Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S
2007-11-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.
Modelling polarization dependent absorption: The vectorial Lambert-Beer law
NASA Astrophysics Data System (ADS)
Franssens, G.
2014-07-01
The scalar Lambert-Beer law, describing the absorption of unpolarized light travelling through a linear non-scattering medium, is simple, well-known, and mathematically trivial. However, when we take the polarization of light into account and consider a medium with polarization dependent absorption, we now need a Vectorial Lambert-Beer Law (VLBL) to quantify this interaction. Such a generalization of the scalar Lambert-Beer law appears not to be readily available. A careful study of this topic reveals that it is not a trivial problem. We will see that the VLBL is not and cannot be a straightforward vectorized version of its scalar counterpart. The aim of the work is to present the general form of the VLBL and to explain how it arises. A reasonable starting point to derive the VLBL is the Vectorial Radiative Transfer Equation (VRTE), which models the absorption and scattering of (partially) polarized light travelling through a linear medium. When we turn off scattering, the VRTE becomes an infinitesimal model for the VLBL holding in the medium. By integrating this equation, we expect to find the VLBL. Surprisingly, this is not the end of the story. It turns out that light propagation through a medium with polarization-dependent absorption is mathematically not that trivial. The trickiness behind the VLBL can be understood in the following terms. The matrix in the VLBL, relating any input Stokes vector to the corresponding output Stokes vector, must necessarily be a Mueller matrix. The subset of invertible Mueller matrices forms a Lie group. It is known that this Lie group contains the ortho-chronous Lorentz group as a subgroup. The group manifold of this subgroup has a (well-known) non-trivial topology. Consequently, the manifold of the Lie group of Mueller matrices also has (at least the same, but likely a more general) non-trivial topology (the full extent of which is not yet known). The type of non-trivial topology, possessed by the manifold of (invertible) Mueller matrices and which stems from the ortho-chronous Lorentz group, already implies (by a theorem from Lie group theory) that the infinitesimal VRTE model for the VLBL is not guaranteed to produce in general the correct finite model (i.e., the VLBL itself) upon integration. What happens is that the non-trivial topology acts as an obstruction that prevents the (matrix) exponential function to reach the correct Mueller matrix (for the medium at hand), because it is too far away from the identity matrix. This means that, for certain media, the VLBL obtained by integrating the VRTE may be different from the VLBL that one would actually measure. Basically, we have here an example of a physical problem that cannot be completely described by a differential equation! The following more concrete example further illustrates the problem. Imagine a slab of matter, showing polarization dependent absorption but negligible scattering, and consider its Mueller matrix for forward propagating plane waves. Will the measured Mueller matrix of such a slab always have positive determinant? There is no apparent mathematical nor physical reason why this (or any) Mueller matrix must have positive determinant. On the other hand, our VRTE model with scattering turned off will always generate a Mueller matrix with positive determinant. This particular example also presents a nice challenge and opportunity for the experimenter: demonstrate the existence of a medium of the envisioned type having a Mueller matrix with non-positive determinant! Lie group theory not only explains when and why we cannot trust a differential equation, but also offers a way out of such a situation if it arises. Applied to our problem, Lie group theory in addition yields the general form of the VLBL. More details will be given in the presentation.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S.
2010-01-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument. PMID:20165563
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
INFORMATION-THEORETIC INEQUALITIES ON UNIMODULAR LIE GROUPS
Chirikjian, Gregory S.
2010-01-01
Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. These are groups that possess an integration measure that is simultaneously invariant under left and right shifts. All commutative groups are unimodular. And even in noncommutative cases unimodular Lie groups share many of the useful features of Euclidean space. The rotation and Euclidean motion groups, which are perhaps the most relevant Lie groups to problems in geometric mechanics, are unimodular, as are the unitary groups that play important roles in quantum computing. The extension of core information theoretic inequalities defined in the setting of Euclidean space to this broad class of Lie groups is potentially relevant to a number of problems relating to information gathering in mobile robotics, satellite attitude control, tomographic image reconstruction, biomolecular structure determination, and quantum information theory. In this paper, several definitions are extended from the Euclidean setting to that of Lie groups (including entropy and the Fisher information matrix), and inequalities analogous to those in classical information theory are derived and stated in the form of fifteen small theorems. In all such inequalities, addition of random variables is replaced with the group product, and the appropriate generalization of convolution of probability densities is employed. An example from the field of robotics demonstrates how several of these results can be applied to quantify the amount of information gained by pooling different sensory inputs. PMID:21113416
NASA Astrophysics Data System (ADS)
Stukopin, Vladimir
2018-02-01
Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.
On generalized Melvin solution for the Lie algebra E_6
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Ivashchuk, V. D.
2017-10-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.
A Compact Formula for Rotations as Spin Matrix Polynomials
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2014-08-12
Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.
Introduction to quantized LIE groups and algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjin, T.
1992-10-10
In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik, E-mail: erik.trell@gmail.com
2014-12-10
Santilli’s revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new,more » centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.« less
Glueball spectra from a matrix model of pure Yang-Mills theory
NASA Astrophysics Data System (ADS)
Acharyya, Nirmalendu; Balachandran, A. P.; Pandey, Mahul; Sanyal, Sambuddha; Vaidya, Sachindeo
2018-05-01
We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang-Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang-Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balian, R., E-mail: roger.balian@cea.fr; Vénéroni, M.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces themore » original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.« less
Yang-Baxter maps, discrete integrable equations and quantum groups
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Sergeev, Sergey M.
2018-01-01
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.
NASA Astrophysics Data System (ADS)
Prodhan, Suryoday; Ramasesha, S.
2018-05-01
The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.
Weight-lattice discretization of Weyl-orbit functions
NASA Astrophysics Data System (ADS)
Hrivnák, Jiří; Walton, Mark A.
2016-08-01
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
On the Liouville Integrability of the Periodic Kostant-Toda Flow on Matrix Loops of Level k
NASA Astrophysics Data System (ADS)
Li, Luen-Chau; Nie, Zhaohu
2017-06-01
In this work, we consider the periodic Kostant-Toda flow on matrix loops in sl(n,C) of level k, which correspond to periodic infinite band matrices with period n with lower bandwidth equal to k and fixed upper bandwidth equal to 1 with 1's on the first superdiagonal. We show that the coadjoint orbits through the submanifold of such matrix loops can be identified with those of a finite-dimensional Lie group, which appears in the form of a semi-direct product. We then characterize the generic coadjoint orbits and obtain an explicit global cross-section for such orbits. We also establish the Liouville integrability of the periodic Kostant-Toda flow on such orbits via the construction of action-angle variables.
Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, Mark D.; Isaac, Phillip S.; Werry, Jason L.
Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities.
Phase portraits of the full symmetric Toda systems on rank-2 groups
NASA Astrophysics Data System (ADS)
Sorin, A. S.; Chernyakov, Yu. B.; Sharygin, G. I.
2017-11-01
We continue investigations begun in our previous works where we proved that the phase diagram of the Toda system on special linear groups can be identified with the Bruhat order on the symmetric group if all eigenvalues of the Lax matrix are distinct or with the Bruhat order on permutations of a multiset if there are multiple eigenvalues. We show that the phase portrait of the Toda system and the Hasse diagram of the Bruhat order coincide in the case of an arbitrary simple Lie group of rank 2. For this, we verify this property for the two remaining rank-2 groups, Sp(4,ℝ) and the real form of G2.
Rich structure in the correlation matrix spectra in non-equilibrium steady states
NASA Astrophysics Data System (ADS)
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.
2017-01-01
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Rich structure in the correlation matrix spectra in non-equilibrium steady states.
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H
2017-01-17
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Yangian of the Queer Lie Superalgebra
NASA Astrophysics Data System (ADS)
Nazarov, Maxim
Consider the complex matrix Lie superalgebra with the standard generators , where . Define an involutory automorphism η of by . The twisted polynomial current Lie superalgebra
A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions
NASA Astrophysics Data System (ADS)
Zhang, Lin; Han, Zhong; Chen, Yong
2018-01-01
To construct the one-dimensional optimal system of finite dimensional Lie algebra automatically, we develop a new Maple package One Optimal System. Meanwhile, we propose a new method to calculate the adjoint transformation matrix and find all the invariants of Lie algebra in spite of Killing form checking possible constraints of each classification. Besides, a new conception called invariance set is raised. Moreover, this Maple package is proved to be more efficiency and precise than before by applying it to some classic examples. Supported by the Global Change Research Program of China under Grant No. 2015CB95390, National Natural Science Foundation of China under Grant Nos. 11675054 and 11435005, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213
The Impact of Goal Setting and Empowerment on Governmental Matrix Organizations
1993-09-01
shared. In a study of matrix management, Eduardo Vasconcellos further describes various matrix structures in the Galbraith model. In a functional...Technology/LAR, Wright-Patterson AFB OH, 1992. Vasconcellos , Eduardo . "A Model For a Better Understanding of the Matrix Structure," IEEE Transactions on...project matrix, the project manager maintains more influence and the structure lies to the right-of center ( Vasconcellos , 1979:58). Different Types of
Weight-lattice discretization of Weyl-orbit functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrivnák, Jiří, E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca; Walton, Mark A., E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments andmore » labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.« less
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
An introduction to Lie group integrators – basics, new developments and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celledoni, Elena, E-mail: elenac@math.ntnu.no; Marthinsen, Håkon, E-mail: hakonm@math.ntnu.no; Owren, Brynjulf, E-mail: bryn@math.ntnu.no
2014-01-15
We give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented and the notion of discrete gradient methods is generalised to Lie groups.
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
Sharma, Sandeep
2015-01-14
We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C2 dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10(12) many-body states. While our calculated energy lies within the 0.3 mEh error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mEh, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (Te) of eight lowest lying excited states: a(3)Πu, b(3)Σg (-), A(1)Πu, c(3)Σu (+), B(1)Δg, B(') (1)Σg (+), d(3)Πg, and C(1)Πg are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations (1)Σg (+), (1)Σu (+), (1)Σg (-), and (1)Σu (-), to an estimated accuracy of 0.1 mEh of the exact result in this basis.
NASA Astrophysics Data System (ADS)
Sharma, Sandeep
2015-01-01
We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C2 dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 1012 many-body states. While our calculated energy lies within the 0.3 mEh error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mEh, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (Te) of eight lowest lying excited states: a3Πu, b 3 Σg - , A1Πu, c 3 Σu + , B1Δg, B ' 1 Σg + , d3Πg, and C1Πg are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations 1 Σg + , 1 Σu + , 1 Σg - , and 1 Σu - , to an estimated accuracy of 0.1 mEh of the exact result in this basis.
Explorations in fuzzy physics and non-commutative geometry
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Seckin
Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.
Local and Global Gestalt Laws: A Neurally Based Spectral Approach.
Favali, Marta; Citti, Giovanna; Sarti, Alessandro
2017-02-01
This letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels. This analysis performs grouping of local features and individuates perceptual units with the highest salience. Numerical simulations are performed, and results are obtained by applying the technique to a number of stimuli.
Algebro-geometric approach for a centrally extended Uq[sl(2|2)] R-matrix
NASA Astrophysics Data System (ADS)
Martins, M. J.
2017-04-01
In this paper we investigate the algebraic geometric nature of a solution of the Yang-Baxter equation based on the quantum deformation of the centrally extended sl (2 | 2) superalgebra proposed by Beisert and Koroteev [1]. We derive an alternative representation for the R-matrix in which the matrix elements are given in terms of rational functions depending on weights sited on a degree six surface. For generic gauge the weights geometry are governed by a genus one ruled surface while for a symmetric gauge choice the weights lie instead on a genus five curve. We have written down the polynomial identities satisfied by the R-matrix entries needed to uncover the corresponding geometric properties. For arbitrary gauge the R-matrix geometry is argued to be birational to the direct product CP1 ×CP1 × A where A is an Abelian surface. For the symmetric gauge we present evidences that the geometric content is that of a surface of general type lying on the so-called Severi line with irregularity two and geometric genus nine. We discuss potential geometric degenerations when the two free couplings are restricted to certain one-dimensional subspaces.
Generalizations of the classical Yang-Baxter equation and O-operators
NASA Astrophysics Data System (ADS)
Bai, Chengming; Guo, Li; Ni, Xiang
2011-06-01
Tensor solutions (r-matrices) of the classical Yang-Baxter equation (CYBE) in a Lie algebra, obtained as the classical limit of the R-matrix solution of the quantum Yang-Baxter equation, is an important structure appearing in different areas such as integrable systems, symplectic geometry, quantum groups, and quantum field theory. Further study of CYBE led to its interpretation as certain operators, giving rise to the concept of {O}-operators. The O-operators were in turn interpreted as tensor solutions of CYBE by enlarging the Lie algebra [Bai, C., "A unified algebraic approach to the classical Yang-Baxter equation," J. Phys. A: Math. Theor. 40, 11073 (2007)], 10.1088/1751-8113/40/36/007. The purpose of this paper is to extend this study to a more general class of operators that were recently introduced [Bai, C., Guo, L., and Ni, X., "Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras," Commun. Math. Phys. 297, 553 (2010)], 10.1007/s00220-010-0998-7 in the study of Lax pairs in integrable systems. Relations between O-operators, relative differential operators, and Rota-Baxter operators are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Du; Yang, Weitao
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
Zhang, Du; Yang, Weitao
2016-10-13
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S.
The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2006-10-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Roberts, Brenden; Vidick, Thomas; Motrunich, Olexei I.
2017-12-01
The success of polynomial-time tensor network methods for computing ground states of certain quantum local Hamiltonians has recently been given a sound theoretical basis by Arad et al. [Math. Phys. 356, 65 (2017), 10.1007/s00220-017-2973-z]. The convergence proof, however, relies on "rigorous renormalization group" (RRG) techniques which differ fundamentally from existing algorithms. We introduce a practical adaptation of the RRG procedure which, while no longer theoretically guaranteed to converge, finds matrix product state ansatz approximations to the ground spaces and low-lying excited spectra of local Hamiltonians in realistic situations. In contrast to other schemes, RRG does not utilize variational methods on tensor networks. Rather, it operates on subsets of the system Hilbert space by constructing approximations to the global ground space in a treelike manner. We evaluate the algorithm numerically, finding similar performance to density matrix renormalization group (DMRG) in the case of a gapped nondegenerate Hamiltonian. Even in challenging situations of criticality, large ground-state degeneracy, or long-range entanglement, RRG remains able to identify candidate states having large overlap with ground and low-energy eigenstates, outperforming DMRG in some cases.
Group discussion improves lie detection
Klein, Nadav; Epley, Nicholas
2015-01-01
Groups of individuals can sometimes make more accurate judgments than the average individual could make alone. We tested whether this group advantage extends to lie detection, an exceptionally challenging judgment with accuracy rates rarely exceeding chance. In four experiments, we find that groups are consistently more accurate than individuals in distinguishing truths from lies, an effect that comes primarily from an increased ability to correctly identify when a person is lying. These experiments demonstrate that the group advantage in lie detection comes through the process of group discussion, and is not a product of aggregating individual opinions (a “wisdom-of-crowds” effect) or of altering response biases (such as reducing the “truth bias”). Interventions to improve lie detection typically focus on improving individual judgment, a costly and generally ineffective endeavor. Our findings suggest a cheap and simple synergistic approach of enabling group discussion before rendering a judgment. PMID:26015581
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sandeep, E-mail: sanshar@gmail.com
2015-01-14
We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve ofmore » the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.« less
Invariant solutions to the conformal Killing-Yano equation on Lie groups
NASA Astrophysics Data System (ADS)
Andrada, A.; Barberis, M. L.; Dotti, I. G.
2015-08-01
We search for invariant solutions of the conformal Killing-Yano equation on Lie groups equipped with left invariant Riemannian metrics, focusing on 2-forms. We show that when the Lie group is compact equipped with a bi-invariant metric or 2-step nilpotent, the only invariant solutions occur on the 3-dimensional sphere or on a Heisenberg group. We classify the 3-dimensional Lie groups with left invariant metrics carrying invariant conformal Killing-Yano 2-forms.
Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).
Joint Services Electronics Program.
1981-09-30
devices and a structure in which an interrupted superconduc- tive film strip lies on a highly doped silicon surface. We have also developed a strong...Slusher, and H. Sturge, reported at 2nd Int’l Conf. on Submillimeter Waves and Their Applications, San Juan , P.R., December 1967. (12) T. DeGraauw, H... lies in the noncommutative property of matrix multiplication. However, we believe that techniques can be developed to deal with special classes of non
Sweet, Monica A; Heyman, Gail D; Fu, Genyue; Lee, Kang
2010-07-01
This study explored the effects of collectivism on lying to conceal a group transgression. Seven-, 9-, and 11-year-old US and Chinese children (N = 374) were asked to evaluate stories in which protagonists either lied or told the truth about their group's transgression and were then asked about either the protagonist's motivations or justification for their own evaluations. Previous research suggests that children in collectivist societies such as China find lying for one's group to be more acceptable than do children from individualistic societies such as the United States. The current study provides evidence that this is not always the case: Chinese children in this study viewed lies told to conceal a group's transgressions less favourably than did US children. An examination of children's reasoning about protagonists' motivations for lying indicated that children in both countries focused on an impact to self when discussing motivations for protagonists to lie for their group. Overall, results suggest that children living in collectivist societies do not always focus on the needs of the group.
Learning to Lie: Effects of Practice on the Cognitive Cost of Lying
Van Bockstaele, B.; Verschuere, B.; Moens, T.; Suchotzki, Kristina; Debey, Evelyne; Spruyt, Adriaan
2012-01-01
Cognitive theories on deception posit that lying requires more cognitive resources than telling the truth. In line with this idea, it has been demonstrated that deceptive responses are typically associated with increased response times and higher error rates compared to truthful responses. Although the cognitive cost of lying has been assumed to be resistant to practice, it has recently been shown that people who are trained to lie can reduce this cost. In the present study (n = 42), we further explored the effects of practice on one’s ability to lie by manipulating the proportions of lie and truth-trials in a Sheffield lie test across three phases: Baseline (50% lie, 50% truth), Training (frequent-lie group: 75% lie, 25% truth; control group: 50% lie, 50% truth; and frequent-truth group: 25% lie, 75% truth), and Test (50% lie, 50% truth). The results showed that lying became easier while participants were trained to lie more often and that lying became more difficult while participants were trained to tell the truth more often. Furthermore, these effects did carry over to the test phase, but only for the specific items that were used for the training manipulation. Hence, our study confirms that relatively little practice is enough to alter the cognitive cost of lying, although this effect does not persist over time for non-practiced items. PMID:23226137
Reflection Positive Stochastic Processes Indexed by Lie Groups
NASA Astrophysics Data System (ADS)
Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur
2016-06-01
Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.
Weak Lie symmetry and extended Lie algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
Assessing factorial invariance of two-way rating designs using three-way methods
Kroonenberg, Pieter M.
2015-01-01
Assessing the factorial invariance of two-way rating designs such as ratings of concepts on several scales by different groups can be carried out with three-way models such as the Parafac and Tucker models. By their definitions these models are double-metric factorially invariant. The differences between these models lie in their handling of the links between the concept and scale spaces. These links may consist of unrestricted linking (Tucker2 model), invariant component covariances but variable variances per group and per component (Parafac model), zero covariances and variances different per group but not per component (Replicated Tucker3 model) and strict invariance (Component analysis on the average matrix). This hierarchy of invariant models, and the procedures by which to evaluate the models against each other, is illustrated in some detail with an international data set from attachment theory. PMID:25620936
Some applications of Lie groups in astrodynamics
NASA Technical Reports Server (NTRS)
Jackson, A. A.
1983-01-01
Differential equations that arise in astrodynamics are examined from the standpoint of Lie group theory. A summary of the Lie method is given for first degree differential equations. The Kepler problem in Hamiltonian form is treated by this method. Extension of the Lie method to optimal trajectories is outlined.
Serum MMP 2 and TIMP 2 in patients with inguinal hernias.
Smigielski, Jacek; Brocki, Marian; Kuzdak, Krzysztof; Kołomecki, Krzysztof
2011-06-01
More than sixty thousand inguinal hernia operations are performed every year in Poland. Despite many years of related research, the exact pathologic mechanism of this condition is still not fully understood. Recent studies suggested a pronounced relationship between the molecular structure of collagen fibers and the activity of metalloproteinases, the enzymes taking part in the degradation of collagen, as well as their tissue inhibitors. A prospective study has been established to measure serum levels of the matrix metalloproteinase 2 (MMP-2) and Matrix metalloproteinase tissue inhibitor 2 (TIMP-2) in 150 males between the ages of 26 and 70. The control group (CG) consisted of thirty healthy male volunteers of a similar age distribution. Our results indicate that MMP-2 was highest in the direct hernia group, a statistically very significant elevation (P<0(.) 05) of 1562ng mL(-1) against the CG 684ng mL(-1) . The highest level of TIMP, 78ng mL(-1) , was found in the group with recurrent hernia, against 49(.) 5ng mL(-1) of the CG (statistical significance of P<0(.) 05). The MMP-2 and TIMP-2 levels were concurrently elevated only in the recurrent hernia group. The patients with inguinal hernia have a statistically significant increase in serum levels of MMP-2. Our finding of the MMP-2 and TIMP-2 distinctly higher in the patients suffering from recurrence of direct inguinal hernia (reflecting a previous surgical failure) may suggest the theory that the extracellular matrix defect lies at the basis of this disorder. © 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.
Sweet, Monica A.; Heyman, Gail D.; Fu, Genyue; Lee, Kang
2010-01-01
This study explored the effects of collectivism on lying to conceal a group transgression. Seven-, 9-, and 11-year-old US and Chinese children (N = 374) were asked to evaluate stories in which protagonists either lied or told the truth about their group’s transgression and were then asked about either the protagonist’s motivations or justification for their own evaluations. Previous research suggests that children in collectivist societies such as China find lying for one’s group to be more acceptable than do children from individualistic societies such as the United States. The current study provides evidence that this is not always the case: Chinese children in this study viewed lies told to conceal a group’s transgressions less favourably than did US children. An examination of children’s reasoning about protagonists’ motivations for lying indicated that children in both countries focused on an impact to self when discussing motivations for protagonists to lie for their group. Overall, results suggest that children living in collectivist societies do not always focus on the needs of the group. PMID:20953286
A few scenarios still do not fit all
NASA Astrophysics Data System (ADS)
Schweizer, Vanessa
2018-05-01
For integrated climate change research, the Scenario Matrix Architecture provides a tractable menu of possible emissions trajectories, socio-economic futures and policy environments. However, the future of decision support may lie in searchable databases.
SU(p,q) coherent states and a Gaussian de Finetti theorem
NASA Astrophysics Data System (ADS)
Leverrier, Anthony
2018-04-01
We prove a generalization of the quantum de Finetti theorem when the local space is an infinite-dimensional Fock space. In particular, instead of considering the action of the permutation group on n copies of that space, we consider the action of the unitary group U(n) on the creation operators of the n modes and define a natural generalization of the symmetric subspace as the space of states invariant under unitaries in U(n). Our first result is a complete characterization of this subspace, which turns out to be spanned by a family of generalized coherent states related to the special unitary group SU(p, q) of signature (p, q). More precisely, this construction yields a unitary representation of the noncompact simple real Lie group SU(p, q). We therefore find a dual unitary representation of the pair of groups U(n) and SU(p, q) on an n(p + q)-mode Fock space. The (Gaussian) SU(p, q) coherent states resolve the identity on the symmetric subspace, which implies a Gaussian de Finetti theorem stating that tracing over a few modes of a unitary-invariant state yields a state close to a mixture of Gaussian states. As an application of this de Finetti theorem, we show that the n × n upper-left submatrix of an n × n Haar-invariant unitary matrix is close in total variation distance to a matrix of independent normal variables if n3 = O(m).
Optical Thomas-Reiche-Kuhn sum rules.
Barnett, Stephen M; Loudon, Rodney
2012-01-06
The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region.
Optical Thomas-Reiche-Kuhn Sum Rules
NASA Astrophysics Data System (ADS)
Barnett, Stephen M.; Loudon, Rodney
2012-01-01
The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region.
Excited states in polydiacetylene chains: A density matrix renormalization group study
NASA Astrophysics Data System (ADS)
Barcza, Gergely; Barford, William; Gebhard, Florian; Legeza, Örs
2013-06-01
We study theoretically polydiacetylene chains diluted in their monomer matrix. We employ the density matrix renormalization group method on finite chains to calculate the ground state and low-lying excitations of the corresponding Peierls-Hubbard-Ohno Hamiltonian which is characterized by the electron transfer amplitude t0 between nearest neighbors, by the electron-phonon coupling constant α, by the Hubbard interaction U, and by the long-range interaction V. We treat the lattice relaxation in the adiabatic limit, i.e., we calculate the polaronic lattice distortions for each excited state. Using chains with up to 102 lattice sites, we can safely perform the extrapolation to the thermodynamic limit for the ground-state energy and conformation, the single-particle gap, and the energies of the singlet exciton, the triplet ground state, and the optical excitation of the triplet ground state. The corresponding gaps are known with high precision from experiments. We determine a coherent parameter set (t0*=2.4eV,α*=3.4eV/Å,U*=6eV,V*=3eV) from a fit of the experimental gap energies to the theoretical values which we obtain for 81 parameter points in the four-dimensional search space (t0,α,U,V). We identify dark in-gap states in the singlet and triplet sectors as seen in experiments. Using a fairly stiff spring constant, the length of our unit cell is about 1% larger than its experimental value.
Invariant Poisson-Nijenhuis structures on Lie groups and classification
NASA Astrophysics Data System (ADS)
Ravanpak, Zohreh; Rezaei-Aghdam, Adel; Haghighatdoost, Ghorbanali
We study right-invariant (respectively, left-invariant) Poisson-Nijenhuis structures (P-N) on a Lie group G and introduce their infinitesimal counterpart, the so-called r-n structures on the corresponding Lie algebra 𝔤. We show that r-n structures can be used to find compatible solutions of the classical Yang-Baxter equation (CYBE). Conversely, two compatible r-matrices from which one is invertible determine an r-n structure. We classify, up to a natural equivalence, all r-matrices and all r-n structures with invertible r on four-dimensional symplectic real Lie algebras. The result is applied to show that a number of dynamical systems which can be constructed by r-matrices on a phase space whose symmetry group is Lie group a G, can be specifically determined.
Non-naturally reductive Einstein metrics on exceptional Lie groups
NASA Astrophysics Data System (ADS)
Chrysikos, Ioannis; Sakane, Yusuke
2017-06-01
Given an exceptional compact simple Lie group G we describe new left-invariant Einstein metrics which are not naturally reductive. In particular, we consider fibrations of G over flag manifolds with a certain kind of isotropy representation and we construct the Einstein equation with respect to the induced left-invariant metrics. Then we apply a technique based on Gröbner bases and classify the real solutions of the associated algebraic systems. For the Lie group G2 we obtain the first known example of a left-invariant Einstein metric, which is not naturally reductive. Moreover, for the Lie groups E7 and E8, we conclude that there exist non-isometric non-naturally reductive Einstein metrics, which are Ad(K) -invariant by different Lie subgroups K.
Lying to patients with dementia: Attitudes versus behaviours in nurses.
Cantone, Daniela; Attena, Francesco; Cerrone, Sabrina; Fabozzi, Antonio; Rossiello, Riccardo; Spagnoli, Laura; Pelullo, Concetta Paola
2017-01-01
Using lies, in dementia care, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. In this article, we report results about the attitude and the behaviour of nurses towards the use of lies to patients with dementia. An epidemiological cross-sectional study was conducted between September 2016 and February 2017 in 12 elderly residential facilities and in the geriatric, psychiatric and neurological wards of six specialised hospitals of Italy's Campania Region. In all, 106 nurses compiled an attitude questionnaire (A) where the main question was 'Do you think it is ethically acceptable to use lies to patients with dementia?', instead 106 nurses compiled a behaviour questionnaire (B), where the main question was 'Have you ever used lies to patients with dementia?' Ethical considerations: Using lies in dementia care, although topic ethically still controversial, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. Only a small percentage of the interviewed nurses stated that they never used lies/that it is never acceptable to use lies (behaviour 10.4% and attitude 12.3%; p = 0.66). The situation in which nurses were more oriented to use lies was 'to prevent or reduce aggressive behaviors'. Indeed, only the 6.7% in the attitude group and 3.8% in the behaviour group were against using lies. On the contrary, the case in which the nurses were less oriented to use lies was 'to avoid wasting time giving explanations', in this situation were against using lies the 51.0% of the behaviour group and the 44.6% of the attitude group. Our results, according to other studies, support the hypothesis of a low propensity of nurses to ethical reflection about use of lies. In our country, the implementation of guidelines about a correct use of lie in the relationship between health operators and patients would be desirable.
NASA Astrophysics Data System (ADS)
Boruvka, M.; Lenfeld, P.; Brdlik, P.; Behalek, L.
2015-07-01
During the last years automotive industry has given a lot of attention to the biobased polymers that are sustainable and eco-friendly. Nevertheless fully green composites are currently too expensive for most applications. A viable solution and logical starting point at this material revolution lies in reinforced synthetic thermoplastics based on plant derived biodegradable fibers. Plant fibers (PF's) have potential to reduce weight of composite vehicle parts up to 40% compared with the main automotive composites filler, glass fibers (GF's). Production of GF's composites is much more energy intensive and polluting compared with growing, harvesting and preparing of PF's. The main disadvantage of PF's lies in combination of non-polar hydrophobic polymer matrix and polar hydrophilic fibers. This combination creates poor interface with low adhesion of both components. That implies poor wettability of fibres by polymer matrix and low mechanical properties of biocomposites. Therefore specific compatibilizing agents (Struktol SA1012, Fusabond P353, Smart + Luperox) were used in order to enhance compatibility between reinforcement and matrix. In this paper sets of biocomposite compounds were prepared by twin screw extrusion considering different type and weight percentage (wt. %) of compatibilizing agents, hemp bast fibres (HBF's) within ratio 20 (wt. %) and polypropylene (PP) THERMOFIL PP E020M matrix. Resulting compounds were than injection molded and tested samples were characterized by means of scanning electron microscopy (SEM) and mechanical testing.
Heat- and light-induced transformations of Yb trapping sites in an Ar matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, L.-G.; Lambo, R., E-mail: lambo@mail.ustc.edu.cn; Zhou, X.-G.
2015-11-07
The low-lying electronic states of Yb isolated in a solid Ar matrix grown at 4.2 K are characterized through absorption and emission spectroscopy. Yb atoms are found to occupy three distinct thermally stable trapping sites labeled “red,” “blue,” and “violet” according to the relative positions of the absorption features they produce. Classical simulations of the site structure and relative stability broadly reproduced the experimentally observed matrix-induced frequency shifts and thus identified the red, blue, and violet sites as due to respective single substitutional (SS), tetravacancy (TV), and hexavacancy (HV) occupation. Prolonged excitation of the {sup 1}S → {sup 1}P transitionmore » was found to transfer the Yb population from HV sites into TV and SS sites. The process showed reversibility in that annealing to 24 K predominantly transferred the TV population back into HV sites. Population kinetics were used to deduce the effective rate parameters for the site transformation processes. Experimental observations indicate that the blue and violet sites lie close in energy, whereas the red one is much less stable. Classical simulations identify the blue site as the most stable one.« less
The Killing-Yano equation on Lie groups
NASA Astrophysics Data System (ADS)
Barberis, M. L.; Dotti, I. G.; Santillán, O.
2012-03-01
In this paper we study 2-forms which are solutions of the Killing-Yano equation on Lie groups endowed with a left invariant metric having various curvature properties. We prove a general result for 2-step nilpotent Lie groups and as a corollary we obtain a nondegenerate solution of the Killing-Yano equation on the Iwasawa manifold with its half-flat metric.
Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Leyman, Gail; Lee, Kang
2007-03-01
This study examined cross-cultural differences and similarities in children's moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an individual or vice versa. Participants chose to lie or to tell the truth as if they were the character (Experiments 1 and 2) and categorized and evaluated the story characters' truthful and untruthful statements (Experiments 3 and 4). Most children in both cultures labeled lies as lies and truths as truths. The major cultural differences lay in choices and moral evaluations. Chinese children chose lying to help a collective but harm an individual, and they rated it less negatively than lying with opposite consequences. Chinese children rated truth telling to help an individual but harm a group less positively than the alternative. Canadian children did the opposite. These findings suggest that cross-cultural differences in emphasis on groups versus individuals affect children's choices and moral judgments about truth and deception.
Reflection K-matrices for a nineteen vertex model with Uq [ osp (2 | 2) (2) ] symmetry
NASA Astrophysics Data System (ADS)
Vieira, R. S.; Lima Santos, A.
2017-09-01
We derive the solutions of the boundary Yang-Baxter equation associated with a supersymmetric nineteen vertex model constructed from the three-dimensional representation of the twisted quantum affine Lie superalgebra Uq [ osp (2 | 2) (2) ]. We found three classes of solutions. The type I solution is characterized by three boundary free-parameters and all elements of the corresponding reflection K-matrix are different from zero. In the type II solution, the reflection K-matrix is even (every element of the K-matrix with an odd parity is null) and it has only one boundary free-parameter. Finally, the type III solution corresponds to a diagonal reflection K-matrix with two boundary free-parameters.
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Antarctic Sea ice--a habitat for extremophiles.
Thomas, D N; Dieckmann, G S
2002-01-25
The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice-covered extraterrestrial bodies.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Zhang, Xiang-Zhi; Dong, Huan-He
2017-12-01
Two new shift operators are introduced for which a few differential-difference equations are generated by applying the R-matrix method. These equations can be reduced to the standard Toda lattice equation and (1+1)-dimensional and (2+1)-dimensional Toda-type equations which have important applications in hydrodynamics, plasma physics, and so on. Based on these consequences, we deduce the Hamiltonian structures of two discrete systems. Finally, we obtain some new infinite conservation laws of two discrete equations and employ Lie-point transformation group to obtain some continuous symmetries and part of invariant solutions for the (1+1) and (2+1)-dimensional Toda-type equations. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11
Sixth-Order Lie Group Integrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forest, E.
1990-03-01
In this paper we present the coefficients of several 6th order symplectic integrator of the type developed by R. Ruth. To get these results we fully exploit the connection with Lie groups. This integrator, as well as all the explicit integrators of Ruth, may be used in any equation where some sort of Lie bracket is preserved. In fact, if the Lie operator governing the equation of motion is separable into two solvable parts, the Ruth integrators can be used.
Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Heyman, Gail; Lee, Kang
2008-01-01
This study examined cross-cultural differences and similarities in children’s moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an individual or vice versa. Participants chose to lie or to tell the truth as if they were the character (Experiments 1 and 2) and categorized and evaluated the story characters’ truthful and untruthful statements (Experiments 3 and 4). Most children in both cultures labeled lies as lies and truths as truths. The major cultural differences lay in choices and moral evaluations. Chinese children chose lying to help a collective but harm an individual, and they rated it less negatively than lying with opposite consequences. Chinese children rated truth telling to help an individual but harm a group less positively than the alternative. Canadian children did the opposite. These findings suggest that cross-cultural differences in emphasis on groups versus individuals affect children’s choices and moral judgments about truth and deception. PMID:17352539
Preserving Simplecticity in the Numerical Integration of Linear Beam Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christopher K.
2017-07-01
Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms ofmore » a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.« less
Control systems on Lie groups.
NASA Technical Reports Server (NTRS)
Jurdjevic, V.; Sussmann, H. J.
1972-01-01
The controllability properties of systems which are described by an evolution equation in a Lie group are studied. The revelant Lie algebras induced by a right invariant system are singled out, and the basic properties of attainable sets are derived. The homogeneous case and the general case are studied, and results are interpreted in terms of controllability. Five examples are given.
Growth of cultured corneal endothelial cells onto a vitreous carbon matrix.
Wickham, M G; Cleveland, P H; Binder, P S; Akers, P H
1983-01-01
Fourth passage cells of a rabbit corneal endothelial line were grown for 1 week in flasks containing pieces of a reticulated vitreous carbon matrix. The rate of cell growth in flasks containing the matrix was consistent with that in control flasks. Small fragments of the vitreous carbon material lying on the flask floor were covered by the monolayers as the cells grew to confluency. Vertical growth of cells onto larger pieces of the matrix proceeded in a staged fashion with maximum cell density on pieces of the matrix closest to the floor of the flask. As defined by scanning electron microscopy, cell growth occurred to a level at least 600 microns above the floor of the flask and the confluent monolayer. This novel culture procedure should be a model situation for study of many different aspects of the in vitro capabilities of corneal endothelial cells.
NASA Astrophysics Data System (ADS)
Chen, Bochao; Gao, Yixian; Jiang, Shan; Li, Yong
2018-06-01
The goal of this work is to study the existence of quasi-periodic solutions to nonlinear beam equations with a multiplicative potential. The nonlinearity is required to only finitely differentiable and the frequency is along a pre-assigned direction. The result holds on any compact Lie group or homogeneous manifold with respect to a compact Lie group, which includes standard torus Td, special orthogonal group SO (d), special unitary group SU (d), spheres Sd and the real and complex Grassmannians. The proof is based on a differentiable Nash-Moser iteration scheme.
Zanette, Sarah; Gao, Xiaoqing; Brunet, Megan; Bartlett, Marian Stewart; Lee, Kang
2016-10-01
The current study used computer vision technology to examine the nonverbal facial expressions of children (6-11years old) telling antisocial and prosocial lies. Children in the antisocial lying group completed a temptation resistance paradigm where they were asked not to peek at a gift being wrapped for them. All children peeked at the gift and subsequently lied about their behavior. Children in the prosocial lying group were given an undesirable gift and asked if they liked it. All children lied about liking the gift. Nonverbal behavior was analyzed using the Computer Expression Recognition Toolbox (CERT), which employs the Facial Action Coding System (FACS), to automatically code children's facial expressions while lying. Using CERT, children's facial expressions during antisocial and prosocial lying were accurately and reliably differentiated significantly above chance-level accuracy. The basic expressions of emotion that distinguished antisocial lies from prosocial lies were joy and contempt. Children expressed joy more in prosocial lying than in antisocial lying. Girls showed more joy and less contempt compared with boys when they told prosocial lies. Boys showed more contempt when they told prosocial lies than when they told antisocial lies. The key action units (AUs) that differentiate children's antisocial and prosocial lies are blink/eye closure, lip pucker, and lip raise on the right side. Together, these findings indicate that children's facial expressions differ while telling antisocial versus prosocial lies. The reliability of CERT in detecting such differences in facial expression suggests the viability of using computer vision technology in deception research. Copyright © 2016 Elsevier Inc. All rights reserved.
Good Liars Are Neither ‘Dark’ Nor Self-Deceptive
Wright, Gordon R. T.; Berry, Christopher J.; Catmur, Caroline; Bird, Geoffrey
2015-01-01
Deception is a central component of the personality 'Dark Triad' (Machiavellianism, Psychopathy and Narcissism). However, whether individuals exhibiting high scores on Dark Triad measures have a heightened deceptive ability has received little experimental attention. The present study tested whether the ability to lie effectively, and to detect lies told by others, was related to Dark Triad, Lie Acceptability, or Self-Deceptive measures of personality using an interactive group-based deception task. At a group level, lie detection accuracy was correlated with the ability to deceive others—replicating previous work. No evidence was found to suggest that Dark Triad traits confer any advantage either to deceive others, or to detect deception in others. Participants who considered lying to be more acceptable were more skilled at lying, while self-deceptive individuals were generally less credible and less confident when lying. Results are interpreted within a framework in which repeated practice results in enhanced deceptive ability. PMID:26083765
The eyes don't have it: lie detection and Neuro-Linguistic Programming.
Wiseman, Richard; Watt, Caroline; ten Brinke, Leanne; Porter, Stephen; Couper, Sara-Louise; Rankin, Calum
2012-01-01
Proponents of Neuro-Linguistic Programming (NLP) claim that certain eye-movements are reliable indicators of lying. According to this notion, a person looking up to their right suggests a lie whereas looking up to their left is indicative of truth telling. Despite widespread belief in this claim, no previous research has examined its validity. In Study 1 the eye movements of participants who were lying or telling the truth were coded, but did not match the NLP patterning. In Study 2 one group of participants were told about the NLP eye-movement hypothesis whilst a second control group were not. Both groups then undertook a lie detection test. No significant differences emerged between the two groups. Study 3 involved coding the eye movements of both liars and truth tellers taking part in high profile press conferences. Once again, no significant differences were discovered. Taken together the results of the three studies fail to support the claims of NLP. The theoretical and practical implications of these findings are discussed.
The Eyes Don’t Have It: Lie Detection and Neuro-Linguistic Programming
Wiseman, Richard; Watt, Caroline; ten Brinke, Leanne; Porter, Stephen; Couper, Sara-Louise; Rankin, Calum
2012-01-01
Proponents of Neuro-Linguistic Programming (NLP) claim that certain eye-movements are reliable indicators of lying. According to this notion, a person looking up to their right suggests a lie whereas looking up to their left is indicative of truth telling. Despite widespread belief in this claim, no previous research has examined its validity. In Study 1 the eye movements of participants who were lying or telling the truth were coded, but did not match the NLP patterning. In Study 2 one group of participants were told about the NLP eye-movement hypothesis whilst a second control group were not. Both groups then undertook a lie detection test. No significant differences emerged between the two groups. Study 3 involved coding the eye movements of both liars and truth tellers taking part in high profile press conferences. Once again, no significant differences were discovered. Taken together the results of the three studies fail to support the claims of NLP. The theoretical and practical implications of these findings are discussed. PMID:22808128
Variations on a theme of Heisenberg, Pauli and Weyl
NASA Astrophysics Data System (ADS)
Kibler, Maurice R.
2008-09-01
The parentage between Weyl pairs, the generalized Pauli group and the unitary group is investigated in detail. We start from an abstract definition of the Heisenberg-Weyl group on the field {\\bb R} and then switch to the discrete Heisenberg-Weyl group or generalized Pauli group on a finite ring {\\bb Z}_d . The main characteristics of the latter group, an abstract group of order d3 noted Pd, are given (conjugacy classes and irreducible representation classes or equivalently Lie algebra of dimension d3 associated with Pd). Leaving the abstract sector, a set of Weyl pairs in dimension d is derived from a polar decomposition of SU(2) closely connected to angular momentum theory. Then, a realization of the generalized Pauli group Pd and the construction of generalized Pauli matrices in dimension d are revisited in terms of Weyl pairs. Finally, the Lie algebra of the unitary group U(d) is obtained as a subalgebra of the Lie algebra associated with Pd. This leads to a development of the Lie algebra of U(d) in a basis consisting of d2 generalized Pauli matrices. In the case where d is a power of a prime integer, the Lie algebra of SU(d) can be decomposed into d - 1 Cartan subalgebras. Dedicated to the memory of my teacher and friend Moshé Flato on the occasion of the tenth anniversary of his death.
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
Oxytocin promotes group-serving dishonesty.
Shalvi, Shaul; De Dreu, Carsten K W
2014-04-15
To protect and promote the well-being of others, humans may bend the truth and behave unethically. Here we link such tendencies to oxytocin, a neuropeptide known to promote affiliation and cooperation with others. Using a simple coin-toss prediction task in which participants could dishonestly report their performance levels to benefit their group's outcome, we tested the prediction that oxytocin increases group-serving dishonesty. A double-blind, placebo-controlled experiment allowing individuals to lie privately and anonymously to benefit themselves and fellow group members showed that healthy males (n = 60) receiving intranasal oxytocin, rather than placebo, lied more to benefit their group, and did so faster, yet did not necessarily do so because they expected reciprocal dishonesty from fellow group members. Treatment effects emerged when lying had financial consequences and money could be gained; when losses were at stake, individuals in placebo and oxytocin conditions lied to similar degrees. In a control condition (n = 60) in which dishonesty only benefited participants themselves, but not fellow group members, oxytocin did not influence lying. Together, these findings fit a functional perspective on morality revealing dishonesty to be plastic and rooted in evolved neurobiological circuitries, and align with work showing that oxytocin shifts the decision-maker's focus from self to group interests. These findings highlight the role of bonding and cooperation in shaping dishonesty, providing insight into when and why collaboration turns into corruption.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter
We show the construction of twisted quantum Lax equations associated with quantum groups, and solve these equations using factorization properties of the corresponding quantum groups. Our construction generalizes in many respects the AKS construction for Lie groups and the construction of M. A. Semenov-Tian-Shansky for the Lie-Poisson case.
Search for excited states in 25O
NASA Astrophysics Data System (ADS)
Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.
2017-11-01
Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
2012-12-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.
Oxytocin promotes group-serving dishonesty
Shalvi, Shaul; De Dreu, Carsten K. W.
2014-01-01
To protect and promote the well-being of others, humans may bend the truth and behave unethically. Here we link such tendencies to oxytocin, a neuropeptide known to promote affiliation and cooperation with others. Using a simple coin-toss prediction task in which participants could dishonestly report their performance levels to benefit their group’s outcome, we tested the prediction that oxytocin increases group-serving dishonesty. A double-blind, placebo-controlled experiment allowing individuals to lie privately and anonymously to benefit themselves and fellow group members showed that healthy males (n = 60) receiving intranasal oxytocin, rather than placebo, lied more to benefit their group, and did so faster, yet did not necessarily do so because they expected reciprocal dishonesty from fellow group members. Treatment effects emerged when lying had financial consequences and money could be gained; when losses were at stake, individuals in placebo and oxytocin conditions lied to similar degrees. In a control condition (n = 60) in which dishonesty only benefited participants themselves, but not fellow group members, oxytocin did not influence lying. Together, these findings fit a functional perspective on morality revealing dishonesty to be plastic and rooted in evolved neurobiological circuitries, and align with work showing that oxytocin shifts the decision-maker’s focus from self to group interests. These findings highlight the role of bonding and cooperation in shaping dishonesty, providing insight into when and why collaboration turns into corruption. PMID:24706799
Lying in the Name of the Collective Good: A Developmental Study
ERIC Educational Resources Information Center
Fu, Genyue; Evans, Angela D.; Wang, Lingfeng; Lee, Kang
2008-01-01
The present study examined the developmental origin of "blue lies", a pervasive form of lying in the adult world that is told purportedly to benefit a collective. Seven, 9-, and 11-year-old Chinese children were surreptitiously placed in a real-life situation where they decided whether to lie to conceal their group's cheating behavior. Children…
Post-Lie algebras and factorization theorems
NASA Astrophysics Data System (ADS)
Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans
2017-09-01
In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
1999-11-01
Modern stellarators are designed using J. Nuehrenberg’s method of varying Fourier coefficients in the shape of the plasma boundary to maximize a target function. The matrix of second derivatives of the target function at the optimum determines a quality matrix. This matrix gives the degradation in the quality of the configuration as the normal magnetic field is varied on a control surface, which lies on or outside the plasma surface. The task is finding saddle coils that produce the desired configuration in the presence of a given toroidal field. An eigenvector of the quality matrix can be important for two reasons: (1) the normal field that must be produced by the saddles is large or (2) the eigenvalue is large (an island-causing resonant perturbation). The rank of the important part of the quality matrix is the number of important eigenvectors. The current in each saddle coil produces a normal field on the control surface, which can be described by an inductance matrix. The relevant part of the inductance matrix has large eigenvalues. The coils can produce the configuration if the rank of the important part of the quality matrix and its product with the relevant part of the inductance matrix are the same. Existing coil design codes, pioneered by P. Merkel, approximate the quality matrix by the unit matrix. Stellarator flexibility could be enhanced by using a more realistic quality matrix and by using trim coils to balance large eigenvalues.
Digital techniques for ULF wave polarization analysis
NASA Technical Reports Server (NTRS)
Arthur, C. W.
1979-01-01
Digital power spectral and wave polarization analysis are powerful techniques for studying ULF waves in the earth's magnetosphere. Four different techniques for using the spectral matrix to perform such an analysis have been presented in the literature. Three of these techniques are similar in that they require transformation of the spectral matrix to the principal axis system prior to performing the polarization analysis. The differences in the three techniques lie in the manner in which determine this transformation. A comparative study of these three techniques using both simulated and real data has shown them to be approximately equal in quality of performance. The fourth technique does not require transformation of the spectral matrix. Rather, it uses the measured spectral matrix and state vectors for a desired wave type to design a polarization detector function in the frequency domain. The design of various detector functions and their application to both simulated and real data will be presented.
NASA Astrophysics Data System (ADS)
Kravvaritis, Christos; Mitrouli, Marilena
2009-02-01
This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.
Photochemical numerics for global-scale modeling: Fidelity and GCM testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, S.; Jim Kao, Chih-Yue; Zhao, X.
1995-03-01
Atmospheric photochemistry lies at the heart of global-scale pollution problems, but it is a nonlinear system embedded in nonlinear transport and so must be modeled in three dimensions. Total earth grids are massive and kinetics require dozens of interacting tracers, taxing supercomputers to their limits in global calculations. A matrix-free and noniterative family scheme is described that permits chemical step sizes an order of magnitude or more larger than time constants for molecular groupings, in the 1-h range used for transport. Families are partitioned through linearized implicit integrations that produce stabilizing species concentrations for a mass-conserving forward solver. The kineticsmore » are also parallelized by moving geographic loops innermost and changes in the continuity equations are automated through list reading. The combination of speed, parallelization and automation renders the programs naturally modular. Accuracy lies within 1% for all species in week-long fidelity tests. A 50-species, 150-reaction stratospheric module tested in a spectral GCM benchmarks at 10 min CPU time per day and agrees with lower-dimensionality simulations. Tropospheric nonmethane hydrocarbon chemistry will soon be added, and inherently three-dimensional phenomena will be investigated both decoupled from dynamics and in a complete chemical GCM. 225 refs., 11 figs., 2 tabs.« less
Tests of conformal field theory at the Yang-Lee singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wydro, Tomasz; McCabe, John F.
2009-12-14
This paper studies the Yang-Lee edge singularity of 2-dimensional (2D) Ising model based on a quantum spin chain and transfer matrix measurements on the cylinder. Based on finite-size scaling, the low-lying excitation spectrum is found at the Yang-Lee edge singularity. Based on transfer matrix techniques, the single structure constant is evaluated at the Yang-Lee edge singularity. The results of both types of measurements are found to be fully consistent with the predictions for the (A{sub 4}, A{sub 1}) minimal conformal field theory, which was previously identified with this critical point.
Classical r-matrices for the generalised Chern–Simons formulation of 3d gravity
NASA Astrophysics Data System (ADS)
Osei, Prince K.; Schroers, Bernd J.
2018-04-01
We study the conditions for classical r-matrices to be compatible with the generalised Chern–Simons action for 3d gravity. Compatibility means solving the classical Yang–Baxter equations with a prescribed symmetric part for each of the real Lie algebras and bilinear pairings arising in the generalised Chern–Simons action. We give a new construction of r-matrices via a generalised complexification and derive a non-linear set of matrix equations determining the most general compatible r-matrix. We exhibit new families of solutions and show that they contain some known r-matrices for special parameter values.
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Developmental Changes in Ideas about Lying.
ERIC Educational Resources Information Center
Peterson, Candida C.; And Others
1983-01-01
Videotaped stories depicting deliberate lies and unintentionally untrue statements were presented to 200 subjects evenly divided into the following age groups: 5, 8, 9, 11 years, and adult. Definitions of lying were seen to change gradually over this age range. (Author/RH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadets, Boris; Karolinsky, Eugene; Pop, Iulia
2016-05-15
In this paper we continue to study Belavin–Drinfeld cohomology introduced in Kadets et al., Commun. Math. Phys. 344(1), 1-24 (2016) and related to the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra #Mathematical Fraktur Small G#. Here we compute Belavin–Drinfeld cohomology for all non-skewsymmetric r-matrices on the Belavin–Drinfeld list for simple Lie algebras of type B, C, and D.
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less
A note on large gauge transformations in double field theory
Naseer, Usman
2015-06-03
Here, we give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. Our result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.
The use of complete sets of orthogonal operators in spectroscopic studies
NASA Astrophysics Data System (ADS)
Raassen, A. J. J.; Uylings, P. H. M.
1996-01-01
Complete sets of orthogonal operators are used to calculate eigenvalues and eigenvector compositions in complex spectra. The latter are used to transform the LS-transition matrix into realistic intermediate coupling transition probabilities. Calculated transition probabilities for some close lying levels in Ni V and Fe III illustrate the power of the complete orthogonal operator approach.
Testosterone Administration Reduces Lying in Men
Wibral, Matthias; Dohmen, Thomas; Klingmüller, Dietrich; Weber, Bernd; Falk, Armin
2012-01-01
Lying is a pervasive phenomenon with important social and economic implications. However, despite substantial interest in the prevalence and determinants of lying, little is known about its biological foundations. Here we study a potential hormonal influence, focusing on the steroid hormone testosterone, which has been shown to play an important role in social behavior. In a double-blind placebo-controlled study, 91 healthy men (24.32±2.73 years) received a transdermal administration of 50 mg of testosterone (n = 46) or a placebo (n = 45). Subsequently, subjects participated in a simple task, in which their payoff depended on the self-reported outcome of a die-roll. Subjects could increase their payoff by lying without fear of being caught. Our results show that testosterone administration substantially decreases lying in men. Self-serving lying occurred in both groups, however, reported payoffs were significantly lower in the testosterone group (p<0.01). Our results contribute to the recent debate on the effect of testosterone on prosocial behavior and its underlying channels. PMID:23071635
NASA Astrophysics Data System (ADS)
Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood
2018-03-01
The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.
NASA Astrophysics Data System (ADS)
El-Zaher, Asmaa A.; Elkady, Ehab F.; Elwy, Hanan M.; Saleh, Mahmoud Abo El Makarim
2017-07-01
In the present work, pioglitazone and glimepiride, 2 widely used antidiabetics, were simultaneously determined by a chemometric-assisted UV-spectrophotometric method which was applied to a binary synthetic mixture and a pharmaceutical preparation containing both drugs. Three chemometric techniques - Concentration residual augmented classical least-squares (CRACLS), principal component regression (PCR), and partial least-squares (PLS) were implemented by using the synthetic mixtures containing the two drugs in acetonitrile. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbencies in the range between 215 and 235 nm in the intervals with Δλ = 0.4 nm in their zero-order spectra. Then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of pioglitazone and glimepiride in their mixtures. The described techniques have been validated by analyzing synthetic mixtures containing the two drugs showing good mean recovery values lying between 98 and 100%. In addition, accuracy and precision of the three methods have been assured by recovery values lying between 98 and 102% and R.S.D. % ˂0.6 for intra-day precision and ˂1.2 for inter-day precision. The proposed chemometric techniques were successfully applied to a pharmaceutical preparation containing a combination of pioglitazone and glimepiride in the ratio of 30: 4, showing good recovery values. Finally, statistical analysis was carried out to add a value to the verification of the proposed methods. It was carried out by an intrinsic comparison between the 3 chemometric techniques and by comparing values of present methods with those obtained by implementing reference pharmacopeial methods for each of pioglitazone and glimepiride.
Puapornpong, Pawin; Raungrongmorakot, Kasem; Laosooksathit, Wipada; Hanprasertpong, Tharangrut; Ketsuwan, Sukwadee
2017-05-01
The breastfeeding position routinely used following a cesarean section is the side-lying position. However, there have been few studies about the effect of breastfeeding positions, including laid-back position on breastfeeding outcomes. To compare the breastfeeding outcomes between using laid-back and side-lying breastfeeding positions in mothers delivering by cesarean section. A randomized controlled trial was conducted. The postpartum mothers delivering by cesarean section who delivered term newborns were randomly assigned to learn the use of a laid-back or side-lying breastfeeding position. The breastfeeding outcomes were assessed by LATCH scores at the second day postpartum and exclusive breastfeeding rates during the 6-week postpartum period. The mother's satisfaction of each breastfeeding position was collected before discharge from the hospital. The data from 152 postpartum mothers delivering by cesarean section were available for analysis, 76 from the laid-back position group and 76 from side-lying position group. The baseline characteristics of both groups were similar. There were no statistically significant differences of the breastfeeding outcomes, LATCH scores at the second day postpartum and the exclusive breastfeeding rates during the 6-week postpartum period. But the mothers had expressed more satisfaction from the side-lying than the laid-back position. Among the mothers who delivered by cesarean section, the use of the laid-back breastfeeding position had not shown different breastfeeding outcomes from the side-lying breastfeeding position. It might be an alternative breastfeeding position, which can be taught for mothers delivering by cesarean section along with the side-lying position.
Semistrict higher gauge theory
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Sämann, Christian; Wolf, Martin
2015-04-01
We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.
Distribution law of the Dirac eigenmodes in QCD
NASA Astrophysics Data System (ADS)
Catillo, Marco; Glozman, Leonid Ya.
2018-04-01
The near-zero modes of the Dirac operator are connected to spontaneous breaking of chiral symmetry in QCD (SBCS) via the Banks-Casher relation. At the same time, the distribution of the near-zero modes is well described by the Random Matrix Theory (RMT) with the Gaussian Unitary Ensemble (GUE). Then, it has become a standard lore that a randomness, as observed through distributions of the near-zero modes of the Dirac operator, is a consequence of SBCS. The higher-lying modes of the Dirac operator are not affected by SBCS and are sensitive to confinement physics and related SU(2)CS and SU(2NF) symmetries. We study the distribution of the near-zero and higher-lying eigenmodes of the overlap Dirac operator within NF = 2 dynamical simulations. We find that both the distributions of the near-zero and higher-lying modes are perfectly described by GUE of RMT. This means that randomness, while consistent with SBCS, is not a consequence of SBCS and is linked to the confining chromo-electric field.
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
Embedded random matrix ensembles from nuclear structure and their recent applications
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Chavda, N. D.
Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Feng, Guohu; Wu, Wenqi; Wang, Jinling
2012-01-01
A matrix Kalman filter (MKF) has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a) at least one degree of rotational freedom is excited, and (b) at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions. PMID:23012523
More on quantum groups from the quantization point of view
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1994-12-01
Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.
Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces
NASA Astrophysics Data System (ADS)
Cho, Jong Taek; Hashinaga, Takahiro; Kubo, Akira; Taketomi, Yuichiro; Tamaru, Hiroshi
2018-01-01
Ricci soliton contact metric manifolds with certain nullity conditions have recently been studied by Ghosh and Sharma. Whereas the gradient case is well-understood, they provided a list of candidates for the nongradient case. These candidates can be realized as Lie groups, but one only knows the structures of the underlying Lie algebras, which are hard to be analyzed apart from the three-dimensional case. In this paper, we study these Lie groups with dimension greater than three, and prove that the connected, simply-connected, and complete ones can be realized as homogeneous real hypersurfaces in noncompact real two-plane Grassmannians. These realizations enable us to prove, in a Lie-theoretic way, that all of them are actually Ricci soliton.
Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective.
Hübner, Olaf; Himmel, Hans-Jörg
2018-02-19
Metal cluster models are of high relevance for establishing new mechanistic concepts for heterogeneous catalysis. The high reactivity and particular selectivity of metal clusters is caused by the wealth of low-lying electronically excited states that are often thermally populated. Thereby the metal clusters are flexible with regard to their electronic structure and can adjust their states to be appropriate for the reaction with a particular substrate. The matrix isolation technique is ideally suited for studying excited state reactivity. The low matrix temperatures (generally 4-40 K) of the noble gas matrix host guarantee that all clusters are in their electronic ground-state (with only a very few exceptions). Electronically excited states can then be selectively populated and their reactivity probed. Unfortunately, a systematic research in this direction has not been made up to date. The purpose of this review is to provide the grounds for a directed approach to understand cluster reactivity through matrix-isolation studies combined with quantum chemical calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Temme, Francis P.
For uniform spins and their indistinguishable point sets of tensorial bases defining automorphic group-based Liouvillian NMR spin dynamics, the role of recursively-derived coefficients of fractional parentage (CFP) bijections and Schur duality-defined CFP(0)(n) ≡ ¦GI¦(n) group invariant cardinality is central both to understanding the impact of time-reversal invariance(TRI) spin physics, and to analysis as density-matrix formalisms over democratic recoupled (DR) dual tensorial sets, {T
Nonstandard Methods in Lie Theory
ERIC Educational Resources Information Center
Goldbring, Isaac Martin
2009-01-01
In this thesis, we apply model theory to Lie theory and geometric group theory. These applications of model theory come via nonstandard analysis. In Lie theory, we use nonstandard methods to prove two results. First, we give a positive solution to the local form of Hilbert's Fifth Problem, which asks whether every locally euclidean local…
On the origin of dual Lax pairs and their r-matrix structure
NASA Astrophysics Data System (ADS)
Avan, Jean; Caudrelier, Vincent
2017-10-01
We establish the algebraic origin of the following observations made previously by the authors and coworkers: (i) A given integrable PDE in 1 + 1 dimensions within the Zakharov-Shabat scheme related to a Lax pair can be cast in two distinct, dual Hamiltonian formulations; (ii) Associated to each formulation is a Poisson bracket and a phase space (which are not compatible in the sense of Magri); (iii) Each matrix in the Lax pair satisfies a linear Poisson algebra a la Sklyanin characterized by the same classical r matrix. We develop the general concept of dual Lax pairs and dual Hamiltonian formulation of an integrable field theory. We elucidate the origin of the common r-matrix structure by tracing it back to a single Lie-Poisson bracket on a suitable coadjoint orbit of the loop algebra sl(2 , C) ⊗ C(λ ,λ-1) . The results are illustrated with the examples of the nonlinear Schrödinger and Gerdjikov-Ivanov hierarchies.
The spectrum of a vertex model and related spin one chain sitting in a genus five curve
NASA Astrophysics Data System (ADS)
Martins, M. J.
2017-11-01
We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.
Magnetic quantization in monolayer bismuthene
NASA Astrophysics Data System (ADS)
Chen, Szu-Chao; Chiu, Chih-Wei; Lin, Hui-Chi; Lin, Ming-Fa
The magnetic quantization in monolayer bismuthene is investigated by the generalized tight-binding model. The quite large Hamiltonian matrix is built from the tight-binding functions of the various sublattices, atomic orbitals and spin states. Due to the strong spin orbital coupling and sp3 bonding, monolayer bismuthene has the diverse low-lying energy bands such as the parabolic, linear and oscillating energy bands. The main features of band structures are further reflected in the rich magnetic quantization. Under a uniform perpendicular magnetic field (Bz) , three groups of Landau levels (LLs) with distinct features are revealed near the Fermi level. Their Bz-dependent energy spectra display the linear, square-root and non-monotonous dependences, respectively. These LLs are dominated by the combinations of the 6pz orbital and (6px,6py) orbitals as a result of strong sp3 bonding. Specifically, the LL anti-crossings only occur between LLs originating from the oscillating energy band.
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; ...
2017-09-11
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Kern, R S; Green, M F; Fiske, A P; Kee, K S; Lee, J; Sergi, M J; Horan, W P; Subotnik, K L; Sugar, C A; Nuechterlein, K H
2009-04-01
Interpersonal communication problems are common among persons with schizophrenia and may be linked, in part, to deficits in theory of mind (ToM), the ability to accurately perceive the attitudes, beliefs and intentions of others. Particular difficulties might be expected in the processing of counterfactual information such as sarcasm or lies. The present study included 50 schizophrenia or schizo-affective out-patients and 44 demographically comparable healthy adults who were administered Part III of The Awareness of Social Inference Test (TASIT; a measure assessing comprehension of sarcasm versus lies) as well as measures of positive and negative symptoms and community functioning. TASIT data were analyzed using a 2 (group: patients versus healthy adults) x 2 (condition: sarcasm versus lie) repeated-measures ANOVA. The results show significant effects for group, condition, and the group x condition interaction. Compared to controls, patients performed significantly worse on sarcasm but not lie scenes. Within-group contrasts showed that patients performed significantly worse on sarcasm versus lie scenes; controls performed comparably on both. In patients, performance on TASIT showed a significant correlation with positive, but not negative, symptoms. The group and interaction effects remained significant when rerun with a subset of patients with low-level positive symptoms. The findings for a relationship between TASIT performance and community functioning were essentially negative. The findings replicate a prior demonstration of difficulty in the comprehension of sarcasm using a different test, but are not consistent with previous studies showing global ToM deficits in schizophrenia.
Physics of Resonating Valence Bond Spin Liquids
NASA Astrophysics Data System (ADS)
Wildeboer, Julia Saskia
This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.
ERIC Educational Resources Information Center
Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Leyman, Gail; Lee, Kang
2007-01-01
This study examined cross-cultural differences and similarities in children's moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an…
Garcés-Ortíz, Maricela; Ledesma-Montes, Constantino; Reyes-Gasga, José
2013-05-01
The aim of this report is to present the results of a scanning electron microscopic study on the presence of matrix vesicles (MVs) found in human dentine. Dentin tissue from 20 human bicuspids was analyzed by means of scanning electron microscopy. MVs were found as outgrowths of the cellular membrane of the odontoblastic body, the more proximal portion of the odontoblastic process before entering the dentinal tubule and in the odontoblastic process within the inner third of the dentin. Size of MVs varied depending on location. In the inner third of dentin, they were seen in diverse positions; as membranal outgrowths, deriving from the odontoblastic process, lying free in the intratubular space and attached to the dentinal wall. Sometimes, they were seen organized forming groups of different sizes and shapes or as multivesicular chains running from the surface of the odontoblastic process to the tubular wall. MVs were present in places never considered: 1) the body of odontoblasts; 2) the most proximal part of the odontoblastic processes before entering the circumpulpal dentine and also: 3) in the inner third of dentinal tissue. According to our results, MVs not only participate during mantle dentin mineralization during early dentinogenesis, they also contribute during the mineralization process of the inner dentin.
Dynamic Response of Vertebral Elements Related to USAF Injury
1978-02-01
eventual loss of mucopolysaccharide matrix from both the hyaline cartilage end plates and fibro- cartilage annulUS« resulting in increased cell...In other studies conducted during this contract period, seven adult Rhesus monkeys have been subjected to implantations of calibrated stress...fibroblasts; 2. Loss of cells from and compression of the circular regions lying between the cartilage end plates and nucleus; 3. Altered staining and
A Lie based 4-dimensional higher Chern-Simons theory
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2016-05-01
We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
NASA Technical Reports Server (NTRS)
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely
2015-12-01
We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.
Wang, Yufang; Wu, Yanzhao; Feng, Min; Wang, Hui; Jin, Qinghua; Ding, Datong; Cao, Xuewei
2008-12-01
With a simple method-the reduced matrix method, we simplified the calculation of the phonon vibrational frequencies according to SWNTs structure and their phonon symmetric property and got the dispersion properties of all SWNTs at Gamma point in Brillouin zone, whose diameters lie between 0.6 and 2.5 nm. The calculating time is shrunk about 2-4 orders. A series of the dependent relationships between the diameters of SWNTs and the frequencies of Raman and IR active modes are given. Several fine structures including "glazed tile" structures in omega approximately d figures are found, which might predict a certain macro-quantum phenomenon of the phonons in SWNTs.
NASA Astrophysics Data System (ADS)
Orce, J. N.; Djongolov, M.; Navratil, P.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Lassen, J.; Meissner, J.; Pearson, C. J.; Li, R.; Milovanovic, L.; Sjue, S. K. L.; Teigelhoefer, A.; Triambak, S.; Williams, S. J.; Falou, H. Al; Drake, T. E.; Andreoiu, C.; Cross, D.; Kshetri, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Wong, J.; Forssen, C.; Hayes, A. B.; Sarazin, F.; Stoyer, M. A.; Wu, C. Y.
2013-03-01
The highly efficient and segmented TIGRESS HPGe γ-ray array at TRIUMF has been used to perform a reorientation effect Coulomb excitation study of the 2+1 state at 3.368 MeV in 10Be. This is the first Coulomb excitation measurement that provides information on diagonal matrix elements for such a high lying first excited state from μ-ray data. With the availability of accurate lifetime data, a restriction on the diagonal < 2+1|M({E}2)|2+1> matrix element is determined. This result is compared to a no core shell model calculation with the CD-Bonn 2000 two nucleon potential.
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-11-01
Here, we introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals ofmore » the oneparticle density matrix.« less
New infinite-dimensional hidden symmetries for heterotic string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected.
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-01-01
We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix. PMID:27803328
Cluster-Randomized, Crossover Trial of Head Positioning in Acute Stroke.
Anderson, Craig S; Arima, Hisatomi; Lavados, Pablo; Billot, Laurent; Hackett, Maree L; Olavarría, Verónica V; Muñoz Venturelli, Paula; Brunser, Alejandro; Peng, Bin; Cui, Liying; Song, Lily; Rogers, Kris; Middleton, Sandy; Lim, Joyce Y; Forshaw, Denise; Lightbody, C Elizabeth; Woodward, Mark; Pontes-Neto, Octavio; De Silva, H Asita; Lin, Ruey-Tay; Lee, Tsong-Hai; Pandian, Jeyaraj D; Mead, Gillian E; Robinson, Thompson; Watkins, Caroline
2017-06-22
The role of supine positioning after acute stroke in improving cerebral blood flow and the countervailing risk of aspiration pneumonia have led to variation in head positioning in clinical practice. We wanted to determine whether outcomes in patients with acute ischemic stroke could be improved by positioning the patient to be lying flat (i.e., fully supine with the back horizontal and the face upwards) during treatment to increase cerebral perfusion. In a pragmatic, cluster-randomized, crossover trial conducted in nine countries, we assigned 11,093 patients with acute stroke (85% of the strokes were ischemic) to receive care in either a lying-flat position or a sitting-up position with the head elevated to at least 30 degrees, according to the randomization assignment of the hospital to which they were admitted; the designated position was initiated soon after hospital admission and was maintained for 24 hours. The primary outcome was degree of disability at 90 days, as assessed with the use of the modified Rankin scale (scores range from 0 to 6, with higher scores indicating greater disability and a score of 6 indicating death). The median interval between the onset of stroke symptoms and the initiation of the assigned position was 14 hours (interquartile range, 5 to 35). Patients in the lying-flat group were less likely than patients in the sitting-up group to maintain the position for 24 hours (87% vs. 95%, P<0.001). In a proportional-odds model, there was no significant shift in the distribution of 90-day disability outcomes on the global modified Rankin scale between patients in the lying-flat group and patients in the sitting-up group (unadjusted odds ratio for a difference in the distribution of scores on the modified Rankin scale in the lying-flat group, 1.01; 95% confidence interval, 0.92 to 1.10; P=0.84). Mortality within 90 days was 7.3% among the patients in the lying-flat group and 7.4% among the patients in the sitting-up group (P=0.83). There were no significant between-group differences in the rates of serious adverse events, including pneumonia. Disability outcomes after acute stroke did not differ significantly between patients assigned to a lying-flat position for 24 hours and patients assigned to a sitting-up position with the head elevated to at least 30 degrees for 24 hours. (Funded by the National Health and Medical Research Council of Australia; HeadPoST ClinicalTrials.gov number, NCT02162017 .).
Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain.
Tirry, Wim; Schryvers, Dominique
2009-09-01
Ni-Ti is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial Ni-Ti-based alloys are often thermally treated to contain Ni(4)Ti(3) precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrix-precipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.
Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain
NASA Astrophysics Data System (ADS)
Tirry, Wim; Schryvers, Dominique
2009-09-01
Ni-Ti is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial Ni-Ti-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrix-precipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
Kern, Robert S.; Green, Michael F.; Fiske, Alan P.; Kee, Kimmy S.; Lee, Junghee; Sergi, Mark J.; Horan, William P.; Subotnik, Kenneth L.; Sugar, Catherine A.; Nuechterlein, Keith H.
2010-01-01
Background Interpersonal communication problems are common among persons with schizophrenia and may be tied, in part, to deficits in theory of mind – the ability to accurately perceive the attitudes, beliefs, and intentions of others. Particular difficulties might be expected in the processing of counterfactual information such as sarcasm or lies. Method The present study included 50 schizophrenia or schizoaffective outpatients and 44 demographically comparable healthy adults who were administered Part III of The Awareness of Social Inferences Test (TASIT; a measure assessing comprehension of sarcasm vs. lies) as well as measures of positive and negative symptoms and community functioning. Results The TASIT data were analyzed using a 2 (group: patients vs. healthy adults) x 2 (condition: sarcasm vs. lie) repeated measures ANOVA. The results showed significant effects for group, condition, and the group x condition interaction. Compared to controls, patients performed significantly worse on sarcasm but not lie scenes. Within-group contrasts showed patients to perform significantly worse on sarcasm vs. lie scenes; controls performed comparably on both. In patients, performance on the TASIT showed a significant correlation with positive, but not negative symptoms. The group and interaction effects remained significant when rerun with a subset of patients with low level positive symptoms. The findings for a relationship between TASIT performance and community functioning were essentially negative. Conclusions The findings replicate a prior demonstration of difficulty in the comprehension of sarcasm using a different test, but are not consistent with previous studies showing global ToM deficits in schizophrenia. PMID:18694537
NASA Astrophysics Data System (ADS)
Sinkala, W.
2011-01-01
Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.
The density matrix method in photonic bandgap and antiferromagnetic materials
NASA Astrophysics Data System (ADS)
Barrie, Scott B.
In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal emission peaks doped with four-level atoms is studied. It is found that linewidth narrowing is only dependent upon time delay when the resonance energy is not near a band edge. This is a new discovery. The density matrix method is employed to find the critical magnetic field at which spin flopping occurs in antiferromagnetic high temperature superconductors. It is found that this magnetic field depends upon the temperature, the anisotropy parameter and the doping concentration. Results are calculated for 1-2-3 HTSCs. Keywords. Quantum Optics, Density Matrix, Photonic Bandgap Materials, Dispersive Polaritonic Bandgap Materials, Antiferromagnets.
Differential calculus on quantized simple lie groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.
Recurrence quantity analysis based on matrix eigenvalues
NASA Astrophysics Data System (ADS)
Yang, Pengbo; Shang, Pengjian
2018-06-01
Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Zhan, Hongbin
2018-06-01
The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.
NASA Astrophysics Data System (ADS)
Ray, S. Saha
2018-04-01
In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
NASA Astrophysics Data System (ADS)
Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin
2018-03-01
We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
Multidimensional integrable systems and deformations of Lie algebra homomorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunajski, Maciej; Grant, James D. E.; Strachan, Ian A. B.
We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S{sup 1})
Prediction for a Four-Neutron Resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
Prediction for a Four-Neutron Resonance
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...
2016-10-28
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
The ability to detect deceit generalizes across different types of high-stake lies.
Frank, M G; Ekman, P
1997-06-01
The authors investigated whether accuracy in identifying deception from demeanor in high-stake lies is specific to those lies or generalizes to other high-stake lies. In Experiment 1, 48 observers judged whether 2 different groups of men were telling lies about a mock theft (crime scenario) or about their opinion (opinion scenario). The authors found that observers' accuracy in judging deception in the crime scenario was positively correlated with their accuracy in judging deception in the opinion scenario. Experiment 2 replicated the results of Experiment 1, as well as P. Ekman and M. O'Sullivan's (1991) finding of a positive correlation between the ability to detect deceit and the ability to identify micromomentary facial expressions of emotion. These results show that the ability to detect high-stake lies generalizes across high-stake situations and is most likely due to the presence of emotional clues that betray deception in high-stake lies.
Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John
2014-02-07
The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40,000 cm(-1) are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙(+) exhibits a very conspicuous and complicated pattern of features above 1900 cm(-1) that is due to this electronic transition, and offers an unusually vivid demonstration of the effects of vibronic coupling in what would usually be a relatively simple region of the electromagnetic spectrum associated only with vibrational transitions. As expected, the intensities of most of the IR transitions leading to levels that couple the ground to the very low-lying first excited state of PBQ˙(+) increase by large factors upon ionization, due to "intensity borrowing" from the D0 → D1 electronic transition. A notable exception is the antisymmetric C=O stretching vibration, which contributes significantly to the vibronic coupling, but has nevertheless quite small intensity in the cation spectrum. This surprising feature is rationalized on the basis of a simple perturbation analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abedi-Fardad, J., E-mail: j.abedifardad@bonabu.ac.ir; Rezaei-Aghdam, A., E-mail: rezaei-a@azaruniv.edu; Haghighatdoost, Gh., E-mail: gorbanali@azaruniv.edu
2014-05-15
We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.
2017-10-18
Objective To determine whether being upright in the second stage of labour in nulliparous women with a low dose epidural increases the chance of spontaneous vaginal birth compared with lying down. Design Multicentre pragmatic individually randomised controlled trial. Setting 41 UK hospital labour wards. Participants 3093 nulliparous women aged 16 or older, at term with a singleton cephalic presentation and in the second stage of labour with epidural analgesia. Interventions Women were allocated to an upright or lying down position, using a secure web based randomisation service, stratified by centre, with no masking of participants or clinicians to the trial interventions. Main outcome measures The primary outcome was spontaneous vaginal birth. Women were analysed in the groups into which they were randomly allocated, regardless of position recorded at any time during the second stage of labour (excluding women with no valid consent, who withdrew, or who did not reach second stage before delivery). Secondary outcomes included mode of birth, perineal trauma, infant Apgar score <4 at five minutes, admission to a neonatal unit, and longer term included maternal physical and psychological health, incontinence, and infant gross developmental delay. Results Between 4 October 2010 and 31 January 2014, 3236 women were randomised and 3093 (95.6%) included in the primary analysis (1556 in the upright group and 1537 in the lying down group). Significantly fewer spontaneous vaginal births occurred in women in the upright group: 35.2% (548/1556) compared with 41.1% (632/1537) in the lying down group (adjusted risk ratio 0.86, 95% confidence interval 0.78 to 0.94). This represents a 5.9% absolute increase in the chance of spontaneous vaginal birth in the lying down group (number needed to treat 17, 95% confidence interval 11 to 40). No evidence of differences was found for most of the secondary maternal, neonatal, or longer term outcomes including instrumental vaginal delivery (adjusted risk ratio 1.08, 99% confidence interval 0.99 to 1.18), obstetric anal sphincter injury (1.27, 0.88 to 1.84), infant Apgar score <4 at five minutes (0.66, 0.06 to 6.88), and maternal faecal incontinence at one year (1.18, 0.61 to 2.28). Conclusions Evidence shows that lying down in the second stage of labour results in more spontaneous vaginal births in nulliparous women with epidural analgesia, with no apparent disadvantages in relation to short or longer term outcomes for mother or baby. Trial registration Current Controlled Trials ISRCTN35706297. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Particle-like structure of coaxial Lie algebras
NASA Astrophysics Data System (ADS)
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
Rauhut, Heiko
2013-01-01
Field experiments have shown that observing other people littering, stealing or lying can trigger own misconduct, leading to a decay of social order. However, a large extent of norm violations goes undetected. Hence, the direction of the dynamics crucially depends on actors’ beliefs regarding undetected transgressions. Because undetected transgressions are hardly measureable in the field, a laboratory experiment was developed, where the complete prevalence of norm violations, subjective beliefs about them, and their behavioral dynamics is measurable. In the experiment, subjects could lie about their monetary payoffs, estimate the extent of liars in their group and make subsequent lies contingent on information about other people’s lies. Results show that informed people who underestimate others’ lying increase own lying more than twice and those who overestimate, decrease it by more than half compared to people without information about others’ lies. This substantial interaction puts previous results into perspective, showing that information about others’ transgressions can trigger dynamics in both directions: the spreading of normative decay and restoring of norm adherence. PMID:24236007
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, E.L.
1986-01-01
This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less
Conversion of the luminescence of laser dyes in opal matrices to stimulated emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimov, O K; Basiev, T T; Orlovskii, Yu V
The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located withinmore » the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)« less
Effect of space allowance and flooring on the behavior of pregnant ewes.
Vik, S G; Øyrehagen, O; Bøe, K E
2017-05-01
Space allowance recommendations for pregnant ewes vary considerably. The aim of this experiment was to investigate the effect of space allowance and floor type on activity, lying position, displacements, and aggressive interactions in pregnant ewes. A 3 × 2 factorial experiment was conducted with space allowance (0.75, 1.50, and 2.25 m/ewe) and type of flooring (straw bedding and expanded metal flooring) as the main factors. A total of 48 pregnant ewes were randomly assigned to 6 groups with 8 ewes in each group. All groups were exposed to each treatment for 7 d. The ewes were video recorded for 24 h at the end of each treatment period and general activity, lying position in the pen, and social lying position were scored every 15 min. Displacements and aggressive interactions were scored continuously from 1030 to 1430 h. Mean lying time ( < 0.0001) and time spent lying simultaneously ( < 0.0001) increased whereas time spent eating ( < 0.001) and standing ( < 0.001) decreased when space allowance increased from 0.75 to 1.50 m/ewe. Further increasing the space allowance to 2.25 m/ewe, however, had no effect on these parameters. Sitting was observed only in the 0.75 m/ewe treatment. Type of flooring had no significant effect on general activity. Ewes in the straw bedding treatment spent more time lying in the middle of the pen than ewes on expanded metal ( < 0.0001), but space allowance had no significant effect on this parameter. The proportion of time spent lying against side walls increased ( < 0.0001) whereas the proportion of time spent lying against the back wall decreased ( < 0.0001) when the space allowance was increased. In general, the distance between the ewes when lying significantly increased when space allowance increased from 0.75 to 1.50 m/ewe. Total number of displacements when lying ( < 0.0001) and aggressive interactions when active ( < 0.001) decreased when space allowance increased from 0.75 to 1.50 m/ewe and further slightly decreased, although the decrease was significant only for displacements when lying, when space allowance increased to 2.25 m/ewe. Low-ranked ewes were not exposed to more aggressive behavior than high-ranked ewes. In conclusion, increasing space allowance from 0.75 to 1.50 m/ewe had positive effects on activity and behavior in pregnant ewes, but further increasing space allowance to 2.25 m/ewe had limited effects, as did type of flooring. Hence, recommended space allowance for pregnant ewes should not be lower than 1.50 m/ewe.
Computer Simulation Results for the Two-Point Probability Function of Composite Media
NASA Astrophysics Data System (ADS)
Smith, P.; Torquato, S.
1988-05-01
Computer simulation results are reported for the two-point matrix probability function S2 of two-phase random media composed of disks distributed with an arbitrary degree of impenetrability λ. The novel technique employed to sample S2( r) (which gives the probability of finding the endpoints of a line segment of length r in the matrix) is very accurate and has a fast execution time. Results for the limiting cases λ = 0 (fully penetrable disks) and λ = 1 (hard disks), respectively, compare very favorably with theoretical predictions made by Torquato and Beasley and by Torquato and Lado. Results are also reported for several values of λ. that lie between these two extremes: cases which heretofore have not been examined.
Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.
Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue
2012-10-08
We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.
Shape coexistence and the role of axial asymmetry in 72Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayangeakaa, A. D.; Janssens, R. F.; Wu, C. Y.
2016-01-22
The quadrupole collectivity of low-lying states and the anomalous behavior of the0 + 2 and 2 + 3 levels in 72Ge are investigated via projectile multi-step Coulomb excitation with GRETINA and CHICO-2. A total of forty six E2 and M1 matrix elements connecting fourteen low-lying levels were determined using the least-squares search code, GOSIA. Evidence for triaxiality and shape coexistence, based on the model-independent shape invariants deduced from the Kumar–Cline sum rule, is presented. Moreover, these are interpreted using a simple two-state mixing model as well as multi-state mixing calculations carried out within the framework of the triaxial rotor model.more » Our results represent a significant milestone towards the understanding of the unusual structure of this nucleus.« less
Exciton States in a Gaussian Confining Potential Well
NASA Astrophysics Data System (ADS)
Xie, Wen-Fang; Gu, Juan
2003-11-01
We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014
Zuo, Yanhai; Lu, Shuliang
2017-01-01
To explore the profibrotic characteristics of the autografted dermis, acellular dermal matrix, and dermal fibroblasts from superficial/deep layers of pig skin, 93 wounds were established on the dorsa of 7 pigs. 72 wounds autografted with the superficial/deep dermis and acellular dermal matrix served as the superficial/deep dermis and acellular dermal matrix group, respectively, and were sampled at 2, 4, and 8 weeks post-wounding. 21 wounds autografted with/without superficial/deep dermal fibroblasts served as the superficial/deep dermal fibroblast group and the control group, respectively, and were sampled at 2 weeks post-wounding. The hematoxylin and eosin staining showed that the wounded skin thicknesses in the deep dermis group (superficial acellular dermal matrix group) were significantly greater than those in the superficial dermis group (deep acellular dermal matrix group) at each time point, the thickness of the cutting plane in the deep dermal fibroblast group was significantly greater than that in the superficial dermal fibroblast group and the control group. The western blots showed that the α-smooth muscle actin expression in the deep dermis group (superficial acellular dermal matrix group) was significantly greater than that in the superficial dermis group (deep acellular dermal matrix group) at each time point. In summary, the deep dermis and dermal fibroblasts exhibited more profibrotic characteristics than the superficial ones, on the contrary, the deep acellular dermal matrix exhibited less profibrotic characteristics than the superficial one. PMID:28423561
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
NASA Astrophysics Data System (ADS)
Lau, Wayne Heung
This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton-QD (QW) coupled system is inhibited and polariton bound states are formed within the polaritonic energy gap. A theory is also developed to study the polariton eigenenergy spectrum, polariton effective mass, and polariton spectral density of N identical semiconductor QDs (QWs) or a superlattice (SL) placed inside a III--V semiconductor. A polariton-impurity band lying within the polaritonic energy gap of the III--V semiconductor is predicted when the resonance energies of the QDs (QWs) lie inside the polaritonic energy gap. Hole-like polariton effective mass of the polariton-impurity band is predicted. It is also predicted that the spectral density of the polariton has a Lorentzian shape if the resonance energies of the QDs (QWs) lie outside the polaritonic gap.
Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xie; Liu Zhengxin; Wen Xiaogang
2011-12-15
Topological insulators in free fermion systems have been well characterized and classified. However, it is not clear in strongly interacting boson or fermion systems what symmetry-protected topological orders exist. In this paper, we present a model in a two-dimensional (2D) interacting spin system with nontrivial onsite Z{sub 2} symmetry-protected topological order. The order is nontrivial because we can prove that the one-dimensional (1D) system on the boundary must be gapless if the symmetry is not broken, which generalizes the gaplessness of Wess-Zumino-Witten model for Lie symmetry groups to any discrete symmetry groups. The construction of this model is related tomore » a nontrivial 3-cocycle of the Z{sub 2} group and can be generalized to any symmetry group. It potentially leads to a complete classification of symmetry-protected topological orders in interacting boson and fermion systems of any dimension. Specifically, this exactly solvable model has a unique gapped ground state on any closed manifold and gapless excitations on the boundary if Z{sub 2} symmetry is not broken. We prove the latter by developing the tool of a matrix product unitary operator to study the nonlocal symmetry transformation on the boundary and reveal the nontrivial 3-cocycle structure of this transformation. Similar ideas are used to construct a 2D fermionic model with onsite Z{sub 2} symmetry-protected topological order.« less
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S
2008-04-11
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
On Spaces of Commuting Elements in Lie Groups
2014-02-25
G given by θ(g, t) = gtg −1 = tg, with more details given in Section 2. Definition 1.6. Define Θ : G×NT Assoc(T )→ Comm(G) by the formula Θ(g, (t1...conjugation θn : G× Tn → Hom(Zn, G)1G g × (t1, . . . , tn) 7→ (tg1, . . . , tgn), ON SPACES OF COMMUTING ELEMENTS IN LIE GROUPS 11 where tg = gtg −1. An n
Solitons and the energy-momentum tensor for affine Toda theory
NASA Astrophysics Data System (ADS)
Olive, D. I.; Turok, N.; Underwood, J. W. R.
1993-07-01
Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.
Castellano, Maila; Conzatti, Lucia; Turturro, Antonio; Costa, Giovanna; Busca, Guido
2007-05-03
A good dispersion of silica into elastomers, typically used in tire tread production, is obtained by grafting of the silica with multifunctional organosilanes. In this study, the influence of the chemical structure of a triethoxysilane (TES), octadecyltriethoxysilane (ODTES), and ODTES/bistriethoxysilylpropyltetrasulfane (TESPT) mixture was investigated by inverse gas chromatography (IGC) at infinite dilution. Thermodynamic results indicate a higher polarity of the silica surface modified with TES as compared to that of the unmodified silica due to new OH groups deriving from the hydrolysis of ethoxy groups of the silane; the long hydrocarbon substituent of the ODTES lies on the surface of silica and reduces the dispersive component of the silica surface tension. A comparison with silica modified with TESPT is discussed. An accurate morphological investigation by transmission electron microscopy (TEM) and automated image analysis (AIA) was carried out on aggregates of silica dispersed into a SBR compound loaded with 35 phr (per hundred rubber) of untreated and TESPT-treated silica. Morphological descriptors such as the projected area/perimeter ratio (A/P) and roundness (P2/4piA) provided direct and quantitative indications about the distribution of the filler into the rubber matrix.
Estimation and Analysis of Nonlinear Stochastic Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Marcus, S. I.
1975-01-01
The algebraic and geometric structures of certain classes of nonlinear stochastic systems were exploited in order to obtain useful stability and estimation results. The class of bilinear stochastic systems (or linear systems with multiplicative noise) was discussed. The stochastic stability of bilinear systems driven by colored noise was considered. Approximate methods for obtaining sufficient conditions for the stochastic stability of bilinear systems evolving on general Lie groups were discussed. Two classes of estimation problems involving bilinear systems were considered. It was proved that, for systems described by certain types of Volterra series expansions or by certain bilinear equations evolving on nilpotent or solvable Lie groups, the optimal conditional mean estimator consists of a finite dimensional nonlinear set of equations. The theory of harmonic analysis was used to derive suboptimal estimators for bilinear systems driven by white noise which evolve on compact Lie groups or homogeneous spaces.
Quantum spaces, central extensions of Lie groups and related quantum field theories
NASA Astrophysics Data System (ADS)
Poulain, Timothé; Wallet, Jean-Christophe
2018-02-01
Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.
Reorientation-effect measurement of the <21+∥E2̂∥21+> matrix element in 10Be
NASA Astrophysics Data System (ADS)
Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.
2012-10-01
The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the <21+∥E2̂∥21+> diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.
Genin, Guy M.; Birman, Victor
2009-01-01
Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a “two-step” approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun-Jeulin (2001) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight. PMID:23874001
Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model
NASA Astrophysics Data System (ADS)
Rosensteel, G.; Rowe, D. J.; Ho, S. Y.
2008-01-01
For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.
NASA Astrophysics Data System (ADS)
Sinha, Sitabhra; Pan, Raj Kumar
The cross-correlations between price fluctuations of 201 frequently traded stocks in the National Stock Exchange (NSE) of India are analyzed in this paper. We use daily closing prices for the period 1996-2006, which coincides with the period of rapid transformation of the market following liberalization. The eigenvalue distribution of the cross-correlation matrix, C, of NSE is found to be similar to that of developed markets, such as the New York Stock Exchange (NYSE): the majority of eigenvalues fall within the bounds expected for a random matrix constructed from mutually uncorrelated time series. Of the few largest eigenvalues that deviate from the bulk, the largest is identified with market-wide movements. The intermediate eigenvalues that occur between the largest and the bulk have been associated in NYSE with specific business sectors with strong intra-group interactions. However, in the Indian market, these deviating eigenvalues are comparatively very few and lie much closer to the bulk. We propose that this is because of the relative lack of distinct sector identity in the market, with the movement of stocks dominantly influenced by the overall market trend. This is shown by explicit construction of the interaction network in the market, first by generating the minimum spanning tree from the unfiltered correlation matrix, and later, using an improved method of generating the graph after filtering out the market mode and random effects from the data. Both methods show, compared to developed markets, the relative absence of clusters of co-moving stocks that belong to the same business sector. This is consistent with the general belief that emerging markets tend to be more correlated than developed markets.
NASA Astrophysics Data System (ADS)
Rosas-Ortiz, Oscar; Cruz y Cruz, Sara; Enríquez, Marco
2016-10-01
It is shown that each one of the Lie algebras su(1 , 1) and su(2) determine the spectrum of the radial oscillator. States that share the same orbital angular momentum are used to construct the representation spaces of the non-compact Lie group SU(1 , 1) . In addition, three different forms of obtaining the representation spaces of the compact Lie group SU(2) are introduced, they are based on the accidental degeneracies associated with the spherical symmetry of the system as well as on the selection rules that govern the transitions between different energy levels. In all cases the corresponding generalized coherent states are constructed and the conditions to squeeze the involved quadratures are analyzed.
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Algebraic special functions and SO(3,2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less
NASA Technical Reports Server (NTRS)
Woon, D. E.; Park, J.-Y.
2004-01-01
We employed density functional theory (DFT) calculations to model the photoionization behavior of benzene and small polycyclic aromatic hydrocarbons when they are embedded in a matrix of water ice in order to investigate issues raised by recent experimental work by Gudipati and Allamandola. The ionization energies of benzene, naphthalene, anthracene, and pyrene were found to be lowered by 1.5-2.1 eV in water ice. Low-lying vertical electronic excitation energies were computed with time-dependent DFT for both neutral and ionized species and are found in both cases to be remarkably unaffected by the ice matrix. Chemical behavior in ultraviolet-photoprocessed ices is also discussed, with a focus on electron recombination and pathways leading to phenol and analogous products.
On the geometry of inhomogeneous quantum groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschieri, Paolo
1998-01-01
The author gives a pedagogical introduction to the differential calculus on quantum groups by stressing at all stages the connection with the classical case. He further analyzes the relation between differential calculus and quantum Lie algebra of left (right) invariant vectorfields. Equivalent definitions of bicovariant differential calculus are studied and their geometrical interpretation is explained. From these data he constructs and analyzes the space of vectorfields, and naturally introduces a contraction operator and a Lie derivative. Their properties are discussed.
A linearization of quantum channels
NASA Astrophysics Data System (ADS)
Crowder, Tanner
2015-06-01
Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.
A pilot study on the improvement of the lying area of finishing pigs by a soft lying mat.
Savary, Pascal; Gygax, Lorenz; Jungbluth, Thomas; Wechsler, Beat; Hauser, Rudolf
2011-01-01
In this pilot study, we tested whether a soft mat (foam covered with a heat-sealed thermoplastic) reduces alterations and injuries at the skin and the leg joints.The soft mat in the lying area of partly slatted pens was compared to a lying area consisting of either bare or slightly littered (100 g straw per pig and day) concrete flooring. In this study we focused on skin lesions on the legs of finishing pigs as indicators of impaired welfare. Pigs were kept in 19 groups of 8-10 individuals and were examined for skin lesions around the carpal and tarsal joints either at a weight of <35 kg, or at close to 100 kg. The likelihood of hairless patches and wounds at the tarsal joints was significantly lower in pens with the soft lying mat than in pens with a bare concrete floor. Pens with a littered concrete floor did not differ compared to pens with a bare concrete floor. The soft lying mat thus improved floor quality in the lying area in terms of preventing skin lesions compared to bare and slightly littered concrete flooring. Such soft lying mats have thus the potential to improve lying comfort and welfare of finishing pigs.
Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation
NASA Astrophysics Data System (ADS)
Rui, Wenjuan; Zhang, Xiangzhi
2016-05-01
This paper investigates the invariance properties of the time fractional Derrida-Lebowitz-Speer-Spohn (FDLSS) equation with Riemann-Liouville derivative. By using the Lie group analysis method of fractional differential equations, we derive Lie symmetries for the FDLSS equation. In a particular case of scaling transformations, we transform the FDLSS equation into a nonlinear ordinary fractional differential equation. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.
Tseng, Boo Shan; Zhang, Wei; Harrison, Joe J; Quach, Tam P; Song, Jisun Lee; Penterman, Jon; Singh, Pradeep K; Chopp, David L; Packman, Aaron I; Parsek, Matthew R
2013-10-01
Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Pre-symplectic algebroids and their applications
NASA Astrophysics Data System (ADS)
Liu, Jiefeng; Sheng, Yunhe; Bai, Chengming
2018-03-01
In this paper, we introduce the notion of a pre-symplectic algebroid and show that there is a one-to-one correspondence between pre-symplectic algebroids and symplectic Lie algebroids. This result is the geometric generalization of the relation between left-symmetric algebras and symplectic (Frobenius) Lie algebras. Although pre-symplectic algebroids are not left-symmetric algebroids, they still can be viewed as the underlying structures of symplectic Lie algebroids. Then we study exact pre-symplectic algebroids and show that they are classified by the third cohomology group of a left-symmetric algebroid. Finally, we study para-complex pre-symplectic algebroids. Associated with a para-complex pre-symplectic algebroid, there is a pseudo-Riemannian Lie algebroid. The multiplication in a para-complex pre-symplectic algebroid characterizes the restriction to the Lagrangian subalgebroids of the Levi-Civita connection in the corresponding pseudo-Riemannian Lie algebroid.
Geometric criteria for the non-existence of cycles in predator-prey systems with group defense.
Liu, Yaping
2007-07-01
In this paper, we study the existence of cycles in a predator-prey system in which the prey species is equipped with the group defense capability. Some geometric criteria are developed, relating the location of the two positive equilibria on the prey isocline and the non-existence of cycles. We show that under a general geometric condition, if both positive equilibria lie on a downslope or both lie on an upslope of the prey isocline, cycles do not exist.
A very strong difference property for semisimple compact connected lie groups
NASA Astrophysics Data System (ADS)
Shtern, A. I.
2011-06-01
Let G be a topological group. For a function f: G → ℝ and h ∈ G, the difference function Δ h f is defined by the rule Δ h f( x) = f( xh) - f( x) ( x ∈ G). A function H: G → ℝ is said to be additive if it satisfies the Cauchy functional equation H( x + y) = H( x) + H( y) for every x, y ∈ G. A class F of real-valued functions defined on G is said to have the difference property if, for every function f: G → ℝ satisfying Δ h f ∈ F for each h ∈ G, there is an additive function H such that f - H ∈ F. Erdős' conjecture claiming that the class of continuous functions on ℝ has the difference property was proved by N. G. de Bruijn; later on, F. W. Carroll and F. S. Koehl obtained a similar result for compact Abelian groups and, under the additional assumption that the other one-sided difference function ∇ h f defined by ∇ h f( x) = f( xh) - f( x) ( x ∈ G, h ∈ G) is measurable for any h ∈ G, also for noncommutative compact metric groups. In the present paper, we consider a narrower class of groups, namely, the family of semisimple compact connected Lie groups. It turns out that these groups admit a significantly stronger difference property. Namely, if a function f: G → ℝ on a semisimple compact connected Lie group has continuous difference functions Δ h f for any h ∈ G (without the additional assumption concerning the measurability of the functions of the form ∇ h f), then f is automatically continuous, and no nontrivial additive function of the form H is needed. Some applications are indicated, including difference theorems for homogeneous spaces of compact connected Lie groups.
NASA Astrophysics Data System (ADS)
Heiss, Walter Dieter; Wunner, Günter
2017-12-01
A matrix model that has been used to describe essential features of a parity-time symmetric set-up of three coupled wave guides is investigated. The emphasis of the study lies on the occurrence of an exceptional point of third order. It is demonstrated that the eigenfunctions in close vicinity of the exceptional point have a distinctive chiral behaviour. Using data describing realistic situations it is argued that such chiral behaviour can be tested experimentally.
Lima, Nicola; Caneschi, Andrea; Gatteschi, Dante; Kritikos, Mikael; Westin, L Gunnar
2006-03-20
The susceptibility of the large transition-metal cluster [Mn19O12(MOE)14(MOEH)10].MOEH (MOE = OC2H2O-CH3) has been fitted through classical Monte Carlo simulation, and an estimation of the exchange coupling constants has been done. With these results, it has been possible to perform a full-matrix diagonalization of the cluster core, which was used to provide information on the nature of the low-lying levels.
One-dimensional Coulomb problem in Dirac materials
NASA Astrophysics Data System (ADS)
Downing, C. A.; Portnoi, M. E.
2014-11-01
We investigate the one-dimensional Coulomb potential with application to a class of quasirelativistic systems, so-called Dirac-Weyl materials, described by matrix Hamiltonians. We obtain the exact solution of the shifted and truncated Coulomb problems, with the wave functions expressed in terms of special functions (namely, Whittaker functions), while the energy spectrum must be determined via solutions to transcendental equations. Most notably, there are critical band gaps below which certain low-lying quantum states are missing in a manifestation of atomic collapse.
Ionospheric Profiles from Ultraviolet Remote Sensing
1998-01-01
remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to
RETRACTED ARTICLE: Microstructure of carbide precipitates in L12-Ni3Al and L10-TiAl
NASA Astrophysics Data System (ADS)
Han, Chang Suk
2008-04-01
The crystallographic structures of carbide formed in Ni3Al- and TiAl-based intermetallics containing carbon are investigated in this study using transmission electron microscopy. In an L12-ordered Ni3Al alloy with 4 mol.% of chromium and 0.2 mol.% to 3.0 mol.% of carbon, fine octahedral precipitates of M23C6 type carbide were formed in the matrix by aging at temperatures around 973 K after solution annealing at 1423 K. TEM examination revealed that the M23C6 phase and the matrix lattices have a cube-cube orientation relationship and maintain partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the M23C6 precipitates adopt a rod-like morphology elongated parallel to the <100> directions. In L10-ordered TiAl containing from 0.1 mol.% to 2.0 mol.% carbon, TEM observations reveal that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the L10 matrix appear in the matrix mainly at dislocations. Selected-area electron diffraction (SAED) patterns analyses showed that the needle-shaped precipitate is perovskite-type Ti3AlC. The orientation relationship between the Ti3AlC and the L10 matrix was found to be (001)Ti3AlC//(001)L10 matrix and [010]Ti3AlC//[010]L10 matrix. By aging at higher temperatures or for a longer period at 1073 K, plate-like precipitates of Ti2AlC with a hexagonal structure form on the {111} planes of the L10 matrix. The orientation relationship between the Ti2AlC and the L10 matrix is (0001)Ti2AlC//(111)L10 matrix and Ti2AlC//L10 matrix.
Lu, Zhen-Hai; Wu, Xiao-Jun; Chen, Gong; Ding, Pei-Rong; Li, Li-Ren; Gao, Yuan-Hong; Zeng, Zhi-Fan; Wan, De-Sen; Pan, Zhi-Zhong
2016-01-01
Low-lying locally advanced rectal cancer (LARC) after preoperative chemoradiotherapy (CRT) can be surgically removed by either abdominperineal resection (APR) or sphincter preserving resection (SPR). This retrospective cohort study of 251 consecutive patients with low lying LARC who underwent CRT followed by radical surgery in a single institute, between March 2003 and November 2012, aimed to compare the oncological benefits between the two groups. 3-year disease free survival (DFS), overall survival (OS), cumulative incidence of recurrence and postoperative complications were compared between the two approaches. With median follow-up of 48.6 months, SPR group had higher 3-year DFS rate (86.4% vs 73.6%, P=0.023) and lower incidence of distant recurrence (12.0% vs 23.7%, P=0.026). The postoperative complications, incidence of local recurrence and the 3-year OS were comparable between the two groups. Pathologic T and N stage were the independent predictors for 3-year DFS (P=0.020 and P<0.001). In conclusion, our study suggest that low-lying LARC patients with a significant response to preoperative CRT can benefit from the advantage of SPR in preserving the anal sphincter function without compromising their oncologic outcome. PMID:27374175
Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments
Crittenden, Jill R.; Graybiel, Ann M.
2011-01-01
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders. PMID:21941467
Affine q-deformed symmetry and the classical Yang-Baxter σ-model
NASA Astrophysics Data System (ADS)
Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.
2017-03-01
The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de
In this article, the second of three, we discuss and develop the basis of a Weyl quantisation for compact Lie groups aiming at loop quantum gravity-type models. This Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity. Additionally, we conjecture the existence of a new form of the Segal-Bargmann-Hall “coherentmore » state” transform for compact Lie groups G, which we prove for G = U(1){sup n} and support by numerical evidence for G = SU(2). The reason for conjoining this conjecture with the main topic of this article originates in the observation that the coherent state transform can be used as a basic building block of a coherent state quantisation (Berezin quantisation) for compact Lie groups G. But, as Weyl and Berezin quantisation for ℝ{sup 2d} are intimately related by heat kernel evolution, it is natural to ask whether a similar connection exists for compact Lie groups as well. Moreover, since the formulation of space adiabatic perturbation theory requires a (deformation) quantisation as minimal input, we analyse the question to what extent the coherent state quantisation, defined by the Segal-Bargmann-Hall transform, can serve as basis of the former.« less
Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion
NASA Astrophysics Data System (ADS)
Chhaibi, Reda
2013-02-01
Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S.
2010-01-01
SUMMARY A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes. PMID:20454468
NASA Astrophysics Data System (ADS)
Dormieux, Luc; Barthélémy, Jean-François; Maghous, Samir
2006-02-01
A rigid plastic behavior characterized by a failure criterion of the Drucker-Prager type and a non associated flow rule is considered. The latter can be viewed formally as the limit of a sequence of viscous behaviors with isotropic prestress. The limit states of a composite made up of such a material reinforced by rigid inclusions are then determined. The latter lie on a Drucker-Prager cone which friction coefficient is greater than that of the matrix and depends on the characteristics of the strength and of the flow rule of the matrix, as well as on the volume fraction of the inclusions. To cite this article: L. Dormieux et al., C. R. Mecanique 334 (2006).
Division Algebras, Supersymmetry and Higher Gauge Theory
NASA Astrophysics Data System (ADS)
Huerta, John Gmerek
2011-12-01
Starting from the four normed division algebras---the real numbers, complex numbers, quaternions and octonions, with dimensions k = 1, 2, 4 and 8, respectively---a systematic procedure gives a 3-cocycle on the Poincare Lie superalgebra in dimensions k + 2 = 3, 4, 6 and 10. A related procedure gives a 4-cocycle on the Poincare Lie superalgebra in dimensions k+3 = 4, 5, 7 and 11. The existence of these cocycles follow from certain spinor identities that hold only in these dimensions, and which are closely related to the existence of superstring and super-Yang--Mills theory in dimensions k + 2, and super-2-brane theory in dimensions k + 3. In general, an (n+1)-cocycle on a Lie superalgebra yields a 'Lie n-superalgebra': that is, roughly speaking, an n-term chain complex equipped with a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the Poincare superalgebra in dimensions 3, 4, 6, and 10, and Lie 3-superalgebras extending the Poincare superalgebra in dimensions 4, 5, 7 and 11. As shown in Sati, Schreiber and Stasheff's work on generalized connections valued in Lie n-superalgebras, Lie 2-superalgebra connections describe the parallel transport of strings, while Lie 3-superalgebra connections describe the parallel transport of 2-branes. Moreover, in the octonionic case, these connections concisely summarize the fields appearing in 10- and 11-dimensional supergravity. Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a 'Lie n-supergroup' that is hugely infinite-dimensional. However, when the Lie n-superalgebra is obtained from an (n + 1)-cocycle on a nilpotent Lie superalgebra, there is a geometric procedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup. In general, a smooth (n+1)-cocycle on a supergroup yields a 'Lie n-supergroup': that is, a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the 3-cocycle in dimensions 3, 4, 6 and 10, we obtain a Lie 2-supergroup extending the Poincare supergroup in those dimensions, and similarly integrating the 4-cocycle in dimensions 4, 5, 7 and 11, we obtain a Lie 3-supergroup extending the Poincare supergroup in those dimensions.
NASA Astrophysics Data System (ADS)
Chandra, Harish; Bhatt, Beena
2018-04-01
In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.
Improving Thermomechanical Properties of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bhatt, Ramakrishna T.
2006-01-01
Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the composite better resistance to propagation of cracks, enhanced thermal conductivity, and higher creep resistance.
Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling
2018-01-15
A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Complex mixture analysis by photoionization mass spectrometry with a VUV hydrogen laser source
NASA Astrophysics Data System (ADS)
Huth, T. C.; Denton, M. B.
1985-12-01
Trace organic analysis in complex matrix presents one of the most challenging problems in analytical mass spectrometry. When ionization is accomplished non-selectively using electron impact, extensive sample clean-up is often necessary in order to isolate the analyte from the matrix. Sample preparation can be greatly reduced when the VUV H2 laser is used to selectively photoionize only a small fraction of compounds introduced into the ion source. This device produces parent ions only for all compounds whose ionization potentials lie below a threshold value determined by the photon energy of 7.8 eV. The only observed interference arises from electron impact ionization, when scattered laser radiation interacts with metal surfaces, producing electrons which are then accelerated by potential fields inside the source. These can be suppressed to levels acceptable for practical analysis through proper instrumental design. Results are presented which indicate the ability of this ion source to discriminate against interfering matrix components, in simple extracts from a variety of complex real world matrices, such as brewed coffee, beer, and urine.
Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA
NASA Astrophysics Data System (ADS)
Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.
2018-02-01
A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.
Recurrent Neural Network for Computing the Drazin Inverse.
Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin
2015-11-01
This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.
Ultrastructure of the bovine nuchal ligament.
Morocutti, M; Raspanti, M; Ottani, V; Govoni, P; Ruggeri, A
1991-01-01
Nuchal ligament is composed almost exclusively of elastic fibres and collagen fibrils, interwoven very closely and lying parallel to the main ligament axis. Elastic fibres are very large, straight and roughly cylindrical; the collagenous matrix consists of septa of diminishing size forming a 3-dimensional matrix that envelops fibre bundles as well as individual elastic fibres. In all areas examined, collagen fibrils are of very uniform size and, on replicas, they reveal a spiral subfibrillar arrangement with an inclination angle of 17 degrees. Collagen fibrils appear to adhere to the elastic fibres very closely, conforming to their irregular shape. Sometimes they impinge directly upon the elastic fibres, while in other cases a space is visible between collagen fibrils and elastic fibres that contains a rich fabric of intermediate filaments. The collagen-elastin complex of the ligamentum nuchae may be considered a fibre-reinforced composite material comprising tough fibres immersed in an amorphous elastic matrix. Its mechanical behaviour is the result of the combined properties of its components and their interactions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1810923
Lie-Telling Behavior in Children with Autism and Its Relation to False-Belief Understanding
ERIC Educational Resources Information Center
Talwar, Victoria; Zwaigenbaum, Lonnie; Goulden, Keith J.; Manji, Shazeen; Loomes, Carly; Rasmussen, Carmen
2012-01-01
Children's lie-telling behavior and its relation to false-belief understanding was examined in children with autism spectrum disorders (ASD; n = 26) and a comparison group of typically developing children (n = 27). Participants were assessed using a temptation resistance paradigm, in which children were told not to peek at a forbidden toy while…
The Metaplectic Sampling of Quantum Engineering
NASA Astrophysics Data System (ADS)
Schempp, Walter J.
2010-12-01
Due to photonic visualization, quantum physics is not restricted to the microworld. Starting off with synthetic aperture radar, the paper provides a unified approach to coherent atom optics, clinical magnetic resonance tomography and the bacterial protein dynamics of structural microbiology. Its mathematical base is harmonic analysis on the three-dimensional Heisenberg Lie group with associated nilpotent Heisenberg algebra Lie(N).
Cox, Caitriona L; Fritz, Zoe
2016-10-01
In modern practice, doctors who outright lie to their patients are often condemned, yet those who employ non-lying deceptions tend to be judged less critically. Some areas of non-disclosure have recently been challenged: not telling patients about resuscitation decisions; inadequately informing patients about risks of alternative procedures and withholding information about medical errors. Despite this, there remain many areas of clinical practice where non-disclosures of information are accepted, where lies about such information would not be. Using illustrative hypothetical situations, all based on common clinical practice, we explore the extent to which we should consider other deceptive practices in medicine to be morally equivalent to lying. We suggest that there is no significant moral difference between lying to a patient and intentionally withholding relevant information: non-disclosures could be subjected to Bok's 'Test of Publicity' to assess permissibility in the same way that lies are. The moral equivalence of lying and relevant non-disclosure is particularly compelling when the agent's motivations, and the consequences of the actions (from the patient's perspectives), are the same. We conclude that it is arbitrary to claim that there is anything inherently worse about lying to a patient to mislead them than intentionally deceiving them using other methods, such as euphemism or non-disclosure. We should question our intuition that non-lying deceptive practices in clinical practice are more permissible and should thus subject non-disclosures to the same scrutiny we afford to lies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Effects of deception in social networks
Iñiguez, Gerardo; Govezensky, Tzipe; Dunbar, Robin; Kaski, Kimmo; Barrio, Rafael A.
2014-01-01
Honesty plays a crucial role in any situation where organisms exchange information or resources. Dishonesty can thus be expected to have damaging effects on social coherence if agents cannot trust the information or goods they receive. However, a distinction is often drawn between prosocial lies (‘white’ lies) and antisocial lying (i.e. deception for personal gain), with the former being considered much less destructive than the latter. We use an agent-based model to show that antisocial lying causes social networks to become increasingly fragmented. Antisocial dishonesty thus places strong constraints on the size and cohesion of social communities, providing a major hurdle that organisms have to overcome (e.g. by evolving counter-deception strategies) in order to evolve large, socially cohesive communities. In contrast, white lies can prove to be beneficial in smoothing the flow of interactions and facilitating a larger, more integrated network. Our results demonstrate that these group-level effects can arise as emergent properties of interactions at the dyadic level. The balance between prosocial and antisocial lies may set constraints on the structure of social networks, and hence the shape of society as a whole. PMID:25056625
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
The Dixmier Map for Nilpotent Super Lie Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2012-07-01
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.
Solution of differential equations by application of transformation groups
NASA Technical Reports Server (NTRS)
Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.
1968-01-01
Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation
Wang, Gang wei; Xu, Tian zhou; Feng, Tao
2014-01-01
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided. PMID:24523885
NASA Astrophysics Data System (ADS)
Morozov, Oleg I.
2018-06-01
The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.
Cucheb: A GPU implementation of the filtered Lanczos procedure
NASA Astrophysics Data System (ADS)
Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef
2017-11-01
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.
On the cross-stream spectral method for the Orr-Sommerfeld equation
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Hodge, Steven L.
1993-01-01
Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.
Role of fiber-stitching in eliminating transverse fracture in cross-ply ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, T.J.; Hutchinson, J.W.
1995-12-31
A theoretical study of the feasibility of using fiber stitching to prevent transverse matrix cracking in cross-ply ceramic composites is first reported. The prototype problem solved is a curved composite beam subject to pure bending (the C-specimen), which develops a transverse tensile stress Go acting across its circumferential mid-plane. This transverse stress is cause for concern if the beam is unstitched since there is no mechanism to arrest a matrix crack once one becomes critical. Fiber stitches normal to this plane are introduced to bridge a circumferential matrix crack lying along the mid-plane of the specimen. Results are presented formore » the energy release rate of this matrix crack as a function of a nondimensional parameter characterizing the density and fiber sliding stress of the fiber stitches. A parameter is identified which assures the applicability of the classical ACK (Aveston, Cooper and Kelly) limit for a steady-state matrix crack subject to {sigma}{sub 0}. The results obtained can be used to choose the level of stitching such that transverse matrix cracking will be excluded. The second problem we address is thermal delamination in a cross-ply ceramic composite plate due to high temperature gradients applied in the thickness direction. It is shown that a preexistent crack with a size of the order of the plate thickness will propagate unstably when a moderately large through-thickness temperature gradient is enforced. The possibility of using cross-fiber stitches to suppress thermal delamination cracking is discussed.« less
Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II.
Kurashige, Yuki; Chan, Garnet Kin-Lic; Yanai, Takeshi
2013-08-01
It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn4CaO5 cluster of photosystem II, with more than 1 × 10(18) quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle.
Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.
Papenbrock, T; Reimann, S M; Kavoulakis, G M
2012-02-17
We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.
On the ⋆-PRODUCT Quantization and the Duflo Map in Three Dimensions
NASA Astrophysics Data System (ADS)
Rosa, Luigi; Vitale, Patrizia
2012-11-01
We analyze the ⋆-product induced on ℱ(ℝ3) by a suitable reduction of the Moyal product defined on ℱ(ℝ4). This is obtained through the identification ℝ3≃𝔤*, with 𝔤 a three-dimensional Lie algebra. We consider the 𝔰𝔲(2) case, exhibit a matrix basis and realize the algebra of functions on 𝔰𝔲(2)* in such a basis. The relation to the Duflo map is discussed. As an application to quantum mechanics we compute the spectrum of the hydrogen atom.
Poisson-Lie duals of the η deformed symmetric space sigma model
NASA Astrophysics Data System (ADS)
Hoare, Ben; Seibold, Fiona K.
2017-11-01
Poisson-Lie dualising the η deformation of the G/H symmetric space sigma model with respect to the simple Lie group G is conjectured to give an analytic continuation of the associated λ deformed model. In this paper we investigate when the η deformed model can be dualised with respect to a subgroup G0 of G. Starting from the first-order action on the complexified group and integrating out the degrees of freedom associated to different subalgebras, we find it is possible to dualise when G0 is associated to a sub-Dynkin diagram. Additional U1 factors built from the remaining Cartan generators can also be included. The resulting construction unifies both the Poisson-Lie dual with respect to G and the complete abelian dual of the η deformation in a single framework, with the integrated algebras unimodular in both cases. We speculate that extending these results to the path integral formalism may provide an explanation for why the η deformed AdS5 × S5 superstring is not one-loop Weyl invariant, that is the couplings do not solve the equations of type IIB supergravity, yet its complete abelian dual and the λ deformed model are.
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
NASA Astrophysics Data System (ADS)
Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang
2017-11-01
In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.
NASA Astrophysics Data System (ADS)
Boccardi, S.; Carlomagno, G. M.; Simeoli, G.; Russo, P.; Meola, C.
2016-07-01
The usefulness of an infrared imaging device, in terms of both acting as a mechanism for surface thermal monitoring when a specimen is being impacted and as a non-destructive evaluation technique, has already been proved. Nevertheless, past investigation has focused on mainly thermoset-matrix composites with little attention towards thermoplastic ones. Conversely, these thermoplastic composites are becoming ever more attractive to the aeronautical sector. Their main advantage lies in the possibility of modifying their interface strength by adjusting the composition of the matrix. However, for a proper exploitation of new materials it is necessary to detail their characterization. The purpose of the present paper is to focus on the use of infrared thermography (IRT) to gain information on the behaviour of thermoplastic composites under impact. In addition, attention is given to image processing algorithms with the aim of more effectively measuring the extension of the impact-affected area.4
Quadrupole and octupole shapes in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, D.
1993-12-31
The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less
Dispersion and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding
NASA Astrophysics Data System (ADS)
Gorga, Russell; Cohen, Robert
2003-03-01
This work is focused on the fabrication of carbon nanotube/ polymer composites via melt compounding. The main objective of this work is to realize the outstanding properties of carbon nanotubes (high modulus, high thermal and electrical conductivity, elastic buckling) at the macroscopic level by blending carbon nanotubes into a polymer matrix. The challenge lies in dispersing these one dimensional nanoparticles in the polymer matrix. Dispersion of the nanotubes in the composites is analyzed via transmission and scanning electron microscopy. Mechanical properties as well as electrical and thermal conductivity are measured as a function of nanotube loading, orientation, and extrusion conditions. Multi-wall nanotube loadings in the range of 1 and 10 wtconcave-downward departures from the linear stress-strain behavior of the unmodified polymer below 5observations are discussed in the context of possible deformation mechanisms for the nanotube composites.
Nanocomposite and method of making thereof
Tangirala, Ravisubhash; Milliron, Delia J.; Llordes, Anna
2016-03-15
An embodiment of an inorganic nanocomposite includes a nanoparticle phase and a matrix phase. The nanoparticle phase includes nanoparticles that are arranged in a repeating structure. In an embodiment, the nanoparticles have a spherical or pseudo-spherical shape and are incompatible with hydrazine. In another embodiment, the nanoparticles have neither a spherical nor pseudo-spherical shape. The matrix phase lies between the nanoparticles of the nanoparticle phase. An embodiment of a method of making an inorganic nanocomposite of the present invention includes forming a nanoparticle superlattice on a substrate. The nanoparticle superlattice includes nanoparticles. Each nanoparticle has organic ligands attached to a surface of the nanoparticle. The organic ligands separate adjacent nanoparticles within the nanoparticle superlattice. The method also includes forming a solution that includes an inorganic precursor. The nanoparticle superlattice is placed in the solution for a sufficient time for the inorganic precursor to replace the organic ligands.
Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Lange, Florian; Ejima, Satoshi; Fehske, Holger
2018-02-01
Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .
Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.
2017-04-18
Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.
Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less
A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method.
Nasirahmadi, A; Hensel, O; Edwards, S A; Sturm, B
2017-01-01
Machine vision-based monitoring of pig lying behaviour is a fast and non-intrusive approach that could be used to improve animal health and welfare. Four pens with 22 pigs in each were selected at a commercial pig farm and monitored for 15 days using top view cameras. Three thermal categories were selected relative to room setpoint temperature. An image processing technique based on Delaunay triangulation (DT) was utilized. Different lying patterns (close, normal and far) were defined regarding the perimeter of each DT triangle and the percentages of each lying pattern were obtained in each thermal category. A method using a multilayer perceptron (MLP) neural network, to automatically classify group lying behaviour of pigs into three thermal categories, was developed and tested for its feasibility. The DT features (mean value of perimeters, maximum and minimum length of sides of triangles) were calculated as inputs for the MLP classifier. The network was trained, validated and tested and the results revealed that MLP could classify lying features into the three thermal categories with high overall accuracy (95.6%). The technique indicates that a combination of image processing, MLP classification and mathematical modelling can be used as a precise method for quantifying pig lying behaviour in welfare investigations.
Children tell white lies to make others feel better.
Warneken, Felix; Orlins, Emily
2015-09-01
We investigated whether children tell white lies simply out of politeness or as a means to improve another person's mood. A first experimental phase probed children's individual insight to use white lies when prosocial behaviour was called for. We compared a situation in which a person had expressed sadness about her artwork and the goal was to make her feel better (Sad condition) with a situation in which a person was indifferent about her work (Neutral condition). Children at 7 years and older were more likely to tell a white lie than the blunt truth in the Sad over the Neutral condition. Five-year-olds showed only a trend. A second phase tested whether children selectively use white lie telling after it was modelled by an adult. Results showed that after modelling, children from all age groups were significantly more likely to use white lies in the Sad condition than in the Neutral condition. Taken together, these results show that children are attentive to another person's affective states when choosing whether to tell a white lie or tell the truth. We discuss the emergence of this behaviour in relation to children's developing social cognition and the increasing sophistication of children's prosocial behaviour. © 2015 The British Psychological Society.
Linear systems with structure group and their feedback invariants
NASA Technical Reports Server (NTRS)
Martin, C.; Hermann, R.
1977-01-01
A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.
Computational Power of Symmetry-Protected Topological Phases.
Stephen, David T; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-07
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
Computational Power of Symmetry-Protected Topological Phases
NASA Astrophysics Data System (ADS)
Stephen, David T.; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-01
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
O'Sullivan, Maureen
2007-02-01
Bond and Uysal (this issue) complain that expert lie detectors identified by O'Sullivan and Ekman (2004) are statistical flukes. They ignore one class of experts we have identified and misrepresent the procedures we use to identify the others. They also question the psychometric validity of the measures and protocol used. Many of their points are addressed in the chapter they criticize. The fruitfulness of the O'Sullivan-Ekman protocol is illustrated with respect to improved identification of expert lie detectors, as well as a replicated pattern of errors made by experts from different professional groups. The statistical arguments offered confuse the theoretical use of the binomial with the empirical use of the normal distribution. Data are provided that may clarify this distinction.
Effects of deception in social networks.
Iñiguez, Gerardo; Govezensky, Tzipe; Dunbar, Robin; Kaski, Kimmo; Barrio, Rafael A
2014-09-07
Honesty plays a crucial role in any situation where organisms exchange information or resources. Dishonesty can thus be expected to have damaging effects on social coherence if agents cannot trust the information or goods they receive. However, a distinction is often drawn between prosocial lies ('white' lies) and antisocial lying (i.e. deception for personal gain), with the former being considered much less destructive than the latter. We use an agent-based model to show that antisocial lying causes social networks to become increasingly fragmented. Antisocial dishonesty thus places strong constraints on the size and cohesion of social communities, providing a major hurdle that organisms have to overcome (e.g. by evolving counter-deception strategies) in order to evolve large, socially cohesive communities. In contrast, white lies can prove to be beneficial in smoothing the flow of interactions and facilitating a larger, more integrated network. Our results demonstrate that these group-level effects can arise as emergent properties of interactions at the dyadic level. The balance between prosocial and antisocial lies may set constraints on the structure of social networks, and hence the shape of society as a whole. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Group analysis of dynamics equations of self-gravitating polytropic gas
NASA Astrophysics Data System (ADS)
Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O.
2018-06-01
The Lie algebras admitted by the dynamics equations of self-gravitating gas for an arbitrary equation of state and a polytropic gas are calculated. A spherically symmetric submodel is constructed for the case of a polytropic gas. The Lie algebras and the optimal system of subalgebras for a spherically symmetric submodel are computed. An invariant solution describing the steady motion is obtained.
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
Berry phase and entanglement of three qubits in a new Yang-Baxter system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Taotao; Xue Kang; Wu Chunfeng
2009-08-15
In this paper we construct a new 8x8M matrix from the 4x4M matrix, where M/M is the image of the braid group representation. The 8x8M matrix and the 4x4M matrix both satisfy extraspecial 2-group algebra relations. By Yang-Baxteration approach, we derive a unitary R({theta},{phi}) matrix from the M matrix with parameters {phi} and {theta}. Three-qubit entangled states can be generated by using the R({theta},{phi}) matrix. A Hamiltonian for three qubits is constructed from the unitary R({theta},{phi}) matrix. We then study the entanglement and Berry phase of the Yang-Baxter system.
Analyzing Lie symmetry and constructing conservation laws for time-fractional Benny-Lin equation
NASA Astrophysics Data System (ADS)
Rashidi, Saeede; Hejazi, S. Reza
This paper investigates the invariance properties of the time fractional Benny-Lin equation with Riemann-Liouville and Caputo derivatives. This equation can be reduced to the Kawahara equation, fifth-order Kdv equation, the Kuramoto-Sivashinsky equation and Navier-Stokes equation. By using the Lie group analysis method of fractional differential equations (FDEs), we derive Lie symmetries for the Benny-Lin equation. Conservation laws for this equation are obtained with the aid of the concept of nonlinear self-adjointness and the fractional generalization of the Noether’s operators. Furthermore, by means of the invariant subspace method, exact solutions of the equation are also constructed.
Constructing an explicit AdS/CFT correspondence with Cartan geometry
NASA Astrophysics Data System (ADS)
Hazboun, Jeffrey S.
2018-04-01
An explicit AdS/CFT correspondence is shown for the Lie group SO (4 , 2). The Lie symmetry structures allow for the construction of two physical theories through the tools of Cartan geometry. One is a gravitational theory that has anti-de Sitter symmetry. The other is also a gravitational theory but is conformally symmetric and lives on 8-dimensional biconformal space. These "extra" four dimensions have the degrees of freedom used to construct a Yang-Mills theory. The two theories, based on AdS or conformal symmetry, have a natural correspondence in the context of their Lie algebras alone where neither SUSY, nor holography, is necessary.
The symmetries of the fine gradings of sl(n{sup k},C) associated with direct product of Pauli groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Gang
2010-09-15
A grading of a Lie algebra is called fine if it could not be further refined. For a fine grading of a simple Lie algebra, we define its Weyl group to describe the symmetry of this grading. It is already known that the Weyl group of the fine grading of sl(n,C) induced by the action of the group {Pi}{sub n} of the generalized Pauli matrices of rank n is SL(2,Z{sub n}), where Z{sub n} is the cyclic group of order n. In this paper, we consider the fine grading of sl(n{sup k},C) induced by the action of the group ofmore » k-fold tensor product of the generalized Pauli matrices of rank n. We prove that its Weyl group is Sp(2k,Z{sub n}) and is generated by transvections; therefore, this generalizes the previous result.« less
NASA Astrophysics Data System (ADS)
Wang, Xiangyu; Liu, Peng; Ma, Jun; Liu, Huiling
2017-02-01
For the first time, hydrophilized and functionalized polyacrylonitrile (PAN) membrane was synthesized via two-stage process, addition of polyvinyl alcohol and in situ polymerization of acrylic acid (AA), and nano zero-valent iron (NZVI) was incorporated within modified membrane. The as-prepared PAA/PAN-NZVI (PPN) composites possessed superior reactivity for metronidazole (MNZ) with transformation ratio 2.03 and reaction rate 4.77 times higher than that by bare NZVI. Meanwhile, the enhanced stability and recyclability of PPN composites were maintained over repeated cycles. The major advantages of synthetic method lie in the remarkably increased loading and decreased agglomeration of NZVI. Moreover, with hydrophilized and functionalized synthesis processes of membrane, the potential risk of released iron ions was not a concern due to strong chelation of grafted carboxyl groups. Analyses of morphological characteristics (FE-SEM), chemical structure (FTIR), element valence and groups (XPS) of samples confirmed the successful graft of carboxylic acid groups and formation of a uniform iron nanoparticles coating onto PAN matrix. The reaction kinetics of MNZ with PPN composites were well-described by a two-parameter pseudo-first-order decay model with activation energy of 29.5 kJ/mol. The co-solutes except humic acid had a negligible effect on MNZ transformation. Determination of intermediates revealed that nitro reduction, N-denitration and hydroxyethyl cleavage were the main pathways for transformation of MNZ. The findings suggest that the novel composites possess huge potential for antibiotics wastewater treatment.
Naik, Ronak; Johnson, Jason; Kumar, T K S; Philip, Ranjit; Boston, Umar; Knott-Craig, Christopher J
2017-05-29
The porcine small intestinal extracellular matrix reportedly has the potential to differentiate into viable myocardial cells. When used in tetralogy of Fallot repair, it may improve right ventricular function. We evaluated right ventricular function after repair of tetralogy of Fallot with extracellular matrix versus bovine pericardium. Subjects with non-transannular repair of tetralogy of Fallot with at least 1 year of follow-up were selected. The extracellular matrix and bovine pericardium groups were compared. We used three-dimensional right ventricular ejection fraction, right ventricle global longitudinal strain, and tricuspid annular plane systolic excursion to assess right ventricular function. The extracellular matrix group had 11 patients, whereas the bovine pericardium group had 10 patients. No differences between the groups were found regarding sex ratio, age at surgery, and cardiopulmonary bypass time. The follow-up period was 28±12.6 months in the extracellular matrix group and 50.05±17.6 months in the bovine pericardium group (p=0.001). The mean three-dimensional right ventricular ejection fraction (55.7±5.0% versus 55.3±5.2%, p=0.73), right ventricular global longitudinal strain (-18.5±3.0% versus -18.0±2.2%, p=0.44), and tricuspid annular plane systolic excursions (1.59±0.16 versus 1.59±0.2, p=0.93) were similar in the extracellular matrix group and in the bovine pericardium group, respectively. Right ventricular global longitudinal strain in healthy children is reported at -29±3% in literature. In a small cohort of the patients undergoing non-transannular repair of tetralogy of Fallot, there was no significant difference in right ventricular function between groups having extracellular matrix versus bovine pericardium patches followed-up for more than 1 year. Lower right ventricular longitudinal strain noted in both the groups compared to healthy children.
Activated Omentum Slows Progression of CKD
Garcia-Gomez, Ignacio; Pancholi, Nishit; Patel, Jilpa; Gudehithlu, Krishnamurthy P.; Sethupathi, Periannan; Hart, Peter; Dunea, George; Arruda, Jose A.L.
2014-01-01
Stem cells show promise in the treatment of AKI but do not survive long term after injection. However, organ repair has been achieved by extending and attaching the omentum, a fatty tissue lying above the stomach containing stem cells, to various organs. To examine whether fusing the omentum to a subtotally nephrectomized kidney could slow the progression of CKD, we used two groups of rats: an experimental group undergoing 5/6 nephrectomy only and a control group undergoing 5/6 nephrectomy and complete omentectomy. Polydextran gel particles were administered intraperitoneally before suture only in the experimental group to facilitate the fusion of the omentum to the injured kidney. After 12 weeks, experimental rats exhibited omentum fused to the remnant kidney and had lower plasma creatinine and urea nitrogen levels; less glomerulosclerosis, tubulointerstitial injury, and extracellular matrix; and reduced thickening of basement membranes compared with controls. A fusion zone formed between the injured kidney and the omentum contained abundant stem cells expressing stem cell antigen-1, Wilms’ tumor 1 (WT-1), and CD34, suggesting active, healing tissue. Furthermore, kidney extracts from experimental rats showed increases in expression levels of growth factors involved in renal repair, the number of proliferating cells, especially at the injured edge, the number of WT-1–positive cells in the glomeruli, and WT-1 gene expression. These results suggest that contact between the omentum and injured kidney slows the progression of CKD in the remnant organ, and this effect appears to be mediated by the presence of omental stem cells and their secretory products. PMID:24627352
Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix
NASA Technical Reports Server (NTRS)
Llama, Eduardo Garcia
2011-01-01
In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.
A rough set approach for determining weights of decision makers in group decision making.
Yang, Qiang; Du, Ping-An; Wang, Yong; Liang, Bin
2017-01-01
This study aims to present a novel approach for determining the weights of decision makers (DMs) based on rough group decision in multiple attribute group decision-making (MAGDM) problems. First, we construct a rough group decision matrix from all DMs' decision matrixes on the basis of rough set theory. After that, we derive a positive ideal solution (PIS) founded on the average matrix of rough group decision, and negative ideal solutions (NISs) founded on the lower and upper limit matrixes of rough group decision. Then, we obtain the weight of each group member and priority order of alternatives by using relative closeness method, which depends on the distances from each individual group member' decision to the PIS and NISs. Through comparisons with existing methods and an on-line business manager selection example, the proposed method show that it can provide more insights into the subjectivity and vagueness of DMs' evaluations and selections.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-02-09
Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
Computer-Mediated Collaborative Projects: Processes for Enhancing Group Development
ERIC Educational Resources Information Center
Dupin-Bryant, Pamela A.
2008-01-01
Groups are a fundamental part of the business world. Yet, as companies continue to expand internationally, a major challenge lies in promoting effective communication among employees who work in varying time zones. Global expansion often requires group collaboration through computer systems. Computer-mediated groups lead to different communicative…
Characteristics of global organic matrix in normal and pimpled chicken eggshells.
Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J
2017-10-01
The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.
Kavros, Steven J
2012-08-01
Gross deformity of the foot in Charcot neuroarthropathy can lead to collapse and subsequent ulceration, infection, amputation, or premature death. This study evaluated healing of midfoot ulcerations of Charcot neuroarthropathy using PriMatrix, a novel acellular fetal bovine dermal matrix. In this retrospective analysis, 20 patients with ulcerations of the midfoot associated with Charcot neuroarthropathy were treated with either PriMatrix in addition to standard wound care (PriMatrix group,n = 12) or standard wound care alone (control group, n = 8). All patients had chronic, nonhealing foot ulcerations of at least 2250 mm(3) for a minimum of 30 days duration. All foot ulcerations were full thickness with subcutaneous involvement. Ankle brachial index ≥0.90 and/or transcutaneous oximetry (TcPo(2)) ≥40 mm Hg at the periulcer site was necessary for inclusion. Patients were excluded if they had acute or chronic osteomyelitis of the foot. Demography, risk factors, baseline severity of Charcot neuroarthropathy, and wound volume (control 4078 mm(3), PriMatrix 3737.5 mm(3), P = nonsignificant) were similar between treatment groups. Mean time to healing in the PriMatrix group (116 days, 95% CI = 109-123) was significantly shorter than in the control group (180 days, 95% confidence interval [CI] = 171-188); P < .0001. A significantly faster rate of healing was observed with PriMatrix (87.9 mm(3)/wk, 95% CI = 115.2% to 60.6%) compared with control (59.0 mm(3)/wk, 95% CI = 72.8% to 45.3%); P < .0001). The significantly faster rate of healing and steeper slope of volume reduction in the PriMatrix group warrants further investigation into its effects on healing of neuropathic ulcerations and potential limb salvage.
Groups graded by root systems and property (T)
Ershov, Mikhail; Jaikin-Zapirain, Andrei; Kassabov, Martin; Zhang, Zezhou
2014-01-01
We establish property (T) for a large class of groups graded by root systems, including elementary Chevalley groups and Steinberg groups of rank at least 2 over finitely generated commutative rings with 1. We also construct a group with property (T) which surjects onto all finite simple groups of Lie type and rank at least two. PMID:25425669
Flat band in disorder-driven non-Hermitian Weyl semimetals
NASA Astrophysics Data System (ADS)
Zyuzin, A. A.; Zyuzin, A. Yu.
2018-01-01
We study the interplay of disorder and band-structure topology in a Weyl semimetal with a tilted conical spectrum around the Weyl points. The spectrum of particles is given by the eigenvalues of a non-Hermitian matrix, which contains contributions from a Weyl Hamiltonian and complex self-energy due to electron elastic scattering on disorder. We find that the tilt-induced matrix structure of the self-energy gives rise to either a flat band or a nodal line segment at the interface of the electron and hole pockets in the bulk band structure of type-II Weyl semimetals depending on the Weyl cone inclination. For the tilt in a single direction in momentum space, each Weyl point expands into a flat band lying on the plane, which is transverse to the direction of the tilt. The spectrum of the flat band is fully imaginary and is separated from the in-plane dispersive part of the spectrum by the "exceptional nodal ring" where the matrix of the Green's function in momentum-frequency space is defective. The tilt in two directions might shrink a flat band into a nodal line segment with "exceptional edge points." We discuss the connection to the non-Hermitian topological theory.
Evaluating a novel analgesic strategy for ring castration of ram lambs.
Paull, David R; Small, Alison H; Lee, Caroline; Palladin, Pierre; Colditz, Ian G
2012-09-01
To evaluate the analgesic efficacy of the NSAIDs flunixin and meloxicam administered locally to the scrotum before ring castration. Randomised, controlled, prospective study. Forty eight single born male Merino lambs. Lambs, aged approximately 4 weeks, were allocated to four groups for castration. Groups were: sham control; castration + saline; castration + flunixin; castration + meloxicam. Drugs (5 mL) were administered subcutaneously around the circumference of the scrotum immediately before castration. Cortisol, rectal temperature, haematology and plasma haptoglobin were measured before and up to 48 hours after treatment. Behaviour recorded by video for 12 hours after treatment was classified as pain avoidance behaviours in the first hour and postural behaviours in three 4 hour intervals. Ring castration (saline group) induced a bi-phasic increase in cortisol with peaks at 90 minutes and 24 hours but no significant changes in haematology, haptoglobin or rectal temperature. Pain avoidance behaviours were increased and teat seeking decreased. Normal lying and normal standing postures were decreased and abnormal ventral lying, statue standing, abnormal standing and total abnormal postures increased. Flunixin decreased cortisol at 90 minutes (60.3 versus 117.3 nmol L(-1) ) and cortisol AUC (0-6 hours), decreased elevated leg movement (2.5 versus 5.4 events) and sum of pain avoidance behaviours (8.5 versus 16.7 events), improved time spent in normal ventral lying and decreased abnormal ventral lying and total abnormal postures compared to saline treated lambs. In a similar contrast, meloxicam caused non-significant decreases in cortisol at 90 minutes, cortisol AUC (0-6 hours) and pain avoidance behaviours, and significantly improved the postural behaviours normal ventral lying (26.7 versus 15.4%) and normal standing (13.9 versus 7.5%), and reduced abnormal standing and total abnormal postures. Physiological and behavioural responses associated with ring castration for both NSAID treatment groups were generally greater than sham controls. Locally administered NSAIDs provided partial analgesia for ring castration. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.
Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows.
Kaufman, E I; LeBlanc, S J; McBride, B W; Duffield, T F; DeVries, T J
2016-09-01
The objective of this study was to characterize the association of lying behavior and subclinical ketosis (SCK) in transition dairy cows. A total of 339 dairy cows (107 primiparous and 232 multiparous) on 4 commercial dairy farms were monitored for lying behavior and SCK from 14d before calving until 28 d after calving. Lying time, frequency of lying bouts, and average lying bout length were measured using automated data loggers 24h/d. Cows were tested for SCK 1×/wk by taking a blood sample and analyzing for β-hydroxybutyrate; cows with β-hydroxybutyrate ≥1.2mmol/L postpartum were considered to have SCK. Cases of retained placenta, metritis, milk fever, or mastitis during the study period were recorded and cows were categorized into 1 of 4 groups: healthy (HLT) cows had no SCK or any other health problem (n=139); cows treated for at least 1 health issue other than SCK (n=50); SCK (HYK) cows with no other health problems during transition (n=97); or subclinically ketotic plus (HYK+) cows that had SCK and 1 or more other health problems (n=53). Daily lying time was summarized by week and comparisons were made between HLT, HYK, and HYK+, respectively. We found no difference among health categories in lying time, bout frequency, or bout length fromwk -2 towk +4 relative to calving for first-lactation cows. Differences in lying time for multiparous cows were seen inwk +1, when HYK+ cows spent 92±24.0 min/d more time lying down than HLT cows, and duringwk +3 and +4 when HYK cows spent 44±16.7 and 41±18.9 min/d, respectively, more time lying down than HLT cows. Increased odds of HYK+ were found to be associated with higher parity, longer dry period, and greater stall stocking density inwk -1 and longer lying time duringwk +1. When comparing HYK to HLT cows, the same variables were associated with odds of SCK; however, lying time was not retained in the final model. These results suggest that monitoring lying time may contribute to identifying multiparous cows experiencing SCK with another health problem after calving, but may not be useful in the early detection of SCK. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Visualisation Enhancement of HoloCatT Matrix
NASA Astrophysics Data System (ADS)
Rosli, Nor Azlin; Mohamed, Azlinah; Khan, Rahmattullah
Graphology and personality psychology are two different analyses approach perform by two different groups of people, but addresses the personality of the person that were analyzed. It is of interest to visualize a system that would aid personality identification given information visualization of these two domains. Therefore, a research in identifying the relationship between those two domains has been carried out by producing the HoloCatT Matrix, a combination of graphology features and a selected personality traits approach. The objectives of this research are to identify new features of the existing HoloCatT Matrix and validate the new version of matrix with two (2) related group of experts. A set of questionnaire has been distributed to a group of Personologist to identify the relationship and an interview has been done with a Graphologist in validating the matrix. Based on the analysis, 87.5% of the relation confirmed by both group of experts and subsequently the third (3rd) version of HoloCatT Matrix is obtained.
Low-lying π∗ resonances associated with cyano groups: A CAP/SAC-CI study
NASA Astrophysics Data System (ADS)
Ehara, Masahiro; Kanazawa, Yuki; Sommerfeld, Thomas
2017-01-01
The complex absorbing potential (CAP)/symmetry-adapted cluster-configuration interaction (SAC-CI) method is applied to low-lying π∗ resonance states of molecules containing one or two cyano (CN) groups. Benchmark calculations are carried out comparing the non-variational and approximate variational approach of SAC-CI and studying the selection threshold of operators. Experimental resonance positions from electron transmission spectroscopy (ETS) are reproduced provided the anticipated deviations due to vibronic effects are taken into account. Moreover, the calculated positions and widths agree well with those obtained in previous electron scattering calculations for HCN, CH3CN and their isonitriles. Based on our results, we suggest a reassignment of the experimental ETS of fumaronitrile and malononitrile. Our present results demonstrate again that the CAP/SAC-CI method reliably predicts low-lying π∗ resonances, and regarding the total numbers of molecules and resonances investigated, it is fair to say that it is presently the most extensively used high-level method in the temporary anion field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, R. K.
2014-02-15
In this paper we derive Hirota equations associated with the simply laced affine Lie algebras g{sup (1)}, where g is one of the simply laced complex Lie algebras a{sub n},d{sub n},e{sub 6},e{sub 7} or e{sub 8}, defined by finite order automorphisms of g which we call Lepowsky automorphisms. In particular, we investigate the Hirota equations for Lepowsky automorphisms of e{sub 6} defined by the cuspidal class E{sub 6} of the Weyl group W(E{sub 6}) of e{sub 6}. We also investigate the relationship between the Lepowsky automorphisms of the simply laced complex Lie algebras g and the conjugate canonical automorphisms definedmore » by Kac. This analysis is applied to identify the canonical automorphisms for the cuspidal class E{sub 6} of e{sub 6}.« less
Coherent states for the relativistic harmonic oscillator
NASA Technical Reports Server (NTRS)
Aldaya, Victor; Guerrero, J.
1995-01-01
Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.
New non-naturally reductive Einstein metrics on exceptional simple Lie groups
NASA Astrophysics Data System (ADS)
Chen, Huibin; Chen, Zhiqi; Deng, Shaoqiang
2018-01-01
In this article, we construct several non-naturally reductive Einstein metrics on exceptional simple Lie groups, which are found through the decomposition arising from generalized Wallach spaces. Using the decomposition corresponding to the two involutions, we calculate the non-zero coefficients in the formulas of the components of Ricci tensor with respect to the given metrics. The Einstein metrics are obtained as solutions of a system of polynomial equations, which we manipulate by symbolic computations using Gröbner bases. In particular, we discuss the concrete numbers of non-naturally reductive Einstein metrics for each case up to isometry and homothety.
Commutators associated with Schrödinger operators on the nilpotent Lie group.
Ni, Tianzhen; Liu, Yu
2017-01-01
Assume that G is a nilpotent Lie group. Denote by [Formula: see text] the Schrödinger operator on G , where Δ is the sub-Laplacian, the nonnegative potential W belongs to the reverse Hölder class [Formula: see text] for some [Formula: see text] and D is the dimension at infinity of G . Let [Formula: see text] be the Riesz transform associated with L . In this paper we obtain some estimates for the commutator [Formula: see text] for [Formula: see text], where [Formula: see text] is a function space which is larger than the classical Lipschitz space.
Galaxy Groups in HST/COS-SDSS Fields
NASA Astrophysics Data System (ADS)
Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer
2018-01-01
We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.
Modification of natural matrix lac-bagasse for matrix composite films
NASA Astrophysics Data System (ADS)
Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono
2016-02-01
Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.
Kocur, Piotr; Grzeskowiak, Marcin; Wiernicka, Marzena; Goliwas, Magdalena; Lewandowski, Jacek; Łochyński, Dawid
The aim of this study was to analyze the effects of aging on the viscoelastic properties of the upper trapezius (UT) and the sternocleidomastoid (SCM) muscle during transition from lying to sitting position. The study included 39 older (mean age 67±5.9years) and 36 younger (21.1±1.8years) women. Tone, stiffness and elasticity of the UT and the SCM were measured by means of myotonometry (MyotonPRO) in lying and then, in sitting position. The results were compared using two-way analysis of variance. Irrespective of the position, older women presented with significantly higher muscle tone, stiffness and elasticity than younger subjects (P<0.05). In both groups, the transition from lying to sitting position resulted in a decrease (P<0.05) in the tone and stiffness, but not the elasticity (P>0.05) of the SCM, and stimulated an increase in the tone, stiffness and elasticity of the UT (P<0.05). The degree of changes in both study groups was similar, except from the absolute value of the UT elasticity, significantly higher increase in older women than in younger subjects (P<0.05). Age contributes to an increase in the stiffness and tone of the UT and the SCM, as well as to a decrease in the elasticity of these muscles in female subjects. In contrast, age exerts only a slight effect on the mechanical properties of both muscles during transition from lying to sitting position. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Günther, Uwe; Kuzhel, Sergii
2010-10-01
Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Kull, J A; Ingle, H D; Black, R A; Eberhart, N L; Krawczel, P D
2017-09-01
Effects of bedding with recycled sand and season on lying behaviors, hygiene, and preferences of late-lactation Holstein cows were studied. It was hypothesized that recycled sand will decrease lying time and increase hygiene scores due to increased moisture content and organic matter, and thus a preference for the control sand will be evident. Cows (n = 64) were divided into 4 groups (n = 8 per group) per season. In summer (August to September), cows were balanced by days in milk (268.1 ± 11.9 d) and parity (2.0 ± 0.2). In winter (January to February), mean DIM was 265.5 ± 34.1 d. Cows were assigned to 1 of 2 treatments using a crossover design with each treatment lasting 7 d (no-choice phase): bedding with recycled sand (RS; n = 32) or control (CO; clean sand; n = 32). Stocking density was maintained at 100%. The choice phase allowed cows to have access to either treatment with stocking density at 50%. Accelerometers recorded daily lying time, number of lying bouts per day, lying bout duration (min/bout), and total steps per day. Teat swabs, milk, sand samples, and udder hygiene scores were collected on d 0, 3, and 7 of each experimental week. Samples were cultured for streptococci, staphylococci, and gram-negative bacteria. Video data were used to assess bedding preferences. All data were analyzed using the MIXED and GLIMMIX procedures of SAS 9.4 (SAS Institute Inc., Cary, NC). Lying time was not affected by treatment, but cows did take more steps during winter. Bacterial counts were elevated for cows on recycled sand. A preference was observed for clean sand during the summer, but no preference was observed for sand during the winter. Regardless of bedding, the most commonly observed behavior was lying in the stalls, which suggested either bedding might be suitable. Caution should be used with this interpretation of preference, as sand was recycled only once. This limited reclamation was still sufficient to potentially alter the composition of sand, driving the observed preference. If these changes in composition continue, then the strength of the preference may also change. However, considering all variables within the current study, recycled sand is a viable bedding source to use for dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fetal growth and perinatal outcome of pregnancies continuing after threatened abortion.
Das, A G; Gopalan, S; Dhaliwal, L K
1996-05-01
The present study was conducted with the aim to find out the effect of threatened abortion in the current pregnancy on the subsequent perinatal outcome and follow the growth pattern of the fetuses of such complicated pregnancies. The study group consisted of 55 women with threatened abortion and 55 women with normal pregnancies formed the control group. Most of the patients presented at 6-12 weeks' gestation. The fetal growth was monitored by both clinical as well as ultrasound (USG) parameters. The mean growth rates were almost identical throughout gestation. The mean values of each parameter of the study group were found lying with 95% confidence limit values of their control group. The apparent increased incidence of low lying placenta in early pregnancy probably contributed to threatened abortion. There was no significant difference in preterm delivery, low birth-weight and overall perinatal outcome.
Quadratic time dependent Hamiltonians and separation of variables
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias.
Altman, Andrew M; Abdul Khalek, Feras J; Alt, Eckhard U; Butler, Charles E
2010-09-01
Bioprosthetic mesh used for ventral hernia repair becomes incorporated into the musculofascial edge by cellular infiltration and vascularization. Adipose tissue-derived stem cells promote tissue repair and vascularization and may increase the rate or degree of tissue incorporation. The authors hypothesized that introducing these cells into bioprosthetic mesh would result in adipose tissue-derived stem cell engraftment and proliferation and enhance incorporation of the bioprosthetic mesh. Adipose tissue-derived stem cells were isolated from the subcutaneous adipose tissue of syngeneic Brown Norway rats, expanded in vitro, and labeled with green fluorescent protein. Thirty-six additional rats underwent inlay ventral hernia repair with porcine acellular dermal matrix. Two 12-rat groups had the cells (1.0 x 10(6)) injected directly into the musculofascial/porcine acellular dermal matrix interface after repair or received porcine acellular dermal matrix on which the cells had been preseeded; the 12-rat control group received no stem cells. At 2 weeks, adipose tissue-derived stem cells in both stem cell groups engrafted, survived, migrated, and proliferated. Mean cellular infiltration into porcine acellular dermal matrix at the musculofascial/graft interface was significantly greater in the preseeded and injected stem cell groups than in the control group. Mean vascular infiltration of the porcine acellular dermal matrix was significantly greater in both stem cell groups than in the control group. Preseeded and injected adipose tissue-derived stem cells engraft, migrate, proliferate, and enhance the vascularity of porcine acellular dermal matrix grafts at the musculofascial/graft interface. These cells can thus enhance incorporation of porcine acellular dermal matrix into the abdominal wall after repair of ventral hernias.
A comparison of visual outcomes in three different types of monofocal intraocular lenses
Shetty, Vijay; Haldipurkar, Suhas S; Gore, Rujuta; Dhamankar, Rita; Paik, Anirban; Setia, Maninder Singh
2015-01-01
AIM To compare the visual outcomes (distance and near) in patients opting for three different types of monofocal intraocular lens (IOL) (Matrix Aurium, AcrySof single piece, and AcrySof IQ lens). METHODS The present study is a cross-sectional analysis of secondary clinical data collected from 153 eyes (52 eyes in Matrix Aurium, 48 in AcrySof single piece, and 53 in AcrySof IQ group) undergoing cataract surgery (2011-2012). We compared near vision, distance vision, distance corrected near vision in these three types of lenses on day 15 (±3) post-surgery. RESULTS About 69% of the eyes in the Matrix Aurium group had good uncorrected distance vision post-surgery; the proportion was 48% and 57% in the AcrySof single piece and AcrySof IQ group (P=0.09). The proportion of eyes with good distance corrected near vision were 38%, 33%, and 15% in the Matrix Aurium, AcrySof single piece, and AcrySof IQ groups respectively (P=0.02). Similarly, The proportion with good “both near and distance vision” were 38%, 33%, and 15% in the Matrix Aurium, AcrySof single piece, and AcrySof IQ groups respectively (P=0.02). It was only the Matrix Aurium group which had significantly better both “distance and near vision” compared with the AcrySof IQ group (odds ratio: 5.87, 95% confidence intervals: 1.68 to 20.56). CONCLUSION Matrix Aurium monofocal lenses may be a good option for those patients who desire to have a good near as well as distance vision post-surgery. PMID:26682168
A comparison of visual outcomes in three different types of monofocal intraocular lenses.
Shetty, Vijay; Haldipurkar, Suhas S; Gore, Rujuta; Dhamankar, Rita; Paik, Anirban; Setia, Maninder Singh
2015-01-01
To compare the visual outcomes (distance and near) in patients opting for three different types of monofocal intraocular lens (IOL) (Matrix Aurium, AcrySof single piece, and AcrySof IQ lens). The present study is a cross-sectional analysis of secondary clinical data collected from 153 eyes (52 eyes in Matrix Aurium, 48 in AcrySof single piece, and 53 in AcrySof IQ group) undergoing cataract surgery (2011-2012). We compared near vision, distance vision, distance corrected near vision in these three types of lenses on day 15 (±3) post-surgery. About 69% of the eyes in the Matrix Aurium group had good uncorrected distance vision post-surgery; the proportion was 48% and 57% in the AcrySof single piece and AcrySof IQ group (P=0.09). The proportion of eyes with good distance corrected near vision were 38%, 33%, and 15% in the Matrix Aurium, AcrySof single piece, and AcrySof IQ groups respectively (P=0.02). Similarly, The proportion with good "both near and distance vision" were 38%, 33%, and 15% in the Matrix Aurium, AcrySof single piece, and AcrySof IQ groups respectively (P=0.02). It was only the Matrix Aurium group which had significantly better both "distance and near vision" compared with the AcrySof IQ group (odds ratio: 5.87, 95% confidence intervals: 1.68 to 20.56). Matrix Aurium monofocal lenses may be a good option for those patients who desire to have a good near as well as distance vision post-surgery.
A rough set approach for determining weights of decision makers in group decision making
Yang, Qiang; Du, Ping-an; Wang, Yong; Liang, Bin
2017-01-01
This study aims to present a novel approach for determining the weights of decision makers (DMs) based on rough group decision in multiple attribute group decision-making (MAGDM) problems. First, we construct a rough group decision matrix from all DMs’ decision matrixes on the basis of rough set theory. After that, we derive a positive ideal solution (PIS) founded on the average matrix of rough group decision, and negative ideal solutions (NISs) founded on the lower and upper limit matrixes of rough group decision. Then, we obtain the weight of each group member and priority order of alternatives by using relative closeness method, which depends on the distances from each individual group member’ decision to the PIS and NISs. Through comparisons with existing methods and an on-line business manager selection example, the proposed method show that it can provide more insights into the subjectivity and vagueness of DMs’ evaluations and selections. PMID:28234974
NASA Astrophysics Data System (ADS)
Inoue, Motoki; Takayanagi, Mariko; Fujiu, Katsuhito; Manabe, Ichiro; Nagai, Ryozo; Taguchi, Tetsushi
2012-12-01
Tamibarotene-loaded biodegradable matrices with antithrombogenic and drug-releasing properties were prepared in a crosslinking reaction between amino groups of alkali-treated collagen (AlCol) and active ester groups of trisuccinimidyl citrate. The resulting matrices were characterized by their residual amino group concentrations, swelling ratios and thermal, antithrombogenic and drug-releasing properties. It was clarified that the addition of tamibarotene does not inhibit matrix formation. After immersion in water, the swelling ratio of a matrix became lower than that prior to immersion. Thermal analysis indicated that AlCol interacted with tamibarotene. The addition of tamibarotene to the matrix did not influence the antithrombogenic property of the resulting matrix. A matrix with a high crosslinking density had a prolonged tamibarotene elution time. These results demonstrate that tamibarotene-loaded matrices have great potential as a coating material for drug-eluting stents.
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; ...
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks
NASA Astrophysics Data System (ADS)
Johnson, Joseph
2016-03-01
We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.
Linear mixed-effects modeling approach to FMRI group analysis
Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.
2013-01-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. PMID:23376789
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. Published by Elsevier Inc.
Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats
Jarman, Simon N.; McInnes, Julie C.; Faux, Cassandra; Polanowski, Andrea M.; Marthick, James; Deagle, Bruce E.; Southwell, Colin; Emmerson, Louise
2013-01-01
The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches. PMID:24358158
Adélie penguin population diet monitoring by analysis of food DNA in scats.
Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise
2013-01-01
The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.
Peker, Elif; Karaca, Inci Rana; Yildirim, Benay
2016-01-01
The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation than collagenated heterologous bone graft.
Validation of thigh-based accelerometer estimates of postural allocation in 5-12 year-olds.
van Loo, Christiana M T; Okely, Anthony D; Batterham, Marijka J; Hinkley, Trina; Ekelund, Ulf; Brage, Søren; Reilly, John J; Jones, Rachel A; Janssen, Xanne; Cliff, Dylan P
2017-03-01
To validate activPAL3™ (AP3) for classifying postural allocation, estimating time spent in postures and examining the number of breaks in sedentary behaviour (SB) in 5-12 year-olds. Laboratory-based validation study. Fifty-seven children completed 15 sedentary, light- and moderate-to-vigorous intensity activities. Direct observation (DO) was used as the criterion measure. The accuracy of AP3 was examined using a confusion matrix, equivalence testing, Bland-Altman procedures and a paired t-test for 5-8y and 9-12y. Sensitivity of AP3 was 86.8%, 82.5% and 85.3% for sitting/lying, standing, and stepping, respectively, in 5-8y and 95.3%, 81.5% and 85.1%, respectively, in 9-12y. Time estimates of AP3 were equivalent to DO for sitting/lying in 9-12y and stepping in all ages, but not for sitting/lying in 5-12y and standing in all ages. Underestimation of sitting/lying time was smaller in 9-12y (1.4%, limits of agreement [LoA]: -13.8 to 11.1%) compared to 5-8y (12.6%, LoA: -39.8 to 14.7%). Underestimation for stepping time was small (5-8y: 6.5%, LoA: -18.3 to 5.3%; 9-12y: 7.6%, LoA: -16.8 to 1.6%). Considerable overestimation was found for standing (5-8y: 36.8%, LoA: -16.3 to 89.8%; 9-12y: 19.3%, LoA: -1.6 to 36.9%). SB breaks were significantly overestimated (5-8y: 53.2%, 9-12y: 28.3%, p<0.001). AP3 showed acceptable accuracy for classifying postures, however estimates of time spent standing were consistently overestimated and individual error was considerable. Estimates of sitting/lying were more accurate for 9-12y. Stepping time was accurately estimated for all ages. SB breaks were significantly overestimated, although the absolute difference was larger in 5-8y. Surveillance applications of AP3 would be acceptable, however, individual level applications might be less accurate. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Wang, Tiecheng; Zhang, Shihao
2018-01-08
Second harmonic generation from the two-layer structure where a transition-metal dichalcogenide monolayer is put on a one-dimensional grating has been studied. This grating supports bound states in the continuum which have no leakage lying within the continuum of radiation modes, we can enhance the second harmonic generation from the transition-metal dichalcogenide monolayer by more than four orders of magnitude based on the critical field enhancement near the bound states in the continuum. In order to complete this calculation, the scattering matrix theory has been extended to include the nonlinear effect and the scattering matrix of a two-dimensional material including nonlinear terms; furthermore, two methods to observe the bound states in the continuum are considered, where one is tuning the thickness of the grating and the other is changing the incident angle of the electromagnetic wave. We have also discussed various modulation of the second harmonic generation enhancement by adjusting the azimuthal angle of the transition-metal dichalcogenide monolayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Y.; Horwitz, L. P.; Eisenberg, E.
We discuss the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips S-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to these resonances (eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips Hilbert space, and therefore all physical properties of the resonant states can be computed. We show that the Lax-Phillips S-matrixmore » is unitarily related to the S-matrix of standard scattering theory by a unitary transformation parametrized by the spectral variable σ of the Lax-Phillips theory. Analytic continuation in σ has some of the properties of a method developed some time ago for application to dilation analytic potentials. We work out an illustrative example using a Lee-Friedrichs model for the underlying dynamical system.« less
The influence of bacteria on struvite crystal habit and its importance in urinary stone formation
NASA Astrophysics Data System (ADS)
Clapham, L.; McLean, R. J. C.; Nickel, J. C.; Downey, J.; Costerton, J. W.
1990-07-01
Infection-induced urinary stones form as a result of a urinary tract infection by urease-producing bacteria. These stones are not totally crystalline in nature but rather consist of an agglomeration of bacteria, organic matrix, and crystal of struvite (MgNH 4PO 4· 6H 2O). Crystal formation is related to the ability of the bacteria to effect an increase in the urine pH. Another equally important bacterial role lies in their formation of a 'biofilm' which later becomes the organic matrix constituent of the stone. Results of the present in vitro study indicate that crystals are formed more readily if produced within the bacterial biofilm than in the surrounding urine. It is proposed that supersaturation, due in part to a bacterial-induced pH increase and in part to the metal binding tendency of the biofilm, leads to crystal formation via a gel growth mechanism within the biofilm itself. In time further bacterial cell division, microcolony.
Levine, Pascale; Fried, Karen; Krevitt, Lane D; Wang, Beverly; Wenig, Bruce M
2014-01-01
Mammary analogue secretory carcinoma (MASC) is a newly described rare salivary gland tumor, which shares morphologic features with acinic cell carcinoma, low-grade cystadenocarcinoma, and secretory carcinoma of the breast. This is the first reported case of MASC of an accessory parotid gland detected by aspiration biopsy with radiologic and histologic correlation in a 34-year-old patient. Sonographically-guided aspiration biopsy showed cytologic features mimicking those of low-grade mucoepidermoid carcinoma, including sheets of bland epithelial cells, dissociated histiocytoid cells with intracytoplasmic mucinous material, and spindle cells lying in a web-like matrix. Histologic sections showed a circumscribed tumor with microcystic spaces lined by bland uniform epithelial cells and containing secretory material. The tumor cells expressed mammaglobin and BRST-2. The cytologic features, differential diagnosis, and pitfalls are discussed. The pathologic stage was pT1N0. The patient showed no evidence of disease at 1 year follow-up. Copyright © 2012 Wiley Periodicals, Inc.
Improved Silica Aerogel Composite Materials
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven
2008-01-01
A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.
CCOMP: An efficient algorithm for complex roots computation of determinantal equations
NASA Astrophysics Data System (ADS)
Zouros, Grigorios P.
2018-01-01
In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.
Normal and radial impact of composites with embedded penny-shaped cracks
NASA Technical Reports Server (NTRS)
Sih, G. C.
1979-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. The material properties of the layers are chosen such that the crack lies in a layer of matrix material while the surrounding material possesses the average elastic properties of a two-phase medium consisting of a large number of fibers embedded in the matrix. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress intensity factors for a through-crack.
Realizability of a model in infinite statistics
NASA Astrophysics Data System (ADS)
Zagier, Don
1992-06-01
Following Greenberg and others, we study a space with a collection of operators a(k) satisfying the “ q-mutator relations” a(l)a † (k)a(l)=δ k,l (corresponding for q=±1 to classical Bose and Fermi statistics). We show that the n!×n! matrix A n (q) representing the scalar products of n-particle states is positive definite for all n if q lies between -1 and +1, so that the commutator relations have a Hilbert space representation in this case (this has also been proved by Fivel and by Bozejko and Speicher). We also give an explicit factorization of A n (q) as a product of matrices of the form (1-q jT)±1 with 1≦ j≦ n and T a permutation matrix. In particular, A n (q) is singular if and only if q M=1 for some integer M of the form k 2- k, 2≦ k≦ n.
Gadea, Marien; Aliño, Marta; Espert, Raúl; Salvador, Alicia
2015-01-01
This study presents the relation between the facial expression of a group of children when they told a lie and the accuracy in detecting the lie by a sample of adults. To evaluate the intensity and type of emotional content of the children’s faces, we applied an automated method capable of analyzing the facial information from the video recordings (FaceReader 5.0 software). The program classified videos as showing a neutral facial expression or an emotional one. There was a significant higher mean of hits for the emotional than for the neutral videos, and a significant negative correlation between the intensity of the neutral expression and the number of hits from the detectors. The lies expressed with emotional facial expression were more easily recognized by adults than the lies expressed with a “poker face”; thus, the less expressive the child the harder it was to guess. The accuracy of the lie detectors was then correlated with their subclinical traits of personality disorders, to find that participants scoring higher in the dependent personality were significantly better lie detectors. A non-significant tendency for women to discriminate better was also found, whereas men tended to be more suspicious than women when judging the children’s veracity. This study is the first to automatically decode the facial information of the lying child and relate these results with personality characteristics of the lie detectors in the context of deceptive behavior research. Implications for forensic psychology were suggested: to explore whether the induction of an emotion in a child during an interview could be useful to evaluate the testimony during legal trials. PMID:26284012
Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M
2018-01-01
Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our results justify further investigations to potentially use local application of zoledronic acid in future clinical studies.
Similarity solutions for systems arising from an Aedes aegypti model
NASA Astrophysics Data System (ADS)
Freire, Igor Leite; Torrisi, Mariano
2014-04-01
In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.
Oktem, Caglar; Oto, Sibel; Toru, Serap; Bakar, Coskun; Ozdemir, Handan; Akova, Yonca Aydin
2016-01-01
To evaluate the efficacy and safety of suramin, genistein and collagen matrix for the prevention of inflammation, the reduction of fibrosis and the delay in adjustment after strabismus surgery on a rabbit model. By using an adjustable suture technique, a recession of the superior rectus muscle (SRM) was made in 36 eyes of 18 rabbits. Three study groups were created using genistein, suramin and collagen matrix (n = 6 per group). Two control groups utilized dimethyl sulphoxide (DMSO) (n = 6) and balanced salt solution (n = 12). The adjustments and measurements were made on days 2, 7, 14. After enucleation was done on day 21, the degree of inflammation was evaluated quantitatively in histopathological sections and immunohistochemical investigations were performed for tissue expression of cytoplasmic vascular endothelial growth factor (VEGF), MAC 387, TGF-β and bFGF. The adhesions between conjunctiva and SRM were significantly less in the collagen matrix and suramin groups (p = 0.002) and adhesions between the sclera and SRM were considerably reduced in the genistein and DMSO groups (p = 0.006) on day 7. Force exerted for adjustment was significantly less in the collagen matrix and suramin groups on day 14 (p = 0.006). Expression of b-FGF was significantly lower in the conjunctival epithelium in the suramin and genistein groups (p = 0.0001 for both). TGF-β was significantly lower (p = 0.001) in the suramin group and VEGF expression was totally absent. MAC 387 expression was lower in the genistein and suramin groups (p = 0.0001). Suramin, genistein and collagen matrix successfully reduce adhesions, and facilitate adjustment following recession surgery. Both suramin and genistein effectively suppress growth factor expression, while collagen matrix offers the longest time interval for adjustability after strabismus surgery.
Dai, Linghui; He, Zhenming; Zhang, Xin; Hu, Xiaoqing; Yuan, Lan; Qiang, Ming; Zhu, Jingxian; Shao, Zhenxing; Zhou, Chunyan; Ao, Yingfang
2014-03-01
Cartilage repair still presents a challenge to clinicians and researchers alike. A more effective, simpler procedure that can produce hyaline-like cartilage is needed for articular cartilage repair. A technique combining microfracture with a biomaterial scaffold of perforated decalcified cortical-cancellous bone matrix (DCCBM; composed of cortical and cancellous parts) would create a 1-step procedure for hyaline-like cartilage repair. Controlled laboratory study. For the in vitro portion of this study, mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates of New Zealand White rabbits. Scanning electron microscopy (SEM), confocal microscopy, and 1,9-dimethylmethylene blue assay were used to assess the attachment, proliferation, and cartilage matrix production of MSCs grown on a DCCBM scaffold. For the in vivo experiment, full-thickness defects were produced in the articular cartilage of the trochlear groove of 45 New Zealand White rabbits, and the rabbits were then assigned to 1 of 3 treatment groups: perforated DCCBM combined with microfracture (DCCBM+M group), perforated DCCBM alone (DCCBM group), and microfracture alone (M group). Five rabbits in each group were sacrificed at 6, 12, or 24 weeks after the operation, and the repair tissues were analyzed by histological examination, assessment of matrix staining, SEM, and nanoindentation of biomechanical properties. The DCCBM+M group showed hyaline-like articular cartilage repair, and the repair tissues appeared to have better matrix staining and revealed biomechanical properties close to those of the normal cartilage. Compared with the DCCBM+M group, there was unsatisfactory repair tissues with less matrix staining in the DCCBM group and no matrix staining in the M group, as well as poor integration with normal cartilage and poor biomechanical properties. The DCCBM scaffold is suitable for MSC growth and hyaline-like cartilage repair induction when combined with microfracture. Microfracture combined with a DCCBM scaffold is a promising method that can be performed and adopted into clinical treatment for articular cartilage injuries.
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb.
Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi
2018-01-29
We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points [Formula: see text] and [Formula: see text] are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl 3 , a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.
LETTER TO THE EDITOR: Landau levels on the hyperbolic plane
NASA Astrophysics Data System (ADS)
Fakhri, H.; Shariati, M.
2004-11-01
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength.
Development and Validation of a Job Exposure Matrix for Physical Risk Factors in Low Back Pain
Solovieva, Svetlana; Pehkonen, Irmeli; Kausto, Johanna; Miranda, Helena; Shiri, Rahman; Kauppinen, Timo; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira
2012-01-01
Objectives The aim was to construct and validate a gender-specific job exposure matrix (JEM) for physical exposures to be used in epidemiological studies of low back pain (LBP). Materials and Methods We utilized two large Finnish population surveys, one to construct the JEM and another to test matrix validity. The exposure axis of the matrix included exposures relevant to LBP (heavy physical work, heavy lifting, awkward trunk posture and whole body vibration) and exposures that increase the biomechanical load on the low back (arm elevation) or those that in combination with other known risk factors could be related to LBP (kneeling or squatting). Job titles with similar work tasks and exposures were grouped. Exposure information was based on face-to-face interviews. Validity of the matrix was explored by comparing the JEM (group-based) binary measures with individual-based measures. The predictive validity of the matrix against LBP was evaluated by comparing the associations of the group-based (JEM) exposures with those of individual-based exposures. Results The matrix includes 348 job titles, representing 81% of all Finnish job titles in the early 2000s. The specificity of the constructed matrix was good, especially in women. The validity measured with kappa-statistic ranged from good to poor, being fair for most exposures. In men, all group-based (JEM) exposures were statistically significantly associated with one-month prevalence of LBP. In women, four out of six group-based exposures showed an association with LBP. Conclusions The gender-specific JEM for physical exposures showed relatively high specificity without compromising sensitivity. The matrix can therefore be considered as a valid instrument for exposure assessment in large-scale epidemiological studies, when more precise but more labour-intensive methods are not feasible. Although the matrix was based on Finnish data we foresee that it could be applicable, with some modifications, in other countries with a similar level of technology. PMID:23152793
[In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure].
Dunda, S E; Ranker, M; Pallua, N; Machens, H-G; Ravichandran, A; Schantz, J-T
2015-12-01
Biological and physical characteristics of matrices are one essential factor in creating bioartificial tissue. In this study, a new 3-dimensional cellulose matrix (Xellulin(®)) was tested in terms of biocompatibility and applicability for tissue engineering in vitro and in vivo. The tested matrix Xellulin(®) is a natural hydrological gel-matrix containing bacterial cellulose and water. To evaluate the cell biocompatibilty, cell adherence and proliferation characteristics in vitro, the matrix was cultured with human fibroblasts. Further in vivo studies were carried out by transplanting preadipocytes of 4- to 6-week-old Wistar rats with 3 different conditions: a) Xellulin(®) including 500 000 preadipocytes subcutaneous, b) Xellulin(®) including 500 000 preadipocytes within an in vivo bioreactor chamber, c) Xellulin(®) without cells subcutaneous as control. After explantation on day 14 histomorphological and immunohistochemical evaluations were performed. In vitro study revealed an excellent biocompatibility with good cell adherence of the fibroblasts on the matrix and evidence of cell proliferation and creation of a 3-dimensional cell network. In vivo neocapillarisation could be shown in all groups with evidence of erythrocytes (H/E staining) and endothelial vascular cells (RECA-1-staining). A significantly higher vascular density was shown in vascularised bioreactor group (18.4 vessels/100 000 µm(2) (group b) vs. 8.1 (group a), p<0.05). Cell density was the highest in the vascularised group, but without significant values. No immunogenic reaction to the matrix was noticed. The promising in vitro results concerning cell adherence and proliferation on the tested matrix could be confirmed in vivo with an evidence of 3-dimensional neocapillarisation. Cell survival was higher in the vascularised group, but without significance. Long-term tests (28-42 days) need to be carried out to evaluate long-term cell survival and the matrix stability. Furthermore, studies concerning the implementation of the matrix within anatomic structures as well as long-term biocompatibility are needed. © Georg Thieme Verlag KG Stuttgart · New York.
Study of a novel three-dimensional scaffold to repair bone defect in rabbit.
Chen, Yushu; Bai, Bo; Zhang, Shujiang; Ye, Jing; Zhai, Haohan; Chen, Yi; Zhang, Linlin; Zeng, Yanjun
2014-05-01
Both decalcified bone matrix (DBM) and fibrin gel possess good biocompatibility, so they are used as scaffolds to culture bone marrow mesenchymal stem cells (BMSCs). The feasibility and efficacy of using compound material being made of decalcified bone matrix and fibrin gel as a three-dimensional scaffold for bone growth were investigated. BMSCs were isolated from the femur of rabbit, then seeded in prepared scaffolds after incubation for 28 days in vitro. In vivo: 30 New Zealand White Rabbits received bone defect in left radius and divided three treatment groups randomly: (1) BMSCs/decalcified bone matrix/fibrin glue as experimental group; (2) decalcified bone matrix/fibrin glue without cells as control group; (3) nothing was implanted into the bone defects as blank group. The observation period of specimens was 12 weeks, and were analyzed bone formation in terms of serum proteomics (2D-PAGE and MALDI-TOF-TOF-MS), hematoxylin-eosin (HE) staining, ALP staining, and Osteopontin immunofluorescence detection. The experimental group present in three peculiar kinds of proteins, whose Geninfo identifier (GI) number were 136466, 126722803, and 126723746, respectively, correspond to TTR protein, ALB protein, RBP4 protein, and the histological inspections were superior to the other group. The content of osteopontin in experimental group was significantly higher than control group (p < 0.05). The overall results indicated that a combined material being made of BMSCs/decalcified bone matrix/fibrin glue can result in successful bone formation and decalcified bone matrix/fibrin glue admixtures can be used as a scaffold for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.
Culture moderates changes in linguistic self-presentation and detail provision when deceiving others
Larner, Samuel; Conchie, Stacey M.; Menacere, Tarek
2017-01-01
Change in our language when deceiving is attributable to differences in the affective and cognitive experience of lying compared to truth telling, yet these experiences are also subject to substantial individual differences. On the basis of previous evidence of cultural differences in self-construal and remembering, we predicted and found evidence for cultural differences in the extent to which truths and lies contained self (versus other) references and perceptual (versus social) details. Participants (N = 320) of Black African, South Asian, White European and White British ethnicity completed a catch-the-liar task in which they provided genuine and fabricated statements about either their past experiences or an opinion and counter-opinion. Across the four groups we observed a trend for using more/fewer first-person pronouns and fewer/more third-person pronouns when lying, and a trend for including more/fewer perceptual details and fewer/more social details when lying. Contrary to predicted cultural differences in emotion expression, all participants showed more positive affect and less negative affect when lying. Our findings show that liars deceive in ways that are congruent with their cultural values and norms, and that this may result in opposing changes in behaviour. PMID:28680668
NASA Astrophysics Data System (ADS)
Tsao, Thomas R.; Tsao, Doris
1997-04-01
In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.
Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study
Zhang, Hui; Yu, Rena C.
2016-01-01
It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30∘ and 60∘. Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle. PMID:28773921
NASA Astrophysics Data System (ADS)
Cioslowski, Jerzy; Strasburger, Krzysztof
2018-04-01
Electronic properties of several states of the five- and six-electron harmonium atoms are obtained from large-scale calculations employing explicitly correlated basis functions. The high accuracy of the computed energies (including their components), natural spinorbitals, and their occupation numbers makes them suitable for testing, calibration, and benchmarking of approximate formalisms of quantum chemistry and solid state physics. In the case of the five-electron species, the availability of the new data for a wide range of the confinement strengths ω allows for confirmation and generalization of the previously reached conclusions concerning the performance of the presently known approximations for the electron-electron repulsion energy in terms of the 1-matrix that are at heart of the density matrix functional theory (DMFT). On the other hand, the properties of the three low-lying states of the six-electron harmonium atom, computed at ω = 500 and ω = 1000, uncover deficiencies of the 1-matrix functionals not revealed by previous studies. In general, the previously published assessment of the present implementations of DMFT being of poor accuracy is found to hold. Extending the present work to harmonically confined systems with even more electrons is most likely counterproductive as the steep increase in computational cost required to maintain sufficient accuracy of the calculated properties is not expected to be matched by the benefits of additional information gathered from the resulting benchmarks.
Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study.
Zhang, Hui; Yu, Rena C
2016-09-26
It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb's friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.
Upon Generating (2+1)-dimensional Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Bai, Yang; Wu, Lixin
2016-06-01
Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, B.S.; Seshadri, T.P.; Sakore, T.D.
1979-01-01
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3'-5') guanosine (iodoCpG). The acridine orange-iodoCpG crystals are monoclinic, space group P2/sub 1/, with unit cell dimensions a = 14.36 A, b = 19.64 A, c = 20.67 A, ..beta.. = 102.5. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A, b = 22.23 A, c = 18.42 A, ..beta.. = 123.3. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. Acridine orange forms an intercalative structure with iodoCpG but the acridinemore » nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus. Base-pairs above and below the drug are separated by about 6.8 A and are twisted about 10/sup 0/. Proflavine demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino- groups on proflavine with phosphate oxygen atoms on the dinucleotide. Base-pairs above and below the intercalative proflavine molecule are twisted about 36/sup 0/. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed. We propose a proflavine-DNA and an acridine orange-DNA binding model. We will describe these models in detail in this paper.« less
Fan cooling of the resting area in a free stalls dairy barn
NASA Astrophysics Data System (ADS)
Calegari, Ferdinando; Calamari, Luigi; Frazzi, Ermes
2014-08-01
This summer study evaluated the effect of providing additional fans (cooling) in the resting area within a free-stall dairy barn that had fans and sprinklers in the feeding area and paddock availability. Thirty cows were divided into two homogenous groups and kept in two pens: one had the resting area equipped with two fans (FAN) while no fans were added to the other resting area (CON). Microclimatic parameters, rectal temperature (RT), breathing rate (BR), milk yield, and milk pH traits were recorded. Time budgeting and the behaviour of the cows (time spent in the feeding area, standing and lying in other areas) were also recorded using digital video technology. Two slight-to-moderate heat waves were observed. During the hottest period the daily maximum temperature recorded was 33.5 °C and the daily maximum THI was 81.6. During this period, the BR and RT increased only slightly in both groups, with lower BR (n.s.) in FAN compared with CON. Milk yield was better maintained (n.s.) in FAN compared with CON during the hottest period. The FAN cows showed a greater ( P < 0.05) lying time in the free stalls (9.5 and 8.6 h/day in FAN and CON, respectively), whereas CON cows made greater ( P < 0.05) use of the paddock during evening and late evening hours. Consequently, the total daily lying time was 13.5 h/day in both groups. In conclusion, the results suggest that using fans in the resting area improves cow comfort, which increases use of the resting area. The lying time results also suggest that the benefits of providing ventilation in the resting area might be more evident in barns where there is no paddock.
Wear of matrix overdenture attachments after one to eight years of clinical use.
Fromentin, Olivier; Lassauzay, Claire; Nader, Samer Abi; Feine, Jocelyne; de Albuquerque, Rubens F
2012-03-01
Matrices of unsplinted attachment systems are generally reported to be the weak component of implant overdentures, often requiring frequent maintenance. Clinical wear results in reduced retention of the prosthesis, requiring activation or renewal of the matrix to restore the initial level of retention. The purpose of this retrospective study was to measure the wear of the matrix of a ball attachment after various periods of clinical wear. Seventy specimens of 3 groups of matrices of ball attachments that had been in use for mean periods of 12.3 months (1Y group, n=26), 39.0 months (3Y group, n=28) and 95.6 months (8Y group, n=16) were retrieved from 35 patients (2 specimens per patient) and measured on a coordinate measuring machine equipped with a touch trigger probe. Ten unused matrices were used as controls (CTRL group). The external and internal matrix diameters and deviations from circularity were measured. For the various time periods, the decreases in matrix thickness were calculated and compared with controls. Kruskal-Wallis 1-way ANOVA by ranks, followed by the Mann-Whitney post hoc tests, were conducted to test for differences in median values among groups (α =.05). For the internal upper diameter of the matrices tested, the Kruskal-Wallis and Mann-Whitney tests revealed significant differences for the 3 groups compared to the controls. For group 1Y, a significant difference (P<.001) of the internal upper diameter was found compared to the CTRL group. Compared to the controls, the nonparametric analyses for groups 3Y and 8Y showed significant differences for the internal upper diameter (P<.001) and deviations from circularity (P<.001). For groups 1Y, 3Y and 8Y, matrix thickness losses were 07, 47 and 70 μm, respectively. Within the limitations of this study, it was observed that one year of clinical wear had limited effect on the ball attachment matrices. Three to 8 years of clinical use resulted in a significant decrease of matrix thickness, especially at the tip of the retentive lamellae. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Considerations Underlying the Use of Mixed Group Validation
ERIC Educational Resources Information Center
Jewsbury, Paul A.; Bowden, Stephen C.
2013-01-01
Mixed Group Validation (MGV) is an approach for estimating the diagnostic accuracy of tests. MGV is a promising alternative to the more commonly used Known Groups Validation (KGV) approach for estimating diagnostic accuracy. The advantage of MGV lies in the fact that the approach does not require a perfect external validity criterion or gold…
NASA Astrophysics Data System (ADS)
Huang, Ding-jiang; Ivanova, Nataliya M.
2016-02-01
In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.
American Mathematics from 1940 to the Day Before Yesterday
ERIC Educational Resources Information Center
Ewing, J. H.; And Others
1976-01-01
Ten recent results in pure mathematics are described, covering the continuum hypothesis, Diophantine equations, simple groups, resolution of singularities, Weil conjectures, Lie groups, Poincare conjecture, exotic spheres, differential equations, and the index theorem. Proofs are omitted, but references are provided. (DT)
Kim, Maru; Song, In-Guk; Kim, Hyung Jin
2015-06-01
The aim of this study was to compare the result of electrocauterization and curettage, which can be done with basic instruments. Patients with ingrown nail were randomized to 2 groups. In the first group, nail matrix was removed by curettage, and the second group, nail matrix was removed by electrocautery. A total of 61 patients were enrolled; 32 patients were operated by curettage, and 29 patients were operated by electrocautery. Wound infections, as early complication, were found in 15.6% (5/32) of the curettage group, 10.3% (3/29) of the electrocautery group patients each (P = .710). Nonrecurrence was observed in 93.8% (30/32) and 86.2% (25/29) of the curettage and electrocautery groups, respectively, (lower limit of 1-sided 90% confidence interval = -2.3% > -15% [noninferiority margin]). To remove nail matrix, the curettage is effective as well as the electrocauterization. Further study is required to determine the differences between the procedures. © The Author(s) 2014.
Freestall maintenance: effects on lying behavior of dairy cattle.
Drissler, M; Gaworski, M; Tucker, C B; Weary, D M
2005-07-01
In a series of 3 experiments, we documented how sand-bedding depth and distribution changed within freestalls after new bedding was added and the effect of these changes on lying behavior. In experiment 1, we measured changes in bedding depth over a 10-d period at 43 points in 24 freestalls. Change in depth of sand was the greatest the day after new sand was added and decreased over time. Over time, the stall surface became concave, and the deepest part of the stall was at the center. Based on the results of experiment 1, we measured changes in lying behavior when groups of cows had access to freestalls with sand bedding that was 0, 3.5, 5.2, or 6.2 cm at the deepest point, below the curb, while other dimensions remained fixed. We found that daily lying time was 1.15 h shorter in stalls with the lowest levels of bedding compared with stalls filled with bedding. Indeed, for every 1-cm decrease in bedding, cows spent 11 min less time lying down during each 24-h period. In a third experiment, we imposed 4 treatments that reflected the variation in sand depth within stalls: 0, 6.2, 9.9, and 13.7 cm below the curb. Again, lying times reduced with decreasing bedding, such that cows using the stalls with the least amount of bedding (13.7 cm below curb) spent 2.33 h less time per day lying down than when housed with access to freestalls filled with sand (0 cm below curb).
Moura, Fernando Silva; Aya, Julio Cesar Ceballos; Fleury, Agenor Toledo; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez
2010-02-01
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
NASA Astrophysics Data System (ADS)
Irgaziev, B. F.; Orlov, Yu. V.
2015-02-01
Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing an important role in nuclear physics and astrophysics. We derive a new useful relationship between ANCs of the Gamow radial wave function and the renormalized (due to the Coulomb interaction) Coulomb-nuclear partial scattering amplitude. We use an analytical approximation in the form of a series for the nonresonant part of the phase shift which can be analytically continued to the point of an isolated resonance pole in the complex plane of the momentum. Earlier, this method which we call the S -matrix pole method was used by us to find the resonance pole energy. We find the corresponding fitting parameters for the 5He,5Li , and 16O concrete resonance states. Additionally, based on the theory of the effective range, we calculate the parameters of the p3 /2 and p1 /2 resonance states of the nuclei 5He and 5Li and compare them with the results obtained by the S -matrix pole method. ANC values are found which can be used to calculate the reaction rate through the 16O resonances which lie slightly above the threshold for the α 12C channel.
Structural analysis of reactionary dentin formed in response to polymicrobial invasion
Charadram, Nattida; Austin, Christine; Trimby, Patrick; Simonian, Mary; Swain, Michael V.; Hunter, Neil
2013-01-01
In response to microbial invasion of dentin odontoblasts secrete an altered calcified matrix termed reactionary dentin (Rd). 3D reconstruction of focused-ion-beam scanning electron microscopy (FIB-SEM) image slices revealed helical tubular structures in Rd that contrasted with regular cylindrical tubules characteristic of dentin from healthy teeth and affected so-called physiological dentin (Pd) lying exterior to Rd. This helical structure in Rd provided effective constriction of tubule lumen diameter that formed a barrier to bacterial advance towards the dental pulp. SEM of resin cast preparations revealed altered extension of odontoblast processes through Rd. The distribution of key mineral elements was studied by combination of 3D reconstruction of focused-ion-beam based X-ray microanalysis (FIB-EDS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). There was a marked redistribution of calcium and phosphorous in Rd together with an increase of diffusely deposited magnesium compatible with the mineral deposition phase of synthesis of this altered matrix. Changes in tubule structure and mineral content characteristic of Rd are consistent with reduced hardness and lower elastic modulus reported for this matrix. Findings provide insight into the unique structure of Rd synthesised as a primary response to infection. PMID:23261402
Huang, Ming-Der; Huang, Anthony H.C.
2015-01-01
Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins. PMID:26232488
Variational optimization algorithms for uniform matrix product states
NASA Astrophysics Data System (ADS)
Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.
2018-01-01
We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
Extended symmetry analysis of generalized Burgers equations
NASA Astrophysics Data System (ADS)
Pocheketa, Oleksandr A.; Popovych, Roman O.
2017-10-01
Using enhanced classification techniques, we carry out the extended symmetry analysis of the class of generalized Burgers equations of the form ut + uux + f(t, x)uxx = 0. This enhances all the previous results on symmetries of these equations and includes the description of admissible transformations, Lie symmetries, Lie and nonclassical reductions, hidden symmetries, conservation laws, potential admissible transformations, and potential symmetries. The study is based on the fact that the class is normalized, and its equivalence group is finite-dimensional.
Some More Solutions of Burgers' Equation
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Kumar, Raj
2015-01-01
In this work, similarity solutions of viscous one-dimensional Burgers' equation are attained by using Lie group theory. The symmetry generators are used for constructing Lie symmetries with commuting infinitesimal operators which lead the governing partial differential equation (PDE) to ordinary differential equation (ODE). Most of the constructed solutions are found in terms of Bessel functions which are new as far as authors are aware. Effect of various parameters in the evolutional profile of the solutions are shown graphically and discussed them physically.
Reduction of quantum systems and the local Gauss law
NASA Astrophysics Data System (ADS)
Stienstra, Ruben; van Suijlekom, Walter D.
2018-05-01
We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796-1808, 2002; J Math Phys 46:032303, 2004).
Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa
2018-01-01
A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
Schütz, K E; Cox, N R
2014-05-01
Dairy cattle managed in some pasture-based systems such as in New Zealand are predominantly kept outdoors all year around, but are often taken off pasture for periods of time in wet weather to avoid soil damage. It is common to keep cattle on concrete surfaces during such "stand-off" practices and we investigated whether the addition of rubber matting onto concrete areas improves the welfare of dairy cattle. Sixteen groups of 5 cows (4 groups/treatment, 5 cows/group) were allocated to 1 of 4 treatments (concrete, 12-mm-thick rubber mat, 24-mm-thick rubber mat, or deep-bedded wood chips) and kept on these surfaces for 18 h/24h for 4 consecutive days (6h on pasture/24h). Each 4-d stand-off period was repeated 4 times (with 7 d of recovery between periods) to study the accumulated effects of repeated stand-off. Lying behavior was recorded continuously during the experiment. Gait score, stride length, hygiene score, live weight, and blood samples for cortisol analysis were recorded immediately before and after each stand-off period. Cows on wood chips spent the most time lying, and cows on concrete spent the least time lying compared with those on other surfaces [wood chips: 10.8h, 24-mm rubber mat: 7.3h, 12-mm rubber mat: 6.0 h, and concrete: 2.8h/18 h, standard error of the difference (SED): 0.71 h]. Cows on concrete spent more time lying during the 6h on pasture, likely compensating for the reduced lying during the stand-off period. Similarly, cows on concrete spent more time lying on pasture between stand-off periods (concrete: 12.1h, 12-mm rubber mat: 11.1h, 24-mm rubber mat: 11.2h, and wood chips: 10.7h/24h, SED: 0.28 h). Cows on concrete had higher gait score and shorter stride length after the 4-d stand-off period compared with cows on the other surface types, suggesting a change in gait pattern caused by discomfort. Cows on rubber mats were almost 3 times dirtier than cows on concrete or wood chips. Cortisol and live weight decreased for all treatment groups during the stand-off period. We observed no major effect of the repeated stand-off exposure. In summary, adding rubber matting onto concrete surfaces for stand-off purposes is beneficial for animal welfare. A well-managed wood chip surface offered the best welfare for dairy cows removed from pasture, and the findings of this study confirm that a concrete surface decreases the welfare of cows removed from pasture. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
NASA Astrophysics Data System (ADS)
Han-yu, Wei; Tie-cheng, Xia
2016-01-01
A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11547175, 11271008 and 61072147), the First-class Discipline of University in Shanghai, China, and the Science and Technology Department of Henan Province, China (Grant No. 152300410230).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jau
1996-03-01
Heisenberg`s commutation relation for position x and momentum p, and its validity for relativistic harmonic oscillators are examined, using the techniques of Lie algebra and dual-bosonic representation of x, p and the Hamiltonian H. A modification with [x, p] =i{h_bar}({minus_plus} 1 + H/m{sub 0}c{sup 2}) is proposed for a particle and an antiparticle in a harmonic potential. For a 2 {times} 2 matrix representation for x, p and H operators, the quantized eigenenergy E is given by (E - m{sub 0}c{sup 2})/{h_bar}{omega} = 3/2, 5/2, 7/2, ..., where 1/2 is not allowed.
The laser-diode-excited 5 d-4 f luminescence of Ce3+ and Pr3+ ions embedded into a BaR2F8 matrix
NASA Astrophysics Data System (ADS)
Pushkar', A. A.; Uvarova, T. V.; Kozlova, N. S.; Kuznetsov, S. Yu.; Uvarova, A. G.
2013-06-01
We show the possibility of obtaining UV luminescence from 5 d-4 f transitions of rare-earth ions in the BaY2F8: (Yb3+, Pr3+, Ce3+) crystal under upconversion excitation by standard laser diodes with lasing wavelengths of 960, 808, and 840 nm. Various upconversion mechanisms of pumping for populating the higher-lying energy levels of the active ions, as well as methods of adaptation of the active medium BaY2F8: (Yb3+, Pr3+, Ce3+) to these mechanisms, are considered.
Arkudas, Andreas; Pryymachuk, Galyna; Hoereth, Tobias; Beier, Justus P; Polykandriotis, Elias; Bleiziffer, Oliver; Gulle, Heinz; Horch, Raymund E; Kneser, Ulrich
2012-07-01
In this study, different fibrin sealants with varying concentrations of the fibrin components were evaluated in terms of matrix degradation and vascularization in the arteriovenous loop (AVL) model of the rat. An AVL was placed in a Teflon isolation chamber filled with 500 μl fibrin gel. The matrix was composed of commercially available fibrin gels, namely Beriplast (Behring GmbH, Marburg, Germany) (group A), Evicel (Omrix Biopharmaceuticals S.A., Somerville, New Jersey, USA) (group B), Tisseel VH S/D (Baxter, Vienna, Austria) with a thrombin concentration of 4 IU/ml and a fibrinogen concentration of 80 mg/ml [Tisseel S F80 (Baxter), group C] and with an fibrinogen concentration of 20 mg/ml [Tisseel S F20 (Baxter), group D]. After 2 and 4 weeks, five constructs per group and time point were investigated using micro-computed tomography, and histological and morphometrical analysis techniques. The aprotinin, factor XIII and thrombin concentration did not affect the degree of clot degradation. An inverse relationship was found between fibrin matrix degradation and sprouting of blood vessels. By reducing the fibrinogen concentration in group D, a significantly decreased construct weight and an increased generation of vascularized connective tissue were detected. There was an inverse relationship between matrix degradation and vascularization detectable. Fibrinogen as the major matrix component showed a significant impact on the matrix properties. Alteration of fibrin gel properties might optimize formation of blood vessels.
Dual Solutions for Nonlinear Flow Using Lie Group Analysis
Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman
2015-01-01
`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
NASA Astrophysics Data System (ADS)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
Effects of bedding quality on lying behavior of dairy cows.
Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M
2007-12-01
Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.
[Research advances of genomic GYP coding MNS blood group antigens].
Liu, Chang-Li; Zhao, Wei-Jun
2012-02-01
The MNS blood group system includes more than 40 antigens, and the M, N, S and s antigens are the most significant ones in the system. The antigenic determinants of M and N antigens lie on the top of GPA on the surface of red blood cells, while the antigenic determinants of S and s antigens lie on the top of GPB on the surface of red blood cells. The GYPA gene coding GPA and the GYPB gene coding GPB locate at the longarm of chromosome 4 and display 95% homologus sequence, meanwhile both genes locate closely to GYPE gene that did not express product. These three genes formed "GYPA-GYPB-GYPE" structure called GYP genome. This review focuses on the molecular basis of genomic GYP and the variety of GYP genome in the expression of diversity MNS blood group antigens. The molecular basis of Miltenberger hybrid glycophorin polymorphism is specifically expounded.
2017-01-01
We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa–Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions. PMID:28413343
Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi
2017-10-01
Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.
A Lie-theoretic Description of the Solution Space of the tt*-Toda Equations
NASA Astrophysics Data System (ADS)
Guest, Martin A.; Ho, Nan-Kuo
2017-12-01
We give a Lie-theoretic explanation for the convex polytope which parametrizes the globally smooth solutions of the topological-antitopological fusion equations of Toda type (tt ∗-Toda equations) which were introduced by Cecotti and Vafa. It is known from Guest and Lin (J. Reine Angew. Math. 689, 1-32 2014) Guest et al. (It. Math. Res. Notices 2015, 11745-11784 2015) and Mochizuki (2013, 2014) that these solutions can be parametrized by monodromy data of a certain flat S L n+ 1 ℝ-connection. Using Boalch's Lie-theoretic description of Stokes data, and Steinberg's description of regular conjugacy classes of a linear algebraic group, we express this monodromy data as a convex subset of a Weyl alcove of S U n+ 1.
The nuclear matrix prepared by amine modification
Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon
1999-01-01
The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671
Modeling the lowest-cost splitting of a herd of cows by optimizing a cost function
NASA Astrophysics Data System (ADS)
Gajamannage, Kelum; Bollt, Erik M.; Porter, Mason A.; Dawkins, Marian S.
2017-06-01
Animals live in groups to defend against predation and to obtain food. However, for some animals—especially ones that spend long periods of time feeding—there are costs if a group chooses to move on before their nutritional needs are satisfied. If the conflict between feeding and keeping up with a group becomes too large, it may be advantageous for some groups of animals to split into subgroups with similar nutritional needs. We model the costs and benefits of splitting in a herd of cows using a cost function that quantifies individual variation in hunger, desire to lie down, and predation risk. We model the costs associated with hunger and lying desire as the standard deviations of individuals within a group, and we model predation risk as an inverse exponential function of the group size. We minimize the cost function over all plausible groups that can arise from a given herd and study the dynamics of group splitting. We examine how the cow dynamics and cost function depend on the parameters in the model and consider two biologically-motivated examples: (1) group switching and group fission in a herd of relatively homogeneous cows, and (2) a herd with an equal number of adult males (larger animals) and adult females (smaller animals).
Bovine versus porcine acellular dermal matrix for complex abdominal wall reconstruction.
Clemens, Mark W; Selber, Jesse C; Liu, Jun; Adelman, David M; Baumann, Donald P; Garvey, Patrick B; Butler, Charles E
2013-01-01
Abdominal wall reconstruction with bioprosthetic mesh is associated with lower rates of mesh infection, fistula formation, and mesh explantation than reconstruction with synthetic mesh. The authors directly compared commonly used bioprosthetic meshes in terms of clinical outcomes and complications. A database of consecutive patients who underwent abdominal wall reconstruction with porcine or bovine acellular dermal matrix and midline musculofascial closure at their institution between January of 2008 and March of 2011 was reviewed. Surgical outcomes were compared. One hundred twenty patients were identified who underwent a nonbridged, inlay abdominal wall reconstruction with porcine [69 patients (57.5 percent)] or bovine acellular dermal matrix (51 patients (42.5 percent)]. The mean follow-up time was 21.0 ± 9.9 months. The overall complication rate was 36.6 percent; the porcine matrix group had a significantly higher complication rate (44.9 percent) than the bovine matrix group (25.5 percent; p = 0.04) and statistically equivalent surgical complications (29.2 percent versus 21.6 percent; p = 0.34). There were no significant differences in rates of recurrent hernia (2.9 percent versus 3.9 percent; p = 0.99) or bulge (7.2 percent versus 0 percent; p = 0.07). However, the rate of intraoperative adverse events in the porcine matrix group [seven events (10.1 percent)] was significantly higher than that in the bovine matrix group (0 percent; p = 0.02). In patients who undergo complex abdominal wall reconstruction, both bovine and porcine acellular dermal matrix are associated with similar rates of postoperative surgical complications and appear to result in similar outcomes. Porcine acellular dermal matrix may be prone to intraoperative device failure. Therapeutic, III.
Extension of transformation groups of compact solvmanifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovanov, M V
2015-04-30
We indicate a way to extend connected simply connected soluble Lie groups acting transitively and locally effectively on a given compact solvmanifold. In 1973, Auslander posed the problem of describing all groups of this kind. The results obtained here lead to the conclusion that it is unlikely that this problem has an exhaustive solution. Bibliography: 10 titles.
Gazzeri, Roberto; Galarza, Marcelo; Conti, Carlo; De Bonis, Costanzo
2018-01-01
Association between the use of hemostatic agents made from collagen/gelatin mixed with thrombin and thromboembolic events in patients undergoing tumor resection has been suggested. This study evaluates the relationship between flowable hemostatic matrix and deep vein thrombosis in a large cohort of patients treated for brain tumor removal. The authors conducted a retrospective, multicenter, clinical review of all craniotomies for tumor removal performed between 2013 and 2014. Patients were classified in three groups: group I (flowable gelatin hemostatic matrix with thrombin), group II (gelatin hemostatic without thrombin), and group III (classical hemostatic). A total of 932 patients were selected: tumor pathology included 441 gliomas, 296 meningiomas, and 195 metastases. Thromboembolic events were identified in 4.7% of patients in which gelatin matrix with thrombin was applied, in 8.4% of patients with gelatin matrix without thrombin, and in 3.6% of cases with classical methods of hemostasis. Patients with venous thromboembolism had an increased proportion of high-grade gliomas (7.2%). Patients receiving a greater dose than 10 ml gelatin hemostatic had a higher rate of thromboembolic events. Intracranial hematoma requiring reintervention occurred in 19 cases: 4.5% of cases of group III, while reoperation was performed in 1.3 and 1.6% of patients in which gelatin matrix with or without thrombin was applied. Gelatin matrix hemostat is an efficacious tool for neurosurgeons in cases of difficult intraoperative bleeding during cranial tumor surgery. This study may help to identify those patients at high risk for developing thromboembolism and to treat them accordingly.
Shimizu, Hiroshi; Tsue, Fumitake; Chen, Zhao-Xun; Takahashi, Yutaka
2009-04-01
The purpose of the present study was to evaluate the effect of surface preparation on the maximum fracture load value of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite. A polymer-monomer matrix was made by mixing urethane dimethacrylate and triethyleneglycol dimethacrylate at a ratio of 1:1 with camphorquinone and 2-dimethylaminoethyl methacrylate as a light initiator. The matrix was then polymerized in a disk-shaped silicone mold with a light-polymerizing unit. The flat surfaces of the polymer-monomer matrix disk were prepared in one of the following ways: (1) without preparation; (2) application of silane coupling agent; or (3) application of matrix liquid and prepolymerization. A highly filled composite material was applied and polymerized with a light-polymerizing unit. Additional test specimens made entirely of the polymer-monomer matrix were fabricated as references; the disk and cylinder were fabricated in one piece using a mold specially made for the present study (group 4). Half the specimens were thermocycled up to 10,000 times in water with a 1-minute dwell time at each temperature (5 degrees C and 55 degrees C). The maximum fracture load values were determined using a universal testing machine (n = 10). The maximum fracture loads for group 3 were significantly enhanced both before and after thermocycling, whereas the maximum fracture loads of group 2 were significantly enhanced before thermocycling (p < 0.05); however, the failure loads decreased for all groups after thermocycling (p < 0.05). All the specimens in groups 1 and 2 debonded during thermocycling. The failure load of group 3 was significantly lower than that of group 4 both before and after thermocycling (p < 0.05). Within the limitations of the current in vitro study, the application and prepolymerization of a mixed dimethacrylate resin liquid prior to the application of a highly filled composite was an effective surface preparation for the polymer-monomer matrix of a fiber-reinforced composite; however, the bond durability may be insufficient.
Is there any sense in the Palisade endings of eye muscles?
Lienbacher, Karoline; Mustari, Michael; Hess, Bernhard; Büttner-Ennever, Jean; Horn, Anja K.E.
2015-01-01
Palisade endings (PEs), which are unique to the eye muscles, are associated with multiply innervated muscle fibers. They lie at the myotendinous junctions and form a cap around the muscle fiber tip. They are found in all animals investigated so far, but their function is not known. Recently, we demonstrated that cell bodies of PEs and tendon organs lie around the periphery of the oculomotor nucleus in the C- and S-groups. A morphological analysis of these peripheral neurons revealed the existence of different populations within the C-group. We propose that a small group of round or spindle-shaped cells gives rise to PEs, and another group of multipolar neurons provide the multiple motor endings. If PEs have a sensory function, then their cell body location close to motor neurons would be in an ideal location to control tension in extraocular muscles; in the case of the C-group, its proximity to the preganglionic neurons of the Edinger–Westphal nucleus would permit its participation in the near response. Despite their unusual properties, PEs may have a sensory function. PMID:21950969
Is there any sense in the Palisade endings of eye muscles?
Lienbacher, Karoline; Mustari, Michael; Hess, Bernhard; Büttner-Ennever, Jean; Horn, Anja K E
2011-09-01
Palisade endings (PEs), which are unique to the eye muscles, are associated with multiply innervated muscle fibers. They lie at the myotendinous junctions and form a cap around the muscle fiber tip. They are found in all animals investigated so far, but their function is not known. Recently, we demonstrated that cell bodies of PEs and tendon organs lie around the periphery of the oculomotor nucleus in the C- and S-groups. A morphological analysis of these peripheral neurons revealed the existence of different populations within the C-group. We propose that a small group of round or spindle-shaped cells gives rise to PEs, and another group of multipolar neurons provide the multiple motor endings. If PEs have a sensory function, then their cell body location close to motor neurons would be in an ideal location to control tension in extraocular muscles; in the case of the C-group, its proximity to the preganglionic neurons of the Edinger-Westphal nucleus would permit its participation in the near response. Despite their unusual properties, PEs may have a sensory function. © 2011 New York Academy of Sciences.
Trees, bialgebras and intrinsic numerical algorithms
NASA Technical Reports Server (NTRS)
Crouch, Peter; Grossman, Robert; Larson, Richard
1990-01-01
Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.
Stölzl, Anna Maria; Lambertz, Christian; Gauly, Matthias
2015-01-01
The aim of the present study was to assess the behaviour of llamas (Lama glama) and German blackhead mutton sheep (Ovis orientalis forma aries) when kept under Central European grazing conditions. In total, six adult female sheep and six adult female llamas were observed by direct observation during one week, in which each group was observed for a total time of 24 h. The animals were kept on the same pasture, but the species were raised in separate plots. Forage height before and after the experimental period were determined using a rising plate meter to calculate the average daily dry matter intake (DMI). Llamas had a daily DMI of 0.85%/BW and sheep of 1.04%/BW, respectively. The following behaviours were recorded by direct observation: grazing standing up, grazing lying down, ruminating standing up, ruminating lying down, lying down, lying down lateral and standing. Both species grazed for more than 50% of the time. Ruminating was predominantly performed while standing and lying by sheep (about 50% of the night and 12% of the day) and while lying by llamas (54% of the night and 10% of the day). In conclusion, sheep and llamas differed in grazing behaviour and daily biorhythm. These differences indicate that sheep and llamas may not synchronize their behaviour when co-grazed, though particularly in co-grazing studies the observation period should be extended.
Buras, Andrzej J.; Gérard, Jean -Marc; Bardeen, William A.
2014-05-20
We review and update our results for K → π π decays and K⁰- K¯⁰ mixing obtained by us in the 1980s within an approach based on the dual representation of QCD as a theory of weakly interacting mesons for large N colours. In our analytic approach the dynamics behind the enhancement of ReA 0 and suppression of ReA 2, the so-called ΔI = 1/2 rule for K → π π decays, has a simple structure: the usual octet enhancement through quark-gluon renormalization group evolution down to the scales O(1 GeV) is continued as a meson evolution down to zeromore » momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark-gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark-gluon evolution. The recent results on ReA 2 and ReA 0 from the RBC-UKQC collaboration give support for our approach. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. At NLO in 1/N we obtain R = ReA 0/ReA 2= 16.0±1.5 which amounts to an order of magnitude enhancement over the strict large N limit value √2. QCD penguins contribute at 15% level to this result. We also find B^ K = 0.73± 0.02, with the smallness of 1/N corrections to the large N value B^ K = 3/4 resulting within our approach from an approximate cancellation between pseudoscalar and vector meson one-loop contributions. We summarize the status of ΔM K in this approach.« less
Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration
Petrauskaite, Odeta; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Juodzbalys, Gintaras; Maminskas, Julius
2013-01-01
The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i) cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii) the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii) the cellulose matrix was mixed with a calcium silicate solution in order to introduce silanol groups and to combine them with calcium ions. All the methods resulted in a mineralization of the cellulose surfaces after immersion in a simulated body fluid solution. Over a period of 14 days, the matrix was completely covered with hydroxyapatite crystals. Hydroxyapatite formation depended on functional groups on the matrix surface as well as on the precalcification method. The largest hydroxyapatite crystals were obtained on the carboxymethylated cellulose matrix treated with calcium hydroxide solution. The porous cellulose matrix was not cytotoxic, allowing the adhesion and proliferation of human osteoblastic cells. Comparatively, improved cell adhesion and growth rate were achieved on the mineralized cellulose matrices. PMID:24163816
Spectral relationships between kicked Harper and on-resonance double kicked rotor operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Wayne; Mouritzen, Anders S.; Wang Jiao
2009-03-15
Kicked Harper operators and on-resonance double kicked rotor operators model quantum systems whose semiclassical limits exhibit chaotic dynamics. Recent computational studies indicate a striking resemblance between the spectra of these operators. In this paper we apply C*-algebra methods to explain this resemblance. We show that each pair of corresponding operators belongs to a common rotation C*-algebra B{sub {alpha}}, prove that their spectra are equal if {alpha} is irrational, and prove that the Hausdorff distance between their spectra converges to zero as q increases if {alpha}=p/q with p and q coprime integers. Moreover, we show that corresponding operators in B{sub {alpha}}more » are homomorphic images of mother operators in the universal rotation C*-algebra A{sub {alpha}} that are unitarily equivalent and hence have identical spectra. These results extend analogous results for almost Mathieu operators. We also utilize the C*-algebraic framework to develop efficient algorithms to compute the spectra of these mother operators for rational {alpha} and present preliminary numerical results that support the conjecture that their spectra are Cantor sets if {alpha} is irrational. This conjecture for almost Mathieu operators, called the ten Martini problem, was recently proven after intensive efforts over several decades. This proof for the almost Mathieu operators utilized transfer matrix methods, which do not exist for the kicked operators. We outline a strategy, based on a special property of loop groups of semisimple Lie groups, to prove this conjecture for the kicked operators.« less
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agio, Mario
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group.more » The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.« less
2006-04-28
for this work included: (1) Polyhedral oligomeric silsesquioxane chemicals (POSS macromers) of three types: those with no polymerizable group, those...Polyhedral oligomeric silsesquioxane chemicals (POSS macromers) of three types: those with no polymerizable group, those with one reactive function and...atoms and ions. Polyhedral Oligomeric Silsesquioxane/Organic Matrix Nanocomposites Major reviews of POSS polymer and copolymer chemistry. The first
Koszul information geometry and Souriau Lie group thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaresco, Frédéric, E-mail: frederic.barbaresco@thalesgroup.com
The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from 'Characteristic Functions', was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF) on convex cones will be presented as cornerstone of 'Information Geometry' theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant bymore » their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck) Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean 'Moment map' by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. These elements has been developed by author in [10][11].« less
Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; ...
2017-02-08
Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Vandana; Lubna, R. S.; Abromeit, B.
Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less
Exact results for the star lattice chiral spin liquid
NASA Astrophysics Data System (ADS)
Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.
2010-03-01
We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumiya, H.; Tsubakihara, K.; Kimura, M.
A theoretical framework of coupled-channels antisymmetrized molecular dynamics that describes the multistrangeness system with mixing between different baryon species is developed and applied to {sub {Lambda}}{sup 12}C and {sub {Xi}}{sup 12}Be. By introducing a minor modification to the YN G-matrix interaction derived from the Nijmegen model-D, the low-lying level structure and production cross section of {sub {Lambda}}{sup 12}C are reasonably described. It is found that the low-lying states of {sub {Xi}}{sup 12}Be are dominated by the {sup 11}B {circle_times} {Xi}{sup -} channel and their order strongly depends on {Xi}N effective interactions used in the calculation. The calculated peak position ofmore » the production cross section depends on the {Xi}N effective interaction and the magnitude of spin-flip and non-spin-flip cross sections of K{sup -}p{yields}K{sup +}{Xi}{sup -} elemental processes. We suggest that the {sup 12}C(K{sup -},K{sup +}){sub {Xi}}{sup 12}Be reaction possibly provides us information about the {Xi}N interaction.« less
NASA Astrophysics Data System (ADS)
Bruna, Pablo J.; Grein, Friedrich
The ESR parameters of the cations Be 2 + , Mg 2 + , Ca 2 + , BeMg + , BeCa + , MgCa + and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2 Σu + (1 σg 2 1 σu )/X 2 Sigma + (1 σ2 2 σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6-311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6-311+ G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg|| and Δg Υ̂values are negative, but Δg|| lies close to zero. For Δg Υ̂, the coupling with 1 2 Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the | Δg Υ̂| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ*( s - s ) SOMO has the same nodal properties as a p σorbital. Of the radicals considered here, an ESR spectrum is available only for Mg2+. Our theoretical A iso of-287 MHz reproduces well the matrix result (-291 MHz). Calculated values of-10 ppm for Deltag|| and of-1280 ppm for Deltag Υ̂give an average < Δg> =-860 ppm that lies within the experimental range of-600( ±300) ppm in Ne, and of-1300( ±500) ppm in Ar matrices.
Matrix Game Methodology - Support to V2010 Olympic Marine Security Planners
2011-02-01
OMOC was called the Integrated Safety /Security Matrix Game – Marine III, and was held 16-17 June 2009. This was the most extensive and complex of...Protection Matrix Game Marine Two .................................................. 12 3.3 Integrated Safety /Security Matrix Game – Marine III...Integrated Safety /Security Matrix Game – Marine III Scenarios........................... 53 ISSMG Marine III – Team Groupings
Molecular and Genetic Characterization of the Drosophila Melanogaster 87e Actin Gene Region
Manseau, L. J.; Ganetzky, B.; Craig, E. A.
1988-01-01
A combined molecular and genetic analysis of the 87E actin gene (Act87E) in Drosophila melanogaster was undertaken. A clone of Act87E was isolated and characterized. The Act87E transcription unit is 1.57 kb and includes a 556-base intervening sequence in the 5' leader of the gene. The protein-coding region is contiguous and encodes a protein that is >93% identical to the other Drosophila actins. By in situ hybridization with a series of deficiencies that break in 87E, Act87E was localized to a region encompassing one to three faint, polytene chromosome bands. The region between the deficiency endpoints that flank the actin gene was isolated and measures approximately 24-30 kb. The closest proximal deficiency endpoint lies 8-10 kb 5' to the actin gene; the closest distal deficiency endpoint lies 16-20 kb 3' to the actin gene. A single, recessive lethal complementation group lies between the deficiency endpoints that flank the actin gene. An EMS mutagenesis screen produced four additional members of this recessive lethal complementation group. Molecular analysis of the members of this complementation group indicated that two of the newly induced mutations have deletions of approximately 1 kb in a transcribed region 4-5 kb 3' (distal) to the actin gene. This result suggests that the recessive lethal complementation group represents a gene separate from and distal to the actin gene. The mutagenesis screen failed to identify additional recessive lethal complementation groups in the actin gene-containing region. The implications of the failure to identify recessive lethal mutations in the actin gene are discussed in reference to studies of other conserved multigene families and other muscle protein mutations. PMID:2840338
ERIC Educational Resources Information Center
Butler, Steve; Gass, Mike; Schoel, Jim; Murphy, Morgan; Murray, Mark; White, Will; Loggers, Otto; Renaker, Paul
1999-01-01
Describes nine group problem-solving and communication initiatives used in adventure- and experiential-education settings. Includes target group, group size, time and space requirements, activity level, props, instructions, and tips for post-activity group reflection and processing. Activities emphasize teamwork, communication skills, and a…
Sylus, Angel Mercy; Nandeesha, Hanumanthappa; Sridhar, Magadi Gopalakrishna; Chitra, Thyagaraju; Sreenivasulu, Karli
2018-06-08
Matrix metalloproteinase-9, Nitric oxide and inflammation plays a role in the pathogenesis of poly cystic ovary syndrome (PCOS). Even though these parameters are altered in PCOS, the effect of clomiphene citrate on them has not been studied till date. The present study was done to assess the effect of clomiphene citrate on matrix metalloproteinase-9, nitric oxide and interleukin-10 levels in women with PCOS. 72 women diagnosed with PCOS were enrolled in the study. Matrix metalloproteinase-9, nitric oxide and interleukin-10 levels were compared at baseline and after three weeks following Clomiphene citrate treatment. Clomiphene citrate increases both nitric oxide (p = 0.03) and interleukin-10 (p < 0.001) levels and reduces matrix metalloproteinase-9 levels (p < 0.001) in women with PCOS. It also improves the ovulation rate (52.8%) and clinical pregnancy rate (19.4%) in PCOS. Also there was a significant reduction in matrix metalloproteinase-9 levels in both the ovulatory (p < 0.001) and conceived groups (p = 0.024) compared to non ovulatory and non conceived group. There was no difference in nitric oxide and interleukin-10 levels in ovulatory and conceived groups compared to non ovulatory and non conceived group. We conclude that clomiphene citrate increases the levels of nitric oxide and interleukin-10 and decreases the matrix metalloproteinase - 9 levels and improves the ovulation rate and clinical pregnancy rate in PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.
4He+n+n continuum within an ab initio framework
Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...
2014-07-16
In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known J π = 2 + resonance as well as a result consistent with a new low-lying second 2 + resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2 –, 1 +, and 0 – channels, while no low-lying resonances are present in the 0 + and 1 – channels.« less
NASA Astrophysics Data System (ADS)
Gao, Jun-Feng; Yang, Yong; Huang, Wen-Tao; Lin, Pan; Ge, Sheng; Zheng, Hong-Mei; Gu, Ling-Yun; Zhou, Hui; Li, Chen-Hong; Rao, Ni-Ni
2016-11-01
To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception.
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-10-01
In this paper, the Lie symmetry analysis method is employed to investigate the Lie point symmetries and the one-parameter transformation groups of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. By using Ibragimov's method, the optimal system of one-dimensional subalgebras of this system is constructed. Truncated Painlevé analysis is used for deriving the Bäcklund transformation. The method of constructing lump-type solutions of integrable equations by means of Bäcklund transformation is first presented. Meanwhile, the lump-type solutions of the (2 + 1)-dimensional Boiti-Leon-Pempinelli system are obtained. The lump-type wave is one kind of rogue wave. The fusion-type N-solitary wave solutions are also constructed. In addition, this system is integrable in terms of the consistent Riccati expansion method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakoglou, K.; School of Physics, Nuclear and Elementary Particle Physics Department, Aristotle University of Thessaloniki; Daskaloyannis, C.
The mathematical structure of a mixed paraparticle system (combining both parabosonic and parafermionic degrees of freedom) commonly known as the Relative Parabose Set, will be investigated and a braided group structure will be described for it. A new family of realizations of an arbitrary Lie superalgebra will be presented and it will be shown that these realizations possess the valuable representation-theoretic property of transferring invariably the super-Hopf structure. Finally two classes of virtual applications will be outlined: The first is of interest for both mathematics and mathematical physics and deals with the representation theory of infinite dimensional Lie superalgebras, whilemore » the second is of interest in theoretical physics and has to do with attempts to determine specific classes of solutions of the Skyrme model.« less
Hao, Tianzhi; Zhu, Jingmin; Hu, Wenbo; Zhang, Hua; Gao, Zhenhui; Wen, Xuehui; Zhou, Zhi; Lu, Gang; Liu, Jingjie; Li, Wen
2010-06-01
To investigate the effectiveness of autogenous platelet-rich plasma (PRP) gel with acellular xenogeneic dermal matrix in the treatment of deep II degree burns. From January 2007 to December 2009, 30 cases of deep II degree burns were treated. There were 19 males and 11 females with an average age of 42.5 years (range, 32-57 years). The burn area was 10% to 48% of total body surface area. The time from burn to hospitalization was 30 minutes to 8 hours. All patients were treated with tangential excision surgery, one side of the wounds were covered with autogenous PRP gel and acellular xenogeneic dermal matrix (PRP group), the other side of the wounds were covered with acellular xenogeneic dermal matrix only (control group). The healing rate, healing time, infection condition, and scar formation were observed. At 7 days after operation, the infection rate in PRP group (6.7%, 2/30) was significantly lower than that in control group (16.7%, 5/30, P < 0.05). The healing times were (18 +/- 4) days and (22 +/- 4) days respectively in PRP group and control group, showing significant difference (P < 0.05). The healing rates at 14 days and 21 days were 75% +/- 7% and 88% +/- 5% in PRP group, were 62% +/- 15% and 73% +/- 7% in control group, showing significant difference (P < 0.05). RPR group was superior to control group in elasticity, color, appearance, softness, scar formation, and healing quality. Autogenous PRP gel with acellular xenogeneic dermal matrix can accelerate the wound healing of deep II degree burns as well as alleviate the scar proliferation.
Hessel, E F; Reiners, K; Van den Weghe, H F A
2006-10-01
This study evaluated how socializing piglets before weaning affects behavior of lactating sows and the pre- and postweaning behavior and performance of piglets. Two farrowing rooms, each with 6 pens, and 1 nursery with 4 pens were used. In total, data were obtained from 24 sows and their litters. In each farrowing room, the solid barriers between 3 farrowing pens were removed on d 12 after farrowing, and the sows remained confined in their crates (experimental group). In the other 3 farrowing pens of each farrowing room, sows and their litters were kept under conventional conditions until weaning (control group). All piglets were weaned 28 d after birth. After weaning, piglets from each group remained together in 1 pen of the nursery. The behavior of sows (lying, standing, sitting, nursing) and piglets (lying, active, suckling) in the farrowing rooms was observed for 24 h before and for 48 h after removal of the barriers between the pens. In addition, behavior (active, lying, feeding, agonistic behavior) of piglets was observed in the nursery during the initial 48-h period after weaning. Each piglet was weighed on d 5, 12, and 28 after birth and thereafter weekly until the fifth week of rearing. In the farrowing room, mixing of litters did not influence behavior of piglets and sows. Preweaning weight gain of the piglets did not differ (P = 0.60) between the treatments. In the initial 48 h after weaning, less agonistic behavior (P < 0.001) was observed in piglets belonging to the experimental group. During 5 wk of rearing, piglets in the experimental group gained more weight compared with the control group (P = 0.05). The advantage shown by the experimental group became especially conspicuous in the first week after weaning (P = 0.05). By socializing unfamiliar piglets before weaning, stress due to mixing could at least be distanced in time from the other burdens of weaning, thereby improving performance.
Consistent Orientation of Moduli Spaces
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Hopkins, Michael J.; Teleman, Constantin
In a series of papers by Freed, Hopkins, and Teleman (2003, 2005, 2007a) the relationship between positive energy representations of the loop group of a compact Lie group G and the twisted equivariant K-theory Kτ+dimGG (G) was developed. Here G acts on itself by conjugation. The loop group representations depend on a choice of ‘level’, and the twisting τ is derived from the level. For all levels the main theorem is an isomorphism of abelian groups, and for special transgressed levels it is an isomorphism of rings: the fusion ring of the loop group andKτ+dimGG (G) as a ring. For G connected with π1G torsionfree, it has been proven that the ring Kτ+dimGG (G) is a quotient of the representation ring of G and can be calculated explicitly. In these cases it agrees with the fusion ring of the corresponding centrally extended loop group. This chapter explicates the multiplication on the twisted equivariant K-theory for an arbitrary compact Lie group G. It constructs a Frobenius ring structure on Kτ+dimGG (G). This is best expressed in the language of topological quantum field theory: a two-dimensional topological quantum field theory (TQFT) is constructed over the integers in which the abelian group attached to the circle is Kτ+dimGG (G).
Lie-algebraic classification of effective theories with enhanced soft limits
NASA Astrophysics Data System (ADS)
Bogers, Mark P.; Brauner, Tomáš
2018-05-01
A great deal of effort has recently been invested in developing methods of calculating scattering amplitudes that bypass the traditional construction based on Lagrangians and Feynman rules. Motivated by this progress, we investigate the long-wavelength behavior of scattering amplitudes of massless scalar particles: Nambu-Goldstone (NG) bosons. The low-energy dynamics of NG bosons is governed by the underlying spontaneously broken symmetry, which likewise allows one to bypass the Lagrangian and connect the scaling of the scattering amplitudes directly to the Lie algebra of the symmetry generators. We focus on theories with enhanced soft limits, where the scattering amplitudes scale with a higher power of momentum than expected based on the mere existence of Adler's zero. Our approach is complementary to that developed recently in ref. [1], and in the first step we reproduce their result. That is, as far as Lorentz-invariant theories with a single physical NG boson are concerned, we find no other nontrivial theories featuring enhanced soft limits beyond the already well-known ones: the Galileon and the Dirac-Born-Infeld (DBI) scalar. Next, we show that in a certain sense, these theories do not admit a nontrivial generalization to non-Abelian internal symmetries. Namely, for compact internal symmetry groups, all NG bosons featuring enhanced soft limits necessarily belong to the center of the group. For noncompact symmetry groups such as the ISO( n) group featured by some multi-Galileon theories, these NG bosons then necessarily belong to an Abelian normal subgroup. The Lie-algebraic consistency constraints admit two infinite classes of solutions, generalizing the known multi-Galileon and multi-flavor DBI theories.
Vautard, Frederic; Ozcan, Soydan
2017-04-11
A functionalized carbon fiber having covalently bound on its surface a sizing agent containing epoxy groups, at least some of which are engaged in covalent bonds with crosslinking molecules, wherein each of said crosslinking molecules possesses at least two epoxy-reactive groups and at least one free functional group reactive with functional groups of a polymer matrix in which the carbon fiber is to be incorporated, wherein at least a portion of said crosslinking molecules are engaged, via at least two of their epoxy-reactive groups, in crosslinking bonds between at least two epoxy groups of the sizing agent. Composites comprised of these functionalized carbon fibers embedded in a polymeric matrix are also described. Methods for producing the functionalized carbon fibers and composites thereof are also described.
Zhou, W T; Fujita, M; Ito, T; Yamamoto, S
1997-07-01
1. This study was to determine the effects of heat load early in life on thermoregulatory responses and whole blood viscosity of broilers during a subsequent exposure to high environmental temperature later in life. 2. The birds, which had been subjected to exposure to 38 degrees C for 24 h at 5-d-old, served as prior exposure group (group A). Both group A and control group B were exposed to 33 degrees C for 3 h when near marketable weight. 3. On exposure to 33 degrees C, although there were no significant differences in the increases in heat production (HP) between the two groups, abdominal temperature (Ta), temperature of external ear tract (Tee), shank skin temperature (Tss), standing-lying frequency and lying time were lower in group A than in group B. Heart rate (HR) and comb surface temperature (Tcs) did not differ but increased in both groups during exposure to 33 degrees C. Respiration rate (RR) was greater in group A. 4. Blood viscosity decreased markedly in both groups after exposure to 33 degrees C; the decrease was greater in group A. 5. These results suggest that early exposure may promote broilers' ability to cope with the subsequent heat load by altering thermoregulatory physiological responses and behavioural patterns, resulting in an alleviation of heat stress.
Interval-valued distributed preference relation and its application to group decision making
Liu, Yin; Xue, Min; Chang, Wenjun; Yang, Shanlin
2018-01-01
As an important way to help express the preference relation between alternatives, distributed preference relation (DPR) can represent the preferred, non-preferred, indifferent, and uncertain degrees of one alternative over another simultaneously. DPR, however, is unavailable in some situations where a decision maker cannot provide the precise degrees of one alternative over another due to lack of knowledge, experience, and data. In this paper, to address this issue, we propose interval-valued DPR (IDPR) and present its properties of validity and normalization. Through constructing two optimization models, an IDPR matrix is transformed into a score matrix to facilitate the comparison between any two alternatives. The properties of the score matrix are analyzed. To guarantee the rationality of the comparisons between alternatives derived from the score matrix, the additive consistency of the score matrix is developed. In terms of these, IDPR is applied to model and solve multiple criteria group decision making (MCGDM) problem. Particularly, the relationship between the parameters for the consistency of the score matrix associated with each decision maker and those for the consistency of the score matrix associated with the group of decision makers is analyzed. A manager selection problem is investigated to demonstrate the application of IDPRs to MCGDM problems. PMID:29889871
Lomb, J; Neave, H W; Weary, D M; LeBlanc, S J; Huzzey, J M; von Keyserlingk, M A G
2018-05-01
Dairy cows with metritis display sickness behaviors, and nonsteroidal anti-inflammatory drugs (NSAID) have the potential to reduce these responses. The objective of this study was to investigate changes in feeding, social, and lying behaviors in dairy cows with metritis that had been treated with the NSAID meloxicam. After parturition, cows were housed in a dynamic, mixed-parity group of 20 animals with access to 12 electronic feed bins, 2 electronic water bins, and 24 lying stalls in a freestall pen. Every third day after parturition, vaginal discharge was evaluated to diagnose metritis based on the presence of foul smell and characteristic visual appearance. When diagnosed with metritis, animals (n = 87) were randomly allocated to receive either a single dose of meloxicam (0.5 mg/kg of body weight subcutaneously) or a placebo solution. All metritic animals received an antimicrobial (ceftiofur) for 5 d. We measured feeding and social behaviors at the feed bunk, as well as lying behaviors, and assessed within-cow changes from the day before to the day of (d 0) NSAID treatment, and from the day before to d 1 to 5 after treatment. Generally, behaviors changed around the day of diagnosis of metritis. Compared with the placebo group, cows that received meloxicam had a greater increase in the number of visits to the feeder, but tended to show less of an increase in dry matter intake and feeding time. These differences did not persist beyond 24 h after NSAID treatment. We observed no differences in changes in number of meals and feeding rate on d 0, but from d 1 to 5 cows treated with meloxicam had a lesser decrease in the number of meals and tended to have a greater decrease in feeding rate than did placebo-treated cows. In multiparous cows on d 0 and from d 1 to 5, meloxicam treatment was associated with decreased lying times. In primiparous cows, lying time changes were similar between treatments on d 0, but lying times increased more on d 1 to 5 for meloxicam than for placebo cows. Overall, cows changed the number of lying bouts on d 0, and this increase tended to be smaller for the meloxicam cows. There were no treatment differences in changes of social behavior. In summary, we observed inconsistent and generally small effects of a single dose of meloxicam in addition to antimicrobial therapy on the behavior of cows with metritis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Beijen, Michiel A.; Voorhoeve, Robbert; Heertjes, Marcel F.; Oomen, Tom
2018-07-01
Vibration isolation is essential for industrial high-precision systems to suppress external disturbances. The aim of this paper is to develop a general identification approach to estimate the frequency response function (FRF) of the transmissibility matrix, which is a key performance indicator for vibration isolation systems. The major challenge lies in obtaining a good signal-to-noise ratio in view of a large system weight. A non-parametric system identification method is proposed that combines floor and shaker excitations. Furthermore, a method is presented to analyze the input power spectrum of the floor excitations, both in terms of magnitude and direction. In turn, the input design of the shaker excitation signals is investigated to obtain sufficient excitation power in all directions with minimum experiment cost. The proposed methods are shown to provide an accurate FRF of the transmissibility matrix in three relevant directions on an industrial active vibration isolation system over a large frequency range. This demonstrates that, despite their heavy weight, industrial vibration isolation systems can be accurately identified using this approach.
Quasi-model free control for the post-capture operation of a non-cooperative target
NASA Astrophysics Data System (ADS)
She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting
2018-06-01
This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.
Muñoz, Eva; Muñoz, Gloria; Pineda, Laura; Serrahima, Eulalia; Centrich, Francesc
2012-01-01
A multiresidue method based on GC or LC and MS or MS/MS for the determination of 204 pesticides in diverse food matrixes of animal and plant origin is described. The method can include different stages of cleanup according to the chemical characteristics of each sample. Samples were extracted using accelerated solvent extraction. Those with a high fat content or that contained chlorophyll required further purification by gel permeation chromatography and/or SPE (ENVI-Carb). The methodology developed here was fully validated; the LOQs for the 204 pesticides are presented. The LOQ values lie between 0.01 to 0.02 mg/kg. However, in some cases, mainly in baby food, they were as low as 0.003 mg/kg, thereby meeting European Union requirements on maximum residue levels for pesticides, as outlined in European regulation 396/2005 and the Commission Directive 2003/13/EC. The procedure has been accredited for a wide scope of pesticides and matrixes by the Spanish Accreditation Body (ENAC) following ISO/IEC 17025:2005, as outlined in ENAC technical note NT-19.
NASA Astrophysics Data System (ADS)
Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.
2018-02-01
Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.
Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation
NASA Astrophysics Data System (ADS)
Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah
2018-03-01
To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.
Optimization and control of dynamic percolationin nanostructured silicon oils
NASA Astrophysics Data System (ADS)
Badard, Mathieu; Combessis, Anthony; Allais, Arnaud; Flandin, Lionel
2017-06-01
The addition of carbonaceous fillers in polymers allows the conception of composites with optimized electrical properties. The conductivity of such material depends of the fillers structuration in matrix, especially the presence of percolated network. The objective of this paper is to understand the main aggregation mechanisms of carbon nanotubes in different media. The structuration of these filler network is probed by the use of electrical and dielectrical measurements. The innovative part of our work lies in the use of liquid matrices, especially silicon oils, to overcome mechanical constraints present in polymers on the one hand and to simplify processing on the other hand. Our work has revealed a filler aggregation over time, well known as dynamic percolation. Conductivity has been modeled as a function of time and filler content from Kirkpatrick equation. The further use of an electrical field led to conductivity enhancement as well as a decrease in percolation threshold. Finally, a study of intrinsic parameters of matrix has shown a strong effect of viscosity and surface tension on nanotubes aggregation. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek
Influence of DMPS on the water retention capacity of electroporated stratum corneum: ATR-FTIR study.
Sckolnick, Maria; Hui, Sek-Wen; Sen, Arindam
2008-02-28
Anionic lipids like phosphatidylserine are known to significantly enhance electroporation mediated transepidermal transport of polar solutes of molecular weights up to 10kDa. The underlying mechanism of the effect of anionic lipids on transdermal transport is not fully understood. The main barrier to transdermal transport lies within the intercellular lipid matrix (ILM) of the stratum corneum (SC) and our previous studies indicate that dimyristoyl phosphatidylserine (DMPS) can perturb the packing of this lipid matrix. Here we report on our investigation on water retention in the SC following electroporation in the presence and the absence of DMPS. The water content in the outer most layers of the SC of full thickness porcine skin was determined using ATR-FTIR-spectroscopy. The results show that in the presence of DMPS, the SC remains in a state of enhanced hydration for longer periods after electroporation. This increase in water retention in the SC by DMPS is likely to play an important role in trans-epidermal transport, since improved hydration of the skin barrier can be expected to increase the partitioning of polar solutes and possibly the permeability.
Meng, Yuguang; Lei, Hao
2010-06-01
An efficient iterative gridding reconstruction method with correction of off-resonance artifacts was developed, which is especially tailored for multiple-shot non-Cartesian imaging. The novelty of the method lies in that the transformation matrix for gridding (T) was constructed as the convolution of two sparse matrices, among which the former is determined by the sampling interval and the spatial distribution of the off-resonance frequencies and the latter by the sampling trajectory and the target grid in the Cartesian space. The resulting T matrix is also sparse and can be solved efficiently with the iterative conjugate gradient algorithm. It was shown that, with the proposed method, the reconstruction speed in multiple-shot non-Cartesian imaging can be improved significantly while retaining high reconstruction fidelity. More important, the method proposed allows tradeoff between the accuracy and the computation time of reconstruction, making customization of the use of such a method in different applications possible. The performance of the proposed method was demonstrated by numerical simulation and multiple-shot spiral imaging on rat brain at 4.7 T. (c) 2010 Wiley-Liss, Inc.
A periodic table of effective field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Kampf, Karol; Novotny, Jiri
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
NASA Astrophysics Data System (ADS)
Nguyen, Minh Tho; Creve, Steven; Ha, Tae-Kyu
1998-08-01
Ab initio molecular orbital and density functional theory calculations have been applied to determine the relative stability of the cyclopropylamine 1 and allylamine (CH 2=CHCH 2NH 2+·2) radical cations and their isomers. It is confirmed that, upon ionization, 1 undergoes barrier-free ring-opening giving the distonic species ·CH 2CH 2CH=NH 2+3. 2 also rearranges by a 1,2-H-shift to the more stable 3 (by 70 kJ/mol) which is, however, less stable than the 1-aminopropene ion (CH 3-CH=CH-NH 2+·4) by 60 kJ/mol. The transition structure TS 2/3 lies 40 kJ/mol higher in energy than TS 3/4. Although QCISD and B3LYP calculations of isotropic hyperfine coupling constants agree reasonably with observed values, supporting the presence of the distonic 3 in ESR matrix experiments, the exclusive observation of 3, but not 4, is intriguing. This emphasizes the role of the matrix in stabilizing 3.
A periodic table of effective field theories
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
Spin-adapted matrix product states and operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner–Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.
Electron scattering by highly polar molecules. III - CsCl
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Srivastava, S. K.
1981-01-01
Utilizing a crossed electron-beam-molecular-beam scattering geometry, relative values of differential electron scattering cross sections for cesium chloride at 5 and 20 eV electron impact energies and at scattering angles between 10 and 120 deg have been measured. These relative cross sections have been normalized to the cross section at 15 deg scattering angle calculated by the hybrid S-matrix technique. In the angular range between 0 and 10 deg and between 120 and 180 deg extrapolations have been made to obtain integral and momentum transfer cross sections. An energy-loss spectrum is also presented which gives various spectral features lying between the 4 and 10 eV regions in CsCl.
Vector solution for the mean electromagnetic fields in a layer of random particles
NASA Technical Reports Server (NTRS)
Lang, R. H.; Seker, S. S.; Levine, D. M.
1986-01-01
The mean electromagnetic fields are found in a layer of randomly oriented particles lying over a half space. A matrix-dyadic formulation of Maxwell's equations is employed in conjunction with the Foldy-Lax approximation to obtain equations for the mean fields. A two variable perturbation procedure, valid in the limit of small fractional volume, is then used to derive uncoupled equations for the slowly varying amplitudes of the mean wave. These equations are solved to obtain explicit expressions for the mean electromagnetic fields in the slab region in the general case of arbitrarily oriented particles and arbitrary polarization of the incident radiation. Numerical examples are given for the application to remote sensing of vegetation.
Rocha, C M; Kruger, E; Whyman, R; Tennant, M
2014-06-01
To model the geographic distribution of current (and treated) dental decay on a high-resolution geographic basis for the Auckland region of New Zealand. The application of matrix-based mathematics to modelling adult dental disease-based on known population risk profiles to provide a detailed map of the dental caries distribution for the greater Auckland region. Of the 29 million teeth in adults in the region some 1.2 million (4%) are suffering decay whilst 7.2 million (25%) have previously suffered decay and are now restored. The model provides a high-resolution picture of where the disease burden lies geographically and presents to health planners a method for developing future service plans.
Leeman, Matthew F; Curran, Stephanie; Murray, Graeme I
2003-12-01
This review outlines new concepts that are emerging for the functions of matrix metalloproteinases in colorectal cancer development and progression. The two main concepts that will be discussed are the role of matrix metalloproteinases in the early stages of colorectal tumour development and the functional mechanisms by which matrix metalloproteinases contribute to colorectal tumour invasion and metastasis. The matrix metalloproteinases are a group of enzymes, which have been best characterized for their ability to degrade extracellular matrix proteins and thus they have been extensively studied in tumour invasion. It is now becoming recognized that the matrix metalloproteinases have key roles in a variety of biological processes that are distinct from their well-defined role in matrix degradation. This group of enzymes has been shown to interact with a broad range of non-matrix proteins including growth factors and their receptors, mediators of apoptosis, and cell adhesion molecules. The elucidation of novel biological roles for the matrix metalloproteinases also challenges the current predominant concept of matrix metalloproteinases as enzymes only involved in matrix degradation. Recent studies have shown that several matrix metalloproteinases, especially matrilysin (MMP-7), interact with the specific molecular genetic and signalling pathways involved in colorectal cancer development. In particular, matrilysin is activated at an early stage of colorectal tumourigenesis by the beta-catenin signalling pathway. Furthermore, studies are now elucidating specific mechanisms by which individual matrix metalloproteinases, especially membrane-type matrix metalloproteinases, interact with specific cell adhesion molecules and cytoskeletal proteins and thus contribute dynamically to colorectal tumour invasion. Copyright 2003 John Wiley & Sons, Ltd.
Solute atmospheres at dislocations
Hirth, John P.; Barnett, David M.; Hoagland, Richard G.
2017-06-01
In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less
Solute atmospheres at dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirth, John P.; Barnett, David M.; Hoagland, Richard G.
In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less
Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations
NASA Astrophysics Data System (ADS)
Blanchet, Steve; Di Bari, Pasquale; Jones, David A.; Marzola, Luca
2013-01-01
Leptogenesis with heavy neutrino flavours is discussed within a density matrix formalism. We write the density matrix equation, describing the generation of the matter-antimatter asymmetry, for an arbitrary choice of the right-handed (RH) neutrino masses. For hierarchical RH neutrino masses lying in the fully flavoured regimes, this reduces to multiple-stage Boltzmann equations. In this case we recover and extend results previously derived within a quantum state collapse description. We confirm the generic existence of phantom terms. However, taking into account the effect of gauge interactions, we show that they are washed out at the production with a wash-out rate that is halved compared to that one acting on the total asymmetry. In the N1-dominated scenario they cancel without contributing to the final baryon asymmetry. In other scenarios they do not in general and they have to be taken into account. We also confirm that there is a (orthogonal) component in the asymmetry produced by the heavier RH neutrinos which completely escapes the washout from the lighter RH neutrinos and show that phantom terms additionally contribute to it. The other (parallel) component is washed out with the usual exponential factor, even for weak washout. Finally, as an illustration, we study the two RH neutrino model in the light of the above findings, showing that phantom terms can contribute to the final asymmetry also in this case.
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Safronova, M. S.
2014-05-01
Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.
What is the future of diabetic wound care?
Sweitzer, Sarah M; Fann, Stephen A; Borg, Thomas K; Baynes, John W; Yost, Michael J
2006-01-01
With diabetes affecting 5% to 10% of the US population, development of a more effective treatment for chronic diabetic wounds is imperative. Clinically, the current treatment in topical wound management includes debridement, topical antibiotics, and a state-of-the-art topical dressing. State-of-the-art dressings are a multi-layer system that can include a collagen cellulose substrate, neonatal foreskin fibroblasts, growth factor containing cream, and a silicone sheet covering for moisture control. Wound healing time can be up to 20 weeks. The future of diabetic wound healing lies in the development of more effective artificial "smart" matrix skin substitutes. This review article will highlight the need for novel smart matrix therapies. These smart matrices will release a multitude of growth factors, cytokines, and bioactive peptide fragments in a temporally and spatially specific, event-driven manner. This timed and focal release of cytokines, enzymes, and pharmacological agents should promote optimal tissue regeneration and repair of full-thickness wounds. Development of these kinds of therapies will require multidisciplinary translational research teams. This review article outlines how current advances in proteomics and genomics can be incorporated into a multidisciplinary translational research approach for developing novel smart matrix dressings for ulcer treatment. With the recognition that the research approach will require both time and money, the best treatment approach is the prevention of diabetic ulcers through better foot care, education, and glycemic control.
SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.
Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen
2012-07-23
We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Oscillatory singular integrals and harmonic analysis on nilpotent groups
Ricci, F.; Stein, E. M.
1986-01-01
Several related classes of operators on nilpotent Lie groups are considered. These operators involve the following features: (i) oscillatory factors that are exponentials of imaginary polynomials, (ii) convolutions with singular kernels supported on lower-dimensional submanifolds, (iii) validity in the general context not requiring the existence of dilations that are automorphisms. PMID:16593640
Guenter A. Schuster; Christopher A. Taylor; Susan B. Adams
2015-01-01
Procambarus (Girardiella) holifieldi, new species, is a primary burrowing crayfish from a low-lying field in Perry County, Alabama. It belongs to the Hagenianus Group in the subgenus Girardiella. The new species is morphologically most similar to Procambarus (
NASA Astrophysics Data System (ADS)
Shaltaeva, Y. R.; Vasilev, V. K.; Yakovlev, D. Y.; Kopylov, F. Iu; Syrkin, A. L.; Chomakhidze, P. Sh; Bykova, A. A.; Malinovskaya, L. K.; Skorokhod, A. I.
2016-10-01
Exhaled breath contains 1% of volatile organic compounds. The concentration of individual biomarkers in hundreds of volatile organic compounds lies within the range ppm- ppb. In compare with control group the concentrations of acetone, acetic acid, ethanol, propylene biomarkers is significantly higher in HF-PEF group.
Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices.
Ozcelikkale, Altug; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo
2017-10-01
Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called ' en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied. © 2017 The Author(s).
Quantifying wall turbulence via a symmetry approach: A Lie group theory
NASA Astrophysics Data System (ADS)
She, Zhen-Su; Chen, Xi; Hussain, Fazle
2017-11-01
We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.
Incommensurate crystallography without additional dimensions.
Kocian, Philippe
2013-07-01
It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.
Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.
Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G
2010-04-01
The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Salem, Walid; Coomans, Ysaline; Brismée, Jean-Michel; Klein, Paul; Sobczak, Stéphane; Dugailly, Pierre-Michel
2015-08-01
A prospective study was performed on the assessment of both thoracic and lumbar spine sagittal profiles (from C7 to S1). To propose a new noninvasive method for measuring the spine curvatures in standing and lying prone positions and to analyze their relationship with various biometric characteristics. Modifications of spine curvatures (i.e. lordosis or kyphosis) are of importance in the development of spinal disorders. Studies have emphasized the development of new devices to measure the spine sagittal profiles using a noninvasive and low-cost method. To date, it has not been applied for analyzing both lumbar and thoracic alterations for various positioning. Seventy-five healthy subjects (mean 22.6 ± 4.3 yr) were recruited to participate in this study. Thoracic and lumbar sagittal profiles were assessed in standing and lying prone positions using a 3D digitizer. In addition, several biometric data were collected including maximal trunk isometric strength for flexion and extension movement. Statistical analysis consisted in data comparisons of spine profiles and a multivariate analysis including biometric features, to classify individuals considering low within- and high between-variability. Kyphosis and lordosis angles decreased significantly from standing to lying prone position by an average of 13.4° and 16.6°, respectively. Multivariate analysis showed a sample clustering of 3 homogenous subgroups. The first group displayed larger lordosis and flexibility, and had low data values for height, weight, and strength. The second group had lower values than the overall trend of the whole sample, whereas the third group had larger score values for the torques, height, weight, waist, body mass index, and kyphosis angle but a reduced flexibility. The present results demonstrate a significant effect of the positioning on both thoracic and lumbar spine sagittal profiles and highlight the use of cluster analysis to categorize subgroups after biometric characteristics including curvature measurement. N/A.
Analysis of world terror networks from the reduced Google matrix of Wikipedia
NASA Astrophysics Data System (ADS)
El Zant, Samer; Frahm, Klaus M.; Jaffrès-Runser, Katia; Shepelyansky, Dima L.
2018-01-01
We apply the reduced Google matrix method to analyze interactions between 95 terrorist groups and determine their relationships and influence on 64 world countries. This is done on the basis of the Google matrix of the English Wikipedia (2017) composed of 5 416 537 articles which accumulate a great part of global human knowledge. The reduced Google matrix takes into account the direct and hidden links between a selection of 159 nodes (articles) appearing due to all paths of a random surfer moving over the whole network. As a result we obtain the network structure of terrorist groups and their relations with selected countries including hidden indirect links. Using the sensitivity of PageRank to a weight variation of specific links we determine the geopolitical sensitivity and influence of specific terrorist groups on world countries. The world maps of the sensitivity of various countries to influence of specific terrorist groups are obtained. We argue that this approach can find useful application for more extensive and detailed data bases analysis.
Kretzschmar, Mirjam; Teunis, Peter F. M.; Pebody, Richard G.
2010-01-01
Background Despite large-scale vaccination programmes, pertussis has remained endemic in all European countries and has been on the rise in many countries in the last decade. One of the reasons that have been discussed for the failure of vaccination to eliminate the disease is continued circulation of the pathogen Bordetella pertussis by mostly asymptomatic and mild infections in adolescents and adults. To understand the impact of asymptomatic and undiagnosed infection on the transmission dynamics of pertussis we analysed serological data from five European countries in combination with information about social contact patterns from five of those countries to estimate incidence and reproduction numbers. Methods and Findings We compared two different methods for estimating incidence from individual data on IgG pertussis toxin (PT) titres. One method combines the cross-sectional surveys of titres with longitudinal information about the distribution of amplitude and decay rate of titres in a back-calculation approach. The second method uses age-dependent contact matrices and cross-sectional surveys of IgG PT titres to estimate a next generation matrix for pertussis transmission among age groups. The next generation approach allows for computation of basic reproduction numbers for five European countries. Our main findings are that the seroincidence of infections as estimated with the first method in all countries lies between 1% and 6% per annum with a peak in the adolescent age groups and a second lower peak in young adults. The incidence of infections as estimated by the second method lies slightly lower with ranges between 1% and 4% per annum. There is a remarkably good agreement of the results obtained with the two methods. The basic reproduction numbers are similar across countries at around 5.5. Conclusions Vaccination with currently used vaccines cannot prevent continued circulation and reinfection with pertussis, but has shifted the bulk of infections to adolescents and adults. If a vaccine conferring lifelong protection against clinical and subclinical infection were available pertussis could be eliminated. Currently, continuing circulation of the pathogen at a subclinical level provides a refuge for the pathogen in which it can evolve and adjust to infect vaccinated populations. Please see later in the article for the Editors' Summary PMID:20585374
Population clustering based on copy number variations detected from next generation sequencing data.
Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping
2014-08-01
Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.
2014-01-09
Low lying areas in the Hellas region, which is the largest impact basin on Mars, often show complex groups of banded ridges, furrows, and pits as seen in this observation from NASA Mars Reconnaissance Orbiter.
Izanloo, Cobra
2017-09-02
An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ∼1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen-phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.
Neutrino Mixing and the Double Tetrahedral Group
NASA Astrophysics Data System (ADS)
Bentov, Yoni; Zee, A.
2013-11-01
In the spirit of a previous study of the tetrahedral group T ≃A4, we discuss a minimalist scheme to derive the neutrino mixing matrix using the double tetrahedral group T‧, the double cover of T. The new features are three distinct two-dimensional representations and complex Clebsch-Gordan coefficients, which can result in a geometric source of CP violation in the neutrino mass matrix. In an appendix, we derive explicitly the relevant group theory for the tetrahedral group T and its double cover T‧.
Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang
2010-06-01
In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization. Copyright 2010 Elsevier Inc. All rights reserved.
Relationships among temperament, behavior, and growth during performance testing of bulls.
Lockwood, S A; Kattesh, H G; Krawczel, P D; Kirkpatrick, F D; Saxton, A M; Rhinehart, J D; Wilkerson, J B
2015-12-01
Excitable cattle are dangerous to personnel and have reduced individual performance. The aim of this study was to 1) identify objective criteria for evaluating bull temperament and 2) examine relationships among temperament, behavior, and performance of bulls during an 84-d performance test. Angus bulls ( = 60) were reared in 6 pens based on BW and age. Pen scores (PS; 1 = docile and 5 = very aggressive) were assigned on d -1, 27, 55, and 83. Exit velocity (EV), BW, time to exit the chute, and order through the chute were recorded on d 0, 28, 56, and 84. The ADG was calculated for the 84-d test period, and ultrasound data and frame score calculations were recorded on d 84. Dataloggers measured steps taken, lying time, number of lying bouts, and lying bout duration of bulls ( = 27; 3 pens) from d 3 to 28 and d 59 to 84. Bulls with a d -1 PS of 1 or 2 were categorized as calm (PScalm; = 40), whereas bulls with a PS of 3 or 4 were categorized as excitable (PSexcitable; = 20). Bulls were separated into 2 groups based on the bottom 20 EV (EVcalm) and top 20 EV (EVexcitable) on d 0. Mixed model ANOVA (SAS 9.3) was used to compare groups for the two temperament assessment methods, behavior, and growth performance. Mean EV decreased ( < 0.05) by d 84. Total lying time from d 3 to 28 was greater ( < 0.05) for PScalm bulls when compared with PSexcitable bulls. However, total lying time from d 59 to 84 was greater ( < 0.05) for EVexcitable bulls when compared with EVcalm bulls. Regardless of initial contemporary group assignment, all bulls exited the chute slower ( < 0.001) on d 84 than on d 0. The PSexcitable bulls had greater ( < 0.01) frame scores and greater ADG than PScalm bulls. The PSexcitable bulls had more ( < 0.01) backfat than PScalm bulls. However, ribeye area was smaller ( < 0.01) in EVexcitable bulls than EVcalm bulls. Based on these results, bulls appeared to have habituated over the testing period. Additionally, the potential lack of innate temperament variation may have attributed to the little difference seen among the behavioral and performance data. Therefore, temperament should be reassessed within a novel environment with new handlers to differentiate between the bull's true temperament and its ability to habituate.
The time-dependent density matrix renormalisation group method
NASA Astrophysics Data System (ADS)
Ma, Haibo; Luo, Zhen; Yao, Yao
2018-04-01
Substantial progress of the time-dependent density matrix renormalisation group (t-DMRG) method in the recent 15 years is reviewed in this paper. By integrating the time evolution with the sweep procedures in density matrix renormalisation group (DMRG), t-DMRG provides an efficient tool for real-time simulations of the quantum dynamics for one-dimensional (1D) or quasi-1D strongly correlated systems with a large number of degrees of freedom. In the illustrative applications, the t-DMRG approach is applied to investigate the nonadiabatic processes in realistic chemical systems, including exciton dissociation and triplet fission in polymers and molecular aggregates as well as internal conversion in pyrazine molecule.
Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.
Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi
2014-02-01
This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.
Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation
NASA Astrophysics Data System (ADS)
Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu
2016-07-01
In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527
Normalization in Lie algebras via mould calculus and applications
NASA Astrophysics Data System (ADS)
Paul, Thierry; Sauzin, David
2017-11-01
We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
2006-04-21
Dozens of dark slope streaks, created by dry avalanches of dust, extend from toward the base of dust-covered buttes. Large, dust-covered, windblown ripples surround the group and occupy some of the low-lying areas between individual buttes
Inexact trajectory planning and inverse problems in the Hamilton–Pontryagin framework
Burnett, Christopher L.; Holm, Darryl D.; Meier, David M.
2013-01-01
We study a trajectory-planning problem whose solution path evolves by means of a Lie group action and passes near a designated set of target positions at particular times. This is a higher-order variational problem in optimal control, motivated by potential applications in computational anatomy and quantum control. Reduction by symmetry in such problems naturally summons methods from Lie group theory and Riemannian geometry. A geometrically illuminating form of the Euler–Lagrange equations is obtained from a higher-order Hamilton–Pontryagin variational formulation. In this context, the previously known node equations are recovered with a new interpretation as Legendre–Ostrogradsky momenta possessing certain conservation properties. Three example applications are discussed as well as a numerical integration scheme that follows naturally from the Hamilton–Pontryagin principle and preserves the geometric properties of the continuous-time solution. PMID:24353467
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-10-01
In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.
Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P
2005-09-22
Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lisa; Kalume, Aimable; Wagner, James
Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr{sub 3}) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr{sub 3} isolated in Ar or Ne matrices at {approx}5 K yielded iso-CHBr{sub 3}; the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr{submore » 3} potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie {approx}200 kJ/mol above the global CHBr{sub 3} minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr{sub 2}+ Br asymptote. The photochemistry of iso-CHBr{sub 3} was investigated by selected wavelength laser irradiation into the intense S{sub 0}{yields} S{sub 3} transition, which resulted in back photoisomerization to CHBr{sub 3}. Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is lowered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Neuroprotective effects of collagen matrix in rats after traumatic brain injury.
Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward
2015-01-01
In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.
NASA Astrophysics Data System (ADS)
Yoo, Soohaeng; Shao, Nan; Zeng, X. C.
2009-10-01
We report improved results of lowest-lying silicon clusters Si 30-Si 38. A large population of low-energy clusters are collected from previous searches by several research groups and the binding energies of these clusters are computed using density-functional theory (DFT) methods. Best candidates (isomers with high binding energies) are identified from the screening calculations. Additional constrained search is then performed for the best candidates using the basin-hopping method combined with DFT geometry optimization. The obtained low-lying clusters are classified according to binding energies computed using either the Perdew-Burke-Ernzerhof (PBE) functional or the Becke exchange and Lee-Yang-Parr correlation (BLYP) functional. We propose to rank low-lying clusters according to the mean PBE/BLYP binding energies in view that the PBE functional tends to give greater binding energies for more compact clusters whereas the BLYP functional tends to give greater binding energies for less compact clusters or clusters composed of small-sized magic-number clusters. Except for Si 30, the new search confirms again that medium-size silicon clusters Si 31-Si 38 constructed with proper fullerene cage motifs are most promising to be the lowest-energy structures.
Conformational isomerism of pyridoxal. Infrared matrix isolation and theoretical studies.
Kwiatek, Anna; Mielke, Zofia
2015-01-25
A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(2p,2d) study of pyridoxal was performed. The calculations resulted in five stable PLHB conformers stabilized by intramolecular O-H⋯O bonding between phenolic OH and carbonyl C=O groups and another thirteen conformers in which OH or/and aldehyde groups are rotated by 180° around CO or/and CC bonds leading, respectively, to formation of PLO, PLA and PLOA conformers. The analysis of the spectra of the as-deposited matrix indicated that two most stable PLHB1 and PLHB2 conformers with intramolecular hydrogen bond are present in the matrix. The exposure of the PL/Ar matrix to mercury lamp radiation (λ>345 nm) induced conformational change of PLHB isomers to PLOA ones. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhukovsky, K. V.
2017-09-01
The exponential form of the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix for neutrinos is considered in the context of the fundamental representation of the SU(3) group. The logarithm of the mixing matrix is obtained. Based on the most recent experimental data on neutrino mixing, the exact values of the entries of the exponential matrix are calculated. The exact values for its real and imaginary parts are determined, respectively, in charge of the mixing without CP violation and of the pure CP violation effect. The hypothesis of complementarity for quarks and neutrinos is confirmed. The factorization of the exponential mixing matrix, which allows the separation of the mixing and of the CP violation itself in the form of the product of rotations around the real and imaginary axes, is demonstrated.
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George
2017-04-01
We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.
Tülek, Fırat; Kahraman, Alper; Taşkın, Salih; Özkavukçu, Esra; Söylemez, Feride
2014-01-01
Objective To assess the possible changes in first trimester screening test parameters in pregnancies complicated with placenta previa and to determine whether there is an association between hyperemesis gravidarum and placenta previa. Material and Methods A total of 131 singleton spontaneously conceived pregnancies that were complicated by placenta previa and delivered between May 2006 and May 2013 were evaluated from birth charts. Ninety patients without placenta previa were selected amongst patients who delivered within the same period of time as the control group. Cases of low lying placenta (n=52) within the study group were assessed as a separate group. The rest of the cases was considered to be in a different group. Results Beta human chorionic gonadotropin (BhCG) multiples of medians (MoMs) and nuchal translucency (NT) MoMs were significantly higher in the placenta previa group in comparison with the low lying placenta and control groups. Apgar scores at both the 1st and 5th minutes were significantly lower in the placenta previa group. Hyperemesis gravidarum was found to be significantly more frequent in the placenta previa group. Conclusion The prevalence of hyperemesis gravidarum in the first trimester is higher in pregnancies complicated by placenta previa. Paying more attention to the development of placenta previa in the routine pregnancy follow-up of patients with hyperemesis gravidarum could be considered. PMID:25584028
Tülek, Fırat; Kahraman, Alper; Taşkın, Salih; Özkavukçu, Esra; Söylemez, Feride
2014-01-01
To assess the possible changes in first trimester screening test parameters in pregnancies complicated with placenta previa and to determine whether there is an association between hyperemesis gravidarum and placenta previa. A total of 131 singleton spontaneously conceived pregnancies that were complicated by placenta previa and delivered between May 2006 and May 2013 were evaluated from birth charts. Ninety patients without placenta previa were selected amongst patients who delivered within the same period of time as the control group. Cases of low lying placenta (n=52) within the study group were assessed as a separate group. The rest of the cases was considered to be in a different group. Beta human chorionic gonadotropin (BhCG) multiples of medians (MoMs) and nuchal translucency (NT) MoMs were significantly higher in the placenta previa group in comparison with the low lying placenta and control groups. Apgar scores at both the 1st and 5th minutes were significantly lower in the placenta previa group. Hyperemesis gravidarum was found to be significantly more frequent in the placenta previa group. The prevalence of hyperemesis gravidarum in the first trimester is higher in pregnancies complicated by placenta previa. Paying more attention to the development of placenta previa in the routine pregnancy follow-up of patients with hyperemesis gravidarum could be considered.
Combined group ECC protection and subgroup parity protection
Gara, Alan G.; Chen, Dong; Heidelberger, Philip; Ohmacht, Martin
2013-06-18
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.
The Green Chair Group. Predicting Distant Education in the Year 2001. Final Report.
ERIC Educational Resources Information Center
National Home Study Council, Washington, DC.
In a series of three workshops in 1981, a group of experienced home study educators, education technologists, and informed people from state and federal government, private industry, and trade associations tackled the questions, "What lies ahead in home study, for 'distant education,' in the next 20 years? How should educators plan for the…
Hanson, Summer E; Meaike, Jesse D; Selber, Jesse C; Liu, Jun; Li, Liang; Hassid, Victor J; Baumann, Donald P; Butler, Charles E; Garvey, Patrick B
2018-05-01
Although multiple acellular dermal matrix sources exist, it is unclear how its processing impacts complication rates. The authors compared complications between two preparations of human cadaveric acellular dermal matrix (freeze dried and ready-to-use) in immediate tissue expander breast reconstruction to analyze the effect of processing on complications. The authors retrospectively reviewed all alloplastic breast reconstructions with freeze-dried or ready-to-use human acellular dermal matrices between 2006 and 2016. The primary outcome measure was surgical-site occurrence defined as seroma, skin dehiscence, surgical-site infection, or reconstruction failure. The two groups were compared before and after propensity score matching. The authors included 988 reconstructions (freeze-dried, 53.8 percent; ready-to-use, 46.2 percent). Analysis of 384 propensity score-matched pairs demonstrated a slightly higher rate of surgical-site occurrence (21.4 percent versus 16.7 percent; p = 0.10) and surgical-site infection (9.6 percent versus 7.8 percent; p = 0.13) in the freeze-dried group than in the ready-to-use group, but the difference was not significant. However, failure was significantly higher for the freeze-dried versus ready-to-use group (7.8 percent versus 4.4 percent; p = 0.050). This is the largest study comparing the outcomes of alloplastic breast reconstruction using human acellular dermal matrix materials prepared by different methods. The authors demonstrated higher early complications with aseptic, freeze-dried matrix than with sterile ready-to-use matrix; reconstructive failure was the only outcome to achieve statistical significance. The authors conclude that acellular dermal matrix preparation has an independent impact on patient outcomes in their comparison of one company's product. Therapeutic, III.
Comparison of hemostatic matrix and standard hemostasis in patients undergoing primary TKA.
Comadoll, James L; Comadoll, Shea; Hutchcraft, Audrey; Krishnan, Sangeeta; Farrell, Kelly; Kreuwel, Huub T C; Bechter, Mark
2012-06-01
Bleeding after total knee arthroplasty increases the risk of pain, delayed rehabilitation, blood transfusion, and transfusion-associated complications. The authors compared pre- and postoperative decreases in hemoglobin as a surrogate for blood loss in consecutive patients treated at a single institution by the same surgeon (J.L.C.) using conventional hemostatic methods (electrocautery, suturing, or manual compression) or a gelatin and thrombin-based hemostatic matrix during total knee arthroplasty. Data were collected retrospectively by chart review. The population comprised 165 controls and 184 patients treated with hemostatic matrix. Median age was 66 years (range, 28-89 years); 66% were women. The arithmetic mean ± SD for the maximal postoperative decrease in hemoglobin was 3.18 ± 0.94 g/dL for controls and 2.19 ± 0.83 g/dL for the hemostatic matrix group. Least squares means estimates of the group difference (controls-hemostatic matrix) in the maximal decrease in hemoglobin was 0.96 g/dL (95% confidence interval, 0.77-1.14 mg/dL; P<.0001). Statistically significant covariate effects were observed for preoperative hemoglobin level (P<.0001) and body mass index (P=.0029). Transfusions were infrequent in both groups. The frequency of acceptable range of motion was high (control, 88%; hemostatic matrix, 84%). In both groups, overall mean tourniquet time was approximately 1 hour, and the most common length of stay was 3 to 5 days. No serious complications related to the hemostatic agent were observed. These data demonstrate that the use of a flowable hemostatic matrix results in less reduction in hemoglobin than the use of conventional hemostatic methods in patient undergoing total knee arthroplasty. Copyright 2012, SLACK Incorporated.
Attempting to validate the overtriage/undertriage matrix at a Level I trauma center
Davis, James W.; Dirks, Rachel C.; Sue, Lawrence P.; Kaups, Krista L.
2017-01-01
BACKGROUND The Optimal Resources Document mandates trauma activation based on injury mechanism, physiologic and anatomic criteria and recommends using the overtriage/undertriage matrix (Matrix) to evaluate the appropriateness of trauma team activation. The purpose of this study was to assess the effectiveness of the Matrix method by comparing patients appropriately triaged with those undertriaged. We hypothesized that these two groups are different, and Matrix does not discriminate the needs or outcomes of these different groups of patients. METHODS Trauma registry data, from January 2013 to December 2015, at a Level I trauma center, were reviewed. Overtriage and undertriage rates were calculated by Matrix. Patients with Injury Severity Score (ISS) of 16 or greater were classified by activation level (full, limited, consultation), and triage category by Matrix. Patients in the limited activation and consultation groups were compared with patients with full activation by demographics, injuries, initial vital signs, procedures, delays to procedure, intensive care unit admission, length of stay, and mortality. RESULTS Seven thousand thirty-one patients met activation criteria. Compliance with American College of Surgeons tiered activation criteria was 99%. The Matrix overtriage rate was 45% and undertriage was 24%. Of 2,282 patients with an ISS of 16 or greater, 1,026 were appropriately triaged (full activation), and 1,256 were undertriaged. Undertriaged patients had better Glasgow Coma Scale score, blood pressure, and base deficit than patients with full activation. Intensive care unit admission, hospital stays, and mortality were lower in the undertriaged group. The undertriaged group required fewer operative interventions with fewer delays to procedure. CONCLUSION Despite having an ISS of 16 or greater, patients with limited activations were dissimilar to patients with full activation. Level of activation and triage are not equivalent. The American College of Surgeons Committee on Trauma full and tiered activation criteria are a robust means to have the appropriate personnel present based on the available prehospital information. Evaluation of the process of care, regardless of level of activation, should be used to evaluate trauma center performance. LEVEL OF EVIDENCE Therapeutic and care management, level III. PMID:29189678
Controlled Neutralization of Anions in Cryogenic Matrices by Near-Threshold Photodetachment
NASA Astrophysics Data System (ADS)
Ludwig, Ryan M.; Moore, David T.
2014-06-01
Using matrix isolation FTIR, we have observed the formation of anionic copper carbonyl complexes [Cu(CO)n]- (n=1-3) following co-deposition of Cu- and counter-cations (Ar+ or Kr+) into argon matrices doped with CO. The infrared bands have been previously assigned in argon matrix studies employing laser ablation, however they were quite weak compared to the bands for the corresponding neutral species. In the current study, when the deposition is carried out in fully darkened conditions at 10 K with high CO concentrations (1-2%), only the bands for the anionic complexes are observed initially via FTIR. However, upon mild irradiation with broadband visible light, the anionic bands are rapidly depleted, with concomitant appearance of bands corresponding to neutral copper carbonyl complexes. This photo-triggered neutralization is attributed to photodetachment of electrons from the anions, which then "flow" through the solid argon matrix to recombine in the matrix with non-adjacent trapping sites. This mechanism is supported by the appearance of a new band near 1515 wn, assigned to the (CO)2- species in argon. The wavelength dependence of the photodetachment will be discussed in detail, although preliminary indications are that the thresholds for the copper carbonyls, which are normally in the infrared, are shifted into the visible region of the spectrum in argon matrices. This likely occurs because the conduction band of solid argon is known to lie about 1 eV above the vacuum level, and thus the electron must have at least this much energy in order to escape into the matrix and find a trapping site. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged Ryan M. Ludwig and David T. Moore, J. Chem. Phys. 139, 244202 (2013) Zhou, M.; Andrews, L., J. Chem. Phys. 111, 4548 (1999). Thompson, W.E.; Jacox, M.E.; J. Chem. Phys. 91, 735 (1991). Stanzel, J. et al.; Collect. Czech. Chem. Comm. 72, 1 (2007). Harbich, W. et al.; Phys. Rev. B. 76, 104306 (2007).
Schindler, Simon; Reinhard, Marc-André
2015-01-01
With the present research, we investigated effects of existential threat on veracity judgments. According to several meta-analyses, people judge potentially deceptive messages of other people as true rather than as false (so-called truth bias). This judgmental bias has been shown to depend on how people weigh the error of judging a true message as a lie (error 1) and the error of judging a lie as a true message (error 2). The weight of these errors has been further shown to be affected by situational variables. Given that research on terror management theory has found evidence that mortality salience (MS) increases the sensitivity toward the compliance of cultural norms, especially when they are of focal attention, we assumed that when the honesty norm is activated, MS affects judgmental error weighing and, consequently, judgmental biases. Specifically, activating the norm of honesty should decrease the weight of error 1 (the error of judging a true message as a lie) and increase the weight of error 2 (the error of judging a lie as a true message) when mortality is salient. In a first study, we found initial evidence for this assumption. Furthermore, the change in error weighing should reduce the truth bias, automatically resulting in better detection accuracy of actual lies and worse accuracy of actual true statements. In two further studies, we manipulated MS and honesty norm activation before participants judged several videos containing actual truths or lies. Results revealed evidence for our prediction. Moreover, in Study 3, the truth bias was increased after MS when group solidarity was previously emphasized. PMID:26388815
Towards a global model of spin-orbit coupling in the halocarbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu
We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less
Wolfe, T; Vasseur, E; DeVries, T J; Bergeron, R
2018-01-01
Cows spend more time lying down when stalls are soft and dry, and bedding plays a key role in the comfort of the lying surface. The first objective of this study (experiment 1) was to compare cow preference for 2 types of alternative deep-bedding materials, switchgrass and switchgrass-lime, using wheat straw on a rubber mat as a control. Nine Holstein lactating cows were submitted in trios to a 3-choice preference test over 14 d (2 d of adaptation, 3 d of restriction to each stall, and 3 d of free access to all 3 stalls). Cows were housed individually in pens containing 3 stalls with different lying surfaces: (1) rubber mat with chopped wheat straw (WS); (2) deep-bedded switchgrass (SG); and (3) deep-bedded switchgrass, water, and lime mixture (SGL). The second objective (experiment 2) was to test, in freestall housing, the effects of these 3 types of bedding on lying behavior, cow cleanliness, and teat end bacterial contamination. Bedding treatments were compared in a 3 × 3 Latin square design using 24 cows split into groups of 8, with bedding materials being switched every 4 wk. Lying behavior was measured with data loggers in both studies. During experiment 1, cows chose to spend more time lying and had more frequent lying bouts on SG (9.4 h/d; 8.2 bouts/d) than on SGL (1.0 h/d; 0.9 bouts/d). They also spent more time standing and stood more frequently in stalls with SG (2.0 h/d; 10.1 bouts/d) than in those with SGL (0.6 h/d; 2.6 bouts/d), and stood longer in stalls with SG than with WS (0.6 h/d). In experiment 2, the total lying time, frequency of lying bouts, and mean lying bout duration were, on average, 9.7 ± 1.03 h/d, 8.2 ± 0.93 bouts/d, and 1.2 ± 0.06 h/bout, respectively, and did not differ between treatments. No treatment effects were found for cow cleanliness scores. Bedding dry matter was highest for SG (74.1%), lowest for SGL (63.5%), and intermediate for WS (68.6%) [standard error of the mean (SEM) = 1.57%]. This may explain the higher teat end count of coliforms for cows on SGL (0.92 log 10 cfu/g) compared with WS (0.13 log 10 cfu/g) (SEM = 0.144 log 10 cfu/g). In conclusion, cows preferred the deep-bedded switchgrass surface over the other 2 surfaces, and deep-bedded switchgrass appears to be a suitable bedding alternative for dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lo, W C; Fung, G Pg; Cheung, P Ch
2017-10-01
In all cases of suspected child abuse, accurate risk assessment is vital to guide further management. This study examined the relationship between risk factors in a risk assessment matrix and child abuse case conference outcomes. Records of all children hospitalised at United Christian Hospital in Hong Kong for suspected child abuse from January 2012 to December 2014 were reviewed. Outcomes of the hospital abuse work-up as concluded in the Multi-Disciplinary Case Conference were categorised as 'established', 'high risk', or 'not established'. All cases of 'established' and 'high risk' were included in the positive case conference outcome group and all cases of 'not established' formed the comparison group. On the other hand, using the Risk Assessment Matrix developed by the California State University, Fresno in 1990, each case was allotted a matrix score of low, intermediate, or high risk in each of 15 matrix domains, and an aggregate matrix score was derived. The effect of individual matrix domain on case conference outcome was analysed. Receiver operating characteristic curve analysis was used to examine the relationship between case conference outcome and aggregate matrix score. In this study, 265 children suspected of being abused were included, with 198 in the positive case conference outcome group and 67 in the comparison group. Three matrix domains (severity and frequency of abuse, location of injuries, and strength of family support systems) were significantly associated with case conference outcome. An aggregate cut-off score of 23 yielded a sensitivity of 91.4% and specificity of 38.2% in relation to outcome of abuse categorisation. Risk assessment should be performed when handling suspected child abuse cases. A high aggregate score should arouse suspicion in all disciplines managing child abuse cases.
de Souza, Sérgio Luís Scombatti; Novaes, Arthur Belém; Grisi, Daniela Corrêa; Taba, Mário; Grisi, Márcio Fernando de Moraes; de Andrade, Patrícia Freitas
2008-07-01
Different techniques have been proposed for the treatment of gingival recession. This study compared the clinical results of gingival recession treatment using a subepithelial connective tissue graft and an acellular dermal matrix allograft. Seven patients with bilateral Miller class I or II gingival recession were selected. Twenty-six recessions were treated and randomly assigned to the test group. In each case the contralateral recession was assigned to the control group. In the control group, a connective tissue graft in combination with a coronally positioned flap was used; in the test group, an acellular dermal matrix allograft was used as a substitute for palatal donor tissue. Probing depth, clinical attachment level, gingival recession, and width of keratinized tissue were measured two weeks prior to surgery and at six and 12 months post-surgery. There were no statistically significant differences between the groups in terms of recession reduction, clinical attachment gain, probing pocket depth, and increase in the width of the keratinized tissue after six or 12 months. There was no statistically significant increase in the width of keratinized tissue between six and 12 months for either group. Within the limitations of this study, it can be suggested that the acellular dermal matrix allograft may be a substitute for palatal donor tissue in root coverage procedures and that the time required for additional gain in the amount of keratinized tissue may be greater for the acellular dermal matrix than for the connective tissue procedures.
Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay
NASA Astrophysics Data System (ADS)
Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin
2018-01-01
In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.
ERIC Educational Resources Information Center
Drummond, Robert J.; And Others
The Children's Interaction Matrix, Intermediate and Primary Forms, are designed to identify the preferred work and content styles of children in group situations. These factors aid the researcher, teacher, and counselor in understanding the individual's preferred mode of behavior in groups as well as indicating the students' reaction to group…
Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia
2018-04-24
Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.
Ma, Shaoying; Li, Baoming; Wang, Xusheng; Li, Youchen; Kang, Yue; Dong, Li; Chen, Xueying; Zhao, Yaping; Li, Baoxing
2010-02-01
To compare the effect of the composite skin graft consisting of split-thickness skin grafts (STSGs) and porcine acellular dermal matrix (PADM) with STSGs only, and to histologically observe the turnover of the PADM in rats. Twenty female Sprague-Dawley rats, weighing 200-225 g, were included. The size of 4.0 cm x 2.5 cm PADM was implanted into hypoderm of the left side of Sprague-Dawley rats' back. After 10-14 days, the size of 4.0 cm x 2.5 cm full-thickness skin defects were made on the left to expose the PADM under the skin and the same size of full-thickness skin defects were made on the right of the rats' back. The excised full-thickness skin was made to STSGs about 0.2 mm by drum dermatome. The defects were grafted with composite skin (STSGs on the PADM, experimental group) and STSGs only (control group). The survival rate, the construction degree of grafts, and the histological change in grafts area were observed at 2, 4, 8, and 20 weeks after operation. At 2 weeks after STSGs (0.2 mm) placed on vascularized PADM, STSGs and PADM adhered together and the composite skin had a good survival. The control group also had a good survival. Histological observations showed that STSGs and PADM grew together, neutrophilic granulocytes and lymphocytes infiltrated in the PADM and some macrophages around the PADM. Fibrous connective tissues were filled under the STSGs in control group. At 4-8 weeks after transplantation, the composite skin had a good survival and the composite skin was thick, soft, and elastic. STSGs survived almost totally in control group, but the grafts were thin. Histological observations showed that inflammatory reactions of PADM faded gradually in experimental group; scar tissues formed under the STSGs in control group. At 20 weeks after transplantation, composite skin was flat, thick, and elastic in experimental group, but the STSGs were thinner and less elastic in control group. Histological observations showed that histological structures of the PADM were similar to the dermal matrix of rats, and the results showed that the collagen matrix of PADM was gradually replaced by the rats' collagen matrix. Scar tissues were filled under the STSGs in control group. Wound healing rates of experimental group were lower than those of control group at 4 and 8 weeks (P < 0.05); wound contraction rates of experimental group had lower tendency than those of control group, but showing no significant differences (P > 0.05). Coverage wound with composite skin which composed of STSGs and PADM could improve wound healing quality; the composite skin is thicker and better elastic than STSGs only. The collagen matrix of PADM is gradually replaced by rats' collagen matrix.
Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients.
Karci, Alper Cagri; Canturk, Zeynep; Tarkun, Ilhan; Cetinarslan, Berrin
2017-07-01
During follow-up of acromegaly patients, there is a discordance rate of 30% between the measurements of growth hormone and insulin-like growth factor-1 levels. Further tests are required to determine disease activity in patients with discordant results. This study was planned to investigate an association of serum levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B with disease activity in acromegaly patients. In this study, 64 acromegaly patients followed in our clinic were divided into two groups according to the 2010 consensus criteria for cure of acromegaly as patients with active disease (n = 24) and patients with controlled disease (n = 40). Serum matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B levels were measured by the enzyme-linked immunosorbent assay method. The mean serum matrix metalloproteinase-2 level was significantly higher in the active acromegaly patients than in the controlled acromegaly patients (150.1 ± 54.5 ng/mL vs. 100.2 ± 44.6 ng/mL; p < 0.0001). There was no significant difference between the active and controlled acromegaly patients regarding serum matrix metalloproteinase-9 and cathepsin B levels (p = 0.205 and p = 0.598, respectively). Serum matrix metalloproteinase-2 levels of 118.3 ng/mL and higher had a sensitivity of 75% and a specificity of 77.5% in determining active disease. The risk of active acromegaly was 3.3 fold higher in the patients with a matrix metalloproteinase-2 level of >118.3 ng/mL than in the patients with a matrix metalloproteinase-2 level of <118.3 ng/mL. In this study, serum matrix metalloproteinase-2 level is increased in the active acromegaly patients and a threshold value in determining active disease was defined for serum matrix metalloproteinase-2 level. This study is the first to compare acromegaly patients having active or controlled disease in terms of matrix metalloproteinase-2 and matrix metalloproteinase-9 levels. The results need to be confirmed by a study that will be conducted in a larger patient group also including a healthy control group to demonstrate the value of this novel marker in disease activity.
Bidirectional composition on lie groups for gradient-based image alignment.
Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick
2010-09-01
In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.
Eberle, Felix; Metzler, Martin; Kolb, Dieter M; Saitner, Marc; Wagner, Patrick; Boyen, Hans-Gerd
2010-09-10
Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.
Invariant classification of second-order conformally flat superintegrable systems
NASA Astrophysics Data System (ADS)
Capel, J. J.; Kress, J. M.
2014-12-01
In this paper we continue the work of Kalnins et al in classifying all second-order conformally-superintegrable (Laplace-type) systems over conformally flat spaces, using tools from algebraic geometry and classical invariant theory. The results obtained show, through Stäckel equivalence, that the list of known nondegenerate superintegrable systems over three-dimensional conformally flat spaces is complete. In particular, a seven-dimensional manifold is determined such that each point corresponds to a conformal class of superintegrable systems. This manifold is foliated by the nonlinear action of the conformal group in three dimensions. Two systems lie in the same conformal class if and only if they lie in the same leaf of the foliation. This foliation is explicitly described using algebraic varieties formed from representations of the conformal group. The proof of these results rely heavily on Gröbner basis calculations using the computer algebra software packages Maple and Singular.
NASA Astrophysics Data System (ADS)
Berkeley, George; Igonin, Sergei
2016-07-01
Miura-type transformations (MTs) are an essential tool in the theory of integrable nonlinear partial differential and difference equations. We present a geometric method to construct MTs for differential-difference (lattice) equations from Darboux-Lax representations (DLRs) of such equations. The method is applicable to parameter-dependent DLRs satisfying certain conditions. We construct MTs and modified lattice equations from invariants of some Lie group actions on manifolds associated with such DLRs. Using this construction, from a given suitable DLR one can obtain many MTs of different orders. The main idea behind this method is closely related to the results of Drinfeld and Sokolov on MTs for the partial differential KdV equation. Considered examples include the Volterra, Narita-Itoh-Bogoyavlensky, Toda, and Adler-Postnikov lattices. Some of the constructed MTs and modified lattice equations seem to be new.
NASA Astrophysics Data System (ADS)
Wu, A. S.; Na, W.-J.; Yu, W.-R.; Byun, J.-H.; Chou, T.-W.
2012-11-01
A major challenge in the damage assessment of materials under dynamic, high strain rate loading lies in the inability to apply most health monitoring methodologies to the analysis and evaluation of damage incurred on short timescales. Here, we present a resistance-based sensing method utilizing an electrically conductive carbon nanotube film in a fiberglass/vinyl ester composite. This method reveals that applied strain and damage in the form of matrix cracking and delamination give rise to electrical resistance increases across the composite specimen; these can be measured in real-time during high strain rate loading. Damage within the composite specimens is confirmed through pre- and post-mortem x-ray micro computed tomography imaging.
NASA Astrophysics Data System (ADS)
Glas, Frank
2003-06-01
We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.
On the Solutions of Two-Extended Principal Conformal Toda Theory
NASA Astrophysics Data System (ADS)
Chao, L.; Hou, B. Y.
1994-02-01
The solutions of the two-extended principal conformal Toda theory (2-EPCT theory, also called bosonic superconformal Toda theory) are constructed in two different ways: (1) Leznov-Saveliev algebraic analysis and (2) the associated chiral embedding surface. The first approach gives rise to the general solution in terms of appropriate matrix elements in different fundamental representations of the underlying Lie algebra, whilst the second one leads to a special solution in the form of Wronski determinants and their co-minors, and it gives an explicit geometrical interpretation of the WZNW → 2-EPCT reduction. The key points of both approaches are the chiral vectors derived recently by the authors, which constitute a closed exchange algebra of the theory.
Einstein coefficients and oscillator strengths for low lying state of CO molecules
NASA Astrophysics Data System (ADS)
Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.
2018-04-01
Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.
Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.
Follana, E; Hart, A; Davies, C T H
2004-12-10
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.
NASA Astrophysics Data System (ADS)
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Combined group ECC protection and subgroup parity protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gara, Alan; Cheng, Dong; Heidelberger, Philip
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit widemore » vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.« less
Effective Group Facilitation in Education: How to Energize Meetings and Manage Difficult Groups
ERIC Educational Resources Information Center
Eller, John F.
2004-01-01
At their worst, meetings can waste time, lack focus, foster a combative spirit, or be just plain boring. At their best, meetings can be a positive, dynamic experience that nurtures individual strengths while inspiring teamwork to successfully accomplish an established task. The fate of a meeting lies in the skill of the facilitator, and this…
SIMILARITY PROPERTIES AND SCALING LAWS OF RADIATION HYDRODYNAMIC FLOWS IN LABORATORY ASTROPHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falize, E.; Bouquet, S.; Michaut, C., E-mail: emeric.falize@cea.fr
The spectacular recent development of modern high-energy density laboratory facilities which concentrate more and more energy in millimetric volumes allows the astrophysical community to reproduce and to explore, in millimeter-scale targets and during very short times, astrophysical phenomena where radiation and matter are strongly coupled. The astrophysical relevance of these experiments can be checked from the similarity properties and especially scaling law establishment, which constitutes the keystone of laboratory astrophysics. From the radiating optically thin regime to the so-called optically thick radiative pressure regime, we present in this paper, for the first time, a complete analysis of the main radiatingmore » regimes that we encountered in laboratory astrophysics with the same formalism based on Lie group theory. The use of the Lie group method appears to be a systematic method which allows us to construct easily and systematically the scaling laws of a given problem. This powerful tool permits us to unify the recent major advances on scaling laws and to identify new similarity concepts that we discuss in this paper, and suggests important applications for present and future laboratory astrophysics experiments. All these results enable us to demonstrate theoretically that astrophysical phenomena in such radiating regimes can be explored experimentally thanks to powerful facilities. Consequently, the results presented here are a fundamental tool for the high-energy density laboratory astrophysics community in order to quantify the astrophysics relevance and justify laser experiments. Moreover, relying on Lie group theory, this paper constitutes the starting point of any analysis of the self-similar dynamics of radiating fluids.« less
Inhaler education for hospital-based pharmacists: how much is required?
Jackevicius, C A; Chapman, K R
1999-01-01
To compare the effectiveness of a more intensive educational intervention with a less intensive intervention on the ability of hospital pharmacists to be prepared to educate patients regarding inhaled device technique. Randomized controlled trial. Inhaler technique and knowledge were assessed pre-education, immediately after and three months after education by a research assistant blinded to the educational allocation. Tertiary hospital pharmacy department. Hospital-based pharmacists. A 1 h 'hands-on' session with feedback (more intense education, MIE) or written materials describing inhaler use (less intense education, LIE). The change in overall score from pre-education to early posteducation for MIE was greater than for LIE (mean [95% CI]) (2.64 [1.27 to 4.01] versus 1.26 [0.05 to 2.47], P<0.001). Assessment scores improved for all device demonstrations and general knowledge. The change in score from the pre-education to the late posteducation period was only slightly higher in the MIE group than the LIE group, a difference that was not statistically significant (1.78 [0.82 to 2.74] versus 1. 22 [0.06 to 2.39], P=0.09). Scores in both groups were lower in the late posteducation period compared with the early posteducation period. Greater increases in total score in the immediate posteducation period were associated with a low baseline score and the MIE intervention. Individual coaching in inhaler technique produces greater improvement in inhaler knowledge among hospital pharmacists than provision of written materials. However, the advantage of the more intensive intervention was short-lived, with little advantage evident in three months.
[Sorption properties of various polysaccharide matrixes to Lactobacillus plantarum 8RA-3 bacteria].
Bondarenko, V M; Larionov, I V; Rybal'chenko, O V; Potokin, I L; Ryzhankova, A V
2011-01-01
Study of sorption properties of various spherical polysaccharide matrixes designated as Spherocell to probiotic Lactobacillus plantarum 8RA-3 bacteria. Industrial strain of L. plantarum 8PA-3 was used. The process of immobilization of lactobacilli on 3 variants of spherical sorbents was studied. The first sorbent - neutral, composed of nonpolar cellulose matrix with ("0") charge, the second--DEAE obtained by modification of cellulose by diethylaminoethyl groups with positive ("+") charge and the third--CM (carboxymethyl) with negative ("-") charge. Cellulose matrixes were designated by us by the term Spherocell. Immobilization of bacterial cells on Spherocell was performed by addition of suspension containing 1.0 x 10(9) CFU/ml. The effect of bacterial immobilization was evaluated by CFU/ ml titration and by electron microscopy. The dependence on matrix charge of adsorption immobilization on sorbent granules of lactobacilli cells was shown. At certain equal parameters (granule size, surface characteristics, charge value) the positively charged matrix sorbed 3-10 times more cells than neutral and 20-25 times more than negatively charged matrix. Each 100-180 microm Spherocell DEAE particle could sorb more than 1000 viable bacterial cells. Positively charged polysaccharide matrix Spherocell DEAE obtained by modification of cellulose by diethylaminoethyl groups is promising for creation of immobilized probiotic preparations.
Repair process and a repaired component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, III, Herbert Chidsey; Simpson, Stanley F.
Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component,more » and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.« less
NASA Astrophysics Data System (ADS)
Yang, Qingsong; Cong, Wenxiang; Wang, Ge
2016-10-01
X-ray phase contrast imaging is an important mode due to its sensitivity to subtle features of soft biological tissues. Grating-based differential phase contrast (DPC) imaging is one of the most promising phase imaging techniques because it works with a normal x-ray tube of a large focal spot at a high flux rate. However, a main obstacle before this paradigm shift is the fabrication of large-area gratings of a small period and a high aspect ratio. Imaging large objects with a size-limited grating results in data truncation which is a new type of the interior problem. While the interior problem was solved for conventional x-ray CT through analytic extension, compressed sensing and iterative reconstruction, the difficulty for interior reconstruction from DPC data lies in that the implementation of the system matrix requires the differential operation on the detector array, which is often inaccurate and unstable in the case of noisy data. Here, we propose an iterative method based on spline functions. The differential data are first back-projected to the image space. Then, a system matrix is calculated whose components are the Hilbert transforms of the spline bases. The system matrix takes the whole image as an input and outputs the back-projected interior data. Prior information normally assumed for compressed sensing is enforced to iteratively solve this inverse problem. Our results demonstrate that the proposed algorithm can successfully reconstruct an interior region of interest (ROI) from the differential phase data through the ROI.
Statistical mechanics of free particles on space with Lie-type noncommutativity
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Khorrami, Mohammad; Fatollahi, Amir H.
2010-07-01
Effects of Lie-type noncommutativity on thermodynamic properties of a system of free identical particles are investigated. A definition for finite volume of the configuration space is given, and the grandcanonical partition function in the thermodynamic limit is calculated. Two possible definitions for the pressure are discussed, which are equivalent when the noncommutativity vanishes. The thermodynamic observables are extracted from the partition function. Different limits are discussed where either the noncommutativity or the quantum effects are important. Finally, specific cases are discussed where the group is SU(2) or SO(3), and the partition function of a nondegenerate gas is calculated.
NASA Astrophysics Data System (ADS)
Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel
2018-05-01
A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.
Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}
NASA Astrophysics Data System (ADS)
Nayak, Saudamini; Pati, K. C.
2014-08-01
Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.
Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Zaikin, Vladimir G
2013-01-30
Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices. Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization. Initial oligomers and derivatized products were analyzed by MALDI-ToF-mass spectrometry (MS) on an Autoflex II instrument, equipped with a nitrogen laser (λ 337 nm), in positive ion reflectron mode. Only [M + Na](+) ions were observed for underivatized polymers and for completely derivatized polymers in the presence of DHB and dithranol, respectively. In the case of IAA the mass spectra revealed sets of peaks for underivatized, and for partially and completely derivatized oligomers. No similar 'matrix effect' was observed in the case of acylated glycerol alkoxylates (acyl = formyl, acetyl): only peaks for completely derivatized oligomers were obtained in all matrices: DHB, IAA and dithranol. Using 1,9-nonandiol, we showed that the 'matrix effect' was due to trans-silylation of carboxyl-containing matrices (DHB and IAA) during co-crystallization of silylated oligomers and matrices. The obtained results show that matrix molecules can participate as reactive species in MALDI-ToF-MS experiments. The matrix should be carefully chosen when a derivatization approach is applied because the analysis of spectra of the completely derivatized products is particularly desirable in the quantitative determination of functional end-groups. Copyright © 2012 John Wiley & Sons, Ltd.
A Model for Behavioral Management and Relationship Training for Parents in Groups,
tantruming, hitting siblings, lying, not attending, etc; and some consults were indicating possible child abuse . As a result of the assessments, we perceived a great need for parents to learn more behavioral management skills.
Group identification in Indonesian stock market
NASA Astrophysics Data System (ADS)
Nurriyadi Suparno, Ervano; Jo, Sung Kyun; Lim, Kyuseong; Purqon, Acep; Kim, Soo Yong
2016-08-01
The characteristic of Indonesian stock market is interesting especially because it represents developing countries. We investigate the dynamics and structures by using Random Matrix Theory (RMT). Here, we analyze the cross-correlation of the fluctuations of the daily closing price of stocks from the Indonesian Stock Exchange (IDX) between January 1, 2007, and October 28, 2014. The eigenvalue distribution of the correlation matrix consists of noise which is filtered out using the random matrix as a control. The bulk of the eigenvalue distribution conforms to the random matrix, allowing the separation of random noise from original data which is the deviating eigenvalues. From the deviating eigenvalues and the corresponding eigenvectors, we identify the intrinsic normal modes of the system and interpret their meaning based on qualitative and quantitative approach. The results show that the largest eigenvector represents the market-wide effect which has a predominantly common influence toward all stocks. The other eigenvectors represent highly correlated groups within the system. Furthermore, identification of the largest components of the eigenvectors shows the sector or background of the correlated groups. Interestingly, the result shows that there are mainly two clusters within IDX, natural and non-natural resource companies. We then decompose the correlation matrix to investigate the contribution of the correlated groups to the total correlation, and we find that IDX is still driven mainly by the market-wide effect.
Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław
2016-01-01
The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.
An insect-inspired model for visual binding II: functional analysis and visual attention.
Northcutt, Brandon D; Higgins, Charles M
2017-04-01
We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.
Two-dimensional grid-free compressive beamforming.
Yang, Yang; Chu, Zhigang; Xu, Zhongming; Ping, Guoli
2017-08-01
Compressive beamforming realizes the direction-of-arrival (DOA) estimation and strength quantification of acoustic sources by solving an underdetermined system of equations relating microphone pressures to a source distribution via compressive sensing. The conventional method assumes DOAs of sources to lie on a grid. Its performance degrades due to basis mismatch when the assumption is not satisfied. To overcome this limitation for the measurement with plane microphone arrays, a two-dimensional grid-free compressive beamforming is developed. First, a continuum based atomic norm minimization is defined to denoise the measured pressure and thus obtain the pressure from sources. Next, a positive semidefinite programming is formulated to approximate the atomic norm minimization. Subsequently, a reasonably fast algorithm based on alternating direction method of multipliers is presented to solve the positive semidefinite programming. Finally, the matrix enhancement and matrix pencil method is introduced to process the obtained pressure and reconstruct the source distribution. Both simulations and experiments demonstrate that under certain conditions, the grid-free compressive beamforming can provide high-resolution and low-contamination imaging, allowing accurate and fast estimation of two-dimensional DOAs and quantification of source strengths, even with non-uniform arrays and noisy measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Xantheas, Sotiris S.
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding numbermore » using double differentiation in Cartesian coordinates. For molecules of C 1 symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm –1 from those obtained from Cartesian coordinates.« less
Balanced Centrality of Networks.
Debono, Mark; Lauri, Josef; Sciriha, Irene
2014-01-01
There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought? Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor's status lies in the structures of its interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix, graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector (SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various centralities depending on the purpose of the network. By comparing actors' scores for various weightings, a clear understanding of which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of the weightings.
Tadeo, Irene; Piqueras, Marta; Montaner, David; Villamón, Eva; Berbegall, Ana P; Cañete, Adela; Navarro, Samuel; Noguera, Rosa
2014-02-01
Risk classification and treatment stratification for cancer patients is restricted by our incomplete picture of the complex and unknown interactions between the patient's organism and tumor tissues (transformed cells supported by tumor stroma). Moreover, all clinical factors and laboratory studies used to indicate treatment effectiveness and outcomes are by their nature a simplification of the biological system of cancer, and cannot yet incorporate all possible prognostic indicators. A multiparametric analysis on 184 tumor cylinders was performed. To highlight the benefit of integrating digitized medical imaging into this field, we present the results of computational studies carried out on quantitative measurements, taken from stromal and cancer cells and various extracellular matrix fibers interpenetrated by glycosaminoglycans, and eight current approaches to risk stratification systems in patients with primary and nonprimary neuroblastoma. New tumor tissue indicators from both fields, the cellular and the extracellular elements, emerge as reliable prognostic markers for risk stratification and could be used as molecular targets of specific therapies. The key to dealing with personalized therapy lies in the mathematical modeling. The use of bioinformatics in patient-tumor-microenvironment data management allows a predictive model in neuroblastoma.
Magnetic Alignment of γ-Fe2O3 Nanoparticles in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Jimenez, Andrew; Kumar, Sanat K.; Jestin, Jacques
Recent work in nanocomposites has been heavily focused on controlling the dispersion state of filler particles. The use of internal self-assembly based on matrix properties provides a limited solution to the desire for specified organizations. By introducing a magnetic field during the casting of a polymer solution it has been shown that particles can be oriented to form anisotropic structures - commonly sought after for improved mechanical properties. Here, magnetic nanoparticles were cast in two different polymer matrices to study the effect of various forces that lead to this highly desired alignment. The addition of the magnetic field as an external trigger was shown to not necessarily force the clustering, but rather orient the agglomerates already available in solution. This demonstrates the importance of other dominant forces introduced into the system by characteristics of the polymers themselves. While this magnetic field provides a direction for the sample, the key forces lie in the interactions between the polymers and nanoparticles (as well as their solvent). The study shows a dependence of anisotropy on the particle loading, matrix, and casting time, from which continued work hopes to quantify the clustering necessary to optimize alignment in the composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less
Golec, Barbara; Bil, Andrzej; Mielke, Zofia
2009-08-27
We have studied the structure and photochemistry of the formaldoxime−nitrous acid system (CH2NOH−HONO) by help of FTIR matrix isolation spectroscopy and ab initio methods. The MP2/6-311++G(2d,2p) calculations show stability of six isomeric CH2NOH···HONO complexes. The FTIR spectra evidence formation of two hydrogen bonded complexes in an argon matrix whose structures are determined by comparison of the experimental spectra with the calculated ones for the six stable complexes. In the matrix there is present the most stable cyclic complex with two O−H···N bonds; a strong bond is formed between the OH group of HONO and the N atom of CH2NOH and the weaker one between the OH group of CH2NOH and the N atom of HONO. In the other complex present in the matrix the OH group of formaldoxime is attached to the OH group of HONO forming an O−H···O bond. The irradiation of the CH2NOH···HONO complexes with the filtered output of the mercury lamp (λ > 345 nm) leads to the formation of formaldoxime nitrite, CH2NONO, and its two isomeric complexes with water. The main product is the CH2NONO···H2O complex in which water is hydrogen bonded to the N atom of the C═N group. The identity of the photoproducts is confirmed by both FTIR spectroscopy and MP2 or QCISD(full) calculations with the 6-311++G(2d,2p) basis set. The intermediate in this reaction is iminoxyl radical that is formed by abstraction of hydrogen atom from formaldoxime OH group by an OH radical originating from HONO photolysis.
Facebook False Self-Presentation Behaviors and Negative Mental Health.
Wright, Elizabeth J; White, Katherine M; Obst, Patricia L
2018-01-01
As research examining what constitutes Facebook false self-presentation is lacking, the aim of this study was to develop a preliminary inventory of Facebook false self-presentation behaviors, as well as identify predictors and possible outcomes. Participants (N = 211) completed questions regarding frequency of engagement in Facebook false self-presentation behaviors, as well as self-esteem, social influences, motivation strategies, well-being, depression, anxiety, and stress. Results indicated the presence of two distinct false self-presentation behaviors: lying (e.g., untruthful status updates, profile creation) and liking behaviors (e.g., liking posts dishonestly), each associated with different predictors and outcomes. Results indicated that moral norms significantly predicted lying behaviors; and age, self-esteem, group norms, and moral norms significantly predicted liking behaviors. Unexpectedly, liking behaviors were associated with depression, anxiety, and stress, whereas lying behaviors were related to anxiety only. Findings highlight associations between online self-presentation strategies, in particular liking behaviors, on Facebook and possible offline negative mental health.
Modular Hamiltonians on the null plane and the Markov property of the vacuum state
NASA Astrophysics Data System (ADS)
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-09-01
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.
Flury, Rebekka; Gygax, Lorenz
2016-12-01
Synchrony is thought to provide fitness advantages to group-living animals, but little is known how animals maintain synchrony. We investigated intensity of synchrony factors (milking, feed-provision) in cattle herds. Intensity decreased from dairy cows milked in a parlour to cows milked by a robot to suckler cows raising calves. On 30 farms, 10 of each type, we recorded synchrony in lying and feeding. Peaks in lying synchronously were visible in the early morning, around noon, and late at night. These peaks decreased from the suckler cows to the cows milked in a parlour and to the cows milked by a robot. Complementary peaks were found for synchronous feeding. The asynchronous milking times with the milking robot decreased synchrony. Unexpectedly, the suckler cows with the weakest synchrony factors also showed a high level of synchrony. These results indicate that internal motivations for synchrony may be present in addition to external synchrony factors. Copyright © 2016 Elsevier B.V. All rights reserved.
The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample
NASA Technical Reports Server (NTRS)
Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.
2016-01-01
Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.
Efficacy of platelet-rich fibrin matrix on viability of diced cartilage grafts in a rabbit model.
Güler, İsmail; Billur, Deniz; Aydin, Sevim; Kocatürk, Sinan
2015-03-01
The objective of this study was to compare the viability of cartilage grafts embedded in platelet-rich fibrin matrix (PRFM) wrapped with no material (bare diced cartilage grafts), oxidized methylcellulose (Surgicel), or acellular dermal tissue (AlloDerm). Experimental study. In this study, six New Zealand rabbits were used. Cartilage grafts including perichondrium were excised from each ear and diced into 2-mm-by 2-mm pieces. There were four comparison groups: 1) group A, diced cartilage (not wrapped with any material); 2) group B, diced cartilage wrapped with AlloDerm; 3) group C, diced cartilage grafts wrapped with Surgicel; and 4) group D, diced cartilage wrapped with PRFM. Four cartilage grafts were implanted under the skin at the back of each rabbit. All rabbits were sacrificed at the end of 10 weeks. The cartilages were stained with hematoxylin-eosin, Masson's Trichrome, and Orcein. After that, they were evaluated for the viability of chondrocytes, collagen content, fibrillar structure of matrix, and changes in peripheral tissues. When the viability of chondrocytes, the content of fiber in matrix, and changes in peripheral tissues were compared, the cartilage embedded in the PRFM group was statistically significantly higher than in the other groups (P < 0.05). We concluded that PRFM has significant advantages in ensuring the chondrocyte viability of diced cartilage grafts. It is also biocompatible, with relatively lesser inflammation and fibrosis. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Li, Hui-Qin; Li, Yan; Chen, Zi-Xian; Zhang, Xiao-Guang; Zheng, Xia-Wei; Yang, Wen-Ting; Chen, Shuang; Zheng, Guo-Qing
2016-01-01
Spontaneous intracerebral hemorrhage (ICH) is one of the most devastating types of stroke. Here, we aim to demonstrate that electroacupuncture on Baihui (GV20) exerts neuroprotection for acute ICH possibly via the caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway. The model of ICH was established by using collagenase VII. Rats were randomly divided into three groups: Sham-operation group, Sham electroacupuncture group, and electroacupuncture group. Each group was further divided into 4 subgroups according to the time points of 6 h, 1 d, 3 d, and 7 d after ICH. The methods were used including examination of neurological deficit scores according to Longa's scale, measurement of blood-brain barrier permeability through Evans Blue content, in situ immunofluorescent detection of caveolin-1 in brains, western blot analysis of caveolin-1 in brains, and in situ zymography for measuring matrix metalloproteinase-2/9 activity in brains. Compared with Sham electroacupuncture group, electroacupuncture group has resulted in a significant improvement in neurological deficit scores and in a reduction in Evans Blue content, expression of caveolin-1, and activity of matrix metalloproteinase-2/9 at 6 h, 1 d, 3 d, and 7 d after ICH ( P < 0.05). In conclusion, the present results suggested that electroacupuncture on GV20 can improve neurological deficit scores and reduce blood-brain barrier permeability after ICH, and the mechanism possibly targets caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway.
Lončar-Brzak, Božana; Klobučar, Marko; Veliki-Dalić, Irena; Sabol, Ivan; Kraljević Pavelić, Sandra; Krušlin, Božo; Mravak-Stipetić, Marinka
2018-03-01
The aim of this study was to examine molecular alterations on the protein level in lesions of oral lichen planus (OLP), oral squamous cell carcinoma (OSCC) and healthy mucosa. Global protein profiling methods based on liquid chromatography coupled to mass spectrometry (LC-MS) were used, with a special emphasis on evaluation of deregulated extracellular matrix molecules expression, as well as on analyses of IG2F and IGFR2 expression in healthy mucosa, OLP and OSCC tissues by comparative semi-quantitative immunohistochemistry. Mass spectrometry-based proteomics profiling of healthy mucosa, OLP and OSCC tissues (and accompanied histologically unaltered tissues, respectively) identified 55 extracellular matrix proteins. Twenty among identified proteins were common to all groups of samples. Expression of small leucine-rich extracellular matrix proteoglycans lumican and biglycan was found both in OSCC and OLP and they were validated by Western blot analysis as putative biomarkers. A significant increase (p < 0.05) of biglycan expression in OLP-AT group was determined in comparison with OLP-T group, while lumican showed significant up-regulation (p < 0.05) in OLP-T and OSCC-T groups vs. adjacent and control tissue groups. Biglycan expression was only determined in OSCC-AT group. Immunohistochemical analysis of IGF2 and IG2FR expression revealed no significant difference among groups of samples. Biglycan and lumican were identified as important pathogenesis biomarkers of OLP that point to its malignant potential.
Morphometric analysis of the location and activity of cytokines in the tissue implant response.
Butler, Kenneth R; Benghuzzi, Hamed A; Tucci, Michelle A; Puckett, Aaron
2014-01-01
The objective of this investigation was to evaluate the location and activity of cytokines in the fibrous tissue surrounding tricalcium phosphate (TCP) implants loaded with androgenic hormones. Sixteen animals in four experimental groups (n = 4/group) were implanted with one TCP implant each: Group I (control), Group II (testosterone), Group III (dihydrotestosterone), and Group IV (androstenedione). At 90 days post-implantation, the fibrous tissue surrounding the implants were evaluated following staining with antibodies to IL-1ß, IL-2, IL-6, and TNF?. Data were collected on the presence and distribution of cytokines within the fibrous tissue surrounding all four groups. IL-1ß was primarily found intercellular and associated with fibroblasts and macrophages of Groups I-III. IL-2 was present in the extracellular matrix and was sporadically found on the surface of macrophages in Groups I-III. IL-6 was found primarily concentrated in the fibroblast and collagen rich portions of the fibrous tissue matrix in Groups I-III. TNF-? was present in the extracellular matrix of the fibrous tissue of all four groups and was strongly associated with fibroblast and macrophage rich areas. The results of this study confirm activity of cytokines on target cells and indicate their actions may vary in their effect within the fibrous tissue surrounding TCP implants loaded with androgens.
Emplacement and reworking of the Marampa Group allothchon, northwestern Sierra Leone, West Africa
NASA Astrophysics Data System (ADS)
Latiff, R. S. A.; Andrews, J. R.; Wright, L. I.
1997-10-01
The structural evolution and relative age of the Precambrian Marampa Group, a 60 km wide north-northwest trending fold thrust belt is described in detail. The Marampa Group is shown to be unconformably overlain by the Rokel River Group which lies immediately to the east and is separated by a major crustal shear zone from gneisses and amphibolites of the Kasila Group to the west. Previous workers have interpreted the fold thrust belt as a klippe of the adjacent Kasila Group derived from the west or as an autochthonous volcano-sedimentary deposit engulfed by granitic. basement. Ages ranging from 500 to > 2700 Ma have been suggested. Evidence is presented to show that the important deformation of the Marampa Group clearly predates the deposition of the Rokel River Group and must represent a significant earlier orogenic event. Constraints on the relationship of this older deformation to the 2700-2750 Ma deformation of the Kasila Group are discussed. The earliest structures consist of flat lying thrusts which transported Marampa Group metasediments, with or without their basal metavolcanic formation, eastward from their source basin over the basin margin and onto a flanking heterogeneously deformed older granitic gneiss basement. Subsequent intrusion of megacrystic, now porphiyroclastic granites was followed by a major period of crustal extension during which sediments and volcanics of the Rokel River Group were deposited in rift basins. Renewed east-west crustal shortening ascribed to the Pan-African event inverted earlier extensional structures thrusting the Rokel River Group westward over -the Marampa Group and leading to local facing confrontations where east dipping faults were reactivated. The relationship of the Marampa Group to the greenstone belts of Guinea, Liberia and Sierra Leone remains unresolved.
A New Strategy for Latin America
1992-04-01
resulted in six significant racial groups; Indians, Europeans, Mestizo (Indians & Europeans); Black, Mulattoes (Black & Europeans), and Zambos (Indians...slice of the budget pie , a priority ranking of these countries would establish where the best benefits lie for US national security. As discussed, Latin
ALFAZOA Deep HI Survey to Identify Galaxies in the ZOA 37° ≦ l ≦ 43° and -2.5° ≦ b ≦ 3°
NASA Astrophysics Data System (ADS)
Palencia, Kelby; Robert Minchin, Monica Sanchez, Patricia Henning , Rhys Taylor
2018-01-01
The area where the galaxy lies, as viewed from the solar system, is called the Zone of Avoidance (ZOA). Due to extinction and confusion in the ZOA sources behind it appear to be blocked. This project is working with data from the Arecibo ALFAZOA Deep survey to identify galaxies in the ZOA amid 37° ≦ l ≦ 43° and -2.5° ≦ b ≦ 3° . The ALFAZOA Deep surveyed a part of the inner galaxy for the first time in the ZOA. The ALFAZOA Deep survey is a more sensitive survey than the previous survey the ALFAZOA Shallow. FRELLED and Miriad were used to identify and analyze the data in this region. With the data 57 sources where identified. Within these 57 sources, 51 were galaxies, which 3 were previously discovered galaxies; leaving 48 as new galaxies. The other 6 remaining sources from the 57, were follow-up sources. Two groups of galaxies were also identified, one lies around 1,500-3,200 km/s and the other between 10,600-11,700 km/s in redshift. The sources from the group in 10,600-11,700 km/s in redshift also need a follow up as they lie near the spectrum where the receiver signal starts to weaken.
Shibasaki, Chiyo; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami; Takebayashi, Minoru
2018-01-01
Abstract Background Matrix metalloproteinases are involved in neuroinflammatory processes, which could underlie depression. Serum levels of MMP-9 and MMP-2 in depressed patients are significantly altered following electroconvulsive therapy, but an association between altered matrix metalloproteinases after successful ECT and possible relapse has yet to be investigated. Methods Serum was obtained twice, before and immediately after a course of electroconvulsive therapy, from 38 depressed patients. Serum was also collected, once, from two groups of age- and gender-matched healthy controls, 40 volunteers in each group. Possible associations between levels of matrix metalloproteinases and relapse during a 1-year follow-up period were analyzed. Results Excluding patients who did not respond to electroconvulsive therapy and patients lost to follow-up, data from 28 patients were evaluated. Eighteen of the patients (64.3%) relapsed within 1 year. In the group that did not relapse, serum levels of MMP-9 were significantly decreased after a course of electroconvulsive therapy, but not in the group that relapsed. No association between MMP-2 and relapse was observed. Conclusion The degree of change in serum MMP-9 change could be associated with relapse following electroconvulsive therapy in depressed patients. PMID:29025075
Xu, Zhi-ling; Wang, Qiang; Liu, Tian-lin; Guo, Li-ying; Jing, Feng-qiu; Liu, Hui
2006-04-01
To investigate the changes of bone sialoprotein (BSP) in developing dental tissues of rats exposed to fluoride. Twenty rats were randomly divided into two groups, one was with distilled water (control group), the other was with distilled water treated by fluoride (experimental group). When the fluorosis model was established, the changes of the expression of BSP were investigated and compared between the two groups. HE staining was used to observe the morphology of the cell, and immunohistochemisty assay was used to determine the expression of BSP in rat incisor. Student's t test was used for statistical analysis. The ameloblasts had normal morphology and arranged orderly. Immunoreactivitis of BSP was present in matured ameloblasts, dentinoblasts, cementoblasts, and the matrix in the control group. But in the experimental group the ameloblasts arranged in multiple layers, the enamel matrix was confused and the expression of BSP was significantly lower than that of the control group. Statistical analysis showed significant differences between the two groups (P<0.01). Fluoride can inhibit the expression of BSP in developing dental tissues of rats, and then inhibit differentiation of the tooth epithelial cells and secretion of matrix. This is a probable intracellular mechanism of dental fluorosis.
Gravitation, Symmetry and Undergraduates
NASA Astrophysics Data System (ADS)
Jorgensen, Jamie
2001-04-01
This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.