Science.gov

Sample records for matrix isolation ftir

  1. Pyrolysis and Matrix-Isolation FTIR of Acetoin

    NASA Astrophysics Data System (ADS)

    Cole, Sarah; Ellis, Martha; Sowards, John; McCunn, Laura R.

    2017-06-01

    Acetoin, CH_3C(O)CH(OH)CH_3, is an additive used in foods and cigarettes as well as a common component of biomass pyrolysate during the production of biofuels, yet little is known about its thermal decomposition mechanism. In order to identify thermal decomposition products of acetoin, a gas-phase mixture of approximately 0.3% acetoin in argon was subject to pyrolysis in a resistively heated SiC microtubular reactor at 1100-1500 K. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Many products were observed in analysis of the spectra, including acetylene, propyne, ethylene, and vinyl alcohol. These results provide clues to the overall mechanism of thermal decomposition and are important for predicting emissions from many industrial and residential processes.

  2. Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-naphthol.

    PubMed

    Muzomwe, Mayawila; Boeckx, Bram; Maes, Guido; Kasende, Okuma E

    2013-05-01

    The FT-IR spectrum of 1-Naphthol isolated in an argon matrix is performed and compared to the infrared spectra calculated at the DFT (B3LYP)/6-31+G(d) level for cis-1-Naphthol and trans-1-Naphthol rotamers in order to clarify the existence of both rotamers in the standard temperature. Comparison of the computed and the experimental matrix spectra reveals the presence in 1-Naphthol argon matrices in the standard temperature of both cis and trans rotameric forms of 1-Naphthol, the last predominating. The relative stability of the trans-1-Naphthol rotamer has also been supported by a fit comparison between the difference of predicted total energy (ETC) of both rotamers of 0.00195 a.u. corresponding to 5.12 kJ mol(-1) and the variation of the standard free Gibbs energy of rotamerization (ΔGr°) of 5.06 kJ mol(-1). Almost all 51 active vibrational modes of 1-Naphthol have been assigned. The stretching vibration of the OH group (νOH) appears to be the unique vibrational mode distinguishing the cis-1-NpOH rotamer from the trans-1-NpOH rotamer in FT-IR spectrum. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A theoretical and matrix-isolation FT-IR investigation of the conformational landscape of N-acetylcysteine

    NASA Astrophysics Data System (ADS)

    Boeckx, Bram; Ramaekers, Riet; Maes, Guido

    2010-06-01

    The conformational landscape of N-acetylcysteine (NAC) has been investigated by a combined experimental matrix-isolation FT-IR and theoretical methodology. This combination is a powerful tool to study the conformational behavior of relatively small molecules. Geometry optimizations at the HF/3-21 level resulted in 438 different geometries with an energy difference smaller than 22 kJ mol -1. Among these, six conformations were detected with a relative energy difference smaller than 10 kJ mol -1 at the DFT(B3LYP)/6-31++G∗∗ level of theory. These were finally subjected to MP2/6-31++G∗∗ optimizations which resulted in five minima. The vibrational and thermodynamical properties of these conformations were calculated at both the DFT and MP2 methodologies. Experimentally NAC was isolated in an argon matrix at 16 K after being sublimated at 323 K. The most stable MP2 form appeared to be dominant in the experimental spectra but the presence of three other conformations with Δ EMP2 < 10 kJ mol -1 was also demonstrated. The experimentally observed abundance of the H-bond containing conformations appeared to be in good accordance with the predicted MP2 value.

  4. C dbnd N sbnd N dbnd C conformational isomers of 2'-hydroxyacetophenone azine: FTIR matrix isolation and DFT study

    NASA Astrophysics Data System (ADS)

    Grzegorzek, Joanna; Mielke, Zofia; Filarowski, Aleksander

    2010-07-01

    2'-hydroxyacetophenone azine (APA) has been studied by matrix isolation infrared spectroscopy and quantum chemical calculations. The DFT/B3LYP/6-311++G(2d,2p) calculations demonstrated the existence of two conformers for the lowest energy E/ E configuration of APA, a s- trans and a gauche ones. The conformers are characterized by similar energies and differ in the value of a C dbnd N sbnd N dbnd C angle, that was calculated to be 180° for a planar s-trans conformer and 155° for a non-planar gauche one . The calculated barrier for conformational interconversion is also very low, ca. 1 kJ mol -1 for the conversion from a gauche conformer to a trans one. The FTIR spectra of an argon matrix doped with APA from a vapour above solid sample evidence the presence of both conformers that exhibit reversible interconversion at matrix temperatures. The comparison of the theoretical spectra with the experimental ones and reversible temperature dependence of the experimental spectra allowed for unambiguous spectroscopic characterization of the trans and gauche conformers. The experiment also demonstrated that a gauche conformer is more stable than a trans one. The spectra analysis indicates that transformation from a trans conformer to a gauche one weakens the intramolecular O sbnd H⋯N bonds in the molecule.

  5. FTIR study of matrix-isolated halides of dysprosium and thulium and their gaseous heterocomplexes with alkali halides

    SciTech Connect

    Feltrin, A.; Cesaro, S.N.

    1996-06-01

    Vibrational spectra of dysprosium and thulium chlorides, bromides, and iodides isolated in argon have been studied for the first time. The appearance of a single band, even in heavy deposits, suggested a planar geometry for all the samples examined. The complexity of Dy and Tm chlorides spectra, partly because of isotopic patterns, required a reinvestigation of NdCl{sub 3} isolated in argon and have been explained by comparison. Vapors in equilibrium over heated equimolar mixtures of a number of Dy, Tm, and Nd halides with alkali halides trapped in argon have been also investigated. FTIR measurements gave experimental evidence for the formation of gaseous heterocomplexes whose geometry is discussed.

  6. Matrix Isolation FTIR and AB Initio Studies on the Conformations of Dimethyl and Diethyl Carbonate and Their Complexes with Water

    NASA Astrophysics Data System (ADS)

    Kar, Bishnu Prasad; Ramanathan, N.; Sundararajan, K.; Viswanathan, K. S.

    2011-06-01

    Dimethyl carbonate (DMC) and diethyl carbonate (DEC) have been studied for their conformations using matrix isolation infrared spectroscopy and ab initio computations. In addition to the above studies, the complexes of the two compounds with water have also been studied. The experiments were corroborated with ab initio calculations at the B3LYP/6-31++G** level. The organic carbonates were trapped in argon and nitrogen matrixes using an effusive source maintained at two different temperatures; i.e. room temperature and 170°C. In addition the matrix was also deposited using a supersonic jet source. These experiments were performed to alter the relative population of the various conformations, to aid us in the assignments of the vibrational features. The conformation of DMC corresponding to the global minimum of DMC was found to be a cis-cis conformer where the two methyl groups are found to be at cis position with respect to the carbonyl oxygen. The next higher energy conformer corresponded to a cis-trans structure with a near trans-near trans structure being the highest energy conformer. In our experimental matrix isolation spectra of DMC, we were able to assign features due to the cis-cis and cis-trans conformers. The features of the higher energy cis-trans conformer was confirmed with our experiments using the elevated temperature effusive source and the supersonic source. DEC displays a richer conformational landscape due to the presence of a longer carbon chain. The computational and experimental indicate that the ground state conformer for this compound is one in which carbon attached to oxygen adopts a cis configuration with respect to the carbonyl oxygen, while the terminal carbon adopts an anti conformation. A detailed study of the conformational picture of DEC will be presented. In addition to the above conformational studies, 1:1 hydrogen bonded complexes of DMC and DEC with water were also observed in the matrix, which was corroborated by our

  7. Estimation of the rotamerization constants of different conformations of N-acetylalanine: a theoretical and matrix-isolation FT-IR study.

    PubMed

    Boeckx, Bram; Maes, Guido

    2012-02-01

    The conformational landscape of N-acetylalanine has been investigated by a theoretical and matrix-isolation FT-IR study. Optimizations of N-acetylalanine structures has been conducted at successive higher levels of theory HF/3-21G, DFT(B3LYP)/6-31++G** and MP2/6-31++G**. This resulted in three stable conformations. Among these, one conformation contains an intramolecular H-bond. The vibrational properties of these conformations were calculated and used to identify the conformations in a cryogenic argon matrix. The intensities of some bands assigned to a particular conformation were used to estimate the rotamerization constants K(r12) and K(r13) for the equilibria NAA1 NAA2 and NAA1 NAA3, respectively. The obtained experimental values were in agreement with the theoretical predictions. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. FTIR matrix-isolation study of the reaction products of vanadium atoms with propene: observation of allylvanadium hydride as a precursor to sacrificial hydrogenation of propene.

    PubMed

    Thompson, Matthew G K; Walker, Stephen W C; Parnis, J Mark

    2011-08-01

    Vanadium atoms have been reacted with different partial pressures of propene in Ar under matrix-isolation conditions, and the products have been observed using Fourier transform infrared (FTIR) spectroscopy. Under dilute propene in Ar conditions, new features are observed in the IR spectra corresponding to a C-H insertion product, identified here as H-V-(η(3)-allyl). Use of d(3)-propene (CD(3)-CH═CH(2)) demonstrates that the initial V-atom insertion occurs at the methyl group of the propene molecule, and DFT calculations have been used to support the identity of the initial product. Upon increasing the partial pressure of propene, additional features corresponding to propane (C(3)H(8)) are observed, with the hydrogen-atom source for the observed hydrogenation demonstrated to be additional propene units. Analysis of a systematic increase in the partial pressure of propene in the system demonstrates that the yield of propane correlates with the decrease of the allyl product, demonstrating the H-V(allyl) species as a reactive intermediate in the overall hydrogenation process. An overall mechanism is proposed to rationalize the formation of the insertion product and ultimately the products of hydrogenation, which agrees with previous gas-phase and matrix-isolation work involving propene and the related system, ethene. © 2011 American Chemical Society

  9. Carboxylic group and its tetrazolyl isostere in one molecule. Matrix isolation FTIR and DFT studies on thermal decomposition and photochemistry of (tetrazol-5-yl)acetic acid.

    PubMed

    Pagacz-Kostrzewa, M; Krupa, J; Wierzejewska, M

    2014-03-20

    The title compound (tetrazol-5-yl)acetic acid (TA) is an interesting molecule that contains both a carboxylic group and its isostere tetrazolyl group. Out of nine theoretically predicted stable structures of TA, three appeared to be present in solid argon. Thermal decomposition of the species aided by water molecules was studied in detail both experimentally using FTIR matrix isolation technique and theoretically at the B3LYP/6-311++G(2d,2p) level. Experimentally, it was found that the decarboxylation process appeared at the presence of water traces in the system. Theoretically, it was shown that the energy barrier of the water assisted process was lower by ca. 30 kJ mol(-1) comparing to the process without water participation. The UV photolysis of the TA/Ar system was studied using both broad-band and narrow-band sources. The main photoproducts appeared to be carbodiimidylacetic acid and (1H-diaziren-3-yl)acetic acid. The progress of the reactions induced was followed by FTIR spectroscopy, whereas interpretation of the results was supported by quantum chemical calculations (DFT, TD-DFT).

  10. Matrix FTIR Spectroscopy Of Transient Species

    NASA Astrophysics Data System (ADS)

    Andrews, Lester

    1989-12-01

    Matrix studies featuring the FTIR instrumental advantages of resolution and sensitivity for a finite amount of time will be described. Ammonia clusters have a complicated spectrum in the N-H stretching region. One antisymmetric and two symmetric stretching modes in the dimer verify an asymmetric cyclic dimer structure.' Chlorine isotopic splittings have been resolved for the four H/D substituted (HC1)3 species, which confirm the cluster stoichiometry and triangular structure.2 The ammonia/hydrogen cyanide system reveals 1:1 and 1:2 complexes, which are identified from their FTIR spectra and characterized by comparison to similar complexes.3 The ozone/hydrogen fluoride system gives the 03--HF complex, and mixed oxygen isotopic spectra show inequivalent terminal oxygen atoms.4 The symmetrical PH3--03 complex photolyses to give an asymmetric HOP02 species based on mixed isotopic spectra.5

  11. Cryogenic neon matrix-isolation FTIR spectroscopy of evaporated ionic liquids: geometrical structure of cation-anion 1:1 pair in the gas phase.

    PubMed

    Akai, Nobuyuki; Parazs, David; Kawai, Akio; Shibuya, Kazuhiko

    2009-04-09

    Low-temperature infrared spectra of thermally evaporated ionic liquids, 1-ethyl- and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and bis(trifluoromethanesulfonyl)amide have been measured in a cryogenic Ne matrix. The experimental IR spectrum of bis(trifluoromethanesulfonyl)amide can be reproduced theoretically by not B3LYP/6-31G* but MP2/6-31G* calculation, which suggests that the vibrational analysis for ionic liquids composed of bis(trifluoromethanesulfonyl)imide anion would be more successfully performed using the MP2 calculation. By comparison of the matrix-isolation spectra of the ionic liquids with the MP2 calculation, their geometrical structures in the gas phase are determined to be of C(2-position)-H(+)...N(-) interaction structure, which corresponds to the geometry of the energetically second-lowest ion-pair structure. The present study may provide a valuable clue to understand a vaporization mechanism of ionic liquid.

  12. FTIR study of the nitrogen-isolated reaction of Cu with CO and NO: The role of the N{sub 2} matrix

    SciTech Connect

    Dobos, S.; Cesaro, S.N.

    1997-04-01

    Reactions of copper atoms with NO and CO have been studied in nitrogen matrices at 12 K by Fourier transform infrared (FTIR) spectroscopy. A reinvestigation of both systems in argon was also needed. The cocondensation of Cu and NO produces the 1:1 complex and traces of Cu(NO){sub x}, at higher NO concentration, in both matrices. In contrast, the reaction of Cu and CO is significantly affected by the matrix environment. In fact, copper mono-, di-, and tricarbonyls are present in both N{sub 2} and Ar, but the predominant species observed in nitrogen involves simultaneously as ligands both the CO and N{sub 2} molecules. Its stoichiometry and possible geometries are examined in this article on grounds of {sup 15}N{sub 2} and {sup 13}Cu isotopic shifts. From the investigation of Ag+CO in N{sub 2} and the comparison with published data on the Au+CO reaction in nitrogen, it is evident that only copper exhibits a marked reactivity toward the N{sub 2} molecule among the Ib group elements. Codepositions of copper atoms with mixture of CO and NO have also been performed with the aim of establishing the affinity of Cu{sup 0} for the two reactants. Experimental evidence for the formation of N{sub 2}O has been ascertained on deposition of NO in nitrogen excess.

  13. Matrix-isolation FTIR, theoretical structural analysis and reactivity of amino-saccharins: N-(1,1-dioxo-1,2-benzisothiazol-3-yl)- N-methyl amine and - N,N-dimethyl amine

    NASA Astrophysics Data System (ADS)

    Almeida, R.; Gómez-Zavaglia, A.; Kaczor, A.; Ismael, A.; Cristiano, M. L. S.; Fausto, R.

    2009-12-01

    In this work, two novel amino-substituted derivatives of saccharin, N-(1,1-dioxo-1,2-benzisothiazol-3-yl)- N-methyl amine (MBAD) and N-(1,1-dioxo-1,2-benzisothiazol-3-yl)- N, N-dimethyl amine (DMBAD), were synthesized and characterized, and their molecular structure and vibrational properties were investigated by matrix-isolation FTIR spectroscopy and theoretical calculations undertaken using different levels of approximation. The calculations predicted the existence of two conformers of MBAD. The lowest energy form was predicted to be considerably more stable than the second conformer (Δ E > ca. 20 kJ mol -1) and was the sole form contributing to the infrared spectrum of the compound isolated in solid xenon. Both conformers have planar amine moieties. In the case of DMBAD, only one doubly-degenerated-by-symmetry conformer exists, with the amine nitrogen atom considerably pyramidalized. The effect of the electron-withdrawing saccharyl ring on the C-N bond lengths is discussed. The different structural preferences around the amine nitrogen atom in the two molecules were explained in terms of repulsive interactions involving the additional methyl group of DMBAD. Observed structural features are correlated with the reactivity exhibited by the two compounds towards nucleophiles. The experimentally obtained spectra of the matrix-isolated monomers of MBAD and DMBAD were fully assigned by comparison with the corresponding calculated spectra.

  14. The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS

    PubMed Central

    Anderson, Ken B

    2006-01-01

    Upper Cretaceous amber from the Raritan Formation (Sayerville, New Jersey) has been investigated by Pyrolysis-GC-MS and Pyrolysis-GC-matrix isolation FTIR-MS. Results establish the existence of two distinct forms of amber in this deposit. Both forms are Class Ib ambers, but they are unambiguously differentiated on the basis of their (intact) diterpenoid composition. The presence of callitrisate in both forms, and cupraene in samples designated form 1, strongly suggest that both derive from related-but-distinct species within the Cupressaceae. In addition to callitrisate, dehydroabietate and analogous 17-nor-, 16,17-dinor- and 15,16,17-trinor- analogues of these compounds are also observed. The distributions of these products in multiple samples suggest that they are the result of biological emplacement, rather than diagenetic modification of the parent compounds. This indicates that the distributions of diterpenes observed in these samples are representative of the original bioterpenoids and, hence, are useful for chemotaxonomic analyses. PMID:16759406

  15. FTIR spectra and conformational structure of deutero-β-alanine isolated in argon matrices

    NASA Astrophysics Data System (ADS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu; Adamowicz, Ludwik

    2016-02-01

    Low temperature FTIR spectra of β-alanine-d3 isolated in argon matrices are used to determine the conformational composition of this compound. UV irradiation of the matrix samples is found to change the relative populations of the β-alanine-d3 conformers. The populations of conformers I and II with an Nsbnd D⋯O intramolecular H-bond decrease after the UV irradiation while the populations of conformer V with an N⋯Dsbnd O H-bond and conformer IV which has no intramolecular H-bonds increase. This behavior of the β-alanine-d3 conformers are used to separate the bands of the different conformers. The analysis of the experimental FTIR spectra is based on the calculated harmonic B3LYP/6-311++G(df,pd) frequencies and on the MP2/aug-cc-pVDZ frequencies calculated with a method that includes anharmonic effects. Polynomial scaling of the calculated frequencies is used to achieve better agreement with the experimental data. The observation of the wide band of the OD stretching vibration at 2201 cm-1 is a direct evidence of the presence of the β-alanine-d3 conformer V in the Ar matrix. In total ten bands of conformer V are detected. The influence of the matrix environment on the structures and the IR spectra of the β-alanine and β-alanine-d3 conformers is investigated. This involves performing calculations of the β-alanine conformers embedded in argon clusters containing from 163 to 166 argon atoms using the M06-2X and B3LYP(GD3BJ) density-functional methods. Good agreement between the calculated and the experimental matrix splitting is demonstrated.

  16. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  17. Isolation Matrix: A Tool for Discovery

    DTIC Science & Technology

    1984-04-01

    Recognition of the positive, as well as the negative aspects of isolation can be aided by the following matrix. The five families of which military... well . With only three, he experiences stress. Fewer supports place him at risk. The vertical axis includes four major types of isolation (that are due...8217 syndrome) (-). o Failure by unit CO to value family’s role in -readiness and retention (-). o Refusal by some to be more than sociable (i.e. will not risk

  18. Matrix metalloproteinases as reagents for cell isolation.

    PubMed

    Knapinska, Anna M; Amar, Sabrina; He, Zhong; Matosevic, Sandro; Zylberberg, Claudia; Fields, Gregg B

    2016-11-01

    Cell isolation methods for therapeutic purposes have seen little advancement over the years. The original methods of stem cell and islet isolation using bacterial collagenases were developed in the early 1980s and are still used today. Bacterial collagenases are subject to autodegradation, and isolates obtained with these enzymes may be contaminated with endotoxins, reducing cell viability and contributing to toxicity in downstream applications. Here we describe a novel method for isolation of mesenchymal stem cells from adipose tissue (ADSC) utilizing recombinantly produced matrix metalloproteases (MMPs). The ADSCs isolated by MMPs displayed essentially identical morphological and phenotypical characteristics to cells isolated by bacterially-derived collagenase I and Liberase™. Samples isolated with MMPs and Liberase™ had comparable levels of CD73, CD90, and CD105. The adipogenic and osteogenic potential of the ADSCs isolated by MMPs was retained as compared to cells isolated with Liberase™. However, ADSCs isolated by Liberase™ displayed 6% contamination with other cells as per negative markers revealed by PE staining, as opposed to<1% for all MMP-treated samples. MMP-based cell isolation may contribute to optimization of transplantation technology.

  19. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, Gerald T.

    1986-01-01

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.

  20. Comparison of methodologies for separation of fungal isolates using Fourier transform infrared (FTIR) spectroscopy and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) microspectroscopy.

    PubMed

    Oberle, Jennifer; Dighton, John; Arbuckle-Keil, Georgia

    2015-11-01

    Twenty distinct fungal isolates were analysed using three methods of sample preparation for FTIR spectroscopy and FTIR-ATR microspectroscopy to test for differences in surface chemical composition between living and dried fungal samples, as well as differences between surface chemistry and overall chemistry of homogenized dried samples. Results indicated that visually the FTIR spectra of different fungi are remarkably similar with subtle discernable differences, which statistical analysis of the spectra supported. Within each data set, different fungal isolates were responsible for statistical differences. Lack of congruence between each of the methods used suggests that determination of chemical composition is highly dependent upon the method of sample preparation and analysis (surface vs. whole) applied.

  1. Electrodialytic matrix isolation for metal cations.

    PubMed

    Ohira, Shin-Ichi; Hiroyama, Yuri; Nakamura, Koretaka; Koda, Takumi; Dasgupta, Purnendu K; Toda, Kei

    2015-01-01

    Electrodialytic ion transfer was studied as a matrix isolation tool for heavy metal determinations. An ion transfer device (ITD) was used for the transfer of heavy metal cations. Under optimized flow rates applied voltage and receptor composition, heavy metal ions were quantitatively transferred at concentrations spanning µg L(-1) to mg L(-1). As long as the sample pH was acidic, there was no significant sample pH effect on the transfer efficiencies. Significant salt concentrations (>1 mM NaCl), however, decreased the transfer efficiency. This could be ameliorated (up to 5 mM NaCl) by transient instead of continuous sample introduction. The device was applied to the determination of Fe, Cu and Zn in equine and bovine serum; the reproducibility was better than conventional digestion method.

  2. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, G.T.

    1986-06-10

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.

  3. [The analysis for silver iodide fine particles of TLC/FTIR matrix].

    PubMed

    Zhu, Qing; Su, Xiao; Wu, Hai-Jun; Zhai, Yan-Jun; Xia, Jin-Ming; Buhebate; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-07-01

    In situ TLC/FTIR technique has tremendous potential in the analysis of complex mixtures. However, the progress in this technique was quite slow. The reason is that conventional stationary phase has strong absorption in FTIR spectrum and thus brings about severe interference in the detection of samples. To solve the problem, the authors propose to use AgI fine particles as stationary phase of TLC plate. The reasons are as follows: Silver iodide fine particles have no absorbance in an IR region between 4 000 and 800 cm(-1), therefore, the interference caused by IR absorption of stationary phase can be removed. Moreover, silver iodide is stable and insolvable in water and organic solvents and thus it will not be destroyed by mobile phase or react with samples during the TLC separation. To improve TLC separation efficiency and quality of FTIR spectra during the TLC/FTIR analysis, the size of AgI particles should be below 500 nm. We used orthogonal design approach to optimize the experimental condition to AgI particles so that the average size of AgI particles is around 100 nm. No absorption of impurity or adsorbed water were observed in FTIR spectrum of the AgI particles the authors used "settlement volatilization method" to prepare TLC plate without using polymeric adhesive that may bring about significant interference in FTIR analysis. Preliminary TLC experiments proved that the TLC plate using AgI fine particles as stationary phase can separate mixtures of rhodamine B and bromophenol blue successfully. Applications of silver iodide fine particles as stationary phase have bright perspective in the development of in-situ TLC/FTIR analysis techniques.

  4. Structural characterization of lignins isolated from Caragana sinica using FT-IR and NMR spectroscopy.

    PubMed

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang; Mohanty, Amar K

    2011-09-01

    In order to efficiently explore and use woody biomass, six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions. The lignin structures were characterized by Fourier transform infrared spectroscopy (FT-IR) and 1D and 2D Nuclear Magnetic Resonance (NMR). FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given. The results of 1H and 13C NMR demonstrated that the lignin fraction L2, isolated with 70% ethanol containing 1% NaOH, was mainly composed of beta-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit. Based on the 2D HSQC NMR spectrum, the ethanol organosolv lignin fraction L1, extracted with 70% ethanol, presents a predominance of beta-O-4' aryl ether linkages (61% of total side chains), and a low abundance of condensed carbon-carbon linked structures (such as beta-beta', beta-1', and beta-5') and a lower S/G ratio. Furthermore, a small percentage (ca. 9%) of the linkage side chain was found to be acylated at the gamma-carbon.

  5. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.

    PubMed

    Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter

    2016-06-23

    Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.

  6. Organic Matter Detection on Mars by Pyrolysis-FTIR: An Analysis of Sensitivity and Mineral Matrix Effects.

    PubMed

    Gordon, Peter R; Sephton, Mark A

    2016-11-01

    Returning samples from Mars will require an effective method to assess and select the highest-priority geological materials. The ideal instrument for sample triage would be simple in operation, limited in its demand for resources, and rich in produced diagnostic information. Pyrolysis-Fourier infrared spectroscopy (pyrolysis-FTIR) is a potentially attractive triage instrument that considers both the past habitability of the sample depositional environment and the presence of organic matter that may reflect actual habitation. An important consideration for triage protocols is the sensitivity of the instrumental method. Experimental data indicate pyrolysis-FTIR sensitivities for organic matter at the tens of parts per million level. The mineral matrix in which the organic matter is hosted also has an influence on organic detection. To provide an insight into matrix effects, we mixed well-characterized organic matter with a variety of dry minerals, to represent the various inorganic matrices of Mars samples, prior to analysis. During pyrolysis-FTIR, serpentinites analogous to those on Mars indicative of the Phyllocian Era led to no negative effects on organic matter detection; sulfates analogous to those of the Theiikian Era led, in some instances, to the combustion of organic matter; and palagonites, which may represent samples from the Siderikian Era, led, in some instances, to the chlorination of organic matter. Any negative consequences brought about by these mineral effects can be mitigated by the correct choice of thermal extraction temperature. Our results offer an improved understanding of how pyrolysis-FTIR can perform during sample triage on Mars. Key Words: Mars-Life-detection instruments-Search for Mars' organics-Biosignatures. Astrobiology 16, 831-845.

  7. Organic Matter Detection on Mars by Pyrolysis-FTIR: An Analysis of Sensitivity and Mineral Matrix Effects

    PubMed Central

    Gordon, Peter R.

    2016-01-01

    Abstract Returning samples from Mars will require an effective method to assess and select the highest-priority geological materials. The ideal instrument for sample triage would be simple in operation, limited in its demand for resources, and rich in produced diagnostic information. Pyrolysis–Fourier infrared spectroscopy (pyrolysis-FTIR) is a potentially attractive triage instrument that considers both the past habitability of the sample depositional environment and the presence of organic matter that may reflect actual habitation. An important consideration for triage protocols is the sensitivity of the instrumental method. Experimental data indicate pyrolysis-FTIR sensitivities for organic matter at the tens of parts per million level. The mineral matrix in which the organic matter is hosted also has an influence on organic detection. To provide an insight into matrix effects, we mixed well-characterized organic matter with a variety of dry minerals, to represent the various inorganic matrices of Mars samples, prior to analysis. During pyrolysis-FTIR, serpentinites analogous to those on Mars indicative of the Phyllocian Era led to no negative effects on organic matter detection; sulfates analogous to those of the Theiikian Era led, in some instances, to the combustion of organic matter; and palagonites, which may represent samples from the Siderikian Era, led, in some instances, to the chlorination of organic matter. Any negative consequences brought about by these mineral effects can be mitigated by the correct choice of thermal extraction temperature. Our results offer an improved understanding of how pyrolysis-FTIR can perform during sample triage on Mars. Key Words: Mars—Life-detection instruments—Search for Mars’ organics—Biosignatures. Astrobiology 16, 831–845. PMID:27870586

  8. Organic Matter Detection on Mars by Pyrolysis-FTIR: An Analysis of Sensitivity and Mineral Matrix Effects

    NASA Astrophysics Data System (ADS)

    Gordon, Peter R.; Sephton, Mark A.

    2016-11-01

    Returning samples from Mars will require an effective method to assess and select the highest-priority geological materials. The ideal instrument for sample triage would be simple in operation, limited in its demand for resources, and rich in produced diagnostic information. Pyrolysis-Fourier infrared spectroscopy (pyrolysis-FTIR) is a potentially attractive triage instrument that considers both the past habitability of the sample depositional environment and the presence of organic matter that may reflect actual habitation. An important consideration for triage protocols is the sensitivity of the instrumental method. Experimental data indicate pyrolysis-FTIR sensitivities for organic matter at the tens of parts per million level. The mineral matrix in which the organic matter is hosted also has an influence on organic detection. To provide an insight into matrix effects, we mixed well-characterized organic matter with a variety of dry minerals, to represent the various inorganic matrices of Mars samples, prior to analysis. During pyrolysis-FTIR, serpentinites analogous to those on Mars indicative of the Phyllocian Era led to no negative effects on organic matter detection; sulfates analogous to those of the Theiikian Era led, in some instances, to the combustion of organic matter; and palagonites, which may represent samples from the Siderikian Era, led, in some instances, to the chlorination of organic matter. Any negative consequences brought about by these mineral effects can be mitigated by the correct choice of thermal extraction temperature. Our results offer an improved understanding of how pyrolysis-FTIR can perform during sample triage on Mars.

  9. Isolation of the pericellular matrix of human fibroblast cultures

    PubMed Central

    1979-01-01

    The pericellular matrix of human fibroblast cultures was isolated, using sequential extraction with sodium deoxycholate and hypotonic buffer in the presence of protease inhibitor. The matrix attached to the growth substratum had a "sackcloth-like" structure as seen by phase contrast, immunofluorescence, and scanning electron microscopy, and it had a vaguely filamentous ultrastructure similar to that seen in intact cell layers. The matrix consisted of hyaluronic acid and heparan sulfate as the major glycosaminoglycan components and fibronectin and procollagen as major polypeptides as shown by metabolic labeling, gel electrophoresis, immunofluorescence, and collagenase digestion. This pericellular matrix can be regarded as an in vitro equivalent of the loose connective tissue matrix. PMID:383722

  10. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  11. Graphite matrix materials for nuclear waste isolation

    SciTech Connect

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  12. The Conformational Landscape of L-Threonine Matrix Isolation Infrared and {AB-INITIO Studies

    NASA Astrophysics Data System (ADS)

    Dubey, Pankaj; Mukhopadhyay, Anamika; Viswanathan, K. S.

    2017-06-01

    Amino acids, containing hydroxy side chains such as L-threonine and tyrosine play an important role in molecular recognition, such as in the docking of propofol, which is a commonly used anaesthetic. A rich conformational landscape of these amino acids makes them interesting candidates in the study of intra and intermolecular interactions. In this work, the conformational landscape of L-threonine was studied, as it can be expected to serve as a basis for understanding structure and functions of polypeptides and other biomolecules. The matrix isolation technique (MI) coupled with a high temperature effusive molecular beam (EMB) nozzle was used to trap conformers of amino acid, which were then characterized using FTIR spectroscopy. The usefulness of MI-EMB-FTIR spectroscopy is that it can trap structures corresponding to the local minima along with the global minimum and hence allows for a better exploration of the potential energy surface. A major challenge in conformational analysis of amino acids using matrix isolation FTIR arises from its non-volatile nature. A home built heating system which was mounted close to the cryotip, was used to evaporate the non-volatile amino acids. Our infrared spectra show that three conformations were trapped in the matrix. Experimental results were supported by {ab-initio calculations performed using the CCSD(T), MP2 and M06-2X methods together with 6-311++G(d,p) and aug/cc-pVDZ basis sets. The side chains of the amino acids appeared to have an influence on the preferential stabilisation of a particular backbone structure of amino acids. Factors such as entropy, anomeric effect and intramolecular H-bonding were also found to play an important role in determining conformal preferences, which will be discussed.

  13. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Parrish, Milton E.; Plunkett, Susan E.; Harward, Charles N.

    2005-11-01

    Endogenous metals present in tobacco from agricultural practices have been purported to generate metal carbonyls in cigarette smoke. Transition metal catalysts, such as iron oxide, have been investigated for the reduction of carbon monoxide (CO) in cigarette smoke. These studies motivated the development of an analytical method to determine if iron pentacarbonyl [Fe(CO) 5] is present in mainstream smoke from cigarette models having cigarette paper made with iron oxide. An FT-IR puff-by-puff method was developed and the detection limit was determined using two primary reference spectra from different sources to estimate the amount of Fe(CO) 5 present in a high-pressure steel cylinder of CO. We do not detect Fe(CO) 5 in a single 35 mL puff from reference cigarettes or from those cigarette models having cigarette paper made with iron oxide, with a 30-ppbV limit of detection (LOD). Also, it was shown that a filter containing activated carbon would remove Fe(CO) 5.

  14. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy.

    PubMed

    Boncheva, Mila; Damien, Fabienne; Normand, Valéry

    2008-05-01

    ATR-FTIR spectroscopy is useful in investigating the lateral organization of Stratum corneum (SC) lipids in full-thickness skin. Based on studies of the thermotropic phase transitions in n-tricosane and in excised human skin, the temperature dependence of the CH2 scissoring bandwidth emerged as a measure of the extent of orthorhombic and hexagonal phases. This dependence provides a simpler measure of the lateral order in lipid assemblies than the common spectroscopic approaches based on difference spectra, curve fitting of the CH2 scissoring region, and the position of the CH2 stretching vibrations. It has the advantages of ease of determination, relatively low variability, and high discriminative power for the type of lateral intermolecular chain packing. A comparison of the lateral organization of the lipids at the SC surface of mammalian skin using the scissoring bandwidth revealed considerable differences between human abdominal skin (containing mostly orthorhombic phases), porcine ear skin (containing mostly hexagonal phases), and reconstructed human epidermis (containing mostly disordered phases). This parameter also correctly described the different effects of propylene glycol (minimally disturbing) and oleic acid (formation of a highly disordered phase) on the SC lipids in excised human skin. The procedure described here is applicable to in vivo studies in the areas of dermatology, transdermal drug delivery, and skin biophysics.

  15. Deconvolution of petroleum mixtures using mid-FTIR analysis and non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Livanos, George; Zervakis, Michalis; Pasadakis, Nikos; Karelioti, Marouso; Giakos, George

    2016-11-01

    The aim of this study is to develop an efficient, robust and cost effective methodology capable of both identifying the chemical fractions in complex commercial petroleum products and numerically estimating their concentration within the mixture sample. We explore a methodology based on attenuated total reflectance fourier transform infrared (ATR-FTIR) analytical signals, combined with a modified factorization algorithm to solve this ‘mixture problem’, first in qualitative and then in quantitative mode. The proposed decomposition approach is self-adapting to data without prior knowledge and is able of accurately estimating the weight contributions of constituents in the entire chemical compound. The results of the presented work to petroleum analysis indicate that it is possible to deconvolve the mixing process and recover the content in a chemically complex petroleum mixture using the infrared signals of a limited number of samples and the principal substances forming the mixture. A focus application of the proposed methodology is the quality control of commercial gasoline by identifying and quantifying the individual fractions utilized for its formulation via a fast, robust and efficient procedure based on mathematical analysis of the acquired spectra.

  16. Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy.

    PubMed

    Bosch, Alejandra; Golowczyc, Marina A; Abraham, Analía G; Garrote, Graciela L; De Antoni, Graciela L; Yantorno, Osvaldo

    2006-10-01

    Fourier transform infrared (FT-IR) spectroscopy was used in combination with multivariate statistical analysis for differentiation of lactic bacteria isolated from kefir grains. Twelve reference strains and 42 lactobacilli isolates from four local kefir grains, previously identified by biochemical traditional techniques at species level were included in this study. The spectra were analysed by hierarchical clustering analysis (HCA) using Pearson's product-moment correlation coefficient and Ward's algorithm. The differentiation between homo- and heterofermentative lactobacilli, proposed as a first level in the classification scheme, was performed with vector normalized first derivatives spectra in the windows 1789-1700, 1059-935, 3000-2927 and 896-833 cm(-1). For heterofermentative lactobacilli the windows 1780-1750, 1500-1200, 2950-2930 and 900-700 cm(-1) were found to contribute to the maximal separation among L. kefir, L. parakefir and Lactobacillus brevis. It was also demonstrated that although this model was robust against small variations in growth temperature (+/-5 degrees C) and growth time (+/-5 h), the make of culture medium used (Biokar or Difco) affected the separation of heterofermentative lactobacilli at species level. For homofermentative lactobacilli the spectral regions 1230-900, 1777-1690, 1357-1240 and 2960-2870 cm(-1), were selected for discrimination among 5 different species that are normally present in kefir grains: L. plantarum, L. acidophilus, L. kefirgranum, L. kefiranofaciens and L. cassei. The classification and discrimination schemes proposed in this work completely matched with the identification obtained by classical biochemical techniques at species level.

  17. Utilizing FTIR-ATR spectroscopy for classification and relative spectral similarity evaluation of different Colletotrichum coccodes isolates.

    PubMed

    Salman, A; Pomerantz, A; Tsror, L; Lapidot, I; Moreh, R; Mordechai, S; Huleihel, M

    2012-08-07

    Colletotrichum coccodes (C. coccodes) is a pathogenic fungus which causes anthracnose on tomatoes and black dot disease in potatoes. It is important to differentiate among these isolates and to detect the origin of newly discovered isolates, in order to treat the disease in its early stages. However, distinguishing between isolates using common biological methods is time-consuming, and not always available. We used Fourier Transform Infra-Red (FTIR)-Attenuated Total Reflectance (ATR) spectroscopy and advanced mathematical and statistical methods to distinguish between different isolates of C. coccodes. To our knowledge, this is the first time that FTIR-ATR spectroscopy was used, combined with multivariate analysis, to classify such a large number of 15 isolates belonging to the same species. We obtained a success rate of approximately 90% which was achieved using the region 800-1775 cm(-1). In addition we succeeded in determining the relative spectral similarity between different fungal isolates by developing a new algorithm. This method could be an important potential diagnostic tool in agricultural research, since it may outline the extent of the biological similarity between fungal isolates. Based on the PCA calculations, we grouped the fifteen isolates included in this study into four different degrees of similarity.

  18. Matrix Resin Characterization in Cured Graphite Composites Using Diffuse Reflectance-Ftir

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    The chemical characterization of cured graphite fiber reinforced polymer matrix composites is complicated by the fact that the resins are insoluble and the composites are apaque. Standard analyses which depend either on the ability to dissolve the sample or to detect transmitted radiation are impossible. As a result, data reported on environmentally exposed composites primarily concern macroscopic information such as weight loss or changes in selected mechanical properties. Diffuse reflectance in combination with fourier transform infrared spectroscopy was developed to gain a basic chemical understanding of composite and adhesive behavior. Several composite and adhesive materials were characterized before and after environmental exposure. In each case significant changes in resin molecular structure were observed and correlated with changes in mechanical properties, providing new insights into material performance.

  19. Isolation and Characterization of Calcifying Matrix Vesicles from Epiphyseal Cartilage*

    PubMed Central

    Ali, S. Y.; Sajdera, S. W.; Anderson, H. C.

    1970-01-01

    Matrix vesicles, associated with initial calcification in cartilage, have been isolated from bovine fetal epiphyseal cartilage. Cartilage was digested with collagenase, then partitioned into seven fractions by differential centrifugation. The cellular fractions contained over 80% of the DNA in the digest. The extracellular fraction that contained matrix vesicles, in which apatite crystals were often seen on electron microscopy, also displayed the highest specific activity for alkaline phosphatase, pyrophosphatase, ATPase, and 5′-AMPase (EC 3.1.3.1., 3.6.1.1, 3.6.1.3, and 3.1.3.5, respectively). Most of the acid phosphatase (EC 3.1.3.2) activity, on the other hand, was found in the cellular fractions, indicating that matrix vesicles are quite distinct from lysosomes. This appears to be the first instance of isolation of membrane-bounded extracellular particles from any normal tissue. The matrix vesicles possess enzymes that can increase the local concentration of orthophosphate and thus could lead to the formation of hydroxyapatite. The membrane-bounded matrix vesicles may also provide a mechanism for ATP-dependent transport of calcium or phosphate into the lumen of the vesicles with resultant mineralization. Images PMID:5274475

  20. Matrix isolation infrared spectra and photochemistry of hydantoin.

    PubMed

    Ildiz, Gulce Ogruc; Nunes, Cláudio M; Fausto, Rui

    2013-01-31

    Hydantoin (C(3)H(4)N(2)O(2), 2,4-imidazolidinedione) was isolated in argon matrix at 10 K and its infrared spectrum and unimolecular photochemistry were investigated. The molecular structure of the compound was studied both at the DFT(B3LYP) and MP2 levels of approximation with valence triple- and quadruple-ζ basis sets (6-311++G(d,p); cc-pVQZ). It was concluded that the minima in the potential energy surfaces of the molecule correspond to C(1) symmetry structures. However, the energy barrier separating the two-equivalent-by-symmetry minima stays below their zero-point energy, which makes the C(s) symmetry structure, which separates the two minima, the experimentally relevant one. The electronic structure of the molecule was studied in detail by performing the Natural Bond Orbital analysis of its electronic configuration within the DFT(B3LYP)/cc-pVQZ space. The infrared spectrum of the matrix isolated compound was fully assigned also with help of the theoretically predicted spectrum. Upon irradiation at λ = 230 nm, matrix-isolated hydantoin was found to photofragment into isocyanic acid, CO, and methylenimine.

  1. Photoinduced ethane formation from reaction of ethene with matrix-isolated Ti, V, or Nb atoms.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2005-10-27

    The reactions of matrix-isolated Ti, V, or Nb atoms with ethene (C(2)H(4)) have been studied by FTIR absorption spectroscopy. Under conditions where the ethene dimer forms, metal atoms react with the ethene dimer to yield matrix-isolated ethane (C(2)H(6)) and methane. Under lower ethene concentration conditions ( approximately 1:70 ethene/Ar), hydridic intermediates of the types HMC(2)H(3) and H(2)MC(2)H(2) are also observed, and the relative yield of hydrocarbons is diminished. Reactions of these metals with perdeuterioethene, and equimolar mixtures of C(2)H(4) and C(2)D(4), yield products that are consistent with the production of ethane via a metal atom reaction involving at least two C(2)H(4) molecules. The absence of any other observed products suggests the mechanism also involves production of small, highly symmetric species such as molecular hydrogen and metal carbides. Evidence is presented suggesting that ethane production from the ethene dimer is a general photochemical process for the reaction of excited-state transition-metal atoms with ethene at high concentrations of ethene.

  2. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  3. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    PubMed

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  4. Matrix Isolation Studies of Carbonic Acid—The Vapor Phase above the β-Polymorph

    PubMed Central

    2013-01-01

    Twenty years ago two different polymorphs of carbonic acid, α- and β-H2CO3, were isolated as thin, crystalline films. They were characterized by infrared and, of late, by Raman spectroscopy. Determination of the crystal structure of these two polymorphs, using cryopowder and thin film X-ray diffraction techniques, has failed so far. Recently, we succeeded in sublimating α-H2CO3 and trapping the vapor phase in a noble gas matrix, which was analyzed by infrared spectroscopy. In the same way we have now investigated the β-polymorph. Unlike α-H2CO3, β-H2CO3 was regarded to decompose upon sublimation. Still, we have succeeded in isolation of undecomposed carbonic acid in the matrix and recondensation after removal of the matrix here. This possibility of sublimation and recondensation cycles of β-H2CO3 adds a new aspect to the chemistry of carbonic acid in astrophysical environments, especially because there is a direct way of β-H2CO3 formation in space, but none for α-H2CO3. Assignments of the FTIR spectra of the isolated molecules unambiguously reveal two different carbonic acid monomer conformers (C2v and Cs). In contrast to the earlier study on α-H2CO3, we do not find evidence for centrosymmetric (C2h) carbonic acid dimers here. This suggests that two monomers are entropically favored at the sublimation temperature of 250 K for β-H2CO3, whereas they are not at the sublimation temperature of 210 K for α-H2CO3. PMID:23631554

  5. Isolation and Proteomic Characterization of the Mouse Sperm Acrosomal Matrix*

    PubMed Central

    Guyonnet, Benoit; Zabet-Moghaddam, Masoud; SanFrancisco, Susan; Cornwall, Gail A.

    2012-01-01

    A critical step during fertilization is the sperm acrosome reaction in which the acrosome releases its contents allowing the spermatozoa to penetrate the egg investments. The sperm acrosomal contents are composed of both soluble material and an insoluble material called the acrosomal matrix (AM). The AM is thought to provide a stable structure from which associated proteins are differentially released during fertilization. Because of its important role during fertilization, efforts have been put toward isolating the AM for biochemical study and to date AM have been isolated from hamster, guinea pig, and bull spermatozoa. However, attempts to isolate AM from mouse spermatozoa, the species in which fertilization is well-studied, have been unsuccessful possibly because of the small size of the mouse sperm acrosome and/or its fusiform shape. Herein we describe a procedure for the isolation of the AM from caput and cauda mouse epididymal spermatozoa. We further carried out a proteomic analysis of the isolated AM from both sperm populations and identified 501 new proteins previously not detected by proteomics in mouse spermatozoa. A comparison of the AM proteome from caput and cauda spermatozoa showed that the AM undergoes maturational changes during epididymal transit similar to other sperm domains. Together, our studies suggest the AM to be a dynamic and functional structure carrying out a variety of biological processes as implied by the presence of a diverse group of proteins including proteases, chaperones, hydrolases, transporters, enzyme modulators, transferases, cytoskeletal proteins, and others. PMID:22707618

  6. The infrared spectrum of matrix isolated hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Warren, J. A.; Smith, G. R.; Guillory, W. A.

    1980-01-01

    The induced infrared spectra of H2 and D2, trapped in matrices of Ar, Kr, N2, CO, have been investigated. It is found that in Ar and Kr, the pure rotation spectrum is always readily observable. Portions of the fundamental region, however, are induced by impurities, while the entire spectrum is impurity induced in N2 matrices. These results are discussed in light of a recent Raman study of this system, and in comparison with several single crystal studies. Effective rotational and vibrational constants for matrix isolated H2 are also given.

  7. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions.

    PubMed

    Kobayashi, Yuka; Mayer, Steven G; Park, Jae W

    2017-07-01

    Tilapia proteins refined by pH shift and water washing were chopped under various comminution conditions and their structural changes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopies. Both techniques revealed the degree of unfolding in protein structure increased when fish protein isolate (FPI) and surimi were chopped at 25°C for 18min compared to samples chopped at 5°C for 6min. Results indicated both hydrophobic interactions and disulfide bonds were significantly enhanced during gelation. FPI and surimi gels prepared at 25°C for 18min exhibited higher β-sheet contents and more chemical bonds such as hydrophobic interactions and disulfide bonds than those at 5°C for 6min. Results suggested that controlling comminution is important to improve gel qualities in FPI and surimi from tropical fish like tilapia. Moreover, FT-IR and Raman spectroscopies are useful complementary tools for elucidating the change in the structure of protein during comminution and gelation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    PubMed

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν1 PO4:amide III, ν1 PO4:amide I, ν1 PO4:Proline + hydroxyproline, ν1 PO4:Phenylalanine, ν1 PO4:δ CH2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν3 PO4:amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν1 PO4/Amide III: P < 0.01, R(2 )= 0.966; Raman ν1 PO4/Amide I: P < 0.01, R(2 )= 0.919; Raman ν1 PO4/Proline + Hydroxyproline: P < 0.01, R(2 )= 0.976; Raman ν1 PO4/Phenylalanine: P < 0.01, R(2 )= 0.911; Raman ν1 PO4/δ CH2: P < 0.01, R(2 )= 0.894; IR P < 0.01, R(2 )= 0.91). Fourier transform infrared mineral:matrix ratio values from native bone tissue were also similar to theoretical mineral:matrix ratio values for a given ash fraction. Raman and IR mineral:matrix ratio values were strongly correlated ( P < 0.01, R(2 )= 0.82). These results were confirmed by calculating the mineral:matrix ratio for theoretical IR spectra, developed by applying the Beer-Lambert law to calculate the relative extinction coefficients of HA and collagen over the same range of wavenumbers (800-1800 cm(-1)). The results confirm that the Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the

  9. Device for collecting and analyzing matrix-isolated samples

    DOEpatents

    Reedy, Gerald T.

    1979-01-01

    A gas-sample collection device is disclosed for matrix isolation of individual gas bands from a gas chromatographic separation and for presenting these distinct samples for spectrometric examination. The device includes a vacuum chamber containing a rotatably supported, specular carrousel having a number of external, reflecting surfaces around its axis of rotation for holding samples. A gas inlet is provided for depositing sample and matrix material on the individual reflecting surfaces maintained at a sufficiently low temperature to cause solidification. Two optical windows or lenses are installed in the vacuum chamber walls for transmitting a beam of electromagnetic radiation, for instance infrared light, through a selected sample. Positioned within the chamber are two concave mirrors, the first aligned to receive the light beam from one of the lenses and focus it to the sample on one of the reflecting surfaces of the carrousel. The second mirror is aligned to receive reflected light from that carrousel surface and to focus it outwardly through the second lens. The light beam transmitted from the sample is received by a spectrometer for determining absorption spectra.

  10. Matrix isolation apparatus with extended sample collection capability

    DOEpatents

    Reedy, Gerald T.

    1987-01-01

    A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.

  11. Detection of Maillard reaction products by a coupled HPLC-Fraction collector technique and FTIR characterization of Cu(II)-complexation with the isolated species

    NASA Astrophysics Data System (ADS)

    Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos

    2017-08-01

    The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.

  12. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    PubMed

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Aqueous hydrogen bonding probed with polarization and matrix isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane; Bisson, Patrick; Buch, Victoria; Groenzin, Henning; Li, Irene

    2010-05-01

    A major challenge in hydrogen-bond research is interpreting the vibrational spectrum of water, arguably the most fundamental hydrogen bonding system. This challenge remains despite over a half century of progress in vibrational spectroscopy, largely due to a combination of the huge oscillator strength and the enormous width of the hydrogen-bond region. Lack of assignment of the resonances in the hydrogen-bond region hinders investigation of interactions between water and solutes. This lack-of-interpretation issue is an even more significant problem for studies of the aqueous interface. Numerous solutes are known to have an effect, some very dramatic, on the shape of the surface spectrum. These effects, however, are but tantalizing teasers because lack of interpretation means that the changes cannot be used to diagnose the effect of solutes or impinging gas-phase molecules on the surface. In the reported work two techniques are used to probe the origin of vibrational resonances in the H-bonded region: the surface sensitive technique sum frequency generation (SFG) and room-temperature matrix isolation spectroscopy (RT-MIS). A polarization technique called polarization angle null (PAN) has been developed that extends SFG and enables identification of resonances. The result of applying PAN-SFG to single crystal, I h ice is identification of at least nine underlying resonances and assignment of two of these. One resonance is correlated with the crystal temperature and is a sensitive probe for interactions that disrupt long range order on the surface - it is a morphology reporter. The second is associated with weakly bonded, double-donor water molecules. This resonance is sensitive to interaction of hydrogen bond donors, i.e. acids, with the surface. Both modes are more correctly pictured as collective modes. These two assignments are the first definitive assignments in the hydrogen-bond region for the aqueous surface. The effect of salts on the vibrational spectrum of

  14. Matrix Isolation of H Atoms at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Khmelenko, V. V.; Lee, D. M.; Vasiliev, S.

    2011-02-01

    The recent history of the matrix isolation of atomic free radicals at low temperatures started with a research program at the US National Bureau of Standards and continued with the important breakthrough at Chernogolovka in Russia where a jet containing atomic free radicals was directed onto the surface of superfluid 4He. The samples collected consisted of gel-like substances made up of molecular nanoclusters, allowing the atomic free radicals to be isolated from one another and studied at 1.3 K. More recently, techniques were developed at Turku University which have been made the region T<1 K accessible for studies of H atoms entrapped in H2 films. Very high concentrations of H atomic free radicals (˜1018-1019 cm-3) have been attained using both the Turku and Chernogolovka methods. A discussion of the most recent experiments at Cornell and Turku will be given. Microwave and mm wave electron paramagnetic resonance techniques have been employed in these experiments. These techniques permitted studies of the exchange tunneling chemical reaction D+HD→H+D2. Diffusion of H atoms through solid H2 proceeds via the reaction H+H2→H2+H, leading to recombination (H+H→H2). Quantum overlap of H atoms is thought to be responsible for exotic behavior of H atoms in solid H2 films below 1 K, including a significant departure from the Boltzmann distribution of the relative populations of the two lowest hyperfine levels of atomic H.

  15. A combined matrix isolation spectroscopy and cryosolid positron moderation apparatus

    SciTech Connect

    Molek, Christopher D.; Michael Lindsay, C.; Fajardo, Mario E.

    2013-03-15

    We describe the design, construction, and operation of a novel apparatus for investigating efficiency improvements in thin-film cryogenic solid positron moderators. We report results from solid neon, argon, krypton, and xenon positron moderators which illustrate the capabilities and limitations of our apparatus. We integrate a matrix isolation spectroscopy diagnostic within a reflection-geometry positron moderation system. We report the optical thickness, impurity content, and impurity trapping site structures within our moderators determined from infrared absorption spectra. We use a retarding potential analyzer to modulate the flow of slow positrons, and report positron currents vs. retarding potential for the different moderators. We identify vacuum ultraviolet emissions from irradiated Ne moderators as the source of spurious signals in our channel electron multiplier slow positron detection channel. Our design is also unusual in that it employs a sealed radioactive Na-22 positron source which can be translated relative to, and isolated from, the cryogenic moderator deposition substrate. This allows us to separate the influences on moderator efficiency of surface contamination by residual gases from those of accumulated radiation damage.

  16. Force degradation behavior of glucocorticoid deflazacort by UPLC: isolation, identification and characterization of degradant by FTIR, NMR and mass analysis

    PubMed Central

    Deshmukh, Rajesh; Sharma, Lata; Tekade, Muktika; Kesharwani, Prashant; Trivedi, Piyush; Tekade, Rakesh K.

    2016-01-01

    Abstract In this investigation, sensitive and reproducible methods are described for quantitative determination of deflazacort in the presence of its degradation product. The method was based on high performance liquid chromatography of the drug from its degradation product on reverse phase using Acquity UPLC BEH C18 columns (1.7 µm, 2.1 mm × 150 mm) using acetonitrile and water (40:60 V/V) at a flow rate of 0.2 mL/minute in UPLC. UV detection was performed at 240.1 nm. Deflazacort was subjected to oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The drug was found to be stable in water and thermal stress, as well as under neutral stress conditions. However, forced-degradation study performed on deflazacort showed that the drug degraded under alkaline, acid and photolytic stress. The degradation products were well resolved from the main peak, which proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to accuracy, linearity, limit of detection, limit of quantification, accuracy, precision and robustness, selectivity and specificity. Apart from the aforementioned, the results of the present study also emphasize the importance of isolation characterization and identification of degradant. Hence, an attempt was made to identify the degradants in deflazacort. One of the degradation products of deflazacort was isolated and identified by the FTIR, NMR and LC-MS study. PMID:28276670

  17. Matrix isolation ESR and theoretical studies of metal phosphides

    NASA Astrophysics Data System (ADS)

    Fuller, Rebecca O.; Chandler, Graham S.; Davis, Jeffrey R.; McKinley, Allan J.

    2010-10-01

    The ZnP, Z67nP, CdP, C111dP, and C113dP radicals have been formed by laser ablation of the metal with GaP pressed into the metal surface, isolated in an inert neon matrix at 4.3 K and their electronic structure was established using electron spin resonance spectroscopy. The following magnetic parameters were determined experimentally for ZnP/Z67nP, g⊥=1.9982(2), A⊥(P)=111(6) MHz, A⊥(Z67n)=160(2) MHz, and D=-29 988(3) MHz and estimates were made for the following ZnP/Z67nP magnetic parameters: g∥=1.9941(2), A∥(P)=-5(6) MHz, and A∥(Z67n)=180(50) MHz. The following magnetic parameters for CdP/C111dP/C113dP were determined experimentally: g⊥=1.9963(2), A⊥(P)=97(3) MHz, A⊥(C111d)=862(3) MHz, and A⊥(C113d)=902(3) MHz. Evidence for the formation of the MgP radical was also obtained and an approximate hyperfine coupling constant of A⊥(P)=157(6) MHz was determined. The low-lying electronic states of ZnP and MgP were also investigated using the multiconfigurational self-consistent field technique. Potential energy surfaces, binding energies, optimized bond lengths, energy separations, and dissociation energies have been determined. Both radicals are found to have Σ4- ground states with a leading configuration at re of 10σ211σ25π15π112σ1 for ZnP and 7σ28σ23π13π19σ1 for MgP. Significant mixing to this state is calculated for MgP.

  18. Calcium-dependent conformational change and thermal stability of the isolated PsbO protein detected by FTIR spectroscopy.

    PubMed

    Heredia, P; De Las Rivas, J

    2003-10-14

    The structure and function of the photosystem II PsbO extrinsic protein is under intense research, being an essential part of the biomolecular engine that carries out water oxidation and oxygen production. This paper presents a structural analysis of the isolated PsbO protein by FTIR spectroscopy, reporting detailed secondary structure quantification and changes in the secondary structure content of the protein attributed to the effect of calcium (Ca(2+)). Measurements in H(2)O and D(2)O have allowed us to see the effect of calcium on the conformation of the protein. The results indicate that (i) the protein presents a major content of beta-structure (i.e., beta-sheet, beta-strands, beta-turns) as detected by the infrared bands at 1624-1625, 1678-1679, 1688-1689 cm(-1), which account for about 38% in water and 33% in heavy water, in the presence of calcium; and (ii) the amount of this beta-structure fraction increases 7-10% in the absence of calcium, with a concomitant decrease in loops and nonordered structure. The thermal denaturation profile of the protein in the presence of calcium showed low stability with T(m) approximately 56 degrees C. This profile also shows a second phase of denaturation above 60 degrees C and the appearance of aggregation signals above 70 degrees C. Our observations indicate that calcium is able to modify the conformation of the protein at least in solution and confirm that PsbO is mainly a beta-protein where beta-sheet is the major ordered secondary structure element of the protein core.

  19. Isolation and characterization of chicken bile matrix metalloproteinase

    USDA-ARS?s Scientific Manuscript database

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  20. Infrared matrix-isolation and theoretical studies of the reactions of ferrocene with ozone.

    PubMed

    Kugel, Roger W; Pinelo, Laura F; Ault, Bruce S

    2015-03-19

    The reactions between ferrocene (Cp2Fe) (2a) and ozone (O3) were studied using low-temperature matrix-isolation techniques coupled with theoretical density functional theory (DFT) calculations. Co-deposition of Ar/Cp2Fe and Ar/O3 gas mixtures onto a cryogenically cooled CsI window produced a dark-green charge-transfer complex, Cp2Fe-O3, that photodecomposed upon red (λ ≥ 600 nm) and infrared (λ ≥ 1000 nm) irradiation but was stable to green or blue irradiation. Products of photodecomposition were characterized by FT-IR, oxygen-18 labeling, and DFT calculations using the B3LYP functionals and the 6-311G++(d,2p) basis set. Likely, photochemical products included four structures having the molecular formula C10H10FeO, identified by DFT calculations based on their calculated infrared spectra and (18)O isotope shifts. Each of these calculated molecules had one intact and fully coordinated η(5)-C5H5 cyclopentadienyl (Cp) ring and (1) an η(5)-C5H5O cyclic ether (pyran ring) (2b), (2) an η(4)-C5H5O linear aldehyde (2c), (3) a bidentate cyclic aldehyde with a seven-membered ring including the iron atom (2d), or (4) an Fe-O bond and an η(2)-C5H5 (Cp) ring (2e). No conclusive evidence for a gas-phase thermal reaction between ferrocene and ozone was observed under the conditions of these experiments. However, strong evidence for a surface-catalyzed thermal reaction was observed in merged-jet experiments wherein the gases were premixed before deposition. Surface-catalyzed ferrocene-ozone reaction products included a thin film of Fe2O3 observed on the walls of the merged tube as well as cyclopentadiene (C5H6), cyclopentadienone (C5H4O), and further oxidation products observed in the matrix. Possible mechanisms for both the photochemical and the thermal reactions are discussed.

  1. The biomolecule of 5-bromocytosine: FT-IR and FT-Raman spectra and DFT calculations. Identification of the tautomers in the isolated state and simulation the spectra in the solid state.

    PubMed

    Alcolea Palafox, M; Rastogi, V K; Kumar, Satendra; Joe, Hubert

    2013-07-01

    An accurate assignment of the IR spectrum in Ar matrix of 5-bromocytosine and of the IR and Raman spectra in the solid state was carried out. For this purpose Density functional calculations (DFTs) were performed to clarify wavenumber assignments of the experimental observed bands. The calculated values were scaled using scaling equations and they were compared with IR and Raman experimental data. Good reproduction of the experimental wavenumbers is obtained and the% error is very small in the majority of cases. In the isolated state all the tautomer forms of 5-bromocytosine were determined and optimized. The wavenumbers corresponding to C1 and C2b tautomers were identified and assigned in the IR experimental spectrum reported in Ar matrix. Our study confirms the existence of at least two tautomers, the amino-oxo and the amino-hydroxy in the isolated state. In the solid state the FT-IR and FT-Raman spectra of 5-bromocytosine in the powder form were recorded in the region 400-4000 cm(-1) and 50-3500 cm(-1), respectively. The unit cell found in the crystal was simulated as a tetramer form in three tautomers. Thus, it has been possible to assign all the 33 normal modes of vibration. The study indicates that the features, that are the characteristic of the vibrational spectra of cytosine, are retained by the spectra of 5-bromocytosine and it exists in the solid phase in the amino-oxo form.

  2. Proton-transfer spectroscopy of 3-hydroxyflavone in an isolated-site crystal matrix

    SciTech Connect

    McMorrow, D.; Kasha, M.

    1984-06-01

    The isolated-site low-temperature crystal matrix (dilute solutions in heptane and in octane) (Shpol'skii matrix) is shown to be operative for the spectroscopic study of 3-hydroxyflavone luminescence. The observed luminescence is demonstrated to be unique proton-transfer fluorescence from the excited tautomer. A separate study at higher concentrations of aggregated molecule luminescence and excitation spectra distinguishes these for 3-hydroxyflavone from isolated-molecule spectra. The application of the Shpol'skii matrix low-temperature spectroscopy technique is suggested for other large heteroaromatic molecules, such as biomolecules containing polar groups that impart low solubility in nonaqueous solvents. 24 references, 4 figures.

  3. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Sacramento, R. L.; Oliveira, A. N.; Alves, B. X.; Silva, B. A.; Li, M. S.; Wolff, W.; Cesar, C. L.

    2015-07-01

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H2 are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  4. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    SciTech Connect

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.; Oliveira, A. N.; Li, M. S.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  5. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules.

    PubMed

    Sacramento, R L; Oliveira, A N; Alves, B X; Silva, B A; Li, M S; Wolff, W; Cesar, C L

    2015-07-01

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H2 are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  6. Isolation and Characterization of Chick Epiphyseal Cartilage Matrix Vesicle Proteolipid

    DTIC Science & Technology

    1988-01-01

    Epiphyseal growth plate cartilage from the proximal portion of 49-52 day old broiler strain chickens was digested in collagenase for 15 hours. Plasma...cartilage from the proximal portion of 49-52 day old broiler strain chickens was digested in collagenase for 15 hours. Plasma membranes and matrix...ATPASE ACTIVITY. Epiphyseal growth plate cartilage from the proximal portion of 49-52 day old broiler strain chickens was digested in collagenase for 15

  7. The role of matrix material and CCl4 (electron acceptor) on the ionization mechanisms of matrix-isolated naphthalene

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1991-01-01

    The formation mechanisms and optical properties of polycyclic aromatic hydrocarbons (PAH) isolated in argon and neon matrices were studied in a systematic manner in an attempt to provide spectroscopic data on PAH ions under conditions relevant to astrophysical applications. The results obtained indicate the strong influence of the matrix material on the competing radiative (fluorescence and phosphorescence) and nonradiative (internal conversion and intersystem crossing) relaxation processes of the trapped molecule.

  8. Slow ground state molecules from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.

    2014-12-01

    We describe the generation and properties of a cryogenic beam of 7Li2 dimers from sublimation of a neon matrix where lithium atoms have been implanted via laser ablation of solid precursors of metallic lithium or lithium hydride (LiH). Different sublimation regimes lead to pulsed molecular beams with different temperatures, densities and forward velocities. With laser absorption spectroscopy these parameters were measured using the molecular 7Li2 (R) transitions A1Σ u+(v\\prime =4,J\\prime =J\\prime\\prime +1) ≤ftarrow X 1Σ g+(v\\prime\\prime =0,J\\prime\\prime =0,1,3). In a typical regime, sublimating a matrix at 16 K, translational temperatures of 6-8 K with a drift velocity of 130 m s-1 in a free expanding pulsed beam with molecular density of 109 cm-3, averaged along the laser axis, were observed. Rotational temperatures around 5-7 K were obtained. In recent experiments we were able to monitor the atomic Li signal—in the D2 line—concomitantly with the molecular signal in order to compare them as a function of the number of ablation pulses. Based on the data and a simple model, we discuss the possibility that a fraction of these molecules are being formed in the matrix, by mating atoms from different ablation pulses, which would open up the way to formation of other more interesting and difficult molecules to be studied at low temperatures. Such a source of cryogenic molecules have possible applications encompassing fundamental physics tests, quantum information studies, cold collisions, chemistry, and trapping.

  9. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall.

    PubMed

    Chylińska, Monika; Szymańska-Chargot, Monika; Zdunek, Artur

    2016-12-10

    The purpose of this work was to reveal the structural changes of cell wall polysaccharides' fractions during tomato fruit development by analysis of spectral data. Mature green and red ripe tomato fruit were taken into consideration. The FT-IR spectra of water soluble pectin (WSP), imidazole soluble pectin (ISP) and diluted alkali soluble pectin (DASP) contained bands typical for pectins. Whereas for KOH fraction spectra bands typical for hemicelluloses were present. The FT-IR spectra showed the drop down of esterification degree of WSP and ISP polysaccharides during maturation. The changes in polysaccharides structure revealed by spectra were the most visible in the case of pectic polysaccharides. The WSP and DASP fraction pectins molecules length were shortened during tomato maturation and ripening. Whereas the ISP fraction spectra analysis showed that this fraction contained rhamnogalacturonan I, but also for red ripe was rich in pectic galactan comparing with ISP fraction from mature green. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Discrimination of cyanobacterial strains isolated from saline soils in Nakhon Ratchasima, Thailand using attenuated total reflectance FTIR spectroscopy.

    PubMed

    Bounphanmy, Somchanh; Thammathaworn, Sompong; Thanee, Nathawut; Pirapathrungsuriya, Komson; Beardall, John; McNaughton, Don; Heraud, Philip

    2010-08-01

    A method was developed whereby high quality FTIR spectra could be rapidly acquired from soil-borne filamentous cyanobacteria using ATR FTIR spectroscopy. Spectra of all strains displayed bands typical of those previously reported for microalgae and water-borne cyanobacteria, with each strain having a unique spectral profile. Most variation between strains occurred in the C-O stretching and the amide regions. Soft Independent Modelling by Class Analogy (SIMCA) was used to classify the strains with an accuracy of better than 93%, with best classification results using the spectral region from 1800-950 cm(-1). Despite this spectral region undergoing substantial changes, particularly in amide and C-O stretching bands, as cultures progressed through the early-, mid- to late-exponential growth phases, classification accuracy was still good (approximately 80%) with data from all growth phases combined. These results indicate that ATR/FTIR spectroscopy combined with chemometric classification methods constitute a rapid, reproducible, and potentially automated approach to classifying soil-borne filamentous cyanobacteria. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Altered protein levels in the isolated extracellular matrix of failing human hearts with dilated cardiomyopathy.

    PubMed

    DeAguero, Joshua L; McKown, Elizabeth N; Zhang, Liwen; Keirsey, Jeremy; Fischer, Edgar G; Samedi, Von G; Canan, Benjamin D; Kilic, Ahmet; Janssen, Paul M L; Delfín, Dawn A

    Dilated cardiomyopathy (DCM) is associated with extensive pathological cardiac remodeling and involves numerous changes in the protein expression profile of the extracellular matrix of the heart. We obtained seven human, end-stage, failing hearts with DCM (DCM-failing) and nine human, nonfailing donor hearts and compared their extracellular matrix protein profiles. We first showed that the DCM-failing hearts had indeed undergone extensive remodeling of the left ventricle myocardium relative to nonfailing hearts. We then isolated the extracellular matrix from a subset of these hearts and performed a proteomic analysis on the isolated matrices. We found that the levels of 26 structural proteins were altered in the DCM-failing isolated cardiac extracellular matrix compared to nonfailing isolated cardiac extracellular matrix. Overall, most of the extracellular matrix proteins showed reduced levels in the DCM-failing hearts, while all of the contractile proteins showed increased levels. There was a mixture of increased and decreased levels of cytoskeletal and nuclear transport proteins. Using immunoprobing, we verified that collagen IV (α2 and α6 isoforms), zyxin, and myomesin protein levels were reduced in the DCM-failing hearts. We expect that these data will add to the understanding of the pathology associated with heart failure with DCM.

  12. Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry.

    PubMed

    Coyle, Jason P; Johnson, Paul A; DiLabio, Gino A; Barry, Seán T; Müller, Jens

    2010-03-15

    The fragmentation of the copper(I) guanidinate [Me(2)NC(NiPr)(2)Cu](2) (1) has been investigated with time-of-flight mass spectrometry (TOF MS), matrix-isolation FTIR spectroscopy (MI FTIR spectroscopy), and density functional theory (DFT) calculations. Gas-phase thermolyses of 1 were preformed in the temperature range of 100-800 degrees C. TOF MS and MI FTIR gave consistent results, showing that precursor 1 starts to fragment at oven temperatures above 150 degrees C, with a close to complete fragmentation at 260 degrees C. Precursor 1 thermally fragments to Cu((s)), H(2)(g), and the oxidized guanidine Me(2)NC(=NiPr)(N=CMe(2)) (3). In TOF MS experiment, 3 was clearly indentified by its molecular ion at 169.2 u. Whereas H(2)(+) was detected, atomic Cu was not found in gas-phase thermolysis. In addition, the guanidine Me(2)NC(NiPr)(NHiPr) (2) was detected as a minor component among the thermolysis products. MI thermolysis experiments with precursor 1 were performed, and species evolving from the thermolysis oven were trapped in solid argon at 20 K. These species were characterized by FTIR spectroscopy. The most indicative feature of the resulting spectra from thermolysis above 150 degrees C was a set of intense and structured peaks between 1600 and 1700 cm(-1), an area where precursor 1 does not have any absorbances. The guanidine 2 was matrix-isolated, and a comparison of its FTIR spectrum with the spectra of the thermolysis of 1 indicated that species 2 was among the thermolysis products. However, the main IR bands in the range of 1600 and 1700 cm(-1) appeared at 1687.9, 1668.9, 1635.1, and 1626.6 cm(-1) and were not caused by species 2. The oxidized guanidine 3 was synthesized for the first time and characterized by (1)H NMR and FTIR spectroscopy. A comparison of an FTIR spectrum of matrix isolated 3 with spectra of the thermolysis of 1 revealed that the main IR bands in the range of 1600 and 1700 cm(-1) are due to the presence of 3. The isomers exhibit the NMe(2

  13. Infrared Absorption Spectrum of Matrix-Isolated Phenanthrene

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Stanley P. Sander

    2016-10-01

    The far-to-mid Infrared absorption spectrum of phenanthrene (C14H10), one of the polycyclic aromatic hydrocarbons (PAHs), has been measured in an argon matrix at 5 K. Thirty two fundamental bands for phenanthrene have been observed; one of them is detected for the first time (v54 = 1398.0 cm-1) and eight of them are detected for the first time at temperatures below room temperature (v43 = 233.8 cm-1, v42 = 425.2 cm-1, v66 = 441.6 cm-1, v65 = 499.0 cm-1, v21 = 546.3 cm-1, v63 = 714.5 cm-1, v18 = 1033.7 cm-1 and v55 = 1362.5 cm-1). The relative intensities of these 32 bands have been measured; three ( v21, v18, v54) of which are measured for the first time and six ( v43, v42, v66, v65, v63, and v55) of which are measured for the first time at temperatures below room temperature. Our low temperature study of the vibrational bands for phenanthrene provides important information for the spectral analysis of the Composite Infrared Spectrometer (CIRS) aboard the Cassini Spacecraft.

  14. Combined infrared and ultraviolet-visible spectroscopy matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1990-01-01

    Infrared and UV-visible absorption spectra have been measured on the same sample of matrix-isolated carbon vapor in order to establish correlations between absorption intensities of vibrational and electronic transitions as a function of sample annealing. A high degree of correlation has been found between the IR feature at 1998/cm recently assigned to C8 and a UV absorption feature at about 3100 A. Thus, for the first time, direct evidence is given for the assignment of one of the unknown UV-visible features of the long-studied matrix-isolated carbon vapor spectrum.

  15. Combined infrared and ultraviolet-visible spectroscopy matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1990-01-01

    Infrared and UV-visible absorption spectra have been measured on the same sample of matrix-isolated carbon vapor in order to establish correlations between absorption intensities of vibrational and electronic transitions as a function of sample annealing. A high degree of correlation has been found between the IR feature at 1998/cm recently assigned to C8 and a UV absorption feature at about 3100 A. Thus, for the first time, direct evidence is given for the assignment of one of the unknown UV-visible features of the long-studied matrix-isolated carbon vapor spectrum.

  16. Spectroscopic study of the n-hexanol cluster structure, isolated in an argon matrix

    NASA Astrophysics Data System (ADS)

    Doroshenko, I. Yu.

    2017-06-01

    Infrared absorption spectra of n-hexanol isolated in an argon matrix are recorded at temperatures varying between 20 and 50 K. The temperature evolution of the recorded spectra across several spectral regions is analyzed. The experimental data are interpreted using the results of quantum-chemical modeling [DFT/B3LYP/6-31G (d,p)] of the structure and the vibrational spectra of chain and cyclic clusters that included between one and four hexanol molecules. It is shown that as the temperature of the isolating matrix is increased, there is a gradual transformation of the hexanol cluster structure.

  17. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus

    PubMed Central

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-01-01

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism. PMID:26506360

  18. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus.

    PubMed

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-10-21

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism.

  19. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne

    NASA Astrophysics Data System (ADS)

    Sacramento, R. L.; Scudeller, L. A.; Lambo, R.; Crivelli, P.; Cesar, C. L.

    2011-10-01

    We have studied, via laser absorption spectroscopy, the velocity distribution of 7Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401-R (2007)], 10.1103/PhysRevA.76.061401. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.

  20. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    PubMed

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-07

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.

  1. Production and characterization of para-hydrogen gas for matrix isolation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Sankaran, K.; Ramanathan, N.; Gopi, R.

    2016-08-01

    Normal hydrogen (n-H2) has 3:1 ortho/para ratio and the production of enriched para-hydrogen (p-H2) from normal hydrogen is useful for many applications including matrix isolation experiments. In this paper, we describe the design, development and fabrication of the ortho-para converter that is capable of producing enriched p-H2. The p-H2 thus produced was probed using infrared and Raman techniques. Using infrared measurement, the thickness and the purity of the p-H2 matrix were determined. The purity of p-H2 was determined to be >99%. Matrix isolation infrared spectra of trimethylphosphate (TMP) and acetylene (C2H2) were studied in p-H2 and n-H2 matrices and the results were compared with the conventional inert matrices.

  2. Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging.

    PubMed

    Lipiec, Ewelina; Bambery, Keith R; Heraud, Philip; Kwiatek, Wojciech M; McNaughton, Don; Tobin, Mark J; Vogel, Christian; Wood, Bayden R

    2014-09-07

    SR-FTIR in combination with Principal Component Analysis (PCA) was applied to investigate macromolecular changes in a population of melanocytes and their extracted nuclei induced by environmentally relevant fluxes of UVR (Ultraviolet Radiation). Living cells and isolated cellular nuclei were investigated post-irradiation for three different irradiation dosages (130, 1505, 15,052 Jm(-2) UVR, weighted) after either 24 or 48 hours of incubation. DNA conformational changes were observed in cells exposed to an artificial UVR solar-simulator source as evidenced by a shift in the DNA asymmetric phosphodiester vibration from 1236 cm(-1) to 1242 cm(-1) in the case of the exposed cells and from 1225 cm(-1) to 1242 cm(-1) for irradiated nuclei. PCA Scores plots revealed distinct clustering of spectra from irradiated cells and nuclei from non-irradiated controls in response to the range of applied UVR radiation doses. 3D Raman confocal imaging in combination with k-means cluster analysis was applied to study the effect of the UVR radiation exposure on cellular nuclei. Chemical changes associated with apoptosis were detected and included intra-nuclear lipid deposition along with chromatin condensation. The results reported here demonstrate the utility of SR-FTIR and Raman spectroscopy to probe in situ DNA damage in cell nuclei resulting from UVR exposure. These results are in agreement with the increasing body of evidence that lipid accumulation is a characteristic of aggressive cancer cells, and are involved in the production of membranes for rapid cell proliferation.

  3. Source of slow lithium atoms from Ne or H2 matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Sacramento, R. L.; Alves, B. X.; Almeida, D. T.; Wolff, W.; Li, M. S.; Cesar, C. L.

    2012-04-01

    We have studied, via laser absorption spectroscopy, the velocity distribution of 7Li atoms released from cryogenic matrices of solid neon or molecular hydrogen. The Li atoms are implanted into the Ne or H2 matrices - grown onto a sapphire substrate - by laser ablation of a solid Li or LiH precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms. With a NiCr film resistor deposited directly onto the sapphire substrate we are able to transfer high instantaneous power to the matrix, thus reaching a fast sublimation regime. In this regime the Li atoms can get entrained in the released matrix gas, and we were also able to achieve matrix sublimation times down to 10 μs for both H2 or Ne matrix, enabling us to proceed with the trapping of the species of our interest such as atomic hydrogen, lithium, and molecules. The sublimation of the H2 matrix, with its large center-of-mass velocity, provides evidence for a new regime of one-dimensional thermalization. The laser ablated Li seems to penetrate the H2 matrix deeper than it does in Ne.

  4. Photoisomerization of a Chiral Imine Molecular Switch Followed by Matrix-Isolation VCD Spectroscopy.

    PubMed

    Pollok, Corina H; Riesebeck, Tim; Merten, Christian

    2017-02-06

    Characterizing the stereochemistry of transient photoisomerization products remains a big challenge for the design of molecular machines, such as unidirectional molecular motors. Often these states are not stable long enough to be characterized in detail using conventional spectroscopic tools. The structurally simple camphorquinone imine 1 serves to illustrate the advantage of combining the matrix-isolation technique with vibrational circular dichroism (VCD) spectroscopy for the investigation of photoisomerizations of chiral molecules. In particular, it is shown that both (E)- and (Z)-1 can be generated photochemically at cryogenic temperatures in an argon matrix, and more importantly, that the stereochemistry of both switching states can be characterized reliably.

  5. Observation of the first hydration layer of isolated cations and anions through the FTIR-ATR difference spectra.

    PubMed

    Wei, Zun-Feng; Zhang, Yun-Hong; Zhao, Li-Jun; Liu, Jun-Hua; Li, Xiao-Hong

    2005-02-24

    The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) difference spectra of the dilute aqueous (NH4)2SO4, Na2SO4, MgSO4, ZnSO4, NaClO4, and Mg(ClO4)2 solutions by pure water were obtained at various concentrations. In the difference spectra of aqueous (NH4)2SO4 solutions, a peak at approximately 3039 cm(-1), two shoulders at approximately 3155 and approximately 2894 cm(-1), and a peak at approximately 1445 cm(-1) were ascribed to N-H stretching and bending vibrations, respectively. A small negative peak was resolved at approximately 3660 cm(-1) in the difference spectra of (NH4)2SO4, which is the sole contribution of SO4(2-) either in the O-H stretching or in the O-H bending region. The positive peaks of the difference spectra in the O-H stretching region for Na2SO4, MgSO4, and ZnSO4 systems, which constantly appeared at approximately 3423, approximately 3136, and approximately 3103 cm(-1) respectively, were suggested to be the contribution of the interactions between metal cations (Na+, Mg2+, and Zn2+) and water molecules, especially from the first hydrated layer of the cations. In the region of 800-1200 cm(-1), the normally infrared-prohibited nu1 (SO4(2-)) band was observed as a weak peak at approximately 981 cm(-1) even at very dilute concentrations (0.10 mol dm(-3)) due to the disturbance of the water molecules hydrated with SO4(2-), even though such a feature may increasingly result from associated ions with increasing concentration. The spectra of the water molecules directly influenced by ClO4-, i.e., mostly the first layer of hydrated water, in NaClO4 and Mg(ClO4)2 solutions were obtained by subtracting the corresponding spectra of the same metal sulfate solutions at the same concentrations from the perchlorate solutions. A positive peak at approximately 3583 +/- 6 cm(-1) and a negative peak at approximately 3184 +/- 25 cm(-1) were obtained as the result of the subtraction. The positive peak was attributed to the water molecules weakly

  6. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells.

    PubMed

    Li, Xingxiang; Zhang, Dianzhong; Lynch-Holm, Valerie J; Okita, Thomas W; Franceschi, Vincent R

    2003-10-01

    The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.

  7. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal

    NASA Astrophysics Data System (ADS)

    Maier, Marta S.; Parera, Sara D.; Seldes, Alicia M.

    2004-04-01

    Carminic acid, isolated from cochineal, was analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray mass spectrometry (ESI-MS). Application of both techniques to the analysis of carminic acid suspended in linseed oil and applied to a piece of canvas, demonstrated the ability of MALDI and ESI-MS to identify this organic dye in a mixture as those used in easel painting.

  8. Isolation of human mesenchymal stem cells and their cultivation on the porous bone matrix.

    PubMed

    Rodríguez-Fuentes, Nayeli; Reynoso-Ducoing, Olivia; Rodríguez-Hernández, Ana; Ambrosio-Hernández, Javier R; Piña-Barba, Maria C; Zepeda-Rodríguez, Armando; Cerbón-Cervantes, Marco A; Tapia-Ramírez, José; Alcantara-Quintana, Luz E

    2015-02-09

    Mesenchymal stem cells (MSCs) have a differentiation potential towards osteoblastic lineage when they are stimulated with soluble factors or specific biomaterials. This work presents a novel option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) that employs bovine bone matrix Nukbone (NKB) as a scaffold. Thus, the application of MSCs in repair and tissue regeneration processes depends principally on the efficient implementation of the techniques for placing these cells in a host tissue. For this reason, the design of biomaterials and cellular scaffolds has gained importance in recent years because the topographical characteristics of the selected scaffold must ensure adhesion, proliferation and differentiation into the desired cell lineage in the microenvironment of the injured tissue. This option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) employs bovine bone matrix as a cellular scaffold and is an efficient culture technique because the cells respond to the topographic characteristics of the bovine bone matrix Nukbone (NKB), i.e., spreading on the surface, macroporous covering and colonizing the depth of the biomaterial, after the cell isolation process. We present the procedure for isolating and culturing MSCs on a bovine matrix.

  9. Isolation of Human Mesenchymal Stem Cells and their Cultivation on the Porous Bone Matrix

    PubMed Central

    Rodríguez-Fuentes, Nayeli; Reynoso-Ducoing, Olivia; Rodríguez-Hernández, Ana; Ambrosio-Hernández, Javier R.; Piña-Barba, Maria C.; Zepeda-Rodríguez, Armando; Cerbón-Cervantes, Marco A.; Tapia-Ramírez, José; Alcantara-Quintana, Luz E.

    2015-01-01

    Mesenchymal stem cells (MSCs) have a differentiation potential towards osteoblastic lineage when they are stimulated with soluble factors or specific biomaterials. This work presents a novel option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) that employs bovine bone matrix Nukbone (NKB) as a scaffold. Thus, the application of MSCs in repair and tissue regeneration processes depends principally on the efficient implementation of the techniques for placing these cells in a host tissue. For this reason, the design of biomaterials and cellular scaffolds has gained importance in recent years because the topographical characteristics of the selected scaffold must ensure adhesion, proliferation and differentiation into the desired cell lineage in the microenvironment of the injured tissue. This option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) employs bovine bone matrix as a cellular scaffold and is an efficient culture technique because the cells respond to the topographic characteristics of the bovine bone matrix Nukbone (NKB), i.e., spreading on the surface, macroporous covering and colonizing the depth of the biomaterial, after the cell isolation process. We present the procedure for isolating and culturing MSCs on a bovine matrix. PMID:25742362

  10. Matrix isolation infrared spectroscopic study of 4-Pyridinecarboxaldehyde and of its UV-induced photochemistry

    NASA Astrophysics Data System (ADS)

    Cluyts, Liesel; Sharma, Archna; Kuş, Nihal; Schoone, Kristien; Fausto, Rui

    2017-01-01

    The structure, infrared spectrum, barrier to internal rotation, and photochemistry of 4-pyridinecarboxaldehyde (4PCA) were studied by low-temperature (10 K) matrix isolation infrared spectroscopy and quantum chemical calculations undertaken at both Moller-Plesset to second order (MP2) and density functional theory (DFT/B3LYP) levels of approximation. The molecule has a planar structure (Cs point group), with MP2/6-311 ++G(d,p) predicted internal rotation barrier of 26.6 kJ mol- 1, which is slightly smaller than that of benzaldehyde ( 30 kJ mol- 1), thus indicating a less important electron charge delocalization from the aromatic ring to the aldehyde moiety in 4PCA than in benzaldehyde. A complete assignment of the infrared spectrum of 4PCA isolated in an argon matrix has been done for the whole 4000-400 cm- 1 spectral range, improving over previously reported data. Both the geometric parameters and vibrational frequencies of the aldehyde group reveal the relevance in this molecule of the electronic charge back-donation effect from the oxygen trans lone electron pair to the aldehyde Csbnd H anti-bonding orbital. Upon in situ UV irradiation of the matrix-isolated compound, prompt decarbonylation was observed, leading to formation of pyridine.

  11. Radiation-induced transformations of methanol molecules in low-temperature solids: a matrix isolation study.

    PubMed

    Saenko, Elizaveta V; Feldman, Vladimir I

    2016-11-30

    The effect of X-ray irradiation on methanol molecules (CH3OH, CD3OH, and (13)CH3OH) isolated in solid noble gas matrices (Ne, Ar, Kr, and Xe) was studied by FTIR spectroscopy at 6 K. CH2OH˙, H2CO, HCO˙ and CO were found to be the main degradation products. Somewhat unexpectedly, the production of CO is quite prominent, even at low doses, and it strongly predominates in low-polarizable matrices (especially, in neon). This result is explained by inefficient quenching of excess energy in the H2CO molecules initially generated from methanol. Relatively small amounts of CH4, CH3˙ and CO2 were also observed directly after irradiation. The latter species presumably originates from methanol dimers or methanol-water complexes. The mechanisms of radiolysis and annealing-induced reactions are discussed and possible implications for the astrochemically relevant ices are considered.

  12. Chlorine oxide radicals ClOx (x = 1-4) studied by matrix isolation spectroscopy.

    PubMed

    Kopitzky, Rodion; Grothe, Hinrich; Willner, Helge

    2002-12-16

    Low pressure flash thermolysis of different precursor molecules containing-ClO, -ClO3 or -OClO3 yield, when highly diluted in Ne or O2 and subsequent quenching of the products in a matrix at 5 or 15 K, ClOx (x = 1, 3, 4) radicals, respectively. If Ne or O2 gas is directed over solid ClO2 at -120 degrees C and the resulting gas mixtures are immediately deposited as a matrix, a high fraction of (OClO)2 is trapped. This enables recording of IR and UV spectra of weakly bonded (OClO)2 dimers and detailed studying of their photochemistry. For Ne or O2 matrix isolated ClO radicals the vibrational wavenumbers and electronic transitions are only slightly affected compared with the gas phase. In this study strong evidence is found for long lived ClO in the electronically excited 2 [symbol: see text] 1/2 state. A comprehensive IR study of Ne matrix isolated ClO3 (fundamentals at 1081, 905, 567, 476 cm-1) yield i) a reliable force field; ii) a OClO bond angle of alpha e = 113.8 +/- 1 degrees and iii) a ClO bond length of 148.5 +/- 2 pm in agreement with predicted data from quantum chemical calculations. The UV/Vis spectrum of ClO3 isolated in a Ne matrix (lambda max at 32,100 and 23,150 cm-1) agrees well with the photoelectron spectrum of ClO3- and theoretical predictions. The origin of the structured high energy absorption is at 22,696 cm-1 and three fundamentals (794, 498, 280 cm-1) are detected in the C2E state. By photolysis of ClO3 with visible light the complex ClO.O2 with ClO in the 2 [symbol: see text] 1/2 state is formed. In an extended spectroscopic study of the elusive ClO4 radical, isolated in a Ne or O2 matrix, three additional IR bands, a complete UV spectrum and a strong interaction with O2 are found. This leads to the conclusion that ClO4 exhibits C2v or Cs symmetry with a shallow potential minimum and forms with O2 the previously unknown peroxy radical O3ClO-O2. All these results are discussed in the context of recent developments in the chemistry and

  13. Carbonate measurements in PM10 near the marble quarries of Carrara (Italy) by infrared spectroscopy (FT-IR) and source apportionment by positive matrix factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Cuccia, E.; Piazzalunga, A.; Bernardoni, V.; Brambilla, L.; Fermo, P.; Massabò, D.; Molteni, U.; Prati, P.; Valli, G.; Vecchi, R.

    2011-11-01

    The concentration of carbonates in atmospheric Particulate Matter (PM) is usually quite low. The surroundings of marble quarries are peculiar sites where the impact of carbonates in PM levels can be significant. We present here the results of a PM10 sampling campaign performed in Carrara (Italy). The town lies between the famous marble quarries and the harbour: about 1000 trucks per day transport marble blocks and debris from the quarries to the harbour passing through the town centre. PM10 was collected on daily basis on PTFE filters analyzed by Energy-Dispersive X-Ray Fluorescence (ED-XRF) and Ion-Chromatography (IC). Carbonate concentration was measured by a non-destructive Infrared Spectroscopy analysis (FT-IR). Time series of elemental (Na-Pb by ED-XRF), ionic (SO 42-, NH 4+ by ion-chromatography) and carbonate (by FT-IR) concentration values were merged in a unique data set and a PMF analysis singled out the major PM10 sources in the area. Marble transportation turned out to be the major pollution source in the town accounting to PM10 for about 36%; this corresponded to a CaCO 3 average level of about 8 μg m -3 during working days. The FT-IR analysis was a crucial part of the work and an ad-hoc analytical procedure was specifically set up, calibrated, and tested as described in the text.

  14. Patch Size, Functional Isolation, Visibility and Matrix Permeability Influences Neotropical Primate Occurrence within Highly Fragmented Landscapes

    PubMed Central

    da Silva, Lucas Goulart; Ribeiro, Milton Cezar; Hasui, Érica; da Costa, Carla Aparecida; da Cunha, Rogério Grassetto Teixeira

    2015-01-01

    Forest fragmentation and habitat loss are among the major current extinction causes. Remaining fragments are mostly small, isolated and showing poor quality. Being primarily arboreal, Neotropical primates are generally sensitive to fragmentation effects. Furthermore, primates are involved in complex ecological process. Thus, landscape changes that negatively interfere with primate population dynamic affect the structure, composition, and ultimately the viability of the whole community. We evaluated if fragment size, isolation and visibility and matrix permeability are important for explaining the occurrence of three Neotropical primate species. Employing playback, we verified the presence of Callicebus nigrifrons, Callithrix aurita and Sapajus nigritus at 45 forest fragments around the municipality of Alfenas, Brazil. We classified the landscape and evaluated the metrics through predictive models of occurrence. We selected the best models through Akaike Selection Criterion. Aiming at validating our results, we applied the plausible models to another region (20 fragments at the neighboring municipality of Poço Fundo, Brazil). Twelve models were plausible, and three were validated, two for Sapajus nigritus (Area and Area+Visibility) and one for Callicebus nigrifrons (Area+Matrix). Our results reinforce the contribution of fragment size to maintain biodiversity within highly degraded habitats. At the same time, they stress the importance of including novel, biologically relevant metrics in landscape studies, such as visibility and matrix permeability, which can provide invaluable help for similar studies in the future and on conservation practices in the long run. PMID:25658108

  15. Conformations of propargyl alcohol and its interaction with acetylene: A matrix isolation infrared and DFT computations

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Gopi, R.; Ramanathan, N.

    2016-10-01

    Conformations of propargyl alcohol (PA) were studied using matrix isolation infrared spectroscopy. DFT computations using 6-311++G(d,p) basis set on the PA molecule identified two minima; gauche (g-PA) and trans (t-PA). Comparison of infrared spectra of PA trapped in Ar, N2 and Xe matrices with computations showed the evidence of the ground state g-PA conformer. Four minima were optimized on the potential energy surface for the hydrogen-bonded interaction of g-PA and acetylene (C2H2), corresponding to complex A (Csbnd H⋯O), complex B (Osbnd H⋯π) and complex C and D (Csbnd H⋯π). The structure, energies and the vibrational wavenumbers were computed for these complexes at B3LYP/6-311++G (d,p) level of theory. The infrared spectra of the hydrogen-bonded complexes between C2H2 and g-PA were studied in Ar matrix. The infrared spectra recorded under matrix isolation conditions revealed the formation of two types of complexes A (Csbnd H⋯O) and B (Osbnd H⋯π). Formation of these complexes was evidenced from the shifts in the vibrational wavenumber of the modes involving the C2H2 and PA submolecules.

  16. Intense, hyperthermal source of organic radicals for matrix-isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Friderichsen, Anders V.; Nandi, Sreela; Ellison, G. Barney; David, Donald E.; McKinnon, J. Thomas; Lindeman, Theodore G.; Dayton, David C.; Nimlos, Mark R.

    2003-06-01

    We have incorporated a pulsed, hyperthermal nozzle with a cryostat to study the matrix-isolated infrared spectroscopy of organic radicals. The radicals are produced by pyrolysis in a heated, narrow-bore (1-mm-diam) SiC tube and then expanded into the cryostat vacuum chamber. The combination of high nozzle temperature (up to 1800 K) and near-sonic flow velocities (on the order of 104cm s-1) through the length of the 2 cm tube allows for high yield of radicals (approximately 1013 radicals pulse-1) and low residence time (on the order of 10 μs) in the nozzle. We have used this hyperthermal nozzle/matrix isolation experiment to observe the IR spectra of complex radicals such as allyl radical (CH2CHCH2), phenyl radical (C6H5), and methylperoxyl radical (CH3OO). IR spectra of samples produced with a hyperthermal nozzle are remarkably clean and relatively free of interfering radical chemistry. By monitoring the unimolecular thermal decomposition of allyl ethyl ether in the nozzle using matrix IR spectroscopy, we have derived the residence time (τnozzle) of the gas pulse in the nozzle to be around 30 μs.

  17. Simultaneous Deposition of Mass Selected Anions and Cations: Improvements in Ion Delivery for Matrix Isolation Experiments

    NASA Astrophysics Data System (ADS)

    Goodrich, Michael E.; Moore, David T.

    2016-06-01

    A focus of the research in our group has been to develop improved methods for ion delivery in matrix isolation experiments. We have previously reported a method to co-deposit low energy, mass selected metal anions and a rare gas counter cation.a A modification allowing for mass selection of both the anion and cation will be discussed. Results from preliminary experiments of mass selected, low energy Cu- and SF5+ will also be highlighted. To our knowledge, these experiments are the first time two mass selected beams of ions have been simultaneously deposited into a cryogenic matrix. Co-deposition of the ions into an argon matrix doped with 0.02% CO at 20K resulted in the observation of bands assigned to SF5+ and anionic copper carbonyl complexes, Cu(CO)n- (n=1-3). Upon irradiation of the matrix with a narrow band, blue LED, the copper carbonyl complexes are converted to the neutral analogues, while the fate of the photodetached electrons can be directly tracked, as a decrease of the SF5+ band and a growth of the neutral SF5 band are observed. aLudwig, R. M.; Moore, D. T.; J. Chem. Phys. 139, 244202 (2013).

  18. Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments.

    PubMed

    Brosi, Felix; Vent-Schmidt, Thomas; Kieninger, Stefanie; Schlöder, Tobias; Beckers, Helmut; Riedel, Sebastian

    2015-11-09

    The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\\tilde \

  19. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bichara, Laura C.; Alvarez, Patricia E.; Fiori Bimbi, María V.; Vaca, Hugo; Gervasi, Claudio; Brandán, Silvia Antonia

    2016-05-01

    In this work, pectin isolated from citrus peel with a degree of esterification of 76% was characterized by Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectroscopies. Structural studies were carried out taking into account their partial degree of esterification and considering the polygalacturonic acid chain as formed by two different subunits, one with both COOH and COOsbnd CH3 groups (Ac) and the other one as constituted by two subunits with two COOsbnd CH3 groups (Es). Their structural properties, harmonic frequencies, force fields and force constants in gas and aqueous solution phases were calculated by using the hybrid B3LYP/6-31G∗ method. Then, their complete vibrational analyses were performed by using the IR and Raman spectra accomplished with the scaled quantum mechanical (SQM) methodology. Reactivities and behaviors in both media were predicted for Ac and Es by using natural bond orbital (NBO), atoms in molecules (AIM), and frontier orbitals calculations. We report for first time the complete assignments of those two different units of polygalacturonic acid chain which are the 132 normal vibration modes of Ac and the 141 normal vibration modes of Es, combining the normal internal coordinates with the SQM methodology. In addition, three subunits were also studied. Reasonable correlations between the experimental and theoretical spectra were obtained. Thus, this work would allow the quick identification of pectin by using infrared and Raman spectroscopies and also provides new insight into the interactions that exist between subunits of a large pectin chain.

  20. Adherence to host extracellular matrix and serum components by Enterococcus faecium isolates of diverse origin

    PubMed Central

    Zhao, Meng; Sillanpää, Jouko; Nallapareddy, Sreedhar R.; Murray, Barbara E.

    2009-01-01

    Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm-mediated collagen type I adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (20% of the 60 isolates), fibrinogen (17%) and laminin (13%), while only one or two of the isolates adhered to collagen type V, transferrin or lactoferrin and none to the other host components tested. Adherence to fibronectin and laminin was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to fibronectin and laminin, in addition to collagen type I, may have contributed to the emergence and adaptation of E. faecium, in particular CC17, as a nosocomial pathogen. PMID:19843310

  1. Assignment of IR bands of isolated and protein-bound Peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mezzetti, Alberto; Kish, Elizabeth; Robert, Bruno; Spezia, Riccardo

    2015-06-01

    The vibrational properties of Peridinin in its fundamental state and in the excited triplet state have been investigated by DFT calculations and static and time-resolved FTIR spectroscopy. The infrared spectrum of Peridinin in its fundamental state has been explored in the whole 2000-600 cm-1 range, and interpreted in term of molecular vibrations. In particular, new infrared bands have been identified and assigned to specific molecular vibrations. 3Peridinin molecular vibrations have also been investigated by DFT calculations. In addition, putative IR bands belonging to Peridinin and 3Peridinin have been identified in the step-scan FTIR difference spectrum of the Peridinin-Chlorophyll a-Protein from Amphidinium carterae, where light induce formation of a triplet state localized on one or more Peridinins. The exact nature of the triplet state formed in Peridinin-Chlorophyll a-Protein from dinoflagellates, in particular the possible involvement in this triplet state of 3Chlorophyll a, has been largely debated in the last few years (see Carbonera et al., 2014 [3]); time-resolved differential FTIR experiments have played a key role in this debate. Identification of IR marker bands for the main molecule (Peridinin) implicated in this photophysical process is therefore particularly important and makes this study a significant step towards the full understanding of Peridinin-Chlorophyll-a-Proteins photophysics.

  2. Effects of lattice morphology upon reaction dynamics in matrix-isolated systems

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1992-11-01

    The dynamics of the cis-d2-ethylene+F2 addition reaction and the subsequent reaction dynamics of the products isolated in vapor-deposited Ar matrices at 12 K are investigated using trajectory methods that incorporate nonstatistical sampling to enhance the reaction probabilities. The matrix-isolated cis-d2-ethylene+F2 system is generated using a combination of Monte Carlo, damped trajectory, and volume contraction methods. Transport effects of the bulk are simulated using the velocity reset procedure developed by Riley et al. [J. Chem. Phys. 88, 5934 (1988)]. The potential-energy hypersurface is the same as that employed in our previous investigations of the matrix-isolated, decomposition dynamics of 1,2-difluoroethane-d4 and the bimolecular cis-d2-ethylene+F2 system in face-centered-cubic (fcc) matrices [J. Chem. Phys. 93, 3160 (1990); 95, 8901 (1991)]. It is found that matrices generated by these methods are amorphous with numerous vacancies and other imperfections. On the average, there are approximately three vacancies about each lattice atom compared to the fcc crystal. The calculated lattice density is about 82% that for a bulk fcc Ar solid. Computed radial distribution functions resemble those expected for a liquid which exhibits some short-range order. The imperfections of the lattice remain even after substantial annealing at 50 K. The calculated energy relaxation rate to the lattice phonon modes in these amorphous matrices is about a factor of 4 less than that for a close-packed fcc lattice. The 1,2-difluoroethane product is formed primarily via an αβ-addition process, as is the case for fcc matrices. However, the prominence of this pathway is greatly reduced. The major process leading to a fluoroethylene elimination product in amorphous matrices involves an atomic addition mechanism. Such a reaction path accounts for 94% of the elimination reactions. The probability of internal rotation about the C■C double bond in the fluoroethylene product is

  3. Matrix Isolation and ab initio study of the noncovalent complexes between formamide and acetylene.

    PubMed

    Mardyukov, Artur; Sánchez-García, Elsa; Sander, Wolfram

    2009-02-12

    Matrix isolation spectroscopy in combination with ab initio calculations is a powerful technique for the identification of weakly bound intermolecular complexes. Here, weak complexes between formamide and acetylene are studied, and three 1:1 complexes with binding energies of -2.96, -2.46, and -1.79 kcal/mol have been found at the MP2 level of theory (MP2/cc-pVTZ + ZPE + BSSE). The two most stable dimers A and B are identified in argon and nitrogen matrices by comparison between the experimental and calculated infrared frequencies. Both complexes are stabilized by the formamide C=O...HC acetylene and H...pi interactions. Large shifts have been observed experimentally for the C-H stretching vibrations of the acetylene molecule, in very good agreement with the calculated values. Eight 1:2 FMA-acetylene trimers (T-A to T-H) with binding energies between -5.44 and -2.62 kcal/mol (MP2/aug-cc-pVDZ + ZPE + BSSE) were calculated. The two most stable trimers T-A and T-B are very close in energy and have similar infrared spectra. Several weak bands that are in agreement with the calculated frequencies of the trimers T-A and T-B are observed under matrix isolation conditions. However, the differences are too small for a definitive assignment.

  4. A matrix isolation ESR and theoretical study of MgN

    NASA Astrophysics Data System (ADS)

    Hearne, Thomas S.; Yates, Sally A.; Wild, Duncan A.; McKinley, Allan J.

    2017-07-01

    Matrix isolation experiments have been conducted on the Mg14N, 25Mg14N, Mg15N, and 25Mg15N radicals which were formed by the reaction of a plume of magnesium metal produced with laser ablation and either acetonitrile vapour or nitrogen atoms. The radicals were isolated in an inert neon matrix at 4.3 K and studied with electron spin resonance spectroscopy. The ground electronic state of MgN was determined to be 4Σ-. The following magnetic parameters were determined experimentally for MgN: g⊥ = 2.004 78 (2), g∥ = 2.001 72 (4), |D| = 9797 (6) MHz, A⊥(14N) = 19.7 (2) MHz, A∥ (14N) = -4.0 (3) MHz, A⊥(15N) = 27.5 (3) MHz, A∥ (15N) = -5.7 (3) MHz, A⊥ (25Mg) = -60.7 (5) MHz, and A∥(25Mg) = -65 (3) MHz. The low-lying electronic states of MgN were also investigated using the complete active space multiconfigurational self-consistent field technique. By plotting the potential energy surface, theoretical parameters for the ground state with a configuration of 5σ26σ27σ12π12π1 were able to be determined, including re = 2.090 Å and De = 11.28 kcal/mol.

  5. Infrared Spectrum and UV-Induced Photochemistry of Matrix-Isolated 5-Hydroxyquinoline.

    PubMed

    Kuş, Nihal; Sagdinc, Seda; Fausto, Rui

    2015-06-18

    The structure, infrared spectrum, and photochemistry of 5-hydroxyquinoline (5HQ) were studied by matrix isolation infrared spectroscopy, complemented by theoretical calculations performed at the DFT(B3LYP)/6-311++G(d,p) level of approximation. According to the calculations, the trans conformer of 5HQ (with the OH group pointing to the opposite direction of the pyridine ring of the molecule) is more stable than the cis form (by ∼8.8 kJ mol(-1)). The main factors determining the relative stability of the two conformers were rationalized through natural bond orbital (NBO) and charge density analyses. The compound was trapped in solid nitrogen at 10 K, and its infrared spectra registered and interpreted, showing the sole presence in the matrix of the more stable trans conformer. Broadband in situ UV irradiations (λ ≥ 288 nm and λ ≥ 235 nm) allowed for the observation of different chemical transformations, which started by excitation to the S1 state of 5HQ, followed by homolytic cleavage of the O-H bond, and subsequent reattachment of the H atom to the 5HQ radical to form quinolin-5(6H)-one and quinolin-5(8H)-one. The first of these two quinolinones was found to convert to open-ring isomeric ketenes, especially when irradiation was performed at higher energy, whereas the second is rather stable under the used experimental conditions. As a whole, the observed photochemistry of matrix-isolated 5HQ closely matches those previously reported for phenol and thiophenol. A detailed mechanistic interpretation for the observed photochemical processes is here proposed, which received support from time-dependent DFT calculations.

  6. Microscale Solubility Measurements of Matrix-Assisted Laser Desorption-Ionization (MALDI) Matrices Using Attenuated Total Reflection (ATR) Fourier Transform Infrared Spectroscopy (FT-IR) Coupled with Partial Least Squares (PLS) Analysis.

    PubMed

    Gorre, Elsa; Owens, Kevin G

    2016-11-01

    In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system.

  7. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation.

    PubMed

    Hübner, W; Blume, A; Pushnjakova, R; Dekhtyar, Y; Hein, H-J

    2005-01-01

    Fourier transform infrared microscopy was used to investigate human cortical bone samples before and after treatment with increasing doses of X-ray radiation. Especially the spectral region of the v1 and v3 phosphate vibrations of hydroxyapatite, the main mineral component of bone, and the region of the amide I and amide II vibrational bands due to the collagen extracellular matrix were examined. Major spectral changes in the phosphate region between 1250-1000 cm(-1) occur after irradiation doses between 1 and 4 Gray. These findings are explained by a decrease in size of mineral crystallites and by variances of the toichiometric/non-stoichiometric apatite composition. The Ca2+ /PO4(3-) /HPO4(2-) composition in the biological apatite is altered near the bone surface. The secondary structure of the collagen matrix is not affected by cumulative irradiation up to doses of 15 Gray as indicated by the unchanged frequency maximum and contour shape of the amide I band between 1600-1700 cm(-1) . However, side chain carboxylate groups of the collagen matrix that are involved in coordination with apatite bound calcium ions are partially removed by decarboxylation upon irradiation. Concomitantly, a loss of acidic phosphate groups due to a formation of phosphate groups with bound calcium is observed. These changes on a molecular level can be correlated with alterations in the mechanical properties of the bone samples, e.g. with an increased embrittlement as deduced from experiments with a scanning acoustic microscope.

  8. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  9. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  10. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.

    2002-01-01

    The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.

  11. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  12. Infrared spectra and tautomerism of isocytosine; an ab initio and matrix isolation study

    NASA Astrophysics Data System (ADS)

    Vranken, Hertwig; Smets, Johan; Maes, Guido; Lapinski, Leszek; Nowak, Maciej J.; Adamowicz, Ludwik

    1994-05-01

    Prototropic tautomerism of isocytosine has been investigated using both theoretical ab initio and experimental matrix isolation IR methods. The coexistence of the amino-hydroxy and amino-oxo N(3)H forms, with a clear predominance of the hydroxy form, was observed. The tautomerization constant [oxo]/[hydroxy] obtained from experimental and calculated IR intensities was 0.11 at the micro-oven temperature of 400 K. The ab initio prediction of the relative energies of the tautomers is in reasonable agreement with the experimental estimation. The change of the tautomeric form oxo→hydroxy upon UV irradiation was used to separate the IR spectra of both tautomers. A theoretically assisted interpretation of the IR spectra of both observed tautomers is proposed.

  13. Investigation of Praseodymium Fluorides: A Combined Matrix-Isolation and Quantum-Chemical Study.

    PubMed

    Vent-Schmidt, Thomas; Riedel, Sebastian

    2015-12-07

    The chemistry of the lanthanides is mostly dominated by compounds in the oxidation state +III. Only few compounds of Ce, Pr, and Tb are known with the metal in the +IV oxidation state. Removal of the last f-electron on praseodymium +IV would lead to a closed-shell system with formal oxidation state V. In this work we investigated the stability of the PrF5 molecule by theory and matrix-isolation techniques through the reaction of laser-ablated praseodymium atoms with fluorine in excess of neon, argon, krypton, or neat fluorine. Besides the known PrF3 molecule, unreported IR bands for PrF4 could be observed, and there is evidence for the formation of PrF and PrF2 but not for the formation of PrF5.

  14. Matrix isolation IR spectroscopic and ab initio studies of C3N- and related species

    NASA Astrophysics Data System (ADS)

    Kołos, Robert; Gronowski, Marcin; Botschwina, Peter

    2008-04-01

    Coupled cluster calculations were carried out for C3N-, CCNC -, C3N, CCNC, C3N+, and C3O. They support the experimental identification of the C3N- ion by means of matrix isolation infrared (IR) spectroscopy. The anion was generated in electric discharges through the cyanoacetylene isotopomers HC3N14, HC3N15, and H2C3N, trapped in cryogenic rare gas matrices (Ne, Ar, Kr), and detected via its two most intense IR absorption bands, assigned to the ν1 and ν2 stretching vibrations. C3N - appears to be quite a stable anion, with a vertical detachment energy predicted to be as high as 4.42eV. A large equilibrium electric dipole moment of 3.10D facilitates the investigation of C3N- by microwave spectroscopy and radio astronomy. Various structural parameters and spectroscopic properties have been calculated for all tetra-atomic species considered.

  15. Gas phase reaction of phosphorus trichloride and methanol: Matrix isolation infrared and DFT studies

    NASA Astrophysics Data System (ADS)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2015-11-01

    Gas phase reaction of phosphorus trichloride (PCl3) and methanol (CH3OH) was carried out with different ratios of PCl3:CH3OH:N2 (1:1:1000, 1:2:1000 and 1:3:1000) and the products were identified using matrix isolation infrared spectroscopy. For the 1:1 and 1:2 ratios of PCl3:CH3OH, dichloro methyl phosphite (DCMP) and methyl chloride (CH3Cl) were the products formed. Interestingly, only methyl chloride (CH3Cl) was observed for the 1:3 ratio of PCl3:CH3OH. DFT computations were carried out at B3LYP/6-311++G(d,p) level of theory to give insights into the formation of the reaction products. Based on the experimental findings and computations a reaction mechanism has been proposed through a nucleophilic substitution reaction to explain the formation of the products.

  16. Matrix isolation, zero-field splitting parameters, and photoreactions of septet 2,4,6-trinitrenopyrimidines.

    PubMed

    Chapyshev, Sergei V; Ushakov, Evgeny N; Neuhaus, Patrik; Sander, Wolfram

    2014-07-03

    The key intermediates of decomposition of high-energy 2,4,6-triazidopyrimidine and its 5-chloro-substituted derivative, the detonation of which is used for preparation of carbon nitrides, were investigated using electron paramagnetic resonance (EPR) spectroscopy in combination with quantum chemical calculations. The decomposition of the triazides was carried out photochemically, using the matrix isolation technique. The photodecomposition of both triazides with 254 nm light in argon matrices at 5 K occurred selectively to subsequently give the corresponding triplet 4,6-diazido-2-nitrenopyrimidines, quintet 4-azido-2,6-dinitrenopyrimidines, and septet 2,4,6-trinitrenopyrimidines. The latter were photochemically unstable and decomposed to form triplet nitrenes NCN and NNC as well as triplet carbenes NCCCN, HCCN, and HCCCCN. The results obtained provide important information about exchange interactions in high-spin nitrenes with the pyrimidine ring and the mechanism of the formation of carbon nitrides during thermolysis of 2,4,6-triazidopyrimidine.

  17. Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone.

    PubMed

    Sharma, Archna; Reva, Igor; Fausto, Rui

    2008-07-03

    The structure of hydroxyacetone (HA) isolated in an argon matrix (at 12 K) and in a neat solid phase (at 12-175 K) was characterized by using infrared (IR) spectroscopy. The interpretation of the experimental results was supported by high-level quantum chemical calculations, undertaken by using both ab initio (MP2) and density functional theory methods. A potential-energy surface scan, carried out at the MP2/6-311++G(d,p) level of theory, predicted four nonequivalent minima, Cc, Tt, Tg, and Ct, all of them doubly degenerate by symmetry. The energy barriers for conversion between most of the symmetrically related structures and also between some of the nonequivalent minima (e.g., Tg --> Tt and Ct --> Tt) are very small and stay below the zero-point vibrational level associated with the isomerization coordinate in the higher-energy form in each pair. Therefore, only Cc and Tt conformers have physical significance, with populations of 99 and 1%, respectively, in gas phase at room temperature. For the matrix-isolated compound, only the most stable Cc conformer was observed. On the other hand, the polarizable continuum model calculations indicated that in water solution, the population of Tt and Ct conformers might be high enough (ca. 6 and 11%, respectively) to enable their experimental detection, thus supporting the conclusions of a previous IR spectroscopy study [ Spectrochim. Acta A 2005, 61, 477] in which the presence of more than one HA conformer in aqueous solution was postulated. The signatures of these minor conformers, however, do not appear in the spectra of the neat HA crystal, and the crystal structure was rationalized in terms of centrosymmetric hydrogen-bonded dimers consisting of two Cc-like units. Finally, we calculated (1)H, (13)C, and (17)O NMR chemical shifts at different levels of theory and found them to agree with available experimental data.

  18. Conformations of n-butyl imidazole: Matrix isolation infrared and DFT studies

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2015-03-01

    Conformations of n-butyl imidazole (B-IMID) were studied using matrix isolation infrared spectroscopy by trapping in argon, xenon and nitrogen matrixes using an effusive nozzle source. The experimental studies were supported by DFT computations performed at the B3LYP/6-311++G(d,p) level. Computations identified nine unique minima for B-IMID, corresponding to conformers with tg±tt, tg±g∓t, tg±g±t, tg±tg±, tg±tg∓, tg±g∓g∓, tg±g±g±, tg±g∓g± and tg±g±g∓ structures, given in order of increasing energy. Computations of the transition state structures connecting the higher energy conformers to the global minimum, tg±tt structure were carried out. The barriers for the conformer inter-conversion were found to be ∼2 kcal/mol. Natural Bond Orbital (NBO) analysis was performed to understand the reasons for conformational preferences in B-IMID.

  19. Isolation and identification of oxidation products of syringol from brines and heated meat matrix.

    PubMed

    Bölicke, Sarah-Maria; Ternes, Waldemar

    2016-08-01

    In this study we developed new extraction and detection methods (using HPLC-UV and LC-MS), making it possible to analyze the smoke phenol syringol and its oxidation products nitrososyringol, nitrosyringol, and the syringol dimer 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol, which were identified in heated meat for the first time. Preliminary brine experiments performed with different concentrations of ascorbic acid showed that high amounts of this antioxidant also resulted in almost complete degradation of syringol and to formation of the oxidation products when the brines were heated at low pH values. Heat treatment (80°C) and subsequent simulated digestion applied to meat samples containing syringol, ascorbic acid and different concentrations of sodium nitrite produced 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol even at a low nitrite level in the meat matrix, while nitroso- and nitrosyringol were isolated only after the digestion experiments. Increasing amounts of oxygen in the meat matrix decreased the syringol concentration and enhanced the formation of the reaction products in comparison to the samples without added oxygen.

  20. Conformations of n-butyl imidazole: matrix isolation infrared and DFT studies.

    PubMed

    Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-03-15

    Conformations of n-butyl imidazole (B-IMID) were studied using matrix isolation infrared spectroscopy by trapping in argon, xenon and nitrogen matrixes using an effusive nozzle source. The experimental studies were supported by DFT computations performed at the B3LYP/6-311++G(d,p) level. Computations identified nine unique minima for B-IMID, corresponding to conformers with tg(±)tt, tg(±)g(∓)t, tg(±)g(±)t, tg(±)tg(±), tg(±)tg(∓), tg(±)g(∓)g(∓), tg(±)g(±)g(±), tg(±)g(∓)g(±) and tg(±)g(±)g(∓) structures, given in order of increasing energy. Computations of the transition state structures connecting the higher energy conformers to the global minimum, tg(±)tt structure were carried out. The barriers for the conformer inter-conversion were found to be ∼2 kcal/mol. Natural Bond Orbital (NBO) analysis was performed to understand the reasons for conformational preferences in B-IMID. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Soy Protein Isolate and Glycerol Hydrogen Bonding Using Two-Dimensional Correlation (2D-COS) Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    PubMed

    Yan, Zhiwei; Li, Qian; Zhang, Pudun

    2017-01-01

    It is a trend to substitute bioplastics for petroleum-based plastics in food packaging. Glycerol-plasticized soy protein isolate (SPI) is promising as a replacement for traditional petroleum-based plastics. Hydrogen bonding (H-bonding) plays a key role in plasticization of SPI film. However, few publications are concerned with the interactions of SPI and glycerol at the molecular level. In this paper, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy was applied to investigate the effect of H-bonding on the secondary structures of glycerol-plasticized SPI films and thus on the plasticization. An "S" profile of the H-bonding between SPI and glycerol with an abrupt jump in the glycerol range of 10-30% was achieved. For more in-depth investigation of the H-bonding, two-dimensional correlation spectroscopy (2D-COS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analyses were applied to the amide I and II bands of SPI films spectra series. The conformation change sequences under the effect of H-bonding were revealed. When glycerol was involved, it entered into the β-sheet and the H-bonds of the SPI peptide backbone (C = O···H-N-) were replaced by the new H-bonds between SPI and glycerol (C = O···H-O-). The transformations of parallel β-sheet to β-turn in the range of 0-20% and anti-parallel β-sheet to β-turn in the range of 20-35% were obtained. In the 35-60% concentration range, the β-sheet was first changed to a transition state conformation, then together with the β-turn, to the random coil. The 2D-COS results clearly suggest that the conformations of SPI gradually change from the ordered to the less ordered and disordered, which significantly improve the plasticity of SPI film.

  2. Matrix-Isolation Spectroscopy of Reactive Organic Molecules of Relevance to Interstellar Space

    NASA Astrophysics Data System (ADS)

    Kopff, Laura A.; Nolan, Alex M.; Kreifels, Terese A.; Draxler, Thomas W.; Esselman, Brian J.; Burrmann, Nicola J.; McMahon, Robert J.

    2010-11-01

    Matrix isolation, the process of trapping a molecule in an inert gas at low temperature, provides a means for studying highly reactive intermediates, such as carbenes or radicals. Reactive species can be characterized by IR, UV-vis and/or EPR spectroscopy. Comparison of experimental and computed spectral data, as well as chemical reactivity, is used for structural assignment Triplet propynylidene is proposed to exist in the interstellar medium (ISM), due to the detection of a higher-energy isomers via rotational spectroscopy. Currently, we are exploring the structural and photochemical effects of varying substituents on the propynylidne system. A diazo precursor has been synthesized and photolyzed to produce dimethylpropynylidene in an argon matrix. A photochemical hydrogen shift to produce 1-penten-3-yne has been observed through infrared spectroscopy. Cyanocarbons are known to be abundant in the ISM and the atmosphere of Titan, however matrixisolation studies have not yet been carried out for a significant number of these compounds. Photolysis of 3-cyano-3-methyldiazirine should yield methylcyanocarbene, one of the simplest species in this family. Another molecule of interest is l-HC4N, which has been detected in the ISM, but has not yet been matrix-isolated and characterized. The study of arylcarbenes is vital to understanding the chemistry of carbon-rich environments, such as discharges, interstellar clouds, and circumstellar envelopes. The identification of small, sulfur containing molecules, and the identification of aromatics in the ISM make future thiophene and benzothiophene detections a real possibility. Studies on 2- and 3-diazomethyl substituted benzothiophenes are underway to assess their photochemical reactivity and potential for forming benzothiophene carbenes. Macrocylic polyynes are proposed to be involved in carbon condensation via the ring coalescence and annealing model to produce graphitic sheets or fullerenes. To simplify a complex system we

  3. Epitope analysis of capsid and matrix proteins of North American ovine lentivirus field isolates.

    PubMed Central

    Marcom, K A; Pearson, L D; Chung, C S; Poulson, J M; DeMartini, J C

    1991-01-01

    Monoclonal antibodies (MAbs) directed against two phenotypically distinct ovine lentivirus (OvLV) strains were generated by fusion of BALB/c SP2/0-Ag 14 myeloma cells with spleen cells from mice immunized with purified OvLV. Hybridomas were selected by indirect enzyme-linked immunosorbent assay (ELISA) and analysis of reactivity on immunoblots. The majority (17 of 21) of the MAbs recognized the gag-encoded capsid protein, CA p27, of both strains. Four other MAbs recognized a smaller structural protein, presumably a matrix protein, MA p17. Three distinct epitopes on CA p27 and one on MA p17 were distinguished by the MAbs with competition ELISA. MAbs from each epitope group were able to recognize 17 North American field isolates of OvLV and the closely related caprine arthritis-encephalitis virus (CAEV). Analysis of the data indicated that these epitopes were highly conserved among naturally occurring isolates. A representative MAb from each epitope group of anti-CA p27 MAbs reacted with four field strains of OvLV and CAEV on immunoblots. An anti-MA p17 MAb recognized the same OvLV strains on immunoblots but failed to recognize CAEV. MAbs which recognize conserved epitopes of gag-encoded lentivirus proteins (CA p27 and MA p17) are valuable tools. These MAbs can be used to develop sensitive diagnostic assays and to study the pathogenesis of lentivirus infections in sheep and goats. Images PMID:1715884

  4. Characterization of a Carbon Dioxide-Hexaflourobenzene Complex Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay C.; Gall, Bradley K.; Horn, Maryn N.

    2017-06-01

    Matrix isolation infrared spectroscopy was used to characterize a 1:1 complex of carbon dioxide (CO_2) with hexaflourobenzene (C_6F_6). Co-deposition experiments with CO_2 and {_6F_6} were performed at 20 K using argon as the matrix gas. New infrared peaks attributable to the CO_2-C_6F_6 complex were observed near the O-C-O antisymmetric stretching vibration of the CO_2 monomer and near the C-F stretching vibration of the C_6F_6 monomer. The initial identification of the newly observed infrared peaks to those of a CO_2-C_6F_6 complex was established by performing several concentration studies in which the sample-to-matrix ratios of the monomers were varied between 1:100 to 1:1600, by comparing the resulting co-deposition spectra with the spectra of the individual monomers, and by matrix annealing experiments (30 - 35 K). Co-deposition experiments were also performed using isotopically labeled carbon dioxide (^{13}CO_2) and the analogous peaks for the ^{13}CO_2-C_6F_6 complex were observed. Quantum chemical calculations were performed for the CO_2-C_6F_6 complex at the MP2/aug-cc-pVDZ level of theory in order to explore the intermolecular potential energy surface of the complex and to obtain optimized complex geometries and predicted vibrational frequencies of the complex. The calculations for the exploration of the potential energy surface involved rigid scans along the intermolecular distance and various angle coordinates for several general orientations of the two monomers. Based on these calculations, full geometry optimizations were then performed and two stable complex minima were found: one in which the CO_2 is perpendicular and centered to the C_6F_6 ring (ΔE_{int} = -7.9 kJ/mol) and one in which the CO_2 is parallel to the C_6F_6 ring but displaced from the center (ΔE_{int} = -6.0 kJ/mol). Comparing the predicted vibrational spectra for both complexes to the observed experimental spectra, particularly for the O-C-O antisymmetric stretching region, it is

  5. Conformers, infrared spectrum and UV-induced photochemistry of matrix-isolated furfuryl alcohol.

    PubMed

    Araujo-Andrade, C; Gómez-Zavaglia, A; Reva, I D; Fausto, R

    2012-03-08

    The infrared spectra of furfuryl alcohol (2-furanmethanol, FFA) were investigated for FFA monomers isolated in low-temperature argon matrices. The structural interpretation of the obtained experimental spectra was assisted by analysis of the molecule's conformational landscape. According to the DFT(B3LYP)/6-311++G(d,p) calculations, five different minimum energy structures were found on the potential energy surface of the molecule. They can be defined by the orientation of the OCCO and CCOH dihedral angles: GG', GG, TG, TT, GT (G = +gauche, G' = -gauche, T = trans) and have a symmetry equivalent configuration: GG' = G'G, GG = G'G', TG = TG', GT = G'T. When zero-point energies are taken into account, only three (GG', GG, and TT) out of the five unique minima correspond to stable structures. The most stable conformer GG' (OCCO, 72.7°; CCOH, -59.3°), which in gas phase at room temperature accounts for ∼65% of the total population, was the only form isolated in the argon matrices at 14 K. The other two relevant forms convert into conformer GG' during matrix deposition. The low temperature glassy and crystalline states of FFA were also obtained and their infrared spectra assigned, suggesting the sole existence of the GG' conformer also in these phases. The photochemical behavior of FFA induced in situ, by tunable UV-laser, was also studied. The longest wavelength resulting in photochemical changes in the structure of the irradiated sample was found to be λ = 229 nm. Such UV irradiation of the matrix-isolated FFA led to production of formaldehyde and different isomeric C(4)H(4)O species. Cycloprop-2-ene-1-carbaldehyde and buta-2,3-dienal (two conformers) are the main initial C(4)H(4)O photoproducts formed upon short-time excitation at λ = 229 nm. But-3-ynal (two conformers) was the principal photoproduct resulting from prolonged excitation at λ= 229 nm, being consumed upon irradiation at shorter wavelengths (λ < 227.5 nm). Vinyl ketene is produced from FFA in the

  6. Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1990-09-01

    The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational

  7. Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays

    PubMed Central

    Dunning, F. Mark; Piazza, Timothy M.; Zeytin, Füsûn N.; Tucker, Ward C.

    2014-01-01

    Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success. PMID:24638074

  8. Matrix Isolation and Computational Study of [2C, 2N, x] (X=S, Se) Isomers

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Tarczay, Gyorgy

    2015-06-01

    The [2C, 2N, S] and the [2C, 2N, Se] systems were investigated by quantum chemical computations and matrix isolation IR spectroscopy. For both systems nine isomers were computationally investigated, for which harmonic and anharmonic vibrational wavenumbers and infrared (IR) intensities were calculated using the CCSD(T)/aug-cc-pVTZ level of theory. The results show that each of the isomers have two or more detectable bands in the mid IR region, which have one or two orders of magnitude larger intensity compared to the IR intensity of the most intense bands of the most stable NCSCN and NCSeCN isomers'. It follows that if the most stable isomers can be detected, then the other previously unobserved isomers generated from NCSCN or NCSeCN should also be detectable with IR spectroscopy. UV spectra were also computed for each isomer at the TD-DFT B3LYP/aug-cc-pVTZ level of theory. These computations showed that the most stable isomers (NCSCN and NCSeCN) can absorb the UV radiation around 250 nm, and the irradiation may promote photoisomerization. This means that if the initial isomers are irradiated by narrow-band UV radiation, new isomers may be generated, which likely decompose by irradiating broad-band UV radiation. The two most stable isomers, sulphur dicyanide (NCSCN) and selenium dicyanide (NCSeCN), were prepared following literature methods. The matrix isolation IR spectra of these molecules in Ar and Kr were measured for the first time. As a result of a selective 254 nm-irradiation of the deposited matrices some new bands appeared in the IR spectra, while the intensity of the bands of NCSCN or NCSeCN were decreased at the same time. Irradiation of the matrices with broad-band UV light decreased the intensity of the bands corresponding to the deposited isomers and some of the bands appeared on the 254 nm-irradiation. On the basis of the analysis of the formation rates of the different bands upon 254 nm photolysis and by comparison with the results of the quantum

  9. Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared- Residuals Approach

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2009-01-01

    Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.

  10. Conformations of Trimethyl Phosphite: a Matrix Isolation Infrared and AB Initio Study

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Sundararajan, K.; Kar, Bishnu Prasad; Viswanathan, K. S.

    2011-06-01

    Hyperconjugative interactions have received considerable attention because of its importance in determining structure and reactivity in organic compounds. In all these molecules, our studies, as many others in the literature, indicated that the O-P-O and O-C-O segments played a crucial role in conformational preferences. In the case of the organic phosphates, in addition to the O-P-O segments, the P=O group was also found to influence the structures. To address this issue further, it was thought interesting to study the conformations of trimethylphosphite (TMPhite), which lacks a P=O group. A comparison of the conformations of trimethylphosphate (TMP) and TMPhite was expected to highlight the role of the P=O group in the conformational preference of organic phosphates, which is the motivation for the present work. The conformations of TMPhite were studied using matrix isolation infrared spectroscopy. TMPhite was trapped in a nitrogen matrix using an effusive source maintained at 298 K and 410 K and also a supersonic source. These experiments were designed to enable us to assign the infrared features of the higher energy conformer(s). As a result of these experiments, infrared spectra of the conformations of TMPhite were obtained. The experimental studies were supported by ab initio computations performed at the B3LYP/6-31++G** level. Computations indicated four minima corresponding to conformers with the following symmetries: C_1, C_s, C1a and C_3, given in order of increasing energy. This conformational picture was clearly different from that of TMP, in which the C_3 was the lowest energy structure, thereby clearly indicating the role of the P=O group in structural preferences in these systems. We also performed a photochemical insertion of oxygen in TMPhite to produce TMP in the matrix, in an effort to correlate the conformers of the two molecules. These experiments also gave rise to interesting side reactions, where in addition to TMP, we also observed the

  11. Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fedorko, D P; Drake, S K; Stock, F; Murray, P R

    2012-09-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) for the rapid identification of anaerobic bacteria that had been isolated from clinical specimens and previously identified by 16s rRNA sequencing. The Bruker Microflex MALDI-TOF instrument with the Biotyper Software was used. We tested 152 isolates of anaerobic bacteria from 24 different genera and 75 different species. A total of 125 isolates (82%) had Biotyper software scores greater than 2.0 and the correct identification to genus and species was made by MALDI-TOF for 120 (79%) of isolates. Of the 12 isolates with a score between 1.8 and 2.0, 2 (17%) organisms were incorrectly identified by MALDI-TOF. Only 15 (10%) isolates had a score less than 1.8 and MALDI-TOF gave the wrong genus and species for four isolates, the correct genus for two isolates, and the correct genus and species for nine isolates. Therefore, we found the Bruker MALDI-TOF MicroFlex LT with an expanded database and the use of bacteria extracts rather than whole organisms correctly identified 130 of 152 (86%) isolates to genus and species when the cut-off for an acceptable identification was a spectrum score ≥1.8.

  12. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates.

    PubMed

    Torelli, Riccardo; Cacaci, Margherita; Papi, Massimiliano; Paroni Sterbini, Francesco; Martini, Cecilia; Posteraro, Brunella; Palmieri, Valentina; De Spirito, Marco; Sanguinetti, Maurizio; Bugli, Francesca

    2017-07-09

    E. faecalis and E. faecium cause urinary tract infections highly resistant to therapies due to a protective extracellular matrix. To exploit a new strategy able to treat infections without increasing antibiotic doses, we used enzymes targeting specific biofilm matrix components in combination with Vancomycin. We investigated the activity of Vancomycin combined with two matrix-degrading enzymes, Alginate Lyase (AlgL) and Deoxyribonuclease I (DNase I) against in vitro biofilm of E. faecalis and E. faecium clinical isolates. The heterogeneity of matrix composition leads to defined physiological responses of biofilm communities to their environment: we demonstrated that the use of DNase I and AlgL enzymes affects biofilm structure, cell viability and reduces MBEC values of Vancomycin in E. faecalis and E. faecium, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The decomposition of benzenesulfonyl azide: a matrix isolation and computational study.

    PubMed

    Deng, Guohai; Dong, Xuelin; Liu, Qifan; Li, Dingqing; Li, Hongmin; Sun, Qiao; Zeng, Xiaoqing

    2017-02-01

    The thermal-decomposition and photo-decomposition of benzenesulfonyl azide, PhS(O)2N3, have been studied by combining matrix-isolation IR spectroscopy and quantum chemical calculations. Upon flash vacuum pyrolysis at 800 K, the azide splits off molecular nitrogen and exclusively furnishes phenylnitrene (PhN) and SO2 in the gas phase. In contrast, the azide favors stepwise photodecomposition in solid Ar and Ne matrices at 2.8 K. Specifically, the UV laser photolysis (193 and 266 nm) of PhS(O)2N3 results in the formation of the key nitrene intermediate PhS(O)2N in the triplet ground state, which undergoes pseudo-Curtius rearrangement into N-sulfonyl imine PhNSO2 under subsequent visible light irradiation (380-450 nm). Further fragmentation of PhNSO2 into SO2 and PhN followed by ring-expansion to didehydroazepine also occurs upon visible light irradiation. The preference of the stepwise mechanism for the decomposition of PhS(O)2N3 is supported by quantum chemical calculations using DFT B3LYP/6-311++G(3df,3pd) and CBS-QB3 methods.

  14. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  15. The UV/Vis absorption spectrum of matrix-isolated dichlorine peroxide, ClOOCl.

    PubMed

    von Hobe, Marc; Stroh, Fred; Beckers, Helmut; Benter, Thorsten; Willner, Helge

    2009-03-14

    UV/Vis absorption spectra of ClOOCl isolated in neon matrices were measured in the wavelength range 220-400 nm. The purity of the trapped samples was checked by infrared and UV/Vis matrix spectroscopy as well as low-temperature Raman spectroscopy. At wavelengths below 290 nm, the results agree with the UV spectrum recently published by Pope et al. [J. Phys. Chem. A, 2007, 111, 4322-4332]. However, the observed absorption in the long wavelength tail of the spectrum-relevant for polar stratospheric ozone loss-is substantially higher than reported by Pope et al. Our results suggest the existence of a ClOOCl electronic state manifold leading to an absorption band similar to those of the near UV spectrum of Cl(2). The differences to previous studies can be accounted for quantitatively by contributions to the reported absorption spectra caused by impurities. The observed band in the long wavelength tail is supported by several high-level ab initio calculations. However, questions arise concerning absolute values of the ClOOCl cross sections, an issue that needs to be revisited in future studies. With calculated photolysis rates based on our spectrum scaled to previous cross sections at the peak absorption, the known polar catalytic ozone-destruction cycles to a large extent account for the observed ozone depletion in the spring polar stratosphere.

  16. Infrared matrix isolation study of the thermal and photochemical reactions of ozone with trimethylgallium.

    PubMed

    Sriyarathne, H Dushanee M; Gudmundsdottir, Anna D; Ault, Bruce S

    2015-03-26

    The thermal and photochemical reactions of (CH3)3Ga and O3 have been explored using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental data using twin jet deposition and theoretical calculations demonstrate the formation of multiple product species after deposition, annealing to 35 K, and UV irradiation of the matrices. The products were identified as (CH3)2GaOCH3, (CH3)2GaCH2OH, (CH3)(CH3O)Ga(OCH3), (CH3)2GaCHO, and (CH3)Ga(OCH3)(CH2OH). Product identifications were confirmed by annealing and irradiation behavior, (18)O substitution experiments, and high level theoretical calculations. Merged jet deposition led to a number of stable late reaction products, including C2H6, CH3OH, and H2CO. A white solid film was also noted on the walls of the merged (flow reactor) region of the deposition system, likely due to the formation of Ga2O3.

  17. Infrared matrix isolation study of the thermal and photochemical reactions of ozone with dimethylcadmium.

    PubMed

    McNally, Devin; Ault, Bruce S

    2012-03-01

    The matrix isolation technique has been combined with infrared spectroscopy and theoretical calculations to explore the reaction of (CH(3))(2)Cd with O(3) over a range of time scales and upon irradiation. During twin jet deposition, multiple novel product species were observed along with several stable "late" products. Following annealing of these matrices to 35 K, absorptions due to two novel product species increased in intensity. In addition, new bands appeared, indicating the formation of an additional product. Subsequent UV irradiation destroyed several of the initial products and produced a new photoproduct. On the basis of (18)O and (16,18)O spectroscopic data and theoretical calculations, the novel intermediates H(3)COCdCH(3), H(3)CCdCH(2)OH, H(3)COCdOOCH(3), and H(3)CCdCHO were identified. Merged jet deposition led to a number of stable "late" products, including H(2)CO, CH(3)OH, and C(2)H(6), identifications that were confirmed by (18)O substitution. Mechanistic inferences for this reaction are discussed. © 2012 American Chemical Society

  18. Isolation and identification of oxidation products of guaiacol from brines and heated meat matrix.

    PubMed

    Bölicke, Sarah-Maria; Ternes, Waldemar

    2016-07-01

    In this study we investigated the formation of the oxidation products of guaiacol in brines and heated meat matrix: 6-nitrosoguaiacol, 4-nitroguaiacol and 6-nitroguaiacol. For this purpose we applied a newly developed HPLC-UV and LC-MS method. For the first time, 6-nitrosoguaiacol was determined in brine and meat (containing guaiacol and sodium nitrite), which had been heated to 80°C and subsequently subjected to simulated digestion. Application of 500mg/L ascorbic acid to the brines reduced guaiacol degradation at pH3 and simultaneously inhibited the formation of 6-nitrosoguaiacol compared to brines containing only 100mg/L of ASC. The oxidation products were isolated with a new extraction method from meat samples containing 400mg/kg sodium nitrite at pH3.6 following simulated digestion. When oxygen was added, 6-nitrosoguaiacol was determined even at legally allowed levels (150mg/kg) of the curing agent. Finally, we developed a new LC-MS method for the separation and qualitative determination of the four main smoke methoxyphenols.

  19. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  20. Matrix isolation and EPR spectroscopy of septet 3,5-difluoropyridyl-2,4,6-trinitrene.

    PubMed

    Chapyshev, Sergei V; Grote, Dirk; Finke, Christopher; Sander, Wolfram

    2008-09-19

    Septet 3,5-difluoropyridyl-2,4,6-trinitrene along with quintet 2-azido-3,5-difluoropyridyl-4,6-dinitrene, quintet 4-azido-3,5-difluoropyridyl-2,6-dinitrene, triplet 2,6-diazido-3,5-difluoropyridyl-4-nitrene, and triplet 2,4-diazido-3,5-difluoropyridyl-6-nitrene have been obtained by photolysis of 2,4,6-triazido-3,5-difluoropyridine in solid argon at 4 K. The electronic and magnetic properties of the matrix-isolated nitrenes were studied using electron paramagnetic resonance (EPR) spectroscopy in combination with density functional theory (DFT) calculations. The fine-structure parameters of the nitrenes were determined with high accuracy from computer spectral simulations. All signals in the EPR spectra of the nitrenes randomly oriented in the solid phase were unambiguously assigned on the basis of eigenfield calculations of the Zeeman energy levels and angular dependencies of resonance fields from the direction of the applied magnetic field.

  1. Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs).

    PubMed

    Passeri, Simona; Nocchi, Francesca; Lamanna, Roberta; Lapi, Simone; Miragliotta, Vincenzo; Giannessi, Elisabetta; Abramo, Francesca; Stornelli, Maria Rita; Matarazzo, Micheletino; Plenteda, Daniele; Urciuoli, Patrizia; Scatena, Fabrizio; Coli, Alessandra

    2009-01-01

    Stem cells from extra-embryonic sources can be obtained by non-invasive procedures. We have standardized a method for the expansion of equine umbilical cord-derived matrix cells (EUCMCs) for potential therapy. EUCMCs were isolated from the umbilical cord of five mares immediately after delivery. For expansion, cells were grown in alpha-MEM and MSCBM. Moreover, to measure the effect of growth factor supplementation, epidermal growth factor (EGF) was added to alpha-MEM. alpha-MEM and MSCBM media performed similarly in terms of population doubling and CFU number value. EGF supplementation of alpha-MEM determined a significant increase of the population doubling value. EGF supplementation did not affect the adipogenic and chondrogenic differentiation while bone nodule sizes an increased with the osteogenic protocol. Both alpha-MEM and MSCBM can be used to cultivate EUCMCs. alpha-MEM supplemented with EGF might represent an advantage for EUCMCs expansion. The results could be useful in choosing the culture medium since alpha-MEM is more cost-effective than MSCBM.

  2. Matrix-Isolation Spectroscopy and Computational Studies of Reactive Organic Molecules of Relevance to Interstellar Space

    NASA Astrophysics Data System (ADS)

    Kopff, Laura A.; Kreifels, Terese A.; Schaffer, Christopher J.; Haenni, Benjamin C.; Esselman, Brian J.; McMahon, Robert J.

    2011-10-01

    Matrix isolation, the process of trapping a molecule in an inert gas at low temperature, provides a means for studying highly reactive intermediates, such as carbenes or radicals. Reactive species can be characterized by IR, UV-vis and/or EPR spectroscopy. Comparison of experimental and computed spectral data, as well as chemical reactivity, is used for structural assignment. Highly-unsaturated carbon chains are well known compounds in the interstellar medium (ISM). Detection of these molecules relies mostly on radioastronomy, making the detection of the linear HC2nH series difficult. The electronic structure changes from even carbon chain lengths (HC2nH) to odd chain lengths (HC2n+1H), changing from closed shell to open shell species. The odd series further alternate from a diradical character (HC3H) to a localized carbene (HC5H). This poster will present the synthesis and spectroscopy of the HC3H and HC7H species and derivatives. The study of arylcarbenes is vital to understanding the chemistry of carbon-rich environments, such as discharges, interstellar clouds, and circumstellar envelopes. The identification of small, sulfur containing molecules, and the identification of aromatics in the ISM make future thiophene and benzothiophene detections a real possibility. Studies on 2- and 3- diazomethyl substituted benzothiophenes are underway to assess their photochemical reactivity and potential for forming benzothiophene carbenes. Macrocylic polyynes are proposed to be involved in carbon condensation via the ring coalescence and annealing model to produce graphitic sheets or fullerenes. To simplify a complex system we are computationally studying the series of ethynyl-substituted cyclobutadienes and their possible involvement in the build-up of larger carbon containing molecules in the ISM.

  3. Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1: Matrix-isolated naphthalene and perdeuterated naphthalene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Sandford, S. A.; Allamandola, Louis J.

    1994-01-01

    Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8(+), and its fully deuterated analog, C10D8(+), between 4000 and 200/cm. Ions are generated by in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8(+) ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7/cm. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7/cm band has not previously been reported. C10D8(+) ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1/cm. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8(+). Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.

  4. Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1: Matrix-isolated naphthalene and perdeuterated naphthalene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Sandford, S. A.; Allamandola, Louis J.

    1994-01-01

    Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8(+), and its fully deuterated analog, C10D8(+), between 4000 and 200/cm. Ions are generated by in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8(+) ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7/cm. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7/cm band has not previously been reported. C10D8(+) ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1/cm. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8(+). Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.

  5. Dietary lipids modify the fatty acid composition of cartilage, isolated chondrocytes and matrix vesicles.

    PubMed

    Xu, H; Watkins, B A; Adkisson, H D

    1994-09-01

    The effects of dietary lipids on the fatty acid composition of hyaline cartilage, epiphyseal chondrocytes (EC) and matrix vesicles (MV) were evaluated in chicks. A basal semipurified diet was fed to chicks containing one of the following lipid sources at 70 g/kg: soybean oil, butter+corn oil, margarine+corn oil or menhaden oil+corn oil (MEC). Articular and epiphyseal growth cartilage were isolated from the proximal tibiotarsus; EC and MV were subsequently released by trypsin (EC 3.4.21.4) and collagenase (EC 3.4.24.3) digestion followed by ultracentrifugation. The fatty acid composition of polar lipids in chick epiphyseal cartilage at three and six weeks, as well as articular cartilage, EC and MV at eight weeks of age revealed the presence of high levels of saturated and monounsaturated fatty acids (up to 85.5%) but low levels of n-6 polyunsaturated fatty acids (PUFA) (2.6-10.2%). Mead acid (20:3n-9, > 3%) was also present in cartilage, EC and MV lipids, and was unaffected by the dietary lipid treatments. Total n-3 PUFA concentrations were the highest in cartilage, EC and MV of chicks consuming MEC. Feeding MEC lowered the levels of 20:4n-6 in cartilage, but increased 20:5n-3 levels. The data are consistent with those reported previously which showed that cartilage tissues are low in n-6 PUFA and that they contain 20:3n-9. We furthermore demonstrated that the PUFA composition of cartilage can be modified by dietary lipids.

  6. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. Part VI: FT-IR spectra of isomorphously isolated species. NH4+ ions isolated in MKPO 4·6H 2O (M = Mg; Ni) and PO43- ions isolated in MgNH 4AsO 4·6H 2O

    NASA Astrophysics Data System (ADS)

    Cahil, A.; Šoptrajanov, B.; Najdoski, M.; Lutz, H. D.; Engelen, B.; Stefov, V.

    2008-03-01

    Examination of mixed crystals, especially those with isomorphously isolated ions, has proved very useful in spectra-structure correlation studies. Room (RT) and low temperature (LNT) FT-IR spectra of ammonium doped in MgKPO 4·6H 2O and NiKPO 4·6H 2O and phosphate doped in MgNH 4AsO 4·6H 2O in different degrees were recorded. All three compounds are isostructural with struvite, MgNH 4PO 4·6H 2O, space group Pmn2 1, forming substitutional mixed crystals with Cs symmetry of the anions. Analysis of the region of ν 4(NH 4), ν 3(PO 4) and ν 4(PO 4) modes of LNT FT-IR difference spectra of analogues with a small content of NH4+ and PO43- revealed the expected decrease of Td symmetry of free NH4+ and PO43- ions to Cs site symmetry. Due to the Cs site symmetry of the anions, the degeneration of the ν 4(NH 4), ν 3PO 4) and ν 4PO 4) modes is raised and, hence, three components are observed in the difference FT-IR spectra. This conclusion can not be derived only from studies of no-doped polycrystalline samples of struvite type compounds.

  7. Involvement of matrix metalloproteinases in human immunodeficiency virus type 1-induced replication by clinical Mycobacterium avium isolates.

    PubMed

    Dezzutti, C S; Swords, W E; Guenthner, P C; Sasso, D R; Wahl, L M; Drummond, A H; Newman, G W; King, C H; Quinn, F D; Lal, R B

    1999-10-01

    The role of Mycobacterium avium isolates in modulating human immunodeficiency virus type 1 (HIV-1) replication was examined by use of an in vitro, resting T cell system. Two human clinical isolates (serotypes 1 and 4) but not an environmental M. avium isolate (serotype 2) enhanced HIV-1 replication. The M. avium-induced HIV-1 replication was not associated with cell activation or differential cytokine production or utilization. Addition of matrix metalloproteinase (MMP) inhibitors and their in vivo regulators, tissue inhibitors of metalloproteinases-1 and -2, abrogated M. avium-induced HIV-1 replication 80%-95%. The MMP inhibitors did not have any effect on the HIV-1 protease activity, suggesting that they may affect cellular processes. Furthermore, MMP-9 protein was differentially expressed after infection with clinical M. avium isolates and paralleled HIV-1 p24 production. Collectively, these data suggest that M. avium-induced HIV-1 replication is mediated, in part, through the induction of MMP-9.

  8. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei

    2005-12-29

    The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.

  9. Isolation of a Crystal Matrix Protein Associated with Calcium Oxalate Precipitation in Vacuoles of Specialized Cells1

    PubMed Central

    Li, Xingxiang; Zhang, Dianzhong; Lynch-Holm, Valerie J.; Okita, Thomas W.; Franceschi, Vincent R.

    2003-01-01

    The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix “ghost” that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation. PMID:14555781

  10. Phosphorous bonding in PCl3:H2O adducts: A matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2017-01-01

    Non-covalent interaction between PCl3 and H2O was studied using matrix isolation infrared spectroscopy and ab initio computations. Computations indicated that the adducts are stabilized through novel P⋯O type phosphorus bonding and conventional Psbnd Cl⋯H type hydrogen bonding interactions, where the former adduct is the global minimum. Experimentally, the P⋯O phosphorus bonded adduct was identified in N2 matrix, which was evidenced from the shifts in the vibrational wavenumbers of the modes involving PCl3 and H2O sub-molecules. Atoms in Molecules and Natural Bond Orbital analyses have been performed to understand the nature of interactions in the phosphorus and hydrogen bonded adducts. Interestingly, experimental evidence for the formation of higher PCl3sbnd H2O adduct was also observed in N2 matrix.

  11. Differentiation of Aeromonas isolated from drinking water distribution systems using matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Donohue, Maura J; Best, Jennifer M; Smallwood, Anthony W; Kostich, Mitchell; Rodgers, Mark; Shoemaker, Jody A

    2007-03-01

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the whole cells of both reference strains and unknown Aeromonas isolates obtained from water distribution systems. A library of over 45 unique m/z signatures was created from 40 strains that are representative of the 17 recognized species of Aeromonas, as well as 3 reference strains from genus Vibrio and 2 reference strains from Plesiomonas shigelloides. The library was used to help speciate 52 isolates of Aeromonas. The environmental isolates were broken up into 2 blind studies. Group 1 contained isolates that had a recognizable phenotypic profile and group 2 contained isolates that had an atypical phenotypic profile. MALDI-MS analysis of the water isolates in group 1 matched the phenotypic identification in all cases. In group 2, the MALDI-MS-based determination confirmed the identity of 18 of the 27 isolates. These results demonstrate that MALDI-MS analysis can rapidly and accurately classify species of the genus Aeromonas, making it a powerful tool especially suited for environmental monitoring and detection of microbial hazards in drinking water.

  12. Differentiation of Streptococcus pneumoniae Conjunctivitis Outbreak Isolates by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Williamson, Yulanda M.; Moura, Hercules; Woolfitt, Adrian R.; Pirkle, James L.; Barr, John R.; Carvalho, Maria Da Gloria; Ades, Edwin P.; Carlone, George M.; Sampson, Jacquelyn S.

    2008-01-01

    Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis. PMID:18708515

  13. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  14. Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: The acridine series

    NASA Astrophysics Data System (ADS)

    Mattioda, A. L.; Bauschlicher, C. W.; Ricca, A.; Bregman, J.; Hudgins, D. M.; Allamandola, L. J.

    2017-06-01

    The matrix-isolated, mid-infrared spectra of seven acridine-based polycyclic aromatic nitrogen heterocycles (PANHs) have been measured and compared to their non-nitrogen containing parent molecule. The acridine species investigated include acridine, benz[a]acridine, benz[c]acridine, dibenz[a,j]acridine, dibenz[c,h]acridine, dibenz[a,h]acridine and dibenz[a,c]acridine. The previously reported results for 1 and 2-azabenz[a]anthracenes are included for comparison. The experimentally determined band frequencies and intensities are compared with their B3LYP/6-31G(d) values. The overall agreement between experimental and theoretical values is good and in line with our previous investigations. Shifts, typically to the blue, are noted for the C-H out-of-plane (CHoop) motions upon insertion of a nitrogen atom. The formation of a bay region upon addition of additional benzene rings to the anthracene/acridine structure splits the solo hydrogen motions into a bay region solo and an external solo hydrogen, with the bay region solo hydrogen coupling to the quartet hydrogen motions and the external solo hydrogen coupling with the duo hydrogen motions resulting in an extreme decrease in intensity for the CHoop solo hydrogen band when the external hydrogen is replaced by a nitrogen atom. The C-C and C-H in-plane region of this acridine series exhibits the characteristic two fold increase in intensity, noted previously for PANHs. The strong ≈1400 cm-1 band, which was identified in the previous PANH study, is noted in several molecular species as well as another strong PANH feature between 1480 and 1515 cm-1 for several molecules. The presence of these strong bands appear to be primarily responsible for the two-fold increase in the C-H in-plane region's (1100-1600 cm-1) intensity. The C-H stretching region can be characterized by contributions from the solo (bay or external), duo and quartet hydrogens, similar to what was observed in the dibenzopolyacene compounds.

  15. Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: The acridine series.

    PubMed

    Mattioda, A L; Bauschlicher, C W; Ricca, A; Bregman, J; Hudgins, D M; Allamandola, L J

    2017-06-15

    The matrix-isolated, mid-infrared spectra of seven acridine-based polycyclic aromatic nitrogen heterocycles (PANHs) have been measured and compared to their non-nitrogen containing parent molecule. The acridine species investigated include acridine, benz[a]acridine, benz[c]acridine, dibenz[a,j]acridine, dibenz[c,h]acridine, dibenz[a,h]acridine and dibenz[a,c]acridine. The previously reported results for 1 and 2-azabenz[a]anthracenes are included for comparison. The experimentally determined band frequencies and intensities are compared with their B3LYP/6-31G(d) values. The overall agreement between experimental and theoretical values is good and in line with our previous investigations. Shifts, typically to the blue, are noted for the C-H out-of-plane (CHoop) motions upon insertion of a nitrogen atom. The formation of a bay region upon addition of additional benzene rings to the anthracene/acridine structure splits the solo hydrogen motions into a bay region solo and an external solo hydrogen, with the bay region solo hydrogen coupling to the quartet hydrogen motions and the external solo hydrogen coupling with the duo hydrogen motions resulting in an extreme decrease in intensity for the CHoop solo hydrogen band when the external hydrogen is replaced by a nitrogen atom. The C-C and C-H in-plane region of this acridine series exhibits the characteristic two fold increase in intensity, noted previously for PANHs. The strong ≈1400cm(-1) band, which was identified in the previous PANH study, is noted in several molecular species as well as another strong PANH feature between 1480 and 1515cm(-1) for several molecules. The presence of these strong bands appear to be primarily responsible for the two-fold increase in the C-H in-plane region's (1100-1600cm(-1)) intensity. The C-H stretching region can be characterized by contributions from the solo (bay or external), duo and quartet hydrogens, similar to what was observed in the dibenzopolyacene compounds. Published

  16. A Rapid, Scalable Method for the Isolation, Functional Study, and Analysis of Cell-derived Extracellular Matrix

    PubMed Central

    Hellewell, Andrew L.; Rosini, Silvia; Adams, Josephine C.

    2017-01-01

    The extracellular matrix (ECM) is recognized as a diverse, dynamic, and complex environment that is involved in multiple cell-physiological and pathological processes. However, the isolation of ECM, from tissues or cell culture, is complicated by the insoluble and cross-linked nature of the assembled ECM and by the potential contamination of ECM extracts with cell surface and intracellular proteins. Here, we describe a method for use with cultured cells that is rapid and reliably removes cells to isolate a cell-derived ECM for downstream experimentation. Through use of this method, the isolated ECM and its components can be visualized by in situ immunofluorescence microscopy. The dynamics of specific ECM proteins can be tracked by tracing the deposition of a tagged protein using fluorescence microscopy, both before and after the removal of cells. Alternatively, the isolated ECM can be extracted for biochemical analysis, such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. At larger scales, a full proteomics analysis of the isolated ECM by mass spectrometry can be conducted. By conducting ECM isolation under sterile conditions, sterile ECM layers can be obtained for functional or phenotypic studies with any cell of interest. The method can be applied to any adherent cell type, is relatively easy to perform, and can be linked to a wide repertoire of experimental designs. PMID:28117783

  17. Conformers of β-aminoisobutyric acid probed by jet-cooled microwave and matrix isolation infrared spectroscopic techniques.

    PubMed

    Kuş, N; Sharma, A; Peña, I; Bermúdez, M C; Cabezas, C; Alonso, J L; Fausto, R

    2013-04-14

    β-aminoisobutyric acid (BAIBA) has been studied in isolation conditions: in the gas phase and trapped into a cryogenic N2 matrix. A solid sample of the compound was vaporized by laser ablation and investigated through their rotational spectra in a supersonic expansion using two different spectroscopic techniques: broadband chirped pulse Fourier transform microwave spectroscopy and conventional molecular beam Fourier transform microwave spectroscopy. Four conformers with structures of two types could be successfully identified by comparison of the experimental rotational and (14)N nuclear quadruple coupling constants with those predicted theoretically: type A, bearing an OH⋯N intramolecular hydrogen bond and its carboxylic group in the trans geometry (H-O-C=O dihedral ∼180°), and type B, having an NH⋯O bond and the cis arrangement of the carboxylic group. These two types of conformers could also be trapped from the gas phase into a cryogenic N2 matrix and probed by Fourier transform infrared (IR) spectroscopy. In situ irradiation of BAIBA isolated in N2 matrix of type B conformers using near-IR radiation tuned at the frequency of the O-H stretching 1st overtone (∼6930 cm(-1)) of these forms allowed to selectively convert them into type A conformers and into a new type of conformers of higher energy (type D) bearing an NH⋯O=C bond and a O-H "free" trans carboxylic group.

  18. Conformers of β-aminoisobutyric acid probed by jet-cooled microwave and matrix isolation infrared spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Kuş, N.; Sharma, A.; Peña, I.; Bermúdez, M. C.; Cabezas, C.; Alonso, J. L.; Fausto, R.

    2013-04-01

    β-aminoisobutyric acid (BAIBA) has been studied in isolation conditions: in the gas phase and trapped into a cryogenic N2 matrix. A solid sample of the compound was vaporized by laser ablation and investigated through their rotational spectra in a supersonic expansion using two different spectroscopic techniques: broadband chirped pulse Fourier transform microwave spectroscopy and conventional molecular beam Fourier transform microwave spectroscopy. Four conformers with structures of two types could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically: type A, bearing an OH⋯N intramolecular hydrogen bond and its carboxylic group in the trans geometry (H-O-C=O dihedral ˜180°), and type B, having an NH⋯O bond and the cis arrangement of the carboxylic group. These two types of conformers could also be trapped from the gas phase into a cryogenic N2 matrix and probed by Fourier transform infrared (IR) spectroscopy. In situ irradiation of BAIBA isolated in N2 matrix of type B conformers using near-IR radiation tuned at the frequency of the O-H stretching 1st overtone (˜6930 cm-1) of these forms allowed to selectively convert them into type A conformers and into a new type of conformers of higher energy (type D) bearing an NH⋯O=C bond and a O-H "free" trans carboxylic group.

  19. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.

    PubMed

    Thompson, Matthew G K; Lewars, Errol G; Parnis, J Mark

    2005-10-27

    FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.

  20. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Blood Isolates of Acinetobacter Species

    PubMed Central

    Hsueh, Po-Ren; Kuo, Lu-Cheng; Chang, Tsung-Chain; Lee, Tai-Fen; Teng, Shih-Hua; Chuang, Yu-Chung; Teng, Lee-Jene

    2014-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (Bruker Biotyper) was able to accurately identify 98.6% (142/144) of Acinetobacter baumannii isolates, 72.4% (63/87) of A. nosocomialis isolates, and 97.6% (41/42) of A. pittii isolates. All Acinetobacter junii, A. ursingii, A. johnsonii, and A. radioresistens isolates (n = 28) could also be identified correctly by Bruker Biotyper. PMID:24899038

  1. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  2. Study of melanoma invasion by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  3. Nonradiative Decay Route of Cinnamate Derivatives Studied by Frequency and Time Domain Laser Spectroscopy in the Gas Phase, Matrix Isolation FTIR Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Ebata, Takayuki

    2017-06-01

    The nonraddiative dececy route involving trans → cis photo-isomerization from the S_1 (ππ*) state has been investigated for several trans-cinnamate derivatives, which are known as sunscreen reagents. We examined two types of substitution effects. One is structural isomer such as ortho-, meta-, and para-hydroxy-methylcinnmate (o-, m-, p-HMC). The S_1 lifetime of p-HMC is less than 8 ps at zero-point level, and it undergoes rapid S_1 → ^1nπ* → T_1 decay via multiple conical intersections. Finally, the trans → cis isomerization proceeds in the T_1 state. On the other hand, both o- and m-HMC show very slow decay. Their S_1 lifetimes are in the order of 100 ps even at the excess energy of 2000-3000 \\wn. The other is the effect of the complexity of ester group in para-subsitituted species, such as para-methoxy-methyl, -ethyl and -2ethylhexyl cinnamate (p-MMC, p-MEC, p-M2EHC). p-MMC and p-MEC show sharp S_0 → S_1 (ππ*) vibronic bands, while p-M2EHC shows only broad structureless feature even under the jet-cooled condition. In addition, we found that the S_0 → ^1nπ* absorption appears at 1000 \\wn below the S_0 → S_1 (ππ*) transition in p-MEC and p-M2EHC, but not in p-MMC. Thus, the complexity of the ester group is very important for the appearance of the ^1nπ* state.

  4. Novel hydrophobic interaction chromatography matrix for specific isolation and simple elution of immunoglobulins (A, G, and M) from porcine serum.

    PubMed

    Ramos-Clamont, Gabriela; del Carmen Candia-Plata, Maria; Zamudio, Roberto Guzman; Vazquez-Moreno, Luz

    2006-07-28

    A new, highly acetylated agarose matrix (HA-Sepharose) was synthesized and used as a hydrophobic interaction chromatography (HIC) medium to specifically isolate immunoglobulins (Igs) from porcine serum. Recovery of Igs was in a single step and under mild conditions. HA-Sepharose adsorption was studied in terms of salt, gel acetylation time, flow rate, and protein concentration on the loading buffer. At 0.5 M Na2SO4, control with unmodified Sepharose retained a small fraction (0.70 mg/mL of matrix) of serum albumin. On the contrary HA-Sepharose retained primary Igs (IgA, IgG, and 53% of IgM) as revealed by sodium dodecyl sulphate 10% polyacrylamide gel electrophoresis (SDS-PAGE), quantitative radial immunodiffusion and immunodetection. At a flow rate of 1 mL/min, the HA-Sepharose column capacity (3.9 mg/mL of matrix) was similar to the reported capacity for the commercial thiophilic T-gel. However, HA-Sepharose showed higher recovery of IgA and IgM than the T-gel in the same salt conditions, clearly an advantage in terms of immunoglobulin recovery strategies. Acetylation changed the matrix adsorption from albumin to immunoglobulins; thus, the highly acetylated gel rendered recoveries of Igs from unprocessed porcine serum practically free of albumin.

  5. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix.

    PubMed

    Hendijani, Fatemeh; Sadeghi-Aliabadi, Hojjat; Haghjooy Javanmard, Shaghayegh

    2014-12-01

    Adult stem cells are of particular importance for applications in regenerative medicine. Umbilical cord was established recently as an alternative source of mesenchymal stem cell (MSC) instead of bone marrow (BM) and is superior to BM and other adult tissues according to several MSC properties. Additionally, for the purpose of cell therapy in clinical scale, steps of cell isolation, expansion and culture required to be precisely adjusted in order to obtain the most cost-effective, least time-consuming, and least labor-intensive method. Therefore, in this study, we are going to compare two simple and cost-effective explant culture methods for isolation of MSCs from human umbilical cord. One of the methods isolates cells from entire cord and the other from Wharton's jelly matrix. Isolated cells then cultured in simple medium without addition of any growth factor. MSCs obtained via both methods display proper and similar characteristics according to morphology, population doubling time, post-thaw survival, surface antigenicity and differentiation into adipocytes, osteocytes, and chondrocytes. MSCs can easily be obtained from the entire cord and Wharton's jelly, and it seems that both tissues are appropriate sources of stem cells for potential use in regenerative medicine. However, from technical large-scale preview, MSC isolation from entire cord piece is less labor-intensive and time-consuming than from Wharton's jelly part of the cord.

  6. A spectroscopic study of intermediates in the condensation of refractory smokes - Matrix isolation experiments of SiO

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Stranz, D. D.; Donn, B.

    1981-01-01

    The infrared and Raman spectra of N2 matrix-isolated silicon oxides were investigated. The vibrational frequencies of SiO, Si2O2, and Si3O3 were identified and assigned on the basis of normal coordinate analyses. Heating the solid to approximately 50 K (evaporating the matrix) leaves a residue whose infrared spectrum is identical to that of a smoke condensed at ambient temperatures. Further heating of the sample to approximately 500 K leads to significant changes in the band shapes. Investigations of the infrared spectra at several stages of the diffusion process enable a mechanism to be proposed for the transition from molecular properties to those of the residue (bulk) material, which has been characterized as Si2O3.

  7. A spectroscopic study of intermediates in the condensation of refractory smokes: Matrix isolation experiments SiO

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Stranz, D. D.; Donn, D.

    1980-01-01

    The infrared and Raman spectra of N2 matrix isolated silicon oxides are investigated. The vibrational frequencies of SiO, Si2O2, and Si3O3 were identified and assigned on the basis of normal coordinate analyses. Heating the solid to 50 K (evaporating the matrix) leaves a residue whose infrared spectrum is identical to that of a smoke condensed at ambient temperatures. Further heating of the sample to 500 K leads to significant changes in the band shapes. Investigations of the infrared spectra at several stages of the diffusion process result in the proposal of a mechanism for the transition from molecular properties to those of the residue (bulk) material, which is characterized as Si2O3.

  8. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  9. Investigation of gold fluorides and noble gas complexes by matrix-isolation spectroscopy and quantum-chemical calculations.

    PubMed

    Wang, Xuefeng; Andrews, Lester; Willmann, Knut; Brosi, Felix; Riedel, Sebastian

    2012-10-15

    Noble with a difference: Matrix-isolation experiments and quantum-chemical calculations have led to the characterization of two new compounds, namely first open-shell binary gold fluoride, AuF(2), and a NeAuF complex. Moreover, ArAuF, AuF(3), Au(2)F(6), and monomeric AuF(5) have been produced and identified under cryogenic conditions in neon and argon matrices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identification of Aeromonas isolates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Lamy, Brigitte; Kodjo, Angeli; Laurent, Frédéric

    2011-09-01

    We evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for identifying aeromonads with an extraction procedure. Genus-level accuracy was 100%. Compared to rpoB gene sequencing, species-level accuracy was 90.6% (29/32) for type and reference strains and 91.4% for a collection of 139 clinical and environmental isolates, making this system one of the most accurate and rapid methods for phenotypic identification. The reliability of this technique was very promising, although some improvements in database composition, taxonomy, and discriminatory power are needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Label-free quantification proteomics reveals novel calcium binding proteins in matrix vesicles isolated from mineralizing Saos-2 cells.

    PubMed

    Zhou, Xiaoying; Cui, Yazhou; Luan, Jing; Zhou, Xiaoyan; Zhang, Genglin; Zhang, Xiumei; Han, Jinxiang

    2013-06-01

    Matrix vesicles (MVs) involved in the initiation of mineralization by deposition of hydroxyapatite (HA) in their lumen are released by the budding of mineralization-competent cells during skeletogenesis and bone development. To identify additional mineralization-related proteins, MVs were isolated from non-stimulated and stimulated Saos-2 cells in culture via an Exoquick™ approach and the corresponding proteomes were identified and quantified with label-free quantitative proteome technology. The isolated MVs were confirmed by electron microscopy, alkaline phosphatase activity (ALP), biomarkers, and mineral formation analyses. Label-free quantitative proteome analysis revealed that 19 calcium binding proteins (CaBPs), including Grp94, calnexin, calreticulin, calmodulin, and S100A4/A10, were up-regulated in MVs of Saos-2 cells upon stimulation of mineralization. This result provides new clues to study the mechanism of the initiation of MV-mediated mineralization.

  12. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  13. Simple ortho-para hydrogen and para-ortho deuterium converter for matrix isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrews, Lester; Wang, Xuefeng

    2004-09-01

    A copper tube containing catalyst immersed in the cold gas above liquid helium is used to convert normal H2 and D2 to high purity J=0 samples. The converted samples are sublimed directly from 12-16 K catalyst to the 4 K matrix substrate for recording infrared spectra. The decrease of infrared absorptions due to J=1 isomer perturbations on the major J=0 species bands show that solid samples >99% in the J=0 species are formed. Such high purity p-H2 and o-D2 subjected to Tesla coil discharge during condensation at 4 K sustain a 2%-8% decrease in the J=0 species population depending on the discharge pressure. We also show that orthodeuterium is an excellent matrix host.

  14. On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.

    PubMed

    Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei

    2014-10-31

    Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples.

  15. Matrix-Isolated Infrared Absorption Spectrum of CH2IOO Radical.

    PubMed

    Zhang, Xu; Sander, Stanley P; Cheng, Lan; Thimmakondu, Venkatesan S; Stanton, John F

    2016-01-21

    The peroxyiodomethyl radical, CH2IOO, was generated in cryogenic matrices using tandem supersonic nozzles. One hyperthermal nozzle decomposes diiodomethane (CH2I2) to generate intense beams of CH2I radicals, while the second nozzle continuously deposits O2/argon (Ar) on the matrix at 10 K. The CH2I and O2 in the Ar matrix react to produce the target peroxy radical (CH2IOO). The absorption spectra of the products are monitored with a Fourier transform infrared spectrometer. Eight of the 12 fundamental infrared bands for CH2IOO were observed in an argon matrix at 5 K. The experimental frequencies (cm(-1)) are ν3 = 1407.3, ν4 = 1230.4, ν5 = 1223.2, ν6 = 1085.3, ν7 = 919.9, ν8 = 839.9, ν9 = 567.5, and ν10 = 496.2. Additional confirmation for the vibrational assignment comes from a study of the CH2I(18)O(18)O isotopic species. The six observed frequencies (cm(-1)) for CH2I(18)O(18)O are ν3 = 1407.8, ν4 = 1228.0, ν6 = 1030.8, ν7 = 899.6, ν8 = 836.0, and ν10 = 494.6. Unlike CH2I(16)O(16)O, the ν5 and ν9 bands were not observed for CH2I(18)O(18)O. To guide the experimental analysis, ab initio calculations of the infrared spectrum based on second-order vibrational perturbation theory were performed using force fields computed with relativistic coupled-cluster methods. The experimental frequencies are shown to be in good agreement with the computed fundamental frequencies except for ν9 (for CH2IOO) and ν10 (for CH2I(18)O(18)O). Our findings were compared with the study by Lee and Lee conducted in a para-H2 matrix. The fundamental frequencies are in good agreement (within 6 cm(-1)) except for the two low-frequency modes, ν9 (for CH2IOO) and ν10 (for CH2I(18)O(18)O) likely due to different matrix shifts for para-H2 and Ar matrices. In addition, our calculations are in somewhat better agreement with the experiment values than the calculations by Lee and Lee. Our study also shows that reaction CH2I + O2 produces the peroxy radical CH2IOO in cold matrices (10

  16. Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides.

    PubMed

    López-Casado, Gloria; Matas, Antonio J; Domínguez, Eva; Cuartero, Jesús; Heredia, Antonio

    2007-01-01

    The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.

  17. Heterogeneous reaction of boron in CHNO and CHNOF environments using high-pressure matrix isolation

    SciTech Connect

    Rice, J.K.; Russell, T.P.

    1996-07-01

    The authors have developed a technique in which the decomposition of energetic materials can be initiated under high pressure conditions which resemble the pressures reached in the non-ideal detonation process. A gem anvil cell is cooled to cryogenic temperatures, 50 K, and remains in thermal contact with the cooling element throughout the experiment. Following initiation, the reaction products are rapidly cooled and quenched on the microsecond time scale and detected using FTIR spectroscopy. In the present study, binary mixtures of boron with energetic materials containing (CHNOF) and lacking fluorine (CHNO) are compared. The differences in the reaction products suggest that the presence of the fluorine substituent leads to a complete combustion of boron to B{sub 2}O{sub 3}. In the decomposition of binary mixtures lacking the fluorine substituent, the boron appears to be unchanged following the reaction of the oxidizer. The observed products are compared to predict the affect of fluorine on the formation of boron combustion products in the two environments.

  18. Calorimetry of matrix-isolated sodium nitrite NaNO2

    NASA Astrophysics Data System (ADS)

    Egorov, V. M.; Markov, Yu. F.; Roginskii, E. M.; Stukova, E. V.

    2016-11-01

    Differential scanning calorimetry has been used to carry out a high-precision study of sodium nitrite NaNO2 incorporated into different silicate nanoporous matrices. Heat-capacity maxima due to smeared ferroelectric phase transitions have been discovered. Characteristics (intensity, half-width, phase-transition temperature, etc.) of the maxima have been investigated. Heat-capacity maxima related to an incommensurable phase transition have been reliably identified. The maxima can be attributed to the formation of appropriate orientation of sodium-nitrite nanocrystals in matrix pores.

  19. Matrix gene of influenza a viruses isolated from wild aquatic birds: ecology and emergence of influenza a viruses.

    PubMed

    Widjaja, Linda; Krauss, Scott L; Webby, Richard J; Xie, Tao; Webster, Robert G

    2004-08-01

    Wild aquatic birds are the primary reservoir of influenza A viruses, but little is known about the viruses' gene pool in wild birds. Therefore, we investigated the ecology and emergence of influenza viruses by conducting phylogenetic analysis of 70 matrix (M) genes of influenza viruses isolated from shorebirds and gulls in the Delaware Bay region and from ducks in Alberta, Canada, during >18 years of surveillance. In our analysis, we included 61 published M genes of isolates from various hosts. We showed that M genes of Canadian duck viruses and those of shorebird and gull viruses in the Delaware Bay shared ancestors with the M genes of North American poultry viruses. We found that North American and Eurasian avian-like lineages are divided into sublineages, indicating that multiple branches of virus evolution may be maintained in wild aquatic birds. The presence of non-H13 gull viruses in the gull-like lineage and of H13 gull viruses in other avian lineages suggested that gulls' M genes do not preferentially associate with the H13 subtype or segregate into a distinct lineage. Some North American avian influenza viruses contained M genes closely related to those of Eurasian avian viruses. Therefore, there may be interregional mixing of the two clades. Reassortment of shorebird M and HA genes was evident, but there was no correlation among the HA or NA subtype, M gene sequence, and isolation time. Overall, these results support the hypothesis that influenza viruses in wild waterfowl contain distinguishable lineages of M genes.

  20. FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment

    PubMed Central

    2012-01-01

    Background This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils. Results Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions. Conclusions Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues. PMID:23095284

  1. FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment.

    PubMed

    Nejatzadeh-Barandozi, Fatemeh; Enferadi, Sattar Tahmasebi

    2012-10-24

    This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils. Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions. Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues.

  2. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix.

    PubMed

    Kumar, Kuldeep; Agarwal, Pranjali; Das, Kinsuk; Mili, Bhabesh; Madhusoodan, A P; Kumar, Ajay; Bag, Sadhan

    2016-12-01

    Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the "support tissues" in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5-7days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. FTIR spectra of ammonia clusters in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Süzer, Sefik; Andrews, Lester

    1987-11-01

    FTIR spectra of ammonia have been studied from 200 to 5200 cm-1 over a wide range of concentration and temperature conditions in solid neon, argon, and nitrogen matrices. Dimer bands appear between monomer and higher aggregate absorptions and exhibit intermediate growth behavior on sample annealing and concentration changes. Comparison of spectra in solid argon at 5 and 12 K shows unrelaxed monomer absorptions at 12 K, which almost completely vanish at 5 K without any difference in the dimer spectrum; this indicates that the NH3 submolecules are relaxed in the matrix-isolated dimer. One antisymmetric and two symmetric N-H stretching modes were observed for the dimer, which follow the 14NH3-15NH3 and NH3-ND3 shifts of their monomer analogs. The dimer N-H stretching modes are intensified by fivefold relative to the dimer umbrella bending mode as compared to the same relative monomer band intensities, which is diagnostic of the hydrogen bonding interaction. The matrix dimer spectra show that one N-H bond from one submolecule and two N-H bonds from the other submolecule are involved in nonlinear, intermolecular hydrogen bonding, and that these inequivalent weakly bonded NH3 submolecules form an asymmetric cyclic dimer structure. The matrix dimer spectra further indicate that classical one-hydrogen bond structures cannot be correct. Finally, trimer and higher clusters probably have similar structures, built from the dimer, based on similar infrared spectra.

  4. Infrared Spectroscopic Studies of Matrix-Isolated Molecules with Potential Astrophysical Significance

    NASA Astrophysics Data System (ADS)

    Wehlburg, Christine Marie

    1997-08-01

    Many of the molecules purported to exist in interstellar space can only be generated in high temperature processes or are ions that are difficult to produce at high enough concentrations for spectroscopic analysis. The molecules investigated in this study, specifically, were polycyclic aromatic hydrocarbon (PAH) ions, carbon chain water complexes and carbon chain anions. PAHs are the proposed carriers of the unidentified interstellar (UIR) emission. The infrared investigation of pentacene and tetracene ions was pursued to provide data concerning the possibility that PAH cations were the source of the UIR emission. In this study, infrared features corresponding to both cation and anions for both molecules were observed for the first time. The most intense features for the neutral molecules were the CH out-of-plane wagging modes while the most intense cationic and anionic features were in the CC stretch and CH bending regions. The relative intensities from theoretical calculations were in reasonable agreement with experimental values with the exception of an overestimation for the intensities of the CH stretch in both neutral pentacene and tetracene. Carbon chain water complexes are very weakly bound species that are observed when graphite is vaporized at low power. The infrared features increase in intensity and new ones appear after annealing a matrix containing carbon chain molecules and H2O. The current study involved assignment of infrared features at 1959.4 and 2014.4 cm-1 to C6ċ H2O and C9ċ H2O, respectively. Assignments were based on the fact that both bands increased relative to the C9 and C6 bands when the concentration of H2O increased. The band assignments were further justified by a 12,13C study for C6/cdotH2O and the agreement of the theoretical shift, relative to the asymmetric stretch band of C9, for C9ċ H2O. In addition a new feature at 1550.4 cm-1 was tentatively assigned to C4ċ H2O. Finally, an isotopic study of a feature at 1721.8 cm-1

  5. Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl

    SciTech Connect

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2015-12-28

    We report on two new noble-gas molecules, HKrCCCl and HXeCCCl, prepared in low-temperature Kr and Xe matrices. These molecules are made by UV photolysis of HCCCl in the matrices and subsequent thermal annealing. The HCCCl precursor is produced by microwave discharge of a mixture of a matrix gas with trichloroethylene (HClC=CCl{sub 2}). The assignments of the new noble-gas molecules are supported by deuteration experiments and quantum chemical calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. No evidence of ClXeCCH, which is computationally reliably stable, is found in the experiments. ClKrCCH as well as the Ar compounds HArCCCl and ClArCCH are not observed either, which is in agreement with the calculations.

  6. Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2015-12-01

    We report on two new noble-gas molecules, HKrCCCl and HXeCCCl, prepared in low-temperature Kr and Xe matrices. These molecules are made by UV photolysis of HCCCl in the matrices and subsequent thermal annealing. The HCCCl precursor is produced by microwave discharge of a mixture of a matrix gas with trichloroethylene (HClC=CCl2). The assignments of the new noble-gas molecules are supported by deuteration experiments and quantum chemical calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. No evidence of ClXeCCH, which is computationally reliably stable, is found in the experiments. ClKrCCH as well as the Ar compounds HArCCCl and ClArCCH are not observed either, which is in agreement with the calculations.

  7. Magnetic fabrics in Archean granitoids, Northwestern Ontario: Isolation of accessory and matrix contributions by inspection of AMS data

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Genviciene, Ieva; Charpentier, Lionel

    2012-01-01

    Pre-tectonic and post-tectonic granitoid plutons in the same area share similar orientations for their AMS (anisotropy of magnetic susceptibility) foliation and lineation, and these are similar in orientation to the L-S fabrics of the country rock, which bears a vertical ENE-WSW foliation. The AMS fabrics in the granitoids are composite, blending contributions from accessory but highly susceptible magnetite with those from paramagnetic matrix silicates. We isolate magnetic sub-fabrics in the granitoids by a simple numerical approach that standardizes the mean tensor for susceptibility of specimens, thereby suppressing the skewing effect of high susceptibility accessories (i.e., magnetite). This approach approximately separates the contributions of "ferro"-magnetic and of paramagnetic minerals to AMS though not as completely as technical laboratory experiments.

  8. Matrix isolation spectroscopic and theoretical study of water adsorption and hydrolysis on molecular tantalum and niobium oxides.

    PubMed

    Zhou, Mingfei; Zhuang, Jia; Wang, Guanjun; Chen, Mohua

    2011-03-24

    The reactions of molecular tantalum and niobium monoxides and dioxides with water were investigated by matrix isolation infrared spectroscopy. In solid neon, the metal monoxide and dioxide molecules reacted with water to form the MO(H(2)O) and MO(2)(H(2)O) (M = Ta, Nb) complexes spontaneously on annealing. The MO(H(2)O) complexes photochemically rearranged to the more stable HMO(OH) isomers via one hydrogen atom transfer from water to the metal center under visible light excitation. In contrast, the MO(2)(H(2)O) complexes isomerized to the more stable MO(OH)(2) molecules via a hydrogen atom transfer from water to one of the oxygen atoms of metal dioxide upon visible light irradiation. The aforementioned species were identified by isotopic-substituted experiments as well as density functional calculations.

  9. Further characterization of ATP-initiated calcification by matrix vesicles isolated from rachitic rat cartilage. Membrane perturbation by detergents and deposition of calcium pyrophosphate by rachitic matrix vesicles.

    PubMed

    Hsu, H H; Camacho, N P; Anderson, H C

    1999-01-12

    Although membrane associated enzymes such as ATPase, alkaline phosphatase, and NTP pyrophosphohydrolase in matrix vesicles (MVs) may underlie the mechanisms of ATP-promoted calcification, prior to the current investigation, the role of the MV membrane in calcification had not been addressed. In this study, various perturbations were introduced to the MV membrane in in vitro calcification systems to determine ideal conditions for ATP-initiated calcification by MVs isolated from rachitic rat epiphyseal cartilage. Membrane integrity appears to be required, since the rupture of the vesicular membrane by vigorously mixing with 10% butanol abolished calcification. In contrast, a mild treatment of MVs with low concentrations (e.g., 0.01%, which is much below the critical concentration for micelle formation) of either neutral Triton X-100 or anionic deoxycholate stimulated calcification by >2-fold, without inducing obvious changes in vesicular appearance. Fourier transform infrared spectroscopic studies were done to identify the mineral phase formed in these experiments. For the first time, rachitic MVs were shown to induce the formation of a calcium pyrophosphate dihydrate-like phase after their exposure to calcifying medium with 1 mM ATP. The integration of spectral areas indicated that calcification was enhanced by Triton X-100. The detergent effect was reversible and appeared to be not mediated through activation of ATPase, alkaline phosphatase, or ATP pyrophosphohydrolase. In contrast to neutral Triton X-100 and anionic deoxycholate, cationic cetyltrimethylammonium bromide inhibited both ATPase activity (I50=10 microM) and ATP-initiated calcification. These observations suggest that membrane perturbations can affect calcification and that the presence of NTP-pyrophosphohydrolase in MVs may play a role in the deposition of CaPPi in rachitic cartilage.

  10. Matrix isolation study of the ozonolysis of 1,3- and 1,4-cyclohexadiene: identification of novel reaction pathways.

    PubMed

    Pinelo, Laura; Gudmundsdottir, Anna D; Ault, Bruce S

    2013-05-23

    The ozonolysis reactions of 1,3- and 1,4-cyclohexadiene have been studied using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental and theoretical results demonstrate that these reactions predominantly do not follow the long-accepted Criegee mechanism. Rather, the reaction of O3 with 1,4-cyclohexadiene leads to the essentially barrierless formation of benzene, C6H6, and H2O3. These two species are then trapped in the same argon matrix cage and weakly interact to form a molecular complex. There is also evidence for the formation of a small amount of the primary ozonide as a minor product, formed through a transition state that is slightly higher in energy. The reaction of O3 with 1,3-cyclohexadiene follows two pathways, one of which is the Criegee mechanism through a low energy transition state leading to formation of the primary ozonide. In addition, with a similar barrier, ozone abstracts a single hydrogen from C5 while adding to C1, forming a hydroperoxy intermediate. This study presents two of the rare cases in which the Criegee mechanism is not the dominant pathway for the ozonolysis of an alkene as well as the first evidence for dehydrogenation of an alkene by ozone.

  11. Induction of extracellular matrix synthesis in normal human fibroblasts by anthraquinone isolated from Morinda citrifolia (Noni) fruit.

    PubMed

    Kim, Sung-Woo; Jo, Byoung-Kee; Jeong, Ji-Hean; Choi, Sun-Uk; Hwang, Yong-Il

    2005-01-01

    In previous studies we found that Morinda citrifolia (Noni) fruit extract up-regulated biosynthesis of type I collagen and glycosaminoglycans in primary cultures of normal human fibroblasts. The objective of this study was to identify the active ingredients in Noni fruit extract. An active single compound having a type I collagen-stimulating effect was isolated and identified as 1,4-dihydroxy-2-methoxy-7-methylanthraquinone by nuclear magnetic resonance, infrared, and mass analysis. It was revealed that anthraquinone showed significantly increased elaboration of procollagen type I C-terminal peptide and glycosaminoglycans and reduced expression of the collagenase matrix metalloproteinase-1 dose-dependently in human dermal fibroblasts. Furthermore, in a clinical trial, a nano-emulsion containing anthraquinone predominantly increased the dermal type I procollagen in nude mouse skin. These results suggest that anthraquinone derived from Noni extract is a good candidate for use as a new anti-wrinkle agent due to its strong induction of biosynthetic activity of extracellular matrix components.

  12. Conformational distortion of α-phenylethyl amine in cryogenic matrices - a matrix isolation VCD study.

    PubMed

    Pollok, Corina H; Merten, Christian

    2016-05-21

    The chiral amine α-phenylethyl amine (PEA) was isolated in cryogenic matrices and investigated using vibrational circular dichroism (VCD) and infrared spectroscopy. The potential energy surface (PES) of PEA features five different conformers connected by relatively low conformational transition states. Based on the IR spectra, it could be confirmed that all conformational energy barriers are passed at a deposition temperature of 20 K, and that only the global minimum conformation of PEA is populated in both argon and nitrogen matrices. However, differences in the calculated and experimental VCD spectra indicate deviations from the minimum structure by perturbation of the phenyl ring as well as of the amine orientation. The degree of the perturbation is found to also depend on the choice of the host gas, which shows the subtle influence of the environment on the conformational distortion of PEA.

  13. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    PubMed Central

    Vedicherla, Srujana

    2017-01-01

    Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation. PMID:28337445

  14. Observation of Trans-Ethanol and Gauche-Ethanol Complexes with Benzene Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay; Silbaugh, Matthew J.

    2016-06-01

    Ethanol can exist in two conformers, one in which the OH group is trans to the methyl group (trans-ethanol) and the other in which the OH group is gauche to the methyl group (gauche-ethanol). Matrix isolation infrared spectra of ethanol deposited in 20 K argon matrices display distinct infrared peaks that can be assigned to the trans-ethanol and gauche-ethanol conformers, particularly with the O-H stretching vibrations. Given this, matrix isolation experiments were performed in which ethanol (C_2H_5OH) and benzene (C_6H_6) were co-deposited in argon matrices at 20 K in order to determine if conformer specific ethanol complexes with benzene could be observed in the infrared spectra. New infrared peaks that can be attributed to the trans-ethanol and gauche-ethanol complexes with benzene have been observed near the O-H stretching vibrations of ethanol. The initial identification of the new infrared peaks as being due to the ethanol-benzene complexes was established by performing a concentration study (1:200 to 1:1600 S/M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments (35 K), and by performing experiments using isotopically labeled ethanol (C_2D_5OD) and benzene (C_6D_6). Quantum chemical calculations were also performed for the C_2H_5OH-C_6H_6 complexes using density functional theory (B3LYP) and ab initio (MP2) methods. Stable minima were found for the both the trans-ethanol and gauche-ethanol complexes with benzene at both levels of theory and were predicted to have similar interaction energies. Both complexes can be characterized as H-π complexes, in which the ethanol is above the benzene ring with the hydroxyl hydrogen interacting with the π cloud of the ring. The theoretical O-H stretching frequencies for the complexes were predicted to be shifted from the monomer frequencies and from each other and these results were used to make the conformer specific infrared peak assignments

  15. Matrix isolation infrared spectroscopic and theoretical study of 1,1,1-trifluoro-2-chloroethane (HCFC-133a)

    SciTech Connect

    Rodrigues, Gessenildo Pereira; Ventura, Elizete E-mail: rfausto@ci.uc.pt; Andrade do Monte, Silmar; Lucena, Juracy Régis; Reva, Igor; Fausto, Rui E-mail: rfausto@ci.uc.pt

    2013-11-28

    The molecular structure and infrared spectrum of the atmospheric pollutant 1,1,1-trifluoro-2-chloroethane (HCFC-133a; CF{sub 3}CH{sub 2}Cl) in the ground electronic state were characterized experimentally and theoretically. Excited state calculations (at the CASSCF, MR-CISD, and MR-CISD+Q levels) have also been performed in the range up to ∼9.8 eV. The theoretical calculations show the existence of one (staggered) conformer, which has been identified spectroscopically for the monomeric compound isolated in cryogenic (∼10 K) argon and xenon matrices. The observed infrared spectra of the matrix-isolated HCFC-133a were interpreted with the aid of MP2/aug-cc-pVTZ calculations and normal coordinate analysis, which allowed a detailed assignment of the observed spectra to be carried out, including identification of bands due to different isotopologues ({sup 35}Cl and {sup 37}Cl containing molecules). The calculated energies of the several excited states along with the values of oscillator strengths and previous results obtained for CFCs and HCFCs suggest that the previously reported photolyses of the title compound at 147 and 123.6 nm [T. Ichimura, A. W. Kirk, and E. Tschuikow-Roux, J. Phys. Chem. 81, 1153 (1977)] are likely to be initiated in the n-4s and n-4p Rydberg states, respectively.

  16. A Novel Compound Rasatiol Isolated from Raphanus sativus Has a Potential to Enhance Extracellular Matrix Synthesis in Dermal Fibroblasts

    PubMed Central

    Roh, Seok-Seon; Park, Seung-Bae; Park, Seong-Mo; Choi, Byoung Wook; Lee, Min-Ho; Hwang, Yul-Lye; Kim, Chang Hun; Jeong, Hyun-Ah; Kim, Chang Deok

    2013-01-01

    Background The fibrous proteins of extracellular matrix (ECM) produced by dermal fibroblast contributes to the maintenance of connective tissue integrity. Objective This study is carried out to identify the bioactive ingredient from natural products that enhances ECM production in dermal fibroblasts. Methods Bioassay-directed fractionation was used to isolate the active ingredient from natural extracts. The effects of rasatiol (isolated from Raphanus sativus) on ECM production in primary cultured human dermal fibroblasts was investigated by enzyme linked immunosorbent assay and western blot analysis. Results Rasatiol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen, fibronectin and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was remarkably increased by rasatiol, indicating that enhanced ECM production is linked to the activation of intracellular signaling cascades. Conclusion These results indicate that rasatiol stimulates the fibrous components of ECM production, and may be applied to the maintenance of skin texture. PMID:24003274

  17. Heavy atom effect on magnetic anisotropy of matrix-isolated monobromine substituted septet trinitrene.

    PubMed

    Misochko, Eugenii Ya; Masitov, Artem A; Akimov, Alexander V; Korchagin, Denis V; Chapyshev, Sergei V

    2015-03-19

    The heavy atom effect on the magnetic anisotropy of septet trinitrenes is reported. Septet 1-bromo-3,5-dichloro-2,4,6-trinitrenobenzene (S-1) was generated in a solid argon matrix by ultraviolet irradiation of 1,3,5-triazido-2-bromo-4,6-dichlorobenzene. This trinitrene displays an electron spin resonance (ESR) spectrum that drastically differs from ESR spectra of all previously studied septet trinitrenes. The zero-field splitting (ZFS) parameters, derived from the experimental spectrum, show the parameter |D| = 0.1237 cm(-1) and the unprecedentedly large ratio of E/D = 0.262 that is close to the rhombic limit E/D = 1/3 for high-spin molecules. The CASCI (based on state-averaged CASSCF) and DFT methods were applied to calculate the ZFS tensor focusing on the heavy (bromine) atom effects on the spin-orbit term. These calculations show that the multiconfigurational ab initio formalism and the CASCI method are the most successful for accurate predictions of the spin-orbit term in the ZFS tensor of high-spin nitrenes containing heavy bromine atoms. Due to the presence of the bromine atom in S-1, the contribution of the spin-orbit term to the total parameter D is dominant and responsible for the unusual orientation of the easy Z-axis lying in the molecular plane perpendicular to the C-Br bond. As a result, the principal values D(XX), D(YY), and D(ZZ) of the total tensor D̂(Tot) have such magnitudes and signs for which the ratio E/D is close to the rhombic limit, and the total parameter D is large in magnitude and positive in sign.

  18. Vibrational relaxation of matrix-isolated CH/sub 3/F and HCl

    SciTech Connect

    Young, L.

    1981-08-01

    Kinetic and spectroscopic studies have been performed on CH/sub 3/F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH/sub 3/F, relaxation from any of the levels near 3.5 ..mu.., i.e. the CH stretching fundamentals or bend overtones, occurs via rapid (< 5 ns) V ..-->.. V transfer to 2..nu../sub 3/ with subsequent relaxation of the ..nu../sub 3/ (CF stretch) manifold. Lifetimes of 2..nu../sub 3/ and ..nu../sub 3/ were determined through overtone, ..delta..V = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2..nu../sub 3/ and ..nu../sub 3/ is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V ..-->.. R transition in the rate limiting step.

  19. Theoretical studies of the reaction dynamics of the matrix-isolated F2+cis-d2 -ethylene system

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1991-12-01

    The molecular dynamics of the F2+cis-d2 -ethylene addition reaction and the subsequent decomposition dynamics of the vibrationally excited 1,2-difluoroethane-d2 product isolated in Ar or Xe matrices at 12 K are investigated using trajectory methods that incorporate nonstatistical sampling to enhance the reaction probabilities. The matrix is represented by a face-centered-cubic crystal containing 125 unit cells with 666 lattice atoms in a cubic (5×5×5) arrangement. Both interstitial and substitutional sites for the F2/cis-d2 -ethylene pair are examined. Transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The potential-energy hypersurface for the system is written as the separable sum of a lattice potential, a lattice-substrate interaction, and a gas-phase potential for 1,2-difluoroethane-d2. The first two of these have pairwise form, while the 1,2-difluoroethane-d2 potential is identical to that employed previously to study the unimolecular reaction dynamics of matrix-isolated 1,2-difluoroethane-d4 [J. Chem. Phys. 93, 3160 (1990)]. The major F2+cis-d2 -ethylene reaction mechanism involves a four-center, concerted αβ addition across the C=C double bond. A small contribution from an atomic addition mechanism that initially forms fluoroethyl and fluorine radicals is observed in a xenon matrix, but not in argon. Subsequent to the formation of 1,2-difluoroethane-d2, the observed dynamic processes are vibrational relaxation to the lattice phonon modes, orientational exchange, and HF or DF elimination reactions. Vibrational relaxation is found to be very similar to that observed previously for 1,2-difluoroethane-d4. The process is well described by a first-order rate law with rate coefficients in the range 0.046-0.069 ps-1. The distribution of rate coefficients, as well as the averages, are nearly identical for Ar and Xe lattices. Very little difference is found between

  20. Free base tetraazaporphine isolated in inert gas hosts: matrix influence on its spectroscopic and photochemical properties.

    PubMed

    Henchy, Chris; McCaffrey, John G; Arabei, Serguei; Pavich, Tatiana; Galaup, Jean-Pierre; Shafizadeh, Niloufar; Crépin, Claudine

    2014-09-28

    The absorption, fluorescence, and excitation spectra of free base tetraazaporphine (H2TAP) trapped in Ne, N2, and Ar matrices have been recorded at cryogenic temperatures. Normal Raman spectra of H2TAP were recorded in KBr discs and predicted with density functional theory (DFT) using large basis sets calculations. The vibrational frequencies observed in the Raman Spectrum exhibit reasonable agreement with those deduced from the emission spectra, as well as with frequencies predicted from large basis set DFT computations. The upper state vibrational frequencies, obtained from highly resolved, site selected excitation spectra, are consistently lower than the ground state frequencies. This contrasts with the situation in free base phthalocyanine, where the upper state shows little changes in vibrational frequencies and geometry when compared with the ground state. Investigations of the photochemical properties of H2TAP isolated in the three matrices have been performed using the method of persistent spectral hole-burning (PSHB). This technique has been used to reveal sites corresponding to distinct N-H tautomers which were not evident in the absorption spectra. An analysis of the holes and antiholes produced with PSHB in the Qx (0-0) absorption band made it possible to identify inter-conversion of distinct host sites.

  1. Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix.

    PubMed

    Vergnani, Luca; Barra, Anne-Laure; Neugebauer, Petr; Rodriguez-Douton, Maria Jesus; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Cornia, Andrea

    2012-03-12

    Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment.

  2. Infrared matrix isolation and theoretical studies of reactions of ozone with bicyclic alkenes: α-pinene, norbornene, and norbornadiene.

    PubMed

    Kugel, Roger W; Ault, Bruce S

    2015-01-15

    The reactions of ozone with three bicyclic alkenes, α-pinene, norbornene, and norbornadiene, were studied by low-temperature (14 K), argon matrix isolation infrared spectroscopy including (18)O isotope-labeling studies. Theoretical calculations of some of the proposed reaction intermediates and products were carried out using the Gaussian 09 suite of programs, applying density functional theory (DFT), the B3LYP functional, and the 6-311G++(d,2p) basis set. In the α-pinene/ozone system, the thermal reaction between α-pinene and ozone was too slow to observe under the twin-jet or merged-jet deposition conditions of these experiments. However, red light (λ ≥ 600 nm) irradiation of the argon matrixes containing α-pinene and ozone caused new infrared peaks to appear that could be readily assigned to reaction products of α-pinene with O((3)P) resulting from ozone photolysis: α-pinene oxide (with an epoxide ring) and two isomeric ketones. Norbornene and norbornadiene were both found to react with ozone in the gas phase during twin-jet or merged-jet deposition of these mixtures with argon. New peaks observed in the infrared spectra were assigned to the primary ozonides, Criegee intermediates, and secondary ozonides of norbornene and norbornadiene, indicating that the bulk of these reactions proceeded via the "classic" Criegee mechanism for ozonolysis of alkenes. Calculated infrared frequencies and molecular energies support these conclusions. Ultraviolet irradiation of these mixtures resulted in complete decomposition of the early intermediates and the formation of acids, aldehydes, alcohols, carbon dioxide, and carbon monoxide. In any case, no evidence for "unusual" chemistry, prompted by the bicyclic nature of the reactants, was observed.

  3. Isolation of rat heart endothelial cells and pericytes: evaluation of their role in the formation of extracellular matrix components.

    PubMed

    He, Q; Spiro, M J

    1995-05-01

    In order to facilitate investigation of the cells responsible for overproduction of type VI collagen in the extracellular matrix surrounding the capillaries of diabetic rat myocardium, procedures have been developed for the isolation from this tissue of endothelial cells as well as a cell type identified as pericytes. This was accomplished by enzymatic and mechanical disruption of ventricles from young rats (125 g) followed by removal of myocytes through their nonadherence to tissue culture surfaces. Endothelial cells were separated by fluorescence-activated cell sorting after staining with rhodamine-labeled acetylated low density lipoprotein and were identified by their monolayer growth pattern, reaction with anti-von Willebrand factor and the ability to form capillary-like tubes induced by low serum concentration. Pericytes were purified by selective scraping for removal of other cell types and were identified by their irregular shape, overlapping growth pattern at confluence, reaction with anti-smooth muscle actin and content of GLUT4 glucose transporter. Fibroblasts, visualized after staining with rhodamine-labeled alpha 2-macroglobulin, were only rarely detected. Analysis of collagen by immunoblotting indicated formation by both cell types of alpha 1(IV) collagen as well as the three subunits of type VI (alpha 3 at 205 kDa and alpha 1 plus alpha 2 at 150 kDa). Both endothelial cells and pericytes demonstrated transcripts for types VI, IV and I collagen, as well as fibronectin, but while the level of the mRNA for type IV collagen was higher in pericytes than in endothelial cells, the reverse was true for collagens VI and I and fibronectin. These observations suggest that both endothelial cells and pericytes contribute to formation of the myocardial capillary matrix, but that changes involving only type VI collagen, such as occur in diabetic cardiomyopathy, may reflect a response primarily of endothelial cells.

  4. CH stretching vibration of N-methylformamide as a sensitive probe of its complexation: infrared matrix isolation and computational study.

    PubMed

    Sałdyka, M; Mielke, Z; Mierzwicki, K; Coussan, S; Roubin, P

    2011-08-21

    The complexes between trans-N-methylformamide (t-NMF) and Ar, N(2), CO, H(2)O have been studied by infrared matrix isolation spectroscopy and/or ab initio calculations. The infrared spectra of NMF/Ne, NMF/Ar and NMF/N(2)(CO,H(2)O)/Ar matrices have been measured and the effect of the complexation on the perturbation of t-NMF frequencies was analyzed. The geometries of the complexes formed between t-NMF and Ar, N(2), CO and H(2)O were optimized in two steps at the MP2/6-311++G(2d,2p) level of theory. The four structures, found for every system at this level, were reoptimized on the CP-corrected potential energy surface; both normal and CP corrected harmonic frequencies and intensities were calculated. For every optimized structure the interaction energy was partitioned according to the SAPT scheme and the topological distribution of the charge density (AIM theory) was performed. The analysis of the experimental and theoretical results indicates that the t-NMF-N(2) and CO complexes present in the matrices are stabilized by very weak N-H···N and N-H···C hydrogen bonds in which the N-H group of t-NMF serves as a proton donor. In turn, the t-NMF-H(2)O complex present in the matrix is stabilized by O-H···O(C) hydrogen bonding in which the carbonyl group of t-NMF acts as a proton acceptor. Both, the theoretical and experimental results indicate that involvement of the NH group of t-NMF in formation of very weak hydrogen bonds with the N(2) or CO molecules leads to a clearly noticeable red shift of the CH stretching wavenumber whereas engagement of the CO group as a proton acceptor triggers a blue shift of this wavenumber.

  5. Spectroscopic and computational studies of matrix-isolated iso-CHBr3: structure, properties, and photochemistry of iso-bromoform.

    PubMed

    George, Lisa; Kalume, Aimable; Esselman, Brian J; Wagner, James; McMahon, Robert J; Reid, Scott A

    2011-09-28

    Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr(3)) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr(3) isolated in Ar or Ne matrices at ~5 K yielded iso-CHBr(3); the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr(3) potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie ~200 kJ/mol above the global CHBr(3) minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr(2) + Br asymptote. The photochemistry of iso-CHBr(3) was investigated by selected wavelength laser irradiation into the intense S(0) → S(3) transition, which resulted in back photoisomerization to CHBr(3). Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is lowered. © 2011 American Institute of Physics

  6. Matrix solid phase dispersion assisted enzymatic hydrolysis as a novel approach for cocaine and opiates isolation from human hair.

    PubMed

    Míguez-Framil, Martha; Cabarcos, Pamela; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-11-05

    The possibility of assisting enzymatic hydrolysis (EH) procedures by sample disruption mechanisms inherent to matrix solid phase dispersion (MSPD) has been explored in the current study. EH of hair specimens from poly-drug abusers was assisted by dispersing/blending the sample (0.05 g) with alumina (2.25 g) before loading the dissolved enzyme (6 mL of 1 mg mL(-1) Pronase E in 1.4 M/1.4 M Tris/HCl, pH 7.3) through the hair-alumina solid phase packaged inside a disposable MSPD syringe. The MSPD-EH method was developed, and it proved to offer quantitative results when isolating cocaine, benzoylecgonine (BZE), codeine, morphine and 6-monoacethylmorphine (6-MAM) from human hair samples. The procedure allows an on column clean-up/pre-concentration procedure of the isolated targets by attaching a previously conditioned Oasis HLB cartridge to the end of the MSPD syringe. The EH procedure of human hair with Pronase E can therefore be shortened to approximately 30 min. Within this time, sample blending/dispersion, MSPD syringe package, elution (EH when dissolved Pronase E is passing through the sample-dispersant bed), and extract clean-up and target pre-concentration stages are achieved. Gas chromatography-mass spectrometry (GC-MS) was used for determining each target after elution from the Oasis HLB cartridges with 2 mL of 2% (v/v) acetic acid in methanol, concentration by N2 stream evaporation, and dried extract derivatization with N-methyl-tert-butylsilyltrifluoroacetamide (BSTFA) and chlorotrimethylsilane (TMCS). The method was validated according to the guidance for bioanalytical method validation of the US Department of Health and Human Services, Food and Drug Administration. The simplicity of the proposed approach makes it a useful procedure for screening/quantifying drugs of abuse in hair specimens from poly-drug abusers.

  7. Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identifying Clinical Malassezia Isolates

    PubMed Central

    Machouart, Marie; Morio, Florent; Sabou, Marcela; Kauffmann-LaCroix, Catherine; Contet-Audonneau, Nelly; Candolfi, Ermanno; Letscher-Bru, Valérie

    2016-01-01

    ABSTRACT The genus Malassezia comprises commensal yeasts on human skin. These yeasts are involved in superficial infections but are also isolated in deeper infections, such as fungemia, particularly in certain at-risk patients, such as neonates or patients with parenteral nutrition catheters. Very little is known about Malassezia epidemiology and virulence. This is due mainly to the difficulty of distinguishing species. Currently, species identification is based on morphological and biochemical characteristics. Only molecular biology techniques identify species with certainty, but they are time-consuming and expensive. The aim of this study was to develop and evaluate a matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) database for identifying Malassezia species by mass spectrometry. Eighty-five Malassezia isolates from patients in three French university hospitals were investigated. Each strain was identified by internal transcribed spacer sequencing. Forty-five strains of the six species Malassezia furfur, M. sympodialis, M. slooffiae, M. globosa, M. restricta, and M. pachydermatis allowed the creation of a MALDI-TOF database. Forty other strains were used to test this database. All strains were identified by our Malassezia database with log scores of >2.0, according to the manufacturer's criteria. Repeatability and reproducibility tests showed a coefficient of variation of the log score values of <10%. In conclusion, our new Malassezia database allows easy, fast, and reliable identification of Malassezia species. Implementation of this database will contribute to a better, more rapid identification of Malassezia species and will be helpful in gaining a better understanding of their epidemiology. PMID:27795342

  8. Experimental cell for molecular beam deposition and magnetic resonance studies of matrix isolated radicals at temperatures below 1 K

    SciTech Connect

    Sheludiakov, S. Ahokas, J.; Vainio, O.; Järvinen, J.; Zvezdov, D.; Vasiliev, S.; Khmelenko, V. V.; Mao, S.; Lee, D. M.

    2014-05-15

    We present the design and performance of an experimental cell constructed for matrix isolation studies of H and D atoms in solid H{sub 2}/D{sub 2} films, which are created by molecular beam deposition at temperatures below 1 K. The sample cell allows sensitive weighing of the films by a quartz microbalance (QM) and their studies by magnetic resonance techniques in a strong magnetic field of 4.6 T. We are able to regulate the deposition rate in the range from 0.01 to 10 molecular layers/s, and measure the thickness with ≈0.2 monolayer resolution. The upper QM electrode serves as a mirror for a 128 GHz Fabry-Perot resonator connected to an electron spin resonance (ESR) spectrometer. H and D atoms were created by RF discharge in situ in the sample cell, and characterized by ESR and electron-nuclear double resonance. From the magnetic resonance measurements we conclude that the films are smooth and provide homogeneous trapping conditions for embedded atoms. The current sample cell design also makes it possible to calibrate the ESR signal and estimate the average and local concentrations of H and D radicals in the film.

  9. Inbreeding avoidance, patch isolation and matrix permeability influence dispersal and settlement choices by male agile antechinus in a fragmented landscape.

    PubMed

    Banks, Sam C; Lindenmayer, David B

    2014-03-01

    Animal dispersal is highly non-random and has important implications for the dynamics of populations in fragmented habitat. We identified interpatch dispersal events from genetic tagging, parentage analyses and assignment tests and modelled the factors associated with apparent emigration and post-dispersal settlement choices by individual male agile antechinus (Antechinus agilis, a marsupial carnivore of south-east Australian forests). Emigration decisions were best modelled with on data patch isolation and inbreeding risk. The choice of dispersal destination by males was influenced by inbreeding risk, female abundance, patch size, patch quality and matrix permeability (variation in land cover). Males were less likely to settle in patches without highly unrelated females. Our findings highlight the importance of individual-level dispersal data for understanding how multiple processes drive non-randomness in dispersal in modified landscapes. Fragmented landscapes present novel environmental, demographic and genetic contexts in which dispersal decisions are made, so the major factors affecting dispersal decisions in fragmented habitat may differ considerably from unfragmented landscapes. We show that the spatial scale of genetic neighbourhoods can be large in fragmented habitat, such that dispersing males can potentially settle in the presence of genetically similar females after moving considerable distances, thereby necessitating both a choice to emigrate and a choice of where to settle to avoid inbreeding.

  10. Infrared matrix isolation and theoretical study of the initial intermediates in the reaction of ozone with cis-2-butene.

    PubMed

    Clay, Mary; Ault, Bruce S

    2010-03-04

    Matrix isolation studies combined with infrared spectroscopy of the twin jet codeposition of ozone and cis-2-butene into argon matrices have led to the first observation of several early intermediates in this ozonolysis reaction. Specifically, evidence is presented for the formation and identification of the long sought-after Criegee intermediate, as well as confirming evidence for earlier reports of the primary and secondary ozonides. These species were observed after initial twin jet deposition, and grew upon annealing to 35 K. Extensive isotopic labeling ((18)O and (16,18)O mixtures) experiments provided important supporting data. Detailed theoretical calculations at the B3LYP/6-311++G(d,2p) level were carried out as well to augment the experimental work. Merged jet (flow reactor) experiments followed by cryogenic trapping in solid argon led to the formation of "late", stable oxidation products. Photochemical reactions of ozone with cis-2-butene was studied as well, as was the photochemical behavior of the primary and secondary ozonides.

  11. Matrix isolation study of the early intermediates in the ozonolysis of cyclopentene and cyclopentadiene: observation of two Criegee intermediates.

    PubMed

    Hoops, Michael D; Ault, Bruce S

    2009-03-04

    Matrix isolation studies, combined with infrared spectroscopy, of the twin jet codeposition of ozone into matrices containing either cyclopentadiene or cyclopentene have led to the first observation of several early intermediates in these ozonolysis reactions. Specifically, evidence is presented for the formation, identification, and characterization of the long sought-after Criegee intermediate for each system, as well as the primary and secondary ozonides. These were observed after initial twin jet deposition and grew approximately 300% upon annealing to 35 K. Extensive isotopic labeling ((2)H, (18)O and mixtures) experiments provided important supporting data. Detailed theoretical calculations at the B3LYP/6-311++G(d,2p) and B3LYP/6-311++G(3df, 3pd) levels were carried out as well to augment the experimental work. Merged jet (flow reactor) experiments followed by cryogenic trapping in solid argon led to the formation of "late" stable oxidation products of cyclopentadiene and cyclopentene. In contrast, no thermal reaction between ozone and cyclopentane was observed. Photochemical reactions of ozone with all three organic substrates were studied as well.

  12. Matrix isolation infrared spectroscopic and theoretical studies on the reactions of niobium and tantalum mono- and dioxides with methane.

    PubMed

    Wang, Guanjun; Lai, Sixue; Chen, Mohua; Zhou, Mingfei

    2005-10-27

    The reactions of niobium and tantalum monoxides and dioxides with methane have been investigated using matrix isolation infrared spectroscopic and theoretical calculations. The niobium and tantalum oxide molecules were prepared by laser evaporation of Nb(2)O(5) and Ta(2)O(5) bulk targets. The niobium monoxide molecule interacted with methane to form the ONb(CH(4)) complex, which was predicted to have C(3)(v)() symmetry with the metal atom coordinated to three hydrogen atoms of the methane molecule. The ONb(CH(4)) complex rearranged to the CH(3)Nb(O)H isomer upon 300 nm < lambda < 580 nm irradiation. The analogous OTa(CH(4)) complex was not observed, but the CH(3)Ta(O)H molecule was produced upon UV irradiation. The niobium and tantalum dioxide molecules reacted with methane to form the O(2)Nb(CH(4)) and O(2)Ta(CH(4)) complexes with C(s)() symmetry, which underwent photochemical rearrangement to the CH(3)Nb(O)OH and CH(3)Ta(O)OH isomers upon ultraviolet irradiation.

  13. Probing C-H⋯N interaction in acetylene-benzonitrile complex using matrix isolation infrared spectroscopy and DFT computations

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2017-04-01

    Hydrogen-bonded complexes of acetylene (C2H2) and the benzonitrile (C6H5CN) have been investigated using matrix isolation infrared spectroscopy and DFT computations. The structure of the complexes and the energies were computed at B3LYP and B3LYP+D3 levels of theory using 6-311++G (d, p) and aug-cc-pVDZ basis sets. DFT computations indicated two minima corresponding to the C-H⋯N (global) and C-H⋯π interactions (local) of 1:1 C2H2-C6H5CN complexes, where C2H2 is the proton donor in both complexes. Experimentally, the 1:1 C-H⋯N complex identified from the shifts in the C-H and Ctbnd N stretching modes corresponding to the C2H2 and C6H5CN sub-molecules in N2 and Ar matrices. Atoms in Molecules and Natural Bond Orbital analyses were performed to understand the nature of interaction and to unravel the reasons for red-shifting of the C-H stretching frequency in these complexes. Energy decomposition analysis was carried out to discern the various stabilizing and destabilizing components as a result of hydrogen bonding in the C2H2-C6H5CN complexes.

  14. Fourier transform infrared matrix-isolation analysis of acetaldehyde fragmentation products after charge exchange with Ar•+ under varied ionization density conditions.

    PubMed

    Thompson, Matthew G K; White, Matthew R; Linford, Bryan D; King, Kaitlynn A; Robinson, Mark M; Parnis, J Mark

    2011-10-01

    The products of the Ar(•+) charge exchange ionization of acetaldehyde have been isolated and compared with related photoionization results and computational work. Acetaldehyde has been used to assess the effect of varied ion density in the ionization region of the electron bombardment matrix isolation apparatus. The amount of acetaldehyde destruction has been measured for constant gas-sample composition and constant ionization current for two anode geometries: a pin anode and a plate anode. For the same ionization current, a pin-shaped anode demonstrates higher precursor molecule destruction efficiency (85%) than the plate-shaped anode (30%), resulting in substantial effect on the yield and quantity of isolated products. When the plate anode is used, the observed infrared products correspond to matrix-isolated carbon monoxide (CO), methane (CH(4)), ketene (CH(2)CO), ethynyloxy radical (HCCO), formyl radical (HCO(•)), acetyl radical (CH(3)CO(•)), vinyl alcohol (H(2)C = CH-OH), and cationic proton-bound dimer, Ar(2)H(+). When the pin anode is used, the same products are observed with different relative proportions and new absorption features corresponding to dicarbon monoxide (CCO) and methyl radical (CH(3)(•)) are observed. The surprising observation of infrared absorptions corresponding to vinyl alcohol along with low yield of products anticipated through the analysis of photoelectron-photoionization coincidence measurements suggests that the initially formed fragmentation products are able to further react within the matrix-isolation environment to influence observed product yields. Related experiments, using the isotopomer CD(3)CHO, suggest that the observed products are formed via radical-radical reactions that occur under the high pressure conditions of the matrix isolation environment. Copyright © 2011 John Wiley & Sons, Ltd.

  15. UV irradiation study of a tripeptide isolated in an argon matrix: A tautomerism process evidenced by infrared and X-ray photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, E.; Pradier, C. M.

    2013-05-01

    Matrix isolation is a powerful tool for studying photochemical processes occurring in isolated molecules. In this way, we characterized the chemical modifications occurring within a tri peptide molecule, IGF, when exposed to the influence of Ultraviolet (UV) irradiation. This paper first describes the successful formation of the tripeptide (IGF) argon matrix under vacuum conditions, followed by the in situ UV irradiation and characterization of the molecular matrix reactivity after UV-irradiation. These studies have been performed by combining two complementary spectroscopic techniques, Fourier-Transform Reflexion Absorption Spectroscopy (FT-IRRAS) and X-ray Photoelectron Spectroscopy (XPS). The IR spectra of the isolated peptide-matrix, before and after UV irradiation, revealed significant differences that could be associated either to a partial deprotonation of the molecule or to a tautomeric conversion of some amide bonds to imide ones on some peptide molecules. XPS analyses undoubtedly confirmed the second hypothesis; the combination of IRRAS and XPS results provide evidence that UV irradiation of peptides induces a chemical reaction, namely a shift of the double bond, meaning partial conversion from amide tautomer into an imidic acid tautomer.

  16. VUV Photolysis of NH_3: a Matrix Isolation Study of the Molecular Interactions Between Amidogen Radical and Ammonia Molecules

    NASA Astrophysics Data System (ADS)

    Krim, L.; Zins, E. L.

    2013-06-01

    The presence of NH_3 in the interstellar medium is very promising in terms of possible exobiologically-relevant reactions. This is the reason why numerous laboratory investigations on reactions involving NH_3 were carried out in the context of astrochemistry. Among other reactions, the photolysis of NH_3 was widely investigated. IR spectroscopy in solid phase as well as in rare-gas matrices suggested the formation of NH_2 radicals. In most of these experiments, samples containing NH_3 were prepared at cryogenic temperatures and further irradiated. On the other hand, since the penetration of the photons inside the solid ices as well as inside matrices is limited, the concentration of the photoproducts is weak, thus hindering possible secondary reaction studies. Furthermore, in addition with ice-grain irradiations, in the interstellar clouds, the gaseous species may be subjected to irradiation during their condensation on ice grains. In order to reproduce this effect, instead of irradiating samples obtained by condensation of NH_3 or NH_3/Ne gases at low temperatures, we carried experiments in which irradiation was carried out during the sample deposition. Thus, the amidogen radical and complexes between this radical and ammonia molecules were prepared and isolated in a neon matrix. The formation of (NH_2)(NH_3), (NH_2)(NH_3)_2 and (NH_2)(NH_3)_3 was clearly established thanks to the comparison between the theoretical and the experimental vibrational frequencies. Thus, such ammonia-containing aggregates may be formed in the interstellar clouds. These complexes, as solvated radicals, may further react with carbon- and oxygen-containing species present on the surface of ice grains. Such reactions may be a first step toward the formation of prebiotic molecules.

  17. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and their Ions. 6; Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.

  18. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Blood Isolates of Vibrio Species

    PubMed Central

    Cheng, Wern-Cherng; Jan, I-Shiow; Chen, Jong-Min; Teng, Shih-Hua; Teng, Lee-Jene; Sheng, Wang-Huei; Ko, Wen-Chien

    2015-01-01

    Among 56 blood isolates of Vibrio species identified by sequencing analysis of 16S rRNA and rpoB genes, the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system correctly identified all isolates of Vibrio vulnificus (n = 20), V. parahaemolyticus (n = 2), and V. fluvialis (n = 1) but none of the isolates of serogroup non-O1/O139 (non-serogroup O1, non-O139) V. cholerae (n = 33) to the species level. All of these serogroup non-O1/O139 V. cholerae isolates were correctly identified using the newly created MALDI-TOF MS database. PMID:25740773

  19. FTIR characterization of advanced materials

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  20. FTIR characterization of advanced materials

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  1. A new strategy for solving matrix effect in multivariate calibration standard addition data using combination of H-point curve isolation and H-point standard addition methods.

    PubMed

    Afkhami, Abbas; Abbasi-Tarighat, Maryam; Bahram, Morteza; Abdollahi, Hamid

    2008-04-21

    This work presents a new and simple strategy for solving matrix effects using combination of H-point curve isolation method (HPCIM) and H-point standard addition method (HPSAM). The method uses spectrophotometric multivariate calibration data constructed by successive standard addition of an analyte into an unknown matrix. By successive standard addition of the analyte, the concentrations of remaining components (interferents) remain constant and therefore give constant cumulative spectrum for interferents in the unknown mixture. The proposed method firstly extracts such spectrum using H-point curve isolation method and then applies the obtained cumulative interferents spectrum for determination of analyte by H-point standard addition method. In order to evaluate the applicability of the method a simulated as well as several experimental data sets were tested. The method was then applied to the determination of paracetamol in pharmaceutical tablets and copper in urine samples and in a copper alloy.

  2. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    PubMed Central

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-01-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature. PMID:28256639

  3. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase.

    PubMed

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-03-03

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.

  4. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    NASA Astrophysics Data System (ADS)

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-03-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.

  5. Interactions of molecules with HCl in the gas and matrix phases

    NASA Astrophysics Data System (ADS)

    George, W. O.; Lewis, Rh.; Hussain, G.; Rees, G. J.

    1988-10-01

    The FT-IR spectra of mixtures of HCl and the following compounds have been recorded in the gaseous and matrix isolated phases: argon, ethene, ethyne, d 6-benzene, fluorobenzene, CO, CO 2, SO 2, CCl 4, CHCl 3, d 6-acetone, ethanal, HCN, acrylonitrile. The features which are measured are: firstly the changes in the integrated intensity of lines in the rotation—vibration spectrum of the fundamental HCl band as a function of non-specific interactions with other components of the mixture and secondly bands associated with specific interactions forming hydrogen bonded complexes in the gas and matrix isolated phases. The relationship between the two kinds of interactions is discussed.

  6. Difluoro-lambda(5)-phosphinonitrile F(2)P[triple bond]N: matrix isolation and photoisomerization into FP=NF.

    PubMed

    Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge

    2009-01-01

    Splendid isolation: Monomeric phosphazene F(2)PN ((1)A(1)) was prepared for the first time through irradiation of F(2)PN(3) in an argon matrix with an ArF excimer laser (lambda=193 nm). Upon subsequent irradiation with a high-pressure mercury arc lamp (lambda=255 nm), F(2)PN undergoes a 1,2-fluorine shift to give iminophosphane cis-FP=NF.

  7. What is Different Between Borazine-Acetylene and Benzene-Acetylene a Matrix Isolation and Ab-Initio Study.

    NASA Astrophysics Data System (ADS)

    Verma, Kanupriya; Viswanathan, K. S.

    2016-06-01

    Borazine (B_3N_3H_6)-C_2H_2 system was studied experimentally, using matrix isolation infrared spectroscopy and supported by ab-initio computations. B_3N_3H_6, also referred to as inorganic benzene, presents an interesting comparison with C_6H_6. While C_6H_6 has a delocalized π system, B_3N_3H_6 has electron density centered on the nitrogen atoms, while the boron atoms are electron deficient. In addition, B_3N_3H_6 can also serve as a proton donor through N-H group. Similarly, C_2H_2 can act both as a proton donor, using the hydrogen attached to the sp carbon or as a proton acceptor at its π-cloud. At the MP2/aug-cc-pVDZ level of theory, C_6H_6-C_2H_2 system showed three minimaThe. global minimum was a structure where the C_2H_2 was the proton donor to the C_6H_6 π system. The next was a local minimum where the C_6H_6 was the proton donor to C_2H_2 and the third was a π stacked structure. B_3N_3H_6-C_2H_2 also shows three minima at the same level of theory mentioned above. One was a structure where C_2H_2 donates a proton to B_3N_3H_6, approaching it from above the plane of the ring, much like in C_6H_6-C_2H_2. A second near degenerate structure was also located where the C_2H_2 serves as a proton acceptor towards the N-H group of B_3N_3H_6. A similar structure in C_6H_6-C_2H_2 was a local minimum. While in the case of C_6H_6-C_2H_2, the global minimum was the only one observed in the experiments, in the case of B_3N_3H_6-C_2H_2, both near degenerate minima mentioned above were observed in the matrix. B_3N_3H_6-C_2H_2 therefore reveals similarities and differences from the C_6H_6-C_2H_2 system. A π-stacked local minimum was also computationally indicated in the B_3N_3H_6-C_2H_2 system, though it was not observed in our experiments. Our earlier work comparing B_3N_3H_6-H_2O to C_6H_6-H_2O also yielded a similar behavioral pattern. Details of the experimental data and computational results will be presented. References: 1. M. Majumder, B. K. Mishra, N

  8. Ethene insertion into vanadium hydride intermediates formed via vanadium atom reaction with water or ethene: a matrix isolation infrared spectroscopic study.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2008-05-19

    The reaction of V atoms with H2O and various concentrations of C2D4 in argon has been investigated by matrix isolation infrared (IR) spectroscopy. Both C2D6 and CD2H-CD2H are observed as the major products of a set of parallel processes involving hydrogenation of ethene where the formal source of hydrogen is either C2D4 or H2O. Portions of the IR spectrum of CD2H-CD2H isolated in an argon matrix are observed for the first time. For experiments involving low concentrations of C2D4, irradiation of the matrix with light of wavelengths >455 nm results in VH2 formation, with limited observation of ethene hydrogenation. The source of H2 is believed to be due to photoelimination of molecular hydrogen from HO-V-H species, during matrix deposition, with OV as an additional product. Recombination of OV with available H2 in the matrix is proposed as the source of OVH2 under low ethene conditions. No evidence for VD2 formation is observed under our conditions. At higher C2D4 concentrations, VH2 formation is suppressed, while products of ethene hydrogenation are maximized. A second process competing with H2 elimination in which HO-V-H reacts with C2D4 is proposed. Parallel reaction schemes involving V atom insertion into the O-H bonds of water or the photoinduced insertion of V atoms into the C-D bonds of C2D4 are proposed to account for the observed hydrogenation products. In each mechanism, insertion of C2D4 into the V-H or V-D bonds of transient intermediates is followed by photoinduced elimination of the associated ethane isotopomer.

  9. Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes.

    PubMed

    Tsuge, Masashi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2013-12-12

    The photochemistry of ozone-water complexes and the wavelength dependence of the reactions were studied by matrix isolation FTIR spectrometry in neon, argon, and krypton matrixes. Hydrogen peroxide was formed upon the irradiation of UV light below 355 nm. Quantitative analyses of the reactant and product were performed to evaluate the matrix cage effect of the photoreaction. In argon and krypton matrixes, a bimolecular O((1)D) + H2O → H2O2 reaction was found to occur to form hydrogen peroxide, where the O((1)D) atom generated by the photolysis of ozone diffused in the cryogenic solids to encounter water. In a neon matrix, hydrogen peroxide was generated through intracage photoreaction of the ozone-water complex, indicating that a neon matrix medium is most appropriate to study the photochemistry of the ozone-water complex.

  10. Advances in handheld FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric

    2012-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.

  11. Intramolecular CH⋯π and CH⋯O interactions in the conformational stability of benzyl methyl ether studied by matrix-isolation infrared spectroscopy and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Shin-ya, Kei; Takahashi, Osamu; Katsumoto, Yukiteru; Ohno, Keiichi

    2007-02-01

    Contributions of the intramolecular CH⋯π and CH⋯O interactions to the molecular conformation of benzyl methyl ether (BME) have been investigated by matrix-isolation infrared (IR) spectroscopy combined with quantum chemical calculations. Comparative investigations have been carried out for propylbenzene. Quantum chemical calculations predict that there are two conformers for BME; for the ET conformer the methyl ether and the phenyl groups lie in the plane of the benzene ring, while for the AG conformer they are out of the plane. Comparison between the observed and calculated spectra for BME reveals that the ET and AG conformers coexist in an Ar matrix. By measuring matrix-isolation IR spectra of BME deposited at different gas temperatures, the enthalpy difference (Δ H (AG - ET)) between ET and AG conformers was determined to be -1.03 ± 0.06 kJ mol -1. The experimental and calculation results indicate that the AG conformer of BME is stabilized by the intramolecular CH⋯π and CH⋯O interactions.

  12. Evaluation of gas chromatography/matrix isolation infrared spectrometry for the determination of semivolatile organic compounds in air-sample extracts

    SciTech Connect

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1992-01-01

    The capabilities of gas chromatography/matrix isolation-infrared (GC/MI-IR) spectrometry for determination of semivolatile organic compounds (SVOCs) in air sample extracts were evaluated. Systematic experiments, using xylene isomers as test compounds, were conducted to determine the repeatability of the steps involved in GC/MI-IR measurements and to identify parameters that affect the precision in quantitation. The repeatability of MI-IR net absorbance measurements for single and replicate depositions was determined. The MI-IR net absorbance was nonlinear at concentrations higher than 52.1 ng/microliters, probably due to an increase in the sample spot size relative to the IR beam focus or a decrease in the matrix-to-solute ratio to less than acceptable matrix isolation conditions. The method detection limit for xylene isomers was between 1 and 2 ng/microliters injected on-column for routine measurements. Extensive signal averaging was required to obtain spectra at concentrations less than 1 ng/microliters. The method was tested by determining target SVOCs in ambient air sample extracts. The MI-IR quantitative results were compared to those from the system's flame ionization detector(FID). The FID response exhibited a high bias when unknown compounds coeluted with target analytes. The ability of GC/MI-IR to quantify target compounds in the presence of interferents and to discriminate between coeluting isomers is demonstrated.

  13. Molecular and phylogenetic analysis of matrix gene of avian influenza viruses isolated from wild birds and live bird markets in the USA.

    PubMed

    Chander, Yogesh; Jindal, Naresh; Sreevatsan, Srinand; Stallknecht, David E; Goyal, Sagar M

    2013-07-01

    Wild birds are the natural hosts for influenza A viruses (IAVs) and provide a niche for the maintenance of this virus. This study was undertaken to analyze nucleotide sequences of the matrix (M) gene of AIVs isolated from wild birds and live bird markets (LBMs) to index the changes occurring in this gene. M-gene of 229 avian influenza virus (AIV) isolates obtained from wild birds and LBMs was amplified and sequenced. Full-length sequences (∼900 nt.) thus obtained were analyzed to identify changes that may be associated with resistance to adamantanes. Phylogenetic analysis of all sequences was performed using clustalw, and evolutionary distances were calculated by maximum composite likelihood method using mega (ver. 5.0) software. Twenty-seven different viral subtypes were represented with H3N8 being the most dominant subtype in wild birds and H7N2 being the predominant subtype among isolates from LBMs. Phylogenetic analysis of the M-gene showed a high degree of nucleotide sequence identity with US isolates of AIVs but not with those of Asian or European lineages. While none of the isolates from wild birds had any antiviral resistance-associated mutations, 17 LBM isolates carried polymorphisms known to cause reduced susceptibility to antiviral drugs (adamantanes). Of these 17 isolates, 16 had S31N change and one isolate had V27A mutation. These results indicate independent evolution of M-gene in the absence of any antiviral drugs leading to mutations causing resistance indicating the need for continued active surveillance of AIVs. © 2012 John Wiley & Sons Ltd.

  14. Solid H2 versus solid noble-gas environment: Influence on photoinduced hydrogen-atom transfer in matrix-isolated 4(3H)-pyrimidinone

    NASA Astrophysics Data System (ADS)

    Lapinski, Leszek; Nowak, Maciej J.; Rostkowska, Hanna

    2017-03-01

    UV-induced transformations have been studied for 4(3H)-pyrimidinone monomers isolated in low-temperature Ar, Ne, n-D2, and n-H2 matrices. The observed photochemical behavior of the compound drastically depended on the solid matrix environment. For 4(3H)-pyrimidinone isolated in solid Ar, the UV-induced phototautomeric transformation was clearly the dominating process, leading to a nearly quantitative conversion of the oxo reactant into the hydroxy product. For solid Ne environment, the oxo → hydroxy transformation was still the major photoprocess, but yielding less of the hydroxy product (ca. 64% of the yield in solid Ar). For 4(3H)-pyrimidinone isolated in solid n-H2, the oxo → hydroxy phototautomeric conversion did not occur (or occurred at a very tiny scale). Also for deuterated 4(3D)-pyrimidinone isolated in solid hydrogen, the analogous oxo → deuteroxy phototransformation was not observed. Finally, for the compound trapped in solid n-D2, the oxo → hydroxy phototautomerism clearly occurred, but the yield of the hydroxy tautomer was small (ca. 18% of the yield in solid Ar). Apart from hydrogen-atom-transfer processes, two other phototransformations: generation of open-ring conjugated ketene and valence Dewar isomer were observed for the compound isolated in Ar, Ne, n-D2, and n-H2 matrices.

  15. Modeling and spectral simulation of matrix-isolated molecules by density functional calculations: A case study on formic acid dimer

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2010-12-01

    The supermolecule approach has been used to model molecules embedded in solid argon matrix, wherein interaction between the guest and the host atoms in the first solvation shell is evaluated with the use of density functional calculations. Structural stability and simulated spectra have been obtained for formic acid dimer (FAD)-Arn (n = 21-26) clusters. The calculations at the B971/6-31++G(3df,3pd) level have shown that the tetrasubstitutional site on Ar(111) plane is likely to incorporate FAD most stably, in view of consistency with the matrix shifts available experimentally.

  16. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Sundararajan, K.; Vidya, K.; Jemmis, Eluvathingal D.

    2016-03-01

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311 ++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed.

  17. Matrix isolation infrared and DFT study of the trimethyl phosphite-hydrogen chloride interaction: hydrogen bonding versus nucleophilic substitution.

    PubMed

    Ramanathan, N; Kar, Bishnu Prasad; Sundararajan, K; Viswanathan, K S

    2012-12-13

    Trimethyl phosphite (TMPhite) and hydrogen chloride (HCl), when separately codeposited in a N(2) matrix, yielded a hydrogen bonded adduct, which was evidenced by shifts in the vibrational frequencies of the TMPhite and HCl submolecules. The structure and energy of the adducts were computed at the B3LYP level using 6-31++G** and aug-cc-pVDZ basis sets. While our computations indicated four minima for the TMPhite-HCl adducts, only one adduct was experimentally identified in the matrix at low temperatures, which interestingly was not the structure corresponding to the global minimum, but was the structure corresponding to the first higher energy local minimum. The Onsager self-consistent reaction field model was used to explain this observation. In an attempt to prepare the hydrogen bonded adduct in the gas phase and then trap it in the matrix, TMPhite and HCl were premixed prior to deposition. However, in these experiments, no hydrogen bonded adduct was observed; on the contrary, TMPhite reacted with HCl to yield CH(3)Cl, following a nucleophilic substitution, a reaction that is apparently frustrated in the matrix.

  18. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  19. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  20. Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry for identification of Clostridium species isolated from Saudi Arabia.

    PubMed

    AlMogbel, Mohammed Suliman

    2016-01-01

    The aim of this study was to identify different Clostridium spp. isolated from currency notes from the Ha'il region of Saudi Arabia in September 2014 using MALDI-TOF-MS. Clostridium spp. were identified by Bruker MALDI-TOF-MS and compared with VITEK 2. The confirmation of the presence of different Clostridium spp. was performed by determining the sequence of the 16S ribosomal RNA gene. In this study, 144 Clostridium spp. were isolated. Among these specimens, MALDI-TOF-MS could identify 88.8% (128/144) of the isolates to the species level and 92.3% (133/144) to the genus level, whereas, VITEK 2 identified 77.7% of the (112/144) isolates. The correct identification of the 144 isolates was performed by sequence analysis of the 500bp 16S rRNA gene. The most common Clostridium spp. identified were Clostridium perfringens (67.36%), Clostridium subterminale (14.58%), Clostridium sordellii (9%) and Clostridium sporogenes (9%). The results of this study demonstrate that MALDI-TOF-MS is a rapid, accurate and user friendly technique for the identification of Clostridium spp. Additionally, MALDI-TOF-MS has advantages over VITEK 2 in the identification of fastidious micro-organisms, such as Clostridium spp. Incorporating this technique into routine microbiology would lead to more successful and rapid identification of pathogenic and difficult to identify micro-organisms. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress.

    PubMed

    Schaeffer, Carolyn R; Hoang, Tra-My N; Sudbeck, Craig M; Alawi, Malik; Tolo, Isaiah E; Robinson, D Ashley; Horswill, Alexander R; Rohde, Holger; Fey, Paul D

    2016-01-01

    Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCEStaphylococcus epidermidis is a leading cause of infections related

  2. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

    PubMed Central

    Schaeffer, Carolyn R.; Hoang, Tra-My N.; Sudbeck, Craig M.; Alawi, Malik; Tolo, Isaiah E.; Robinson, D. Ashley; Horswill, Alexander R.; Rohde, Holger

    2016-01-01

    ABSTRACT Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCE Staphylococcus epidermidis is a leading cause of

  3. Gradient x Isocratic Elution CCC on the Isolation of Verbascoside and Other Phenylethanoids: Influence of the Complexity of the Matrix.

    PubMed

    Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães

    2015-11-01

    Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode. Georg Thieme Verlag KG Stuttgart · New York.

  4. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  5. HOSO/sub 2/ and HOSO/sub 4/ radicals studied by ab initio calculation and matrix isolation technique

    SciTech Connect

    Nagase, S.; Hashimoto, S.; Akimoto, H.

    1988-02-11

    Sulfo (HOSO/sub 2/) and sulfodioxy (HOSO/sub 4/) radicals have been characterized by use of ab initio calculations at the HF/3-21G(*) level, and the results were compared with the infrared spectral data from low-temperature-matrix experiments. The calculated vibrational frequencies and the isotope shift as well as a supplemental experimental result supported the assignment of the observed infrared absorption bands in the Ar matrix at 3539.9 (3528.6), 1309.2 (1308.7), 1097.3 (1096.0), and 759.5 (735.1) cm/sup -1/ to the O--H st, S(=O)/sub 2/ asym st, S(=O)/sub 2/ sym st, and S-OH st modes of the H/sup 16/OS/sup 16/O/sub 2/ (H/sup 18/OS/sup 16/O/sub 2/) radical, respectively. The HOSO/sub 4/ radical was found to be located as a minimum on the potential surface, and the fully optimized geometry and vibrational frequencies were obtained, although the detection of the radical in the O/sub 2/ matrix was unsuccessful. Enthalpy changes for the reactions HOSO/sub 2/ + O/sub 2/ ..-->.. HO/sub 2/ + SO/sub 3/ (2) and HOSO/sub 2/ + O/sub 2/ ..-->.. HOSO/sub 4/ (3) were calculated at the MP4(SDTQ)/6031G**//3-21G(*) and MP3/6-31G**//3-21G(*) levels, respectively, and the results were discussed in comparison with the experimental evidence

  6. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. I - The naphthalene cation (C10H8/+/)

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1991-01-01

    The ultraviolet, visible, and near-infrared absorption spectra of naphthalene (C10H8) and its radical ion (C10H8/+/), formed by vacuum ultraviolet irradiation, were measured in argon and neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion production in the solid phase. The absorption coefficients were calculated for the ion and found lower than previous values, presumably due to the low polarizability of the neon matrix.

  7. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures.

    PubMed

    Kishii, K; Kikuchi, K; Matsuda, N; Yoshida, A; Okuzumi, K; Uetera, Y; Yasuhara, H; Moriya, K

    2014-05-01

    The clinical relevance of Acinetobacter species, other than A. baumannii, as human pathogens has not been sufficiently assessed owing to the insufficiency of simple phenotypic clinical diagnostic laboratory tests. Infections caused by these organisms have different impacts on clinical outcome and require different treatment and management approaches. It is therefore important to correctly identify Acinetobacter species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been introduced to identify a wide range of microorganisms in clinical laboratories, but only a few studies have examined its utility for identifying Acinetobacter species, particularly those of the non-Acinetobacter baumannii complex. We therefore evaluated MALDI-TOF MS for identification of Acinetobacter species by comparing it with sequence analysis of rpoB using 123 isolates of Acinetobacter species from blood. Of the isolates examined, we identified 106/123 (86.2%) to species, and 16/123 (13.0%) could only be identified as acinetobacters. The identity of one isolate could not be established. Of the 106 species identified, 89/106 (84.0%) were confirmed by rpoB sequence analysis, and 17/106 (16.0%) were discordant. These data indicate correct identification of 89/123 (72.4%) isolates. Surprisingly, all blood culture isolates were identified as 13 species of Acinetobacter, and the incidence of Acinetobacter pittii was unexpectedly high (42/123; 34.1%) and exceeded that of A. baumannii (22/123; 17.9%). Although the present identification rate using MALDI-TOF MS is not acceptable for species-level identification of Acinetobacter, further expansion of the database should remedy this situation.

  8. Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory.

    PubMed

    Eigner, Ulrich; Holfelder, Martin; Oberdorfer, Klaus; Betz-Wild, Ulrike; Bertsch, Daniela; Fahr, Anne-Marie

    2009-01-01

    Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has emerged as a new tool for the fast and reliable identification of microorganisms. We evaluated the performance of a MALDI-TOF MS-system for the identification of various clinical isolates in the routine microbiology setting. For the evaluation study a set of 1116 bacterial isolates were collected in the routine microbiology laboratory. Additonally 108 isolates of strain culture collections (ATTC, DSMZ) were utilized. Identification of the bacterial isolates was perfomed with a Microflex LT mass spectrometer in combination with the MALDI-Biotyper 2.0 software (Bruker Daltonik GmbH, Bremen, Germany). The results of the MALDI-TOF MS were compared to phenotypic bacterial identification systems used in our routine laboratory. Discrepancies were resolved by 16 S rDNA-sequencing. Of the 108 reference strains tested, 101 (93.5%) were correctly identified to species level. Overall, 1062 (95.2%) of the 1116 strains collected in the routine laboratory were correctly identified with the MALDI-Biotyper. Accuracy for the identification of Enterobacteriaceae, non-fermenting gram-negative rods, staphylococci, enterococci and streptococci with the MALDI-Biotyper was 95.5%, 79.7%, 99.5%, 100% and 93.7%, respectively. Results were available in 12 minutes for direct smear and in 20 min with an extraction method. The MALDI-TOF method proves to be a fast and reliable method for the identification of the most important bacterial isolates in the clinical laboratory.

  9. FT-IR study of montmorillonite-chitosan nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M.

    2011-08-01

    Bone defect is one of the most frequent problems in bone tissue reconstruction in which application of a biomaterial filling is necessary. It creates a still rising demand of biomaterials for bone surgery. Polymer-ceramic nanocomposites (e.g. based on chitosan matrix) is a group of novel materials whose properties such as strength, Young's modulus, bioactivity and controlled degradation time make them suitable materials for filling bone defects. Investigations of nanocomposite foils which consisted of biopolymer-chitosan (CS) matrix and montmorillonite (MMT) as a nano-filler was the subject of the work. The nanocomposite materials were produced by a two-step dispersion of the nanoparticles in the biopolymer matrix. The first stage involved mechanical stirring and the second one - ultrasonic agitation. Mechanical tests were performed on the nanocomposites and their Young's modulus was estimated. Significant improvement of mechanical properties of the nanocomposites in comparison with the pure polymer (CS) was observed. The nanocomposite foils (CS/MMT) were subjected to FT-IR spectroscopy investigations whose objective was to explain the reason of the change in mechanical characteristics of the nanocomposites. Transmission and ATR techniques operating in MIR range were used to study the nanocomposites. The FT-IR techniques were used to determine interactions at nanoparticle-biopolymer matrix interface. A pure unmodified CS foil was used as a reference material for FT-IR studies. It was proven that application of FT-IR techniques allows not only to identify phases, but also to explain structural changes in the systems studied.

  10. Difluorophosphoryl nitrene F2P(O)N: matrix isolation and unexpected rearrangement to F2PNO.

    PubMed

    Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram

    2009-12-14

    Triplet difluorophosphoryl nitrene F(2)P(O)N (X(3)A'') was generated on ArF excimer laser irradiation (lambda=193 nm) of F(2)P(O)N(3) in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS-QB3 calculations. On visible light irradiation (lambda>420 nm) at 16 K F(2)P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (lambda=255 nm) of F(2)P(O)N (X(3)A'') induced a Curtius-type rearrangement, but instead of a 1,3-fluorine shift, nitrogen migration to give F(2)PON is proposed to be the first step of the photoisomerization of F(2)P(O)N into F(2)PNO (difluoronitrosophosphine). Formation of novel F(2)PNO was confirmed with (15)N- and (18)O-enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P-N bond of 1.922 A [B3LYP/6-311+G(3df)] and low bond-dissociation energy of 76.3 kJ mol(-1) (CBS-QB3) for F(2)PNO.

  11. Morphology and structure features of ZnAl{sub 2}O{sub 4} spinel nanoparticles prepared by matrix-isolation-assisted calcination

    SciTech Connect

    Du, Xuelian; Li, Liqiang; Zhang, Wenxing; Chen, Wencong; Cui, Yuting

    2015-01-15

    Graphical abstract: The substrate ZnO as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. High purity, well-dispersed, and single-crystal ZnAl{sub 2}O{sub 4} nanoparticles with 3.72 eV band gap were obtained. - Abstract: Well-dispersed ZnAl{sub 2}O{sub 4} spinel nanoparticles with an average crystalline size of 25.7 nm were synthesized successfully and easily by polymer-network and matrix-isolation-assisted calcination. The product microstructure and features were investigated by X-ray diffractometry, thermogravimetric and differential thermal analysis, Fourier transform-infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, and energy dispersive X-ray spectra. The morphology and optical performance of the as-prepared ZnAl{sub 2}O{sub 4} nanoparticles were characterized by scanning electron microscope, transmission electron microscopy, and photoluminescence spectrometer. Experimental results indicate that excess ZnO acted as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. Then, high purity and well-dispersed ZnAl{sub 2}O{sub 4} nanoparticles with single-crystal structure were obtained.

  12. Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Panda, A; Kurapati, S; Samantaray, J C; Myneedu, V P; Verma, A; Srinivasan, A; Ahmad, H; Behera, D; Singh, U B

    2013-01-01

    The purpose of this study was to evaluate the identification of Mycobacterium tuberculosis which is often plagued with ambiguity. It is a time consuming process requiring 4-8 weeks after culture positivity, thereby delaying therapeutic intervention. For a successful treatment and disease management, timely diagnosis is imperative. We evaluated a rapid, proteomic based technique for identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Freshly grown mycobacterial isolates were used. Acetonitrile/trifluoroacetic acid extraction procedure was carried out, following which cinnamic acid charged plates were subjected to identification by MALDI-TOF MS. A comparative analysis of 42 clinical mycobacterial isolates using the MALDI-TOF MS and conventional techniques was carried out. Among these, 97.61% were found to corroborate with the standard methods at genus level and 85.36% were accurate till the species level. One out of 42 was not in accord with the conventional assays because MALDI-TOF MS established it as Mycobacterium tuberculosis (log (score)>2.0) and conventional methods established it to be non-tuberculous Mycobacterium. MALDI-TOF MS was found to be an accurate, rapid, cost effective and robust system for identification of mycobacterial species. This innovative approach holds promise for early therapeutic intervention leading to better patient care.

  13. Characterization of plasticizers in solid propellant formulations by FTIR-microscopic, FTIR-photoacoustic, and GC-FTIR techniques

    NASA Astrophysics Data System (ADS)

    Pesce-Rodriguez, Rose A.; Fifer, Robert A.

    1992-03-01

    Investigation of plasticizer levels in solid propellants has been carried out using three FTIR techniques: FTIR-microscopy (FTIR-mic), photoacoustic-FTIR (PA-FTIR), and gas chromatography-FTIR (GC-FTIR). Two plasticizers have been examined; only one of these appears to have a tendency to evaporate from the solid propellants. It was observed that when both plasticizers are present in the same formulation, evaporation of the more volatile plasticizer is notably decreased. Significantly higher levels of plasticizer and polymeric binder have been found at extruded surfaces than have been found in the interior of the grain. Desorption-GC-FTIR analysis revealed a relationship between processing conditions and residual solvent content.

  14. Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting.

    PubMed

    Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H

    2008-08-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral 'fingerprints' for twelve Penicillium species. Prior to MALDI-TOF MS analysis, eight replicate cultures of each Penicillium species were subjected to three one-minute bead-beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contained abundant peaks in the range of m/z 5000-20 000, and allowed unambiguous discrimination between species. In addition, a biomarker common to all Penicillium mass spectra was observed at m/z 13 900. Discriminant analysis using the MALDI-TOF MS data yielded classification error rates of 0% (i.e. 100% correct identification), indicating that MALDI-TOF MS data may be a useful diagnostic tool for the objective identification of Penicillium species of environmental and clinical importance.

  15. The influence of landscape matrix on isolated patch use by wide-ranging animals: conservation lessons for woodland caribou

    PubMed Central

    Lesmerises, Rémi; Ouellet, Jean-Pierre; Dussault, Claude; St-Laurent, Martin-Hugues

    2013-01-01

    For conservation purposes, it is important to design studies that explicitly quantify responses of focal species to different land management scenarios. Here, we propose an approach that combines the influence of landscape matrices with the intrinsic attributes of remaining habitat patches on the space use behavior of woodland caribou (Rangifer tarandus caribou), a threatened subspecies of Rangifer. We sought to link characteristics of forest remnants and their surrounding environment to caribou use (i.e., occurrence and intensity). We tracked 51 females using GPS telemetry north of the Saguenay River (Québec, Canada) between 2004 and 2010 and documented their use of mature forest remnants ranging between 30 and ∼170 000 ha in a highly managed landscape. Habitat proportion and anthropogenic feature density within incremental buffer zones (from 100 to 7500 m), together with intrinsic residual forest patch characteristics, were linked to caribou GPS location occurrence and density to establish the range of influence of the surrounding matrix. We found that patch size and composition influence caribou occurrence and intensity of use within a patch. Patch size had to reach approximately 270 km2 to attain 75% probability of use by caribou. We found that small patches (<100 km2) induced concentration of caribou activities that were shown to make them more vulnerable to predation and to act as ecological traps. Woodland caribou clearly need large residual forest patches, embedded in a relatively undisturbed matrix, to achieve low densities as an antipredator strategy. Our patch-based methodological approach, using GPS telemetry data, offers a new perspective of space use behavior of wide-ranging species inhabiting fragmented landscapes and allows us to highlight the impacts of large scale management. Furthermore, our study provides insights that might have important implications for effective caribou conservation and forest management. PMID:24101980

  16. The influence of landscape matrix on isolated patch use by wide-ranging animals: conservation lessons for woodland caribou.

    PubMed

    Lesmerises, Rémi; Ouellet, Jean-Pierre; Dussault, Claude; St-Laurent, Martin-Hugues

    2013-09-01

    For conservation purposes, it is important to design studies that explicitly quantify responses of focal species to different land management scenarios. Here, we propose an approach that combines the influence of landscape matrices with the intrinsic attributes of remaining habitat patches on the space use behavior of woodland caribou (Rangifer tarandus caribou), a threatened subspecies of Rangifer. We sought to link characteristics of forest remnants and their surrounding environment to caribou use (i.e., occurrence and intensity). We tracked 51 females using GPS telemetry north of the Saguenay River (Québec, Canada) between 2004 and 2010 and documented their use of mature forest remnants ranging between 30 and ∼170 000 ha in a highly managed landscape. Habitat proportion and anthropogenic feature density within incremental buffer zones (from 100 to 7500 m), together with intrinsic residual forest patch characteristics, were linked to caribou GPS location occurrence and density to establish the range of influence of the surrounding matrix. We found that patch size and composition influence caribou occurrence and intensity of use within a patch. Patch size had to reach approximately 270 km(2) to attain 75% probability of use by caribou. We found that small patches (<100 km(2)) induced concentration of caribou activities that were shown to make them more vulnerable to predation and to act as ecological traps. Woodland caribou clearly need large residual forest patches, embedded in a relatively undisturbed matrix, to achieve low densities as an antipredator strategy. Our patch-based methodological approach, using GPS telemetry data, offers a new perspective of space use behavior of wide-ranging species inhabiting fragmented landscapes and allows us to highlight the impacts of large scale management. Furthermore, our study provides insights that might have important implications for effective caribou conservation and forest management.

  17. [Identification of mycobacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry--using reference strains and clinical isolates of Mycobacterium].

    PubMed

    Niitsuma, Katsunao; Saito, Miwako; Koshiba, Shizuko; Kaneko, Michiyo

    2014-05-01

    Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) method is being played an important role for the inspection of clinical microorganism as a rapid and the price reduction. Mass spectra obtained by measuring become points of identification whether the peak pattern match any species mass spectral pattern. We currently use MALDI-TOF MS for rapid and accurate diagnosis of inactivated reference and clinical isolates of Mycobacterium because of the improved pretreatment techniques compared with former inspection methods that pose a higher risk of infection to the operator. The identification matching rate of score value (SV) peak pattern spectra was compared with that of conventional methods such as strain diffusion/amplification. Also, cultures were examined after a fixed number of days. Compared with the initial inspection technique, the pretreatment stage of current MALDI-TOF MS inspection techniques can improve the analysis of inactivated acid-fast bacteria that are often used as inspection criteria strains of clinical isolates. Next, we compared the concordance rate for identification between MALDI-TOF MS and conventional methods such as diffusion/amplification by comparison of peak pattern spectra and evaluated SV spectra to identify differences in the culture media after the retention period. In examination of 158 strains of clinical isolated Mycobacterium tuberculosis complex (MTC), the identification coincidence rate in the genus level in a matching pattern was 99.4%, when the species level was included 94.9%. About 37 strains of nontuberculous mycobacteria (NTM), the identification coincidence rate in the genus level was 94.6%. M. bovis BCG (Tokyo strain) in the reference strain was judged by the matching pattern to be MTC, and it suggested that they are M. tuberculosis and affinity species with high DNA homology. Nontuberculous mycobacterial M. gordonae strain JATA 33-01 shared peak pattern spectra, excluding the

  18. Isolation of hen egg white lysozyme, ovotransferrin and ovalbumin, using a quaternary ammonium bound to a highly crosslinked agarose matrix.

    PubMed

    Vachier, M C; Piot, M; Awadé, A C

    1995-02-03

    A single-step anion-exchange chromatographic separation of egg white proteins was carried out using a Q Sepharose Fast Flow column. The separation resulted in the isolation of two lysozyme peaks with purities of ca. 99 and 88%, one peak of ovotransferrin purified to ca. 75% and two ovalbumin peaks with purities of ca. 54 and 98%. Recoveries were estimated to be ca. 60, 100 and 83% for lysozyme, ovotransferrin and ovalbumin, respectively. The amino acid compositions of all collected peaks have also been determined. This confirmed the identity of some of the proteins contained in these peaks.

  19. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration.

    PubMed

    Almeida, H V; Eswaramoorthy, R; Cunniffe, G M; Buckley, C T; O'Brien, F J; Kelly, D J

    2016-05-01

    Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-β3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-β3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The

  20. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. II. The phenanthrene cation (C14H10+) and its 1-methyl derivative

    NASA Technical Reports Server (NTRS)

    Salama, F.; Joblin, C.; Allamandola, L. J.

    1994-01-01

    The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H10+; (CH3)C14H9+], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.

  1. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. II. The phenanthrene cation (C14H10 + ) and its 1-methyl derivative

    NASA Astrophysics Data System (ADS)

    Salama, F.; Joblin, C.; Allamandola, L. J.

    1994-12-01

    The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H+10; (CH3)C14H+9], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.

  2. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. II. The phenanthrene cation (C14H10+) and its 1-methyl derivative

    NASA Technical Reports Server (NTRS)

    Salama, F.; Joblin, C.; Allamandola, L. J.

    1994-01-01

    The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H10+; (CH3)C14H9+], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.

  3. Matrix isolation model studies on the radiation-induced transformations of small molecules of astrochemical and atmospheric interest

    NASA Astrophysics Data System (ADS)

    Feldman, Vladimir I.; Ryazantsev, Sergey V.; Saenko, Elizaveta V.; Kameneva, Svetlana V.; Shiryaeva, Ekaterina S.

    2016-07-01

    The radiation-induced transformations of small molecules at low temperatures play an important role in the interstellar, planetary and atmospheric chemistry. This work presents a review of our recent model studies on the radiation chemistry of relevant molecules in solid noble gas (Ng) matrices, including some preliminary new results. Among the triatomic molecules, water and carbon dioxide were studied in detail. The radiation-induced degradation of isolated H2O yields hydrogen atoms and OH radicals, while oxygen atoms are produced at higher doses. Isolated CO2 molecules are decomposed to yield CO and trapped oxygen atoms. Upon annealing the trapped O and H atoms are mobilized selectively at different temperatures and react with other trapped species. The formation of HCO and HOCO radicals was observed in the mixed H2O/CO2/Ng systems. Other studies were concerned with the radiation-induced degradation of simple organic molecules (methanol, formic acid) and chlorofluorocarbons (CFCl3, CF2Cl2). Preliminary results for methanol revealed deep dehydrogenation yielding HCO and CO, whereas CO2, CO and HOCO were detected as primary products for formic acid. In the case of chlorofluorocarbons, significance of ionic channels was demonstrated. The implications of the results for modeling the processes in astrochemical ices and atmosphere are discussed.

  4. Simultaneous Counter-Ion Co-Deposition a Technique Enabling Matrix Isolation Spectroscopy Studies Using Low-Energy Beams of Mass-Selected Ions

    NASA Astrophysics Data System (ADS)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Matrix isolation spectroscopy was first developed in Pimentel's group during the 1950's to facilitate spectroscopic studies of transient species. Cryogenic matrices of condensed rare gases provide an inert chemical environment with facile energy dissipation and are transparent at all wavelengths longer than vacuum UV, making them ideal for studying labile and reactive species such as radicals, weakly bound complexes, and ions. Since frozen rare gases are poor electrolytes, studies of ions require near-equal populations of anions and cations in order to stabilize the number densities required for spectroscopic experiments. Many techniques for generation of ions for using in matrix isolation studies satisfy this criterion intrinsically, however when ion beams generated in external sources are deposited, the counter-ions typically arise via secondary processes that are at best loosely controlled. It has long been recognized that it would be desirable to stabilize deposition of mass-selected ions generated in an external source using simultaneous co-deposition of a beam of counter-ions, however previous attempts to achieve this have been reported as unsuccessful. The Moore group at Lehigh has demonstrated successful experiments of this type, using mass-selected anions generated from a metal cluster source, co-deposited with a balanced current of cations generated in a separate electron ionization source. This talk will focus on the details of the technique, and present some results from proof-of-concept studies on anionic copper carbonyl complexes formed in argon matrices following co-deposition of Cu- with Ar+ or Kr+. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged. Whittle et al., J. Chem. Phys. 22, p.1943 (1954); Becker et al., J. Chem. Phys. 25, p.224 (1956). Godbout et al., J. Chem. Phys. 96, p.2892 (1996). Sabo et al., Appl. Spectrosc. 45, p. 535 (1991).

  5. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR.

    PubMed

    Malferrari, M; Nalepa, A; Venturoli, G; Francia, F; Lubitz, W; Möbius, K; Savitsky, A

    2014-06-07

    Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a

  6. Charge-Transfer Complexes and Photochemistry of Ozone with Ferrocene and n-Butylferrocene: A UV-vis Matrix-Isolation Study.

    PubMed

    Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S

    2015-10-15

    The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.

  7. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: a matrix-isolation infrared and ab initio study.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2014-07-24

    The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes.

  8. Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities

    NASA Astrophysics Data System (ADS)

    Landais, Patrick; Rochdi, Aïcha; Largeau, Claude; Derenne, Sylvie

    1993-06-01

    Four Permian to Carboniferous torbanites of various geographical origins were examined by transmission micro-FTIR spectroscopy on doubly polished thin sections (10-25 μm). Several types of heterogeneities (different types of organic matrix; yellow and orange Botryococcus braunii colonies) were identified and chemically characterized. Important differences were noted between the organic constituents of the matrix and the algal bodies, regarding the intensity of OH, CO, and aromatic CC absorptions. The previous IR studies of torbanites on bulk samples therefore afforded substantially biased information on the composition of B. braunii fossil colonies, on their oil potential, and on the maturity of such kerogens. Micro-FTIR spectra indicate that the organic matrix corresponds neither to an extensive breaking up of colonies nor to humic substances. This matrix is highly heterogeneous; two types were identified in the Autun sample (chiefly corresponding to degraded algal and bacterial constituents, respectively). A precise characterization of the organic matrix was made difficult, however, in Pumpherston torbanite, due to intimate mixing with minerals. The co-occurrence of yellow and orange colonies, with contrasted micro-FTIR features, in Autun torbanite neither reflects radiolysis processes nor differences in maturation and/or source algae. A specific spatial relation was observed between these two types of algal bodies and the organo-mineral matrix, thus revealing differences in colony microenvironment after deposition. The orange colonies are likely derived, in agreement with their micro-FTIR spectra and their spatial correlation with the matrix, from sedimentological and/or matrix-catalysed diagenetic transformations of some yellow colonies. This first application of micro-FTIR to kerogens confirmed the utility of this nondestructive, in situ pin-point method. Although torbanites have been extensively studied, all the analytical methods so far used only

  9. Biological Applications Of Fourier Transform Infrared (FTIR) Or Bloody FTIR

    NASA Astrophysics Data System (ADS)

    Jakobsen, R. J.; Winters, S.; Gendreau, R. M.

    1981-10-01

    An ex vivo FT-IR/ATR experiment for studying blood protein adsorption at the molecular level is described. This experiment involves the use of live dogs pumping the blood through a arterial-veinal shunt to the ATR cell and back into the animal. The results from these live dog experiments are compared to results obtained using donated whole blood. These experiments demonstrate that FT-IR can be used to study aqueous, physiological, flowing solutions in real time with the sensitivity necessary to detect minor changes.

  10. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC).

    PubMed

    Kusano, Taro; Jakob, Roland P; Gautier, Emanuel; Magnussen, Robert A; Hoogewoud, Henri; Jacobi, Matthias

    2012-10-01

    The purpose of this study is to evaluate clinical and radiological outcomes of patients treated with autologous matrix-induced chondrogenesis (AMIC) for full-thickness chondral and osteochondral defects of the femoral condyles and patella. A retrospective evaluation of clinical and radiographic outcomes of patients treated with AMIC for chondral and osteochondral full-thickness cartilage defects of the knee was performed with a mean follow-up of 28.8 ± 1.5 months (range, 13-51 months). Significant improvements in clinical outcome scores (IKDC, Lysholm, Tegner, and VAS pain score) were noted. The largest improvements were seen in the osteochondral subgroup (mean age 25.9 years), whereas patients treated for chondral defects in the patellofemoral joint and on the femoral condyles improved less. Patients in all groups were generally satisfied with their results. MRI evaluation showed that tissue filling was present but generally not complete or homogenous. AMIC is a safe procedure and leads to clinical improvement of symptomatic full-thickness chondral and osteochondral defects and to regenerative defect filling. The value of AMIC relative to other cartilage repair procedures and to the natural course remains undefined. Case series, Level IV.

  11. Vibronic spectra of the p-benzoquinone radical anion and cation: a matrix isolation and computational study.

    PubMed

    Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John

    2014-02-07

    The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40,000 cm(-1) are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙(+) exhibits a very conspicuous and complicated pattern of features above 1900 cm(-1) that is due to this electronic transition, and offers an unusually vivid demonstration of the effects of vibronic coupling in what would usually be a relatively simple region of the electromagnetic spectrum associated only with vibrational transitions. As expected, the intensities of most of the IR transitions leading to levels that couple the ground to the very low-lying first excited state of PBQ˙(+) increase by large factors upon ionization, due to "intensity borrowing" from the D0 → D1 electronic transition. A notable exception is the antisymmetric C=O stretching vibration, which contributes significantly to the vibronic coupling, but has nevertheless quite small intensity in the cation spectrum. This surprising feature is rationalized on the basis of a simple perturbation analysis.

  12. Infrared spectra and ultraviolet-tunable laser induced photochemistry of matrix-isolated phenol and phenol-d{sub 5}

    SciTech Connect

    Giuliano, Barbara Michela; Reva, Igor; Fausto, Rui; Lapinski, Leszek

    2012-01-14

    Monomers of phenol and its ring-perdeuterated isotopologue phenol-d{sub 5} were isolated in argon matrices at 15 K. The infrared (IR) spectra of these species were recorded and analyzed. In situ photochemical transformations of phenol and phenol-d{sub 5} were induced by tunable UV laser light. The photoproducts have been characterized by IR spectroscopy supported by theoretical calculations of the infrared spectra. The primary product photogenerated from phenol was shown to be the phenoxyl radical. The analysis of the progress of the observed phototransformations led to identification of 2,5-cyclohexadienone as one of the secondary photoproducts. Spectral indications of other secondary products, such as the Dewar isomer and the open-ring ketene, were also detected. Identification of the photoproducts provided a guide for the interpretation of the mechanisms of the observed photoreactions.

  13. Fast characterization of industrial soy protein isolates by direct analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Horneffer, Verena; Foster, Tim J; Velikov, Krassimir P

    2007-12-26

    Industrial soy protein isolates (SPIs) due to differences in their processing conditions may differ both in composition and in degree of hydrolysis. As a result, they display different performance in food production and final food properties like consistency and taste. To address this issue, a fast, cheap, and simple method for screening and characterization is required. In this article, the successful analysis of soy protein isolates, a complex mixture of proteins with glycinin and beta-conglycinin as major components, by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is demonstrated. The preparation implements a fast extraction of the proteins from the raw SPI either under neutral or reducing conditions. The extracts are analyzed subsequently by MALDI-TOF-MS without further purification. Results of the two conditions are compared. Finally, different SPIs from different suppliers are analyzed and compared concerning their consistency. The method could be applied to other plant proteins and mixtures thereof. Since the composition and intactness of different subunits play important roles in functional properties of soy proteins, rapid methods for fingerprinting of different industrial soy protein sources will be valuable tools for successful product formulation.

  14. Matrix-assisted laser desorption ionization-time of flight mass spectrometry based identification of Edwardsiella ictaluri isolated from Vietnamese striped catfish (Pangasius hypothalamus)

    PubMed Central

    Nhu, Truong Quynh; Park, Seong Bin; Kim, Si Won; Lee, Jung Seok; Im, Se Pyeong; Lazarte, Jassy Mary S.; Seo, Jong Pyo; Lee, Woo-Jai; Kim, Jae Sung

    2016-01-01

    Edwardsiella (E.) ictaluri is a major bacterial pathogen that affects commercially farmed striped catfish (Pangasius hypothalamus) in Vietnam. In a previous study, 19 strains of E. ictaluri collected from striped catfish were biochemically identified with an API-20E system. Here, the same 19 strains were used to assess the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS; applied using a MALDI Biotyper) to conduct rapid, easy and accurate identification of E. ictaluri. MALDI-TOF MS could directly detect the specific peptide patterns of cultured E. ictaluri colonies with high (> 2.0, indicating species-level identification) scores. MALDI Biotyper 3.0 software revealed that all of the strains examined in this study possessed highly similar peptide peak patterns. In addition, electrophoresis (SDS-PAGE) and subsequent immuno-blotting using a specific chicken antibody (IgY) against E. ictaluri revealed that the isolates had highly similar protein profiles and antigenic banding profiles. The results of this study suggest that E. ictaluri isolated from striped catfish in Vietnam have homologous protein compositions. This is important, because it indicates that MALDI-TOF MS analysis could potentially outperform the conventional methods of identifying E. ictaluri. PMID:26726022

  15. Inertial rotation and matrix interaction effects on the EPR spectra of methyl radicals isolated in 'inert' cryogenic matrices.

    PubMed

    Benetis, Nikolas P; Dmitriev, Yurij

    2009-03-11

    The CW-EPR lineshapes of methyl and small methyl-like radicals trapped in noble gas matrices at liquid He temperatures are substantially different from the expected classical EPR spectra. At low temperatures they show small or negligible anisotropy in studies using different experimental techniques and have a temperature dependence that differs from systems whose motional dynamics is diffusion controlled. At liquid He temperatures, before the Boltzmann statistics take over in the classical high temperature realm, the spectral intensities are dominated by quantum statistics. These properties, which were obtained experimentally at temperatures about 5 K and lower, and up to about 20 K, can be attributed to quantum effects of inertial rotary motion and its coupling to the nuclear spin of the radical. Methyl-like radicals have nuclear-exchange symmetry and contain the lightest possible isotopes, protons, and deuterons. In the ideal case of absent radical-matrix interaction, the methyl rotation about the central heavier carbon atom guaranties minimal moments of inertia. However, the theoretical interpretation of the above effects and other related quantum effects, as well as recognition of the important physics which lead to them, is not a simple matter. The literature accumulated on the subject over the years is successful but contains several unresolved questions. Recently obtained spectra of methyl radicals in Kr, N(2) and CO matrices, which are less inert than the smaller noble gas Ar, were shown to exhibit greater, but certainly slight, overall anisotropic spectral features while in earlier experimental studies the anisotropy was practically absent. Even gases of smaller radii such as Ne and H(2) at liquid He temperatures show interesting differences as hosts of methyl radicals compared to Ar. Investigation of other possible causes of this difference, not excluding the experimentally controlled ones related to the sample preparation and the MW power saturation of

  16. Neutralization of solvated protons and formation of noble-gas hydride molecules: Matrix-isolation indications of tunneling mechanisms?

    SciTech Connect

    Khriachtchev, Leonid; Lignell, Antti; Raesaenen, Markku

    2005-08-08

    The (NgHNg){sup +} cations (Ng=Ar and Kr) produced via the photolysis of HF/Ar, HF/Kr, and HBr/Kr solid mixtures are studied, with emphasis on their decay mechanisms. The present experiments provide a large variety of parameters connected to this decay phenomenon, which allows us to reconsider various models for the decay of the (NgHNg){sup +} cations in noble-gas matrices. As a result, we propose that this phenomenon could be explained by the neutralization of the solvated protons by electrons. The mechanism of this neutralization reaction probably involves tunneling of an electron from an electronegative fragment or another trap to the (NgHNg){sup +} cation. The proposed electron-tunneling mechanism should be considered as a possible alternative to the literature models based on tunneling-assisted or radiation-induced diffusion of protons in noble-gas solids. As a novel experimental observation of this work, the efficient formation of HArF molecules occurs at 8 K in a photolyzed HF/Ar matrix. It is probable that the low-temperature formation of HArF involves local tunneling of the H atom to the Ar-F center, which in turn supports the locality of HF photolysis in solid Ar. In this model, the decay of (ArHAr){sup +} ions and the formation of HArF molecules observed at low temperatures are generally unconnected processes; however, the decaying (ArHAr){sup +} ions may contribute to some extent to the formation of HArF molecules.

  17. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells.

    PubMed

    de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-07-22

    Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO(TM) , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO(TM) -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO(TM) -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Identification of Haemophilus influenzae Type b Isolates by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Månsson, Viktor; Resman, Fredrik; Kostrzewa, Markus; Nilson, Bo; Riesbeck, Kristian

    2015-07-01

    Haemophilus influenzae type b (Hib) is, in contrast to non-type b H. influenzae, associated with severe invasive disease, such as meningitis and epiglottitis, in small children. To date, accurate H. influenzae capsule typing requires PCR, a time-consuming and cumbersome method. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) provides rapid bacterial diagnostics and is increasingly used in clinical microbiology laboratories. Here, MALDI-TOF MS was evaluated as a novel approach to separate Hib from other H. influenzae. PCR-verified Hib and non-Hib reference isolates were selected based on genetic and spectral characteristics. Mass spectra of reference isolates were acquired and used to generate different classification algorithms for Hib/non-Hib differentiation using both ClinProTools and the MALDI Biotyper software. A test series of mass spectra from 33 Hib and 77 non-Hib isolates, all characterized by PCR, was used to evaluate the algorithms. Several algorithms yielded good results, but the two best were a ClinProTools model based on 22 separating peaks and subtyping main spectra (MSPs) using MALDI Biotyper. The ClinProTools model had a sensitivity of 100% and a specificity of 99%, and the results were 98% reproducible using a different MALDI-TOF MS instrument. The Biotyper subtyping MSPs had a sensitivity of 97%, a specificity of 100%, and 93% reproducibility. Our results suggest that it is possible to use MALDI-TOF MS to differentiate Hib from other H. influenzae. This is a promising method for rapidly identifying Hib in unvaccinated populations and for the screening and surveillance of Hib carriage in vaccinated populations.

  19. Human mesenchymal stem cells from the umbilical cord matrix: successful isolation and ex vivo expansion using serum-/xeno-free culture media.

    PubMed

    Simões, Irina N; Boura, Joana S; dos Santos, Francisco; Andrade, Pedro Z; Cardoso, Carla M P; Gimble, Jeffrey M; da Silva, Cláudia L; Cabral, Joaquim M S

    2013-04-01

    Mesenchymal stem cells (MSC) could potentially be applied in therapeutic settings due to their multilineage differentiation ability, immunomodulatory properties, as well as their trophic activity. The umbilical cord matrix (UCM) represents a promising source of MSC for biomedical applications. The number of cells isloated per umbilical cord (UC) unit is limited and ex vivo expansion is imperative in order to reach clinically meaningful cell numbers. The limitations of poorly defined reagents (e.g. fetal bovine serum, which is commonly used as a supplement for human MSC expansion) make the use of serum-/xeno-free conditions mandatory. We demonstrated the feasibility of isolating UCM-MSC by plastic adherence using serum-/xeno-free culture medium following enzymatic digestion of UCs, with a 100% success rate. 2.6 ± 0.21 × 10(5) cells were isolated per UC unit, of which 1.9 ± 0.21 × 10(5) were MSC-like cells expressing CD73, CD90, and CD105. When compared to adult sources (bone marrow-derived MSC and adipose-derived stem/stromal cells), UCM-MSC displayed a similar immunophenotype and similar multilineage differentiation ability, while demonstrating a higher expansion potential (average fold increase of 7.4 for serum-containing culture medium and 11.0 for xeno-free culture medium (P3-P6)). The isolation and expansion of UCM-MSC under defined serum-/xeno-free conditions contributes to safer and more effective MSC cellular products, boosting the usefulness of MSC in cellular therapy and tissue engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel strategy for typing Mycoplasma pneumoniae isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry coupled with ClinProTools.

    PubMed

    Xiao, Di; Zhao, Fei; Zhang, Huifang; Meng, Fanliang; Zhang, Jianzhong

    2014-08-01

    The typing of Mycoplasma pneumoniae mainly relies on the detection of nucleic acid, which is limited by the use of a single gene target, complex operation procedures, and a lengthy assay time. Here, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and to generate a classification model based on a genetic algorithm (GA) to differentiate between type 1 and type 2 M. pneumoniae isolates. Twenty-five M. pneumoniae strains were used to construct an analysis model, and 43 Mycoplasma strains were used for validation. For the GA typing model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra and the recognition capability value, which reflects the model's ability to correctly identify its component spectra, were all 100%. This model contained 7 biomarker peaks (m/z 3,318.8, 3,215.0, 5,091.8, 5,766.8, 6,337.1, 6,431.1, and 6,979.9) used to correctly identify 31 type 1 and 7 type 2 M. pneumoniae isolates from 43 Mycoplasma strains with a sensitivity and specificity of 100%. The strain distribution map and principle component analysis based on the GA classification model also clearly showed that the type 1 and type 2 M. pneumoniae isolates can be divided into two categories based on their peptide mass fingerprints. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for M. pneumoniae typing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. UV/visible spectroscopy of matrix-isolated hexa-peri-hexabenzocoronene: Interacting electronic states and astrophysical context.

    PubMed

    Rouillé, Gaël; Steglich, Mathias; Huisken, Friedrich; Henning, Thomas; Müllen, Klaus

    2009-11-28

    Absorption spectra of hexa-peri-hexabenzocoronene isolated in rare-gas matrices are reported for the wavelength range between 200 and 500 nm. Measurements were carried out in neon and in argon at 5.8 and 12.0 K, respectively. Calculations based on semiempirical models and on density-functional theory were performed to assign the observed features. The electronically excited states involved in Clar's alpha- and p-bands are identified as S(1)(B(2u)) and S(2)(B(1u)), respectively. Although the upper state associated with the beta-band is found to be a (1)E(1u) state, it remains undetermined whether it is S(3) or S(4). Structures in the beta-band are interpreted as resulting from the interaction between the (1)E(1u) state and the e(2g) vibrational manifold of S(2)(B(1u)). The new measurements are used to narrow down the wavelength ranges where the bands of hexa-peri-hexabenzocoronene should be found in the gas phase. A previous estimate of the interstellar abundance of this polycyclic aromatic hydrocarbon is discussed.

  2. Characterization of Phytophthora infestans resistance to mefenoxam using FTIR spectroscopy.

    PubMed

    Pomerantz, A; Cohen, Y; Shufan, E; Ben-Naim, Y; Mordechai, S; Salman, A; Huleihel, M

    2014-12-01

    Phytophthora infestans (P. infestans) is the causal agent of late blight in potato and tomato. This pathogen devastated the potato crops in Ireland more than a century years ago and is still causing great losses worldwide. Although fungicides controlling P. infestans have been used successfully for almost 100 years, some isolates have developed resistance to most common fungicides. Identification and characterization of these resistant isolates is required for better control of the disease. Current methods that are based on microbiological and molecular techniques are both expensive and time consuming. Fourier Transform Infra-Red spectroscopy (FTIR) is an inexpensive and reagent-free technique that provides accurate results in only a few minutes. In this study the infrared absorption spectra of the sporangia of P. infestans were measured to evaluate the potential of FTIR spectroscopy in tandem with multivariate analysis in order to classify those sporangia into those that were resistant and those that were non-resistant to the phenylamide fungicide mefenoxam. Based on individual measurements, our results show that FTIR spectroscopy enables classification of P. infestans isolates into mefenoxam resistant and mefenoxam non-resistant types with specificity of 81.9% and sensitivity of 75.5%. Using average spectra per leaf, it was possible to improve the classification results to 88% sensitivity and 95% specificity.

  3. Interfacial Matrix Stabilization Spectroscopy (IMSS) studies of CO and O2 interactions with thin films of oxide-supported Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Jarrah, Nina K.; Moore, David T.

    2013-03-01

    Interfacial Matrix Stabilization Spectroscopy (IMSS) employs energy-dissipating cryogenic matrix isolation techniques combined with FTIR to enable stabilization and detection of pre-reactive complexes of CO and O2 formed on oxide-supported gold nanoparticles (AuNPs). Following deposition of CO and O2 in an argon matrix at 10-20K, annealing to warmer temperatures (28-32K) promotes diffusion of isolated dopant molecules through the matrix to binding sites on a thin film of catalyst. Matrix-solvated pre-reactive complexes form at the surface and are characterized spectroscopically. Comparison of observed complexes in IMSS experiments with results from direct adsorption studies, in absence of a matrix, can provide a measure for the stabilizing effects of matrix solvation. Subsequent surface warming following stabilization of the pre-reactive complexes reveals qualitative information about relative binding energies of formed intermediates of CO, O2, and the supported AuNPs. A series of FTIR spectra mapping the evolution of vibrational bands during the annealing process and tracking the various surface-bound species will be presented and comparisons to direct adsorption experiments will be discussed.

  4. Thioperoxy derivative generated by UV-induced transformation of N-hydroxypyridine-2(1H)-thione isolated in low-temperature matrixes.

    PubMed

    Lapinski, Leszek; Gerega, Anna; Sobolewski, Andrzej L; Nowak, Maciej J

    2008-01-17

    Photochemical transformations of N-hydroxypyridine-2(1H)-thione and its deuterated isotopologue were studied using the matrix-isolation technique. Low-temperature Ar and N2 matrixes containing monomers of this compound were irradiated with continuous-wave near-UV light. Photogeneration of two products was observed in these experiments. The relative population of these photogenerated species was found to be dependent on the wavelength of the UV light used for irradiation. By comparison of the IR spectra of the photoproducts with the spectra simulated theoretically at the DFT(B3LYP)/6-311++G(d, p) level, the final and the intermediate products were identified as rotameric forms of 2-hydroxysulfanyl-pyridine. This is the first report on generation of this thioperoxy derivative of pyridine. The mechanism of photogeneration of 2-hydroxysulfanyl-pyridine involves a photoinduced cleavage of the N-O bond in N-hydroxypyridine-2(1H)-thione, generation of the .OH radical weakly bound with the remaining pyridylthiyl radical, and recombination of these two radicals by formation of the new -S-O- bond. A theoretical model supporting this interpretation was constructed on the basis of approximate coupled cluster (CC2) calculations of the potential energy surfaces of the ground and first excited singlet electronic states of the system. After electronic excitation of the monomeric N-hydroxypyridine-2(1H)-thione, the molecule evolves to the conical intersection with the potential energy surface of the ground state and then to the global minimum corresponding to 2-hydroxysulfanyl-pyridine.

  5. FTIR Calibration Methods and Issues

    NASA Astrophysics Data System (ADS)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  6. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    SciTech Connect

    Borba, Ana Fausto, Rui; Gómez-Zavaglia, Andrea

    2014-10-21

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N–H···O=C, type II by a strong O–H···N hydrogen bond, type III by weak N–H···O–H hydrogen bonds, and type IV by a C=O···H–C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O–H···N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N{sub 2} matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm{sup −1}, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that

  7. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    NASA Astrophysics Data System (ADS)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2014-10-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N-H...O=C, type II by a strong O-H...N hydrogen bond, type III by weak N-H...O-H hydrogen bonds, and type IV by a C=O...H-C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O-H...N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm-1, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG undergoes facile photofragmentation

  8. Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities

    SciTech Connect

    Landais, P.; Rochdi, A. ); Largeau, C.; Derenne, S. )

    1993-06-01

    Four Permian to Carboniferous torbanites of various geographical origins were examined by transmission micro-FTIR spectroscopy on doubly polished thin sections (10--25 [mu]m). Several types of heterogeneities (different types of organic matrix; yellow and orange Botryococcus braunii colonies) were identified and chemically characterized. Important differences were noted between the organic constituents of the matrix and the algal bodies, regarding the intensity of OH, C[double bond]O, and aromatic C[double bond]C absorptions. The previous IR studies of torbanites on bulk samples therefore afforded substantially biased information on the composition of B. braunii fossil colonies, on their oil potential, and on the maturity of such kerogens. Micro-FTIR spectra indicate that the organic matrix corresponds neither to an extensive breaking up of colonies nor to humic substances. This matrix is highly heterogeneous; two types were identified in the Autun sample (chiefly corresponding to degraded algal and bacterial constituents, respectively). A precise characterization of the organic matrix was made difficult, however, in Pumpherston torbanite, due to intimate mixing with minerals. The co-occurrence of yellow and orange colonies, with contrasted micro-FTIR features, in Autun torbanite neither reflects radiolysis processes nor differences in maturation and/or source algae. A specific spatial relation was observed between these two types of algal bodies and the organo-mineral matrix, thus revealing differences in colony microenvironment after deposition. The orange colonies are likely derived, in agreement with their micro-FTIR spectra and their spatial correlation with the matrix, from sedimentological and/or matrix-catalyzed diagenetic transformations of some yellow colonies. This first application of micro-FTIR to kerogens confirmed the utility of this nondestructive, in situ pin-point method. 69 refs., 9 figs., 4 tabs.

  9. Surface inspection using FTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Powell, G. L.; Smyrl, N. R.; Williams, D. M.; Meyers, H. M., III; Barber, T. E.; Marrero-Rivera, M.

    1995-01-01

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces with detection limits under the best of conditions in the sub-nanometer range, i.e.. near absolute cleanliness, excellent performance in the sub-micrometer range, and useful performance for films tens of microns thick. Examples of discovering and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and sandblasted 7075 aluminum alloy and D6AC steel. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques associated with quantitatively applying oils to metals, subsequently verifying the application, and non-linear relationships between reflectance and the quantity oil are described.

  10. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  11. Spectroscopic and computational studies of matrix-isolated iso-CHBr{sub 3}: Structure, properties, and photochemistry of iso-bromoform

    SciTech Connect

    George, Lisa; Kalume, Aimable; Wagner, James; Reid, Scott A.; Esselman, Brian J.; McMahon, Robert J.

    2011-09-28

    Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr{sub 3}) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr{sub 3} isolated in Ar or Ne matrices at {approx}5 K yielded iso-CHBr{sub 3}; the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr{sub 3} potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie {approx}200 kJ/mol above the global CHBr{sub 3} minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr{sub 2}+ Br asymptote. The photochemistry of iso-CHBr{sub 3} was investigated by selected wavelength laser irradiation into the intense S{sub 0}{yields} S{sub 3} transition, which resulted in back photoisomerization to CHBr{sub 3}. Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is lowered.

  12. The Identification of Complex Organic Molecules in the Interstellar Medium: Using Lasers and Matrix Isolation Spectroscopy to Simulate the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1998-01-01

    The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.

  13. The Identification of Complex Organic Molecules in the Interstellar Medium: Using Lasers and Matrix Isolation Spectroscopy to Simulate the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1998-01-01

    The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.

  14. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 7; Phenazine, a Dual Substituted Polycyclic Aromatic Nitrogen Heterocycle

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2004-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.

  15. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts.

    PubMed

    Lee, Kyung-Eun; Mun, Sukyeong; Pyun, Hee-Bong; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-01-01

    Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2',7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor β (TGF-β)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-β/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent.

  16. Matrix isolation with an ion transfer device for interference-free simultaneous spectrophotometric determinations of hexavalent and trivalent chromium in a flow-based system.

    PubMed

    Ohira, Shin-Ichi; Nakamura, Koretaka; Chiba, Mitsuki; Dasgupta, Purnendu K; Toda, Kei

    2017-03-01

    Chromium speciation by spectrophotometric determination of hexavalent chromium (Cr(VI)) with diphenylcarbazide (DPC) has several problems. These include: (1) the inability to directly detect trivalent chromium (Cr(III)) with DPC, (2) positive interference in Cr(VI) determination by other metal cations and (3) negative interference by any reducing agent present in the sample. These are addressed with an ion transfer device (ITD) in a flow injection analysis system. We previously developed the ITD for electrodialytic separations. Here we separate oppositely charged Cr(III) and Cr(VI) species by the ITD into two different acceptor solutions within ~5 s. The acceptor solutions consist of buffered H2O2 to oxidize the Cr(III) to Cr(VI). Then DPC is added to either acceptor to measure Cr(III) and Cr(VI) spectrophotometrically. The system was optimized to provide the same response for Cr(VI) and Cr(III) with limits of detection (LODs, S/N=3) of 0.5 μg L(-1) for each and a throughput rate of 30 samples h(-1). The ITD separation was also effective for matrix isolation and reduction of interferences. Potential cationic interferences were not transferred into the anionic Cr(VI) acceptor stream. Much of the organic compounds in soil extracts were also eliminated as evidenced from standard addition and recovery studies.

  17. Blue-shift of the C-H stretching vibration in CHF3-H2O complex: Matrix isolation infrared spectroscopy and ab initio computations

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2016-09-01

    As a result of hydrogen bonding in CHF3-H2O complex, ab initio computations exhibited a blue shift in the C-H stretching region of CHF3 sub-molecule. In this work, we have investigated whether the blue-shifting in CHF3-H2O complex can be experimentally discerned using matrix isolation infrared spectroscopy. The 1:1 CHF3-H2O complex was therefore trapped and studied in argon and neon matrices. Experimentally a blue shift of 20.3 and 32.3 cm-1 in the C-H stretching region of CHF3 sub-molecule for the CHF3-H2O complex was observed in argon and neon matrices. The structure of the complex and the energies were computed at MP2 level of theory using a 6-311++G(d,p) and aug-cc-pVDZ basis sets. Computations indicated only one minimum corresponded to a C-H⋯O interaction between the hydrogen of fluoroform and oxygen of water. AIM and NBO analyses were performed to understand the reasons for blue-shifting of the C-H stretching wavenumber in the complex.

  18. Chemical vapour deposition: a matrix isolation study of precursor compounds and reaction intermediates in the formation of cadmium telluride and gallium nitride

    NASA Astrophysics Data System (ADS)

    Almond, Matthew J.; Jenkins, Carolyn E.; Rice, David A.; Yates, Carol A.

    1990-05-01

    Infrared spectra for the matrix-isolated species R 2Te, R 2Cd (R=Me or Et), Me 3N·GaH 3, Me 3N·GaMe 3 and Me 2NH·GaMe 3 are reported for the first time. Evidence is also presented for the formation of the weakly bound adducts Me 2Cd·(TeEt 2) x and Et 2Cd·(TeMe 2) t x ( x = 1 or 2) in a gaseous mixture before trapping in Ar matrices at 14 K. The strength of bonding in Et 2Cd·(TeMe 2) x is similar to that in the adduct Et 2Cd·(SEt 2) x and it has a non-linear CCdC unit. Thermal decomposition (60°C) of gaseous Me 3N·GaH 3 in a glass tube yields Me 3N and a Ga mirror — an observation which suggests that the primary step of the reaction is GaN bond rupture. By contrast, the two gaseous adducts Me 3N·GaMe 3 and Me 2NH·GaMe 3 decompose thermally and photochemically to yield inter alia methane, a result which implies that the GaN bond remains intact in the primary decomposition step.

  19. [FTIR microspectroscopy and its progress in application].

    PubMed

    Li, Xiao-Ting; Zhu, Da-Zhou; Pan, Li-Gang; Ma, Zhi-Hong; Lu, An-Xiang; Wang, Dong; Wang, Ji-Hua

    2011-09-01

    FTIR microspectroscopy technique was born in the mid-nineties. The research on this technique has just began abroad, and this technology has not yet been widely recognized in China. It is a rapid, nondestructive testing technology, has the advantages of microdomain, visualization, high precision and high sensitivity. In the present study, the composition, operational principle and working mode of FTIR microspectroscopy were summarized. The progress in application of FTIR microspectroscopy technique was investigated in some fields, including biomedicine, microbiology, forensic science, materials science, nutrition and feed science and agricultural products. The difficulty of FTIR microspectroscopy research and the prospects of this technique were also discussed.

  20. Influence of the crystal field stabilization energy of metal(II) ions on the structural distortion of matrix-isolated SO 42- guest ions in selenate matrices

    NASA Astrophysics Data System (ADS)

    Stoilova, Donka

    2004-08-01

    Infrared spectra of metal(II) selenate hydrates (MeSeO 4· nH 2O and Na 2Me(SeO 4) 2·2H 2O; n=6, 5, 4, 1; Me=Mg, Mn, Co, Ni, Cu, Zn, Cd) containing matrix-isolated SO 42- guest ions are reported and discussed with respect to the SO stretching modes ν3 and ν1. An adequate measure for the SO 42- guest ion distortion is the site group splitting Δ νas (Δ νab and Δ νac in the case of a doublet and a triplet for ν3, respectively; a, being the highest wavenumbered component of ν3) and Δ νmax (the difference between the highest and the lowest wavenumbered SO stretching modes). It has been shown that the SO 42- guest ion distortion depends on both the number of the sulfate oxygen atoms involved in coordinative bonds with the metal(II) ions and the electronic configuration of the metal(II) ions, i.e. their crystal field stabilization energy (CFSE) additionally to the site symmetry and the local potential at the lattice site of the host lattice. The SO 42- guest ions matrix-isolated in MeSeO 4·H 2O (Me=Mn, Co, Zn) and in Na 2Me(SeO 4) 2·2H 2O (Me=Mn, Cu, Cd) exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis and Δ νab≅Δ νbc. When SO 42- guest ions are incorporated in the triclinic Na 2Me(SeO 4) 2·2H 2O host lattices (Me=Co, Ni, Zn) the ν3 stretching region resembles a higher local symmetry of the SO 42- guest ions (an approximate (A 1⊕E) splitting) than the crystallographic one (i.e. Δ νab>Δ νbc instead of Δ νab≅Δ νbc) and, hence, the ratio Δ νab/Δ νbc has to be taken into account (the higher value of the ratio Δ νab/Δ νbc, the weaker is the distortion of the SO 42- guest ions). The SO 42- guest ions incorporated in MeSeO 4· nH 2O ( n=6, 5, 4) exhibit a higher local symmetry of the guest ions than that deduced from the site group analysis (D 2d for the SO 42- guest ions in MeSeO 4·5H 2O, MeSeO 4·4H 2O and in the monoclinic MeSeO 4·6H 2O host lattices and close to T d in the tetragonal

  1. Inferences of Present and Past Changes at Isolated Enclaves and Matrix of Savannas by Carbon Isotopes in a Transitional Forest-Savanna Area in Northern Amazonia

    NASA Astrophysics Data System (ADS)

    Couto-Santos, F. R.; Luizao, F. J.; Camargo, P. B.

    2013-12-01

    The evolutionary history of savannas influenced by short term climate cycles, during the Quaternary Period, could prompt variations in forest cover often related to movements of the forest-savanna boundary. In this study we investigated current and past changes in the structure of vegetation and the origins of savannas of different natures in a biogeographically and climatic transitional forest-savanna area in northern Amazonia. Variations in the isotopic composition of soil organic matter (δ13C) from surface soils (0-10 cm) along forest-savanna boundaries, detected by a sigmoidal non-linear function, were used to identify current changes in vegetation, while past changes were inferred by discontinuities in the evolution of δ13C with soil depth using piecewise regression associated with radiocarbon dating (14C). By comparing small isolated savanna enclaves inside a strictly protected nature reserve (ESEC Maracá) with its outskirts unprotected continuous savanna matrix, we found that origins and the patterns of dynamics were distinct between these areas and did not respond in the same way to climate change and fire events, either in the last decades or during the Holocene. The stability of the present boundaries of the surrounding savanna matrix reflects the resilience of the transitional forests under a recent intensified fire regime and favorable climate, while the deep forest soil isotopic signal indicated a forest shrinkage of at least 70 m occurring since its origin in early Holocene until 780 years BP associated with a climate drier than the current one. Contrarily, the protected enclaves inside ESEC Maracá, remained stable since the middle Holocene, suggesting a non-anthropogenic origin related to soil edaphic conditions, but with recent dynamics of advancing forest by 8 m century-1 favored by current climate and lacking fire events. A detailed understanding of the origins of savannas of distinct natures and the way they are affected by climate and fire

  2. Effect of jitter on an imaging FTIR spectrometer

    SciTech Connect

    Bennett, C. L., LLNL

    1997-04-01

    Line of sight (LOS) jitter produces temporal modulations of the signals which are detected in the focal plane of a temporally modulated imaging Fourier Transform Spectrometer. A theoretical treatment of LOS jitter effects is given, and is compared with the results of measurements with LIFTIRS1 (the Livermore Imaging Fourier Transform InfraRed Spectrometer). The identification, isolation, quantification and removal of jitter artifacts in hyperspectral imaging data by means of principal components analysis is discussed. The theoretical distribution of eigenvalues expected from principal components analysis is used to determine the level of significance of spatially coherent instrumental artifacts in general, including jitter as a representative example. It is concluded that an imaging FTIR spectrometer is much less seriously impacted by a given LOS jitter level than a non imaging FTIR spectrometer.

  3. Application of FTIR spectroscopy to the characterization of archeological wood.

    PubMed

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-15

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Application of FTIR spectroscopy to the characterization of archeological wood

    NASA Astrophysics Data System (ADS)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-01

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P = 0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR.

  5. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets

    PubMed Central

    Zhou, Yunting; Hu, Qi; Chen, Fuyi; Zhang, Juan; Guo, Jincheng; Wang, Hongwu; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-01-01

    ABSTRACT Human umbilical cord matrix-derived stem cells (uMSCs), owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D) and type 2 diabetes (T2D). However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1) was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes. PMID:26398949

  6. Matrix Isolation Infrared Spectroscopy of an O-H···π Hydrogen-Bonded Complex between Formic Acid and Benzene.

    PubMed

    Banerjee, Pujarini; Bhattacharya, Indrani; Chakraborty, Tapas

    2016-05-26

    Mid-infrared spectra of an O-H···π hydrogen-bonded 1:1 complex between formic acid and benzene were measured by isolating the complex in an argon matrix at a temperature of 8 K. The O-H stretching fundamental of formic acid (νO-H) undergoes a red shift of 120 cm(-1), which is the largest among the known π-hydrogen bonded complexes of an O-H donor with respect to benzene as acceptor. Electronic structure theory methods were used extensively to suggest a suitable geometry of the complex that is consistent with a recent study performed at CCSD(T)/CBS level by Zhao et al. (J. Chem. Theory Comput. 2009, 5, 2726-2733), as well as with the measured IR spectral shifts of the present study. It has been determined that density functional theory (DFT) D functionals as well as parametrized DFT functionals like M06-2X, in conjunction with modestly sized basis sets like 6-31G (d, p), are sufficient for correct predictions of the spectral shifts observed in our measurement and also for reproducing the value of the binding energy reported by Zhao et al. We also verified that these low-cost methods are sufficient in predicting the νO-H spectral shifts of an analogous O-H···π hydrogen-bonded complex between phenol and benzene. However, some inconsistencies with respect to shifts of νO-H arise when diffuse functions are included in the basis sets, and the origin of this anomaly is shown to lie in the predicted geometry of the complex. Natural bond orbital (NBO) and atoms-in-molecule (AIM) analyses were performed to correlate the spectral behavior of the complex with its geometric parameters.

  7. Does a hydrogen bonded complex with dual contacts show synergism? A matrix isolation infrared and ab-initio study of propargyl alcohol-water complex

    NASA Astrophysics Data System (ADS)

    Saini, Jyoti; Viswanathan, K. S.

    2016-08-01

    When hydrogen bonded complexes are formed with more than one contact, the question arises if these multiple contacts operate synergistically. Propargyl alcohol-H2O complex presents a good case study to address this question, which is discussed in this work. Complexes of propargyl alcohol (PA) and H2O were studied experimentally using matrix isolation infrared spectroscopy, which was supported by quantum chemical computations performed at the M06-2X and MP2 level of theories, using 6-311++G (d,p) and aug-cc-pVDZ basis sets. A 1:1 PA-H2O complex was identified in the experiments and corroborated by our computations, where the PA was in the gauche conformation. This complex, which was a global minimum, showed dual interactions, one of which was an n-σ interaction between the O-H group of PA and the O of H2O, while the second was a H···​π contact between the O-H group of H2O and the π system of PA. We explored if the two interactions in the 1:1 complex exhibited synergism. We finally argue that the two interactions showed antagonism rather than synergism. Our computations indicated three other local minima for the 1:1 complexes; though these local minima were not identified in our experiments. Atoms-in-molecules and energy decomposition analysis executed through LMO-EDA were also performed to understand the nature of intermolecular interactions in the PA-H2O complexes. We have also revisited the problem of conformations of PA, with a view to understanding the reasons for gauche conformational preferences in PA.

  8. Matrix isolation and computational study of isodifluorodibromomethane (F2CBr-Br): a route to Br2 formation in CF2Br2 photolysis.

    PubMed

    George, Lisa; Kalume, Aimable; El-Khoury, Patrick Z; Tarnovsky, Alexander; Reid, Scott A

    2010-02-28

    The photolysis products of dibromodifluoromethane (CF(2)Br(2)) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF(2)Br(2):Ar samples (approximately 1:5000) held at approximately 5 K yielded iso-CF(2)Br(2) (F(2)CBrBr), a weakly bound isomer of CF(2)Br(2), which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF(2)Br(2) are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF(2)Br(2) potential energy surface, lying some 55 kcal/mol above the CF(2)Br(2) ground state. The energies of various stationary points on the CF(2)Br(2) potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF(2)Br(2) is an intermediate in the Br+CF(2)Br-->CF(2)+Br(2) reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF(2)Br(2). Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF(2)Br(2), particularly with respect to the existence of a roaming atom pathway leading to molecular products.

  9. A comparative evaluation of the effectiveness of subpedicle acellular dermal matrix allograft with subepithelial connective tissue graft in the treatment of isolated marginal tissue recession: A clinical study

    PubMed Central

    Shori, Tony; Kolte, Abhay; Kher, Vishal; Dharamthok, Swarup; Shrirao, Tushar

    2013-01-01

    Introduction: The most common problem encountered in our day to day practice is exposed root surface or a tooth getting long. The main indication for root coverage procedures are esthetics and/or cosmetic demands followed by the management of root hypersensitivity, root caries or when it hampers proper plaque removal. Over the years, various techniques have been used to achieve root coverage. Aim and Objectives: The aim of this study was to compare the effectiveness of subpedicle acellular dermal matrix allograft (ADMA) with subepithelial connective tissue graft (SCTG) in the treatment of isolated marginal tissue recession. Materials and Methods: Twenty systemically healthy patients aged between 18 to 50 years (mean age29.7±4.35 years) with a recession defect on the labial and the buccal surfaces of any teeth were selected for the study. Ten patients received the test treatment (ADMA), ten patients received the control treatment (SCTG). Clinical recordings assessed at baseline, three months and six months post surgery, included Plaque index (PI), Papillary bleeding index (PBI), Gingival recession (REC), Probing pocket depth (PPD), Clinical attachment level (CAL) and Width of keratinized gingival (WKG). Results: Test group (ADMA) showed 86.93% mean root coverage while control group (SCTG) showed 84.72% at six months post surgery. Mean increase in the width of keratinized gingiva was significantly greater in the SCTG group (3.3±0.48mm) compared to ADMA group (2.4±0.51mm). Conclusion: Both the treatment produced a significant reduction in gingival recession and probing pocket depth and significant gain in clinical attachment level and width of keratinised gingiva. PMID:23633778

  10. FT-IR Microspectroscopy of Rat Ear Cartilage

    PubMed Central

    Vidal, Benedicto de Campos; Mello, Maria Luiza S.

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140–820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of –SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of –SO3- groups (1236–1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the –SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027–1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  11. FT-IR Microspectroscopy of Rat Ear Cartilage.

    PubMed

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  12. Understanding Why Researchers Should Use Synchrotron-Enhanced FTIR Instead of Traditional FTIR

    NASA Astrophysics Data System (ADS)

    Stem, Michelle R.

    2008-07-01

    A synchrotron-enhanced Fourier transform infrared (SR-FTIR) specializes in combining the tremendous power, brightness, intensity, focusability, and tunability of the photons radiated by a synchrotron with FTIR ability to research the vibrational properties of the lighter elements (i.e., C, N, O, etc.). Infrared (IR) wavelengths correspond to the sizes of molecular bonds having these lighter elements, and only species for which IR photons alter the molecule's dipole moment are detectable and considered to be IR responsive. SR-FTIR excels over traditional FTIR at examining the detailed properties of IR-responsive molecules. Further, SR-FTIR has superior signal-to-noise ratios, brightness, and ability to conduct long-duration scans without altering sample properties. A SR-FTIR scan can reveal exacting molecular details, unrivaled by traditional FTIR. IR-responsive species best analyzed by SR-FTIR can include trace elements, chemical structures, biological specimens, chemical reactions (pump-probe), small or dilute specimens, and molecular matrices. A SR-FTIR is especially likely to give results that have greater precision than traditional FTIR for submonolayers, polymers, semiconductors, superconductors, and environmental samples. Increasingly, the SR-FTIR is used by forensics researchers to examine potential evidentiary materials, such as drugs, paints, fibers, explosives, polymers, inks, documents, blood, and soil.

  13. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  14. Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy.

    PubMed

    Kacuráková, Marta; Smith, Andrew C; Gidley, Michael J; Wilson, Reginald H

    2002-06-12

    Specific strain-induced orientation and interactions in three Acetobacter cellulose composites: cellulose (C), cellulose/pectin (CP) and cellulose/xyloglucan (CXG) were characterized by FT-IR and dynamic 2D FT-IR spectroscopies. On the molecular level, the reorientation of the cellulose fibrils occurred in the direction of the applied mechanical strain. The cellulose-network reorientation depends on the composition of the matrix, including the water content, which lubricates the motion of macromolecules in the network. At the submolecular level, dynamic 2D FT-IR data suggested that there was no interaction between cellulose and pectin in CP and that they responded independently to a small amplitude strain, while in CXG, cellulose and xyloglucan were uniformly strained along the sample length.

  15. Formation of coronene:water complexes: FTIR study in argon matrices and theoretical characterisation.

    PubMed

    Simon, A; Noble, J A; Rouaut, G; Moudens, A; Aupetit, C; Iftner, C; Mascetti, J

    2017-03-13

    In this paper, we report a combined theoretical and experimental study of coronene:water interactions in low temperature argon matrices. The theoretical calculations were performed using the mixed density functional-based tight binding/force field approach. The results are discussed in the light of experimental matrix isolation FTIR spectroscopic data. We show that, in the solid phase, (C24H12)(H2O)n (n ≤ 6) σ-type complexes, i.e. with water molecules coordinated on the edge of coronene, are formed, whereas in the gas phase, π-interaction is preferred. These σ-complexes are characterised by small shifts in water absorption bands and a larger blue shift of the out-of-plane γ(CH) deformation of coronene, with the shift increasing with the number of complexed water molecules. Such σ interaction is expected to favour photochemical reaction between water and coronene at the edges of the coronene molecule, leading to the formation of oxidation products at low temperature, even in the presence of only a few water molecules and at radiation energies below the ionisation potential of coronene.

  16. Infrared study of the vibrational behavior of CrO 42- guest ions matrix-isolated in metal (II) sulfates (Me=Ca, Sr, Ba, Pb)

    NASA Astrophysics Data System (ADS)

    Stoilova, D.; Georgiev, M.; Marinova, D.

    2005-03-01

    Infrared spectra of matrix-isolated CrO 42- guest ions in host sulfate matrices - CaSO 4·2H 2O, SrSO 4, BaSO 4 and PbSO 4 are reported and discussed with respect to the Cr-O stretching and O-Cr-O bending modes. An adequate measure for the CrO 42- guest ion distortion is the site group splitting Δ νas and Δ νmax (the difference between the highest and the lowest wavenumbered components of the stretching and bending modes). When the smaller SO 42- ions are replaced by the larger CrO 42- ions the mean frequencies of the asymmetric stretching and bending modes ( ν and ν) as well as the frequencies of ν1 of the CrO 42- guest ions are shifted to higher wavenumbers as compared to those in the respective neat chromates due to the larger repulsion potential at the host lattice sites (smaller values of the unit-cell volumes of the neat sulfates than those of the neat chromates). The CrO 42- guest ions exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis ( C2 site symmetry in CaSO 4·2H 2O and Cs site symmetry in SrSO 4, BaSO 4 and PbSO 4). However, the bending modes ν4 and ν2 of the CrO 42- guest ions in SrSO 4, BaSO 4 and PbSO 4 show an effectively higher local symmetry than the 'rigorous' crystallographic one (two bands for ν4 and one band for ν2 instead of a triplet and a doublet expected, respectively). Such different apparent site symmetries observed in various spectral regions may be attributed to the different influence of energetic and geometrical distortions of the polyatomic entities at particular site on various modes.

  17. Applicability of micro-FTIR in detecting shale heterogeneity.

    PubMed

    Gasaway, Carley; Mastalerz, Maria; Krause, Fed; Clarkson, Chris; Debuhr, Chris

    2017-01-01

    Samples of Late Devonian/Early Mississippian New Albany Shale from the Illinois Basin, having maturities ranging from early mature to postmature, were analysed using micro-Fourier transform infrared (FTIR) spectroscopy, ImageJ processing software and scanning electron microscopic X-ray spectroscopy to explore the distribution, connectivity and chemical composition of organic matter, clay minerals, carbonate minerals and quartz, and to further test the applicability of micro-FTIR mapping to study shale heterogeneity. Each sample was analysed in planes parallel and perpendicular to the bedding to investigate anisotropy in component distribution, with a possible implication for better understanding anisotropy in porosity and permeability in organic-matter-rich shales. Our results show that for low-maturity samples, organic matter is better connected in the plane parallel to the bedding than in the plane perpendicular to the bedding. Organic matter connectivity decreases with increasing maturity as a result of kerogen transformation. Clay minerals are very well connected in both planes, whereas carbonate minerals are not abundant whilst dominantly isolated in most samples, independent of maturity. This study demonstrates that micro-FTIR mapping is a valuable tool for studying shale heterogeneity on a micrometre to millimetre scale that becomes even more powerful in combination with scanning electron microscopy techniques, which extend observations to a nanometre scale. However, to obtain meaningful and comparable results, micro-FTIR mapping requires very careful standardization, precise selection of peak heights/areas and mapping conditions (such as aperture size, scan numbers, resolution, etc.) well suited for the analysed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. A neon-matrix isolation study of the reaction of non-energetic H-atoms with CO molecules at 3 K.

    PubMed

    Pirim, C; Krim, L

    2011-11-21

    The efficiency of HCO formation stemming from non-energetic H-atoms and CO molecules is highlighted both in the condensed phase and within a neon matrix environment, which is half-way between the condensed-phase and gas-phase. Our experiments demonstrated that HCO production within the neon-matrix needed very little or no activation energy. The efficiency of HCO formation depended only on the capability of H-atoms to diffuse in the solid and to subsequently encounter CO molecules. The novelty of the presented matrix experiment sheds light on the debated question of whether activation energy is required in order to produce HCO, because of the use of non-energetic ground state H-atoms within the neon-matrix.

  19. Comparison of the Bruker Biotyper and VITEK MS Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Systems Using a Formic Acid Extraction Method to Identify Common and Uncommon Yeast Isolates.

    PubMed

    Lee, Hyun Seung; Shin, Jong Hee; Choi, Min Ji; Won, Eun Jeong; Kee, Seung Jung; Kim, Soo Hyun; Shin, Myung Geun; Suh, Soon Pal

    2017-05-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and accurate identification of clinical yeast isolates. In-tube formic acid/acetonitrile (FA/ACN) extraction is recommended prior to the analysis with MALDI Biotyper, but the direct on-plate FA extraction is simpler. We compared the Biotyper with the VITEK MS for the identification of various clinically relevant yeast species, focusing on the use of the FA extraction method. We analyzed 309 clinical isolates of 42 yeast species (four common Candida species, Cryptococcus neoformans, and 37 uncommon yeast species) using the Biotyper and VITEK MS systems. FA extraction was used initially for all isolates. If 'no identification' result was obtained following the initial FA extraction, these samples were then retested by using FA (both systems, additive FA) or FA/ACN (Biotyper only, additive FA/ACN) extraction. These results were compared with those obtained by sequence-based identification. Both systems correctly identified all 158 isolates of the four common Candida species after the initial FA extraction. The Biotyper correctly identified 8.7%, 30.4%, and 100% of 23 C. neoformans isolates after performing initial FA, additive FA, and FA/ACN extractions, respectively, while VITEK MS identified all C. neoformans isolates after the initial FA extraction. Both systems had comparable identification rates of 37 uncommon yeast species (128 isolates), following the initial FA (Biotyper, 74.2%; VITEK MS, 73.4%) or additive FA (Biotyper, 82.0%; VITEK MS, 73.4%). The identification rate of most common and uncommon yeast isolates is comparable between simple FA extraction/Biotyper method and VITEK MS methods, but FA/ACN extraction is necessary for C. neoformans identification by Biotyper.

  20. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    NASA Astrophysics Data System (ADS)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  1. Anethole-Water a Combined Jet, Matrix, and Computational Study

    NASA Astrophysics Data System (ADS)

    Newby, Josh; Nesheiwat, Jackleen

    2016-06-01

    Anethole [(E)-1-methoxy-4-(1-propenyl)benzene] is a natural product molecule that is commonly recognized as the flavor component of anise, fennel, and licorice. Previously, we reported the jet-cooled, laser-induced fluorescence (LIF) and single vibronic level fluorescence (SVLF) spectra of anethole. In this work, several weak bands were observed and were tentatively assigned as van der Waals clusters of anethole with water. We have since confirmed this assignment and have conducted a more detailed study to determine the geometry of these clusters. Results from LIF, SVLF, and matrix isolation FTIR spectroscopy, as well as computational results will be presented in this talk. J. Phys. Chem. A, 2013, 117 (48), 12831-12841 Newly built system at Hobart and William Smith Colleges

  2. Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis.

    PubMed

    Kondori, Nahid; Erhard, Marcel; Welinder-Olsson, Christina; Groenewald, Marizeth; Verkley, Gerard; Moore, Edward R B

    2015-01-01

    Conventional mycological identifications based on the recognition of morphological characteristics can be problematic. A relatively new methodology applicable for the identification of microorganisms is based on the exploitation of taxon- specific mass patterns recorded from abundant cell proteins directly from whole-cell preparations, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This study reports the application of MALDI-TOF MS for the differentiation and identifications of black yeasts, isolated from the respiratory tracts of patients with cystic fibrosis (CF). Initial phenotypic and DNA sequence-based analyses identified these isolates to be Exophiala dermatitidis. The type strains of E. dermatitidis (CBS 207.35(T)) and other species of Exophiala were included in the MALDI-TOF MS analyses to establish the references for comparing the mass spectra of the clinical isolates of Exophiala. MALDI-TOF MS analyses exhibited extremely close relationships among the clinical isolates and with the spectra generated from the type strain of E. dermatitidis. The relationships observed between the E. dermatitidis strains from the MALDI-TOF MS profiling analyses were supported by DNA sequence-based analyses of the rRNA ITS1 and ITS2 regions. These data demonstrated the applicability of MALDI-TOF MS as a reliable, rapid and cost-effective method for the identification of isolates of E. dermatitidis and other clinically relevant fungi and yeasts that typically are difficult to identify by conventional methods.

  3. Characterization of Klebsiella isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES).

    PubMed

    Karagöz, Alper; Acar, Sümeyra; Körkoca, Hanifi

    2015-01-01

    The purpose of the study was to evaluate the performance of the VITEK mass spectrometry (MS) (bioMérieux, France) system for the identification of Klebsiella spp. isolated from different sources. Moreover, while assessing the ability of the VITEK 2 automated expert system (AES) to recognize antimicrobial resistance patterns, the researchers have extended the study to compare VITEK 2 with the routine antimicrobial susceptibility testing method. This study tested 51 Klebsiella spp. isolates that were isolated from environmental examples and clinical examples. Results of conventional methods and the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS were compared. Then, any differing results were compared against a reference 16S rRNA gene sequence, and when indicated, a recA sequencing analysis was done. VITEK MS correctly identified 100% of the Klebsiella spp. isolates. There were two K. oxytoca isolates incorrectly identified to the species level with conventional methods according to the 16S rRNA gene sequencing analysis. In addition, a VITEK 2 AST-N261 card was used for the detection of extended spectrum beta-lactamases (ESBL). Using the VITEK 2 AES, ESBL positivity was found at the rate of 16.3% whereas this rate was 4.08% using the disk diffusion method. MALDI-TOF MS is a rapid and accurate method for the identification of Klebsiella spp. Moreover, the bioMérieux AES provides a useful laboratory tool for the interpretation of susceptibility results.

  4. Understanding Why Researchers Should Use Synchrotron-Enhanced FTIR Instead of Traditional FTIR

    ERIC Educational Resources Information Center

    Stem, Michelle R.

    2008-01-01

    A synchrotron-enhanced Fourier transform infrared (SR-FTIR) specializes in combining the tremendous power, brightness, intensity, focusability, and tunability of the photons radiated by a synchrotron with FTIR ability to research the vibrational properties of the lighter elements (i.e., C, N, O, etc.). Infrared (IR) wavelengths correspond to the…

  5. Understanding Why Researchers Should Use Synchrotron-Enhanced FTIR Instead of Traditional FTIR

    ERIC Educational Resources Information Center

    Stem, Michelle R.

    2008-01-01

    A synchrotron-enhanced Fourier transform infrared (SR-FTIR) specializes in combining the tremendous power, brightness, intensity, focusability, and tunability of the photons radiated by a synchrotron with FTIR ability to research the vibrational properties of the lighter elements (i.e., C, N, O, etc.). Infrared (IR) wavelengths correspond to the…

  6. Tissue diagnostics using fiber optic FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bindig, Uwe; Waesche, Wolfgang; Liebold, K.; Winter, Harald; Gross, Ulrich M.; Frege, P.; Mueller, G.

    1999-01-01

    The infrared spectrum of biological tissue is due to the 'microheterogenous' composition as a whole and is based on complex vibrational modes. In detail, the spectrum represents the biochemical status resulting from a combination of the structural framework of tissues together with the biological active compounds of metabolism. According to the literature, the main IR-spectroscopic differences are to be expected by the characteristic spectral pattern which is located at the 'fingerprint' region (1500 - 1000 cm-1). In order to design and develop an endoscopic system for the in vivo identification of healthy and malignant tissue FTIR- measurements were carried out using a fiberoptic device. The source of IR-radiation can be either the FTIR-spectrometer or tunable IR-diode lasers. Fiberoptic IR-spectra obtained using the attenuated total reflectance (ATR) and reflection mode were compared to spectra resulting from the FTIR- microspectroscopic measurements.

  7. FTIR monitoring of industrial scale CVD processes

    NASA Astrophysics Data System (ADS)

    Hopfe, V.; Mosebach, H.; Meyer, M.; Sheel, D.; Grählert, W.; Throl, O.; Dresler, B.

    1998-06-01

    The goal is to improve chemical vapour deposition (CVD) and infiltration (CVI) process control by a multipurpose, knowledge based feedback system. For monitoring the CVD/CVI process in-situ FTIR spectroscopic data has been identified as input information. In the presentation, three commonly used, and distinctly different, types of industrial CVD/CVI processes are taken as test cases: (i) a thermal high capacity CVI batch process for manufacturing carbon fibre reinforced SiC composites for high temperature applications, (ii) a continuously driven CVD thermal process for coating float glass for energy protection, and (iii) a laser stimulated CVD process for continuously coating bundles of thin ceramic fibers. The feasibility of the concept with FTIR in-situ monitoring as a core technology has been demonstrated. FTIR monitoring sensibly reflects process conditions.

  8. Characterization of Organosolv Lignins using Thermal and FT-IR Spectroscopic Analysis

    Treesearch

    Rhea J. Sammons; David P. Harper; Nicole Labbe; Joseph J. Bozell; Thomas Elder; Timothy G. Rials

    2013-01-01

    A group of biomass-derived lignins isolated using organosolv fractionation was characterized by FT-IR spectral and thermal property analysis coupled with multivariate analysis. The principal component analysis indicated that there were significant variations between the hardwood, softwood, and grass lignins due to the differences in syringyl and guaiacyl units as well...

  9. FT-IR analysis of phosphorylated protein

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Yoshihashi, Sachiko S.; Chihara, Kunihiro; Awazu, Kunio

    2004-09-01

    Phosphorylation and dephosphorylation, which are the most remarkable posttranslational modifications, are considered to be important chemical reactions that control the activation of proteins. We examine the phosphorylation analysis method by measuring the infrared absorption peak of phosphate group that observed at about 1070cm-1 (9.4μm) with Fourier Transform Infrared Spectrometer (FT-IR). This study indicates that it is possible to identify a phosphorylation by measuring the infrared absorption peak of phosphate group observed at about 1070 cm-1 with FT-IR method. As long as target peptides have the same amino acid sequence, it is possible to identify the phosphorylated sites (threonine, serine and tyrosine).

  10. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  11. Evaluation of a Short, On-Plate Formic Acid Extraction Method for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Identification of Clinically Relevant Yeast Isolates

    PubMed Central

    Seaton, Shila; Ramnarain, Purnima; McHugh, Timothy D.; Kibbler, Christopher C.

    2014-01-01

    This report describes a short, on-plate formic acid (FA) extraction method for the identification of clinical yeast isolates using matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS). A total of 41.1% (78/190) and 63.7% (121/190) of yeasts were identified using species log score thresholds of >2.0 and >1.9, respectively. Overall, 97.4% (185/190) of yeasts were identified in combination with conventional FA extraction. PMID:24478407

  12. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    EPA Science Inventory

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  13. THE USE OF MATRIX-ASSISTED LASER DESORPTION/IONIZATION-MASS SPECTROMETRY FOR THE IDENTIFICATION OF AEROMONAS ISOLATES OBTAINED FROM WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...

  14. THE USE OF MATRIX-ASSISTED LASER DESORPTION/IONIZATION-MASS SPECTROMETRY FOR THE IDENTIFICATION OF AEROMONAS ISOLATES OBTAINED FROM WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...

  15. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    EPA Science Inventory

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  16. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  17. Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints

    NASA Astrophysics Data System (ADS)

    Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal

    2015-08-01

    The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.

  18. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism.

    PubMed

    Prakash, A; Sharma, C; Singh, A; Kumar Singh, P; Kumar, A; Hagen, F; Govender, N P; Colombo, A L; Meis, J F; Chowdhary, A

    2016-03-01

    Candida auris is a multidrug-resistant nosocomial bloodstream pathogen that has been reported from Asian countries and South Africa. Herein, we studied the population structure and genetic relatedness among 104 global C. auris isolates from India, South Africa and Brazil using multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RPB1, RPB2 and internal transcribed spacer (ITS) and D1/D2 regions of the ribosomal DNA were sequenced for MLST. Further, genetic variation and proteomic assessment was carried out using AFLP and MALDI-TOF MS, respectively. Both MLST and AFLP typing clearly demarcated two major clusters comprising Indian and Brazilian isolates. However, the South African isolates were randomly distributed, suggesting different genotypes. MALDI-TOF MS spectral profiling also revealed evidence of geographical clustering but did not correlate fully with the genotyping methods. Notably, overall the population structure of C. auris showed evidence of geographical clustering by all the three techniques analysed. Antifungal susceptibility testing by the CLSI microbroth dilution method revealed that fluconazole had limited activity against 87% of isolates (MIC90, 64 mg/L). Also, MIC90 of AMB was 4 mg/L. Candida auris is emerging as an important yeast pathogen globally and requires reproducible laboratory methods for identification and typing. Evaluation of MALDI-TOF MS as a typing method for this yeast is warranted.

  19. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis.

    PubMed

    Vidigal, Pedrina Gonçalves; Mosel, Frank; Koehling, Hedda Luise; Mueller, Karl Dieter; Buer, Jan; Rath, Peter Michael; Steinmann, Joerg

    2014-12-01

    Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung. © 2014 The Authors.

  20. GHB: Forensic examination of a dangerous recreational drug by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindig, J. P.; Ellis, L. E.; Brueggemeyer, T. W.; Satzger, R. D.

    1998-06-01

    Gamma-hydroxybutyric acid (GHB) is an illegal drug that has been abused for its intoxicating effects. However, GHB can also produce harmful physiological effects ranging from mild (nausea, drowsiness) to severe (coma, death). Because GHB is often produced by clandestine manufacture, its concentration, purity, and final form can be variable. Therefore, the analysis of suspected GHB samples using FTIR spectroscopy requires a variety of sample preparations and accessories, based on the sample matrix.

  1. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and chemometrics by CHROMagar™ Candida.

    PubMed

    Wohlmeister, Denise; Vianna, Débora Renz Barreto; Helfer, Virginia Etges; Calil, Luciane Noal; Buffon, Andréia; Fuentefria, Alexandre Meneghello; Corbellini, Valeriano Antonio; Pilger, Diogo André

    2017-10-01

    Pathogenic Candida species are detected in clinical infections. CHROMagar™ is a phenotypical method used to identify Candida species, although it has limitations, which indicates the need for more sensitive and specific techniques. Infrared Spectroscopy (FT-IR) is an analytical vibrational technique used to identify patterns of metabolic fingerprint of biological matrixes, particularly whole microbial cell systems as Candida sp. in association of classificatory chemometrics algorithms. On the other hand, Soft Independent Modeling by Class Analogy (SIMCA) is one of the typical algorithms still little employed in microbiological classification. This study demonstrates the applicability of the FT-IR-technique by specular reflectance associated with SIMCA to discriminate Candida species isolated from vaginal discharges and grown on CHROMagar™. The differences in spectra of C. albicans, C. glabrata and C. krusei were suitable for use in the discrimination of these species, which was observed by PCA. Then, a SIMCA model was constructed with standard samples of three species and using the spectral region of 1792-1561cm(-1). All samples (n=48) were properly classified based on the chromogenic method using CHROMagar™ Candida. In total, 93.4% (n=45) of the samples were correctly and unambiguously classified (Class I). Two samples of C. albicans were classified correctly, though these could have been C. glabrata (Class II). Also, one C. glabrata sample could have been classified as C. krusei (Class II). Concerning these three samples, one triplicate of each was included in Class II and two in Class I. Therefore, FT-IR associated with SIMCA can be used to identify samples of C. albicans, C. glabrata, and C. krusei grown in CHROMagar™ Candida aiming to improve clinical applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Surface characterization of Kevlar fibers by FT-IR spectroscopy

    SciTech Connect

    Chatzi, E.G.

    1987-01-01

    The Kevlar-49 aramid fiber offers considerable potential for utilization in high-performance composite materials. However, it has poor adhesion to the polymer matrix resin. In order to improve the adhesion the surface of the fiber was characterized by using two nondestructive Fourier transform infrared (FT-IR) techniques. It was shown that the polymer chains in the skin are oriented parallel to the surface, while in the core they are almost radially oriented. This orientation as well as the fact that the functional groups are intermolecularly hydrogen-bonded might limit their availability for reacting with the polymer matrix. The author also characterized the water absorbed in both the skin and the core of the fiber and found the existence of three types of water: (a) weakly hydrogen-bonded between one NH and one carbonyl group, (b) between two carbonyl groups and (c) liquid-like water clustered in microvoids and other sites inside the fibers. It was also found that 30% of the NH groups of the Kevlar-49 fiber are accessible for deuterium exchange. These groups on one hand are available for reactions that would improve the adhesion, but on the other hand can hydrogen-bond with water, which would be detrimental for the mechanical properties of the composite.

  3. C-Cl activation by group IV metal oxides in solid argon matrixes: matrix isolation infrared spectroscopy and theoretical investigations of the reactions of MOx (M = Ti, Zr; x = 1, 2) with CH3Cl.

    PubMed

    Zhao, Yanying

    2013-07-11

    Reactions of the ground-state titanium and zirconium monoxide and dioxide molecules with monochloromethane in excess argon matrixes have been investigated in solid argon by infrared absorption spectroscopy and density functional theoretical calculations. The results show that the ground-state MOx (M = Ti, Zr; x = 1, 2) molecules react with CH3Cl to first form the weakly bound MO(CH3Cl) and MO2(CH3Cl) complexes. The MO(CH3Cl) complexes can rearrange to the CH3M(O)Cl isomers with the Cl atom of CH3Cl coordination to the metal center of MO upon UV light irradiation (λ < 300 nm). Theoretical calculations indicate that the electronic state crossings exist from the MO + CH3Cl reaction to the more stable CH3M(O)Cl molecules via the MO(CH3Cl) complexes traversing their corresponding transition states. The MO2(CH3Cl) complexes can isomerize to the more stable CH3OM(O)Cl molecules with the addition of the C-Cl bond of CH3Cl to one of the O═M bonds of MO2 upon annealing after broad-band light irradiation. The C-Cl activation by the MOx mechanism was interpreted by the calculated potential energy profiles.

  4. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    PubMed

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa; Andersen, Line Bisgaard; Jensen, Thøger Gorm; Kemp, Michael; Skov, Marianne Nielsine; Gahrn-Hansen, Bente; Møller, Jens Kjølseth

    2011-12-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important anaerobic bacteria.

  5. Highly automated optical characterization with FTIR spectrometry

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Szofran, F. R.

    1989-01-01

    The procedure for evaluating the characteristics of II-VI semiconducting infrared sensor materials with a Fourier Transform Infrared (FTIR) spectrometer system will be discussed. While the method of mapping optical characteristics with a spectrometer has been employed previously, this system is highly automated compared to other systems where the optical transmission data are obtained using a FTIR system with a small stationary aperture in the optical path and moving the specimen behind the aperture. The hardware and software, including an algorithm developed for extracting cut-on wavelengths of spectra, as well as several example results, are described to illustrate the advanced level of the system. Additionally, data from transverse slices and longitudinal wafers of the aforementioned semiconductors will be used to show the accuracy of the system in predicting trends in materials such as shapes of growth interfaces and compositional uniformity.

  6. FTIR Spectroscopy for Carbon Family Study.

    PubMed

    Ţucureanu, Vasilica; Matei, Alina; Avram, Andrei Marius

    2016-11-01

    Fourier transform Infrared (FTIR) spectroscopy is a versatile technique for the characterization of materials belonging to the carbon family. Based on the interaction of the IR radiation with matter this technique may be used for the identification and characterization of chemical structures. Most important features of this method are: non-destructive, real-time measurement and relatively easy to use. Carbon basis for all living systems has found numerous industrial applications from carbon coatings (i.e. amorphous and nanocrystalline carbon films: diamond-like carbon (DLC) films) to nanostructured materials (fullerenes, nanotubes, graphene) and carbon materials at nanoscale or carbon dots (CDots). In this paper, we present the FTIR vibrational spectroscopy for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes (CNTs), fullerene and carbon quantum dots (CQDs), without claiming to cover entire field.

  7. ATR FTIR Mapping of Leather Fiber Panels

    NASA Astrophysics Data System (ADS)

    Tondi, G.; Grünewald, T.; Petutschnigg, A.; Schnabel, T.

    2015-01-01

    Leather fiber panels are very promising materials for many applications, not only for the easy availability of the constituents but also for their outstanding fi re-retardant properties. These innovative composite panels can be an excellent material for building insulation, and in recent times, the interest of industries in this composite board has considerably arisen. For this reason the discrimination of the components in the leather fiber panels is becoming fundamental in order to ensure their homogeneous properties. A method to characterize the surface of these materials is then required. An ATR FTIR mapping system for the leather fiber panels has been performed with a Perkin-Elmer microscope coupled with a Frontier FTIR spectrometer. The system has successfully allowed transforming the optical image to a chemical one. This technique can be considered as a right tool for routine controls of the surface quality, especially when the leather shavings cannot be optically distinguished.

  8. FTIR studies of organometalcarbonyl-tagged enzymes

    NASA Astrophysics Data System (ADS)

    Anson, Christopher E.; Creaser, Colin S.; Egyed, Orsolya; Stephenson, G. Richard

    1997-10-01

    Attachment of organometaltricarbonyl tags to enzymes is revealed by changes in the vibrational modes of the carbonyl groups. Shoulders on νsym( CO) and νasym( CO) bands in the FTIR spectrum of an organometallic tag derived from tricarbonyl[1-{(2,3,4,5-η)-2,4-cyclohexadien-1-yl}pyridinium]iron(1 +) hexafluorophosphate(1 -) were detected on binding to enzymes (α-chymotrypsin, ribonuclease A, alkaline phosphatase and a triacylglycerol lipase). By comparison with tagging reactions between the tricarbonyliron moiety and model compounds, the new spectral features were attributed to an iron complex covalently bonded to the NH 2 groups of the amino acid residues of the enzymes. FTIR spectroscopy was used to monitor deprotonation of tagged amino groups on the enzyme surface. Interactions between the organometalcarbonyl tag and other side-chain groups of the amino acid residues were also investigated.

  9. Application of factor analysis to FTIR microscopy

    NASA Astrophysics Data System (ADS)

    Donahue, Steven M.; Reffner, John A.; Wihlborg, William T.; Strawn, A. W.

    1992-03-01

    Applying chemometrics methods to the analysis of FT-IR microscopy data extends and improves compositional mapping. With an FT-IR microscope, it is possible to record mid-IR spectra from areas as small as 5 X 5 micrometers 2 and to step-scan over large areas in a regular sequence, thereby recording an array of spectra for compositional mapping. Initially, compositional maps were produced by inspecting individual spectra to identify an absorption that changed intensity with its coordinates in the data array. This band intensity would then be plotted against its spatial coordinates to produce a three-dimensional composition map. This form of mapping was generally called 'functional group mapping.' However, these data sets can be analyzed more effectively by using chemometrics principals to derive detailed quantitative maps and 'pure' principal-component spectra. The factor analysis also reduces the data set and improves the signal-to-noise ratio of compositional maps. Factor mapping has been applied to identify and plot the distribution of polymer film contaminates, foreign bodies in tissues, and adhesive bonding layers in polymer laminates. In addition, this combination of FT-IR microscopy and chemometrics has been used to test the uniformity of polymer blends and alloys. These examples are presented to illustrate the general applicability of these technologies and the strength of their union.

  10. Isolation and characterization of a novel acidic matrix protein hic22 from the nacreous layer of the freshwater mussel, Hyriopsis cumingii.

    PubMed

    Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L

    2016-07-29

    Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer.

  11. Optimization of the Preanalytical Steps of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Identification Provides a Flexible and Efficient Tool for Identification of Clinical Yeast Isolates in Medical Laboratories

    PubMed Central

    Goyer, Marianne; Lucchi, Geraldine; Ducoroy, Patrick; Vagner, Odile; Bonnin, Alain

    2012-01-01

    We report here that modifications of the preanalytical steps of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) identification of yeasts, with regard to the original protocol provided by the manufacturers, appear to be efficient for the reliable routine identification of clinical yeast isolates in medical laboratories. Indeed, when one colony was sampled instead of five and the protein extraction protocol was modified, the performance of MALDI-TOF MS was superior to that of the API ID 32C method (discrepancies were confirmed by using molecular identification), allowing the correct identification of 94% of the 335 clinical isolates prospectively tested. We then demonstrated that the time for which the primary cultures were preincubated on CHROMagar did not impact the identification of yeasts by MALDI-TOF MS, since 95.1 and 96.2% of the 183 clinical yeast isolates prospectively tested were correctly identified after 48 and 72 h of preincubation, respectively. PMID:22718939

  12. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and Bayesian phylogenetic analysis to characterize Candida clinical isolates.

    PubMed

    Angeletti, Silvia; Lo Presti, Alessandra; Cella, Eleonora; Dicuonzo, Giordano; Crea, Francesca; Palazzotti, Bernardetta; Dedej, Etleva; Ciccozzi, Massimo; De Florio, Lucia

    2015-12-01

    Clinical Candida isolates from two different hospitals in Rome were identified and clustered by MALDI-TOF MS system and their origin and evolution estimated by Bayesian phylogenetic analysis. The different species of Candida were correctly identified and clustered separately, confirming the ability of these techniques to discriminate between different Candida species. Focusing MALDI-TOF analysis on a single Candida species, Candida albicans and Candida parapsilosis strains clustered differently for hospital setting as well as for period of isolation than Candida glabrata and Candida tropicalis isolates. The evolutionary rates of C. albicans and C. parapsilosis (1.93×10(-2) and 1.17×10(-2)substitutions/site/year, respectively) were in agreement with a higher rate of mutation of these species, even in a narrow period, than what was observed in C. glabrata and C. tropicalis strains (6.99×10(-4) and 7.52×10(-3)substitutions/site/year, respectively). C. albicans resulted as the species with the highest between and within clades genetic distance values in agreement with the temporal-related clustering found by MALDI-TOF and the high evolutionary rate 1.93×10(-2)substitutions/site/year. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Deciphering Host Genotype-Specific Impacts on the Metabolic Fingerprint of Listeria monocytogenes by FTIR Spectroscopy

    PubMed Central

    Grunert, Tom; Monahan, Avril; Lassnig, Caroline; Vogl, Claus; Müller, Mathias; Ehling-Schulz, Monika

    2014-01-01

    Bacterial pathogens are known for their wide range of strategies to specifically adapt to host environments and infection sites. An in-depth understanding of these adaptation mechanisms is crucial for the development of effective therapeutics and new prevention measures. In this study, we assessed the suitability of Fourier Transform Infrared (FTIR) spectroscopy for monitoring metabolic adaptations of the bacterial pathogen Listeria monocytogenes to specific host genotypes and for exploring the potential of FTIR spectroscopy to gain novel insights into the host-pathogen interaction. Three different mouse genotypes, showing different susceptibility to L. monocytogenes infections, were challenged with L. monocytogenes and re-isolated bacteria were subjected to FTIR spectroscopy. The bacteria from mice with different survival characteristics showed distinct IR spectral patterns, reflecting specific changes in the backbone conformation and the hydrogen-bonding pattern of the protein secondary structure in the bacterial cell. Coupling FTIR spectroscopy with chemometrics allowed us to link bacterial metabolic fingerprints with host infection susceptibility and to decipher longtime memory effects of the host on the bacteria. After prolonged cultivation of host-passaged bacteria under standard laboratory conditions, the host's imprint on bacterial metabolism vanished, which suggests a revertible metabolic adaptation of bacteria to host environment and loss of host environment triggered memory effects over time. In summary, our work demonstrates the potential and power of FTIR spectroscopy to be used as a fast, simple and highly discriminatory tool to investigate the mechanism of bacterial host adaptation on a macromolar and metabolic level. PMID:25541972

  14. FTIR MONITORING OF THE VENTILATION AIR OF CRITICAL BUILDINGS

    EPA Science Inventory

    Fourier transform infrared (FTIR) spectroscopy has been used for detailed analysis of environmental and industrial process samples for many years. FTIR spectrometers have the capability of measuring multiple compounds simultaneously, thus providing an advantage over most other me...

  15. FTIR MONITORING OF THE VENTILATION AIR OF CRITICAL BUILDINGS

    EPA Science Inventory

    Fourier transform infrared (FTIR) spectroscopy has been used for detailed analysis of environmental and industrial process samples for many years. FTIR spectrometers have the capability of measuring multiple compounds simultaneously, thus providing an advantage over most other me...

  16. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    NASA Technical Reports Server (NTRS)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  17. Discrimination of Staphylococcus aureus strains from different species of Staphylococcus using Fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Lamprell, H; Mazerolles, G; Kodjo, A; Chamba, J F; Noël, Y; Beuvier, E

    2006-04-15

    Staphylococcus aureus is a widespread opportunistic pathogen that can cause food-borne illness and is sometimes associated with raw milk and raw milk cheese products. The traditional taxonomic procedures for classification of staphylococcal species are time consuming and often several tests are required. FTIR spectroscopy offers a rapid method for the discrimination and identification of S. aureus strains isolated from raw milk and raw milk cheeses. FTIR spectroscopy was used to discriminate S. aureus from other species of Staphylococcus. This was achieved by using a model composed of 39 species and subspecies of Staphylococcus. The model was validated using a set of spectra of strains isolated from raw milk and different varieties of French raw milk cheese. S. aureus was successfully discriminated from the other species of Staphylococcus and all the strains of S. aureus isolated from raw milk and different varieties of French raw milk cheese were also successfully identified as such. These results demonstrated that FTIR spectroscopy is a rapid (results obtained within 24 h starting from a pure strain or a single colony) and robust method for the identification of S. aureus isolates of dairy origin and food-borne origin in general.

  18. Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells.

    PubMed

    Anggakusuma; Yanti; Hwang, Jae-Kwan

    2010-02-01

    UVB irradiation (290-320 nm) is the most damaging component of the UV spectrum and causes both direct and indirect damage to the basal cell layer of the epidermis; this results in the activation of a number of signaling pathways involved in pathophysiological processes in the skin, such as photoaging and inflammation. In photoaging UVB irradiation promotes degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and, in inflammation, UVB irradiation promotes the expression of inducible cyclooxygenase (COX-2), leading to overproduction of inflammatory mediators. We first investigated the protective effects of macelignan from Myristica fragrans Houtt. on immortalized human keratinocytes (HaCaT) against UVB damage. We then explored the inhibitory effects of macelignan on UVB-induced MMP-9 and COX-2 and investigated the molecular mechanism underlying those effects. HaCaT cells were treated with macelignan for the indicated times followed by irradiation with UVB. Secretion of MMP-9 was measured by gelatin zymography. Expression of COX-2, mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase/Akt (PI3K/Akt), c-Fos, c-Jun, and CREB were assayed by western analysis. Macelignan at a concentration of 0.1-1 microM increased the viability of HaCaT cells following UVB irradiation and inhibited MMP-9 secretion and COX-2 expression in a concentration-dependent manner. An inhibitory effect was also seen in the signal transduction network, where macelignan treatment reduced the activation of UVB-induced MAPKs, PI3K/Akt, and their downstream transcription factors. These results suggest that macelignan protects skin keratinocytes from UVB-induced damage and inhibits MMP-9 and COX-2 expression by attenuating the activation of MAPKs and PI3K/Akt. Copyright 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  20. [Direct identification of Myristica fragrans and Myristica sp. by FTIR].

    PubMed

    Wang, Yixiang; Cheng, Cungui; Li, Binglan

    2003-01-01

    To directly and accurately identify Myristica fragrans and Myristica sp. Fourier transform infrare(FTIR) spectrum method was used. There were obvious differences between the FTIR spectrums of above-mentioned plants. Myristica fragrans and Myristica sp. were identificated by FTIR directly, fast and accurately.

  1. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    NASA Astrophysics Data System (ADS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-07-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  2. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    SciTech Connect

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  3. Typing of Ochrobactrum anthropi clinical isolates using automated repetitive extragenic palindromic-polymerase chain reaction DNA fingerprinting and matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry

    PubMed Central

    2014-01-01

    Background Ochrobactrum anthropi (O. anthropi), is a non-fermenting gram-negative bacillus usually found in the environment. Nevertheless, during the past decade it has been identified as pathogenic to immunocompromised patients. In this study, we assessed the usefulness of the automated repetitive extragenic palindromic-polymerase chain reaction (rep-PCR-based DiversiLab™ system, bioMèrieux, France) and of matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF MS) for typing of twentythree O. anthropi clinical isolates that we found over a four-months period (from April 2011 to August 2011) in bacteriemic patients admitted in the same operative unit of our hospital. Pulsed-field gel electrophoresis (PFGE), commonly accepted as the gold standard technique for typing, was also used. Analysis was carried out using the Pearson correlation coefficient to determine the distance matrice and the unweighted pair group method with arithmetic mean (UPGMA) to generate dendogram. Results Rep-PCR analysis identified four different patterns: three that clustered together with 97% or more pattern similarity, and one whose members showed < 95% pattern similarity. Interestingly, strains isolated later (from 11/06/2011 to 24/08/2011) displayed a pattern with 99% similarity. MALDI-TOF MS evaluation clustered the twentythree strains of O. anthropi into a single group containing four distinct subgroups, each comprising the majority of strains clustering below 5 distance levels, indicating a high similarity between the isolates. Conclusions Our results indicate that these isolates are clonally-related and the methods used afforded a valuable contribution to the epidemiology, prevention and control of the infections caused by this pathogen. PMID:24655432

  4. The effect of hydrogen bonding on torsional dynamics: A combined far-infrared jet and matrix isolation study of methanol dimer

    SciTech Connect

    Kollipost, F.; Heger, M.; Suhm, M. A.; Andersen, J.; Mahler, D. W.; Wugt Larsen, R.; Heimdal, J.

    2014-11-07

    The effect of strong intermolecular hydrogen bonding on torsional degrees of freedom is investigated by far-infrared absorption spectroscopy for different methanol dimer isotopologues isolated in supersonic jet expansions or embedded in inert neon matrices at low temperatures. For the vacuum-isolated and Ne-embedded methanol dimer, the hydrogen bond OH librational mode of the donor subunit is finally observed at ∼560 cm{sup −1}, blue-shifted by more than 300 cm{sup −1} relative to the OH torsional fundamental of the free methanol monomer. The OH torsional mode of the acceptor embedded in neon is observed at ∼286 cm{sup −1}. The experimental findings are held against harmonic predictions from local coupled-cluster methods with single and double excitations and a perturbative treatment of triple excitations [LCCSD(T)] and anharmonic. VPT2 corrections at canonical MP2 and density functional theory (DFT) levels in order to quantify the contribution of vibrational anharmonicity for this important class of intermolecular hydrogen bond vibrational motion.

  5. Matrix reaction of the oxygen atom with the CBrCl 3 molecule Identification of phosgene complexes with Cl 2 and Br 2

    NASA Astrophysics Data System (ADS)

    Abdelaoui, O.; Schriver, L.; Schriver, A.

    1992-05-01

    Ft-IR spectroscopy has been coupled with the matrix isolation technique to investigate the mechanism of the CBrCl 3 photooxidation by ozone at 12 K by UV light. COCl 2 is observed as the only primary product and CO as a secondary photolysis product. A 35 K warm up after photolysis generated phosgene complexes with Cl 2 and Br 2. Identification of these molecular complexes was performed with mixtures of laboratory synthesized phosgene with X (X=Cl 2, Br 2) trapped in argon matrices.

  6. Lignin Analysis by HPLC and FTIR.

    PubMed

    Reyes-Rivera, Jorge; Terrazas, Teresa

    2017-01-01

    Fourier transform infrared spectroscopy (FTIR) is a simple non-destructive technique which allows the user to obtain quick and accurate information about the structure of the constituents of wood. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques.

  7. An improved method of measuring tropospheric NO2, NO3, HO2, and RO2 by Matrix Isolation and Electronic Spin Resonance (MIESR)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The MIESR method consists of two steps (1) collection of the radicals present in the ambient air at 77K in a polycrystalline D2O matrix and (2) identification and quantification of the different radicals in the laboratory by Electron Spin Resonance spectroscopy. In step (1), the sampling efficiency for sampling NO2 and RO2 was determined to be greater than or equal to 95 percent, with a measured accuracy of plus or minus 5 percent. In step (2), after collection, the samples are maintained at 77 K and spectra are recorded in the laboratory using a standard 9.5 GHz ESR system (Varian E-line). About 50 individual scans of each spectrum are recorded and digitally averaged in order to improve the signal-to-noise ratio. The ESR-spectra are analyzed with a recently developed numerical procedure which was demonstrated to allow speciation of NO2, NO3, HO2, CH3C(O)O2, and the sum of the alkylperoxy radicals. The detection limit is 5ppt for HO2, RO2, and NO2 and 3ppt for NO3 due to its narrower ESR-linewidth.

  8. A simple but accurate potential for the naphthalene-argon complex: applications to collisional energy transfer and matrix isolated IR spectroscopy.

    PubMed

    Calvo, F; Falvo, Cyril; Parneix, Pascal

    2013-01-21

    An explicit polarizable potential for the naphthalene-argon complex has been derived assuming only atomic contributions, aiming at large scale simulations of naphthalene under argon environment. The potential was parametrized from dedicated quantum chemical calculations at the CCSD(T) level, and satisfactorily reproduces available structural and energetic properties. Combining this potential with a tight-binding model for naphthalene, collisional energy transfer is studied by means of dedicated molecular dynamics simulations, nuclear quantum effects being accounted for in the path-integral framework. Except at low target temperature, nuclear quantum effects do not alter the average energies transferred by the collision or the collision duration. However, the distribution of energy transferred is much broader in the quantum case due to the significant zero-point energy and the higher density of states. Using an ab initio potential for the Ar-Ar interaction, the IR absorption spectrum of naphthalene solvated by argon clusters or an entire Ar matrix is computed via classical and centroid molecular dynamics. The classical spectra exhibit variations with growing argon environment that are absent from quantum spectra. This is interpreted by the greater fluxional character experienced by the argon atoms due to vibrational delocalization.

  9. A simple but accurate potential for the naphthalene-argon complex: Applications to collisional energy transfer and matrix isolated IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Falvo, Cyril; Parneix, Pascal

    2013-01-01

    An explicit polarizable potential for the naphthalene-argon complex has been derived assuming only atomic contributions, aiming at large scale simulations of naphthalene under argon environment. The potential was parametrized from dedicated quantum chemical calculations at the CCSD(T) level, and satisfactorily reproduces available structural and energetic properties. Combining this potential with a tight-binding model for naphthalene, collisional energy transfer is studied by means of dedicated molecular dynamics simulations, nuclear quantum effects being accounted for in the path-integral framework. Except at low target temperature, nuclear quantum effects do not alter the average energies transferred by the collision or the collision duration. However, the distribution of energy transferred is much broader in the quantum case due to the significant zero-point energy and the higher density of states. Using an ab initio potential for the Ar-Ar interaction, the IR absorption spectrum of naphthalene solvated by argon clusters or an entire Ar matrix is computed via classical and centroid molecular dynamics. The classical spectra exhibit variations with growing argon environment that are absent from quantum spectra. This is interpreted by the greater fluxional character experienced by the argon atoms due to vibrational delocalization.

  10. Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy

    USGS Publications Warehouse

    Rodriguez, Russell J.; Isenor, Merrill; Kaminsky, Susan G.W.; Redman, S.; Gough, Kathleen M.

    2010-01-01

    FTIR and Raman spectromicroscopy were used to characterize the composition of Curvularia protuberata hyphae, and to compare a strain isolated from plants inhabiting geothermal soils with a non-geothermal isolate. Thermal IR source images of hyphae have been acquired with a 64 × 64 element focal plane array detector; single point IR spectra have been obtained with synchrotron source light. In some C. protuberata hyphae, we have discovered the spectral signature of crystalline mannitol, a fungal polyol with complex protective roles. With FTIR-FPA imaging, we have determined that the protein content in cells remains fairly constant throughout the length of a hypha, whereas the mannitol is found at discrete, irregular locations. This is the first direct observation of mannitol in intact fungal hyphae. Since the concentration of mannitol in cells varies with respect to position and is not present in all hyphae, this discovery may be related to habitat adaptation, fungal structure and growth stages.

  11. Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy

    USGS Publications Warehouse

    Isenor, M.; Kaminskyj, S.G.W.; Rodriguez, R.J.; Redman, R.S.; Gough, K.M.

    2010-01-01

    FTIR and Raman spectromicroscopy were used to characterize the composition of Curvularia protuberata hyphae, and to compare a strain isolated from plants inhabiting geothermal soils with a non-geothermal isolate. Thermal IR source images of hyphae have been acquired with a 64 ?? 64 element focal plane array detector; single point IR spectra have been obtained with synchrotron source light. In some C. protuberata hyphae, we have discovered the spectral signature of crystalline mannitol, a fungal polyol with complex protective roles. With FTIR-FPA imaging, we have determined that the protein content in cells remains fairly constant throughout the length of a hypha, whereas the mannitol is found at discrete, irregular locations. This is the first direct observation of mannitol in intact fungal hyphae. Since the concentration of mannitol in cells varies with respect to position and is not present in all hyphae, this discovery may be related to habitat adaptation, fungal structure and growth stages. ?? 2010 The Royal Society of Chemistry.

  12. Use of anorganic bovine-derived hydroxyapatite matrix/cell-binding peptide (P-15) in the treatment isolated Class I gingival recession of defects: a pilot study.

    PubMed

    Nazareth, Carlos A; Cury, Patricia R

    2011-05-01

    This study clinically evaluates the treatment outcome of coronally positioned flap (CPF) associated with anorganic bone mineral/peptide-15 (ABM/P-15) in terms of root coverage and gain in clinical attachment level (CAL) and bone height (BH) in isolated Class I gingival recession (GR) defects. Fifteen healthy subjects with bilateral and comparable Miller Class I GR defects were selected. The defects were randomly assigned either to the test group (CPF with ABM/P-15) or to the control group (CPF only). Six months after surgery, a reduction in GR was observed in the test and control groups (2.20 ± 0.54 and 2.40 ± 0.80 mm, respectively; P <0.001) with no intergroup difference (P = 0.33). Complete root coverage was obtained in 10 and 11 defects in the test and control groups, respectively. In the test group 85.56% ± 21.69% and in the control group 90.00% ± 18.42% of the exposed root was covered. Although not clinically significant, a statistically greater increase in the gingival thickness was observed in the test group (0.03 mm; P = 0.01). CAL gain was significant in both groups (test group, 1.93 ± 0.44 mm; control group, 2.13 ± 1.15 mm; P <0.001) with no intergroup difference (P = 0.42). Intergroup and intragroup differences in width of keratinized tissue and BH were not significant (P ≥0.16). In the test group, a positive correlation was observed between BH at baseline and the reduction in GR (r = 0.56; P = 0.03). In isolated Class I GR defects, CPF associated with ABM/P-15 provided no significant difference in root coverage and CAL gain compared to CPF alone. In the ABM/P-15 group, a greater reduction in GR was associated with higher bone level at baseline.

  13. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  14. Advanced FTIR techniques for photoresist process characterization

    NASA Astrophysics Data System (ADS)

    Carpio, Ronald A.; Byers, Jeff D.; Petersen, John S.; Theiss, Wolfgang

    1997-07-01

    Several applications of Fourier transform IR spectroscopy (FTIR) for the characterization of photoresist thin films are demonstrated. The applications are accurate resist thickness measurements, monitoring of solvent loss during the post-apply-bake, determination of the glass transition temperature, and deprotection reaction kinetics. Model based, spectral analysis is applied for the determination of photoresist thickness from mid-FTIR spectra and is shown to have linear correlation to measurements with UV-visible spectroscopic ellipsometry. Using this capability in conjunction with an external reflection accessory and rapid data acquisition hardware and software, measurements are performed on Shipley SPR-510L photoresist during the post apply bake step, deriving thickness and solvent loss information. The use of this approach is also explored for making glass transition measurements of an environmentally stable chemical amplification positive resist photoresist. Finally, in-situ PEB studies are illustrated for APEX-E photoresist. For off-line analysis, an in-sample compartment mapping accessories is applied to the characterization of multiple open frame exposure matrices on 200 mm double-side polished wafers.

  15. FTIR Spectroscopy of Some Brazilian Clays

    NASA Astrophysics Data System (ADS)

    das Graças da Silva-Valenzuela, Maria; Hui, Wang Shu; Valenzuela-Díaz, Francisco Rolando

    This work describes the FTIR spectroscopy of 05 bentonites and 03 kaolins from Brazil. All clay were previously dried at 60°C and sieved through the screens 200 and 325 mesh, before characterization by XRD and FTIR. Bentonite samples showed characteristic well-resolved peaks around 3620-3616 cm-1, attributed to the OH stretching of structural hydroxyl groups. Kaolin samples showed characteristic peaks near 3690 cm-1 and 3675 cm-1, assigned to the OH-stretching of the inner surface. A characteristic peak at 908 cm-1 has been previously linked to the presence of kaolinite, whose relative intensity in the spectra suggested differences in the kaolinite content in the clays. Peak around 780 cm-1 revealed the predominance of Fe3+MgOH over Fe3 +AIOH and MgAlOH. Polycationic character of both bentonites and kaolins were clearly distinguished. Differences among the clay samples were linked to their chemical constitution, the amount of accessory minerals and the presence of structural substitutional cation(s).

  16. FT-IR microspectroscopy for microbiological studies.

    PubMed

    Orsini, F; Ami, D; Villa, A M; Sala, G; Bellotti, M G; Doglia, S M

    2000-09-01

    In this article we present an infrared microspectroscopic investigation on Candida albicans microcolonies, taken as a model system for studies on other microorganisms. Excellent Fourier transform infrared (FT-IR) absorption spectra from 4000 to 850 cm(-1) have been collected in only 20 s from sampling areas of 100x100 microm(2) in microcolonies, which had been transferred from the agar plate onto zinc selenide (ZnSe) windows. When different regions within a single microcolony were investigated, absorption spectra with important differences in the carbohydrate absorption (from 1200 to 850 cm(-1)) were detected for the cells in the center and in the periphery of the colony. Results obtained on microcolonies grown on solid agar with increasing dextrose concentrations indicated that the observed spectral heterogeneity was related to differences in dextrose uptake, which was lower for the old cells in the center of the colony than for the metabolically active cells at the periphery. Although it is otherwise difficult to quantitatively evaluate the dextrose uptake in a microcolony, FT-IR absorption microspectroscopy offers a new and rapid method for the analysis of this process. The possibility of studying highly absorbing colonies by attenuated total reflection (ATR) by means of an ATR microscope germanium objective is also presented here for the first time. An evaluation of the contact area sampled by this technique is reported with a discussion of the spatial resolution, the quality and the potential of the ATR measurements.

  17. Rapid and accurate identification of species of the genus Pediococcus isolated from Korean fermented foods by matrix-assisted laser desorption/ionization time-of-flight MS with local database extension.

    PubMed

    Cho, Youngjae; Kim, Eiseul; Lee, Yoonju; Han, Sun-Kyung; Kim, Chang-Gyeom; Choo, Dong-Won; Kim, Young-Rok; Kim, Hae-Yeong

    2017-04-01

    Pediococci are halophilic lactic acid bacteria, within the family Lactobacillaceae, which are involved in the fermentation of various salted and fermented foods, such as kimchi and jeotgal. In this study, a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS method was developed for the rapid identification of species of the genus Pediococcus. Of the 130 Pediococcus spectra aligned with the Biotyper taxonomy database, 122 isolates (93.9 %) yielded log scores <1.7, which means they were not identifiable. After registering the spectra of 11 reference strains of the genus Pediococcus, all of the isolates were correctly identified, of which 84 (64.6 %) and 46 (35.4 %) were identified at the species and genus level, respectively. In comparing food origins, no relationship was found between the bacterial characteristics and food environment. We were able to produce a Biotyper system for identification of members of the genus Pediococcus with locally extended Pediococcus reference strains. The MALDI-TOF MS method is fast, simple and reliable for discriminating between species in the genus Pediococcus and therefore will be useful for quality control in determining the spoilage of alcoholic beverages or in the production of fermented food.

  18. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  19. Evaluation of the Bruker Biotyper and Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Systems for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cultures from Cystic Fibrosis Patients

    PubMed Central

    Marko, Daniel C.; Saffert, Ryan T.; Cunningham, Scott A.; Hyman, Jay; Walsh, John; Arbefeville, Sophie; Howard, Wanita; Pruessner, Jon; Safwat, Nedal; Cockerill, Franklin R.; Bossler, Aaron D.; Patel, Robin

    2012-01-01

    The Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) instruments were evaluated for the identification of nonfermenting Gram-negative bacilli (NFGNB) by a blinded comparison to conventional biochemical or molecular methods. Two hundred NFGNB that were recovered from cultures from cystic fibrosis patients in the University of Iowa Health Care (UIHC) Microbiology Laboratory between 1 January 2006 and 31 October 2010 were sent to Mayo Clinic for analysis with the Bruker Biotyper (software version 3.0) and to bioMérieux for testing with Vitek MS (SARAMIS database version 3.62). If two attempts at direct colony testing failed to provide an acceptable MALDI-TOF identification, an extraction procedure was performed. The MS identifications from both of these systems were provided to UIHC for comparison to the biochemical or molecular identification that had been reported in the patient record. Isolates with discordant results were analyzed by 16S rRNA gene sequencing at UIHC. After discrepancy testing, the Bruker Biotyper result agreed with the biochemical or molecular method, with 72.5% of isolates to the species level, 5.5% to the complex level, and 19% to the genus level (3% not identified). The level of agreement for Vitek MS was 80% species, 3.5% complex, 6% genus, and 3.5% family (7% not identified). Both MS systems provided rapid (≤3 min per isolate) and reliable identifications. The agreement of combined species/complex/genus-level identification with the reference method was higher for the Bruker Biotyper (97% versus 89.5%, P = 0.004) but required an extraction step more often. Species-level agreement with the reference method was similar for both MS systems (72.5% and 80%, P = 0.099). PMID:22495566

  20. Nucleotide and deduced amino acid sequences of the matrix (M) and fusion (F) protein genes of cetacean morbilliviruses isolated from a porpoise and a dolphin.

    PubMed

    Bolt, G; Blixenkrone-Møller, M; Gottschalck, E; Wishaupt, R G; Welsh, M J; Earle, J A; Rima, B K

    1994-12-01

    Morbilliviruses have been isolated from stranded dolphins and porpoises. The present paper describes the cloning and sequencing of the porpoise morbillivirus (PMV) F gene and of the dolphin morbillivirus (DMV) M and F genes and their flanking regions. The gene order of the DMV genome appeared to be identical to that of other morbilliviruses. A genomic untranslated region of 837 nucleotides was found between the translated DMV M and F gene regions. The predicted DMV M protein were highly conserved with those of other morbilliviruses. Both the deduced PMV and DMV F0 proteins exhibited three major hydrophobic regions as well as a cysteine rich region, a leucine zipper motif and a cleavage motif allowing cleavage of the F0 protein into F1 and F2 subunits. Apparently the DMV F0 cleavage motif was not modified by adaptation of DMV to Vero cells. The predicted PMV and DMV F proteins were 94% identical. Comparisons with the corresponding sequences of other morbilliviruses demonstrated that the cetacean morbillivirus does not derive from any known morbillivirus but represents an independent morbillivirus lineage.

  1. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  2. Nano-FTIR for Geochemical Sample Analysis

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; McCleod, A.; Gainsforth, Z.; Keilmann, F.; Westphal, A.; Thiemens, M. H.; Basov, D.

    2014-12-01

    Infrared (IR) spectroscopy is considered by many to be the "gold standard" for chemical identification, providing a direct connection between chemical compounds found in the laboratory and those found in natural samples including remote astrophysical environments. However, a well known limitation of using conventional IR spectroscopy is its spatial resolution determined by the wavelength of IR photons. Thus, while other techniques such as XANES and micro-Raman are capable of limited functional group mapping at tens to hundreds of nanometers, their use is limited by accessibility (the need for synchrotron beamlines) or the need for intense irradiation conditions (Raman) that can lead to sample alteration. These limitations and the wealth of information that can be extracted from detailed studies of unique micron-sized samples brought back by recent sample return missions such as NASA's Stardust mission, have motivated the development of a novel infrared mapping technique that is capable of mapping the chemical functional properties of geochemical samples with submicron resolutions. Here we describe our nano-FTIR imaging and analysis technique that allows us to bypass diffraction limited sample imaging in the infrared. Here we show, for the first time, that 1) the combination of an atomic-force microscope (AFM) and laser can be used to obtain the FTIR-equivalent spectra on spatial scales that are much smaller than the wavelength of IR radiation used 2) this technique responds to subtle shifts in cation concentrations as evidenced by changes in the frequencies of phonons at sub-micron scales 3) this technique can be used to identify regions of crystalline and semi-crystalline materials as demonstrated in our analysis of a cometary dust grain Iris. This work has clear implications for interpretations of astronomical observations and adds a new technique for the non-destructive characterization of terrestrial and extraterrestrial samples.

  3. Evaluation of Bioreactor-Cultivated Bone by Magnetic Resonance Microscopy and FTIR Microspectroscopy

    PubMed Central

    Chesnick, Ingrid E.; Avallone, Frank; Leapman, Richard D.; Landis, William J.; Eidelman, Naomi; Potter, Kimberlee

    2007-01-01

    We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of nine weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 μm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro. PMID:17174620

  4. Astrochemical Laboratory Experiments as Analogs to Plutonian Chemistry: Using FTIR Spectroscopy to Monitor the Sublimation of Irradiated 1:1:100 CO+H_{2}O+N_{2} and 1:1:100 CH_{4}+H_{2}O+N_{2} Ices

    NASA Astrophysics Data System (ADS)

    Stelmach, Kamil Bartlomiej; Yarnall, Yukiko; Cooper, Paul

    2017-06-01

    Pluto is a large icy body composed of N_{2}, CH_{4}, and H_{2}O ices. In many ways, Pluto can be seen as one large matrix isolation experiment where N_{2} is the inert matrix that can act to trap and isolate reactive species. The temperature changes on the dwarf planet induce sublimation of N_{2} from the surface. Any previously trapped reactive species could then react with the new ice or neighboring molecules. To see if this process might lead to a significant formation of molecules, Fourier-Transform Infrared (FTIR) Spectroscopy (4 cm^{-1} resolution) was used to study and monitor the sublimation of ices created from irradiated gas mixtures of 1:1:100 CO+H_{2}O+N_{2} or 1:1:100 CH_{4}+H_{2}O+N_{2}. The gas mixtures were initially prepared and deposited on a cold finger at a temperature of 6 K and a baseline vacuum of about 1 x 10^{-7} Torr. Gas mixtures were irradiated using an electric discharge or a microwave discharge before deposition to create the unstable chemical species. To sublimate the matrix, the temperature was brought up step-wise in 5-10 K intervals to 45 K. Slow sublimation (10 min per step) resulted in the new species being trapped in a water ice. In addition to (FTIR) spectroscopy, chemical species were also identified or monitored using ultraviolet-visible (UV-Vis) spectroscopy and a residual gas analyzer (RGA). Carbon suboxide (C_{3}O_{2}), a common component found in meteorites and a potentially important prebiotic molecule, was formed only after the sublimation step. Other products formed included deprotonated versions of products formed in the original matrix ice. C_{3}O_{2}'s potential importance in Pluto's surface chemistry and its overall astrobiological significance will be discussed.

  5. Matrix Algebra.

    DTIC Science & Technology

    1998-06-01

    on courses being taught at NPS. LIST OF REFERENCES [1] Anton , Howard , Elementary Linear Algebra , John Wiley and Sons, New York, New York, 1994...and computational techniques for solving systems of linear equations. The goal is to enhance current matrix algebra textbooks and help the beginning... algebra is the study of algebraic operations on matrices and of their applications, primarily for solving systems of linear equations. Systems of

  6. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression

    NASA Astrophysics Data System (ADS)

    Oleszko, Adam; Hartwich, Jadwiga; Wójtowicz, Anna; Gąsior-Głogowska, Marlena; Huras, Hubert; Komorowska, Małgorzata

    2017-08-01

    Hypertriglyceridemia, related with triglyceride (TG) in plasma above 1.7 mmol/L is one of the cardiovascular risk factors. Very low density lipoproteins (VLDL) are the main TG carriers. Despite being time consuming, demanding well-qualified staff and expensive instrumentation, ultracentrifugation technique still remains the gold standard for the VLDL isolation. Therefore faster and simpler method of VLDL-TG determination is needed. Vibrational spectroscopy, including FT-IR and Raman, is widely used technique in lipid and protein research. The aim of this study was assessment of Raman and FT-IR spectroscopy in determination of VLDL-TG directly in serum with the isolation step omitted. TG concentration in serum and in ultracentrifugated VLDL fractions from 32 patients were measured with reference colorimetric method. FT-IR and Raman spectra of VLDL and serum samples were acquired. Partial least square (PLS) regression was used for calibration and leave-one-out cross validation. Our results confirmed possibility of reagent-free determination of VLDL-TG directly in serum with both Raman and FT-IR spectroscopy. Quantitative VLDL testing by FT-IR and/or Raman spectroscopy applied directly to maternal serum seems to be promising screening test to identify women with increased risk of adverse pregnancy outcomes and patient friendly method of choice based on ease of performance, accuracy and efficiency.

  7. FTIR spectroscopy and DFT studies of carbosilane dendrimers.

    PubMed

    Furer, V L; Vandukova, I I; Tatarinova, E A; Muzafarov, A M; Kovalenko, V I

    2008-08-01

    The FTIR spectra of G(3), G(4), and G(9) generations of polybutylcarbosilane dendrimers have been recorded and analyzed. The structural optimization and normal mode analysis were performed for G(1) generation on the basis of density functional theory (DFT). This calculation gave vibrational frequencies and infrared intensities for the t,t- and g,-g-conformers of the butyl terminal groups, attached to the same silicon atom. The g,-g-conformer is 5.83 kcal/mol less stable compared to t,t-conformer. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers. The dependence of band full width at half height in the IR spectra on generation number is established. The IR spectra of carbosilane dendrimers at higher temperatures at the ambient air and isolated from atmosphere air were studied. At temperature 180 degrees C all studied carbosilane dendrimers are stable when contact with atmosphere is absent, in the air they oxidize and thus CO and SiO groups appear.

  8. Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions

    NASA Astrophysics Data System (ADS)

    Mercier, Maxime; Muro, Andrea Di; Métrich, Nicole; Giordano, Daniele; Belhadj, Olfa; Mandeville, Charles W.

    2010-10-01

    Micro-Raman spectroscopy, even though a very promising technique, is not still routinely applied to analyse H 2O in silicate glasses. The accuracy of Raman water determinations critically depends on the capability to predict and take into account both the matrix effects (bulk glass composition) and the analytical conditions on band intensities. On the other hand, micro-Fourier transform infrared spectroscopy is commonly used to measure the hydrous absorbing species (e.g., hydroxyl OH - and molecular H 2O) in natural glasses, but requires critical assumptions for the study of crystal-hosted glasses. Here, we quantify for the first time the matrix effect of Raman external calibration procedures for the quantification of the total H 2O content (H 2O T = OH - + H 2O m) in natural silicate glasses. The procedures are based on the calibration of either the absolute (external calibration) or scaled (parameterisation) intensity of the 3550 cm -1 band. A total of 67 mafic (basanite, basalt) and intermediate (andesite) glasses hosted in olivines, having between 0.2 and 4.8 wt% of H 2O, was analysed. Our new dataset demonstrates, for given water content, the height (intensity) of Raman H 2O T band depends on glass density, reflectance and water environment. Hence this matrix effect must be considered in the quantification of H 2O by Raman spectroscopy irrespective of the procedure, whereas the parameterisation mainly helps to predict and verify the self-consistency of the Raman results. In addition, to validate the capability of the micro-Raman to accurately determine the H 2O content of multicomponent aluminosilicate glasses, a subset of 23 glasses was analysed by both micro-Raman and micro-FTIR spectroscopy using the band at 3550 cm -1. We provide new FTIR absorptivity coefficients ( ɛ3550) for basalt (62.80 ± 0.8 L mol -1 cm -1) and basanite (43.96 ± 0.6 L mol -1 cm -1). These values, together with an exhaustive review of literature data, confirm the non-linear decline

  9. Yersinia enterocolitica in diagnostic fecal samples from European dogs and cats: identification by fourier transform infrared spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Stamm, Ivonne; Hailer, Mandy; Depner, Barbara; Kopp, Peter A; Rau, Jörg

    2013-03-01

    Yersinia enterocolitica is the main cause of yersiniosis in Europe, one of the five main bacterial gastrointestinal diseases of humans. Beside pigs, companion animals, especially dogs and cats, were repeatedly discussed in the past as a possible source of pathogenic Y. enterocolitica. To investigate the presence and types of Y. enterocolitica in companion animals, a total of 4,325 diagnostic fecal samples from dogs and 2,624 samples from cats were tested. The isolates obtained were differentiated by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Fourier transform infrared spectroscopy (FT-IR). Isolated Y. enterocolitica strains were bioserotyped. The detection of the ail gene by PCR and confirmation by FT-IR were used as a pathogenicity marker. Y. enterocolitica strains were isolated from 198 (4.6%) of the dog and 8 (0.3%) of the cat fecal samples investigated. One hundred seventy-nine isolates from dogs were analyzed in detail. The virulence factor Ail was detected in 91.6% of isolates. Isolates of biotype 4 (54.7%) and, to a lesser extent, biotypes 2 (23.5%), 3 (11.2%), and 5 (2.2%) were detected. The remaining 8.4% of strains belonged to the ail-negative biotype 1A. All 7 isolates from cats that were investigated in detail were ail positive. These results indicate that companion animals could be a relevant reservoir for a broad range of presumptively human-pathogenic Y. enterocolitica types. MALDI-TOF MS and FT-IR proved to be valuable methods for the rapid identification of Y. enterocolitica, especially in regard to the large number of samples that were investigated in a short time frame.

  10. Yersinia enterocolitica in Diagnostic Fecal Samples from European Dogs and Cats: Identification by Fourier Transform Infrared Spectroscopy and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Stamm, Ivonne; Hailer, Mandy; Depner, Barbara; Kopp, Peter A.

    2013-01-01

    Yersinia enterocolitica is the main cause of yersiniosis in Europe, one of the five main bacterial gastrointestinal diseases of humans. Beside pigs, companion animals, especially dogs and cats, were repeatedly discussed in the past as a possible source of pathogenic Y. enterocolitica. To investigate the presence and types of Y. enterocolitica in companion animals, a total of 4,325 diagnostic fecal samples from dogs and 2,624 samples from cats were tested. The isolates obtained were differentiated by using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and Fourier transform infrared spectroscopy (FT-IR). Isolated Y. enterocolitica strains were bioserotyped. The detection of the ail gene by PCR and confirmation by FT-IR were used as a pathogenicity marker. Y. enterocolitica strains were isolated from 198 (4.6%) of the dog and 8 (0.3%) of the cat fecal samples investigated. One hundred seventy-nine isolates from dogs were analyzed in detail. The virulence factor Ail was detected in 91.6% of isolates. Isolates of biotype 4 (54.7%) and, to a lesser extent, biotypes 2 (23.5%), 3 (11.2%), and 5 (2.2%) were detected. The remaining 8.4% of strains belonged to the ail-negative biotype 1A. All 7 isolates from cats that were investigated in detail were ail positive. These results indicate that companion animals could be a relevant reservoir for a broad range of presumptively human-pathogenic Y. enterocolitica types. MALDI-TOF MS and FT-IR proved to be valuable methods for the rapid identification of Y. enterocolitica, especially in regard to the large number of samples that were investigated in a short time frame. PMID:23284028

  11. Creation of an In-House Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Corynebacterineae Database Overcomes Difficulties in Identification of Nocardia farcinica Clinical Isolates

    PubMed Central

    Dacko, Władysław; Sikora, Joanna; Gurlaga, Danuta; Pawlik, Krzysztof; Miękisiak, Grzegorz; Gamian, Andrzej

    2015-01-01

    Nocardiosis is a rare disease that is caused by Gram-positive actinobacteria of the Nocardia genus and affects predominantly immunocompromised patients. In its disseminated form, it has a predilection for the central nervous system and is associated with high mortality rates. Therefore, prompt identification of the pathogen is critical. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry is a relatively novel technique used for identification of microorganisms. In this work, an upgraded MALDI-TOF Biotyper database containing Corynebacterineae representatives of strains deposited in the Polish Collection of Microorganisms was created and used for identification of the strain isolated from a nocardial brain abscess, mimicking a brain tumor, in an immunocompetent patient. Testing with the API Coryne system initially incorrectly identified Rhodococcus sp., while chemotaxonomic tests, especially mycolic acid analysis, enabled correct Nocardia identification only at the genus level. Subsequent sequence analysis of 16S rRNA and secA1 genes confirmed the identification. To improve the accuracy of the results, an in-house database was constructed using optimized parameters; with the use of the database, the strain was eventually identified as Nocardia farcinica. Clinical laboratories processing various clinical strains can upgrade a commercial database to improve and to accelerate the results obtained. This is especially important in the case of Nocardia, for which valid microbial diagnosis remains challenging; reference laboratories are often required to identify and to survey these rare actinobacteria. PMID:26041903

  12. Vibrational spectrum and structure of CoO6: a model compound for molecular oxygen reversible binding on cobalt oxides and salts; a combined IR matrix isolation and theoretical study.

    PubMed

    Marzouk, Asma; Danset, Delphine; Zhou, Ming Fei; Gong, Yu; Alikhani, Mohammad E; Manceron, Laurent

    2011-08-18

    The formation and structure of a novel species, a disuperoxo-cobalt dioxide complex (CoO(6)), has been investigated using matrix isolation in solid neon and argon, coupled to infrared spectroscopy and by quantum chemical methods. It is found that CoO(6) can be formed by successive complexation of cobalt dioxide by molecular oxygen without activation energy by diffusion of ground state O(2) molecules at 9K in the dark. The IR data on one combination and seven fundamentals, isotopic effects, and quantum chemical calculations are both consistent with an asymmetrical structure with two slightly nonequivalent oxygen ligands complexing a cobalt dioxide subunit. Evidence for other, metastable states is also presented, but the data are not complete. The electronic structure and formation pathway of this unique, formally +VI oxidation state, complex has been investigated using several functionals of current DFT within the broken-symmetry unrestricted formalism. It has been shown that the M06L pure local functional well reproduce the experimental observations. The ground electronic state is predicted to be an open shell (2)A'' doublet with the quartet states above by more than 9 kcal/mol and the sextet lying even higher in energy. The ground state has a strong and complex multireference character that hinders the use of more precise multireference approaches and requires caution in the methodology to be used. The geometrical, energetic, and vibrational properties have been computed. © 2011 American Chemical Society

  13. Gas monitoring onboard ISS using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  14. FTIR microspectroscopic characterization of Spitz nevi

    NASA Astrophysics Data System (ADS)

    Giorgini, Elisabetta; Tosi, Giorgio; Conti, Carla; Staibano, Stefania; Ilardi, Gennaro; Sabbatini, Simona

    2015-04-01

    In the last 10 years, few efforts have been carried out to apply vibrational spectroscopy in the study of dermal pathologies in order to characterize the most relevant spectral markers for distinguishing benign from cancerous lesions. Spitz nevi are a special group of benign melanocytic lesions, characterized by spindled and/or epithelioid nevomelanocytes, with peculiar clinical, dermoscopic and histopathological features. The "atypical forms" of Spitz nevi are among the commonest problems of differential diagnosis with the so-called "spitzoid melanomas". The clinical and histological criteria for discriminating these two entities are very subtle and often still quite subjective, and, in a significant percentage of cases, can lead to diagnostic pitfalls and inadequate therapies. Therefore, it is noteworthy to outline that the diagnosis of melanocytic lesions still represents a challenging problem and a continue matter of discussion. We exploited FTIR microspectroscopy to study the different kinds of spitzoid melanocytes, in order to define the most relevant spectral markers of each specimen and to achieve objective information on "borderline" histologically atypical lesions. In particular, the spectroscopic investigation was carried out on melanocytes deriving from normal skin (as a normal control), malignant melanoma and Spitz nevi. The presence of the characteristic bands of melanin was investigated, too.

  15. Profiling cocaine by ATR-FTIR.

    PubMed

    Marcelo, M C A; Mariotti, K C; Ferrão, M F; Ortiz, R S

    2015-01-01

    In this article, five hundred and thirteen cocaine seizures of the State of Rio Grande do Sul (Brazil) were analyzed by Fourier transform infrared spectroscopy (FT-IR) in the fingerprint region (1800-650 cm(-1)) to profiling and evaluate the pharmaceutical products used as adulterants. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to identify patterns among the samples whereas partial least square discriminant analysis (PLS-DA) and support vector machines discriminant analysis (SVM-DA) were used to classification the cocaine between base and salt. Spectra of standard solid mixtures of cocaine (salt and base), phenacetin, lidocaine and caffeine were used associated with PCA to predict qualitatively the profile of cocaine seizure. In HCA and PCA, salt and base group were formed correctly. Accordingly with predicted profile of the salt samples, they were majority adulterated with caffeine and lidocaine whereas base cocaine was adulterated only with phenacetin. In the discrimant analysis, all methods have classified the cocaine samples correctly with sensitivity and specificity equal to one between salt and base. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. ADAPTING FTIR MEASUREMENT TECHNOLOGY TO HOMELAND SECURITY APPLICATIONS

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FTIR) sensors have numerous advantages for measuring chemical plumes over wide areas compared to point detection sensors. Extractive FTIR sensors have been used for industrial stack monitoring and are attractive for building ventilation sy...

  17. ATR-FTIR investigations of plasticizer diffusion in polymers

    NASA Astrophysics Data System (ADS)

    Miser, C. S.; McNesby, Kevin L.; Pesce-Rodriguez, Rose A.; Fifer, Robert A.

    1992-03-01

    An attenuated total reflectance FTIR (ATR-FTIR) technique has been developed for measuring the diffusion coefficients of liquids in polymer films. Data is being obtained for diffusion of plasticizers in nitrocellulose (NC), cellulose acetate butyrate (CAB), and NC/CAB mixtures.

  18. ADAPTING FTIR MEASUREMENT TECHNOLOGY TO HOMELAND SECURITY APPLICATIONS

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FTIR) sensors have numerous advantages for measuring chemical plumes over wide areas compared to point detection sensors. Extractive FTIR sensors have been used for industrial stack monitoring and are attractive for building ventilation sy...

  19. Universal method for protein immobilization on chemically functionalized germanium investigated by ATR-FTIR difference spectroscopy.

    PubMed

    Schartner, Jonas; Güldenhaupt, Jörn; Mei, Bastian; Rögner, Matthias; Muhler, Martin; Gerwert, Klaus; Kötting, Carsten

    2013-03-13

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy allows a detailed analysis of surface attached molecules, including their secondary structure, orientation, and interaction with small molecules in the case of proteins. Here, we present a universal immobilization technique on germanium for all oligo-histidine-tagged proteins. For this purpose, new triethoxysilane derivates were developed: we synthesized a linker-silane with a succinimidyl ester as amine-reactive headgroup and a matrix-silane with an unreactive ethylene glycol group. A new methodology for the attachment of triethoxysilanes on germanium was established, and the surface was characterized by ATR-FTIR and X-ray photoelectron spectroscopy. In the next step, the succinimidyl ester was reacted with aminonitrilotriacetic acid. Subsequently, Ni(2+) was coordinated to form Ni-nitrilotriacetic acid for His-tag binding. The capability of the functionalized surface was demonstrated by experiments using the small GTPase Ras and photosystem I (PS I). The native binding of the proteins was proven by difference spectroscopy, which probes protein function. The function of Ras as molecular switch was demonstrated by a beryllium trifluoride anion titration assay, which allows observation of the "on" and "off" switching of Ras at atomic resolution. Furthermore, the activity of immobilized PS I was proven by light-induced difference spectroscopy. Subsequent treatment with imidazole removes attached proteins, enabling repeated binding. This universal technique allows specific attachment of His-tagged proteins and a detailed study of their function at the atomic level using FTIR difference spectroscopy.

  20. ATR-FTIR microscopy in mapping mode for the study of verdigris and its secondary products

    NASA Astrophysics Data System (ADS)

    Prati, S.; Bonacini, I.; Sciutto, G.; Genty-Vincent, A.; Cotte, M.; Eveno, M.; Menu, M.; Mazzeo, R.

    2016-01-01

    To study degradation processes occurring on painting materials, the use of high-resolution micro-analytical techniques is highly requested since it provides a detailed identification and localisation of both the original and deteriorated ingredients. Among the various pigments recently studied, the characterisation of verdigris has received a major interest. This pigment has not a unique chemical formula, but its composition depends on the recipe employed for its manufacturing. Moreover, verdigris paints are not stable and are subject to a colour change from blue-green to green, which occurs in the first few months after the application. In this paper, we focused our attention on the use of ATR-FTIR mapping as a useful method to identify verdigris secondary products and pathways. Several mock-ups and real samples have been analysed, and the correlation among the detected compounds and their spatial location, obtained by the application of ATR-FTIR microscopy in mapping mode, allowed formulating some hypotheses on the degradation pattern of verdigris, which may feed the discussion on the transformation and stability of this pigment. From an analytical point of view, we showed how FTIR mapping approaches may be extremely useful both for the identification of compounds in complex matrix in which single spectra may limit the exhaustive characterisations due to bands overlapping and for the study of degradation pathways by taking into consideration the relative distribution of degradation products.

  1. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  2. Ultra-compact MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  3. Analysis of Allergenic Pollen by FTIR Microspectroscopy.

    PubMed

    Zimmerman, B; Tafintseva, V; Bağcıoğlu, M; Høegh Berdahl, M; Kohler, A

    2016-01-05

    Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the identification and characterization of pollen and spores. However, interpretation and multivariate analysis of infrared microscopy spectra of single pollen grains are hampered by Mie-type scattering. In this paper, we introduce a novel sampling setup for infrared microspectroscopy of pollens preventing strong Mie-type scattering. Pollen samples were embedded in a soft paraffin layer between two sheets of polyethylene foils without any further sample pretreatment. Single-grain infrared spectra of 13 different pollen samples, belonging to 11 species, were obtained and analyzed by the new approach and classified by sparse partial least-squares regression (PLSR). For the classification, chemical and physical information were separated by extended multiplicative signal correction and used together to build a classification model. A training set of 260 spectra and an independent test set of 130 spectra were used. Robust sparse classification models allowing the biochemical interpretation of the classification were obtained by the sparse PLSR, because only a subset of variables was retained for the analysis. With accuracy values of 95% and 98%, for the independent test set and full cross-validation respectively, the method is outperforming the previously published studies on development of an automated pollen analysis. Since the method is compatible with standard air-samplers, it can be employed with minimal modification in regular aerobiology studies. When compared with optical microscopy, which is the benchmark method in pollen analysis, the infrared microspectroscopy method offers better taxonomic resolution, as well as faster, more economical, and bias-free measurement.

  4. Isolation and Characterization of Spicule Matrix Protein.

    DTIC Science & Technology

    2007-11-02

    responsible for the observed PCP activity in S . purpuratus , then its function will be essential for collagen deposition and therefore sea urchin development ....PCP) activity in S . purpuratus extracts containing suBMP- 1. This PCP activity is heat labile, and demonstrates both time and concentration dependent...in the developing sea urchin embryo, as well as for calcium carbonate deposition into growing spicules in primary mesenchyme cell culture. Disruption

  5. Dehydrophenylnitrenes: matrix isolation and photochemical rearrangements.

    PubMed

    Sander, Wolfram; Winkler, Michael; Cakir, Bayram; Grote, Dirk; Bettinger, Holger F

    2007-02-02

    The photochemistry of 3-iodo-2,4,5,6-tetrafluorophenyl azide 8 and 3,5-diiodo-2,4,6-trifluorophenyl azide 9 was studied by IR and EPR spectroscopy in cryogenic argon and neon matrices. Both compounds form the corresponding nitrenes as primary photoproducts in photostationary equilibria with their azirine and ketenimine isomers. In contrast to fluorinated phenylnitrenes, ring-opened products are obtained upon short-wavelength irradiation of the iodine-containing systems, indicative of C-I bond cleavage in the nitrenes or didehydroazepines under these conditions. Neither 3-dehydrophenylnitrene 6 nor 3,5-didehydrophenylnitrene 7 could be detected directly. The structures of the acyclic photoproducts were identified by extensive comparison with DFT calculated spectra. Mechanistic aspects of the rearrangements leading to the observed products and the electronic properties of the title intermediates are discussed on the basis of DFT as well as high-level ab initio calculations. The computations indicate strong through-bond coupling of the exocyclic orbital in the meta position with the singly occupied in-plane nitrene orbital in the monoradical nitrenes. In contrast to the ortho or para isomers, this interaction results in low-spin ground states for meta nitrene radicals and a weakening of the C1-C2 bond causing the kinetic instability of these species even under low-temperature conditions. 3,5-Didehydrophenylnitrenes, on the other hand, in which a strong C3-C5 interaction reduces coupling of the radical sites with the nitrene unit, might be accessible synthetic targets if the intermediate formation of labile monoradicals could be circumvented.

  6. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix.

    PubMed

    Rerek, Mark E; Van Wyck, Dina; Mendelsohn, Richard; Moore, David J

    2005-03-01

    IR spectroscopic studies are reported for N-stearyl-D-erythro-phytosphingosine (Cer NP) and N-stearyl-2-hydroxy-D-erythro-phytosphingosine (Cer AP) in a hydrated model of the skin lipid barrier comprised of equimolar mixtures of each ceramide with cholesterol and d(35)-stearic acid. Examination of the methylene stretching, rocking and bending modes reveal some rotational freedom and hexagonal packing in both the ceramide and stearic acid chains. Analysis of the acid carbonyl stretch and the ceramide Amide I modes show both shift to higher frequencies, indicating weaker hydrogen bonding, in the mixed systems compared to the pure materials. For both systems, the fatty acid chain disordering temperatures are significantly increased from those of the pure acids. The observed behaviors of these phytosphingosine ceramide systems are fundamentally different from the previously reported analogous sphingosine ceramide systems. The implications of these observations for lipid organization in the stratum corneum are briefly discussed.

  7. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    NASA Astrophysics Data System (ADS)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  8. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time.

    PubMed

    Lagacé-Wiens, Philippe R S; Adam, Heather J; Karlowsky, James A; Nichol, Kimberly A; Pang, Paulette F; Guenther, Jodi; Webb, Amanda A; Miller, Crystal; Alfa, Michelle J

    2012-10-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P < 0.0001) in the ideal situation where MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.

  9. Matrix isolation and computational study of isodifluorodibromomethane (F{sub 2}CBr-Br): A route to Br{sub 2} formation in CF{sub 2}Br{sub 2} photolysis

    SciTech Connect

    George, Lisa; Kalume, Aimable; Reid, Scott A.; El-Khoury, Patrick Z.; Tarnovsky, Alexander

    2010-02-28

    The photolysis products of dibromodifluoromethane (CF{sub 2}Br{sub 2}) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF{sub 2}Br{sub 2}:Ar samples ({approx}1:5000) held at {approx}5 K yielded iso-CF{sub 2}Br{sub 2} (F{sub 2}CBrBr), a weakly bound isomer of CF{sub 2}Br{sub 2}, which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF{sub 2}Br{sub 2} are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF{sub 2}Br{sub 2} potential energy surface, lying some 55 kcal/mol above the CF{sub 2}Br{sub 2} ground state. The energies of various stationary points on the CF{sub 2}Br{sub 2} potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF{sub 2}Br{sub 2} is an intermediate in the Br+CF{sub 2}Br{yields}CF{sub 2}+Br{sub 2} reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF{sub 2}Br{sub 2}. Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF{sub 2}Br{sub 2}, particularly with respect to the existence of a roaming atom pathway leading to molecular products.

  10. Comparing FTIR and RAPD techniques in the typing of C. albicans in a clinical set-up

    NASA Astrophysics Data System (ADS)

    Sandt, Christophe L.; Sockalingum, Ganesh D.; Toubas, Dominique; Aubert, Dominique; Lepan, Herve; Lepouse, Claire; Jaussaud, Maryse; Leon, Alain; Pinon, Jean-Michel; Manfait, Michel

    2002-03-01

    Candida albicans is an opportunistic pathogen, generally though to be of endogenous origin, with however reported outbreaks. Epidemilogy of C. albicans has been studied so far by genotypic methods mainly, including the classical RAPD analysis. Albeit powerful, genotypic techniques are expensive, time consuming and complex to implement. FTIR spectroscopy is simple, rapid, inexpensive and an increasingly used technique for the identification of microorganisms. As a phenotypic method, it provides rapid whole cells 'fingerprinting' using few consumables and can detect very subtle differences between strains of the same species. In this study, C. albicans strains isolated from 50 patients from six hospital units were collected and studied by FTIR spectroscopy and RAPD-PCR. Discrimination of strains was computed using classification algorithms on selected features of the spectral data. Results from 10 patients, for whom iterative sampling was possible, are presented and discussed. Emphasis was laid on the reproducibility of dat for strain-level identification. FTIR analysis shows that (a) the C. albicans spectra were different from one patient to another, (b) seven patients exhibit each a homogeneous group while three patients display each two groups of strains. RAPD-PCR and FTIR analyses correlate quite well showing that FTIR spectroscopy could be a potential epidemiological tool in the control of nosocomial fungal infections.

  11. FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Camacho, N. P.; Mendelsohn, R.; Doty, S. B.; Binderman, I.

    1992-01-01

    Chick limb bud mesenchymal cells differentiate into chondrocytes and form a cartilaginous matrix in culture. In this study, the mineral formed in different areas within cultures supplemented with 4 mM inorganic phosphate, or 2.5, 5.0, and 10 mM beta-glycerophosphate (beta GP), was characterized by Fourier-transform infrared (FT-IR) microscopy. The relative mineral-to-matrix ratios, and distribution of crystal sizes at specific locations throughout the matrix were measured from day 14 to day 30. The only mineral phase detected was a poorly crystalline apatite. Cultures receiving 4 mM inorganic phosphate had smaller crystals which were less randomly distributed around the cartilage nodules than those in the beta GP-treated cultures. beta GP-induced mineral consisted of larger, more perfect apatite crystals. In cultures receiving 5 or 10 mM beta GP, the relative mineral-to-matrix ratios (calculated from the integrated intensities of the phosphate and amide I bands, respectively) were higher than in the cultures with 4 mM inorganic phosphate or in the in vivo calcified chick cartilage.

  12. FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Camacho, N. P.; Mendelsohn, R.; Doty, S. B.; Binderman, I.

    1992-01-01

    Chick limb bud mesenchymal cells differentiate into chondrocytes and form a cartilaginous matrix in culture. In this study, the mineral formed in different areas within cultures supplemented with 4 mM inorganic phosphate, or 2.5, 5.0, and 10 mM beta-glycerophosphate (beta GP), was characterized by Fourier-transform infrared (FT-IR) microscopy. The relative mineral-to-matrix ratios, and distribution of crystal sizes at specific locations throughout the matrix were measured from day 14 to day 30. The only mineral phase detected was a poorly crystalline apatite. Cultures receiving 4 mM inorganic phosphate had smaller crystals which were less randomly distributed around the cartilage nodules than those in the beta GP-treated cultures. beta GP-induced mineral consisted of larger, more perfect apatite crystals. In cultures receiving 5 or 10 mM beta GP, the relative mineral-to-matrix ratios (calculated from the integrated intensities of the phosphate and amide I bands, respectively) were higher than in the cultures with 4 mM inorganic phosphate or in the in vivo calcified chick cartilage.

  13. Characterization of a Campylobacter fetus-like strain isolated from the faeces of a sick leopard tortoise (Stigmochelys pardalis) using matrix-assisted laser desorption/ionization time of flight as an alternative to bacterial 16S rDNA phylogeny.

    PubMed

    Benejat, L; Gravet, A; Sifré, E; Ben Amor, S; Quintard, B; Mégraud, F; Lehours, P

    2014-04-01

    This article describes the isolation and characterization of a Campylobacter-like isolate originating from the faeces of a sick leopard tortoise. Molecular as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) characterization suggests that it could correspond to a new Campylobacter species. The major impact of this work is the demonstration that proteomics and especially MALDI-TOF typing can be used as an alternative method to 16S rDNA sequencing for phylogeny and can lead to the discovery of new Campylobacters. © 2013 The Society for Applied Microbiology.

  14. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry.

    PubMed

    Wenning, Mareike; Breitenwieser, Franziska; Konrad, Regina; Huber, Ingrid; Busch, Ulrich; Scherer, Siegfried

    2014-08-01

    The food industry requires easy, accurate, and cost-effective techniques for microbial identification to ensure safe products and identify microbial contaminations. In this work, FTIR spectroscopy and MALDI-TOF mass spectrometry were assessed for their suitability and applicability for routine microbial diagnostics of food-related microorganisms by analyzing their robustness according to changes in incubation time and medium, identification accuracy and their ability to differentiate isolates down to the strain level. Changes in the protocol lead to a significantly impaired performance of FTIR spectroscopy, whereas they had only little effects on MALDI-TOF MS. Identification accuracy was tested using 174 food-related bacteria (93 species) from an in-house strain collection and 40 fresh isolates from routine food analyses. For MALDI-TOF MS, weaknesses in the identification of bacilli and pseudomonads were observed; FTIR spectroscopy had most difficulties in identifying pseudomonads and enterobacteria. In general, MALDI-TOF MS obtained better results (52-85% correct at species level), since the analysis of mainly ribosomal proteins is more robust and seems to be more reliable. FTIR spectroscopy suffers from the fact that it generates a whole-cell fingerprint and intraspecies diversity may lead to overlapping species borders which complicates identification. In the present study values between 56% and 67% correct species identification were obtained. On the opposite, this high sensitivity offers the opportunity of typing below the species level which was not possible using MALDI-TOF MS. Using fresh isolates from routine diagnostics, both techniques performed well with 88% (MALDI-TOF) and 75% (FTIR) correct identifications at species level, respectively.

  15. FT-IR and DFT study of lemon peel

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Likhter, A. M.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.

    2017-03-01

    Experimental FT-IR spectra of lemon peel are registered in the 650 - 3800 cm-1 range. The influence of peel artificial and natural dehydration on its vibrational spectrum is studied. The colored outer surface of lemon peel is proved not to have a significant impact on FT-IR spectrum. It is determined that only dehydration processes affect the FT-IR vibrational spectrum of the peel when a lemon is stored for 28 days under natural laboratory conditions. Polymer molecule models for dietary fibers, such as cellulose, hemicellulose, pectin, lignin, as well as hesperidin - flavonoid glycoside, and free moisture cluster are developed within the framework of DFT/B3LYP/6-31G(d) theoretical method. By implementing supramolecular approach, modeling of the vibrational FT-IR spectrum of lemon peel is carried out and its detailed theoretical interpretation is presented.

  16. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  17. GC-FTIR (Fourier Transform Infrared Spectrometry) of Jet Fuels.

    DTIC Science & Technology

    1984-02-01

    analysis of environmental pollutants(6) and peppermint oil(7) with FTIR detection. GC/FTIR analyses with wall coated open tubular (WCOT) capillary...Tables 18 and 19 list the absorbance intensity (peak height ) for certain infrared bands at different concentrations. In one case the most intense peak...cm-1 beginning in spectrum file #329 that is not present in file #328. Other minor differences in relative peak heights can be noted throughout the

  18. FTIR and XRD study of PMMA/PCTFE blend films

    SciTech Connect

    Tripathi, S. Shripathi, T.; Tripathi, J.; Agrawal, A.; Sharma, A.

    2014-04-24

    The results are reported on solution cast PMMA-PCTFE blend films characterized using x-ray diffraction and FTIR. The nanocrystalline nature of PMMA is still seen in the blends, however, the bond modifications are clearly observed. The addition of PCTFE results in the modification in structural properties, as reflected in the XRD and FTIR spectra showing modifications in bonding as a function of PCTFE percentage.

  19. Correlating Flammability of Materials with FTIR Analysis Test Results

    NASA Technical Reports Server (NTRS)

    Moore, Robin; Whitfield, Steve

    2003-01-01

    The purpose of this experiment was to correlate flammability data with FTIR test results. Kydex 100 is a blend of chlorinated polyvinyl chloride and polymethylmethacrylate, with some filler materials. Samples supplied were 0.125 in. thick. 10 samples were taken from a sheet of Kydex and analyzed for flammability and by FTIR spectroscopy. This material was utilized as a round robin sample for flammability testing. The flammability test results were found to vary across the same sheet.

  20. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi.

    PubMed

    Shapaval, Volha; Møretrø, Trond; Suso, Henri-Pierre; Asli, Anette Wold; Schmitt, Jürgen; Lillehaug, Dag; Martens, Harald; Böcker, Ulrike; Kohler, Achim

    2010-08-01

    Characterization and identification of fungi in food industry is an important issue both for routine analysis and trouble-shooting incidences. Present microbial techniques for fungal characterization suffer from a low throughput and are time consuming. In this study we present a protocol for high-throughput microcultivation and spectral characterization of fungi by Fourier transform infrared spectroscopy. For the study 11 species of in total five different fungal genera (Alternaria, Aspergillus, Mucor, Paecilomyces, and Phoma) were analyzed by FTIR spectroscopy. All the strains were isolated from trouble-shooting incidents in the production of low and high acid beverages. The cultivation was performed in malt extract broth (liquid medium) in a Bioscreen C system, allowing high-throughput cultivation of 200 samples at the same time. Mycelium was subsequently investigated by high-throughput Fourier transform infrared spectroscopy. Four spectral regions, fatty acids + lipid (3200-2800 cm(-1), 1300-1000 cm(-1)), protein-lipid (1800-1200 cm(-1)), carbohydrates (1200-700 cm(-1)) and "finger print" (900-700 cm(-1)) were evaluated for reproducibility and discrimination ability. The results show that all spectral regions evaluated can be used as spectroscopic biomarkers for differentiation of fungi by FTIR. The influence of different growth times on the ability of species discrimination by FTIR spectroscopy was investigated, and an optimal separation of all five genera was observed after five days of growth. This work presents a novel concept for high-throughput cultivation of fungi for FTIR spectroscopy that enables characterization or identification of hundreds of strains per day. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Remote passive sensing of aeroengine exhausts using FTIR system].

    PubMed

    Xia, Qing; Zuo, Hong-Fu; Li, Shao-Cheng; Wen, Zhen-Hua; Li, Yao-Hua

    2009-03-01

    The traditional method of measuring the aeroengine exhausts is intrusive gas sampling analysis techniques. The disadvantages of the techniques include complex system, difficult operation, high costs and potential danger because of back-pressure effects. The non-intrusive methods have the potential to overcome these problems. So the remote FTIR passive sensing is applied to monitor aeroengine exhausts and determine the concentration of the exhausts gases of aeroengines. The principle of FTIR remote passive sensing is discussed. The model algorithm for the calibration of FTIR system, the radiance power distribution and gas concentration are introduced. TENSOR27 FTIR-system was used to measure the spectra of infrared radiation emitted by the hot gases of exhausts in a test rig. The emission spectra of exhausts were obtained under different thrusts. By analyzing the spectra, the concentrations of CO2, CO and NO concentration were calculated under 4 thrusts. Researches on the determination of concentration of the exhausts gases of aeroengines by using the remote FTIR sensing are still in early stage in the domestic aeronautics field. The results of the spectra and concentration in the aeroengine test are published for the first time. It is shown that the remote FTIR passive sensing techniques have a great future in monitoring the hot gas of the aeroengines exhausts.

  2. Identification of Trueperella pyogenes Isolated from Bovine Mastitis by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Nagib, Samy; Rau, Jörg; Sammra, Osama; Lämmler, Christoph; Schlez, Karen; Zschöck, Michael; Prenger-Berninghoff, Ellen; Klein, Guenter; Abdulmawjood, Amir

    2014-01-01

    The present study was designed to investigate the potential of Fourier transform infrared (FT-IR) spectroscopy to identify Trueperella (T.) pyogenes isolated from bovine clinical mastitis. FT-IR spectroscopy was applied to 57 isolates obtained from 55 cows in a period from 2009 to 2012. Prior to FT-IR spectroscopy these isolates were identified by phenotypic and genotypic properties, also including the determination of seven potential virulence factor encoding genes. The FT-IR analysis revealed a reliable identification of all 57 isolates as T. pyogenes and a clear separation of this species from the other species of genus Trueperella and from species of genus Arcanobacterium and Actinomyces. The results showed that all 57 isolates were assigned to the correct species indicating that FT-IR spectroscopy could also be efficiently used for identification of this bacterial pathogen. PMID:25133407

  3. Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment.

    PubMed

    Gaboyer, F; Le Milbeau, C; Bohmeier, M; Schwendner, P; Vannier, P; Beblo-Vranesevic, K; Rabbow, E; Foucher, F; Gautret, P; Guégan, R; Richard, A; Sauldubois, A; Richmann, P; Perras, A K; Moissl-Eichinger, C; Cockell, C S; Rettberg, P; Marteinsson; Monaghan, E; Ehrenfreund, P; Garcia-Descalzo, L; Gomez, F; Malki, M; Amils, R; Cabezas, P; Walter, N; Westall, F

    2017-08-18

    The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.

  4. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Mallah, Muhammad Ali; Sherazi, Syed Tufail Hussain; Bhanger, Muhammad Iqbal; Mahesar, Sarfaraz Ahmed; Bajeer, Muhammad Ashraf

    2015-04-01

    A transmission FTIR spectroscopic method was developed for direct, inexpensive and fast quantification of paracetamol content in solid pharmaceutical formulations. In this method paracetamol content is directly analyzed without solvent extraction. KBr pellets were formulated for the acquisition of FTIR spectra in transmission mode. Two chemometric models: simple Beer's law and partial least squares employed over the spectral region of 1800-1000 cm-1 for quantification of paracetamol content had a regression coefficient of (R2) of 0.999. The limits of detection and quantification using FTIR spectroscopy were 0.005 mg g-1 and 0.018 mg g-1, respectively. Study for interference was also done to check effect of the excipients. There was no significant interference from the sample matrix. The results obviously showed the sensitivity of transmission FTIR spectroscopic method for pharmaceutical analysis. This method is green in the sense that it does not require large volumes of hazardous solvents or long run times and avoids prior sample preparation.

  5. FTIR Analysis of Alkali Activated Slag and Fly Ash Using Deconvolution Techniques

    NASA Astrophysics Data System (ADS)

    Madavarapu, Sateesh Babu

    The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement (OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and the effect of the parameters on the formed products. The aim of this research was to explore the structural changes and reaction product analysis of geopolymers (Slag & Fly Ash) using Fourier transform infrared spectroscopy (FTIR) and deconvolution techniques. Spectroscopic techniques give valuable information at a molecular level but not all methods are economic and simple. To understand the mechanisms of alkali activated aluminosilicate materials, attenuated total reflectance (ATR) FTIR has been used where the effect of the parameters on the reaction products have been analyzed. To analyze complex systems like geopolymers using FTIR, deconvolution techniques help to obtain the properties of a particular peak attributed to a certain molecular vibration. Time and temperature dependent analysis were done on slag pastes to understand the polymerization of reactive silica in the system with time and temperature variance. For time dependent analysis slag has been activated with sodium and potassium silicates using two different `n'values and three different silica modulus [Ms- (SiO2 /M2 O)] values. The temperature dependent analysis was done by curing the samples at 60°C and 80°C. Similarly fly ash has been studied by activating with alkali hydroxides and alkali silicates. Under the same curing conditions the fly ash samples were evaluated to analyze the effects of added silicates for alkali activation. The peak shifts in the FTIR explains the changes in the structural nature of the matrix and can be identified using the deconvolution technique. A strong correlation is found between the concentrations of silicate monomer in the

  6. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    PubMed

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  7. Spectroscopic characterization of dissolved organic matter isolated from rainwater.

    PubMed

    Santos, Patrícia S M; Otero, Marta; Duarte, Regina M B O; Duarte, Armando C

    2009-02-01

    Rainwater is a matrix containing extremely low concentrations (in the range of muM C) of dissolved organic carbon (DOC) and for its characterization, an efficient extraction procedure is essential. A recently developed procedure based on adsorption onto XAD-8 and XAD-4 resins in series was used in this work for the extraction and isolation of rainwater dissolved organic matter (DOM). Prior to the isolation and fractionation of DOM, and to obtain sufficient mass for the spectroscopic analyses, individual rainwater samples were batched together according to similar meteorological conditions on a total of three composed samples. The results of the isolation procedure indicated that the resin tandem procedure is not applicable for rainwater DOM since the XAD-4 resin caused samples contamination. On the other hand, the XAD-8 resin allowed DOM recoveries of 39.9-50.5% of the DOC of the original combined samples. This recovered organic fraction was characterized by UV-visible, molecular fluorescence, FTIR-ATR and 1H NMR spectroscopies. The chemical characterization of the rainwater DOM showed that the three samples consist mostly of hydroxylated and carboxylic acids with a predominantly aliphatic character, containing a minor component of aromatic structures. The obtained results suggest that the DOM in rainwater, and consequently in the precursor atmospheric particles, may have a secondary origin via the oxidation of volatile organic compounds from different origins.

  8. [FT-IR spectroscopic analysis in monitoring of hydroxyl stretching vibrations in plant hydrogels].

    PubMed

    Pielesz, Anna; Biniaś, Dorota; Wieczorek, Joanna

    2011-01-01

    In recent years, some bioactive hydrogels isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. This article attempts to review the current structural and conformational characterization of some importantly bioactive hydrogels isolated from following plant: Symphytum officinale, Thymus pulegioides, Trigonella foenum-graecum L., Tussilago farfara L., Hyssopus officinalis, Althaea officinalis L., Equisetum arvense L. Linum usitatissimum L. and Fucus vesiculosus L. Hydrogels are cross-linked three-dimensional polysaccharide macromolecular networks that contain a large fraction of water within their structure. FT-IR spectroscopic analysis showed a strong band at 3500-3100 cm(-1) attributed to hydroxyl (the intermolecular and the intramolecular hydrogen bonds) stretching vibrations changes.

  9. Differentiation and identification of grape-associated black aspergilli using Fourier transform infrared (FT-IR) spectroscopic analysis of mycelia.

    PubMed

    Kogkaki, Efstathia A; Sofoulis, Manos; Natskoulis, Pantelis; Tarantilis, Petros A; Pappas, Christos S; Panagou, Efstathios Z

    2017-10-16

    The purpose of this study was to evaluate the potential of FT-IR spectroscopy as a high-throughput method for rapid differentiation among the ochratoxigenic species of Aspergillus carbonarius and the non-ochratoxigenic or low toxigenic species of Aspergillus niger aggregate, namely A. tubingensis and A. niger isolated previously from grapes of Greek vineyards. A total of 182 isolates of A. carbonarius, A. tubingensis, and A. niger were analyzed using FT-IR spectroscopy. The first derivative of specific spectral regions (3002-2801cm(-1), 1773-1550cm(-1), and 1286-952cm(-1)) were chosen and evaluated with respect to absorbance values. The average spectra of 130 fungal isolates were used for model calibration based on Discriminant analysis and the remaining 52 spectra were used for external model validation. This methodology was able to differentiate correctly 98.8% in total accuracy in both model calibration and validation. The per class accuracy for A. carbonarius was 95.3% and 100% for model calibration and validation, respectively, whereas for A. niger aggregate the per class accuracy amounted to 100% in both cases. The obtained results indicated that FT-IR could become a promising, fast, reliable and low-cost tool for the discrimination and differentiation of closely related fungal species. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  11. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    PubMed

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  12. Heterogeneity of shale documented by micro-FTIR and image analysis.

    PubMed

    Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt

    2014-12-01

    In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal. © 2014 The Authors Journal of Microscopy © 2014 Royal

  13. Complexes of molecular and ionic character in the same matrix layer: infrared studies of the sulfuric acid/ammonia system.

    PubMed

    Rozenberg, Mark; Loewenschuss, Aharon; Nielsen, Claus J

    2011-06-16

    The atmospherically important interaction products of sulfuric acid and ammonia molecules have been firstly observed by matrix isolation Fourier transform infrared spectroscopy (MIS-FTIR). Infrared spectra of solid argon matrix layers, in which both H(2)SO(4) and NH(3) molecules were entrapped as impurities, were analyzed for bands not seen in matrix layers containing either of the parent molecules alone. Results were interpreted on the basis of spectral changes, experimental conditions, and semiempirically scaled frequencies from the B3LYP/aug-cc-pVTZ and B3LYP/aug-cc-pVQZ calculations. Bands were assigned to complexes of the H(2)SO(4)·NH(3) and H(2)SO(4)·[NH(3)](2) general formulas. They differ significantly: the 1:1 H(2)SO(4)·NH(3) complex is a strongly hydrogen bonded complex, an analogue of the H(2)SO(4)·H(2)O complex, studied previously. For the 1:2 H(2)SO(4)·[NH(3)](2) complex, spectral results indicate an almost complete proton transfer forming a complex of essentially the two ionic moieties HSO(4)(-) and [H(3)N···H···NH(3)](+), an analogue of the [H(2)O···H···OH(2)](+) "Zundel ion". © 2011 American Chemical Society

  14. Detection of hazelnut oil adulteration using FT-IR spectroscopy.

    PubMed

    Ozen, Banu F; Mauer, Lisa J

    2002-07-03

    Fourier transform infrared spectroscopy (FT-IR) was used to detect the adulteration of hazelnut oil with different types of oils and to detect the adulteration of extra-virgin olive oil with hazelnut oil. Spectra of hazelnut oil, seven other types of oils, extra-virgin olive oil, and the adulterated oils were collected with a FT-IR equipped with a ZnSe-ATR accessory and a MCTA detector. Discriminant analysis and partial least-squares analysis were used to analyze the data. Classification of hazelnut oil, olive oil, and the other types of oils was achieved successfully with FT-IR. The detection level for sunflower oil adulteration of hazelnut oil was 2%, and the correlation coefficient for the PLS model was 0.99. Adulteration of virgin olive oil with hazelnut oil could be detected only at levels of 25% and higher.

  15. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy.

    PubMed

    Garczarek, Florian; Gerwert, Klaus

    2006-01-05

    Much progress has been made in our understanding of water molecule reactions on surfaces, proton solvation in gas-phase water clusters and proton transfer through liquids. Compared with our advanced understanding of these physico-chemical systems, much less is known about individual water molecules and their cooperative behaviour in heterogeneous proteins during enzymatic reactions. Here we use time-resolved Fourier transform infrared spectroscopy (trFTIR) and in situ H2(18)O/H2(16)O exchange FTIR to determine how the membrane protein bacteriorhodopsin uses the interplay among strongly hydrogen-bonded water molecules, a water molecule with a dangling hydroxyl group and a protonated water cluster to transfer protons. The precise arrangement of water molecules in the protein matrix results in a controlled Grotthuss proton transfer, in contrast to the random proton migration that occurs in liquid water. Our findings support the emerging paradigm that intraprotein water molecules are as essential for biological functions as amino acids.

  16. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes.

    PubMed

    Ravindranath, Sandeep P; Mauer, Lisa J; Deb-Roy, Chitrita; Irudayaraj, Joseph

    2009-04-15

    Magnetic nanoparticles functionalized with anti-Escherichia coli O157:H7 or anti-Salmonella typhimurium antibodies that can specifically bind to their target organisms were used to isolate E. coli O157:H7 and S. typhimurium separately from a cocktail of bacteria and from food matrixes. The pathogens were then detected using label-free IR fingerprinting. The binding and detection protocol was first validated using a benchtop FT-IR spectrometer and then applied to a portable mid-IR spectrometer to enable this approach as a point-of-detection technology. Highly selective detection was achieved in less than 30 min at both species (E. coli O157:H7 vs S. typhimurium ) and strain (E. coli O157:H7 vs E. coli K12) levels in complex food matrixes (2% milk, spinach extract) with a detection limit of 10(4)-10(5) CFU/mL. The combined approach of functionalized magnetic nanoparticles and IR spectroscopy imparts specificity through spectroscopic fingerprinting and selectivity through species-specific antibodies with an in-built sample extraction step and could be applied in the field for on-site food-borne pathogen monitoring.

  17. Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy.

    PubMed

    Suchy, Miro; Virtanen, Jenni; Kontturi, Eero; Vuorinen, Tapani

    2010-02-08

    The impact of drying on the ultrastructure of fresh wood was studied by deuterium exchange coupled with FT-IR analysis. This fundamental investigation demonstrated that water removal leads to irreversible alterations of the wood structure, namely, supramolecular rearrangements between wood polymers. The deuteration of fresh wood was shown to be fully reversible by a subsequent exposure of the deuterated sample to water (reprotonation). Therefore, the presence of any OD groups in deuterated and then dried wood samples after reprotonation is a clear indicator of reduced accessibility. The extent of changes was affected by drying temperature and relative humidity. Application of this methodology for the evaluation of chemical pulp sample (reference material) resulted in similar response, only more pronounced. Two hypothetical alternatives were proposed for accessibility reduction in dried wood: (i) irreversible aggregation of cellulose microfibrils and (ii) irreversible stiffening of the hemicellulose/lignin matrix that extensively swells when exposed to water.

  18. Note: Modification of an FTIR spectrometer for optoelectronic characterizations

    NASA Astrophysics Data System (ADS)

    Puspitosari, N.; Longeaud, C.

    2017-08-01

    We propose a very simple system to be adapted to a Fourier Transform Infra-Red (FTIR) spectrometer with which three different types of characterizations can be done: the Fourier transform photocurrent spectroscopy, the recording of reflection-transmission spectra of thin film semiconductors, and the acquisition of spectral responses of solar cells. In addition to gather three techniques into a single apparatus, this FTIR-based system also significantly reduces the recording time and largely improves the resolution of the measured spectra compared to standard equipments.

  19. Raman and FT-IR studies of ocular tissues

    NASA Astrophysics Data System (ADS)

    Ozaki, Yukihiro; Mizuno, Aritake

    1991-05-01

    Two examples of Raman and FT-IR studies of the ocular tissues are reviewed in this paper. The first example treats Raman studies on cataract development cataract-related lens hydration and structural changes in the lens proteins monitored in situ by Raman spectroscopy are described. The second example is concerned with FT-IR studies on the ocular tissues contain ing collagen nondestructive identification of Type I and IV collagen in the tissues and their structural differences elucidated by infrared spectroscopy are discussed. 1 .

  20. Standoff gas identification and application with FTIR imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Sun, Wei; Li, Biao; Zhang, Zhijie; Wang, Peng; Zhang, Zhen; Tang, Wei; Yu, Hui

    2016-11-01

    FTIR imaging spectrometer has significant meaning in the fields like industrial plume emission monitoring and public security monitoring. In this paper, a LWIR FTIR imaging spectrometer is applied to realize the field gas identification experiment. First, the structure and design of this spectrometer is indicated and discussed. Based on the algorithms research, the related gas identification software is developed. To verify this design, both lab and field experiments are realized. The lab experiment is applied to verify the spectral identification algorithm. The field trial is applied to analyze the gas components, and the results show that this spectrometer can realize the gas elements identification in real time.

  1. Design of grazing incidence and ATR objectives for FTIR microscopy

    NASA Astrophysics Data System (ADS)

    Reffner, John A.; Alexay, Christopher C.; Hornlein, R. W.

    1992-03-01

    The optical designs of the grazing incidence and the internal reflecting objective lenses for FT- IR microspectroscopy are described. Each of these lenses extends the FT-IR microscope's abilities for spectral analysis of microscopic samples. The function of both objectives is dependent upon the basic FT-IR microscope principals of remote aperture beam splitting and remote image plane masking. Dual remote confocal aperture masks are implicit for minimizing diffraction effects. These two objectives use Fourier plan masks to define the angular aperture of the incident radiation through the objective and onto the sample. These lenses are used for both imaging and spectral analysis

  2. FT-IR, Raman, and SERS spectra of arcaine sulfate

    SciTech Connect

    Eapen, A.; Joe, I.H.; Aruldhas, G.

    1997-11-01

    Vibrational spectral analysis of arcaine sulfate has been carried out using FT-IR, Raman, and SERS spectra. Raman and FT-IR spectra suggest protonation of the imino groups of the arcaine molecule at the expense of the proton from H{sub 2}SO{sub 4}. Analysis of SERS spectra shows that the molecule is adsorbed to the silver surface through the uncharged amino group and oxygen sites of the sulfate groups. The large enhancement observed for the amino group bending vibrations suggests that the molecule is adsorbed perpendicular to the silver surface.

  3. The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study

    NASA Astrophysics Data System (ADS)

    Bellatreccia, Fabio; della Ventura, Giancarlo; Ottolini, Luisa; Libowitzky, Eugen; Beran, Anton

    2005-05-01

    A well-characterized suite of vesuvianite samples from the volcanic ejecta (skarn or syenites) from Latium (Italy) was studied by single-crystal, polarized radiation, Fourier-transform infrared (FTIR) spectroscopy and secondary-ion mass-spectrometry (SIMS). OH-stretching FTIR spectra consist of a rather well-defined triplet of broad bands at higher-frequency (3,700 3,300 cm-1) and a very broad composite absorption below 3,300 cm-1. Measurements with E//c or E⊥c show that all bands are strongly polarized with maximum absorption for E//c. They are in agreement with previous band assignments (Groat et al. Can Mineral 33:609, 1995) to the two O(11) H(1) and O(10) H(2) groups in the structure. Pleochroic measurements with changing direction of the E vector of the incident radiation show that the orientation of the O(11) H(1) dipole is OH∧c~35°, in excellent agreement with the neutron data of Lager et al. (Can Mineral 37:763, 1999). A SIMS-based calibration curve at ~10% rel. accuracy has been worked out and used as reference for the quantitative analysis of H2O in vesuvianite by FTIR. Based on previous SIMS results for silicate minerals (Ottolini and Hawthorne in J Anal At Spectrom 16:1266, 2001; Ottolini et al. in Am Mineral 87:1477, 2002) the SiO2 and FeO content of the matrix were assumed as the major factors to be considered at a first approximation in the selection of the standards for H. The lack of vesuvianite standards for quantitative SIMS analysis of H2O has been here overcome by selecting low-silica elbaite crystals (Ottolini et al. in Am Mineral 87:1477, 2002). The resulting integrated molar absorption FTIR coefficient for vesuvianite is ɛi=100.000±2.000 l mol-1 cm-2. SIMS data for Li, B, F, Sr, Y, Be, Ba REE, U and Th are also provided in the paper.

  4. Isolation of Chlamydomonas Flagella

    PubMed Central

    Craige, Branch; Brown, Jason M.; Witman, George B.

    2014-01-01

    A simple, scalable, and fast procedure for the isolation of Chlamydomonas flagella is described. Chlamydomonas can be synchronously deflagellated by treatment with chemicals, pH shock, or mechanical shear. The Basic Protocol describes the procedure for flagellar isolation using dibucaine to induce flagellar abscission; we also describe the pH shock method as an Alternate Protocol when flagellar regeneration is desirable. Sub-fractionation of the isolated flagella into axonemes and the membrane + matrix fraction is described in a Support Protocol. PMID:23728744

  5. FTIR thermochronometry of natural diamonds: A closer look

    NASA Astrophysics Data System (ADS)

    Kohn, Simon C.; Speich, Laura; Smith, Christopher B.; Bulanova, Galina P.

    2016-11-01

    Fourier Transform Infrared (FTIR) spectroscopy is a commonly-used technique for investigating diamonds, that gives the most useful information if spatially-resolved measurements are used. In this paper we discuss the best way to acquire and present FTIR data from diamonds, using examples from Murowa (Zimbabwe), Argyle (Australia) and Machado River (Brazil). Examples of FTIR core-to-rim line scans, maps with high spatial resolution and maps with high spectral resolution that are fitted to extract the spatial variation of different nitrogen and hydrogen defects are presented. Model mantle residence temperatures are calculated from the concentration of A and B nitrogen-containing defects in the diamonds using known times of annealing in the mantle. A new, two-stage thermal annealing model is presented that better constrains the thermal history of the diamond and that of the mantle lithosphere in which the diamond resided. The effect of heterogeneity within the analysed FTIR volume is quantitatively assessed and errors in model temperatures that can be introduced by studying whole diamonds instead of thin plates are discussed. The spatial distribution of VN3H hydrogen defects associated with the 3107 cm- 1 vibration does not follow the same pattern as nitrogen defects, and an enrichment of VN3H hydrogen at the boundary between pre-existing diamond and diamond overgrowths is observed. There are several possible explanations for this observation including a change in chemical composition of diamond forming fluid during growth or kinetically controlled uptake of hydrogen.

  6. Measurement uncertainty of lactase-containing tablets analyzed with FTIR.

    PubMed

    Paakkunainen, Maaret; Kohonen, Jarno; Reinikainen, Satu-Pia

    2014-01-01

    Uncertainty is one of the most critical aspects in determination of measurement reliability. In order to ensure accurate measurements, results need to be traceable and uncertainty measurable. In this study, homogeneity of FTIR samples is determined with a combination of variographic and multivariate approach. An approach for estimation of uncertainty within individual sample, as well as, within repeated samples is introduced. FTIR samples containing two commercial pharmaceutical lactase products (LactaNON and Lactrase) are applied as an example of the procedure. The results showed that the approach is suitable for the purpose. The sample pellets were quite homogeneous, since the total uncertainty of each pellet varied between 1.5% and 2.5%. The heterogeneity within a tablet strip was found to be dominant, as 15-20 tablets has to be analyzed in order to achieve <5.0% expanded uncertainty level. Uncertainty arising from the FTIR instrument was <1.0%. The uncertainty estimates are computed directly from FTIR spectra without any concentration information of the analyte.

  7. FT-IR spectroscopy characterization of schwannoma: a case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabelle; Neto, Lazaro P. M.; das Chagas, Maurilio José; Carvalho, Luís. Felipe C. S.; dos Santos, Laurita; Ribas, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    Schwannoma are rare benign neural neoplasia. The clinical diagnosis could be improved if novel optical techniques are performed. Among these techniques, FT-IR is one of the currently techniques which has been applied for samples discrimination using biochemical information with minimum sample preparation. In this work, we report a case of a schwannoma in the cervical region. A histological examination described a benign process. An immunohistochemically examination demonstrated positivity to anti-S100 protein antibody, indicating a diagnosis of schwannoma. The aim of this analysis was to characterize FT-IR spectrum of the neoplastic and normal tissue in the fingerprint (1000-1800 cm-1) and high wavenumber region (2800-3600 cm-1). The IR spectra were collect from tumor tissue and normal nerve samples by a FT-IR spectrophotometer (Spotlight Perkin Elmer 400, USA) with 64 scans, and resolution of 4 cm-1. A total of twenty spectra were recorded (10 from schwannoma and 10 from nerve). Multivariate Analysis was used to classify the data. Through average and standard deviation analysis we observed that the main spectral change occurs at ≍1600 cm-1 (amide I) and ≍1400 cm-1 (amide III) in the fingerprint region, and in CH2/CH3 protein-lipids and OH-water vibrations for the high wavenumber region. In conclusion, FT-IR could be used as a technique for schwannoma analysis helping to establish specific diagnostic.

  8. Design Principles And Instrumentation For Step-Scan FTIR

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.; Palmer, Richard A.; Chao, James L.

    1989-12-01

    Step-scan, or step-by-step data collection in optical interferometry historically preceeded the rapid-scan method currently favored by commercial FTIR instrument manufacturers. Although rapid-scan data collection with opto-electronic sampling control has clearly been the key to the dramatic revival of FTIR, and of infrared spectroscopy in general, there are some experiments for which a return to step-scan techniques is a definite advantage. These include particularly experiments in which time resolution in the range of rapid-scan Fourier modulation periods is desirable. Step-scan FTIR differs from rapid-scan FTIR in the control of the mirror position and the timing of data collection. The rapid-scan mode involves moving the mirror continuously, and triggering data collection at evenly spaced intervals of the HeNe reference laser interference pattern. A particular advantage of rapid scanning is that minor fluctuations in the velocity of the mirror are compensated for during sampling. In contrast, with step-scan operation the mirror is stopped at, or vibrated about, each data collection point. This has the effect of uncoupling the spectral multiplexing from any temporal aspects of the experiment and makes step-scanning applicable to a wide range of dynamic spectroscopy. However, fluctuations in the mirror position are not easily compensated for and contribute to noise in the transformed spectra. The minimization of such sampling errors is the central challenge of step-scan interferometry.

  9. FTIR Laboratory in Support of the PV Program

    SciTech Connect

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report.

  10. NARSTO EPA SS HOUSTON TEXAQS2000 PM FTIR

    Atmospheric Science Data Center

    2014-04-25

    NARSTO EPA SS HOUSTON TEXAQS2000 PM FTIR Project Title:  NARSTO ... Transform Infrared Spectrometer) Location:  Houston, Texas Spatial Resolution:  Point Measurements ...   Order Data Guide Documents:  Houston TexAQS2000 PM Guide Houston Project Plan  (PDF) ...

  11. Raman and FTIR microspectroscopy for detection of brain metastasis

    NASA Astrophysics Data System (ADS)

    Bergner, Norbert; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Krafft, Christoph; Popp, Jürgen

    2011-07-01

    Vibrational spectroscopic imaging methods are novel tools to visualise chemical component in tissue without staining. Fourier transform infrared (FTIR) imaging is more frequently applied than Raman imaging so far. FTIR images recorded with a FPA detector have been demonstrated to identify the primary tumours of brain metastases. However, the strong absorption of water makes it difficult to transfer the results to non-dried tissues. Raman spectroscopy with near infrared excitation can be used instead and allows collecting the chemical fingerprint of native specimens. Therefore, Raman spectroscopy is a promising tool for tumour diagnosis in neurosurgery. Scope of the study is to compare FTIR and Raman images to visualize the tumour border and identify spectral features for classification. Brain metastases were obtained from patients undergoing surgery at the university hospital. Brain tissue sections were shock frozen, cryosectioned, dried and the same areas were imaged with both spectroscopic method. To visualise the chemical components, multivariate statistical algorithms were applied for data analysis. Furthermore classification models were trained using supervised algorithms to predict the primary tumor of brain metastases. Principal component regression (PCR) was used for prediction based on FTIR images. Support vector machines (SVM) were used for prediction based on Raman images. The principles are shown for two specimens. In the future, the study will be extended to larger data sets.

  12. Nano-FTIR chemical mapping of minerals in biological materials

    PubMed Central

    Amarie, Sergiu; Zaslansky, Paul; Kajihara, Yusuke; Griesshaber, Erika; Schmahl, Wolfgang W

    2012-01-01

    Summary Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies. PMID:22563528

  13. Reflection Spectroscopy With The FT-IR Microscope

    NASA Astrophysics Data System (ADS)

    Wihlborg, William T.; Reffner, John A.; Strand, Scott W.; Wasacz, Frank M.

    1989-12-01

    The FT-IR microscope is a versatile sampling accessory used to record IR spectra in either transmittance or reflectance modes and capable of obtaining data from microscopic sampling areas. Because the FT-IR microscope simplifies the collection of reflectance data it has renewed interest in reflectance spectroscopy. Moreover, the ability to see the specific sample and to obtain spectra from small areas makes it possible to differentiate the mode of the reflection data. Reflections can be specular, diffuse or reflection-absorption modes. These modes are not independent, but the sample and its surface geometry can cause one mode to dominate all others. With polished grains or single crystal faces, specular reflection is the dominate mode. Thin films on metallic reflecting substrates make reflection-absorption the major reflection mode. Diffuse reflection dominates when the surface is very rough or fine irregular particles are analyzed. Since the sample can be seen with the microscope, the reflection mode can be predicted by direct observation of the sample's surface. In this work, examples of reflection spectral measurements are presented to illustrate the versatility of the FT-IR microscope. Of particular interest is the first report of quantitative analysis of a copolymer using specular reflectance measurements obtained with the FT-IR microscope. In this analysis, the Kramers-Kroenig transformation was used to obtain extinction (k) values. The k values derived from specular reflection are quantitative agreement with absorbance values measured by transmission.

  14. Obtaining medical and biological images by FTIR multiaspect projection refractometry

    SciTech Connect

    Morozov, V.N.; Agureev, V.V.

    1994-12-01

    A new method of obtaining images is proposed, called FTIR multiaspect projection refractometry. A theoretical basis is provided for it, and its experimental implementation is described. Using this method to study a number of biological objects showed that it can be used to obtain high-contrast images of such objects. 9 refs., 3 figs.

  15. Are isolated wetlands isolated?

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Haukos, David A.

    2011-01-01

    While federal regulations during the past 10 years have treated isolated wetlands as unconnected to aquatic resources protected by the Clean Water Act, they provide critical ecosystem services to society that extend well beyond their wetland boundaries. The authors offer well-documented examples from the scientific literature on some of the ecosystem services provided by isolated wetlands to society and other ecosystems.

  16. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products

    PubMed Central

    Milanowski, Maciej; Pomastowski, Paweł; Railean-Plugaru, Viorica; Rafińska, Katarzyna; Ligor, Tomasz; Buszewski, Bogusław

    2017-01-01

    The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed. PMID:28362838

  17. The importance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for correct identification of Clostridium difficile isolated from chromID C. difficile chromogenic agar.

    PubMed

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Oi-Ying; Wong, Sally C Y; So, Simon Y C; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2016-01-11

    The clinical workflow of using chromogenic agar and matrix-assisted laser desorption ionization time-of-fight mass spectrometry (MALDI-TOF MS) for Clostridium difficile identification was evaluated. The addition of MALDI-TOF MS identification after the chromID C. difficile chromogenic agar culture could significantly improve the diagnostic accuracy of C. difficile.

  18. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    NASA Astrophysics Data System (ADS)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 < RCH > 1.3±0.3; 3) wet gas window--1.3±0.3 < RCH> 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  19. Contribution of Ribonucleic Acid (RNA) to the Fourier Transform Infrared (FTIR) Spectrum of Eukaryotic Cells.

    PubMed

    Zucchiatti, Paolo; Mitri, Elisa; Kenig, Saša; Billè, Fulvio; Kourousias, George; Bedolla, Diana Eva; Vaccari, Lisa

    2016-12-20

    We report on an optimized protocol for the digestion of cellular RNA, which minimally affects the cell membrane integrity, maintaining substantially unaltered the vibrational contributions of the other cellular macromolecules. The design of this protocol allowed us to collect the first Fourier transform infrared (FTIR) spectra of intact hydrated B16 mouse melanoma cells deprived of RNA and to highlight the in-cell diagnostic spectral features of it. Complementing the cellular results with the FTIR analysis of extracted RNA, ds-DNA, ss-cDNA and isolated nuclei, we verified that the spectral component centered at ∼1220 cm(-1) is a good qualitative and semiquantitative marker of cellular DNA, since it is minimally affected by cellular RNA removal. Conversely, the band centered at ∼1240 cm(-1), conventionally attributed to RNA, is only a qualitative marker of it, since its intensity is majorly influenced by other macromolecules containing diverse phosphate groups, such as phospholipids and phosphorylated proteins. On the other hand, we proved that the spectral contribution centered at ∼1120 cm(-1) is the most reliable indicator of variations in cellular RNA levels, that better correlates with cellular metabolic activity. The achievement of these results have been made possible also by the implementation of new methods for baseline correction and automated peak fitting, presented in this paper.

  20. Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kneipp, Janina; Miller, Lisa M.; Spassov, Sashko; Sokolowski, Fabian; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2004-07-01

    Syrian hamster nervous tissue was investigated by FTIR microspectroscopy with conventional and synchrotron infrared light sources. Various tissue structures from the cerebellum and medulla oblongata of scrapie-infected and control hamsters were investigated at a spatial resolution of 50 μm. Single neurons in dorsal root ganglia of scrapie-infected hamsters were analyzed by raster scan mapping at 6 μm spatial resolution. These measurements enabled us to (i) scrutinize structural differences between infected and non-infected tissue and (ii) analyze for the first time the distribution of different protein structures in situ within single nerve cells. Single nerve cells exhibited areas of increased β-sheet content, which co-localized consistently with accumulations of the pathological prion protein (PrPSc). Spectral data were also obtained from purified, partly proteinase K digested PrPSc isolated from scrapie-infected nervous tissue of hamsters to elucidate similarities/dissimilarities between prion structure in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP90-232, whose in vitro transition from the predominantly a-helical isoform to β-sheet rich oligomeric structures was also investigated by FTIR spectroscopy.

  1. Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size. PMID:19589213

  2. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  3. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  4. [Formation of stereocomplexes in atactic poly(methyl methacrylate) studied by FTIR].

    PubMed

    Gu, Q; Shen, D

    2000-10-01

    The stereocomplexation of atactic poly(methyl methacrylate) (a-PMMA) films after isolated from acetone, benzene, and chloroform solution, respectively, was studied by Fourier transformation infrared (FTIR). The results of spectra showed that the stereocomplex was formed for the films cast from acetone and benzene solutions with the appearance of the characteristic bands for the stereocomplex. The population of trans-trans conformers for the i- and s-sequences increased and the side chain preferred to its energetically optimized conformation during the formation of stereocomplex. The stereocomplexes may be formed by the interactions between the i- and s-sequences in the same molecular chain. During the annealing process the self-aggregation of s-sequences played a role in the aggregation process of stereocomplex, which was a function of annealing temperature and annealing time.

  5. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  6. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  7. Applications of FT-IR spectrophotometry in cancer diagnostics.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  8. Classification of FTIR cancer data using wavelets and BPNN

    NASA Astrophysics Data System (ADS)

    Cheng, Cungui; Tian, Yumei; Zhang, Changjiang

    2007-11-01

    In this paper, a feature extracting method based on wavelets for horizontal attenuated total reflectance Fourier transform infrared spectroscopy (HATR-FTIR) cancer data analysis and classification using artificial neural network trained with back-propagation algorithm is presented. 168 Spectra were collected from 84 pairs of fresh normal and abnormal lung tissue's samples. After preprocessing, 12 features were extracted with continuous wavelet analysis. Based on BPNN classification, all spectra were classified into two categories : normal or abnormal. The accuracy of identifying normal, early carcinoma, and advanced carcinoma were 100%, 90% and 100% respectively. This result indicated that FTIR with continuous wavelet transform (CWT) and the back-propagation neural network (BPNN) could effectively and easily diagnose lung cancer in its early stages.

  9. TG-DSC-FTIR Analysis of Cyanobacteria Pyrolysis

    NASA Astrophysics Data System (ADS)

    Supeng, Luo; Guirong, Bao; Hua, Wang; Fashe, Li; Yizhe, Li

    Pyrolysis of cyanobacteria from Dianchi lake was investigated by TG-DSC-FTIR analysis at different heating rates (10, 20, 40°C/min). The results indicated that the pyrolysis of cyanobacteria can be divided into four stages: evaporation, depolymerization, devolatilization and carbonization. Meanwhile, the initial weight-loss temperature, weight-loss extreme position, endothermic and exothermic peaks were moved to higher temperature with the increaseing of the heating rate. The kinetic analysis was made with Popescu method. It indicated that the best kinetic model for the pyrolysis of cyanobacteria was the cylindrical symmetry of the phase boundary reaction model. The main pyrolysis gases checked with real-time online FTIR were HCN, NH3, CO, CO2, water vapor and hydrocarbons.

  10. Applications of principal components analyses to multidimensional FTIR microscopy data

    NASA Astrophysics Data System (ADS)

    Ward, Kenneth J.; Reffner, John A.; Martoglio, Pamela A.

    1994-01-01

    The acquisition of multidimensional data, both multispatial and multispectral data, is now routinely accomplished using an FT-IR microscope equipped with a motorized stage. FT-IR microscope mapping generates multi-megabyte data sets with several thousand data points per spectrum, where each spectrum is a pixel in an image. Methods to reduce each infrared spectrum to a single intensity must be used to produce a pseudo 3-D image. Multivariate statistical methods such as principle components analysis (PCA) utilize the multiwavelength information acquired at each spatial location to generate this image containing new chemical information. PCA generates the image by determining independent sources of spectral variance without any knowledge of chemical composition. Since PCA can be applied as a full spectrum method, there is no requirement for any previous knowledge about the data set as is the case for other methods of data reduction.

  11. FT-IR microscopy imaging on oral cavity tumours, II

    NASA Astrophysics Data System (ADS)

    Conti, C.; Giorgini, E.; Pieramici, T.; Rubini, C.; Tosi, G.

    2005-06-01

    Changes in the biochemistry of oral cavity tissues have been studied by FT-IR microscopy. Various aspects of squamous cell carcinomas of cheek mucosa, of tongue, of gingiva, and of the floor of the mouth have been analyzed through FT-IR imaging with the aim to relate spectral patterns with histopathological results. In particular, changes in frequency and intensity of proteins, connective and nucleic acids vibrational modes as well as the visualization of biochemical single wavenumber or band ratio images allowed a quali- and quantitative evaluation of the changes in the proliferating activity from displastic to neoplastic states. 'Supervised' and 'unsupervised' procedures of data handling afforded a satisfactory degree of accordance between spectroscopic and histological findings.

  12. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    SciTech Connect

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  13. Detection of Lewis antigen structural change by FTIR spectroscopy.

    PubMed

    Lewis, A T; Jones, K; Lewis, K E; Jones, S; Lewis, P D

    2013-02-15

    Mucins are a family of extensively glycosylated, high molecular weight glycoproteins. Secretion of mucins with altered terminal carbohydrate moieties alters the rheological and viscoelastic properties of mucus and observed glycosylation changes in respiratory diseases may vary with disease status. Structural modifications to the Lewis x antigen with sialic acid (sialyl-Lewis x) and sulphate (sulfo-Lewis x) in particular are associated with respiratory diseases and deemed potential biomarkers for disease diagnosis, severity and progression. The major aim of this study was to evaluate the ability of Fourier transform infrared spectroscopy (FTIR) to detect, via infrared (IR) spectra, the structural changes between the Lewis x antigen and sialylated and sulphated derivatives. Although FTIR only provides information on vibrations of chemical groups, we show that by comparing mono- and oligosaccharide specific IR spectra it is possible to determine the contribution of key sugar moieties to the altered Lewis x spectral pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. FT-IR spectroscopy of lipoproteins—A comparative study

    NASA Astrophysics Data System (ADS)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  15. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.

    PubMed

    Shi, Chenyi; Lin, Qinrui; Deng, Chunhui

    2015-04-01

    In this study, a novel on-plate IMAC technique was developed for highly selective enrichment and isolation of phosphopeptides with high-throughput MALDI-TOF-MS analysis. At first, a MALDI plate was coated with polydopamine (PDA), and then Ti(4+) was immobilized on the PDA-coated plate. The obtained IMAC plate was successfully applied to the highly selective enrichment and isolation of phosphopeptides in protein digests and human serum. Because of no loss of samples, the on-plate IMAC platform exhibits excellent selectivity and sensitivity in the selective enrichment and isolation of phosphopeptides, which provides a potential technique for high selectivity in the detection of low-abundance phosphopeptides in biological samples.

  16. Advanced FTIR technology for the chemical characterization of product wafers

    NASA Astrophysics Data System (ADS)

    Rosenthal, P. A.; Bosch-Charpenay, S.; Xu, J.; Yakovlev, V.; Solomon, P. R.

    2001-01-01

    Advances in chemically sensitive diagnostic techniques are needed for the characterization of compositionally variable materials such as chemically amplified resists, low-k dielectrics and BPSG films on product wafers. In this context, Fourier Transform Infrared (FTIR) reflectance spectroscopy is emerging as a preferred technique to characterize film chemistry and composition, due to its non-destructive nature and excellent sensitivity to molecular bonds and free carriers. While FTIR has been widely used in R&D environments, its application to mainstream production metrology and process monitoring on product wafers has historically been limited. These limitations have been eliminated in a series of recent FTIR technology advances, which include the use of 1) new sampling optics, which suppress artifact backside reflections and 2) comprehensive model-based analysis. With these recent improvements, it is now possible to characterize films on standard single-side polished product wafers with much simpler training wafer sets and machine-independent calibrations. In this new approach, the chemistry of the films is tracked via the measured infrared optical constants as opposed to conventional absorbance measurements. The extracted spectral optical constants can then be reduced to a limited set of parameters for process control. This paper describes the application of this new FTIR methodology to the characterization of 1) DUV photoresists after various processing steps, 2) low-k materials of different types and after various curing conditions, and 3) doped glass BPSG films of various concentration and, for the first time, widely different thicknesses. Such measurements can be used for improved process control on actual product wafers.

  17. TATP stand-off detection with open path: FTIR techniques

    NASA Astrophysics Data System (ADS)

    Fischer, C.; Pohl, T.; Weber, K.; Vogel, A.; van Haren, G.; Schweikert, W.

    2012-10-01

    TATP is a very easy to synthesize [9], sensitive, high explosive [10] and high volatile explosive [1, 3, 7] with great absorption in the IR Spectra [4, 5, 6]. In this project we detect TATP gas traces with open path FTIR - techniques. The first project phase was to construct and build a heatable multi-reflection cell with adjustable optical path length and a heatable intake to evaporate solid TATP samples. In this cell reference TATP - spectra were collected under controlled conditions with a Bruker FTIR system (Typ OPAG 33). The next step was to find out how the TATP gas will be diluted in the ambient air and validate some physical properties which are described inconsistently in literature e.g. evaporation rates. We constructed a special double - T shaped chamber with stabile air conditions. In this chamber the dispersion kinetics of the TATP vapour could be tested. It turned out that the TATP vapours has the tendency to drop down. Therefore the highest TATP - concentrations were measured below the TATP sample. During the investigation for this study it turned out, that some materials scrub the TATP- vapour out of the air, e.g. Metals, fabric, leather. In the second phase of the project successful open path FTIR- measurements were taken in ambient air and will be continued with different system configurations of the OPAG 33 to lower the detection limits. Also successful measurements were taken in indoor ambient air with a Hyper spectral camera (passive FTIR with array sensor) to detect TATP in solid and gaseous phase. This technique allows detecting TATP and identifying the TATP source. The poster shows some selected results of the continued research.

  18. [Authentication and adulteration analysis of sesame oil by FTIR spectroscopy].

    PubMed

    Ding, Qing-Zhen; Liu, Ling-Ling; Wu, Yan-Wen; Li, Bing-Ning; Ouyang, Jie

    2014-10-01

    It's common in edible oil market that adulterating low price oils in high price oils. Sesame oil was often adulterated because of its high quality and price, so the authentication and adulteration of sesame oil were qualitatively and quantitatively analyzed by Fourier transform infrared (FTIR) spectroscopy combined with chemometrics. Firstly, FTIR spectra of sesame oil, soybean oil, and sunflower seed oil in 4,000-650 cm(-1) were analyzed. It was very difficult to detect the difference among the spectra of above edible oils, because they are all mixtures of triglyceride fatty acids and have similar spectra. However, the FTIR data of edible oils in the fingerprint region of 1,800-650 cm(-1) differed slightly because their fatty acid compositions are different, so the data could be classified and recognized by chemometric methods. The authenticity model of sesame oil was built by principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The recognition rate was 100%, and the built model was satisfactory. The classification limits of both soybean oil and sunflower seed oil adulterated in sesame oil were 10%, with the chemometric treatments of standard normal variation (SNV), partial least square (PLS) and PCA. In addition, the FTIR data processed by PCA and PLS were used to establish an analysis model of binary system of sesame oil mixed with soybean oil or sunflower oil, the prediction values had good corresponding relationship with true values, and the relative errors of prediction were between -6.87% and 8.07%, which means the quantitative model was practical. This method is very convenient and rapid after the models have been built, and can be used for rapid detection of authenticity and adulteration of sesame oil. The method is also practical and suitable for the daily analysis of large amount of samples.

  19. FT-IR microspectroscopic imaging of human melanoma thin sections

    NASA Astrophysics Data System (ADS)

    Lasch, P.; Wäsche, W.; Müller, G.; Naumann, D.

    1998-06-01

    FT-IR microscopic mapping techniques in combination with image construction methods have been used to characterize tissue thin sections from human melanoma. While IR imaging based on distinct spectral parameters (intensity, frequency, or half-width) often gives unsatisfactory results, pattern recognition analysis (e.g. by principal component analysis or Artificial Neural Networks) of the IR-data confirms standard histopathological techniques and turns out to be helpful to discriminate reliably between different tissues.

  20. Characterization of interaction between natural rubber and silica by FTIR

    NASA Astrophysics Data System (ADS)

    Jarnthong, Methakarn; Liao, Lusheng; Zhang, Fuquan; Wang, Yueqiong; Li, Puwang; Peng, Zheng; Malawet, Chutarat; Intharapat, Punyanich

    2017-05-01

    Blending of natural rubber (NR) and nanosilica (SiO2) was performed in latex state. The mechanical properties of NR/SiO2 nanocomposites at various filler contents were investigated. The interactions of unvulcanized natural rubber and nanosilica filler were characterized using Fourier Transform Infrared (FTIR)-Attenuated Total Reflectance (ATR) spectroscopy. The relationship between mechanical properties and rubber-filler interaction was discussed.

  1. Surface analysis of powder binary mixtures with ATR FTIR spectroscopy.

    PubMed

    Planinsek, Odon; Planinsek, Daniela; Zega, Anamarija; Breznik, Matej; Srcic, Stane

    2006-08-17

    Attenuated Total Reflectance Fourier Transform Infra Red spectroscopy (ATR FTIR) has been used for surface analysis of powder mixtures. The appearance of one component on the surface of the mixture in greater amounts than that expected from the mass or volume ratio was quantified. Coloured mixtures containing methyl orange were analysed. They contained proportions of components from 0% to 100% in steps of 10%. Mixtures of non-sieved powders of methyl orange and Povidone were dark red when containing only 20% of methyl orange, indicating that particles of methyl orange were present on the surface of the mixture in higher amounts than expected from the mass ratios. Mixtures of methyl orange and Mg stearate, on the other hand, were a light colour, showing the presence of more Mg stearate on the surface than expected. Visual observations correlated with semiquantitative surface concentration determination by ATR FTIR spectroscopy using specific peaks of each component. Quantitative determination of components on the surface of the mixture, using the Beer Lambert law, was possible when characteristic peaks for the first component did not overlap with those of the other component. A non-linear correlation between peak height and concentration of a component in a mixture was explained by distribution of the particle size of components. With a small component, the larger number of particles in the same volume allowed them to surround the larger particles of the second component. These conclusions were confirmed by preparing mixtures with non-coloured components (Povidone-Eudragit, NaCl-Povidone, NaCl-Eudragit. Results again correlated with the ATR FTIR spectroscopy measurements. It was additionally shown that a small proportion of finer particles can drastically influence the surface of powder mixtures, due to their large contribution to the specific surface area. ATR FTIR is thus demonstrated to be a useful method for studying surfaces of powder mixtures also in terms of

  2. [FTIR and classification study on trueborn tuber dioscoreae samples].

    PubMed

    Sun, Su-qin; Tang, Jun-ming; Yuan, Zi-min; Bai, Yan

    2003-04-01

    To identify the origin of tuber dioscoreae, 45 samples were studied by soft independent modeling of class analogy (SIMCA) in this paper. The combination of Fourier transform infrared spectroscopy (FTIR) with mathematic method was used to classify the trueborn and non-trueborn samples. The samples were chosen randomly as modeling group and predicting group. The correctness of classification was 70%. This approach was proved to be a reliable and practicable method for trueborn quality analysis of tuber dioscoreae.

  3. Identification of clay minerals in reservoir rocks by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong Khang, Vu; Korovkin, Mikhail V.; Ananyeva, Ludmila G.

    2016-09-01

    Clay minerals including kaolinite, montmorillonite and bentonite in oil and gas reservoir rocks are identified by absorption spectra obtained via Fourier Transform Infrared (FTIR) spectroscopy. Bands around 3695, 3666, 3650 and 3630 cm-1 and bands around 3620 and 3400 cm-1 are the most diagnostically reliable for kaolinite and montmorillonite, respectively; also absorption bands in the region of 1200...955 cm-1 are equally diagnostic for all the clay minerals studied.

  4. Conformational equilibrium of 2-deoxyadenosine molecules isolated in inert Ar matrices

    NASA Astrophysics Data System (ADS)

    Ivanov, A. Yu.

    2014-06-01

    The FTIR spectra of 2-deoxyadenosine (dA) molecules isolated in low-temperature Ar matrices were obtained in the range of 3800-180 cm-1 with a resolution of 0.3 cm-1. The population analysis of the major structural isomers of dA was carried out by MP2 and DFT quantum-mechanical calculation methods. It was established that dA can sustain prolonged evaporation at 440 K without undergoing thermal decomposition. For the first time, it was shown that the populations of dA syn-conformers with the intramolecular hydrogen bond O5'H-N3 is close to (76 ± 5)% in the gas phase and matrix. Upon freezing in the matrix the syn-conformers with the intramolecular hydrogen bond O5'H-N3 and C3'-endo structure of the deoxyribose ring were fully transformed into the subset of syn-conformers with the C2'-endo structure of the deoxyribose ring. Only two structures from this subset with different rotation angles of the O3'H-group can be stabilized in the matrix. Unlike pyrimidine nucleosides, the dA conformers with the intramolecular hydrogen bonds O3'H-O5 or O5'H-O3 were not found.

  5. Application of micro-FTIR imaging in the Earth sciences.

    PubMed

    Della Ventura, G; Bellatreccia, F; Marcelli, A; Cestelli Guidi, M; Piccinini, M; Cavallo, A; Piochi, M

    2010-07-01

    In this paper we describe recent applications of micro-infrared imaging in the Earth sciences. We address, in particular, the use of Fourier-transform infrared (FTIR) spectroscopy in characterizing the zoning and speciation of H and C in a variety of geological materials, including microporous minerals, nominally anhydrous volcanic minerals (NAMs), and crystal inclusions. These investigations show that use of the modern techniques of FTIR imaging enables detection of the zoning of volatile species across the studied samples, and possible configuration changes of structurally-bound carbon molecular species (e.g., CO(2) vs CO(3)) during crystal growth. Such features, which are not accessible with other micro-analytical techniques, may provide information about the physicochemical properties which act as constraints in the genesis of the samples, and important information about the evolution of the geological system. Tests performed with focal-plane-array detectors (FPA) show that resolution close to the diffraction limit can be achieved if the amounts of the target molecules in the sample are substantially different. We also point out the possibility of using FTIR imaging for investigations under non-ambient conditions.

  6. Study on biodegradation process of lignin by FTIR and DSC.

    PubMed

    Liu, Yang; Hu, Tianjue; Wu, Zhengping; Zeng, Guangming; Huang, Danlian; Shen, Ying; He, Xiaoxiao; Lai, Mingyong; He, Yibin

    2014-12-01

    The biodegradation process of lignin by Penicillium simplicissimum was studied to reveal the lignin biodegradation mechanisms. The biodegradation products of lignin were detected using Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, different scanning calorimeter (DSC), and stereoscopic microscope. The analysis of FTIR spectrum showed the cleavage of various ether linkages (1,365 and 1,110 cm(-1)), oxidation, and demethylation (2,847 cm(-1)) by comparing the different peak values in the corresponding curve of each sample. Moreover, the differences (Tm and ΔHm values) between the DSC curves indirectly verified the FTIR analysis of biodegradation process. In addition, the effects of adding hydrogen peroxide (H2O2) to lignin biodegradation process were analyzed, which indicated that H2O2 could accelerate the secretion of the MnP and LiP and improve the enzymes activity. What is more, lignin peroxidase and manganese peroxidase catalyzed the lignin degradation effectively only when H2O2 was presented.

  7. Applications of ATR-FTIR spectroscopic imaging to biomedical samples.

    PubMed

    Kazarian, S G; Chan, K L A

    2006-07-01

    FTIR spectroscopic imaging in ATR (Attenuated Total Reflection) mode is a powerful tool for studying biomedical samples. This paper summarises recent advances in the applications of ATR-FTIR imaging to dissolution of pharmaceutical formulations and drug release. The use of two different ATR accessories to obtain chemical images of formulations in contact with water as a function of time is demonstrated. The innovative use of the diamond ATR accessory allowed in situ imaging of tablet compaction and dissolution. ATR-FTIR imaging was also applied to obtain images of the surface of skin and the spatial distribution of protein and lipid rich domains was obtained. Chemical images of cross-section of rabbit aorta were obtained using a diamond ATR accessory and the possibility of in situ imaging of arterial samples in contact with aqueous solution was demonstrated for the first time. This experiment opens an opportunity to image arterial samples in contact with solutions containing drug molecules. This approach may help in understanding the mechanisms of treatment of atherosclerosis.

  8. Air Contamination Quantification by FTIR with Gas Cell

    NASA Technical Reports Server (NTRS)

    Freischlag, Jason

    2017-01-01

    Air quality is of utmost importance in environmental studies and has many industrial applications such as aviators grade breathing oxygen (ABO) for pilots and breathing air for fire fighters. Contamination is a major concern for these industries as identified in MIL-PRF-27210, CGA G-4.3, CGA G-7.1, and NFPA 1989. Fourier Transform Infrared Spectroscopy (FTIR) is a powerful tool that when combined with a gas cell has tremendous potential for gas contamination analysis. Current procedures focus mostly on GC-MS for contamination quantification. Introduction of this topic will be done through a comparison of the currently used deterministic methods for gas contamination with those of FTIR gas analysis. Certification of the mentioned standards through the ISOIEC 17065 certifying body A2LA will be addressed followed by an evaluation of quality information such as the determinations of linearity and the limits of detection and quantitation. Major interferences and issues arising from the use of the FTIR for accredited work with ABO and breathing air will be covered.

  9. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01