computing row and column counts for sparse Cholesky factorization, plus an efficient method to compute the column elimination tree of a sparse matrix without explicitly forming the product of the matrix and its transpose.« less
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
A Note on the Factor Analysis of Partial Covariance Matrices
ERIC Educational Resources Information Center
McDonald, Roderick P.
1978-01-01
The relationship between the factor structure of a convariance matrix and the factor structure of a partial convariance matrix when one or more variables are partialled out of the original matrix is given in this brief note. (JKS)
Bayesian Factor Analysis When Only a Sample Covariance Matrix Is Available
ERIC Educational Resources Information Center
Hayashi, Kentaro; Arav, Marina
2006-01-01
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Algorithms for Solvents and Spectral Factors of Matrix Polynomials
1981-01-01
spectral factors of matrix polynomials LEANG S. SHIEHt, YIH T. TSAYt and NORMAN P. COLEMANt A generalized Newton method , based on the contracted gradient...of a matrix poly- nomial, is derived for solving the right (left) solvents and spectral factors of matrix polynomials. Two methods of selecting initial...estimates for rapid convergence of the newly developed numerical method are proposed. Also, new algorithms for solving complete sets of the right
Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok
2016-01-21
Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Background recovery via motion-based robust principal component analysis with matrix factorization
NASA Astrophysics Data System (ADS)
Pan, Peng; Wang, Yongli; Zhou, Mingyuan; Sun, Zhipeng; He, Guoping
2018-03-01
Background recovery is a key technique in video analysis, but it still suffers from many challenges, such as camouflage, lighting changes, and diverse types of image noise. Robust principal component analysis (RPCA), which aims to recover a low-rank matrix and a sparse matrix, is a general framework for background recovery. The nuclear norm is widely used as a convex surrogate for the rank function in RPCA, which requires computing the singular value decomposition (SVD), a task that is increasingly costly as matrix sizes and ranks increase. However, matrix factorization greatly reduces the dimension of the matrix for which the SVD must be computed. Motion information has been shown to improve low-rank matrix recovery in RPCA, but this method still finds it difficult to handle original video data sets because of its batch-mode formulation and implementation. Hence, in this paper, we propose a motion-assisted RPCA model with matrix factorization (FM-RPCA) for background recovery. Moreover, an efficient linear alternating direction method of multipliers with a matrix factorization (FL-ADM) algorithm is designed for solving the proposed FM-RPCA model. Experimental results illustrate that the method provides stable results and is more efficient than the current state-of-the-art algorithms.
Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb
2017-06-01
Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.
Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?
Agarwal, Renu; Agarwal, Puneet
2017-02-01
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?
Agarwal, Puneet
2016-01-01
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses. PMID:27798117
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.
Synthetic Division and Matrix Factorization
ERIC Educational Resources Information Center
Barabe, Samuel; Dubeau, Franc
2007-01-01
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.
Yang, Xi; Han, Guoqiang; Cai, Hongmin; Song, Yan
2017-03-31
Revealing data with intrinsically diagonal block structures is particularly useful for analyzing groups of highly correlated variables. Earlier researches based on non-negative matrix factorization (NMF) have been shown to be effective in representing such data by decomposing the observed data into two factors, where one factor is considered to be the feature and the other the expansion loading from a linear algebra perspective. If the data are sampled from multiple independent subspaces, the loading factor would possess a diagonal structure under an ideal matrix decomposition. However, the standard NMF method and its variants have not been reported to exploit this type of data via direct estimation. To address this issue, a non-negative matrix factorization with multiple constraints model is proposed in this paper. The constraints include an sparsity norm on the feature matrix and a total variational norm on each column of the loading matrix. The proposed model is shown to be capable of efficiently recovering diagonal block structures hidden in observed samples. An efficient numerical algorithm using the alternating direction method of multipliers model is proposed for optimizing the new model. Compared with several benchmark models, the proposed method performs robustly and effectively for simulated and real biological data.
Fuzzy Mathematical Models To Remove Poverty Of Gypsies In Tamilnadu
NASA Astrophysics Data System (ADS)
Chandrasekaran, A. D.; Ramkumar, C.; Siva, E. P.; Balaji, N.
2018-04-01
In the society there are several poor people are living. One of the sympathetic poor people is gypsies. They are moving from one place to another place towards survive of life because of not having any permanent place to live. In this paper we have interviewed 895 gypsies in Tamilnadu using a linguistic questionnaire. As the problems faced by them to improve their life at large involve so much of feeling, uncertainties and unpredictabilitys. I felt that it deem fit to use fuzzy theory in general and fuzzy matrix in particular. Fuzzy matrix is the best suitable tool where the data is an unsupervised one. Further the fuzzy matrix is so powerful to identify the main development factor of gypsies.This paper has three sections. In section one the method of application of CEFD matrix. In section two, we describe the development factors of gypsies. In section three, we apply these factors to the CEFD matrix and derive our conclusions. Key words: RD matrix, AFD matrix, CEFD matrix.
Uncertainty of relative sensitivity factors in glow discharge mass spectrometry
NASA Astrophysics Data System (ADS)
Meija, Juris; Methven, Brad; Sturgeon, Ralph E.
2017-10-01
The concept of the relative sensitivity factors required for the correction of the measured ion beam ratios in pin-cell glow discharge mass spectrometry is examined in detail. We propose a data-driven model for predicting the relative response factors, which relies on a non-linear least squares adjustment and analyte/matrix interchangeability phenomena. The model provides a self-consistent set of response factors for any analyte/matrix combination of any element that appears as either an analyte or matrix in at least one known response factor.
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2013-09-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.
On the Relations among Regular, Equal Unique Variances, and Image Factor Analysis Models.
ERIC Educational Resources Information Center
Hayashi, Kentaro; Bentler, Peter M.
2000-01-01
Investigated the conditions under which the matrix of factor loadings from the factor analysis model with equal unique variances will give a good approximation to the matrix of factor loadings from the regular factor analysis model. Extends the results to the image factor analysis model. Discusses implications for practice. (SLD)
Spatial operator factorization and inversion of the manipulator mass matrix
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz-Delgado, Kenneth
1992-01-01
This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.
EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...
1988-04-15
physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S
Investigation on Constrained Matrix Factorization for Hyperspectral Image Analysis
2005-07-25
analysis. Keywords: matrix factorization; nonnegative matrix factorization; linear mixture model ; unsupervised linear unmixing; hyperspectral imagery...spatial resolution permits different materials present in the area covered by a single pixel. The linear mixture model says that a pixel reflectance in...in r. In the linear mixture model , r is considered as the linear mixture of m1, m2, …, mP as nMαr += (1) where n is included to account for
An Efficient Scheme for Updating Sparse Cholesky Factors
NASA Technical Reports Server (NTRS)
Raghavan, Padma
2002-01-01
Raghavan had earlier developed the software package DCSPACK which can be used for solving sparse linear systems where the coefficient matrix is symmetric and positive definite (this project was not funded by NASA but by agencies such as NSF). DSCPACK-S is the serial code and DSCPACK-P is a parallel implementation suitable for multiprocessors or networks-of-workstations with message passing using MCI. The main algorithm used is the Cholesky factorization of a sparse symmetric positive positive definite matrix A = LL(T). The code can also compute the factorization A = LDL(T). The complexity of the software arises from several factors relating to the sparsity of the matrix A. A sparse N x N matrix A has typically less that cN nonzeroes where c is a small constant. If the matrix were dense, it would have O(N2) nonzeroes. The most complicated part of such sparse Cholesky factorization relates to fill-in, i.e., zeroes in the original matrix that become nonzeroes in the factor L. An efficient implementation depends to a large extent on complex data structures and on techniques from graph theory to reduce, identify, and manage fill. DSCPACK is based on an efficient multifrontal implementation with fill-managing algorithms and implementation arising from earlier research by Raghavan and others. Sparse Cholesky factorization is typically a four step process: (1) ordering to compute a fill-reducing numbering, (2) symbolic factorization to determine the nonzero structure of L, (3) numeric factorization to compute L, and, (4) triangular solution to solve L(T)x = y and Ly = b. The first two steps are symbolic and are performed using the graph of the matrix. The numeric factorization step is of dominant cost and there are several schemes for improving performance by exploiting the nested and dense structure of groups of columns in the factor. The latter are aimed at better utilization of the cache-memory hierarchy on modem processors to prevent cache-misses and provide execution rates (operations/second) that are close to the peak rates for dense matrix computations. Currently, EPISCOPACY is being used in an application at NASA directed by J. Newman and M. James. We propose the implementation of efficient schemes for updating the LL(T) or LDL(T) factors computed in DSCPACK-S to meet the computational requirements of their project. A brief description is provided in the next section.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2011-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.
Chew, Peter A; Bader, Brett W
2012-10-16
A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.
2016-05-11
AFRL-AFOSR-JP-TR-2016-0046 Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization U Kang Korea...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect...Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386
NASA Astrophysics Data System (ADS)
Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo
2018-04-01
Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.
Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk
2017-01-01
Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
A tight and explicit representation of Q in sparse QR factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, E.G.; Peyton, B.W.
1992-05-01
In QR factorization of a sparse m{times}n matrix A (m {ge} n) the orthogonal factor Q is often stored implicitly as a lower trapezoidal matrix H known as the Householder matrix. This paper presents a simple characterization of the row structure of Q, which could be used as the basis for a sparse data structure that can store Q explicitly. The new characterization is a simple extension of a well known row-oriented characterization of the structure of H. Hare, Johnson, Olesky, and van den Driessche have recently provided a complete sparsity analysis of the QR factorization. Let U be themore » matrix consisting of the first n columns of Q. Using results from, we show that the data structures for H and U resulting from our characterizations are tight when A is a strong Hall matrix. We also show that H and the lower trapezoidal part of U have the same sparsity characterization when A is strong Hall. We then show that this characterization can be extended to any weak Hall matrix that has been permuted into block upper triangular form. Finally, we show that permuting to block triangular form never increases the fill incurred during the factorization.« less
Normalization Of Thermal-Radiation Form-Factor Matrix
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.
1994-01-01
Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.
Rudzki, Piotr J; Gniazdowska, Elżbieta; Buś-Kwaśnik, Katarzyna
2018-06-05
Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for studying pharmacokinetics and toxicokinetics. Reliable bioanalysis requires the characterization of the matrix effect, i.e. influence of the endogenous or exogenous compounds on the analyte signal intensity. We have compared two methods for the quantitation of matrix effect. The CVs(%) of internal standard normalized matrix factors recommended by the European Medicines Agency were evaluated against internal standard normalized relative matrix effects derived from Matuszewski et al. (2003). Both methods use post-extraction spiked samples, but matrix factors require also neat solutions. We have tested both approaches using analytes of diverse chemical structures. The study did not reveal relevant differences in the results obtained with both calculation methods. After normalization with the internal standard, the CV(%) of the matrix factor was on average 0.5% higher than the corresponding relative matrix effect. The method adopted by the European Medicines Agency seems to be slightly more conservative in the analyzed datasets. Nine analytes of different structures enabled a general overview of the problem, still, further studies are encouraged to confirm our observations. Copyright © 2018 Elsevier B.V. All rights reserved.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790
NASA Technical Reports Server (NTRS)
Demmel, James W.; Higham, Nicholas J.; Schreiber, Robert S.
1992-01-01
Many of the currently popular 'block algorithms' are scalar algorithms in which the operations have been grouped and reordered into matrix operations. One genuine block algorithm in practical use is block LU factorization, and this has recently been shown by Demmel and Higham to be unstable in general. It is shown here that block LU factorization is stable if A is block diagonally dominant by columns. Moreover, for a general matrix the level of instability in block LU factorization can be founded in terms of the condition number kappa(A) and the growth factor for Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for a matrix A that is symmetric positive definite or point diagonally dominant by rows or columns as long as A is well-conditioned.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1992-01-01
Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.
Positive Matrix Factorization Model for environmental data analyses
Positive Matrix Factorization is a receptor model developed by EPA to provide scientific support for current ambient air quality standards and implement those standards by identifying and quantifying the relative contributions of air pollution sources.
Difficulty Factors, Distribution Effects, and the Least Squares Simplex Data Matrix Solution
ERIC Educational Resources Information Center
Ten Berge, Jos M. F.
1972-01-01
In the present article it is argued that the Least Squares Simplex Data Matrix Solution does not deal adequately with difficulty factors inasmuch as the theoretical foundation is insufficient. (Author/CB)
Factors affecting fixation of heavy metals in solidified/stabilized matrix: a review.
Malviya, Rachana; Chaudhary, Rubina
2010-07-01
In this paper, an effort has been made to understand the factors, which affect fixation of heavy metals in solidified/stabilized matrix. Various aspects related to the solidification/stabilization of different heavy metals (Ar, Ba, Cu, Cr, Pb, Zn, Hg) are reviewed. A comparative study of different binders for the fixation of each metal has also been carried out to suggest the most suitable binder, pretreatment required for the metal. Valence, speciation, pH and other factors are also considered while reviewing metal retention capacity of different matrix.
Fiber pushout and interfacial shear in metal-matrix composites
NASA Technical Reports Server (NTRS)
Koss, Donald A.; Hellmann, John R.; Kallas, M. N.
1993-01-01
Recent thin-slice pushout tests have suggested that MMC matrix-fiber interface failure processes depend not only on such intrinsic factors as bond strength and toughness, and matrix plasticity, but such extrinsic factors as specimen configuration, thermally-induced residual stresses, and the mechanics associated with a given test. After detailing the contrasts in fiber-pullout and fiber-pushout mechanics, attention is given to selected aspects of thin-slice fiber pushout behavior illustrative of the physical nature of interfacial shear response and its dependence on both intrinsic and extrinsic factors.
NASA Astrophysics Data System (ADS)
Huang, Jianglou; Liu, Jinsong; Wang, Kejia; Yang, Zhengang; Liu, Xiaming
2018-06-01
By means of factor analysis approach, a method of molecule classification is built based on the measured terahertz absorption spectra of the molecules. A data matrix can be obtained by sampling the absorption spectra at different frequency points. The data matrix is then decomposed into the product of two matrices: a weight matrix and a characteristic matrix. By using the K-means clustering to deal with the weight matrix, these molecules can be classified. A group of samples (spirobenzopyran, indole, styrene derivatives and inorganic salts) has been prepared, and measured via a terahertz time-domain spectrometer. These samples are classified with 75% accuracy compared to that directly classified via their molecular formulas.
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
A fast, preconditioned conjugate gradient Toeplitz solver
NASA Technical Reports Server (NTRS)
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Factor Covariance Analysis in Subgroups.
ERIC Educational Resources Information Center
Pennell, Roger
The problem considered is that of an investigator sampling two or more correlation matrices and desiring to fit a model where a factor pattern matrix is assumed to be identical across samples and we need to estimate only the factor covariance matrix and the unique variance for each sample. A flexible, least squares solution is worked out and…
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
A real time spectrum to dose conversion system
NASA Technical Reports Server (NTRS)
Farmer, B. J.; Johnson, J. H.; Bagwell, R. G.
1972-01-01
A system has been developed which permits the determination of dose in real time or near real time directly from the pulse-height output of a radiation spectrometer. The technique involves the use of the resolution matrix of a spectrometer, the radiation energy-to-dose conversion function, and the geometrical factors, although the order of matrix operations is reversed. The new technique yields a result which is mathematically identical to the standard method while requiring no matrix manipulations or resolution matrix storage in the remote computer. It utilizes only a single function for each type dose required and each geometric factor involved.
Factors associated with continuance commitment to FAA matrix teams.
DOT National Transportation Integrated Search
1993-11-01
Several organizations within the FAA employ matrix teams to achieve cross-functional coordination. Matrix team members typically represent different organizational functions required for project accomplishment (e.g., research and development, enginee...
Matrix Theory of Small Oscillations
ERIC Educational Resources Information Center
Chavda, L. K.
1978-01-01
A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)
Proposed framework for thermomechanical life modeling of metal matrix composites
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.
1993-01-01
The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Matrix completion by deep matrix factorization.
Fan, Jicong; Cheng, Jieyu
2018-02-01
Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sparse nonnegative matrix factorization with ℓ0-constraints
Peharz, Robert; Pernkopf, Franz
2012-01-01
Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the ℓ1-norm of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the ℓ0-pseudo-norm. In this paper, we propose a framework for approximate NMF which constrains the ℓ0-norm of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches. PMID:22505792
NASA Technical Reports Server (NTRS)
Fijany, Amir; Djouani, Karim; Fried, George; Pontnau, Jean
1997-01-01
In this paper a new factorization technique for computation of inverse of mass matrix, and the operational space mass matrix, as arising in implementation of the operational space control scheme, is presented.
Xu, Shenghua; Liu, Jie; Sun, Zhiwei
2006-12-01
Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.
Trust in Leadership DEOCS 4.1 Construct Validity Summary
2017-08-01
Item Corrected Item- Total Correlation Cronbach’s Alpha if Item Deleted Four-point Scale Items I can depend on my immediate supervisor to meet...1974) were used to assess the fit between the data and the factor. The BTS hypothesizes that the correlation matrix is an identity matrix. The...to reject the null hypothesis that the correlation matrix is an identity, and to conclude that the factor analysis is an appropriate method to
Estimating Depolarization with the Jones Matrix Quality Factor
NASA Astrophysics Data System (ADS)
Hilfiker, James N.; Hale, Jeffrey S.; Herzinger, Craig M.; Tiwald, Tom; Hong, Nina; Schöche, Stefan; Arwin, Hans
2017-11-01
Mueller matrix (MM) measurements offer the ability to quantify the depolarization capability of a sample. Depolarization can be estimated using terms such as the depolarization index or the average degree of polarization. However, these calculations require measurement of the complete MM. We propose an alternate depolarization metric, termed the Jones matrix quality factor, QJM, which does not require the complete MM. This metric provides a measure of how close, in a least-squares sense, a Jones matrix can be found to the measured Mueller matrix. We demonstrate and compare the use of QJM to other traditional calculations of depolarization for both isotropic and anisotropic depolarizing samples; including non-uniform coatings, anisotropic crystal substrates, and beetle cuticles that exhibit both depolarization and circular diattenuation.
Study on the Algorithm of Judgment Matrix in Analytic Hierarchy Process
NASA Astrophysics Data System (ADS)
Lu, Zhiyong; Qin, Futong; Jin, Yican
2017-10-01
A new algorithm is proposed for the non-consistent judgment matrix in AHP. A primary judgment matrix is generated firstly through pre-ordering the targeted factor set, and a compared matrix is built through the top integral function. Then a relative error matrix is created by comparing the compared matrix with the primary judgment matrix which is regulated under the control of the relative error matrix and the dissimilar degree of the matrix step by step. Lastly, the targeted judgment matrix is generated to satisfy the requirement of consistence and the least dissimilar degree. The feasibility and validity of the proposed method are verified by simulation results.
The nuclear matrix protein NMP-1 is the transcription factor YY1.
Guo, B; Odgren, P R; van Wijnen, A J; Last, T J; Nickerson, J; Penman, S; Lian, J B; Stein, J L; Stein, G S
1995-01-01
NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479833
A Deep Stochastic Model for Detecting Community in Complex Networks
NASA Astrophysics Data System (ADS)
Fu, Jingcheng; Wu, Jianliang
2017-01-01
Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.
THE U.S. ENVIRONMENTAL PROTECTION AGENCY VERSION OF POSITIVE MATRIX FACTORIZATION
The abstract describes some of the special features of the EPA's version of Positive Matrix Factorization that is freely distributed. Features include descriptions of the Graphical User Interface, an approach for estimating errors in the modeled solutions, and future development...
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Postconcussive Symptoms in OEF-OIF Veterans: Factor Structure and Impact of Posttraumatic Stress
2009-06-03
correlations between NSI full items are presented in Appendix A. Visual inspection of the correlation matrix, the Kaiser - Meyer - Olkin coefficient of .92, and...Spearman rho correlations between NSI residuals are pre- sented in Appendix B. Again, visual inspection of the correla- tion matrix, the Kaiser - Meyer ... Olkin coefficient of .83, and Bartlett’s test of sphericity (x2 5 1,936.0, p , .01) suggested that the matrix could be factored. Principal-components
Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou
2013-01-01
Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479
Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications docu...
Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.
Zitnik, Marinka; Zupan, Blaž
2014-01-01
The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.
Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.
Bi, Yuying; Patra, Prabir; Faezipour, Miad
2014-01-01
Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.
Selection of representative embankments based on rough set - fuzzy clustering method
NASA Astrophysics Data System (ADS)
Bin, Ou; Lin, Zhi-xiang; Fu, Shu-yan; Gao, Sheng-song
2018-02-01
The premise condition of comprehensive evaluation of embankment safety is selection of representative unit embankment, on the basis of dividing the unit levee the influencing factors and classification of the unit embankment are drafted.Based on the rough set-fuzzy clustering, the influence factors of the unit embankment are measured by quantitative and qualitative indexes.Construct to fuzzy similarity matrix of standard embankment then calculate fuzzy equivalent matrix of fuzzy similarity matrix by square method. By setting the threshold of the fuzzy equivalence matrix, the unit embankment is clustered, and the representative unit embankment is selected from the classification of the embankment.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Pattern identification in time-course gene expression data with the CoGAPS matrix factorization.
Fertig, Elana J; Stein-O'Brien, Genevieve; Jaffe, Andrew; Colantuoni, Carlo
2014-01-01
Patterns in time-course gene expression data can represent the biological processes that are active over the measured time period. However, the orthogonality constraint in standard pattern-finding algorithms, including notably principal components analysis (PCA), confounds expression changes resulting from simultaneous, non-orthogonal biological processes. Previously, we have shown that Markov chain Monte Carlo nonnegative matrix factorization algorithms are particularly adept at distinguishing such concurrent patterns. One such matrix factorization is implemented in the software package CoGAPS. We describe the application of this software and several technical considerations for identification of age-related patterns in a public, prefrontal cortex gene expression dataset.
Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Factorization-based texture segmentation
Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.
2015-06-17
This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less
Weighted graph based ordering techniques for preconditioned conjugate gradient methods
NASA Technical Reports Server (NTRS)
Clift, Simon S.; Tang, Wei-Pai
1994-01-01
We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.
Growth factor transgenes interactively regulate articular chondrocytes.
Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B
2013-04-01
Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.
Zumstein, Matthias A; Berger, Simon; Schober, Martin; Boileau, Pascal; Nyffeler, Richard W; Horn, Michael; Dahinden, Clemens A
2012-06-01
Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.
Factor Analysis by Generalized Least Squares.
ERIC Educational Resources Information Center
Joreskog, Karl G.; Goldberger, Arthur S.
Aitkin's generalized least squares (GLS) principle, with the inverse of the observed variance-covariance matrix as a weight matrix, is applied to estimate the factor analysis model in the exploratory (unrestricted) case. It is shown that the GLS estimates are scale free and asymptotically efficient. The estimates are computed by a rapidly…
EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS
ABSTRACT
Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...
UDU/T/ covariance factorization for Kalman filtering
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1980-01-01
There has been strong motivation to produce numerically stable formulations of the Kalman filter algorithms because it has long been known that the original discrete-time Kalman formulas are numerically unreliable. Numerical instability can be avoided by propagating certain factors of the estimate error covariance matrix rather than the covariance matrix itself. This paper documents filter algorithms that correspond to the covariance factorization P = UDU(T), where U is a unit upper triangular matrix and D is diagonal. Emphasis is on computational efficiency and numerical stability, since these properties are of key importance in real-time filter applications. The history of square-root and U-D covariance filters is reviewed. Simple examples are given to illustrate the numerical inadequacy of the Kalman covariance filter algorithms; these examples show how factorization techniques can give improved computational reliability.
Factorization and fitting of molecular scattering information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldflam, R.; Kouri, D.J.; Green, S.
1977-12-15
The factorization of cross sections of various kinds resulting from the infinite order sudden approximation is considered in detail. Unlike the earlier study of Goldflam, Green, and Kouri, we base the present analysis on the factored IOS T-matrix rather than on the S-matrix. This enables us to obtain somewhat simpler expressions. For example, we show that the factored IOS approximation to the Arthurs--Dalgarno T-matrix involves products of dynamical coefficients T/sup L//sub l/ and Percival--Seaton coefficients f/sub L/(jlvertical-barj/sub 0/l/sub 0/vertical-barJ). It is shown that an optical theorem exists for the T/sub l//sup L/ dynamical coefficients of the T-matrix. The differential scatteringmore » amplitudes are shown to factor into dynamical coefficients q/sub L/(chi) times spectroscopic factors that are independent of the dynamics (potential). Then a generalized form of the Parker--Pack result for ..sigma../sub j/(dsigma/dR)(j/sub 0/..-->..j) is derived. It is also shown that the IOS approximation for (dsigma/dR)(j/sub 0/..-->..j) factors into sums of spectroscopic coefficients times the differential cross sections out of j/sub 0/=0. The IOS integral cross sections factor into spectroscopic coefficients times the integral cross sections out of j/sub 0/=0. The factored IOS general phenomenological cross sections are rederived using the T-matrix approach and are shown to equal sums of Percival--Seaton coefficients timesthe inelastic integral cross section out of initial rotor state j/sub 0/ = 0. This suggests that experimental measurements of line shapes and/or NMR spin--lattice relaxation can be used to directly give inelastic state-to-state degeneracy averaged integral cross sections whenever the IOS is a good approximation. Factored IOS expressions for viscosity and diffusion are derived and shown to potentially yield additional information beyond that contained in line shapes.« less
Human umbilical cord derived matrix: A scaffold suitable for tissue engineering application.
Dan, Pan; Velot, Émilie; Mesure, Benjamin; Groshenry, Guillaume; Bacharouche, Jalal; Decot, Véronique; Menu, Patrick
2017-01-01
Human tissue derived natural extracellular matrix (ECM) has great potential in tissue engineering. We sought to isolate extracellular matrix derived from human umbilical cord and test its potential in tissue engineering. An enzymatic method was applied to isolate and solubilized complete human umbilical cord derived matrix (hUCM). The obtained solution was analyzed for growth factors, collagen and residual DNA contents, then used to coat 2D and 3D surfaces for cell culture application. The hUCM was successfully isolated with trypsin digestion to acquire a solution containing various growth factors and collagen but no residual DNA. This hUCM solution can form a coating on 2D and 3D substrates suitable cell culture. We developed a new matrix derived from human source that can be further used in tissue engineering.
NASA Technical Reports Server (NTRS)
Bakuckas, John G., Jr.; Johnson, W. Steven
1994-01-01
In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
NASA Astrophysics Data System (ADS)
Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka
2017-07-01
This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.
Vermeulen, Pieter; Dickens, Stijn; Degezelle, Karlien; Van den Berge, Stefaan; Hendrickx, Benoit; Vranckx, Jan Jeroen
2009-07-01
In search of an autologous vascularized skin substitute, we treated full-thickness wounds (FTWs) with autologous platelet-rich plasma gel (APG) in which we embedded endothelial progenitor cells (EPCs) and basal cell keratinocytes (KCs). We cultivated autologous KCs in low-serum conditions and expanded autologous EPCs from venous blood. FTWs (n = 55) were created on the backs of four pigs, covered with wound chambers, and randomly assigned to the following treatments: (1) APG, (2) APG + KCs, (3) APG + EPCs, (4) APG + KCs + EPCs, and (5) saline. All wounds were biopsied to measure neovascularization (lectin Bandeiraea Simplicifolia-1 (BS-1), alpha smooth muscle actin [alphaSMA], and membrane type 1 matrix metalloproteinase (MT1-MMP)), matrix deposition (fibronectin, collagen type I/III, and alphavbeta3), and reepithelialization. Wound fluids were analyzed for protein expression. All APG-treated wounds showed more vascular structures (p < 0.001), and the addition of EPCs further improved neovascularization, as confirmed by higher lectin, alphaSMA, and MT1-MMP. APG groups had higher collagen I/III (p < 0.05), alphavbeta3, and fibronectin content (p < 0.001), and they exhibited higher concentrations of platelet-derived growth factor subunit bb, basic fibroblast growth factor, hepatocyte growth factor, insulin growth factor-1, transforming growth factor-beta1 and -beta3, matrix metalloproteinase-1 and -z9, and tissue-inhibiting matrix metalloproteinase-1 and -2. Applying APG + KCs resulted in the highest reepithelialization rates (p < 0.001). No differences were found for wound contraction by planimetry. In this porcine FTW model, APG acts as a supportive biomatrix that, along with the embedded cells, improves extracellular matrix organization, promotes angiogenesis, and accelerates reepithelialization.
Quantification of various growth factors in different demineralized bone matrix preparations.
Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G
2007-05-01
Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.
Rephasing invariants of the Cabibbo-Kobayashi- Maskawa matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez R, H.; Kielanowski, P., E-mail: kiel@fis.cinvestav.mx; Juárez W, S. R., E-mail: rebeca@esfm.ipn.mx
2016-03-15
The paper is motivated by the importance of the rephasing invariance of the CKM (Cabibbo-Kobayashi-Maskawa) matrix observables. These observables appear in the discussion of the CP violation in the standard model (Jarlskog invariant) and also in the renormalization group equations for the quark Yukawa couplings. Our discussion is based on the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In the mainmore » theorem we show that a general rephasing invariant monomial can be expressed as a product of at most five factors: four of them are fundamental phase invariant monomials and the fifth factor consists of powers of squares of absolute values of the CKM matrix elements. We also show that the imaginary part of any rephasing invariant monomial is proportional to the Jarlskog’s invariant J or is 0.« less
Multichannel Compressive Sensing MRI Using Noiselet Encoding
Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin
2015-01-01
The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548
Constructing the tree-level Yang-Mills S-matrix using complex factorization
NASA Astrophysics Data System (ADS)
Schuster, Philip C.; Toro, Natalia
2009-06-01
A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants — these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ~ 1/z2.
MATRIX FACTORIZATION-BASED DATA FUSION FOR GENE FUNCTION PREDICTION IN BAKER’S YEAST AND SLIME MOLD
ŽITNIK, MARINKA; ZUPAN, BLAŽ
2014-01-01
The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker’s yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565
The Incremental Multiresolution Matrix Factorization Algorithm
Ithapu, Vamsi K.; Kondor, Risi; Johnson, Sterling C.; Singh, Vikas
2017-01-01
Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices – an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct “global” factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision. PMID:29416293
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Xu, Richard Yi Da; Luo, Xiangfeng
2018-05-01
Sparse nonnegative matrix factorization (SNMF) aims to factorize a data matrix into two optimized nonnegative sparse factor matrices, which could benefit many tasks, such as document-word co-clustering. However, the traditional SNMF typically assumes the number of latent factors (i.e., dimensionality of the factor matrices) to be fixed. This assumption makes it inflexible in practice. In this paper, we propose a doubly sparse nonparametric NMF framework to mitigate this issue by using dependent Indian buffet processes (dIBP). We apply a correlation function for the generation of two stick weights associated with each column pair of factor matrices while still maintaining their respective marginal distribution specified by IBP. As a consequence, the generation of two factor matrices will be columnwise correlated. Under this framework, two classes of correlation function are proposed: 1) using bivariate Beta distribution and 2) using Copula function. Compared with the single IBP-based NMF, this paper jointly makes two factor matrices nonparametric and sparse, which could be applied to broader scenarios, such as co-clustering. This paper is seen to be much more flexible than Gaussian process-based and hierarchial Beta process-based dIBPs in terms of allowing the two corresponding binary matrix columns to have greater variations in their nonzero entries. Our experiments on synthetic data show the merits of this paper compared with the state-of-the-art models in respect of factorization efficiency, sparsity, and flexibility. Experiments on real-world data sets demonstrate the efficiency of this paper in document-word co-clustering tasks.
An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis.
Ray, Alpana; Ray, Bimal K
2008-01-01
A number of risk factors including biomechanical stress on the articular cartilage imposed by joint overloading due to obesity, repetitive damage of the joint tissues by injury of the menisci and ligaments, and abnormal joint alignment play a significant role in the onset of osteoarthritis (OA). Genetic predisposition can also lead to the formation of defective cartilage matrix because of abnormal gene expression in the cartilage-specific cells. Another important biochemical event in OA is the consequence of inflammation. It has been shown that synovial inflammation triggers the synthesis of biological stimuli such as cytokines and growth factors which subsequently reach the chondrocyte cells of the articular cartilage activating inflammatory events in the chondrocytes leading to cartilage destruction. In addition to cartilage degradation, hypertrophy of the subchondral bone and osteophyte formation at the joint margins also takes place in OA. Both processes involve abnormal expression of a number of genes including matrix metalloproteinases (MMPs) for cartilage degradation and those associated with bone formation during osteophyte development. To address how diverse groups of genes are activated in OA chondrocyte, we have studied their induction mechanism. We present evidence for abundant expression of an inflammation-responsive transcription factor, SAF-1, in moderate to severely damaged OA cartilage tissues. In contrast, cells in normal cartilage matrix contain very low level of SAF-1 protein. SAF-1 is identified as a major regulator of increased synthesis of MMP-1 and -9 and pro-angiogenic factor, vascular endothelial growth factor (VEGF). While VEGF by stimulating angiogenesis plays a key role in new bone formation in osteophyte, increase of MMP-1 and -9 is instrumental for cartilage erosion in the pathogenesis of OA. Increased expression in degenerated cartilage matrix and in the osteophytes indicate for a key regulatory role of SAF-1 in directing catabolic matrix degrading and anabolic matrix regenerating activities.
Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.
2016-01-01
Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329
Thermal form-factor approach to dynamical correlation functions of integrable lattice models
NASA Astrophysics Data System (ADS)
Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji
2017-11-01
We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.
Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei
2015-01-01
In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.
Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
Center fo...
A Transfer Learning Approach for Applying Matrix Factorization to Small ITS Datasets
ERIC Educational Resources Information Center
Voß, Lydia; Schatten, Carlotta; Mazziotti, Claudia; Schmidt-Thieme, Lars
2015-01-01
Machine Learning methods for Performance Prediction in Intelligent Tutoring Systems (ITS) have proven their efficacy; specific methods, e.g. Matrix Factorization (MF), however suffer from the lack of available information about new tasks or new students. In this paper we show how this problem could be solved by applying Transfer Learning (TL),…
Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...
ERIC Educational Resources Information Center
Beauducel, Andre
2007-01-01
It was investigated whether commonly used factor score estimates lead to the same reproduced covariance matrix of observed variables. This was achieved by means of Schonemann and Steiger's (1976) regression component analysis, since it is possible to compute the reproduced covariance matrices of the regression components corresponding to different…
Estimating gene function with least squares nonnegative matrix factorization.
Wang, Guoli; Ochs, Michael F
2007-01-01
Nonnegative matrix factorization is a machine learning algorithm that has extracted information from data in a number of fields, including imaging and spectral analysis, text mining, and microarray data analysis. One limitation with the method for linking genes through microarray data in order to estimate gene function is the high variance observed in transcription levels between different genes. Least squares nonnegative matrix factorization uses estimates of the uncertainties on the mRNA levels for each gene in each condition, to guide the algorithm to a local minimum in normalized chi2, rather than a Euclidean distance or divergence between the reconstructed data and the data itself. Herein, application of this method to microarray data is demonstrated in order to predict gene function.
Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan
2017-11-01
The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Varney, Shawn; Hirshon, Jon Mark; Dischinger, Patricia; Mackenzie, Colin
2006-01-01
The Haddon Matrix offers a classic epidemiological model for studying injury prevention. This methodology places the public health concepts of agent, host, and environment within the three sequential phases of an injury-producing incident-pre-event, event, and postevent. This study uses this methodology to illustrate how it could be applied in systematically preparing for a mass casualty disaster such as an unconventional sarin attack in a major urban setting. Nineteen city, state, federal, and military agencies responded to the Haddon Matrix chemical terrorism preparedness exercise and offered feedback in the data review session. Four injury prevention strategies (education, engineering, enforcement, and economics) were applied to the individual factors and event phases of the Haddon Matrix. The majority of factors identified in all phases were modifiable, primarily through educational interventions focused on individual healthcare providers and first responders. The Haddon Matrix provides a viable means of studying an unconventional problem, allowing for the identification of modifiable factors to decrease the type and severity of injuries following a mass casualty disaster such as a sarin release. This strategy could be successfully incorporated into disaster planning for other weapons attacks that could potentially cause mass casualties.
Zhang, Ying-Hui; Wang, Juan-Juan; Li, Min; Zheng, Han-Xi; Xu, Lan; Chen, You-Guo
2016-03-01
The objectives of this study were to investigate the functional effect of matrix metallopeptidase 14 (MMP14) on cell invasion in cervical cancer cells (HeLa line) and to study the underlying molecular mechanisms. Expression vector of short hairpin RNA targeting MMP14 was treated in HeLa cells, and then, transfection efficiency was verified by a florescence microscope. Transwell assay was used to investigate cell invasion ability in HeLa cells. Quantitative polymerase chain reaction and Western blotting analysis were used to detect the expression of MMP14 and relative factors in messenger RNA and protein levels, respectively. Matrix metallopeptidase 14 short hairpin RNA expression vector transfection obviously decreased MMP14 expression in messenger RNA and protein levels. Down-regulation of MMP14 suppressed invasion ability of HeLa cells and reduced transforming growth factor β1 and vascular endothelial growth factor B expressions. Furthermore, MMP14 knockdown decreased bone sialoprotein and enhanced forkhead box protein L2 expression in both RNA and protein levels. Matrix metallopeptidase 14 plays an important role in regulating invasion of HeLa cells. Matrix metallopeptidase 14 knockdown contributes to attenuating the malignant phenotype of cervical cancer cell.
Dimensions of postconcussive symptoms in children with mild traumatic brain injuries.
Ayr, Lauren K; Yeates, Keith Owen; Taylor, H Gerry; Browne, Michael
2009-01-01
The dimensions of postconcussive symptoms (PCS) were examined in a prospective, longitudinal study of 186 8 to 15 year old children with mild traumatic brain injuries (TBI). Parents and children completed a 50-item questionnaire within 2 weeks of injury and again at 3 months after injury, rating the frequency of PCS on a 4-point scale. Common factor analysis with target rotation was used to rotate the ratings to four hypothesized dimensions, representing cognitive, somatic, emotional, and behavioral symptoms. The rotated factor matrix for baseline parent ratings was consistent with the target matrix. The rotated matrix for baseline child ratings was consistent with the target matrix for cognitive and somatic symptoms but not for emotional and behavioral symptoms. The rotated matrices for ratings obtained 3 months after injury were largely consistent with the target matrix derived from analyses of baseline ratings, except that parent ratings of behavioral symptoms did not cluster as before. Parent and child ratings of PCS following mild TBI yield consistent factors reflecting cognitive and somatic symptom dimensions, but dimensions of emotional and behavioral symptoms are less robust across time and raters. (JINS, 2009, 15, 19-30.).
Matrix modulation and heart failure: new concepts question old beliefs.
Deschamps, Anne M; Spinale, Francis G
2005-05-01
Myocardial remodeling is a complex process involving several molecular and cellular factors. Extracellular matrix has been implicated in the remodeling process. Historically, the myocardial extracellular matrix was thought to serve solely as a means to align cells and provide structure to the tissue. Although this is one of its important functions, evidence suggests that the extracellular matrix plays a complex and divergent role in influencing cell behavior. This paper characterizes some of the notable studies on this dynamic entity and on adverse myocardial remodeling that have been published over the past year, which further question the belief that the extracellular matrix is a static structure. Progress has been made in understanding how the extracellular matrix is operative in the three major conditions (myocardial infarction, left ventricular hypertrophy due to overload, and dilated cardiomyopathy) that involve myocardial remodeling. Several studies have examined plasma profiles of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases following myocardial infarction and during left ventricular hypertrophy as surrogate markers of remodeling/remodeled myocardium. It has been demonstrated that bioactive signaling molecules and growth factors, proteases, and structural proteins influence cell-matrix interactions in the context of left ventricular hypertrophy. Finally, studies that either removed or added tissue inhibitor of metalloproteinases species in the myocardium demonstrated the importance of this regulatory protein in the remodeling process. Understanding the cellular and molecular triggers that in turn give rise to changes in the extracellular matrix could provide opportunities to modify the remodeling process.
Prevedello, Jayme Augusto; Forero-Medina, Germán; Vieira, Marcus Vinícius
2010-11-01
1. For animal species inhabiting heterogeneous landscapes, the tortuosity of the dispersal path is a key determinant of the success in locating habitat patches. Path tortuosity within and beyond perceptual range must differ, and may be differently affected by intrinsic attributes of individuals and extrinsic environmental factors. Understanding how these factors interact to determine path tortuosity allows more accurate inference of successful movements between habitat patches. 2. We experimentally determined the effects of intrinsic (body mass and species identity) and extrinsic factors (distance to nearest forest fragment and matrix type) on the tortuosity of movements of three forest-dwelling didelphid marsupials, in a fragmented landscape of the Atlantic Forest, Brazil. 3. A total of 202 individuals were captured in forest fragments and released in three unsuitable matrix types (mowed pasture, abandoned pasture and manioc plantation), carrying spool-and-line devices. 4. Twenty-four models were formulated representing a priori hypotheses of major determinants of path tortuosity, grouped in three scenarios (only intrinsic factors, only extrinsic factors and models with combinations of both), and compared using a model selection approach. Models were tested separately for individuals released within the perceptual range of the species, and for individuals released beyond the perceptual range. 5. Matrix type strongly affected path tortuosity, with more obstructed matrix types hampering displacement of animals. Body mass was more important than species identity to determine path tortuosity, with larger animals moving more linearly. Increased distance to the fragment resulted in more tortuous paths, but actually reflects a threshold in perceptual range: linear paths within perceptual range, tortuous paths beyond. 6. The variables tested explained successfully path tortuosity, but only for animals released within the perceptual range. Other factors, such as wind intensity and direction of plantation rows, may be more important for individuals beyond their perceptual range. 7. Simplistic scenarios considering only intrinsic or extrinsic factors are inadequate to predict path tortuosity, and to infer dispersal success in heterogeneous landscapes. Perceptual range represents a fundamental threshold where the effects of matrix type, body mass and individual behaviour change drastically. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.
The AdS{sub 5}xS{sup 5} superstring worldsheet S matrix and crossing symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, Romuald A.
2006-04-15
An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS{sub 5}xS{sup 5} superstring recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its determination remained an open problem. In this paper we propose an algebraic way to implement crossing relations for the AdS{sub 5}xS{sup 5} superstring worldsheet S matrix. We base our construction on a Hopf-algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on the universal cover of themore » parameter space which is constructed through an auxillary, coupling-constant dependent, elliptic curve. We determine the crossing transformation and write functional equations for the scalar factor of the S matrix in the generalized rapidity plane.« less
A novel edge-preserving nonnegative matrix factorization method for spectral unmixing
NASA Astrophysics Data System (ADS)
Bao, Wenxing; Ma, Ruishi
2015-12-01
Spectral unmixing technique is one of the key techniques to identify and classify the material in the hyperspectral image processing. A novel robust spectral unmixing method based on nonnegative matrix factorization(NMF) is presented in this paper. This paper used an edge-preserving function as hypersurface cost function to minimize the nonnegative matrix factorization. To minimize the hypersurface cost function, we constructed the updating functions for signature matrix of end-members and abundance fraction respectively. The two functions are updated alternatively. For evaluation purpose, synthetic data and real data have been used in this paper. Synthetic data is used based on end-members from USGS digital spectral library. AVIRIS Cuprite dataset have been used as real data. The spectral angle distance (SAD) and abundance angle distance(AAD) have been used in this research for assessment the performance of proposed method. The experimental results show that this method can obtain more ideal results and good accuracy for spectral unmixing than present methods.
Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel
2018-04-28
In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
NASA Astrophysics Data System (ADS)
Hao, Ming; Bryant, Stephen H.; Wang, Yanli
2017-01-01
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.
Monocyte activation by smooth muscle cell-derived matrices.
Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C
1990-12-01
Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.
Takayama, Mitsuo; Nagoshi, Keishiro; Iimuro, Ryunosuke; Inatomi, Kazuma
2014-01-01
A factor for estimating the flexibility of proteins is described that uses a cleavage method of “in-source decay (ISD)” coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The MALDI-ISD spectra of bovine serum albumin (BSA), myoglobin and thioredoxin show discontinuous intense ion peaks originating from one-side preferential cleavage at the N-Cα bond of Xxx-Asp, Xxx-Asn, Xxx-Cys and Gly-Xxx residues. Consistent with these observations, Asp, Asn and Gly residues are also identified by other flexibility measures such as B-factor, turn preference, protection and fluorescence decay factors, while Asp, Asn, Cys and Gly residues are identified by turn preference factor based on X-ray crystallography. The results suggest that protein molecules embedded in/on MALDI matrix crystals partly maintain α-helix and that the reason some of the residues are more susceptible to ISD (Asp, Asn, Cys and Gly) and others less so (Ile and Val) is because of accessibility of the peptide backbone to hydrogen-radicals from matrix molecules. The hydrogen-radical accessibility in MALDI-ISD could therefore be adopted as a factor for measuring protein flexibility. PMID:24828203
The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix
NASA Astrophysics Data System (ADS)
Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel
2018-05-01
This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.
Chaos and random matrices in supersymmetric SYK
NASA Astrophysics Data System (ADS)
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T
2016-07-01
Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.
Application of the matrix exponential kernel
NASA Technical Reports Server (NTRS)
Rohach, A. F.
1972-01-01
A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.
Evidence-Based Practice: A Matrix for Predicting Phonological Generalization
ERIC Educational Resources Information Center
Gierut, Judith A.; Hulse, Lauren E.
2010-01-01
This paper describes a matrix for clinical use in the selection of phonological treatment targets to induce generalization, and in the identification of probe sounds to monitor during the course of intervention. The matrix appeals to a set of factors that have been shown to promote phonological generalization in the research literature, including…
Active subspace: toward scalable low-rank learning.
Liu, Guangcan; Yan, Shuicheng
2012-12-01
We address the scalability issues in low-rank matrix learning problems. Usually these problems resort to solving nuclear norm regularized optimization problems (NNROPs), which often suffer from high computational complexities if based on existing solvers, especially in large-scale settings. Based on the fact that the optimal solution matrix to an NNROP is often low rank, we revisit the classic mechanism of low-rank matrix factorization, based on which we present an active subspace algorithm for efficiently solving NNROPs by transforming large-scale NNROPs into small-scale problems. The transformation is achieved by factorizing the large solution matrix into the product of a small orthonormal matrix (active subspace) and another small matrix. Although such a transformation generally leads to nonconvex problems, we show that a suboptimal solution can be found by the augmented Lagrange alternating direction method. For the robust PCA (RPCA) (Candès, Li, Ma, & Wright, 2009 ) problem, a typical example of NNROPs, theoretical results verify the suboptimality of the solution produced by our algorithm. For the general NNROPs, we empirically show that our algorithm significantly reduces the computational complexity without loss of optimality.
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1989-01-01
A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 deg and +/- 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was develolped to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Far-field strains at failure were calculated from the strain intensity factor, and then strengths were calculated from the far-field strains using uniaxial stress-strain curves. The predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only +/- 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.
Tsigkou, Anastasia; Reis, Fernando M; Ciarmela, Pasquapina; Lee, Meng H; Jiang, Bingjie; Tosti, Claudia; Shen, Fang-Rong; Shi, Zhendan; Chen, You-Guo; Petraglia, Felice
2015-12-01
Uterine leiomyoma is the most common benign neoplasm of female reproductive system, found in about 50% of women in reproductive age. The mechanisms of leiomyoma growth include cell proliferation, which is modulated by growth factors, and deposition of extracellular matrix (ECM). Activin A and myostatin are growth factors that play a role in proliferation of leiomyoma cells. Matrix metalloproteinases (MMPs) are known for their ability to remodel the ECM in different biological systems. The aim of this study was to evaluate the expression levels of activin βA-subunit, myostatin, and MMP14 messenger RNAs (mRNAs) in uterine leiomyomas and the possible correlation of these factors with clinical features of the disease. Matrix metalloproteinase 14 was highly expressed in uterine leiomyoma and correlated with myostatin and activin A mRNA expression. Moreover, MMP14 and myostatin mRNA expression correlated significantly and directly with the intensity of dysmenorrhea. Overall, the present findings showed that MMP14 mRNA is highly expressed in uterine leiomyoma, where it correlates with the molecular expression of growth factors and is further increased in cases of intense dysmenorrhea. © The Author(s) 2015.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Augmenting matrix factorization technique with the combination of tags and genres
NASA Astrophysics Data System (ADS)
Ma, Tinghuai; Suo, Xiafei; Zhou, Jinjuan; Tang, Meili; Guan, Donghai; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah
2016-11-01
Recommender systems play an important role in our daily life and are becoming popular tools for users to find what they are really interested in. Matrix factorization methods, which are popular recommendation methods, have gained high attention these years. With the rapid growth of the Internet, lots of information has been created, like social network information, tags and so on. Along with these, a few matrix factorization approaches have been proposed which incorporate the personalized information of users or items. However, except for ratings, most of the matrix factorization models have utilized only one kind of information to understand users' interests. Considering the sparsity of information, in this paper, we try to investigate the combination of different information, like tags and genres, to reveal users' interests accurately. With regard to the generalization of genres, a constraint is added when genres are utilized to find users' similar ;soulmates;. In addition, item regularizer is also considered based on latent semantic indexing (LSI) method with the item tags. Our experiments are conducted on two real datasets: Movielens dataset and Douban dataset. The experimental results demonstrate that the combination of tags and genres is really helpful to reveal users' interests.
Harvey, A K; Stack, S T; Chandrasekhar, S
1993-01-01
Interleukin 1 (IL-1) plays a dual role in cartilage matrix degeneration by promoting extracellular proteinase action such as the matrix metalloproteinases (increased degradation) and by suppressing the synthesis of extracellular matrix molecules (inhibition of repair). Platelet-derived growth factor (PDGF) is a wound-healing hormone which is released along with IL-1 during the inflammatory response. Since previous studies have shown that PDGF enhances IL-1 alpha effects on metalloproteinase activity, in this report, we have examined whether PDGF modifies IL-1 beta effects on cartilage proteoglycan synthesis. Initially, we confirmed that rabbit articular chondrocytes treated with IL-1 beta + PDGF induced higher proteinase activity, in comparison with IL-1-treated cells. We further observed that the increased proteinase activity correlated with an increase in the synthesis of collagenase/stromelysin proteins and a corresponding increase in the steady-state mRNA levels for both the enzymes. Studies on IL-1 receptor expression suggested that PDGF caused an increase in IL-1 receptor expression which, by augmenting the IL-1 response, may have led to the increase in proteinase induction. Analysis of proteoglycan synthesis confirmed that IL-1 reduced the incorporation of sulphated proteoglycan, aggrecan, into the extracellular matrix of chondrocytes, whereas PDGF stimulated it. However, cells treated with IL-1 + PDGF synthesized normal levels of aggrecan. This is in contrast with cells treated with IL-1 + fibroblast growth factor, in which case only proteinase activity was potentiated. The results allow us to conclude that (a) the two effector functions that play a role in matrix remodelling, namely matrix lysis (proteinase induction) and matrix repair (proteoglycan synthesis), occur via distinct pathways and (b) PDGF may play a crucial role in cartilage repair by initially causing matrix degradation followed by promoting new matrix synthesis. Images Figure 1 Figure 2 Figure 5 Figure 6 PMID:8503839
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-08-07
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less
Tissue Engineering Using Transfected Growth-Factor Genes
NASA Technical Reports Server (NTRS)
Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana
2005-01-01
A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.
Sozen, Ibrahim; Arici, Aydin
2002-07-01
To review the available information regarding the role of cytokines, growth factors, and the extracellular matrix in the pathophysiology of uterine leiomyomata and to integrate this information in a suggested model of disease at the cellular level. A thorough literature and MEDLINE search was conducted to identify the relevant studies in the English literature published between January, 1966 and October, 2001. A model of disease at the cellular level was developed using the most likely cytokines to be involved in the pathogenesis of leiomyomata as determined by our assessment of the available literature. A number of cytokines and growth factors, including transforming growth factor-beta (TGF-beta), epidermal growth factor, monocyte chemotactic protein-1, insulin-like growth factors 1 and 2, prolactin, parathyroid-hormone-related peptide, basic fibroblast growth factor, platelet-derived growth factor, interleukin-8, and endothelin, have been investigated in myometrium and leiomyoma. Among these cytokines, TGF-beta appears to be the only growth factor that has been shown to be overexpressed in leiomyoma vs. myometrium, be hormonally-regulated both in vivo and in vitro, and be both mitogenic and fibrogenic in these tissues. In addition to the cytokines, extracellular matrix components such as collagen, fibronectin, proteoglycans, matrix metalloproteinases, and tissue inhibitors of metalloproteinases seem to play pivotal roles in the pathogenesis of leiomyomata. We believe that, given the extent and depth of the current research on the cellular biology of leiomyomata, the cellular mechanisms responsible in the pathogenesis of leiomyomata will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level.
Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds.
Hernandez-Gordillo, Victor; Chmielewski, Jean
2014-08-01
Natural and synthetic three-dimensional (3-D) scaffolds that mimic the microenvironment of the extracellular matrix (ECM), with growth factor storage/release and the display of cell adhesion signals, offer numerous advantages for regenerative medicine and in vitro morphogenesis and oncogenesis modeling. Here we report the design of collagen mimetic peptides (CMPs) that assemble into a highly crosslinked 3-D matrix in response to metal ion stimuli, that may be functionalized with His-tagged cargoes, such as green fluorescent protein (GFP-His8) and human epidermal growth factor (hEGF-His6). The bound hEGF-His6 was found to gradually release from the matrix in vitro and induce cell proliferation in the EGF-dependent cell line MCF10A. The additional incorporation of a cell adhesion sequence (RGDS) at the N-terminus of the CMP creates an environment that facilitated the organization of matrix-encapsulated MCF10A cells into spheroid structures, thus mimicking the ECM environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multifunctional and biologically active matrices from multicomponent polymeric solutions
NASA Technical Reports Server (NTRS)
Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)
2012-01-01
A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.
Calabi-Yau structures on categories of matrix factorizations
NASA Astrophysics Data System (ADS)
Shklyarov, Dmytro
2017-09-01
Using tools of complex geometry, we construct explicit proper Calabi-Yau structures, that is, non-degenerate cyclic cocycles on differential graded categories of matrix factorizations of regular functions with isolated critical points. The formulas involve the Kapustin-Li trace and its higher corrections. From the physics perspective, our result yields explicit 'off-shell' models for categories of topological D-branes in B-twisted Landau-Ginzburg models.
Tensor-GMRES method for large sparse systems of nonlinear equations
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1994-01-01
This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.
Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M
1990-09-01
The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.
Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N
2016-07-12
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.
Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...
2016-06-06
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less
Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon
2011-04-04
A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.
Kastner, Sabine; Thomas, Gareth J.; Jenkins, Robert H.; Davies, Malcolm; Steadman, Robert
2007-01-01
Mesangial cells (MCs) are essential for normal renal function through the synthesis of their own extracellular matrix, which forms the structural support of the renal glomerulus. In many renal diseases this matrix is reorganized in response to a variety of cytokines and growth factors. This study examines proteoglycan and hyaluronan (HA) synthesis by MCs triggered by proinflammatory agents and investigates the effect of an exogenous HA matrix on matrix synthesis by MCs. Metabolic labeling, ion exchange and size exclusion chromatography, Western blotting, and immunocytochemistry were used to identify changes in matrix accumulation. When incubated with interleukin-1, platelet-derived growth factor, or fetal calf serum, MCs initiated rapid HA synthesis associated with the up-regulation of HA synthase-2 and increased the synthesis of versican, perlecan, and decorin/biglycan. HA was both released into the medium and incorporated into extensive pericellular coats. Adding exogenous HA to unstimulated cells that had undetectable pericellular coats of HA selectively reduced perlecan and versican turnover, whereas other proteoglycans were unaffected. These results suggest that high levels of HA in the mesangium in disease is a mechanism controlling the accumulation of specific mesangial matrix components. HA may thus be an attractive target for therapeutic intervention. PMID:17974600
Superfund Chemical Data Matrix (SCDM) Query - Popup
This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazardous Ranking System (HRS) factor values, benchmarks, and data elements that you need.
Superfund Chemical Data Matrix (SCDM) Query
This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazard Ranking System (HRS) factor values, benchmarks, and data elements that you need.
Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones
Hansen, R K; Bissell, M J
2010-01-01
The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527
Perceived barriers to medical-error reporting: an exploratory investigation.
Uribe, Claudia L; Schweikhart, Sharon B; Pathak, Dev S; Dow, Merrell; Marsh, Gail B
2002-01-01
Medical-error reporting is an essential component for patient safety enhancement. Unfortunately, medical errors are largely underreported across healthcare institutions. This problem can be attributed to different factors and barriers present at organizational and individual levels that ultimately prevent individuals from generating the report. This study explored the factors that affect medical-error reporting among physicians and nurses at a large academic medical center located in the midwest United States. A nominal group session was conducted to identify the most relevant factors that act as barriers for error reporting. These factors were then used to design a questionnaire that explored the likelihood of the factors to act as barriers and their likelihood to be modified. Using these two parameters, the results were analyzed and combined into a Factor Relevance Matrix. The matrix identifies the factors for which immediate actions should be undertaken to improve medical-error reporting (immediate action factors). It also identifies factors that require long-term strategies (long-term strategy factors) as well as factors that the organization should be aware of but that are of lower priority (awareness factors). The strategies outlined in this study may assist healthcare organizations in improving medical-error reporting, as part of the efforts toward patient-safety enhancement. Although factors affecting medical-error reporting may vary between different organizations, the process used in identifying the factors and the Factor Relevance Matrix developed in this study are easily adaptable to any organizational setting.
Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.
Nevins, Marc L; Said, Sherif
2017-12-28
Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.
Lei, Jennifer; Priddy, Lauren B.; Lim, Jeremy J.; Massee, Michelle; Koob, Thomas J.
2017-01-01
Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair. PMID:28224047
Lei, Jennifer; Priddy, Lauren B; Lim, Jeremy J; Massee, Michelle; Koob, Thomas J
2017-02-01
Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION ® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek ® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair.
Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J
2009-07-01
Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.
Factors affecting miniature Izod impact strength of tungsten-fiber-metal-matrix
NASA Technical Reports Server (NTRS)
Winsa, E. A.; Petrasek, D. W.
1973-01-01
The miniature Izod and Charpy impact strengths of copper, copper-nickel, and nickel-base superalloy uniaxially reinforced with continuous tungsten fibers were studied. In most cases, impact strength was increased by increasing fiber or matrix toughness, decreasing fibermatrix reaction, increasing test temperature, hot working, or heat treating. Notch sensitivity was reduced by increasing fiber content or matrix toughness. An equation relating impact strength to fiber and matrix properties and fiber content was developed. Program results imply that tungsten alloy-fiber/superalloy matrix composites can be made with adequate impact resistance for turbine blade or vane applications.
Modeling fatigue crack growth in cross ply titanium matrix composites
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1993-01-01
In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.
Moreno, Daniela; Berli, Federico; Bottini, Rubén; Piccoli, Patricia N; Silva, María F
2017-09-01
Soluble carbohydrates distribution depends on plant physiology and, among other important factors, determines fruit yield and quality. In plant biology, the analysis of sugars is useful for many purposes, including metabolic studies. Capillary electrophoresis (CE) proved to be a powerful green separation technique with minimal sample preparation, even in complex plant tissues, that can provide high-resolution efficiency. Matrix effect refers to alterations in the analytical response caused by components of a sample other than the analyte of interest. Thus, the assessment and reduction of the matrix factor is fundamental for metabolic studies in different matrices. The present study evaluated the source and levels of matrix effects in the determination of most abundant sugars in grapevine tissues (mature and young leaves, berries and roots) at two phenological growth stages. Sucrose was the sugar that showed the least matrix effects, while fructose was the most affected analyte. Based on plant tissues, young leaves presented the smaller matrix effects, irrespectively of the phenology. These changes may be attributed to considerable differences at chemical composition of grapevine tissues with plant development. Therefore, matrix effect should be an important concern for plant metabolomics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Superfund Chemical Data Matrix (SCDM) Query - April 2016
This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazardous Ranking System (HRS) factor values, benchmarks, and data elements that you need.
Efficient Matrix Models for Relational Learning
2009-10-01
74 4.5.3 Comparison to pLSI- pHITS . . . . . . . . . . . . . . . . . . . . 76 5 Hierarchical Bayesian Collective...Behaviour of Newton vs. Stochastic Newton on a three-factor model. 4.5.3 Comparison to pLSI- pHITS Caveat: Collective Matrix Factorization makes no guarantees...leads to better results; and another where a co-clustering model, pLSI- pHITS , has the advantage. pLSI- pHITS [24] is a relational clustering technique
James R. Wallis
1965-01-01
Written in Fortran IV and MAP, this computer program can handle up to 120 variables, and retain 40 principal components. It can perform simultaneous regression of up to 40 criterion variables upon the varimax rotated factor weight matrix. The columns and rows of all output matrices are labeled by six-character alphanumeric names. Data input can be from punch cards or...
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.
Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen
2014-01-01
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice.
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes
Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen
2014-01-01
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455
Yuan, Ke-Hai; Jiang, Ge; Cheng, Ying
2017-11-01
Data in psychology are often collected using Likert-type scales, and it has been shown that factor analysis of Likert-type data is better performed on the polychoric correlation matrix than on the product-moment covariance matrix, especially when the distributions of the observed variables are skewed. In theory, factor analysis of the polychoric correlation matrix is best conducted using generalized least squares with an asymptotically correct weight matrix (AGLS). However, simulation studies showed that both least squares (LS) and diagonally weighted least squares (DWLS) perform better than AGLS, and thus LS or DWLS is routinely used in practice. In either LS or DWLS, the associations among the polychoric correlation coefficients are completely ignored. To mend such a gap between statistical theory and empirical work, this paper proposes new methods, called ridge GLS, for factor analysis of ordinal data. Monte Carlo results show that, for a wide range of sample sizes, ridge GLS methods yield uniformly more accurate parameter estimates than existing methods (LS, DWLS, AGLS). A real-data example indicates that estimates by ridge GLS are 9-20% more efficient than those by existing methods. Rescaled and adjusted test statistics as well as sandwich-type standard errors following the ridge GLS methods also perform reasonably well. © 2017 The British Psychological Society.
Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...
2015-04-01
In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less
Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.
2015-08-01
Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela
In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela
Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less
Two-faced property of a market factor in asset pricing and diversification effect
NASA Astrophysics Data System (ADS)
Eom, Cheoljun
2017-04-01
This study empirically investigates the test hypothesis that a market factor acting as a representative common factor in the pricing models has a negative influence on constructing a well-diversified portfolio from the Markowitz mean-variance optimization function (MVOF). We use the comparative correlation matrix (C-CM) method to control a single eigenvalue among all eigenvalues included in the sample correlation matrix (S-CM), through the random matrix theory (RMT). In particular, this study observes the effect of the largest eigenvalue that has the property of the market factor. According to the results, the largest eigenvalue has the highest explanatory power on the stock return changes. The C-CM without the largest eigenvalue in the S-CM constructs a more diversified portfolio capable of improving the practical applicability of the MVOF. Moreover, the more diversified portfolio constructed from this C-CM has better out-of-sample performance in the future period. These results support the test hypothesis for the two-faced property of the market factor, defined by the largest eigenvalue.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1988-01-01
A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 to + or - 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Strengths of specimens containing crack-like slits were calculated from predicted failing strains using uniaxial stress-strain curves. Predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only + or - 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, R. L.
1976-06-14
Program GRAY is written to perform the matrix manipulations necessary to convert black-body radiation heat-transfer view factors to gray-body view factors as required by thermal analyzer codes. The black-body view factors contain only geometric relationships. Program GRAY allows the effects of multiple gray-body reflections to be included. The resulting effective gray-body factors can then be used with the corresponding fourth-power temperature differences to obtain the net radiative heat flux. The program is written to accept a matrix input or the card image output generated by the black-body view factor program CNVUFAC. The resulting card image output generated by GRAY ismore » in a form usable by the TRUMP thermal analyzer.« less
Numerical examination of the factors controlling DNAPL migration through a single fracture.
Reynolds, D A; Kueper, B H
2002-01-01
The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.
Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, R K; Bissell, M J
The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less
Analysis of IFE, EFE and QSPM matrix on business development strategy
NASA Astrophysics Data System (ADS)
Zulkarnain, A.; Wahyuningtias, D.; Putranto, T. S.
2018-03-01
IFE matrix, EFE matrix, and QSPM matrix are business strategy tools that can be used to identify the threat, opportunity, weakness, strength as internal, external business factors. The goal of Danti’s Deli Bakery is to provide pastry product and distribute to other food and beverage outlet all around Jakarta. Thus, Danti’s Deli Bakery requires development strategy in order to win the tight competition. Applied descriptive research and data collected from focus group discussion, questionnaire, interview, observation and literature review. The objectives of this paper are (1) to identify and evaluate internal and external factors, (2) to formulate alternative strategy toward business development program, and (3) to give effective recommendation. The result shows that Danti’s Deli Bakery should apply product differentiation strategy. Implementation of this study is providing the recommendation for pastry and bakery industry to establish a successful business.
NASA Technical Reports Server (NTRS)
Callier, F. M.; Nahum, C. D.
1975-01-01
The series connection of two linear time-invariant systems that have minimal state space system descriptions is considered. From these descriptions, strict-system-equivalent polynomial matrix system descriptions in the manner of Rosenbrock are derived. They are based on the factorization of the transfer matrix of the subsystems as a ratio of two right or left coprime polynomial matrices. They give rise to a simple polynomial matrix system description of the tandem connection. Theorem 1 states that for the complete controllability and observability of the state space system description of the series connection, it is necessary and sufficient that certain 'denominator' and 'numerator' groups are coprime. Consequences for feedback systems are drawn in Corollary 1. The role of pole-zero cancellations is explained by Lemma 3 and Corollaires 2 and 3.
Kim, Hyunsoo; Park, Haesun
2007-06-15
Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.
NASA Technical Reports Server (NTRS)
Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid
2003-01-01
In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.
Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei
2016-02-01
Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
Matrix Remodeling in Pulmonary Fibrosis and Emphysema
O’Reilly, Philip; Antony, Veena B.; Gaggar, Amit
2016-01-01
Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Astrophysics Data System (ADS)
Doychak, J.
1992-06-01
Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash
2010-01-01
Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!
User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.
NASA Technical Reports Server (NTRS)
Reddy, C. J.
2000-01-01
PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.
Computationally efficient modeling and simulation of large scale systems
NASA Technical Reports Server (NTRS)
Jain, Jitesh (Inventor); Cauley, Stephen F. (Inventor); Li, Hong (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Venkataramanan (Inventor)
2010-01-01
A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P.
Factorized three-body S-matrix restrained by the Yang–Baxter equation and quantum entanglements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Li-Wei, E-mail: NKyulw@gmail.com; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn; Ge, Mo-Lin, E-mail: geml@nankai.edu.cn
2014-09-15
This paper investigates the physical effects of the Yang–Baxter equation (YBE) to quantum entanglements through the 3-body S-matrix in entangling parameter space. The explicit form of 3-body S-matrix Ř{sub 123}(θ,φ) based on the 2-body S-matrices is given due to the factorization condition of YBE. The corresponding chain Hamiltonian has been obtained and diagonalized, also the Berry phase for 3-body system is given. It turns out that by choosing different spectral parameters the Ř(θ,φ)-matrix gives GHZ and W states respectively. The extended 1-D Kitaev toy model has been derived. Examples of the role of the model in entanglement transfer are discussed.more » - Highlights: • We give the relation between 3-body S-matrix and 3-qubit entanglement. • The relation between 3-qubit and 2-qubit entanglements is investigated via YBE. • 1D Kitaev toy model is derived by the Type-II solution of YBE. • The condition of YBE kills the “Zero boundary mode” in our chain model.« less
BCYCLIC: A parallel block tridiagonal matrix cyclic solver
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.
2010-09-01
A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.
Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach
NASA Astrophysics Data System (ADS)
Ding, Qiaoqiao; Zan, Yunlong; Huang, Qiu; Zhang, Xiaoqun
2015-02-01
The reconstruction of dynamic images from few projection data is a challenging problem, especially when noise is present and when the dynamic images are vary fast. In this paper, we propose a variational model, sparsity enforced matrix factorization (SEMF), based on low rank matrix factorization of unknown images and enforced sparsity constraints for representing both coefficients and bases. The proposed model is solved via an alternating iterative scheme for which each subproblem is convex and involves the efficient alternating direction method of multipliers (ADMM). The convergence of the overall alternating scheme for the nonconvex problem relies upon the Kurdyka-Łojasiewicz property, recently studied by Attouch et al (2010 Math. Oper. Res. 35 438) and Attouch et al (2013 Math. Program. 137 91). Finally our proof-of-concept simulation on 2D dynamic images shows the advantage of the proposed method compared to conventional methods.
Zhou, Guoxu; Yang, Zuyuan; Xie, Shengli; Yang, Jun-Mei
2011-04-01
Online blind source separation (BSS) is proposed to overcome the high computational cost problem, which limits the practical applications of traditional batch BSS algorithms. However, the existing online BSS methods are mainly used to separate independent or uncorrelated sources. Recently, nonnegative matrix factorization (NMF) shows great potential to separate the correlative sources, where some constraints are often imposed to overcome the non-uniqueness of the factorization. In this paper, an incremental NMF with volume constraint is derived and utilized for solving online BSS. The volume constraint to the mixing matrix enhances the identifiability of the sources, while the incremental learning mode reduces the computational cost. The proposed method takes advantage of the natural gradient based multiplication updating rule, and it performs especially well in the recovery of dependent sources. Simulations in BSS for dual-energy X-ray images, online encrypted speech signals, and high correlative face images show the validity of the proposed method.
Ding, Yonghui; Floren, Michael; Tan, Wei
2017-06-01
Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated. For the first time, the results demonstrate that 3D fibrous structure resembling native ECM is a critical endothelium-protective microenvironmental factor by maintaining the stable, quiescent endothelium with strong resistance to proinflammatory stimuli. It is also revealed that matrix stiffening, in concert with chemical compositions resembling diseased ECM, particularly collagen III, could aggravate activation of nuclear factor kappa B, disruption of endothelium integrity, and susceptibility to proinflammatory stimuli. This study elucidates cooperative effects of various microenvironmental factors on endothelial activation and sheds light on new in vitro model for cardiovascular diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
Factor Analysis and Counseling Research
ERIC Educational Resources Information Center
Weiss, David J.
1970-01-01
Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…
NASA Astrophysics Data System (ADS)
Kasiviswanathan, Shiva Prasad; Pan, Feng
In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove a set of k matrix columns that minimizes in the residual matrix the sum of the row values, where the value of a row is defined to be the largest entry in that row. This combinatorial problem is closely related to bipartite network interdiction problem that can be applied to minimize the probability that an adversary can successfully smuggle weapons. After introducing the matrix interdiction problem, we study the computational complexity of this problem. We show that the matrix interdiction problem is NP-hard and that there exists a constant γ such that it is even NP-hard to approximate this problem within an n γ additive factor. We also present an algorithm for this problem that achieves an (n - k) multiplicative approximation ratio.
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A
2005-12-01
Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic approach. Copyright 2005 Pathological Society of Great Britain and Ireland.
An analysis of thermal response factors and how to reduce their computational time requirement
NASA Technical Reports Server (NTRS)
Wiese, M. R.
1982-01-01
Te RESFAC2 version of the Thermal Response Factor Program (RESFAC) is the result of numerous modifications and additions to the original RESFAC. These modifications and additions have significantly reduced the program's computational time requirement. As a result of this work, the program is more efficient and its code is both readable and understandable. This report describes what a thermal response factor is; analyzes the original matrix algebra calculations and root finding techniques; presents a new root finding technique and streamlined matrix algebra; supplies ten validation cases and their results.
NASA Astrophysics Data System (ADS)
Özdemir, Gizem; Demiralp, Metin
2015-12-01
In this work, Enhanced Multivariance Products Representation (EMPR) approach which is a Demiralp-and-his- group extension to the Sobol's High Dimensional Model Representation (HDMR) has been used as the basic tool. Their discrete form have also been developed and used in practice by Demiralp and his group in addition to some other authors for the decomposition of the arrays like vectors, matrices, or multiway arrays. This work specifically focuses on the decomposition of infinite matrices involving denumerable infinitely many rows and columns. To this end the target matrix is first decomposed to the sum of certain outer products and then each outer product is treated by Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) which has been developed by Demiralp and his group. The result is a three-matrix- factor-product whose kernel (the middle factor) is an arrowheaded matrix while the pre and post factors are invertable matrices decomposed of the support vectors of TMEMPR. This new method is called as Arrowheaded Enhanced Multivariance Products Representation for Matrices. The general purpose is approximation of denumerably infinite matrices with the new method.
USDA-ARS?s Scientific Manuscript database
Objective. Factors associated with mineralization and osteophyte formation in osteoarthritis (OA) are incompletely understood. Genetic polymorphisms of matrix Gla protein (MGP), a mineralization inhibitor, have been associated clinically with conditions of abnormal calcification. We therefore evalua...
Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz
2015-08-18
This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in vivo SPME strategies in quantitative metabolomics studies of complex plant-based systems.
Malys, Brian J; Owens, Kevin G
2017-05-15
Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
He, Jing; Guo, Jianglong; Jiang, Bo; Yao, Ruijuan; Wu, Yao
2017-01-01
Abstract While both induction culture media and matrix have been reported to regulate the stem cell fate, little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms. To this aim, we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes, which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages, respectively, and cultured them with osteogenic, chondrogenic and normal culture media, respectively. A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion, cytoskeleton organization, proliferation, and in particular differentiation into the osteoblastic and chondrocytic lineages. The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did. The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study, where canonical Wnt-β-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation. Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations, but also have important implications in biomaterial design for tissue engineering applications. PMID:29026640
Massive data compression for parameter-dependent covariance matrices
NASA Astrophysics Data System (ADS)
Heavens, Alan F.; Sellentin, Elena; de Mijolla, Damien; Vianello, Alvise
2017-12-01
We show how the massive data compression algorithm MOPED can be used to reduce, by orders of magnitude, the number of simulated data sets which are required to estimate the covariance matrix required for the analysis of Gaussian-distributed data. This is relevant when the covariance matrix cannot be calculated directly. The compression is especially valuable when the covariance matrix varies with the model parameters. In this case, it may be prohibitively expensive to run enough simulations to estimate the full covariance matrix throughout the parameter space. This compression may be particularly valuable for the next generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey Telescope, for which the number of summary data (such as band power or shear correlation estimates) is very large, ∼104, due to the large number of tomographic redshift bins which the data will be divided into. In the pessimistic case where the covariance matrix is estimated separately for all points in an Monte Carlo Markov Chain analysis, this may require an unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of 1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the number of simulations required to a manageable 103, making an otherwise intractable analysis feasible.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Arnold, Steven M.
2000-01-01
The generalized method of cells micromechanics model is utilized to analyze the tensile stress-strain response of a representative titanium matrix composite with weak interfacial bonding. The fiber/matrix interface is modeled through application of a displacement discontinuity between the fiber and matrix once a critical debonding stress has been exceeded. Unidirectional composites with loading parallel and perpendicular to the fibers are examined, as well as a cross-ply laminate. For each of the laminates studied, analytically obtained results are compared to experimental data. The application of residual stresses through a cool-down process was found to have a significant effect on the tensile response. For the unidirectional laminate with loading applied perpendicular to the fibers, fiber packing and fiber shape were shown to have a significant effect on the predicted tensile response. Furthermore, the interface was characterized through the use of semi-emperical parameters including an interfacial compliance and a "debond stress;" defined as the stress level across the interface which activates fiber/matrix debonding. The results in this paper demonstrate that if architectural factors are correctly accounted for and the interface is appropriately characterized, the macro-level composite behavior can be correctly predicted without modifying any of the fiber or matrix constituent properties.
Gallina, Alessio; Garland, S Jayne; Wakeling, James M
2018-05-22
In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Feng; Cao, Yu-Fang
1992-02-01
Vector coherent state (VCS) theory is applied to the group chain SOn+2⊇SOn×SO2. Matrix elements of SOn+2 generators in the SOn+2⊇SOn×SO2 basis are derived. A new formula for the evaluation of some isoscalar factors for SOn+2⊇SOn×SO2 with branching multiplicity is derived in the VCS framework. As a simple example, a new expression of some isoscalar factors for SO5⊇SO3×SO2, which involves only 6j coefficients and K-normalization factors, are obtained by using this formula.
A quasi-likelihood approach to non-negative matrix factorization
Devarajan, Karthik; Cheung, Vincent C.K.
2017-01-01
A unified approach to non-negative matrix factorization based on the theory of generalized linear models is proposed. This approach embeds a variety of statistical models, including the exponential family, within a single theoretical framework and provides a unified view of such factorizations from the perspective of quasi-likelihood. Using this framework, a family of algorithms for handling signal-dependent noise is developed and its convergence proven using the Expectation-Maximization algorithm. In addition, a measure to evaluate the goodness-of-fit of the resulting factorization is described. The proposed methods allow modeling of non-linear effects via appropriate link functions and are illustrated using an application in biomedical signal processing. PMID:27348511
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
A Hybrid Algorithm for Non-negative Matrix Factorization Based on Symmetric Information Divergence
Devarajan, Karthik; Ebrahimi, Nader; Soofi, Ehsan
2017-01-01
The objective of this paper is to provide a hybrid algorithm for non-negative matrix factorization based on a symmetric version of Kullback-Leibler divergence, known as intrinsic information. The convergence of the proposed algorithm is shown for several members of the exponential family such as the Gaussian, Poisson, gamma and inverse Gaussian models. The speed of this algorithm is examined and its usefulness is illustrated through some applied problems. PMID:28868206
Bone matrix to growth factors: location, location, location
Todorovic, Vesna
2010-01-01
The demonstration that fibrillin-1 mutations perturb transforming growth factor (TGF)–β bioavailability/signaling in Marfan syndrome (MFS) changed the view of the extracellular matrix as a passive structural support to a dynamic modulator of cell behavior. In this issue, Nistala et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003089) advance this concept by demonstrating how fibrillin-1 and -2 regulate TGF-β and bone morphogenetic protein (BMP) action during osteoblast maturation. PMID:20855500
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Edmond
Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-08-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.
Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.
Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K
2011-11-01
The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.
A synoptic approach for analyzing erosion as a guide to land-use planning
Brown, William M.; Hines, Walter G.; Rickert, David A.; Beach, Gary L.
1979-01-01
A synoptic approach has been devised to delineate the relationships that exist' between physiographic factors, land-use activities, and resultant erosional problems. The approach involves the development of an erosional-depositional province map and a numerical impact matrix for rating the potential for erosional problems. The province map is prepared by collating data on the natural terrain factors that exert the dominant controls on erosion and deposition in each basin. In addition, existing erosional and depositional features are identified and mapped from color-infrared, high-altitude aerial imagery. The axes of the impact matrix are composed of weighting values for the terrain factors used in developing the map and by a second set of values for the prevalent land-use activities. The body of the matrix is composed of composite erosional-impact ratings resulting from the product of the factor sets. Together the province map and problem matrix serve as practical tools for estimating the erosional impact of human activities on different types of terrain. The approach has been applied to the Molalla River basin, Oregon, and has proven useful for the recognition of problem areas. The same approach is currently being used by the State of Oregon (in the 208 assessment of nonpoint-source pollution under Public Law 92-500) to evaluate the impact of land-management practices on stream quality.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-01-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243
NASA Astrophysics Data System (ADS)
Ishida, Keiichi
2018-05-01
This paper aims to show capability of the Orderable Matrix of Jacques Bertin which is a visualization method of data analyze and/or a method to recognize data. That matrix can show the data by replacing numbers to visual element. As an example, using a set of data regarding natural hazard rankings for certain metropolitan cities in the world, this paper describes how the Orderable Matrix handles the data set and show characteristic factors of this data to understand it. Not only to see a kind of risk ranking of cities, the Orderable Matrix shows how differently danger concerned cities ones and others are. Furthermore, we will see that the visualized data by Orderable Matrix allows us to see the characteristics of the data set comprehensively and instantaneously.
Understanding the Evolution and Stability of the G-Matrix
Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.
2011-01-01
The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631
Methods for Estimating Uncertainty in Factor Analytic Solutions
The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...
Zhang, Hongshen; Chen, Ming
2013-11-01
In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Hair growth effect of minoxidil].
Otomo, Susumu
2002-03-01
The length and size of hair are depend on the anagen term in its hair cycle. It has been reported that the some cell growth factors, such as VEGF, FGF-5S, IGF-1 and KGF, induce the proliferation of cells in the matrix, dermal papilla and dermal papillary vascular system and increase the amount of extra cellular matrix in dermal papilla and then maintain follicles in the anagen phase. On the other hand, negative factors, like FGF-5, thrombospondin, or still unknown ones, terminate the anagen phase. If the negative factors become dominant against cell proliferation factors according to fulfilling some time set by the biological clock for hair follicles, TGF beta induced in the matrix tissues evokes apoptosis of matrix cells and shifts the follicles from anagen to catagen. Androgenetic alopecia is caused by miniaturizing of hair follicles located in the frontal or crown part of scalp and are hereditarily more sensitive to androgen. In their hair cycles, the androgen shortens the anagen phase of follicles and shifts them to the catagen phase earlier than usual. The mode of action of hair growth effect of minoxidil is not completely elucidated, but the most plausible explanation proposed here is that minoxidil works as a sulfonylurea receptor (SUR) activator and prolongs the anagen phase of hair follicles in the following manner: minoxidil (1) induces cell growth factors such as VEGF, HGF, IGF-1 and potentiates HGF and IGF-1 actions by the activation of uncoupled SUR on the plasma membrane of dermal papilla cells, (2) inhibits of TGF beta induced apoptosis of hair matrix cells by opening the Kir 6.0 channel pore coupled with SUR on the mitochondrial inner membrane, and (3) dilates hair follicle arteries and increases blood flow in dermal papilla by opening the Kir 6.0 channel pore coupled with SUR on the plasma membrane of vascular smooth muscle cells.
Two-way learning with one-way supervision for gene expression data.
Wong, Monica H T; Mutch, David M; McNicholas, Paul D
2017-03-04
A family of parsimonious Gaussian mixture models for the biclustering of gene expression data is introduced. Biclustering is accommodated by adopting a mixture of factor analyzers model with a binary, row-stochastic factor loadings matrix. This particular form of factor loadings matrix results in a block-diagonal covariance matrix, which is a useful property in gene expression analyses, specifically in biomarker discovery scenarios where blood can potentially act as a surrogate tissue for other less accessible tissues. Prior knowledge of the factor loadings matrix is useful in this application and is reflected in the one-way supervised nature of the algorithm. Additionally, the factor loadings matrix can be assumed to be constant across all components because of the relationship desired between the various types of tissue samples. Parameter estimates are obtained through a variant of the expectation-maximization algorithm and the best-fitting model is selected using the Bayesian information criterion. The family of models is demonstrated using simulated data and two real microarray data sets. The first real data set is from a rat study that investigated the influence of diabetes on gene expression in different tissues. The second real data set is from a human transcriptomics study that focused on blood and immune tissues. The microarray data sets illustrate the biclustering family's performance in biomarker discovery involving peripheral blood as surrogate biopsy material. The simulation studies indicate that the algorithm identifies the correct biclusters, most optimally when the number of observation clusters is known. Moreover, the biclustering algorithm identified biclusters comprised of biologically meaningful data related to insulin resistance and immune function in the rat and human real data sets, respectively. Initial results using real data show that this biclustering technique provides a novel approach for biomarker discovery by enabling blood to be used as a surrogate for hard-to-obtain tissues.
Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.
Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan
2016-01-01
Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.
NASA Astrophysics Data System (ADS)
Saraceno, J.; Shanley, J. B.; Aulenbach, B. T.
2014-12-01
Fluorescent dissolved organic matter (FDOM) is an excellent proxy for dissolved organic carbon (DOC) in natural waters. Through this relationship, in situ FDOM can be utilized to capture both high frequency time series and long term fluxes of DOC in small streams. However, in order to calculate accurate DOC fluxes for comparison across sites, in situ FDOM data must be compensated for matrix effects. Key matrix effects, include temperature, turbidity and the inner filter effect due to color. These interferences must be compensated for to develop a reasonable relationship between FDOM and DOC. In this study, we applied laboratory-derived correction factors to real time data from the five USGS WEBB headwater streams in order to gauge their effectiveness across a range of matrix effects. The good news is that laboratory derived correction factors improved the predicative relationship (higher r2) between DOC and FDOM when compared to uncorrected data. The relative importance of each matrix effect (i.e. temperature) varied by site and by time, implying that each and every matrix effect should be compensated for when available. In general, temperature effects were more important on longer time scales, while corrections for turbidity and DOC inner filter effects were most prevalent during hydrologic events, when the highest instantaneous flux of DOC occurred. Unfortunately, even when corrected for matrix effects, in situ FDOM is a weaker predictor of DOC than A254, a common surrogate for DOC, implying that either DOC fluoresces at varying degrees (but should average out over time), that some matrix effects (e.g. pH) are either unaccounted for or laboratory-derived correction factors do not encompass the site variability of particles and organics. The least impressive finding is that the inherent dependence on three variables in the FDOM correction algorithm increases the likelihood of record data gaps which increases the uncertainty in calculated DOC flux values.
Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva
2014-01-01
Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for EGFL7, which is a novel finding and suggests a role of EGFL7 in the vascular infiltration of growth cartilage. PMID:25175365
NASA Astrophysics Data System (ADS)
Ballinger, Marcel Y.; Larson, Timothy V.
2014-12-01
Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.
Using Strassen's algorithm to accelerate the solution of linear systems
NASA Technical Reports Server (NTRS)
Bailey, David H.; Lee, King; Simon, Horst D.
1990-01-01
Strassen's algorithm for fast matrix-matrix multiplication has been implemented for matrices of arbitrary shapes on the CRAY-2 and CRAY Y-MP supercomputers. Several techniques have been used to reduce the scratch space requirement for this algorithm while simultaneously preserving a high level of performance. When the resulting Strassen-based matrix multiply routine is combined with some routines from the new LAPACK library, LU decomposition can be performed with rates significantly higher than those achieved by conventional means. We succeeded in factoring a 2048 x 2048 matrix on the CRAY Y-MP at a rate equivalent to 325 MFLOPS.
NASA Astrophysics Data System (ADS)
Stukopin, Vladimir
2018-02-01
Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.
Relational Learning via Collective Matrix Factorization
2008-06-01
well-known example of such a schema is pLSI- pHITS [13], which models document-word counts and document-document citations: E1 = words and E2 = E3...relational co- clustering include pLSI, pLSI- pHITS , the symmetric block models of Long et. al. [23, 24, 25], and Bregman tensor clustering [5] (which can...to pLSI- pHITS In this section we provide an example where the additional flexibility of collective matrix factorization leads to better results; and
Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M
2007-12-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.
Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.
2007-01-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800
University Organization. A Matrix Analysis of the Academic Professions.
ERIC Educational Resources Information Center
Bess, James L.
Using the latest research instruments, including questionnaires, interviews, factor analysis, and matrix construction, the present restraints on professorial effectiveness and the contributions of departmental and university structures to professorial malaise is examined for the purpose of improving ways that administrators can increase faculty…
Development and Validation of a Job Exposure Matrix for Physical Risk Factors in Low Back Pain
Solovieva, Svetlana; Pehkonen, Irmeli; Kausto, Johanna; Miranda, Helena; Shiri, Rahman; Kauppinen, Timo; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira
2012-01-01
Objectives The aim was to construct and validate a gender-specific job exposure matrix (JEM) for physical exposures to be used in epidemiological studies of low back pain (LBP). Materials and Methods We utilized two large Finnish population surveys, one to construct the JEM and another to test matrix validity. The exposure axis of the matrix included exposures relevant to LBP (heavy physical work, heavy lifting, awkward trunk posture and whole body vibration) and exposures that increase the biomechanical load on the low back (arm elevation) or those that in combination with other known risk factors could be related to LBP (kneeling or squatting). Job titles with similar work tasks and exposures were grouped. Exposure information was based on face-to-face interviews. Validity of the matrix was explored by comparing the JEM (group-based) binary measures with individual-based measures. The predictive validity of the matrix against LBP was evaluated by comparing the associations of the group-based (JEM) exposures with those of individual-based exposures. Results The matrix includes 348 job titles, representing 81% of all Finnish job titles in the early 2000s. The specificity of the constructed matrix was good, especially in women. The validity measured with kappa-statistic ranged from good to poor, being fair for most exposures. In men, all group-based (JEM) exposures were statistically significantly associated with one-month prevalence of LBP. In women, four out of six group-based exposures showed an association with LBP. Conclusions The gender-specific JEM for physical exposures showed relatively high specificity without compromising sensitivity. The matrix can therefore be considered as a valid instrument for exposure assessment in large-scale epidemiological studies, when more precise but more labour-intensive methods are not feasible. Although the matrix was based on Finnish data we foresee that it could be applicable, with some modifications, in other countries with a similar level of technology. PMID:23152793
Exploratory Bi-factor Analysis: The Oblique Case.
Jennrich, Robert I; Bentler, Peter M
2012-07-01
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.
Cyclic stretching of soft substrates induces spreading and growth
Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael
2015-01-01
In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457
Hardware Implementation of a MIMO Decoder Using Matrix Factorization Based Channel Estimation
NASA Astrophysics Data System (ADS)
Islam, Mohammad Tariqul; Numan, Mostafa Wasiuddin; Misran, Norbahiah; Ali, Mohd Alauddin Mohd; Singh, Mandeep
2011-05-01
This paper presents an efficient hardware realization of multiple-input multiple-output (MIMO) wireless communication decoder that utilizes the available resources by adopting the technique of parallelism. The hardware is designed and implemented on Xilinx Virtex™-4 XC4VLX60 field programmable gate arrays (FPGA) device in a modular approach which simplifies and eases hardware update, and facilitates testing of the various modules independently. The decoder involves a proficient channel estimation module that employs matrix factorization on least squares (LS) estimation to reduce a full rank matrix into a simpler form in order to eliminate matrix inversion. This results in performance improvement and complexity reduction of the MIMO system. Performance evaluation of the proposed method is validated through MATLAB simulations which indicate 2 dB improvement in terms of SNR compared to LS estimation. Moreover complexity comparison is performed in terms of mathematical operations, which shows that the proposed approach appreciably outperforms LS estimation at a lower complexity and represents a good solution for channel estimation technique.
Matrix Metalloproteinases in Non-Neoplastic Disorders
Tokito, Akinori; Jougasaki, Michihisa
2016-01-01
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234
Constrained Least Squares Estimators of Oblique Common Factors.
ERIC Educational Resources Information Center
McDonald, Roderick P.
1981-01-01
An expression is given for weighted least squares estimators of oblique common factors of factor analyses, constrained to have the same covariance matrix as the factors they estimate. A proof of the uniqueness of the solution is given. (Author/JKS)
High aspect ratio template and method for producing same for central and peripheral nerve repair
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Chan, Christina (Inventor); Tuszynski, Mark Henry (Inventor); Mehrotra, Sumit (Inventor); Gros, Thomas (Inventor)
2011-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.
Thermal expansion of composites: Methods and results. [large space structures
NASA Technical Reports Server (NTRS)
Bowles, D. E.; Tenney, D. R.
1981-01-01
The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
Factor Analytic Approach to Transitive Text Mining using Medline Descriptors
NASA Astrophysics Data System (ADS)
Stegmann, J.; Grohmann, G.
Matrix decomposition methods were applied to examples of noninteractive literature sets sharing implicit relations. Document-by-term matrices were created from downloaded PubMed literature sets, the terms being the Medical Subject Headings (MeSH descriptors) assigned to the documents. The loadings of the factors derived from singular value or eigenvalue matrix decomposition were sorted according to absolute values and subsequently inspected for positions of terms relevant to the discovery of hidden connections. It was found that only a small number of factors had to be screened to find key terms in close neighbourhood, being separated by a small number of terms only.
NASA Astrophysics Data System (ADS)
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
NASA Astrophysics Data System (ADS)
Bozhalkina, Yana; Timofeeva, Galina
2016-12-01
Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.
Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan
2017-12-28
Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.
Jaeger, Sébastien; Thieffry, Denis
2017-01-01
Abstract Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. PMID:28591841
Li, Y Y; McTiernan, C F; Feldman, A M
2000-05-01
Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and transforming growth factor-beta(1) in the failing human heart before and after left ventricular assist device support, as well as the possibility of preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be modified by modulating MMP activity.
NASA Astrophysics Data System (ADS)
Lee, Ming-Wei; Chen, Yi-Chun
2014-02-01
In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally.
Fast Algorithms for Structured Least Squares and Total Least Squares Problems
Kalsi, Anoop; O’Leary, Dianne P.
2006-01-01
We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z1 and Z2. We develop formulas for the generators of the matrix M HM in terms of the generators of M and show that the Cholesky factorization of the matrix M HM can be computed quickly if Z1 is close to unitary and Z2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices. PMID:27274922
Fast Algorithms for Structured Least Squares and Total Least Squares Problems.
Kalsi, Anoop; O'Leary, Dianne P
2006-01-01
We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Ed F; Nintcheu Fata, Sylvain
2012-01-01
A collocation boundary element code for solving the three-dimensional Laplace equation, publicly available from \\url{http://www.intetec.org}, has been adapted to run on an Nvidia Tesla general purpose graphics processing unit (GPU). Global matrix assembly and LU factorization of the resulting dense matrix were performed on the GPU. Out-of-core techniques were used to solve problems larger than available GPU memory. The code achieved over eight times speedup in matrix assembly and about 56~Gflops/sec in the LU factorization using only 512~Mbytes of GPU memory. Details of the GPU implementation and comparisons with the standard sequential algorithm are included to illustrate the performance ofmore » the GPU code.« less
Matrix metalloproteinases and epidermal wound repair.
Martins, Vera L; Caley, Matthew; O'Toole, Edel A
2013-02-01
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell-cell and cell-matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.
Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio
2011-01-01
In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.
Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun
2017-08-21
Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix factorization, which is called NMF 3 here. We first map the observed network into another space by kernel functions, which could get the different order organizations. Then we combine the adjacency matrix of the network with one of other organizations, which makes us obtain the objective function of our framework for link predication based on the nonnegative matrix factorization. Third, we derive an iterative algorithm to optimize the objective function, which converges to a local optimum, and we propose a fast optimization strategy for large networks. Lastly, we test the proposed framework based on two kernel functions on a series of real world networks under different sizes of training set, and the experimental results show the feasibility, effectiveness, and competitiveness of the proposed framework.
Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier
2016-01-01
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084
Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L
2017-10-01
Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.
Caralt, M; Uzarski, J S; Iacob, S; Obergfell, K P; Berg, N; Bijonowski, B M; Kiefer, K M; Ward, H H; Wandinger-Ness, A; Miller, W M; Zhang, Z J; Abecassis, M M; Wertheim, J A
2015-01-01
The ability to generate patient-specific cells through induced pluripotent stem cell (iPSC) technology has encouraged development of three-dimensional extracellular matrix (ECM) scaffolds as bioactive substrates for cell differentiation with the long-range goal of bioengineering organs for transplantation. Perfusion decellularization uses the vasculature to remove resident cells, leaving an intact ECM template wherein new cells grow; however, a rigorous evaluative framework assessing ECM structural and biochemical quality is lacking. To address this, we developed histologic scoring systems to quantify fundamental characteristics of decellularized rodent kidneys: ECM structure (tubules, vessels, glomeruli) and cell removal. We also assessed growth factor retention--indicating matrix biofunctionality. These scoring systems evaluated three strategies developed to decellularize kidneys (1% Triton X-100, 1% Triton X-100/0.1% sodium dodecyl sulfate (SDS) and 0.02% Trypsin-0.05% EGTA/1% Triton X-100). Triton and Triton/SDS preserved renal microarchitecture and retained matrix-bound basic fibroblast growth factor and vascular endothelial growth factor. Trypsin caused structural deterioration and growth factor loss. Triton/SDS-decellularized scaffolds maintained 3 h of leak-free blood flow in a rodent transplantation model and supported repopulation with human iPSC-derived endothelial cells and tubular epithelial cells ex vivo. Taken together, we identify an optimal Triton/SDS-based decellularization strategy that produces a biomatrix that may ultimately serve as a rodent model for kidney bioengineering. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.
Kannan, R; Ievlev, A V; Laanait, N; Ziatdinov, M A; Vasudevan, R K; Jesse, S; Kalinin, S V
2018-01-01
Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the problem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. We detail a matrix factorization framework that can incorporate different domain information through various parameters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide platform for rapid dissemination and adoption across scientific disciplines.
Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...
Xu, Jianqiao; Huang, Shuyao; Jiang, Ruifen; Cui, Shufen; Luan, Tiangang; Chen, Guosheng; Qiu, Junlang; Cao, Chenyang; Zhu, Fang; Ouyang, Gangfeng
2016-04-21
Elucidating the availability of the bound analytes for the mass transfer through the diffusion boundary layers (DBLs) adjacent to passive samplers is important for understanding the passive sampling kinetics in complex samples, in which the lability factor of the bound analyte in the DBL is an important parameter. In this study, the mathematical expression of lability factor was deduced by assuming a pseudo-steady state during passive sampling, and the equation indicated that the lability factor was equal to the ratio of normalized concentration gradients between the bound and free analytes. Through the introduction of the mathematical expression of lability factor, the modified effective average diffusion coefficient was proven to be more suitable for describing the passive sampling kinetics in the presence of mobile binding matrixes. Thereafter, the lability factors of the bound polycyclic aromatic hydrocarbons (PAHs) with sodium dodecylsulphate (SDS) micelles as the binding matrixes were figured out according to the improved theory. The lability factors were observed to decrease with larger binding ratios and smaller micelle sizes, and were successfully used to predict the mass transfer efficiencies of PAHs through DBLs. This study would promote the understanding of the availability of bound analytes for passive sampling based on the theoretical improvements and experimental assessments. Copyright © 2016 Elsevier B.V. All rights reserved.
Masoumi, Kambiz; Forouzan, Arash; Barzegari, Hassan; Asgari Darian, Ali; Rahim, Fakher; Zohrevandi, Behzad; Nabi, Somayeh
2016-01-01
Introduction: Traffic accidents are the 8th cause of mortality in different countries and are expected to rise to the 3rd rank by 2020. Based on the Haddon matrix numerous factors such as environment, host, and agent can affect the severity of traffic-related traumas. Therefore, the present study aimed to evaluate the effective factors in severity of these traumas based on Haddon matrix. Methods: In the present 1-month cross-sectional study, all the patients injured in traffic accidents, who were referred to the ED of Imam Khomeini and Golestan Hospitals, Ahvaz, Iran, during March 2013 were evaluated. Based on the Haddon matrix, effective factors in accident occurrence were defined in 3 groups of host, agent, and environment. Demographic data of the patients and data regarding Haddon risk factors were extracted and analyzed using SPSS version 20. Results: 700 injured people with the mean age of 29.66 ± 12.64 years (3-82) were evaluated (92.4% male). Trauma mechanism was car-pedestrian in 308 (44%) of the cases and car-motorcycle in 175 (25%). 610 (87.1%) cases were traffic accidents and 371 (53%) occurred in the time between 2 pm and 8 pm. Violation of speed limit was the most common violation with 570 (81.4%) cases, followed by violation of right-of-way in 57 (8.1%) patients. 59.9% of the severe and critical injuries had occurred on road accidents, while 61.3% of the injuries caused by traffic accidents were mild to moderate (p < 0.001). The most common mechanisms of trauma for critical injuries were rollover (72.5%), motorcycle-pedestrian (23.8%), and car-motorcycle (13.14%) accidents (p < 0.001). Conclusion: Based on the results of the present study, the most important effective factors in severity of traffic accident-related traumas were age over 50, not using safety tools, and undertaking among host-related factors; insufficient environment safety, road accidents and time between 2 pm and 8 pm among environmental factors; and finally, rollover, car-pedestrian, and motorcycle-pedestrian accidents among the agent factors PMID:27274517
Tabatabaei, Fahimeh Sadat
2016-01-01
ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698
Ponterotto, Joseph G; Ruckdeschel, Daniel E
2007-12-01
The present article addresses issues in reliability assessment that are often neglected in psychological research such as acceptable levels of internal consistency for research purposes, factors affecting the magnitude of coefficient alpha (alpha), and considerations for interpreting alpha within the research context. A new reliability matrix anchored in classical test theory is introduced to help researchers judge adequacy of internal consistency coefficients with research measures. Guidelines and cautions in applying the matrix are provided.
1990-12-15
THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES PE - 61102F FROM PRECERAMIC POLYMERS PR -9999 6. AUTHOR(S) TA - 99 J. R. Strife(l), J. P. Wesson(1 ), and H...stability at temperatures up to 15000 C. 14. SUBJECT TERMS 15. NUMBER OF PAGES 49 C- SiC composites vinylmethylsilane 16. PRICE CODE polymer precursor...vapor infiltration of fibrous preforms. More recently, the conversion of preceramic polymers as a matrix synthesis process is being considered. This
The Lehmer Matrix and Its Recursive Analogue
2010-01-01
LU factorization of matrix A by considering det A = det U = ∏n i=1 2i−1 i2 . The nth Catalan number is given in terms of binomial coefficients by Cn...for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b
NASA Technical Reports Server (NTRS)
Morris, D. H.; Yeow, Y. T.
1979-01-01
The time-temperature response of the principal compliances of a unidirectional graphite/epoxy composite was determined. It is shown that two components of the compliance matrix are time and temperature independent and that the compliance matrix is symmetric for the viscoelastic composite. The time-temperature superposition principle is used to determine shift factors which are independent of fiber orientation, for fiber angles that vary from 10 D to 90 D with respect to the load direction.
Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations
NASA Astrophysics Data System (ADS)
Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco
2018-05-01
In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.
Matrix effect and recovery terminology issues in regulated drug bioanalysis.
Huang, Yong; Shi, Robert; Gee, Winnie; Bonderud, Richard
2012-02-01
Understanding the meaning of the terms used in the bioanalytical method validation guidance is essential for practitioners to implement best practice. However, terms that have several meanings or that have different interpretations exist within bioanalysis, and this may give rise to differing practices. In this perspective we discuss an important but often confusing term - 'matrix effect (ME)' - in regulated drug bioanalysis. The ME can be interpreted as either the ionization change or the measurement bias of the method caused by the nonanalyte matrix. The ME definition dilemma makes its evaluation challenging. The matrix factor is currently used as a standard method for evaluation of ionization changes caused by the matrix in MS-based methods. Standard additions to pre-extraction samples have been suggested to evaluate the overall effects of a matrix from different sources on the analytical system, because it covers ionization variation and extraction recovery variation. We also provide our personal views on the term 'recovery'.
Clustering Tree-structured Data on Manifold
Lu, Na; Miao, Hongyu
2016-01-01
Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696
NASA Astrophysics Data System (ADS)
Spicer, Graham L. C.; Azarin, Samira M.; Yi, Ji; Young, Scott T.; Ellis, Ronald; Bauer, Greta M.; Shea, Lonnie D.; Backman, Vadim
2016-10-01
In cancer biology, there has been a recent effort to understand tumor formation in the context of the tissue microenvironment. In particular, recent progress has explored the mechanisms behind how changes in the cell-extracellular matrix ensemble influence progression of the disease. The extensive use of in vitro tissue culture models in simulant matrix has proven effective at studying such interactions, but modalities for non-invasively quantifying aspects of these systems are scant. We present the novel application of an imaging technique, Inverse Spectroscopic Optical Coherence Tomography, for the non-destructive measurement of in vitro biological samples during matrix remodeling. Our findings indicate that the nanoscale-sensitive mass density correlation shape factor D of cancer cells increases in response to a more crosslinked matrix. We present a facile technique for the non-invasive, quantitative study of the micro- and nano-scale structure of the extracellular matrix and its host cells.
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Lee, Keunbaik; Baek, Changryong; Daniels, Michael J
2017-11-01
In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.
Košir, Darjan; Ojsteršek, Tadej; Vrečer, Franc
2018-06-14
Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.
Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T
2016-04-01
Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.
Green, Jenna; Endale, Mehari; Auer, Herbert
2016-01-01
Epithelial–mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α–green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α+CD29+ cells behaved as myofibroblasts, CD140α+CD34+ appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960
A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.
NASA Technical Reports Server (NTRS)
Harris, J. D.
1971-01-01
The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; ...
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL TP T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. Asmore » a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
Communication-avoiding symmetric-indefinite factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL TP T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. Asmore » a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
The extracellular matrix in myocardial injury, repair, and remodeling
2017-01-01
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429
Continuous analogues of matrix factorizations
Townsend, Alex; Trefethen, Lloyd N.
2015-01-01
Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618
New fast DCT algorithms based on Loeffler's factorization
NASA Astrophysics Data System (ADS)
Hong, Yoon Mi; Kim, Il-Koo; Lee, Tammy; Cheon, Min-Su; Alshina, Elena; Han, Woo-Jin; Park, Jeong-Hoon
2012-10-01
This paper proposes a new 32-point fast discrete cosine transform (DCT) algorithm based on the Loeffler's 16-point transform. Fast integer realizations of 16-point and 32-point transforms are also provided based on the proposed transform. For the recent development of High Efficiency Video Coding (HEVC), simplified quanti-zation and de-quantization process are proposed. Three different forms of implementation with the essentially same performance, namely matrix multiplication, partial butterfly, and full factorization can be chosen accord-ing to the given platform. In terms of the number of multiplications required for the realization, our proposed full-factorization is 3~4 times faster than a partial butterfly, and about 10 times faster than direct matrix multiplication.
Significance Testing in Confirmatory Factor Analytic Models.
ERIC Educational Resources Information Center
Khattab, Ali-Maher; Hocevar, Dennis
Traditionally, confirmatory factor analytic models are tested against a null model of total independence. Using randomly generated factors in a matrix of 46 aptitude tests, this approach is shown to be unlikely to reject even random factors. An alternative null model, based on a single general factor, is suggested. In addition, an index of model…
NASA Astrophysics Data System (ADS)
Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min
2016-04-01
This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.
NASA Astrophysics Data System (ADS)
Xu, Xiankun; Li, Peiwen
2017-11-01
Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.
Gorth, Deborah J; Lothstein, Katherine E; Chiaro, Joseph A; Farrell, Megan J; Dodge, George R; Elliott, Dawn M; Malhotra, Neil R; Mauck, Robert L; Smith, Lachlan J
2015-01-01
Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new, biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc. PMID:25640328
Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui
2018-06-15
High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).
Leeman, Matthew F; Curran, Stephanie; Murray, Graeme I
2003-12-01
This review outlines new concepts that are emerging for the functions of matrix metalloproteinases in colorectal cancer development and progression. The two main concepts that will be discussed are the role of matrix metalloproteinases in the early stages of colorectal tumour development and the functional mechanisms by which matrix metalloproteinases contribute to colorectal tumour invasion and metastasis. The matrix metalloproteinases are a group of enzymes, which have been best characterized for their ability to degrade extracellular matrix proteins and thus they have been extensively studied in tumour invasion. It is now becoming recognized that the matrix metalloproteinases have key roles in a variety of biological processes that are distinct from their well-defined role in matrix degradation. This group of enzymes has been shown to interact with a broad range of non-matrix proteins including growth factors and their receptors, mediators of apoptosis, and cell adhesion molecules. The elucidation of novel biological roles for the matrix metalloproteinases also challenges the current predominant concept of matrix metalloproteinases as enzymes only involved in matrix degradation. Recent studies have shown that several matrix metalloproteinases, especially matrilysin (MMP-7), interact with the specific molecular genetic and signalling pathways involved in colorectal cancer development. In particular, matrilysin is activated at an early stage of colorectal tumourigenesis by the beta-catenin signalling pathway. Furthermore, studies are now elucidating specific mechanisms by which individual matrix metalloproteinases, especially membrane-type matrix metalloproteinases, interact with specific cell adhesion molecules and cytoskeletal proteins and thus contribute dynamically to colorectal tumour invasion. Copyright 2003 John Wiley & Sons, Ltd.
Evaluating the MSCEIT V2.0 via CFA: comment on Mayer et al. (2003).
Gignac, Gilles E
2005-06-01
This investigation uncovered several substantial errors in the confirmatory factor analysis results reported by J. D. Mayer, P. Salovey, D. R. Caruso, and G. Sitarenios (see record 2003-02341-015). Specifically, the values associated with the close-fit indices (normed fit index, Tucker-Lewis Index, and root-mean-square error of approximation) are inaccurate. A reanalysis of the Mayer et al. subscale intercorrelation matrix provided accurate values of the close-fit indices, which resulted in different evaluations of the models tested by J. D. Mayer et al. Contrary to J. D. Mayer et al., the 1-factor model and the 2-factor model did not provide good fit. Although the 4-factor model was still considered good fitting, the non-constrained 4-factor model yielded a non-positive definite matrix, which was interpreted to be due to the fact that two of the branch-level factors (Perceiving and Facilitating) were collinear, suggesting that a model with 4 factors was implausible.
ERIC Educational Resources Information Center
Drummond, Robert J.; And Others
The Children's Interaction Matrix, Intermediate and Primary Forms, are designed to identify the preferred work and content styles of children in group situations. These factors aid the researcher, teacher, and counselor in understanding the individual's preferred mode of behavior in groups as well as indicating the students' reaction to group…
Some Factor Analytic Approximations to Latent Class Structure.
ERIC Educational Resources Information Center
Dziuban, Charles D.; Denton, William T.
Three procedures, alpha, image, and uniqueness rescaling, were applied to a joint occurrence probability matrix. That matrix was the basis of a well-known latent class structure. The values of the recurring subscript elements were varied as follows: Case 1 - The known elements were input; Case 2 - The upper bounds to the recurring subscript…
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM
ERIC Educational Resources Information Center
Mair, Patrick; Satorra, Albert; Bentler, Peter M.
2012-01-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
NASA Astrophysics Data System (ADS)
Schrodt, Franziska; Shan, Hanhuai; Fazayeli, Farideh; Karpatne, Anuj; Kattge, Jens; Banerjee, Arindam; Reichstein, Markus; Reich, Peter
2013-04-01
With the advent of remotely sensed data and coordinated efforts to create global databases, the ecological community has progressively become more data-intensive. However, in contrast to other disciplines, statistical ways of handling these large data sets, especially the gaps which are inherent to them, are lacking. Widely used theoretical approaches, for example model averaging based on Akaike's information criterion (AIC), are sensitive to missing values. Yet, the most common way of handling sparse matrices - the deletion of cases with missing data (complete case analysis) - is known to severely reduce statistical power as well as inducing biased parameter estimates. In order to address these issues, we present novel approaches to gap filling in large ecological data sets using matrix factorization techniques. Factorization based matrix completion was developed in a recommender system context and has since been widely used to impute missing data in fields outside the ecological community. Here, we evaluate the effectiveness of probabilistic matrix factorization techniques for imputing missing data in ecological matrices using two imputation techniques. Hierarchical Probabilistic Matrix Factorization (HPMF) effectively incorporates hierarchical phylogenetic information (phylogenetic group, family, genus, species and individual plant) into the trait imputation. Advanced Hierarchical Probabilistic Matrix Factorization (aHPMF) on the other hand includes climate and soil information into the matrix factorization by regressing the environmental variables against residuals of the HPMF. One unique opportunity opened up by aHPMF is out-of-sample prediction, where traits can be predicted for specific species at locations different to those sampled in the past. This has potentially far-reaching consequences for the study of global-scale plant functional trait patterns. We test the accuracy and effectiveness of HPMF and aHPMF in filling sparse matrices, using the TRY database of plant functional traits (http://www.try-db.org). TRY is one of the largest global compilations of plant trait databases (750 traits of 1 million plants), encompassing data on morphological, anatomical, biochemical, phenological and physiological features of plants. However, despite of unprecedented coverage, the TRY database is still very sparse, severely limiting joint trait analyses. Plant traits are the key to understanding how plants as primary producers adjust to changes in environmental conditions and in turn influence them. Forming the basis for Dynamic Global Vegetation Models (DGVMs), plant traits are also fundamental in global change studies for predicting future ecosystem changes. It is thus imperative that missing data is imputed in as accurate and precise a way as possible. In this study, we show the advantages and disadvantages of applying probabilistic matrix factorization techniques in incorporating hierarchical and environmental information for the prediction of missing plant traits as compared to conventional imputation techniques such as the complete case and mean approaches. We will discuss the implications of using gap-filled data for global-scale studies of plant functional trait - environment relationship as opposed to the above-mentioned conventional techniques, using examples of out-of-sample predictions of foliar Nitrogen across several species' ranges and biomes.
Matrix product representation of the stationary state of the open zero range process
NASA Astrophysics Data System (ADS)
Bertin, Eric; Vanicat, Matthieu
2018-06-01
Many one-dimensional lattice particle models with open boundaries, like the paradigmatic asymmetric simple exclusion process (ASEP), have their stationary states represented in the form of a matrix product, with matrices that do not explicitly depend on the lattice site. In contrast, the stationary state of the open 1D zero-range process (ZRP) takes an inhomogeneous factorized form, with site-dependent probability weights. We show that in spite of the absence of correlations, the stationary state of the open ZRP can also be represented in a matrix product form, where the matrices are site-independent, non-commuting and determined from algebraic relations resulting from the master equation. We recover the known distribution of the open ZRP in two different ways: first, using an explicit representation of the matrices and boundary vectors; second, from the sole knowledge of the algebraic relations satisfied by these matrices and vectors. Finally, an interpretation of the relation between the matrix product form and the inhomogeneous factorized form is proposed within the framework of hidden Markov chains.
The R-matrix investigation of 8Li(α, n)11B reaction below 6 MeV
NASA Astrophysics Data System (ADS)
Kilic, Ali Ihsan; Muecher, Dennis; Garret, Paul; Svensson, Carl
2017-09-01
The investigation of cross sections for the 8Li(α, n)11B reaction has important impact for both primordial nucleosynthesis in the inhomogeneous models as well as constraining the physical conditions characterizing the r-process. However, there are large discrepancies existing between inclusive and exclusive measurements of the cross section below 3 MeV. The R-Matrix technique is a powerful tool for the analysis of the nuclear data for the purpose of extracting level information of compound nucleus 12B and extrapolation of the astrophysical S-Factor to Gamow energies. We have applied the R-matrix calculations for the 8Li(α, n)11B reaction and will present results for both the reaction rates and the partial S-factor. Combining the direct reaction contribution with the results from our R-matrix calculations, we can well describe the experimental data from the inclusive measurements. However, new experiments are needed in order to understand the role of neutron detection close to the threshold, for which we describe our experimental plans at ISAC, TRIUMF, using the newly developed DESCANT array.
Biomechanical cell regulatory networks as complex adaptive systems in relation to cancer.
Feller, Liviu; Khammissa, Razia Abdool Gafaar; Lemmer, Johan
2017-01-01
Physiological structure and function of cells are maintained by ongoing complex dynamic adaptive processes in the intracellular molecular pathways controlling the overall profile of gene expression, and by genes in cellular gene regulatory circuits. Cytogenetic mutations and non-genetic factors such as chronic inflammation or repetitive trauma, intrinsic mechanical stresses within extracellular matrix may induce redirection of gene regulatory circuits with abnormal reactivation of embryonic developmental programmes which can now drive cell transformation and cancer initiation, and later cancer progression and metastasis. Some of the non-genetic factors that may also favour cancerization are dysregulation in epithelial-mesenchymal interactions, in cell-to-cell communication, in extracellular matrix turnover, in extracellular matrix-to-cell interactions and in mechanotransduction pathways. Persistent increase in extracellular matrix stiffness, for whatever reason, has been shown to play an important role in cell transformation, and later in cancer cell invasion. In this article we review certain cell regulatory networks driving carcinogenesis, focussing on the role of mechanical stresses modulating structure and function of cells and their extracellular matrices.
Extracting factors for interest rate scenarios
NASA Astrophysics Data System (ADS)
Molgedey, L.; Galic, E.
2001-04-01
Factor based interest rate models are widely used for risk managing purposes, for option pricing and for identifying and capturing yield curve anomalies. The movements of a term structure of interest rates are commonly assumed to be driven by a small number of orthogonal factors such as SHIFT, TWIST and BUTTERFLY (BOW). These factors are usually obtained by a Principal Component Analysis (PCA) of historical bond prices (interest rates). Although PCA diagonalizes the covariance matrix of either the interest rates or the interest rate changes, it does not use both covariance matrices simultaneously. Furthermore higher linear and nonlinear correlations are neglected. These correlations as well as the mean reverting properties of the interest rates become crucial, if one is interested in a longer time horizon (infrequent hedging or trading). We will show that Independent Component Analysis (ICA) is a more appropriate tool than PCA, since ICA uses the covariance matrix of the interest rates as well as the covariance matrix of the interest rate changes simultaneously. Additionally higher linear and nonlinear correlations may be easily incorporated. The resulting factors are uncorrelated for various time delays, approximately independent but nonorthogonal. This is in contrast to the factors obtained from the PCA, which are orthogonal and uncorrelated for identical times only. Although factors from the ICA are nonorthogonal, it is sufficient to consider only a few factors in order to explain most of the variation in the original data. Finally we will present examples that ICA based hedges outperforms PCA based hedges specifically if the portfolio is sensitive to structural changes of the yield curve.
Nickoloff, B. J.; Mitra, R. S.; Riser, B. L.; Dixit, V. M.; Varani, J.
1988-01-01
Normal human epidermal keratinocytes (KC) grown under conditions that maintain the undifferentiated state are highly motile. Migration of these cells as measured in two different assays (migration out of an agarose drop explant, and into micropore filters in a modified Boyden chamber), is stimulated by fibronectin (FN) and to a lesser extent by thrombospondin (TSP). In contrast, laminin (LN) inhibits KC migration. Cultivation of the cells for 1 day under conditions that induce differentiation (ie, in the presence of 1.4 mM Ca2+) suppresses KC motility. A number of soluble growth modulating polypeptide factors also influence KC migration. Transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) stimulate KC motility. These factors simultaneously induce KC production of FN and a significant portion of the stimulated motility can be inhibited with antibodies to FN. EGF and somatomedin-C (SM-C), but not TGF-beta, also stimulate TSP production while EGF and SM-C (but not TGF-beta) induce KC proliferation. In contrast to these factors, interferon-gamma (INF-gamma) inhibits KC production of both FN and TSP and concomitantly inhibits both motility and proliferation. These data suggest that KC properties essential for normal wound healing (ie, motility and proliferation) are regulated by both extracellular matrix molecules and soluble peptide factors. Finally, these effects of various growth promoting and antiproliferative factors on KCs may, in part, be mediated through alteration in the endogenous production of extracellular matrix molecules by KCs. Images Figure 2 PMID:2458044
D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs
Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok
2009-01-01
Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. DMATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the coregulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sosbox cisregulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. DMATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861
D-MATRIX: a web tool for constructing weight matrix of conserved DNA motifs.
Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok
2009-07-27
Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D-MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co-regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos-box cis-regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D-MATRIX tool is accessible through the CIMAP domain network. http://203.190.147.116/dmatrix/
Factor analytic tools such as principal component analysis (PCA) and positive matrix factorization (PMF), suffer from rotational ambiguity in the results: different solutions (factors) provide equally good fits to the measured data. The PMF model imposes non-negativity of both...
Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques
2017-07-27
Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Wang, Degao; Tian, Fulin; Yang, Meng; Liu, Chenlin; Li, Yi-Fan
2009-05-01
Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.
Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.
Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne
2010-05-01
Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.
Nucleon electromagnetic form factors using lattice simulations at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Asghari, Fateme; Jahanshahi, Mohsen
2012-09-28
Expanded bed adsorption (EBA), a promising and practical separation technique for adsorption of nanobioproduct/bioproduct, has been widely studied in the past two decades. The development of adsorbent with the special design for expanded bed process is a challenging course. To reduce the costs of adsorbent preparation, fine zinc powder was used as the inexpensive densifier. A series of matrices named Ag-Zn were prepared by water-in-oil emulsification method. The structure and morphology of the prepared matrix were studied by the optical microscope (OM) and scanning electron microscopy (SEM). The physical properties as a function of zinc powder ratio to agarose slurry were measured. The prepared matrices had regular spherical shape, and followed logarithmic normal size distribution with the range of 75-330 μm, mean diameter of 140.54-191.11 μm, wet density of 1.33-2.01 g/ml, water content of 0.45-0.75, porosity of 0.86-0.97 and pore size of about 40-90 nm. The bed expansion factor at the range of 2-3 was examined. The obtained results indicated that the expansion factor was decreased with increasing of matrix density. In addition, it was found that matrices with large particle size were suitable for high operation flow rate. The hydrodynamic properties were determined in expanded bed by the residence time distribution method (RTD). The effects of flow velocity, expansion factor and density of matrix on the hydrodynamic properties were also investigated. Moreover, the influence of particle size distribution on the performance of expanded bed has been studied. Therefore, three different particle size fractions (65-140, 215-280 and 65-280 μm) were assessed. The results indicated that dispersion in liquid-solid expanded beds increased with increasing flow rate and expansion factor; and matrix with a wide particle size distribution leaded to a reduced axial dispersion compared to matrices with a narrow size distribution. The axial dispersion coefficient also enhanced with the increasing of matrix density. It was found that flow rate was the most essential factor to effect on the hydrodynamic characteristics in the bed. For all the prepared matrices, the values of axial mixing coefficients (D(axl)) were smaller than 1.0 × 10⁻⁵ m²/s when flow velocities in expanded bed were less than 700 cm/h. All the results indicate that the prepared matrix show good expansion and stability in expanded bed; and it is suitable for expanded bed processes as an economical adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.
Sheets, Anthony R; Massey, Conner J; Cronk, Stephen M; Iafrati, Mark D; Herman, Ira M
2016-07-02
Non-healing wounds are a major global health concern and account for the majority of non-traumatic limb amputations worldwide. However, compared to standard care practices, few advanced therapeutics effectively resolve these injuries stemming from cardiovascular disease, aging, and diabetes-related vasculopathies. While matrix turnover is disrupted in these injuries, debriding enzymes may promote healing by releasing matrix fragments that induce cell migration, proliferation, and morphogenesis, and plasma products may also stimulate these processes. Thus, we created matrix- and plasma-derived peptides, Comb1 and UN3, which induce cellular injury responses in vitro, and accelerate healing in rodent models of non-healing wounds. However, the effects of these peptides in non-healing wounds in diabetes are not known. Here, we interrogated whether these peptides stimulate healing in a diabetic porcine model highly reminiscent of human healing impairments in type 1 and type 2-diabetes. After 3-6 weeks of streptozotocin-induced diabetes, full-thickness wounds were surgically created on the backs of adult female Yorkshire swine under general anesthesia. Comb1 and UN3 peptides or sterile saline (negative control) were administered to wounds daily for 3-7 days. Following sacrifice, wound tissues were harvested, and quantitative histological and immunohistochemical analyses were performed for wound closure, angiogenesis and granulation tissue deposition, along with quantitative molecular analyses of factors critical for angiogenesis, epithelialization, and dermal matrix remodeling. Comb1 and UN3 significantly increase re-epithelialization and angiogenesis in diabetic porcine wounds, compared to saline-treated controls. Additionally, fluorescein-conjugated Comb1 labels keratinocytes, fibroblasts, and vascular endothelial cells in porcine wounds, and Far western blotting reveals these cell populations express multiple fluorescein-Comb1-interacting proteins in vitro. Further, peptide treatment increases mRNA expression of several pro-angiogenic, epithelializing, and matrix-remodeling factors, importantly including balanced inductions in matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinases-1, lending further insight into their mechanisms. Comb1 and UN3 stimulate wound resolution in diabetic Yorkshire swine through upregulation of multiple reparative growth factors and cytokines, especially matrix metalloproteinases and inhibitors that may aid in reversing the proteolytic imbalance characteristic of chronically inflamed non-healing wounds. Together, these peptides should have great therapeutic potential for all patients in need of healing, regardless of injury etiology.
Harris, Randall J
2004-05-01
Obtaining predictable and esthetic root coverage has become important. Unfortunately, there is only a limited amount of information available on the long-term results of root coverage procedures. The goal of this study was to evaluate the short-term and long-term root coverage results obtained with an acellular dermal matrix and a subepithelial graft. An a priori power analysis was done to determine that 25 was an adequate sample size for each group in this study. Twenty-five patients treated with either an acellular dermal matrix or a subepithelial graft for root coverage were included in this study. The short-term (mean 12.3 to 13.2 weeks) and long-term (mean 48.1 to 49.2 months) results were compared. Additionally, various factors were evaluated to determine whether they could affect the results. This study was a retrospective study of patients in a fee-for-service private periodontal practice. The patients were not randomly assigned to treatment groups. The mean root coverages for the short-term acellular dermal matrix (93.4%), short-term subepithelial graft (96.6%), and long-term subepithelial graft (97.0%) were statistically similar. All three were statistically greater than the long-term acellular dermal matrix mean root coverage (65.8%). Similar results were noted in the change in recession. There were smaller probing reductions and less of an increase in keratinized tissue with the acellular dermal matrix than the subepithelial graft. None of the factors evaluated resulted in the acellular dermal graft having a statistically significant better result than the subepithelial graft. However, in long-term cases where multiple defects were treated with an acellular dermal matrix, the mean root coverage (70.8%) was greater than the mean root coverage in long-term cases where a single defect was treated with an acellular dermal matrix (50.0%). The mean results with the subepithelial graft held up with time better than the mean results with an acellular dermal matrix. However, the results were not universal. In 32.0% of the cases treated with an acellular dermal matrix, the results improved or remained stable with time.
Haley, Jeffrey C; Lodge, Timothy P
2005-06-15
The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.
Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S. Stanley
2016-01-01
Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability. PMID:27213413
Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S Stanley
2016-05-18
Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability.
NASA Astrophysics Data System (ADS)
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu
2017-08-01
Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.
Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.
Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi
2014-02-01
This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.
Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations
NASA Astrophysics Data System (ADS)
Patki, Chetan; Agarwal, Vivek
2009-08-01
Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.
Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry
1987-01-01
Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.
Formulas for Image Factor Scores
ERIC Educational Resources Information Center
Hakstian, A. Ralph
1973-01-01
Formulas are presented in this paper for computing scores associated with factors of G, the image covariance matrix, under three conditions. The subject of the paper is restricted to "pure" image analysis. (Author/NE)
Li, Fan; Li, Lisha; Cheng, Meijuan; Wang, Xiumin; Hao, Jun; Liu, Shuxia; Duan, Huijun
2017-01-22
Tubular interstitial extracellular matrix accumulation, which plays a key role in the pathogenesis and progression of diabetic kidney disease (DKD), is believed to be mediated by activation of PI3K/Akt signal pathway. However, it is still not clear whether SH2 domain-containing inositol 5'-phosphatase (SHIP), known as a negative regulator of PI3K/Akt pathway is also involved in extracellular matrix metabolism of diabetic kidney. In the present study, decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in renal tubular cells of diabetic mice accompanied by overexpression of connective tissue growth factor (CTGF) and extracellular matrix deposition versus normal mice. Again, high glucose attenuated SHIP expression in a time-dependent manner, concomitant with activation of PI3K/Akt signaling and extracellular matrix production in human renal proximal tubular epithelial cells (HK2) cultured in vitro, which was significantly prevented by transfection of M90-SHIP vector. Furthermore, in vivo delivery of rAd-INPP5D vector (SHIP expression vector) via intraperitoneal injection in diabetic mice increased SHIP expression by 3.36 times followed by 65.26%, 70.38% and 46.71% decreases of phospho-Akt (Ser 473), phospho-Akt (Thr 308) and CTGF expression versus diabetic mice receiving rAd-EGFP vector. Meanwhile, increased renal extracellular matrix accumulation of diabetic mice was also inhibited with intraperitoneal injection of rAd-INPP5D vector. These above data suggested that overexpression of SHIP might be a potent method to lessen renal extracellular matrix accumulation via inactivation of PI3K/Akt pathway and suppression of CTGF expression in DKD. Copyright © 2016 Elsevier Inc. All rights reserved.
Insulin-like growth factor I has independent effects on bone matrix formation and cell replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hock, J.M.; Centrella, M.; Canalis, E.
1988-01-01
The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of (2,3-/sup 3/H)proline and (methyl-/sup 3/H)thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on (/sup 3/H)proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on (/sup 3/H)thymidine incorporation into acid-precipitable material (DNA). IGF-Imore » at 10(-9)-10(-7) M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10(-9)-10(-6) M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10(-7) M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.« less
Piezoresistivity of Resin-Impregnated Carbon Nanotube Film at High Temperatures.
Li, Min; Zuo, Tianyi; Wang, Shaokai; Gu, Yizhuo; Gao, Limin; Li, Yanxia; Zhang, Zuoguang
2018-06-13
This paper presents the development of a continuous carbon nanotube (CNT) composite film sensor with a strain detecting range of 0-2% for structural composites. The strain-dependent resistance responses of continuous CNT film and its resin-impregnated composite films were investigated at temperatures as high as 200 °C. The results manifest that impregnation with resin leads to a much larger gauge factor than pristine film. Both the pristine and composite films show an increase in resistivity with increasing temperature. For different composite films, the ordering of gauge factors is consistent with that of the matrix moduli. This indicates that a resin matrix with higher modulus and strong interactions between CNTs/CNT bundles and the resin matrix are beneficial for enhancing the piezoresistive effect. The CNT/PAA composite film has a gauge factor of 4.3 at 150 °C, an order of magnitude higher than the metal foil sensor. Therefore, the CNT composite films have great potential for simultaneous application for reinforcement and as strain sensor to realise a multifunctional composite. © 2018 IOP Publishing Ltd.
EBSD characterization of twinning in cold-rolled CP-Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X., E-mail: csulixu@hotmail.com; Duan, Y.L., E-mail: 876270744@qq.com; Xu, G.F., E-mail: csuxgf66@csu.edu.cn
2013-10-15
This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112{sup ¯}2)<112{sup ¯}3{sup ¯}> compressive twins and (101{sup ¯}2)<101{sup ¯}1{sup ¯}> tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system.more » The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties.« less
Spin-1 Particles and Perturbative QCD
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Frederico, T.; Ji, Chueng-Ryong
2018-07-01
Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration (Phys Rev D 78:071103, 2008) has analyzed the reaction e^+ + e^-→ ρ ^+ + ρ ^- at √{s}=10.58 GeV to measure the cross section as well as the ratios of the helicity amplitudes F_{λ 'λ }. We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.
Yang, Haixuan; Seoighe, Cathal
2016-01-01
Nonnegative Matrix Factorization (NMF) has proved to be an effective method for unsupervised clustering analysis of gene expression data. By the nonnegativity constraint, NMF provides a decomposition of the data matrix into two matrices that have been used for clustering analysis. However, the decomposition is not unique. This allows different clustering results to be obtained, resulting in different interpretations of the decomposition. To alleviate this problem, some existing methods directly enforce uniqueness to some extent by adding regularization terms in the NMF objective function. Alternatively, various normalization methods have been applied to the factor matrices; however, the effects of the choice of normalization have not been carefully investigated. Here we investigate the performance of NMF for the task of cancer class discovery, under a wide range of normalization choices. After extensive evaluations, we observe that the maximum norm showed the best performance, although the maximum norm has not previously been used for NMF. Matlab codes are freely available from: http://maths.nuigalway.ie/~haixuanyang/pNMF/pNMF.htm.
ERIC Educational Resources Information Center
Clemens, Elysia V.; Carey, John C.; Harrington, Karen M.
2010-01-01
This article details the initial development of the School Counseling Program Implementation Survey and psychometric results including reliability and factor structure. An exploratory factor analysis revealed a three-factor model that accounted for 54% of the variance of the intercorrelation matrix and a two-factor model that accounted for 47% of…
NASA Astrophysics Data System (ADS)
Zhukovsky, K. V.
2017-09-01
The exponential form of the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix for neutrinos is considered in the context of the fundamental representation of the SU(3) group. The logarithm of the mixing matrix is obtained. Based on the most recent experimental data on neutrino mixing, the exact values of the entries of the exponential matrix are calculated. The exact values for its real and imaginary parts are determined, respectively, in charge of the mixing without CP violation and of the pure CP violation effect. The hypothesis of complementarity for quarks and neutrinos is confirmed. The factorization of the exponential mixing matrix, which allows the separation of the mixing and of the CP violation itself in the form of the product of rotations around the real and imaginary axes, is demonstrated.
Li, Bin; Comi, Troy J; Si, Tong; Dunham, Sage J B; Sweedler, Jonathan V
2016-11-01
Matrix-assisted laser desorption/ionization imaging of biofilms cultured on agar plates is challenging because of problems related to matrix deposition onto agar. We describe a one-step, spray-based application of a 2,5-dihydroxybenzoic acid solution for direct matrix-assisted laser desorption/ionization imaging of hydrated Bacillus subtilis biofilms on agar. Using both an optimized airbrush and a home-built automatic sprayer, region-specific distributions of signaling metabolites and cannibalistic factors were visualized from B. subtilis cells cultivated on biofilm-promoting medium. The approach provides a homogeneous, relatively dry coating on hydrated samples, improving spot to spot signal repeatability compared with sieved matrix application, and is easily adapted for imaging a range of agar-based biofilms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Method of multivariate spectral analysis
Keenan, Michael R.; Kotula, Paul G.
2004-01-06
A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).
On the use of the covariance matrix to fit correlated data
NASA Astrophysics Data System (ADS)
D'Agostini, G.
1994-07-01
Best fits to data which are affected by systematic uncertainties on the normalization factor have the tendency to produce curves lower than expected if the covariance matrix of the data points is used in the definition of the χ2. This paper shows that the effect is a direct consequence of the hypothesis used to estimate the empirical covariance matrix, namely the linearization on which the usual error propagation relies. The bias can become unacceptable if the normalization error is large, or a large number of data points are fitted.
S/MARt DB: a database on scaffold/matrix attached regions.
Liebich, Ines; Bode, Jürgen; Frisch, Matthias; Wingender, Edgar
2002-01-01
S/MARt DB, the S/MAR transaction database, is a relational database covering scaffold/matrix attached regions (S/MARs) and nuclear matrix proteins that are involved in the chromosomal attachment to the nuclear scaffold. The data are mainly extracted from original publications, but a World Wide Web interface for direct submissions is also available. S/MARt DB is closely linked to the TRANSFAC database on transcription factors and their binding sites. It is freely accessible through the World Wide Web (http://transfac.gbf.de/SMARtDB/) for non-profit research.
A penny shaped crack in a filament-reinforced matrix. 2: The crack problem
NASA Technical Reports Server (NTRS)
Pacella, A. H.; Erdogan, F.
1973-01-01
The elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix was formulated. For a single filament as well as multiple identical filaments located symmetrically around the crack the problem is shown to reduce to a singular integral equation. The solution of the problem is obtained for various geometries and filament-to-matrix stiffness ratios, and the results relating to the angular variation of the stress intensity factor and the maximum filament stress are presented.
Periodontal plastic surgery of gingival recessions at single and multiple teeth.
Cairo, Francesco
2017-10-01
This manuscript aims to review periodontal plastic surgery for root coverage at single and multiple gingival recessions. Techniques are assessed based on biological principles, surgical procedures, prognosticative factors and expected clinical and esthetic outcomes. The use of coronally advanced flap, laterally sliding flap, free gingival graft, the tunnel grafting technique, barrier membranes, enamel matrix derivative, collagen matrix and acellular dermal matrix are evaluated. The clinical scenario and practical implications are analyzed according to a modern evidence-based approach. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Geer, David J.; Swartz, Daniel D.; Andreadis, Stelios T.
2005-01-01
Exogenous keratinocyte growth factor (KGF) significantly enhances wound healing, but its use is hampered by a short biological half-life and lack of tissue selectivity. We used a biomimetic approach to achieve cell-controlled delivery of KGF by covalently attaching a fluorescent matrix-binding peptide that contained two domains: one recognized by factor XIII and the other by plasmin. Modified KGF was incorporated into the fibrin matrix at high concentration in a factor XIII-dependent manner. Cell-mediated activation of plasminogen to plasmin degraded the fibrin matrix and cleaved the peptides, releasing active KGF to the local microenvironment and enhancing epithelial cell proliferation and migration. To demonstrate in vivo effectiveness, we used a hybrid model of wound healing that involved transplanting human bioengineered skin onto athymic mice. At 6 weeks after grafting, the transplanted tissues underwent full thickness wounding and treatment with fibrin gels containing bound KGF. In contrast to topical KGF, fibrin-bound KGF persisted in the wounds for several days and was released gradually, resulting in significantly enhanced wound closure. A fibrinolytic inhibitor prevented this healing, indicating the requirement for cell-mediated fibrin degradation to release KGF. In conclusion, this biomimetic approach of localized, cell-controlled delivery of growth factors may accelerate healing of large full-thickness wounds and chronic wounds that are notoriously difficult to heal. PMID:16314471
Engström, Karl Gunnar; Angrén, John; Björnstig, Ulf; Saveman, Britt-Inger
2018-02-01
Underground mining is associated with obvious risks that can lead to mass casualty incidents. Information about such incidents was analyzed in an integrated literature review. A literature search (1980-2015) identified 564 modern-era underground mining reports from countries sharing similar occupational health legislation. These reports were condensed to 31 reports after consideration of quality grading and appropriateness to the aim. The Haddon matrix was used for structure, separating human factors from technical and environmental details, and timing. Most of the reports were descriptive regarding injury-creating technical and environmental factors. The influence of rock characteristics was an important pre-event environmental factor. The organic nature of coal adds risks not shared in hard-rock mines. A sequence of mechanisms is commonly described, often initiated by a human factor in interaction with technology and step-wise escalation to involve environmental circumstances. Socioeconomic factors introduce heterogeneity. In the Haddon matrix, emergency medical services are mainly a post-event environmental issue, which were not well described in the available literature. The US Quecreek Coal Mine incident of 2002 stands out as a well-planned rescue mission. Evaluation of the preparedness to handle underground mining incidents deserves further scientific attention. Preparedness must include the medical aspects of rescue operations. (Disaster Med Public Health Preparedness. 2018;12:138-146).
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Selber, Jesse C; Wren, James H; Garvey, Patrick B; Zhang, Hong; Erickson, Cameron; Clemens, Mark W; Butler, Charles E
2015-07-01
Acellular dermal matrix for implant-based breast reconstruction appears to cause higher early complication rates, but long-term outcomes are perceived to be superior. This dichotomy is the subject of considerable debate. The authors hypothesized that patient characteristics and operative variables would have a greater impact on complications than the type of acellular dermal matrix used. A retrospective cohort study was performed of consecutive patients who underwent two-stage, implant-based breast reconstruction with human cadaveric or bovine acellular dermal matrix from 2006 to 2012 at a single institution. Patient characteristics and operative variables were analyzed using logistic regression analyses to identify risk factors for complications. The authors included 564 reconstructions in the study. Radiation therapy and obesity increased the odds of all complications. Every 100-ml increase in preoperative breast volume increased the odds of any complication by 1 percent, the odds of infection by 27 percent, and the risk of explantation by 16 percent. The odds of seroma increased linearly with increasing surface area of acellular dermal matrix. Odds of infection were higher with an intraoperative expander fill volume greater than 50 percent of the total volume. Risk of explantation was twice as high when intraoperative expander fill volume was greater than 300 ml. Radiation therapy, obesity, larger breasts, higher intraoperative fill volumes, and larger acellular dermal matrices are all independent risk factors for early complications. Maximizing the initial mastectomy skin envelope fill must be balanced with the understanding that higher complication rates may result from a larger intraoperative breast mound. Risk, III.
Dahal, Shataakshi; Broekelman, Thomas; Mecham, Robert P; Ramamurthi, Anand
2018-06-01
Abdominal aortic aneurysms (AAAs) are localized expansions of the abdominal aorta that grow slowly to rupture. AAA growth is driven by irreversible elastic matrix breakdown in the aorta wall by chronically upregulated matrix metalloproteases (MMPs). Since adult vascular smooth muscle cells (SMCs) poorly regenerate elastic matrix, we previously explored utility of bone marrow mesenchymal stem cells and SMCs derived therefrom (BM-SMCs) for this purpose. One specific differentiated phenotype (cBM-SMCs) generated on a fibronectin substrate in presence of exogenous transforming growth factor-β and platelet-derived growth factor exhibited superior elastogenicity versus other phenotypes, and usefully provided proelastogenic and antiproteolytic stimuli to aneurysmal SMCs. Since in vivo cell therapy demands large cell inoculates, these derived SMCs must be propagated in vitro while maintaining their superior elastogenic, proelastogenic, and antiproteolytic characteristics. In this work, we thus investigated the culture conditions that must be provided to this propagation phase, which ensure that the differentiated SMCs maintain their phenotype and matrix regenerative benefits. Our results indicate that our BM-SMCs retain their phenotype in long-term culture even in the absence of differentiation growth factors and fibronectin substrate, but these conditions must be continued to be provided during postdifferentiation propagation if they are to maintain their superior elastic matrix deposition, crosslinking, and fiber formation properties. Our study, however, showed that cells propagated under these conditions exhibit higher expression of MMP-2, but favorably, no expression of elastolytic MMP-9. Hence, the study outcomes provide crucial guidelines to maintain phenotypic stability of cBM-SMCs during their propagation in two-dimensional culture before their delivery to the AAA wall for therapy.
The Effect of Rotation on Legibility of Dot-Matrix Characters
1991-02-01
National Standard for human factors engineering of visual display terminal workstations . Paper presented at the meeting of the Human Factors Society...Ed.), Modern issues in perception (pp. 217-226). Amsterdam: North Holland. Human Factors Society, HFS/ANSI VDT Standards Committee. (1988). American
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, W. A.; Mkhize, S.; Brown, B. Alex
The new Hamiltonians USDA and USDB for the sd shell are used to calculate M1 and E2 moments and transition matrix elements, Gamow-Teller {beta}-decay matrix elements, and spectroscopic factors for sd-shell nuclei from A=17 to A=39. The results are compared with those obtained with the older USD Hamiltonian and with experiment to explore the interaction sensitivity of these observables.
a Migration Well Model for the Binding of Ligands to Heme Proteins.
NASA Astrophysics Data System (ADS)
Beece, Daniel Kenneth
The binding of carbon monoxide and dioxygen to heme proteins can be viewed as occurring in distinct stages: diffusion in the solvent, migration through the matrix, and occupation of the pocket before the final binding step. A model is presented which can explain the dominant kinetic behavior of several different heme protein-ligand systems. The model assumes that a ligand molecule in the solvent sequentially encounters discrete energy barriers on the way to the binding site. The rate to surmount each barrier is distributed, except for the pseudofirst order rate corresponding to the step into the protein from the solvent. The migration through the matrix is equivalent to a small number of distinct jumps. Quantitative analysis of the data permit estimates of the barrier heights, preexponentials and solvent coupling factors for each rate. A migration coefficient and a matrix occupation factor are defined.
NASA Technical Reports Server (NTRS)
Vinograd, S. P.
1974-01-01
Scientific literature which deals with the study of human behavior and crew interaction in situations simulating long term space flight is summarized and organized. A bibliography of all the pertinent U.S. literature available is included, along with definitions of the behavioral characteristics terms employed. The summarized studies are analyzed according to behavioral factors and environmental conditions. The analysis consist of two matrices. (1) The matrix of factors studied correlates each research study area and individual study with the behavioral factors that were investigated in the study. (2) The matrix of conclusions identifies those studies whose investigators appeared to draw specific conclusions concerning questions of importance to NASA.
D → Klv semileptonic decay using lattice QCD with HISQ at physical pion masses
NASA Astrophysics Data System (ADS)
Chakraborty, Bipasha; Davies, Christine; Koponen, Jonna; Lepage, G. Peter
2018-03-01
he quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (over a large q2 region including q2 = 0) associated with the D→ Klv semi-leptonic decay. This calculation will then allow us to determine the central CKM matrix element, Vcs in the Standard Model, by comparing the lattice QCD results for the form factors and the experimental decay rate. This form factor calculation has been performed on the Nf = 2 + 1 + 1 MILC HISQ ensembles with the physical light quark masses.
Rotational Uniqueness Conditions under Oblique Factor Correlation Metric
ERIC Educational Resources Information Center
Peeters, Carel F. W.
2012-01-01
In an addendum to his seminal 1969 article Joreskog stated two sets of conditions for rotational identification of the oblique factor solution under utilization of fixed zero elements in the factor loadings matrix (Joreskog in "Advances in factor analysis and structural equation models," pp. 40-43, 1979). These condition sets, formulated under…
NASA Astrophysics Data System (ADS)
Hamed, Haikel Ben; Bennacer, Rachid
2008-08-01
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).
The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.
Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S
2017-07-01
Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.
2009-06-01
projection, the measurement matrix is of rank 3. This is known as the rank theorem and enables the matrix Y to be factored into the product of two...Interface 270 6.5.5. Bistatic Radar Measurements 271 6.5.6. Computer Aided Image-Model Matching 273 8 6.5.7. Tomasi-Kanade Factorization Method...the vectors of an orthonormal basis satisfy the following scalar- product relations (2 p. 239): = i. ir = n (2.1) i-j = i-k j-k 0 i-i= j • j = k-k
Effects of partitioning and scheduling sparse matrix factorization on communication and load balance
NASA Technical Reports Server (NTRS)
Venugopal, Sesh; Naik, Vijay K.
1991-01-01
A block based, automatic partitioning and scheduling methodology is presented for sparse matrix factorization on distributed memory systems. Using experimental results, this technique is analyzed for communication and load imbalance overhead. To study the performance effects, these overheads were compared with those obtained from a straightforward 'wrap mapped' column assignment scheme. All experimental results were obtained using test sparse matrices from the Harwell-Boeing data set. The results show that there is a communication and load balance tradeoff. The block based method results in lower communication cost whereas the wrap mapped scheme gives better load balance.
Boundary formulations for sensitivity analysis without matrix derivatives
NASA Technical Reports Server (NTRS)
Kane, J. H.; Guru Prasad, K.
1993-01-01
A new hybrid approach to continuum structural shape sensitivity analysis employing boundary element analysis (BEA) is presented. The approach uses iterative reanalysis to obviate the need to factor perturbed matrices in the determination of surface displacement and traction sensitivities via a univariate perturbation/finite difference (UPFD) step. The UPFD approach makes it possible to immediately reuse existing subroutines for computation of BEA matrix coefficients in the design sensitivity analysis process. The reanalysis technique computes economical response of univariately perturbed models without factoring perturbed matrices. The approach provides substantial computational economy without the burden of a large-scale reprogramming effort.
Process Research On Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.; Wohlgemuth, J. H.
1982-01-01
Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.
Lo, W C; Fung, G Pg; Cheung, P Ch
2017-10-01
In all cases of suspected child abuse, accurate risk assessment is vital to guide further management. This study examined the relationship between risk factors in a risk assessment matrix and child abuse case conference outcomes. Records of all children hospitalised at United Christian Hospital in Hong Kong for suspected child abuse from January 2012 to December 2014 were reviewed. Outcomes of the hospital abuse work-up as concluded in the Multi-Disciplinary Case Conference were categorised as 'established', 'high risk', or 'not established'. All cases of 'established' and 'high risk' were included in the positive case conference outcome group and all cases of 'not established' formed the comparison group. On the other hand, using the Risk Assessment Matrix developed by the California State University, Fresno in 1990, each case was allotted a matrix score of low, intermediate, or high risk in each of 15 matrix domains, and an aggregate matrix score was derived. The effect of individual matrix domain on case conference outcome was analysed. Receiver operating characteristic curve analysis was used to examine the relationship between case conference outcome and aggregate matrix score. In this study, 265 children suspected of being abused were included, with 198 in the positive case conference outcome group and 67 in the comparison group. Three matrix domains (severity and frequency of abuse, location of injuries, and strength of family support systems) were significantly associated with case conference outcome. An aggregate cut-off score of 23 yielded a sensitivity of 91.4% and specificity of 38.2% in relation to outcome of abuse categorisation. Risk assessment should be performed when handling suspected child abuse cases. A high aggregate score should arouse suspicion in all disciplines managing child abuse cases.
Phase diagram of matrix compressed sensing
NASA Astrophysics Data System (ADS)
Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka
2016-12-01
In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.
Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z
2015-12-01
Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.
D → π and D → K semileptonic form factors with Nf = 2 + 1 + 1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a lattice determination of the vector and scalar form factors of the D → π(K)lv semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vcd| and |Vcs| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 +1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. The matrix elements of both vector and scalar currents are determined for a plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit the vector and scalar form factors are determined in the whole kinematical region from q2 = 0 up to qmax2 = (MD - Mπ(K))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible.
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, Maria Rosa
2015-09-29
Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, MariaRosa
2015-01-01
Proteasescontribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy. PMID:26318044
NASA Astrophysics Data System (ADS)
Teal, Paul D.; Eccles, Craig
2015-04-01
The two most successful methods of estimating the distribution of nuclear magnetic resonance relaxation times from two dimensional data are data compression followed by application of the Butler-Reeds-Dawson algorithm, and a primal-dual interior point method using preconditioned conjugate gradient. Both of these methods have previously been presented using a truncated singular value decomposition of matrices representing the exponential kernel. In this paper it is shown that other matrix factorizations are applicable to each of these algorithms, and that these illustrate the different fundamental principles behind the operation of the algorithms. These are the rank-revealing QR (RRQR) factorization and the LDL factorization with diagonal pivoting, also known as the Bunch-Kaufman-Parlett factorization. It is shown that both algorithms can be improved by adaptation of the truncation as the optimization process progresses, improving the accuracy as the optimal value is approached. A variation on the interior method viz, the use of barrier function instead of the primal-dual approach, is found to offer considerable improvement in terms of speed and reliability. A third type of algorithm, related to the algorithm known as Fast iterative shrinkage-thresholding algorithm, is applied to the problem. This method can be efficiently formulated without the use of a matrix decomposition.
Han, Fang; Liu, Han
2017-02-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.
Tsuchiyama, Tomoyuki; Katsuhara, Miki; Nakajima, Masahiro
2017-11-17
In the multi-residue analysis of pesticides using GC-MS, the quantitative results are adversely affected by a phenomenon known as the matrix effect. Although the use of matrix-matched standards is considered to be one of the most practical solutions to this problem, complete removal of the matrix effect is difficult in complex food matrices owing to their inconsistency. As a result, residual matrix effects can introduce analytical errors. To compensate for residual matrix effects, we have developed a novel method that employs multiple isotopically labeled internal standards (ILIS). The matrix effects of ILIS and pesticides were evaluated in spiked matrix extracts of various agricultural commodities, and the obtained data were subjected to simple statistical analysis. Based on the similarities between the patterns of variation in the analytical response, a total of 32 isotopically labeled compounds were assigned to 338 pesticides as internal standards. It was found that by utilizing multiple ILIS, residual matrix effects could be effectively compensated. The developed method exhibited superior quantitative performance compared with the common single-internal-standard method. The proposed method is more feasible for regulatory purposes than that using only predetermined correction factors and is considered to be promising for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Children and motorcycles: a systematic review of risk factors and interventions.
Brown, Julie; Schonstein, Lisa; Ivers, Rebecca; Keay, Lisa
2018-04-01
To (i) identify person, vehicle and environmental risk factors for injury among children using motorcycles, and (ii) identify and appraise studies of interventions designed to reduce the occurrence or severity of injury among children using these vehicles. A systematic approach was used to collate data from published and grey literature globally on risk factors for motorcycles injury, and studies reporting evaluation of interventions to counter this injury. Academic data sets and public search engines (including Google and Yahoo!) were used. Websites of major conferences, organisations and networks were also searched. Finally, researchers and units working in this area were also contacted by email or phone seeking relevant research. All study types were eligible, excluding clinical case studies. The Haddon Matrix was used as a framework for synthesising the data. The review revealed that robust investigations of risk factors for injury among children using motorcycles are relatively scarce, and there are few interventional studies reporting effectiveness of countermeasures to this problem. Epidemiological literature is generally limited to discussion of human factors, and less attention has been given to vehicle and environmental factors. Furthermore, much of the literature is commentaries and descriptive studies. There has been little rigorous study of risk factors unique to children riding motorcycles. This first attempt at extensively reviewing literature related to risk factors and interventions for children and motorcycles using the Haddon Matrix as a framework clearly highlights need for more rigorous study as information is lacking in all cells of this matrix. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhang, Wei; Chen, Jialin; Tao, Jiadong; Jiang, Yangzi; Hu, Changchang; Huang, Lu; Ji, Junfeng; Ouyang, Hong Wei
2013-01-01
Despite the presence of cartilage-derived mesenchymal stem cells (C-MSCs) and synovial membrane-derived mesenchymal stem cells (SM-MSCs) populations, partial-thickness cartilage defects, in contrast to the full-thickness defects, are devoid of spontaneous repair capacity. This study aims to create an in situ matrix environment conducive to C-MSCs and SM-MSCs to promote cartilage self-repair. Spontaneous repair with MSCs migration into the defect area was observed in full-thickness defects, but not in partial-thickness defects in rabbit model. Ex vivo and in vitro studies showed that subchondral bone or type 1 collagen (col1) scaffold was more permissive for MSCs adhesion than cartilage or type 2 collagen (col2) scaffold and induced robust stromal cell-derived factors-1 (SDF-1) dependent migration of MSCs. Furthermore, creating a matrix environment with col1 scaffold containing SDF-1 enhanced in situ self-repair of partial-thickness defects in rabbit 6 weeks post-injury. Hence, the inferior self-repair capacity in partial-thickness defects is partially owing to the non-permissive matrix environment. Creating an in situ matrix environment conducive to C-MSCs and SM-MSCs migration and adhesion with col1 scaffold containing SDF-1 can be exploited to improve self-repair capacity of cartilage. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh
We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to performmore » $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $$1.6 \\times 10^{-2}$$ seconds on an Intel Xeon processor.« less
Quantitative framework for preferential flow initiation and partitioning
Nimmo, John R.
2016-01-01
A model for preferential flow in macropores is based on the short-range spatial distribution of soil matrix infiltrability. It uses elementary areas at two different scales. One is the traditional representative elementary area (REA), which includes a sufficient heterogeneity to typify larger areas, as for measuring field-scale infiltrability. The other, called an elementary matrix area (EMA), is smaller, but large enough to represent the local infiltrability of soil matrix material, between macropores. When water is applied to the land surface, each EMA absorbs water up to the rate of its matrix infiltrability. Excess water flows into a macropore, becoming preferential flow. The land surface then can be represented by a mesoscale (EMA-scale) distribution of matrix infiltrabilities. Total preferential flow at a given depth is the sum of contributions from all EMAs. Applying the model, one case study with multi-year field measurements of both preferential and diffuse fluxes at a specific depth was used to obtain parameter values by inverse calculation. The results quantify the preferential–diffuse partition of flow from individual storms that differed in rainfall amount, intensity, antecedent soil water, and other factors. Another case study provided measured values of matrix infiltrability to estimate parameter values for comparison and illustrative predictions. These examples give a self-consistent picture from the combination of parameter values, directions of sensitivities, and magnitudes of differences caused by different variables. One major practical use of this model is to calculate the dependence of preferential flow on climate-related factors, such as varying soil wetness and rainfall intensity.
Noh, Kyu-Cheol; Park, Sin-Hye; Yang, Cheol Jung; Lee, Geun Woo; Kim, Min Ki; Kang, Young-Hee
2018-01-01
Shoulder osteoarthritis is a gradual wearing of the articular cartilage concomitant with degenerative rotator cuff tears (RCTs). This pathologic disorder is related to inflammation, oxidative stress, and angiogenesis. Degenerative alterations may prompt production of cytokines and angiogenesis-related proteins, evoking rotator cuff diseases. This study tested the hypothesis that oxidative stress-responsive mediators can influence joint inflammation of patients with RCT. Twelve healthy RCT patients not suffering shoulder osteoarthritis were categorized as the control group, and 24 patients were allocated to 2 RCT groups (RCTP1 and RCTP2), according to severity of RCT and glenohumeral arthritis. Cytokines, growth factors, and angiogenic biomarkers in synovial fluids, blood, platelet-rich plasma (PRP), and tendon tissues were analyzed with enzyme-linked immunosorbent assay, immunoblotting, and collagen zymography. Induction of interleukin 8, tumor necrosis factor α, and interleukin 1β was considerably elevated in synovial fluids of RCTP groups (P = .0398, P = .0428, P = .0828, respectively). The joint inflammation highly enhanced insulin-like growth factor 1 and transforming growth factor β1 (TGF-β1) in the synovial fluids and serum. Angiogenesis-related angiopoietin (Ang) 1 and 2, Tie-2, and hypoxia-inducible factor 1α were upregulated in reactive oxygen species-exposed RCTP synovium (P < .05). The production of matrix metalloproteinase 1 markedly increased in synovial fluids of the RCTP group (P = .043), whereas tissue collagen type I expression diminished with reduction of connective tissue growth factor expression (P = .032). Although the secretion of platelet-derived growth factor AB and vascular endothelial growth factor was marginal in the circulation (P = .714, P = .335), platelet-derived growth factor AB, TGF-β1, Ang-1, and matrix metalloproteinase 1 were enriched in PRP of the RCTP group (P < .001, P = .002, P = .0389, respectively). Synovial matrix degradation and oxidative stress-triggered angiogenesis may be involved in inducing RCT with joint inflammation. TGF-β1, Ang-1, and Ang-2 are the major components to repair RCT and to alleviate joint inflammation in PRP therapy. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Vural, Kamil; Kosova, Funda; Kurt, Feyzan Özdal; Tuğlu, İbrahim
2017-10-01
The chaperone-binding drug, 17-allylamino-17-demethoxygeldanamycin, has recently come into clinical use. It is a derivative of geldanamycin, an ansamycin benzoquinone antibiotic with anti-carcinogenic effect. Understanding the effect of this drug on the cancer cells and their niche is important for treatment. We applied 17-allylamino-17-demethoxygeldanamycin to colon cancer cell line (Colo 205) on matrix molecules to investigate the relationship of apoptosis with terminal deoxynucleotidyl transferase dUTP nick end labeling immunocytochemistry and related gene expression. We used laminin and collagen I for matrix molecules and vascular endothelial growth factor for angiogenic structure. We also examined apoptosis-related signaling pathway including mitochondrial proteins, cytochrome c, Bcl-2, caspase-9, Apaf-1 expression using real-time polymerase chain reaction. There was clear effect of 17-allylamino-17-demethoxygeldanamycin that killed more cells on tissue culture plastic compared to matrix molecules. The IC 50 value was 0.58 µg/mL for tissue culture plastic compared with 0.64 µg/mL for laminin and 0.75 µg/mL for collagen I. The analyses showed that more cells on matrix molecules underwent apoptosis compared to that on tissue culture plastic. Apoptosis-related gene expression was similar in which Bcl-2 expression decreased and proapoptotic gene expression of the cells on matrix molecules increased compared to that on tissue culture plastic. However, the application of 17-allylamino-17-demethoxygeldanamycin was more effective for the cells on collagen I compared to the cells on laminin. There was also a decrease in angiogenesis as shown by the vascular endothelial growth factor staining. This was more pronounced by coating of the tissue culture plastic with matrix molecules. Our results supported the anti-cancer effect of 17-allylamino-17-demethoxygeldanamycin, and this effect depended on matrix molecules. This effect occurs through apoptosis, and related genes were also altered. All these genes may serve for novel target under the effect of matrix substrate. However, correct interpretation of the results requires further studies.
NASA Technical Reports Server (NTRS)
Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.
Kim, Min-Soo; Kim, Jeong-Soo; Hwang, Sung-Joo
2007-11-01
The aim of this study was to investigate the effect of sodium alginate on the physical and dissolution properties of Surelease-matrix pellets prepared by a novel pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The mean values of the shape factor (e(R)) and the aspect ratio of Surelease-matrix pellets were 0.615-0.625 and 1.06-1.070, respectively, indicating good sphericity of the pellets. The drug release rate increased as the amount of sodium alginate increased due to hydration, swelling, and erosion within the Surelease-matrix pellets. In addition, the porosity of pellets also increased with increasing sodium alginate content. The results of this study show that sodium alginate has a greater effect on the drug release rate than the drug release mechanism within the Surelease-matrix for sparingly water-soluble drug, such as tamsulosin hydrochloride.
MAGP1, the extracellular matrix, and metabolism
Craft, Clarissa S
2014-01-01
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases. PMID:26167404
MAGP1, the extracellular matrix, and metabolism.
Craft, Clarissa S
2015-01-01
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases.
Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Şahin, Y.; De Baets, Patrick
2017-12-01
Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.
Apparatus and system for multivariate spectral analysis
Keenan, Michael R.; Kotula, Paul G.
2003-06-24
An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.
Schiereck, P; de Beer, E L; Grundeman, R L; Manussen, T; Kylstra, N; Bras, W
1992-10-01
Single skinned skeletal muscle fibres were immersed in solutions containing two different levels of activator calcium (pCa: 4.4; 6.0). Sarcomere length was varied from 1.6 to 3.5 microns and recorded by laser diffraction. Slack length was 2.0 microns. Small-angle equatorial X-ray diffraction patterns of relaxed and activated fibres at different sarcomere lengths were recorded using synchrotron radiation. The position and amplitude of the diffraction peaks were calculated from the spectra based on the hexagonal arrangement of the myofilament matrix, relating the position of the (1.0)- and (1.1)-diffraction peaks in this model by square root of 3. The diffraction peaks were fitted by five Gaussian functions (1.0, 1.1, 2.0, 2.1 and Z-line) and residual background was corrected by means of a hyperbola. The coupling of the position of the (1.0)- and (1.1)-peak was expressed as a factor: FAC = [d(1.0)/d(1.1)]/square root 3. In the relaxed state this coupling factor decreased at increasing sarcomere length (0.9880 +/- 0.002 at 2.0 microns; 0.900 +/- 0.01 at 3.5 microns). The coupling factor tends toward the one that will be obtained from the squared structure of actin filaments near the Z-discs. At shorter sarcomere lengths a decrease of the coupling factor has also been seen (0.9600 +/- 0.005 at 1.6 microns), giving rise to an increased uniform deformation of the hexagonal matrix, when sarcomere length is changed from slack length. From these experiments we conclude that a change in sarcomere length (from slack length) increases the deformation of the actin-myosin matrix to a tetragonal lattice.
NASA Astrophysics Data System (ADS)
Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.
2017-08-01
In this paper we discuss the R -matrix approach to treat the subthreshold resonances for the single-level and one-channel and for the single-level and two-channel cases. In particular, the expression relating the asymptotic normalization coefficient (ANC) with the observable reduced width, when the subthreshold bound state is the only channel or coupled with an open channel, which is a resonance, is formulated. Since the ANC plays a very important role in nuclear astrophysics, these relations significantly enhance the power of the derived equations. We present the relationship between the resonance width and the ANC for the general case and consider two limiting cases: wide and narrow resonances. Different equations for the astrophysical S factors in the R -matrix approach are presented. After that we discuss the Trojan horse method (THM) formalism. The developed equations are obtained using the surface-integral formalism and the generalized R -matrix approach for the three-body resonant reactions. It is shown how the Trojan horse (TH) double-differential cross section can be expressed in terms of the on-the-energy-shell astrophysical S factor for the binary subreaction. Finally, we demonstrate how the THM can be used to calculate the astrophysical S factor for the neutron generator 13C(α ,n )16O in low-mass AGB stars. At astrophysically relevant energies this astrophysical S factor is controlled by the threshold level 1 /2+,Ex=6356 keV. Here, we reanalyzed recent TH data taking into account more accurately the three-body effects and using both assumptions that the threshold level is a subthreshold bound state or it is a resonance state.
Scattering of massless particles: scalars, gluons and gravitons
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2014-07-01
In a recent note we presented a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimension. In this paper we show that a natural formulation also exists for a massless colored cubic scalar theory. In Yang-Mills, the formula is an integral over the space of n marked points on a sphere and has as integrand two factors. The first factor is a combination of Parke-Taylor-like terms dressed with U( N ) color structures while the second is a Pfaffian. The S-matrix of a U( N ) × U( Ñ ) cubic scalar theory is obtained by simply replacing the Pfaffian with a U( Ñ ) version of the previous U( N ) factor. Given that gravity amplitudes are obtained by replacing the U( N ) factor in Yang-Mills by a second Pfaffian, we are led to a natural color-kinematics correspondence. An expansion of the integrand of the scalar theory leads to sums over trivalent graphs and are directly related to the KLT matrix. Combining this and the Yang-Mills formula we find a connection to the BCJ color-kinematics duality as well as a new proof of the BCJ doubling property that gives rise to gravity amplitudes. We end by considering a special kinematic point where the partial amplitude simply counts the number of color-ordered planar trivalent trees, which equals a Catalan number. The scattering equations simplify dramatically and are equivalent to a special Y-system with solutions related to roots of Chebyshev polynomials. The sum of the integrand over the solutions gives rise to a representation of Catalan numbers in terms of eigenvectors and eigenvalues of the adjacency matrix of an A-type Dynkin diagram.
An improved semi-implicit method for structural dynamics analysis
NASA Technical Reports Server (NTRS)
Park, K. C.
1982-01-01
A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.
Analysis Matrix of Resilience in the Face of Disability, Old Age and Poverty
ERIC Educational Resources Information Center
Cardenas, Andrea; Lopez, Lucero
2010-01-01
The purpose of this article is to describe the process of the development of the "Resilience Theoretical Analysis Matrix" (RTAM) (or in its Spanish translation: MATR), a tool designed to facilitate a coherent and organised approach to the assessment of a wide spectrum of factors influencing the development of resilience in the face of disability,…
Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix
Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid
2011-01-01
Aim To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. Materials & methods We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. Results The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. Conclusions These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes. PMID:21175289
NASA Astrophysics Data System (ADS)
Shen, Fei; Chen, Chao; Yan, Ruqiang
2017-05-01
Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.
Jia, Yan; Yue, Yu; Hu, Dan-Ning; Chen, Ji-Li; Zhou, Ji-Bo
2017-01-01
The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyzed using the Spearmans correlation test. The levels of TGF-β2 were identified to be positively correlated with the levels of TIMP-1 and TIMP-3 (TIMP-1: r=0.334; P=0.007; TIMP-3: r=0.309; P=0.012). The levels of MMP-2, MMP-3 and TIMP-2 did not significantly correlate with TGF-β2 levels (P>0.05). A positive correlation was identified between TGF-β2 and TIMPs in the aqueous humor of human eyes with elongated axial length. It appears that TGF-β2 stimulates the expression of TIMPs as a compensatory reaction to the development of high myopia. PMID:29188062
NASA Astrophysics Data System (ADS)
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
ERIC Educational Resources Information Center
Raykov, Tenko; Little, Todd D.
1999-01-01
Describes a method for evaluating results of Procrustean rotation to a target factor pattern matrix in exploratory factor analysis. The approach, based on the bootstrap method, yields empirical approximations of the sampling distributions of: (1) differences between target elements and rotated factor pattern matrices; and (2) the overall…
Daubon, Thomas; Buccione, Roberto; Génot, Elisabeth
2011-01-01
Podosomes are dynamic actin-rich adhesion plasma membrane microdomains endowed with extracellular matrix-degrading activities. In aortic endothelial cells, podosomes are induced by transforming growth factor β (TGF-β), but how this occurs is largely unknown. It is thought that, in endothelial cells, podosomes play a role in vessel remodeling and/or in breaching anatomical barriers. We demonstrate here that, in bovine aortic endothelial cells, that the Cdc42-specific guanine exchange factor (GEF) Fgd1 is expressed and regulated by TGF-β to induce Cdc42-dependent podosome assembly. Within 15 min of TGF-β stimulation, Fgd1, but none of the other tested Cdc42 GEFs, undergoes tyrosine phosphorylation, associates with Cdc42, and translocates to the subcortical cytoskeleton via a cortactin-dependent mechanism. Small interfering RNA-mediated Fgd1 knockdown inhibits TGF-β-induced Cdc42 activation. Fgd1 depletion also reduces podosome formation and associated matrix degradation and these defects are rescued by reexpression of Fgd1. Although overexpression of Fgd1 does not promote podosome formation per se, it enhances TGF-β-induced matrix degradation. Our results identify Fgd1 as a TGF-β-regulated GEF and, as such, the first GEF to be involved in the process of cytokine-induced podosome formation. Our findings reveal the involvement of Fgd1 in endothelial cell biology and open up new avenues to study its role in vascular pathophysiology. PMID:21911474
Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media
NASA Astrophysics Data System (ADS)
Ito, G.; Mishchenko, M. I.; Glotch, T. D.
2017-12-01
Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles sizes and polydispersed clusters in search for the most effective modeling of spectra of densely packed particulate media.
Cucchiarini, Magali; Terwilliger, Ernest F; Kohn, Dieter; Madry, Henning
2009-08-01
Compensating for the loss of extracellular cartilage matrix, as well as counteracting the alterations of the chondrocyte phenotype in osteoarthritis are of key importance to develop effective therapeutic strategies against this disorder. In the present study, we analysed the benefits of applying a potent gene combination to remodel human osteoarthritic (OA) cartilage. We employed the promising recombinant adeno-associated virus (rAAV) vector to deliver the mitogenic fibroblast growth factor 2 (FGF-2) factor, alone or simultaneously with the transcription factor Sox9 as a key activator of matrix synthesis, to human normal and OA articular chondrocytes. We evaluated the effects of single (FGF-2) or combined (FGF-2/SOX9) transgene expression upon the regenerative activities of chondrocytes in three dimensional cultures in vitro and in cartilage explants in situ. Single overexpression of FGF-2 enhanced the survival and proliferation of both normal and OA chondrocytes, without stimulating the matrix synthetic processes in the increased pools of cells. The mitogenic properties of FGF-2 were maintained when SOX9 was co-overexpressed and concomitant with an increase in the production of proteoglycans and type-II collagen, suggesting that the transcription factor was capable of counterbalancing the effects of FGF-2 on matrix accumulation. Also important, expression of type-X collagen, a marker of hypertrophy strongly decreased following treatment by the candidate vectors. Most remarkably, the levels of activities achieved in co-treated human OA cartilage were similar to or higher than those observed in normal cartilage. The present findings show that combined expression of candidate factors in OA cartilage can re-establish key features of normal cartilage and prevent the pathological shift of metabolic homeostasis. These data provide further motivation to develop coupled gene transfer approaches via rAAV for the treatment of human OA.
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
NASA Astrophysics Data System (ADS)
Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.
2016-02-01
Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Highly parallel sparse Cholesky factorization
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Schreiber, Robert
1990-01-01
Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.
Jenner, J M G Th; van Eijk, F; Saris, D B F; Willems, W J; Dhert, W J A; Creemers, Laura B
2007-07-01
Tissue engineering of ligaments based on biomechanically suitable biomaterials combined with autologous cells may provide a solution for the drawbacks associated with conventional graft material. The aim of the present study was to investigate the contribution of recombinant human transforming growth factor beta 1 (rhTGF-beta1) and growth differentiation factor (GDF)-5, known for their role in connective tissue regeneration, to proliferation and matrix production by human bone marrow stromal cells (BMSCs) cultured onto woven, bioabsorbable, 3-dimensional (3D) poly(lactic-co-glycolic acid) scaffolds. Cells were cultured for 12 days in the presence or absence of these growth factors at different concentrations. Human BMSCs attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I and collagen III. No differentiation was demonstrated toward cartilage or bone tissue. The addition of rhTGF-beta1 (1-10 ng/mL) and GDF-5 (10-100 ng/mL) increased cell content (p < 0.05), but only TGF-beta1 also increased total collagen production (p < 0.05) and collagen production per cell, which is a parameter indicating differentiation. In conclusion, stimulation with rhTGF-beta1, and to a lesser extent with GDF-5, can modulate human BMSCs toward collagenous soft tissue when applied to a 3D hybrid construct. The use of growth factors could play an important role in the improvement of ligament tissue engineering.
On the Evaluation of Certain Multivariate Normal Probabilities.
1982-08-12
a "single- factor matrix" in one context of factor analysis. In this case, we have (Pk 111 n 0# td i-i 2./- jwk+lI. where the sumation is taken over...is an equicorrelation matrix with p > 0, Pk Q k .j * ~sP (t)dt For c O, we have p(n) T, tn % td Pn = tht () 1 1 -pad (3)1 it is well known that pM2 CO...ZI,*.*.,±Zn_ 1 ± Zn) and proceed as above. Another situation for which combinatorial arguments are known are for t with a j = JAJ Vij. This t is
The g Factors of Ground State of Ruby and Their Pressure-Induced Shifts
NASA Astrophysics Data System (ADS)
Ma, Dongping; Zhang, Hongmei; Chen, Jurong; Liu, Yanyun
1998-12-01
By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d3 energy matrix adopting C3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground skate, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix. The project (Grant No. 19744001) supported by National Natural Science Foundation of China
NASA Astrophysics Data System (ADS)
Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario
2018-04-01
Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.
Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks
NASA Astrophysics Data System (ADS)
Ma, Xiaoke; Sun, Penggang; Wang, Yu
2018-04-01
Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T + 1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.
Palanisamy, Nallasamy; Anuradha, Carani Venkataraman
2011-01-01
Soy protein improves renal function and prevents albuminuria in diabetic rats. This study investigates whether the renoprotective effect of soy protein is related to sustenance of basement membrane integrity. Adult male albino rats were randomized into four groups and fed one of the following semi-synthetic diets consisting of corn starch (60%) and casein (20%; CCD), fructose (60%) and casein (20%; FCD), fructose (60%) and soy protein (20%; FSD), or corn starch (60%) and soy protein (20%; CSD). Plasma chemistry and renal changes were analyzed after 60 days. FCD rats displayed metabolic derangements and renal ultrastructural changes. FSD rats showed reduction in type IV collagen, tissue inhibitor for matrix metallo-proteinase-2, vascular endothelial growth factor and tumor necrosis factor-α expression and improved matrix metallo-proteinase expression. Renal architecture was preserved in these rats. Soy protein supplementation not only improved insulin sensitivity but also markedly attenuated renal basement membrane changes in fructose diet-fed rats. These findings provide evidence in support of the use of dietary soy protein in patients with diabetic kidney disease. Copyright © 2011 S. Karger AG, Basel.
Xue, Jian-long; Zhi, Yu-you; Yang, Li-ping; Shi, Jia-chun; Zeng, Ling-zao; Wu, Lao-sheng
2014-06-01
Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28%, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92%), followed by the agronomic practices (21.65%), and soil parent materials (12.43%). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.
Im, Hee-Jeong; Li, Xin; Muddasani, Prasuna; Kim, Gun-Hee; Davis, Francesca; Rangan, Jayanthi; Forsyth, Christopher B; Ellman, Michael; Thonar, Eugene J M A
2008-05-01
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway. (c) 2007 Wiley-Liss, Inc.
IM, HEE-JEONG; LI, XIN; MUDDASANI, PRASUNA; KIM, GUN-HEE; DAVIS, FRANCESCA; RANGAN, JAYANTHI; FORSYTH, CHRISTOPHER B.; ELLMAN, MICHAEL; THONAR, EUGENE JMA
2010-01-01
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK1-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1β accelerate matrix degradation via a neural pathway upregulation of substance P and NK1-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK1-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK1-R is, in part, through an IL-1β-dependent pathway. PMID:17960584
Ullah, Farman; Sarwar, Ghulam; Lee, Sungchang
2014-01-01
We propose a network and visual quality aware N-Screen content recommender system. N-Screen provides more ways than ever before to access multimedia content through multiple devices and heterogeneous access networks. The heterogeneity of devices and access networks present new questions of QoS (quality of service) in the realm of user experience with content. We propose, a recommender system that ensures a better visual quality on user's N-screen devices and the efficient utilization of available access network bandwidth with user preferences. The proposed system estimates the available bandwidth and visual quality on users N-Screen devices and integrates it with users preferences and contents genre information to personalize his N-Screen content. The objective is to recommend content that the user's N-Screen device and access network are capable of displaying and streaming with the user preferences that have not been supported in existing systems. Furthermore, we suggest a joint matrix factorization approach to jointly factorize the users rating matrix with the users N-Screen device similarity and program genres similarity. Finally, the experimental results show that we also enhance the prediction and recommendation accuracy, sparsity, and cold start issues. PMID:24982999
LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1.
Muratoglu, Selen C; Belgrave, Shani; Hampton, Brian; Migliorini, Mary; Coksaygan, Turhan; Chen, Ling; Mikhailenko, Irina; Strickland, Dudley K
2013-09-01
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis.
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
Competitive sorption of organic contaminants in chalk.
Graber, E R; Borisover, M
2003-12-01
In the Negev desert, Israel, a chemical industrial complex is located over fractured Eocene chalk formations where transfer of water and solutes between fracture voids and matrix pores affects migration of contaminants in the fractures due to diffusion into the chalk matrix. This study tests sorption and sorption competition between contaminants in the chalk matrix to make it possible to evaluate the potential for contaminant attenuation during transport in fractures. Single solute sorption isotherms on chalk matrix material for five common contaminants (m-xylene, ametryn, 1,2-dichloroethane, phenanthrene, and 2,4,6-tribromophenol) were found to be nonlinear, as confirmed in plots of Kd versus initial solution concentration. Over the studied concentration ranges, m-xylene Kd varied by more than a factor of 100, ametryn Kd by a factor of 4, 1,2-dichloroethane Kd by more than a factor of 3, phenanthrene Kd by about a factor of 2, and 2,4,6-tribromophenol Kd by a factor of 10. It was earlier found that sorption is to the organic matter component of the chalk matrix and not to the mineral phases (Chemosphere 44 (2001) 1121). Nonlinear sorption isotherms indicate that there is at least some finite sorption domain. Bi-solute competition experiments with 2,4,6-tribromophenol as the competitor were designed to explore the nature of the finite sorption domain. All of the isotherms in the bi-solute experiments are more linear than in the single solute experiments, as confirmed by smaller variations in Kd as a function of initial solution concentration. For both m-xylene and ametryn, there is a small nonlinear component or domain that was apparently not susceptible to competition by 2,4,6-tribromophenol. The nonlinear sorption domain(s) is best expressed at low solution concentrations. Inert-solvent-normalized single and bi-solute sorption isotherms demonstrate that ametryn undergoes specific force interactions with the chalk sorbent. The volume percent of phenanthrene sorbed at the liquid solubility limit is calculated to be 13% v:v in both the single and bi-solute experiments. This value exceeds what may be reasonably interpreted as partitioning of phenanthrene into organic matter, despite the relative linearity of the phenanthrene sorption isotherm (compared with other compounds) in both single and bi-solute systems.
Akhmanova, Maria; Osidak, Egor; Domogatsky, Sergey; Rodin, Sergey; Domogatskaya, Anna
2015-01-01
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems. PMID:26351461
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
Performance ratings and personality factors in radar controllers.
DOT National Transportation Integrated Search
1970-09-01
The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...
Han, Fang; Liu, Han
2016-01-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068
Geometric control of capillary architecture via cell-matrix mechanical interactions.
Sun, Jian; Jamilpour, Nima; Wang, Fei-Yue; Wong, Pak Kin
2014-03-01
Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Scalar and vector form factors of D →π (K )ℓν decays with Nf=2 +1 +1 twisted fermions
NASA Astrophysics Data System (ADS)
Lubicz, V.; Riggio, L.; Salerno, G.; Simula, S.; Tarantino, C.; ETM Collaboration
2017-09-01
We present a lattice determination of the vector and scalar form factors of the D →π ℓν and D →K ℓν semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vc d| and |Vc s| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 flavors of dynamical quarks, at three different values of the lattice spacing (a ≃0.062 ,0.082 ,0.089 fm ) and with pion masses as small as 210 MeV. Quark momenta are injected on the lattice using nonperiodic boundary conditions. The matrix elements of both vector and scalar currents are determined for plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit, we determine the vector and scalar form factors in the whole kinematical region from q2=0 up to qmax2=(MD-Mπ (K ))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible. A set of synthetic data points, representing our results for f+Dπ (K )(q2) and f0D π (K )(q2) for several selected values of q2, is provided and also the corresponding covariance matrix is available. At zero four-momentum transfer, we get f+D→π(0 )=0.612 (35 ) and f+D→K(0 )=0.765 (31 ). Using the experimental averages for |Vc d|f+D→π(0 ) and |Vc s|f+D→K(0 ), we extract |Vc d|=0.2330 (137 ) and |Vc s|=0.945 (38 ), respectively. The second row of the CKM matrix is found to be in agreement with unitarity within the current uncertainties: |Vc d|2+|Vc s|2+|Vc b|2=0.949 (78 ).
Kim, Yong Ho; Lim, Young-Woo; Kim, Yun Hyeok; Bae, Byeong-Soo
2016-04-06
We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol-gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris(trimethylsiloxy)silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards.
Tendon Functional Extracellular Matrix
Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.
2015-01-01
This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030
Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi
2015-01-01
Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510
The new version of EPA’s positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP)...
Text mining factor analysis (TFA) in green tea patent data
NASA Astrophysics Data System (ADS)
Rahmawati, Sela; Suprijadi, Jadi; Zulhanif
2017-03-01
Factor analysis has become one of the most widely used multivariate statistical procedures in applied research endeavors across a multitude of domains. There are two main types of analyses based on factor analysis: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Both EFA and CFA aim to observed relationships among a group of indicators with a latent variable, but they differ fundamentally, a priori and restrictions made to the factor model. This method will be applied to patent data technology sector green tea to determine the development technology of green tea in the world. Patent analysis is useful in identifying the future technological trends in a specific field of technology. Database patent are obtained from agency European Patent Organization (EPO). In this paper, CFA model will be applied to the nominal data, which obtain from the presence absence matrix. While doing processing, analysis CFA for nominal data analysis was based on Tetrachoric matrix. Meanwhile, EFA model will be applied on a title from sector technology dominant. Title will be pre-processing first using text mining analysis.
Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation
NASA Astrophysics Data System (ADS)
Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah
2018-03-01
To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.
TRASYS form factor matrix normalization
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.
1992-01-01
A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.
Fibroblasts and the extracellular matrix in right ventricular disease.
Frangogiannis, Nikolaos G
2017-10-01
Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Zhan, Hongbin
2018-06-01
The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.
The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration
Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.
2014-01-01
Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502
Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J
2016-07-01
The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cobimaximal lepton mixing from soft symmetry breaking
NASA Astrophysics Data System (ADS)
Grimus, W.; Lavoura, L.
2017-11-01
Cobimaximal lepton mixing, i.e.θ23 = 45 ° and δ = ± 90 ° in the lepton mixing matrix V, arises as a consequence of SV =V* P, where S is the permutation matrix that interchanges the second and third rows of V and P is a diagonal matrix of phase factors. We prove that any such V may be written in the form V = URP, where U is any predefined unitary matrix satisfying SU =U*, R is an orthogonal, i.e. real, matrix, and P is a diagonal matrix satisfying P2 = P. Using this theorem, we demonstrate the equivalence of two ways of constructing models for cobimaximal mixing-one way that uses a standard CP symmetry and a different way that uses a CP symmetry including μ-τ interchange. We also present two simple seesaw models to illustrate this equivalence; those models have, in addition to the CP symmetry, flavour symmetries broken softly by the Majorana mass terms of the right-handed neutrino singlets. Since each of the two models needs four scalar doublets, we investigate how to accommodate the Standard Model Higgs particle in them.
Eghbali, M; Weber, K T
1990-07-17
The extracellular matrix of the myocardium contains an elaborate structural matrix composed mainly of fibrillar types I and III collagen. This matrix is responsible for the support and alignment of myocytes and capillaries. Because of its alignment, location, configuration and tensile strength, relative to cardiac myocytes, the collagen matrix represents a major determinant of myocardial stiffness. Cardiac fibroblasts, not myocytes, contain the mRNA for these fibrillar collagens. In the hypertrophic remodeling of the myocardium that accompanies arterial hypertension, a progressive structural and biochemical remodeling of the matrix follows enhanced collagen gene expression. The resultant significant accumulation of collagen in the interstitium and around intramyocardial coronary arteries, or interstitial and perivascular fibrosis, represents a pathologic remodeling of the myocardium that compromises this normally efficient pump. This report reviews the structural nature, biosynthesis and degradation of collagen in the normal and hypertrophied myocardium. It suggests that interstitial heart disease, or the disproportionate growth of the extracellular matrix relative to myocyte hypertrophy, is an entity that merits greater understanding, particularly the factors regulating types I and III collagen gene expression and their degradation.
NASA Astrophysics Data System (ADS)
Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.
2017-07-01
Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.
Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression
Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.
2010-01-01
Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059
Fracture surface analysis in composite and titanium bonding
NASA Technical Reports Server (NTRS)
Devilbiss, T. A.; Wightman, J. P.
1985-01-01
To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.
Improving stochastic estimates with inference methods: calculating matrix diagonals.
Selig, Marco; Oppermann, Niels; Ensslin, Torsten A
2012-02-01
Estimating the diagonal entries of a matrix, that is not directly accessible but only available as a linear operator in the form of a computer routine, is a common necessity in many computational applications, especially in image reconstruction and statistical inference. Here, methods of statistical inference are used to improve the accuracy or the computational costs of matrix probing methods to estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within information field theory, is shown to significantly improve estimates based on only a few sampling probes, in cases in which some form of continuity of the solution can be assumed. The strength, length scale, and precise functional form of the exploited autocorrelation function of the matrix diagonal is determined from the probes themselves. The developed algorithm is successfully applied to mock and real world problems. These performance tests show that, in situations where a matrix diagonal has to be calculated from only a small number of computationally expensive probes, a speedup by a factor of 2 to 10 is possible with the proposed method. © 2012 American Physical Society
MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Ramakrishnan; Ballard, Grey; Park, Haesun
Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given input matrix A, such that A≈WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new, high-performance parallel computational framework for a broad class of NMF algorithms thatmore » iteratively solves alternating non-negative least squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments are available online.« less
MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization
Kannan, Ramakrishnan; Ballard, Grey; Park, Haesun
2017-10-30
Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given input matrix A, such that A≈WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new, high-performance parallel computational framework for a broad class of NMF algorithms thatmore » iteratively solves alternating non-negative least squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments are available online.« less
Metal matrix composites: History, status, factors and future
NASA Astrophysics Data System (ADS)
Cyriac, Ajith James
The history, status, and future of metal matrix composites are presented by evaluating the progression of available literature through time. The trends that existed and issues that still prevail are discussed and a prediction of the future for MMCs is presented. The factors that govern the performance of metal matrix composites are also discussed. In many developed countries and in several developing countries there exists continued interest in MMCs. Researchers tried numerous combinations of matrices and reinforcements since work strictly on MMCs began in the 1950s. This led to developments for aerospace and defense applications, but resultant commercial applications were limited. The introduction of ceramic whiskers as reinforcement and the development of 'in-situ' eutectics in the 1960s aided high temperature applications in aircraft engines. In the late 1970s the automobile industries started to take MMCs seriously. In the last 20 years, MMCs evolved from laboratories to a class of materials with numerous applications and commercial markets. After the collapse of the Berlin Wall, prevailing order in the world changed drastically. This effect was evident in the progression of metal matrix composites. The internet connected the world like never before and tremendous information was available for researchers around the world. Globalization and the internet resulted in the transformation of the world to a more level playing field, and this effect is evident in the nature and source of research on metal matrix composites happening around the world.
Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.
Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao
2015-09-14
Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures.
Ferreira, Vicente; Herrero, Paula; Zapata, Julián; Escudero, Ana
2015-08-14
SPME is extremely sensitive to experimental parameters affecting liquid-gas and gas-solid distribution coefficients. Our aims were to measure the weights of these factors and to design a multivariate strategy based on the addition of a pool of internal standards, to minimize matrix effects. Synthetic but real-like wines containing selected analytes and variable amounts of ethanol, non-volatile constituents and major volatile compounds were prepared following a factorial design. The ANOVA study revealed that even using a strong matrix dilution, matrix effects are important and additive with non-significant interaction effects and that it is the presence of major volatile constituents the most dominant factor. A single internal standard provided a robust calibration for 15 out of 47 analytes. Then, two different multivariate calibration strategies based on Partial Least Square Regression were run in order to build calibration functions based on 13 different internal standards able to cope with matrix effects. The first one is based in the calculation of Multivariate Internal Standards (MIS), linear combinations of the normalized signals of the 13 internal standards, which provide the expected area of a given unit of analyte present in each sample. The second strategy is a direct calibration relating concentration to the 13 relative areas measured in each sample for each analyte. Overall, 47 different compounds can be reliably quantified in a single fully automated method with overall uncertainties better than 15%. Copyright © 2015 Elsevier B.V. All rights reserved.
Oktem, Caglar; Oto, Sibel; Toru, Serap; Bakar, Coskun; Ozdemir, Handan; Akova, Yonca Aydin
2016-01-01
To evaluate the efficacy and safety of suramin, genistein and collagen matrix for the prevention of inflammation, the reduction of fibrosis and the delay in adjustment after strabismus surgery on a rabbit model. By using an adjustable suture technique, a recession of the superior rectus muscle (SRM) was made in 36 eyes of 18 rabbits. Three study groups were created using genistein, suramin and collagen matrix (n = 6 per group). Two control groups utilized dimethyl sulphoxide (DMSO) (n = 6) and balanced salt solution (n = 12). The adjustments and measurements were made on days 2, 7, 14. After enucleation was done on day 21, the degree of inflammation was evaluated quantitatively in histopathological sections and immunohistochemical investigations were performed for tissue expression of cytoplasmic vascular endothelial growth factor (VEGF), MAC 387, TGF-β and bFGF. The adhesions between conjunctiva and SRM were significantly less in the collagen matrix and suramin groups (p = 0.002) and adhesions between the sclera and SRM were considerably reduced in the genistein and DMSO groups (p = 0.006) on day 7. Force exerted for adjustment was significantly less in the collagen matrix and suramin groups on day 14 (p = 0.006). Expression of b-FGF was significantly lower in the conjunctival epithelium in the suramin and genistein groups (p = 0.0001 for both). TGF-β was significantly lower (p = 0.001) in the suramin group and VEGF expression was totally absent. MAC 387 expression was lower in the genistein and suramin groups (p = 0.0001). Suramin, genistein and collagen matrix successfully reduce adhesions, and facilitate adjustment following recession surgery. Both suramin and genistein effectively suppress growth factor expression, while collagen matrix offers the longest time interval for adjustability after strabismus surgery.
Identification of hair shaft progenitors that create a niche for hair pigmentation
Liao, Chung-Ping; Booker, Reid C.; Morrison, Sean J.; Le, Lu Q.
2017-01-01
Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20+ cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. PMID:28465357
Identification of hair shaft progenitors that create a niche for hair pigmentation.
Liao, Chung-Ping; Booker, Reid C; Morrison, Sean J; Le, Lu Q
2017-04-15
Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20 + cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. © 2017 Liao et al.; Published by Cold Spring Harbor Laboratory Press.
NASA Astrophysics Data System (ADS)
Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic
2017-03-01
This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.
Factorization of differential expansion for non-rectangular representations
NASA Astrophysics Data System (ADS)
Morozov, A.
2018-04-01
Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.
Efficient algorithms for computing a strong rank-revealing QR factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, M.; Eisenstat, S.C.
1996-07-01
Given an m x n matrix M with m {ge} n, it is shown that there exists a permutation {Pi} and an integer k such that the QR factorization given by equation (1) reveals the numerical rank of M: the k x k upper-triangular matrix A{sub k} is well conditioned, norm of (C{sub k}){sub 2} is small, and B{sub k} is linearly dependent on A{sub k} with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficientmore » as QR with column pivoting for most problems and take O(mn{sup 2}) floating-point operations in the worst case.« less
Structure-preserving and rank-revealing QR-factorizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C.H.; Hansen, P.C.
1991-11-01
The rank-revealing QR-factorization (RRQR-factorization) is a special QR-factorization that is guaranteed to reveal the numerical rank of the matrix under consideration. This makes the RRQR-factorization a useful tool in the numerical treatment of many rank-deficient problems in numerical linear algebra. In this paper, a framework is presented for the efficient implementation of RRQR algorithms, in particular, for sparse matrices. A sparse RRQR-algorithm should seek to preserve the structure and sparsity of the matrix as much as possible while retaining the ability to capture safely the numerical rank. To this end, the paper proposes to compute an initial QR-factorization using amore » restricted pivoting strategy guarded by incremental condition estimation (ICE), and then applies the algorithm suggested by Chan and Foster to this QR-factorization. The column exchange strategy used in the initial QR factorization will exploit the fact that certain column exchanges do not change the sparsity structure, and compute a sparse QR-factorization that is a good approximation of the sought-after RRQR-factorization. Due to quantities produced by ICE, the Chan/Foster RRQR algorithm can be implemented very cheaply, thus verifying that the sought-after RRQR-factorization has indeed been computed. Experimental results on a model problem show that the initial QR-factorization is indeed very likely to produce RRQR-factorization.« less
Berretta, Sabina; Pantazopoulos, Harry; Markota, Matej; Brown, Christopher; Batzianouli, Eleni T
2015-09-01
Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons. Copyright © 2015. Published by Elsevier B.V.
Fischer, Christin; Deininger, Natalie; Wolf, Gunter; Loeffler, Ivonne
2018-01-01
Tubulointerstitial fibrosis (TIF) is a pivotal pathophysiological process in patients with diabetic nephropathy (DN). Multiple profibrotic factors and cell types, including transforming growth factor beta 1 (TGF-β1) and interstitial myofibroblasts, respectively, are responsible for the accumulation of extracellular matrix in the kidney. Matrix-producing myofibroblasts can originate from different sources and different mechanisms are involved in the activation process of the myofibroblasts in the fibrotic kidney. In this study, 16-week-old db/db mice, a model for type 2 DN, were treated for two weeks with continuous erythropoietin receptor activator (CERA), a synthetic erythropoietin variant with possible non-hematopoietic, tissue-protective effects. Non-diabetic and diabetic mice treated with placebo were used as controls. The effects of CERA on tubulointerstitial fibrosis (TIF) as well as on the generation of the matrix-producing myofibroblasts were evaluated by morphological, immunohistochemical, and molecular biological methods. The placebo-treated diabetic mice showed significant signs of beginning renal TIF (shown by picrosirius red staining; increased connective tissue growth factor (CTGF), fibronectin and collagen I deposition; upregulated KIM1 expression) together with an increased number of interstitial myofibroblasts (shown by different mesenchymal markers), while kidneys from diabetic mice treated with CERA revealed less TIF and fewer myofibroblasts. The mechanisms, in which CERA acts as an anti-fibrotic agent/drug, seem to be multifaceted: first, CERA inhibits the generation of matrix-producing myofibroblasts and second, CERA increases the ability for tissue repair. Many of these CERA effects can be explained by the finding that CERA inhibits the renal expression of the cytokine TGF-β1. PMID:29385703
Fischer, Christin; Deininger, Natalie; Wolf, Gunter; Loeffler, Ivonne
2018-01-30
Tubulointerstitial fibrosis (TIF) is a pivotal pathophysiological process in patients with diabetic nephropathy (DN). Multiple profibrotic factors and cell types, including transforming growth factor beta 1 (TGF-β1) and interstitial myofibroblasts, respectively, are responsible for the accumulation of extracellular matrix in the kidney. Matrix-producing myofibroblasts can originate from different sources and different mechanisms are involved in the activation process of the myofibroblasts in the fibrotic kidney. In this study, 16-week-old db / db mice, a model for type 2 DN, were treated for two weeks with continuous erythropoietin receptor activator (CERA), a synthetic erythropoietin variant with possible non-hematopoietic, tissue-protective effects. Non-diabetic and diabetic mice treated with placebo were used as controls. The effects of CERA on tubulointerstitial fibrosis (TIF) as well as on the generation of the matrix-producing myofibroblasts were evaluated by morphological, immunohistochemical, and molecular biological methods. The placebo-treated diabetic mice showed significant signs of beginning renal TIF (shown by picrosirius red staining; increased connective tissue growth factor (CTGF), fibronectin and collagen I deposition; upregulated KIM1 expression) together with an increased number of interstitial myofibroblasts (shown by different mesenchymal markers), while kidneys from diabetic mice treated with CERA revealed less TIF and fewer myofibroblasts. The mechanisms, in which CERA acts as an anti-fibrotic agent/drug, seem to be multifaceted: first, CERA inhibits the generation of matrix-producing myofibroblasts and second, CERA increases the ability for tissue repair. Many of these CERA effects can be explained by the finding that CERA inhibits the renal expression of the cytokine TGF-β1.
Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.
1987-08-28
Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.
Abrasion resistant composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L
A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less
Chondroitin sulfates and their binding molecules in the central nervous system.
Djerbal, L; Lortat-Jacob, H; Kwok, Jcf
2017-06-01
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
NASA Technical Reports Server (NTRS)
Manoharan, M.; Lewandowski, J. J.
1989-01-01
Recent results on the effects of matrix aging condition (matrix temper) and notch root radius on the measured fracture toughness of a SiC particulate reinforced aluminum alloy are reviewed. Stress intensity factors at catastrophic fracture were obtained for both underaged and overaged composites reveal. The linear relation found between apparent fracture toughness and the square root of the notch root radius implies a linear dependence of the crack opening displacement on the notch root radius. The results suggest a strain controlled fracture process, and indicate that there are differences in the fracture micromechanisms of the two aging conditions.
Development of a microwave 20 x 20 switch matrix for 30/20 GHz SS-TDMA application
NASA Technical Reports Server (NTRS)
Cory, B. J.; Berkowitz, M.; Wallis, R.; Schiavone, A.; Shieh, D.; Campbell, J.
1982-01-01
The design and fabrication of a 3-8 GHz, 20 x 20 Satellite Switched-Time Division Multiple Access IF switch matrix applicable to a 30/20 GHz communications satellite are described. An assessment of switch architecture in 1980 concluded that the GaAs FET-based coupled crossbar switch matrix, incorporating high speed CMOS LSI logic for switch crosspoint addressing, would be the optimum technology available for communications satellite switching by 1982. This assessment was based on such factors as switching speed, bandwidth, off-state isolation, and reliability, over a 10-year mission life. A proof-of-concept model's construction and testing are presented.
POTENTIAL OF BIOLOGICAL MONITORING SYSTEMS TO DETECT TOXICITY IN A FINISHED MATRIX
Distribution systems of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as drinking water. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic contamination events ...
Rispo, Antonio; Imperatore, Nicola; Testa, Anna; Bucci, Luigi; Luglio, Gaetano; De Palma, Giovanni Domenico; Rea, Matilde; Nardone, Olga Maria; Caporaso, Nicola; Castiglione, Fabiana
2018-03-08
In the management of Crohn's Disease (CD) patients, having a simple score combining clinical, endoscopic and imaging features to predict the risk of surgery could help to tailor treatment more effectively. AIMS: to prospectively evaluate the one-year risk factors for surgery in refractory/severe CD and to generate a risk matrix for predicting the probability of surgery at one year. CD patients needing a disease re-assessment at our tertiary IBD centre underwent clinical, laboratory, endoscopy and bowel sonography (BS) examinations within one week. The optimal cut-off values in predicting surgery were identified using ROC curves for Simple Endoscopic Score for CD (SES-CD), bowel wall thickness (BWT) at BS, and small bowel CD extension at BS. Binary logistic regression and Cox's regression were then carried out. Finally, the probabilities of surgery were calculated for selected baseline levels of covariates and results were arranged in a prediction matrix. Of 100 CD patients, 30 underwent surgery within one year. SES-CD©9 (OR 15.3; p<0.001), BWT©7 mm (OR 15.8; p<0.001), small bowel CD extension at BS©33 cm (OR 8.23; p<0.001) and stricturing/penetrating behavior (OR 4.3; p<0.001) were the only independent factors predictive of surgery at one-year based on binary logistic and Cox's regressions. Our matrix model combined these risk factors and the probability of surgery ranged from 0.48% to 87.5% (sixteen combinations). Our risk matrix combining clinical, endoscopic and ultrasonographic findings can accurately predict the one-year risk of surgery in patients with severe/refractory CD requiring a disease re-evaluation. This tool could be of value in clinical practice, serving as the basis for a tailored management of CD patients.
Innovative Methods for High Resolution Imaging
2012-08-02
findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix factorization for...on their findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix...Computational Optical Sensing and Imaging . 2007/06/18 00:00:00, . : , 2012/07/16 15:30:42 9 Kelly N. Smith, V. Paul Pauca, Arun Ross, Todd Torgersen, Michael C
Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam
2013-03-01
materials”[28]. Materials have always been a limiting factor in the advancements of technology. The ever increasing demand for aerospace vehicles that are...matrix composites are designed to have load-carrying capacity at high temperatures in extreme environments. Ceramic matrix composites are prime...engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is recognized that the structural
Imaging articular cartilage using second harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Mansfield, Jessica C.; Winlove, C. Peter; Knapp, Karen; Matcher, Stephen J.
2006-02-01
Sub cellular resolution images of equine articular cartilage have been obtained using both second harmonic generation microscopy (SHGM) and two-photon fluorescence microscopy (TPFM). The SHGM images clearly map the distribution of the collagen II fibers within the extracellular matrix while the TPFM images show the distribution of endogenous two-photon fluorophores in both the cells and the extracellular matrix, highlighting especially the pericellular matrix and bright 2-3μm diameter features within the cells. To investigate the source of TPF in the extracellular matrix experiments have been carried out to see if it may originate from the proteoglycans. Pure solutions of the following proteoglycans hyaluronan, chondroitin sulfate and aggrecan have been imaged, only the aggrecan produced any TPF and here the intensity was not great enough to account for the TPF in the extracellular matrix. Also cartilage samples were subjected to a process to remove proteoglycans and cellular components. After this process the TPF from the samples had decreased by a factor of two, with respect to the SHG intensity.
Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
Dijckmans, A; Vermeir, G
2013-04-01
In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.
Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde
2017-08-01
Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of TiC addition on fracture toughness of Al6061 alloy
NASA Astrophysics Data System (ADS)
Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.
2018-04-01
Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.
Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H. M.
1999-01-01
The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.
Marcello, Marco
2016-01-01
The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure. PMID:27009190
The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region
Kraemer, T.F.; Reid, D.F.
1984-01-01
Radium has been measured in deep saline formation waters produced from a variety of U.S. Gulf Coast subsurface environments, including oil reservoirs, gas reservoirs and water-producing geopressured aquifers. A strong positive correlation has been found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th, which are located at sites on and within the solid matrix. Processes that are belived to be primarily responsible for transferring Ra from matrix to formation water are chemical leaching and alpha-particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following factors: (a) ion exchange; (b) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of reequilibration of silica between solution and quartz grains; and (c) the equilibration of Ra in solution with detrial barite within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs. ?? 1984.
Choi, Seong Mi; Lee, Kyoung-Mi; Kim, Hyun Jung; Park, Ik Kyu; Kang, Hwi Ju; Shin, Hang-Cheol; Baek, Dawoon; Choi, Yoorim; Park, Kwang Hwan; Lee, Jin Woo
2018-01-15
Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were able to accelerate wound healing including re-epithelialization, neovascularization, and collagen deposition. Consequentially, these ST-EGF and ST-bFGF-loaded HCD matrix may be used as future therapeutic agents in patients with diabetic foot ulcers. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer
2014-09-15
To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Tian, Zhiwei; Wang, Junye
2018-02-01
Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.
Asmussen, Niels; Lin, Zhao; McClure, Michael J; Schwartz, Zvi; Boyan, Barbara D
2017-12-09
Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH) 2 D 3 ] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH) 2 D 3 ] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH) 2 D 3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs. Copyright © 2017. Published by Elsevier Inc.
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Gabner, Simone; Häusler, Gabriele; Böck, Peter
2017-06-01
Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Some Results on Mean Square Error for Factor Score Prediction
ERIC Educational Resources Information Center
Krijnen, Wim P.
2006-01-01
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
2004-06-01
Meyer - 54 55 Olkin (KMO) and Bartlett’s test yielded a KMO measure of sampling adequacy of .683. Based on a rotated factor matrix, two factors were...factor analysis was performed on the first four questionnaire items (concern for success, effectiveness, friendliness, and sociability). A Kaiser
On the Extraction of Components and the Applicability of the Factor Model.
ERIC Educational Resources Information Center
Dziuban, Charles D.; Harris, Chester W.
A reanalysis of Shaycroft's matrix of intercorrelations of 10 test variables plus 4 random variables is discussed. Three different procedures were used in the reanalysis: (1) Image Component Analysis, (2) Uniqueness Rescaling Factor Analysis, and (3) Alpha Factor Analysis. The results of these analyses are presented in tables. It is concluded from…
A Factor Analytic Study of a Scale Designed to Measure Death Anxiety.
ERIC Educational Resources Information Center
Thorson, James A.; Perkins, Mark
A death anxiety scale developed in 1973 by Nehrke was administered to 655 adult subjects. Their responses were differentiated according to age, sex, race, and level of education. Data were also analyzed using the varimax rotated factor matrix procedure to determine significant factors that the scale was, in fact, measuring. Loadings on four…
Walker, Michael; Bowler, Philip G; Cochrane, Christine A
2007-09-01
Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings.
Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J
2013-03-01
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J.; Vernerey, Franck J.
2012-01-01
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one’s quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. PMID:23276516
Deep learning and non-negative matrix factorization in recognition of mammograms
NASA Astrophysics Data System (ADS)
Swiderski, Bartosz; Kurek, Jaroslaw; Osowski, Stanislaw; Kruk, Michal; Barhoumi, Walid
2017-02-01
This paper presents novel approach to the recognition of mammograms. The analyzed mammograms represent the normal and breast cancer (benign and malignant) cases. The solution applies the deep learning technique in image recognition. To obtain increased accuracy of classification the nonnegative matrix factorization and statistical self-similarity of images are applied. The images reconstructed by using these two approaches enrich the data base and thanks to this improve of quality measures of mammogram recognition (increase of accuracy, sensitivity and specificity). The results of numerical experiments performed on large DDSM data base containing more than 10000 mammograms have confirmed good accuracy of class recognition, exceeding the best results reported in the actual publications for this data base.
NASA Astrophysics Data System (ADS)
Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.
2009-04-01
The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).
A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA
NASA Astrophysics Data System (ADS)
Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing
Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.
Damage development in titanium metal matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1992-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Damage development in titanium metal-matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1993-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Matrix crack extension at a frictionally constrained fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvadurai, A.P.S.
1994-07-01
The paper presents the application of a boundary element scheme to the study of the behavior of a penny-shaped matrix crack which occurs at an isolated fiber which is frictionally constrained. An incremental technique is used to examine the progression of self similar extension of the matrix crack due to the axial straining of the composite region. The extension of the crack occurs at the attainment of the critical stress intensity factor in the crack opening mode. Iterative techniques are used to determine the extent to crack enlargement and the occurrence of slip and locked regions in the frictional fiber-matrixmore » interface. The studies illustrate the role of fiber-matrix interface friction on the development of stable cracks in such frictionally constrained zones. The methodologies are applied to typical isolated fiber configurations of interest to fragmentation tests.« less
Zhang, Yaogong; Liu, Jiahui; Liu, Xiaohu; Hong, Yuxiang; Fan, Xin; Huang, Yalou; Wang, Yuan; Xie, Maoqiang
2018-04-24
Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection. In this paper, we propose a novel method by exploiting weighted graph constraint learned from hierarchical structures of phenotype data and group prior information among genes by inheriting advantages of Non-negative Matrix Factorization (NMF), called Weighted Graph Constraint and Group Centric Non-negative Matrix Factorization (GC[Formula: see text]NMF). Specifically, first we introduce the depth of parent-child relationships between two adjacent phenotypes in hierarchical phenotypic data as weighted graph constraint for a better phenotype understanding. Second, we utilize intra-group correlation among genes in a gene group as group constraint for gene understanding. Such information provides us with the intuition that genes in a group probably result in similar phenotypes. The model not only allows us to achieve a high-grade prediction performance, but also helps us to learn interpretable representation of genes and phenotypes simultaneously to facilitate future biological analysis. Experimental results on biological gene-phenotype association datasets of mouse and human demonstrate that GC[Formula: see text]NMF can obtain superior prediction accuracy and good understandability for biological explanation over other state-of-the-arts methods.
Gilde, Flora; Fourel, Laure; Guillot, Raphael; Pignot-Paintrand, Isabelle; Okada, Takaharu; Fitzpatrick, Vincent; Boudou, Thomas; Albiges-Rizo, Corinne; Picart, Catherine
2016-12-01
Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition. However, whether and how matrix-bound BMP-2 can be internalized by cells and its relation to canonical (SMAD) and non-canonical signaling (ALP) remain open questions. In this study, we investigated the uptake and processing of BMP-2 by C2C12 myoblasts. This BMP-2 was presented either embedded in polyelectrolyte multilayer films (matrix-bound presentation) or as soluble form. Using fluorescently labeled BMP-2, we showed that the amount of matrix-bound BMP-2 internalized is dependent on the level of crosslinking of the polyelectrolyte films. Cav-1-mediated internalization is related to both SMAD and ALP signaling, while clathrin-mediated is only related to ALP signaling. BMP-2 internalization was independent of the presentation mode (sBMP-2 versus bBMP-2) for low crosslinked films (soft, EDC10) in striking contrast with high crosslinked (stiff, EDC70) films where internalization was much lower and slower for bBMP-2. As anticipated, internalization of sBMP-2 barely depended on the underlying matrix. Taken together, these results indicate that BMP-2 internalization can be tuned by the underlying matrix and activates downstream BMP-2 signaling, which is key for the effective formation of bone tissue. The presentation of growth factors from material surfaces currently presents significant challenges in academic research, clinics and industry. Being able to deliver efficiently these growth factors by a biomaterial will open new perspectives for regenerative medicine. However, to date, very little is known about how matrix-bound growth factors are delivered to cells, especially whether they are internalized and how they are signaling to drive key differentiation events. These initial steps are crucial as they will guide the subsequent processes leading to tissue regeneration. In this work, we investigate the uptake and processing by cells of BMP-2 ligands embedded in polyelectrolyte multilayer films in comparison to soluble BMP-2. We show that BMP-2 responsive cells can internalize matrix-bound BMP-2 and that internalization is dependent on the cross-linking level of the polyelectrolyte films. In addition, we show that internalization is mediated by both clathrin- and caveolin-dependent pathways. While inhibiting clathrin-dependent endocytosis affects only non-canonical signaling, blocking caveolin-1-dependent endocytosis reduces both canonical and non-canonical BMP signaling. The signaling pathways found for matrix-bound BMP-2 are similar to those found for soluble BMP-2. These results highlight that BMP-2 presented by a biomaterial at the ventral side of the cell can trigger major endocytic and associated signaling pathways leading to bone regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.
Koo, H.; Falsetta, M.L.; Klein, M.I.
2013-01-01
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647
The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.
Koo, H; Falsetta, M L; Klein, M I
2013-12-01
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.
Parallel Preconditioning for CFD Problems on the CM-5
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Kremenetsky, Mark D.; Richardson, John; Lasinski, T. A. (Technical Monitor)
1994-01-01
Up to today, preconditioning methods on massively parallel systems have faced a major difficulty. The most successful preconditioning methods in terms of accelerating the convergence of the iterative solver such as incomplete LU factorizations are notoriously difficult to implement on parallel machines for two reasons: (1) the actual computation of the preconditioner is not very floating-point intensive, but requires a large amount of unstructured communication, and (2) the application of the preconditioning matrix in the iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive nature of the computation. Here we present a new approach to preconditioning for very large, sparse, unsymmetric, linear systems, which avoids both difficulties. We explicitly compute an approximate inverse to our original matrix. This new preconditioning matrix can be applied most efficiently for iterative methods on massively parallel machines, since the preconditioning phase involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore the actual computation of the preconditioning matrix has natural parallelism. For a problem of size n, the preconditioning matrix can be computed by solving n independent small least squares problems. The algorithm and its implementation on the Connection Machine CM-5 are discussed in detail and supported by extensive timings obtained from real problem data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Transformation Abilities: A Reanalysis and Confirmation of SOI Theory.
ERIC Educational Resources Information Center
Khattab, Ali-Maher; And Others
1987-01-01
Confirmatory factor analysis was used to reanalyze correlational data from selected variables in Guilford's Aptitudes Research Project. Results indicated Guilford's model reproduced the original correlation matrix more closely than other models. Most of Guilford's tests indicated high loadings on their hypothesized factors. (GDC)
NASA Astrophysics Data System (ADS)
Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang
2016-07-01
Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.
Generalized sub-Schawlow-Townes laser linewidths via material dispersion
NASA Astrophysics Data System (ADS)
Pillay, Jason Cornelius; Natsume, Yuki; Stone, A. Douglas; Chong, Y. D.
2014-03-01
A recent S-matrix-based theory of the quantum-limited linewidth, which is applicable to general lasers, including spatially nonuniform laser cavities operating above threshold, is analyzed in various limits. For broadband gain, a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric relations between the zeros and poles of the S matrix. When there is substantial dispersion, on the frequency scale of the cavity lifetime, the theory yields a generalization of the bad-cavity factor, which was previously derived for spatially uniform one-dimensional lasers. This effect can lead to sub-Schawlow-Townes linewidths in lasers with very narrow gain widths. We derive a formula for the linewidth in terms of the lasing mode functions, which has accuracy comparable to the previous formula involving the residue of the lasing pole. These results for the quantum-limited linewidth are valid even in the regime of strong line pulling and spatial hole burning, where the linewidth cannot be factorized into independent Petermann and bad-cavity factors.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.
Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C
2000-08-01
Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.
Quantification of a Non-conventional Protein Secretion: The Low-Molecular-Weight FGF-2 Example.
Arcondéguy, Tania; Touriol, Christian; Lacazette, Eric
2016-01-01
Quantification of secreted factors is most often measured with enzyme-linked immunosorbent assay (ELISA), Western Blot, or more recently with antibody arrays. However, some of these, like low-molecular-weight fibroblast growth factor-2 (LMW FGF-2; the 18 kDa form), exemplify a set of secreted but almost non-diffusible molecular actors. It has been proposed that phosphorylated FGF-2 is secreted via a non-vesicular mechanism and that heparan sulfate proteoglycans function as extracellular reservoir but also as actors for its secretion. Heparan sulfate is a linear sulfated polysaccharide present on proteoglycans found in the extracellular matrix or anchored in the plasma membrane (syndecan). Moreover the LMW FGF-2 secretion appears to be activated upon FGF-1 treatment. In order to estimate quantification of such factor export across the plasma membrane, technical approaches are presented (evaluation of LMW FGF-2: (1) secretion, (2) extracellular matrix reservoir, and (3) secretion modulation by surrounding factors) and the importance of such procedures in the comprehension of the biology of these growth factors is underlined.
Improved lattice computation of proton decay matrix elements
NASA Astrophysics Data System (ADS)
Aoki, Yasumichi; Izubuchi, Taku; Shintani, Eigo; Soni, Amarjit
2017-07-01
We present an improved result for the lattice computation of the proton decay matrix elements in Nf=2 +1 QCD. In this study, by adopting the error reduction technique of all-mode-averaging, a significant improvement of the statistical accuracy is achieved for the relevant form factor of proton (and also neutron) decay on the gauge ensemble of Nf=2 +1 domain-wall fermions with mπ=0.34 - 0.69 GeV on a 2.7 fm3 lattice, as used in our previous work [1]. We improve the total accuracy of matrix elements to 10-15% from 30-40% for p →π e+ or from 20-40% for p →K ν ¯. The accuracy of the low-energy constants α and β in the leading-order baryon chiral perturbation theory (BChPT) of proton decay are also improved. The relevant form factors of p →π estimated through the "direct" lattice calculation from the three-point function appear to be 1.4 times smaller than those from the "indirect" method using BChPT with α and β . It turns out that the utilization of our result will provide a factor 2-3 larger proton partial lifetime than that obtained using BChPT. We also discuss the use of these parameters in a dark matter model.
Tahboub, Yahya R
2014-12-01
Chromatographic behavior of co-eluted compounds from un-extracted drug-free plasma samples was studied by LC-MS and LC-MS/MS with positive APCI. Under soft gradient, total ion chromatogram (TIC) consisted of two major peaks separated by a constant lower intensity region. Early peak (0.15-0.4 min) belongs to polar plasma compounds and consisted of smaller mass ions ( m / z <250); late peak (3.6-4.6 min) belongs to thermally unstable phospholipids and consisted of fragments with m / z <300. Late peak is more sensitive to variations in chromatographic and MS parameters. Screening of most targeted cardiovascular drugs at levels lower than 50 ng/mL has been possible by LC-MS for drugs with retention factors larger than three. Matrix effects and recovery, at 20 and 200 ng/mL, were evaluated for spiked plasma samples with 15 cardiovascular drugs, by MRM-LC-MS/MS. Average recoveries were above 90% and matrix effects expressed as percent matrix factor (% MF) were above 100%, indicating enhancement character for APCI. Large uncertainties were significant for drugs with smaller masses ( m / z <250) and retention factors lower than two.
Wild, Benjamin; St-Pierre, Marie-Eve; Langlois, Stéphanie; Cowan, Kyle N
2017-05-01
Pulmonary vascular disease (PVD) is a leading cause of congenital diaphragmatic hernia (CDH) mortality. Progression of PVD involves extracellular matrix remodeling by elastases and matrix metalloproteinases (MMP), concomitant with proliferation of smooth muscle cells in a growth factor-enriched environment. Blockade of this pathway reversed primary pulmonary hypertension and improved survival. This study was designed to determine whether a similar pathway is induced in PVD secondary to CDH. Fetal rats exposed to nitrofen at gestational day 9 developed left-sided CDH and were compared at term to their non-CDH littermates by assessing histologic and biochemical features of PVD. Rats with CDH displayed right ventricle hypertrophy, increased pulmonary artery medial wall thickness and muscularization, and decreased lumen size. As revealed by in situ zymography and immunohistochemistry, this was associated with an induction of elastolytic and MMP activities as well as an elevation of epidermal growth factor and osteopontin levels in the diseased lung vasculature. CDH-associated PVD involves an induction of elastase and MMP activities and increased osteopontin deposition in an epidermal growth factor-rich environment. Inhibition of this pathway may thus represent a novel therapeutic approach for the treatment of CDH-associated PVD. Level I (Basic Science Study). Copyright © 2017 Elsevier Inc. All rights reserved.
Busnadiego, Oscar; González-Santamaría, José; Lagares, David; Guinea-Viniegra, Juan; Pichol-Thievend, Cathy; Muller, Laurent
2013-01-01
Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis. PMID:23572561
Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method
NASA Astrophysics Data System (ADS)
Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong
2007-06-01
This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.
Estimation of geopotential from satellite-to-satellite range rate data: Numerical results
NASA Technical Reports Server (NTRS)
Thobe, Glenn E.; Bose, Sam C.
1987-01-01
A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.
Column Subset Selection, Matrix Factorization, and Eigenvalue Optimization
2008-07-01
Pietsch and Grothendieck, which are regarded as basic instruments in modern functional analysis [Pis86]. • The methods for computing these... Pietsch factorization and the maxcut semi- definite program [GW95]. 1.2. Overview. We focus on the algorithmic version of the Kashin–Tzafriri theorem...will see that the desired subset is exposed by factoring the random submatrix. This factorization, which was invented by Pietsch , is regarded as a basic
Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation.
Lam, Clifford; Fan, Jianqing
2009-01-01
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order (s(n) log p(n)/n)(1/2), where s(n) is the number of nonzero elements, p(n) is the size of the covariance matrix and n is the sample size. This explicitly spells out the contribution of high-dimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter λ(n) goes to 0 have been made explicit and compared under different penalties. As a result, for the L(1)-penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: sn'=O(pn) at most, among O(pn2) parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where sn' is the number of the nonzero elements on the off-diagonal entries. On the other hand, using the SCAD or hard-thresholding penalty functions, there is no such a restriction.
Ivanovska, Irena L; Swift, Joe; Spinler, Kyle; Dingal, Dave; Cho, Sangkyun; Discher, Dennis E
2017-07-07
Synergistic cues from extracellular matrix and soluble factors are often obscure in differentiation. Here the rigidity of cross-linked collagen synergizes with retinoids in the osteogenesis of human marrow mesenchymal stem cells (MSCs). Collagen nanofilms serve as a model matrix that MSCs can easily deform unless the film is enzymatically cross-linked, which promotes the spreading of cells and the stiffening of nuclei as both actomyosin assembly and nucleoskeletal lamin-A increase. Expression of lamin-A is known to be controlled by retinoic acid receptor (RAR) transcription factors, but soft matrix prevents any response to any retinoids. Rigid matrix is needed to induce rapid nuclear accumulation of the RARG isoform and for RARG-specific antagonist to increase or maintain expression of lamin-A as well as for RARG-agonist to repress expression. A progerin allele of lamin-A is regulated in the same manner in iPSC-derived MSCs. Rigid matrices are further required for eventual expression of osteogenic markers, and RARG-antagonist strongly drives lamin-A-dependent osteogenesis on rigid substrates, with pretreated xenografts calcifying in vivo to a similar extent as native bone. Proteomics-detected targets of mechanosensitive lamin-A and retinoids underscore the convergent synergy of insoluble and soluble cues in differentiation. © 2017 Ivanovska et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis
NASA Astrophysics Data System (ADS)
He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng
2017-01-01
Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.
An Uncertainty Structure Matrix for Models and Simulations
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Blattnig, Steve R.; Hemsch, Michael J.; Luckring, James M.; Tripathi, Ram K.
2008-01-01
Software that is used for aerospace flight control and to display information to pilots and crew is expected to be correct and credible at all times. This type of software is typically developed under strict management processes, which are intended to reduce defects in the software product. However, modeling and simulation (M&S) software may exhibit varying degrees of correctness and credibility, depending on a large and complex set of factors. These factors include its intended use, the known physics and numerical approximations within the M&S, and the referent data set against which the M&S correctness is compared. The correctness and credibility of an M&S effort is closely correlated to the uncertainty management (UM) practices that are applied to the M&S effort. This paper describes an uncertainty structure matrix for M&S, which provides a set of objective descriptions for the possible states of UM practices within a given M&S effort. The columns in the uncertainty structure matrix contain UM elements or practices that are common across most M&S efforts, and the rows describe the potential levels of achievement in each of the elements. A practitioner can quickly look at the matrix to determine where an M&S effort falls based on a common set of UM practices that are described in absolute terms that can be applied to virtually any M&S effort. The matrix can also be used to plan those steps and resources that would be needed to improve the UM practices for a given M&S effort.
Abdel-Latif, Mohamed S
2015-01-01
In chronic HCV infection, pathological accumulation of the extracellular matrix is the main feature of liver fibrosis; that indicates the imbalanced rate of increased matrix synthesis to decreased breakdown of connective tissue proteins. Matrix metalloproteinases (MMPs) play a crucial role in remodeling of extracellular matrix. It is known that expression of MMPs is regulated by Tumor necrosis factor (TNF)-α. Also, levels of TNF-α in liver and serum are increased in chronic HCV patient. Accordingly, this study aimed to correlate the plasma levels of MMP-2, MMP-9 and TNF-α in chronic HCV patients with the pathogenesis of the liver. The current study was conducted on 15 fibrotic liver cases with detectable HCV RNA, 10 HCV cirrhotic liver cases, and 15 control subjects of matched age and sex. Plasma MMP-2, MMP-9 and TNF-α were measured by ELISA. Data revealed that the MMP2, MMP9 and TNF-α levels showed a significant elevation in chronic HCV patients compared to control group (p= 0.001). But, no significant correlation was observed in levels of MMP-2, MMP-9, and TNF-α between fibrotic and cirrhotic cases. MMP-2, MMP-9 and TNF-α showed high reproducibility to differentiate chronic HCV patients from control group. On the contrary, MMP-2, MMP-9 and TNF-α were not able to differentiate fibrotic from cirrhotic liver cases. Thus, MMP-2, MMP-9 and TNF-α could not be correlated with the progression of liver disease. Rather they could be used as prognostic markers of liver fibrosis.