Science.gov

Sample records for matrix metalloproteinase mt1-mmp

  1. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  2. Posttranslational Regulation of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) in Mouse PTEN Null Prostate Cancer Cells: Enhanced Surface Expression and Differential O-Glycosylation of MT1-MMP1

    PubMed Central

    Kim, Seaho; Huang, Wei; Mottillo, Emilio P.; Sohail, Anjum; Ham, Yoon-Ah; Conley-LaComb, M. Katie; Kim, Chong Jai; Tzivion, Guri; Kim, Hyeong-Reh Choi; Wang, Shihua; Chen, Yong Q.; Fridman, Rafael

    2010-01-01

    Membrane type 1 (MT1)-matrix metalloproteinase (MT1-MMP) is a membrane-tethered MMP that has been shown to play a key role in promoting cancer cell invasion. MT1-MMP is highly expressed in bone metastasis of prostate cancer (PC) patients and promotes intraosseous tumor growth of PC cells in mice. The majority of metastatic prostate cancers harbor loss-of-function mutations or deletions of the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome ten). However, the role of PTEN inactivation in MT1-MMP expression in PC cells has not been examined. In this study, prostate epithelial cell lines derived from mice that are either heterozygous (PTEN+/-) or homozygous (PTEN-/-) for PTEN deletion or harboring a wild type PTEN (PTEN+/+) were used to investigate the expression of MT1-MMP. We found that biallelic loss of PTEN is associated with posttranslational regulation of MT1-MMP protein in mouse PC cells. PTEN-/- PC cells display higher levels of MT1-MMP at the cell surface when compared to PTEN+/+ and PTEN+/- cells and consequently exhibited enhanced migratory and collagen-invasive activities. MT1-MMP displayed by PTEN-/- cells is differentially O-glycosylated and exhibits a slow rate of turnover. MT1-MMP expression in PTEN-/- cells is under control of the PI3K/AKT signaling pathway, as determined using pharmacological inhibitors. Interestingly, rapamycin, an mTOR inhibitor, up-regulates MT1-MMP expression in PTEN+/+ cells via PI3K activity. Collectively, these data in a mouse prostate cell system uncover for the first time a novel and complex relationship between PTEN loss-mediated PI3K/AKT activation and posttranslational regulation of MT1-MMP, which may play a role in PC progression. PMID:20620173

  3. [Membrane type 1 matrix metalloproteinase (MT1-MMP) and the regulators of its activity as invasive factors in squamous cell cervical carcinomas].

    PubMed

    Timoshenko, O S; Gureeva, T A; Kugaevskaia, E V; Solov'eva, N I

    2014-01-01

    Membrane type 1 matrix metalloproteinase (MT1MMP) is one of matrix metalloproteinases (MMP), which play а key role in tumor invasion and metastasis. The aim of this study was to elucidate the peculiarities of expression of MT1MMP and endogenous regulators of its activity: the activator - furin and the inhibitor - TIMP-2, as invasive factors of squamous cell cervical carcinomas (SCC). The study was carried out using 11 specimens of SCC and 11 specimens of morphologically normal tissue adjacent to the tumor. It was shown that the increase of MT1-MMP and furin expression and low of TIMP-2 expression makes the main contribution to the destructive (invasive) potential of SCC. Moreover, substantial expression of MT1-MMP was registered in the specimens of morphologically normal adjoining to tumor tissue. This expression was found to make an additional contribution to the destructive potential of the cervical tumor.

  4. Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

    PubMed Central

    Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian

    2012-01-01

    Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501

  5. MicroRNA miR-182 cluster mediated modulation of RECK without changes in cell surface membrane type-1 matrix metalloproteinase (MT1-MMP).

    PubMed

    Silva, Milagros; Hernandez, Maria E; Rojas, Fausto; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J

    2015-01-01

    Cell surface localized membrane type 1-matrix metalloproteinase (MT1-MMP) plays an important role in physiological and pathological processes and its function can be regulated by proteins such as RECK. We examined the ability of miR-182 (one of the miR-183 cluster miRNAs), which can target RECK, to control cell surface MT1-MMP activity. Expression of RECK mRNA and protein was increased with anti-miRs to miR-182, miR-183 or miR-96 in HT1080 fibrosarcoma cells, but, decreased RECK mRNA and increased its protein in the benign prostatic hyperplasia cell line BPH-1. Treatment of BPH-1 and HT-1080 cells with the anti-miRs did not change the level of cell surface MT1-MMP activity, nor their rate of migration in an in vitro wound-healing assay. Trichostatin A (TSA) did not increase the level of RECK, but blocked cell surface MT1-MMP activity and decreased cell motility. Anti-miRs mediated increased RECK levels did not interfere with cell surface MT1-MMP function, and TSA may block cell surface localization of MT1-MMP by a mechanism independent of RECK.

  6. MicroRNA miR-182 cluster mediated modulation of RECK without changes in cell surface membrane type-1 matrix metalloproteinase (MT1-MMP)

    PubMed Central

    Silva, Milagros; Hernandez, Maria E; Rojas, Fausto; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J

    2015-01-01

    Cell surface localized membrane type 1-matrix metalloproteinase (MT1-MMP) plays an important role in physiological and pathological processes and its function can be regulated by proteins such as RECK. We examined the ability of miR-182 (one of the miR-183 cluster miRNAs), which can target RECK, to control cell surface MT1-MMP activity. Expression of RECK mRNA and protein was increased with anti-miRs to miR-182, miR-183 or miR-96 in HT1080 fibrosarcoma cells, but, decreased RECK mRNA and increased its protein in the benign prostatic hyperplasia cell line BPH-1. Treatment of BPH-1 and HT-1080 cells with the anti-miRs did not change the level of cell surface MT1-MMP activity, nor their rate of migration in an in vitro wound-healing assay. Trichostatin A (TSA) did not increase the level of RECK, but blocked cell surface MT1-MMP activity and decreased cell motility. Anti-miRs mediated increased RECK levels did not interfere with cell surface MT1-MMP function, and TSA may block cell surface localization of MT1-MMP by a mechanism independent of RECK. PMID:26609496

  7. Fetal insulin and IGF-II contribute to gestational diabetes mellitus (GDM)-associated up-regulation of membrane-type matrix metalloproteinase 1 (MT1-MMP) in the human feto-placental endothelium.

    PubMed

    Hiden, U; Lassance, L; Tabrizi, N Ghaffari; Miedl, H; Tam-Amersdorfer, C; Cetin, I; Lang, U; Desoye, G

    2012-10-01

    Gestational diabetes mellitus (GDM)-associated hormonal and metabolic derangements in mother and fetus affect placental development and function. Indeed, in GDM, placentas are characterized by hypervascularization and vascular dysfunction. The membrane-type matrix metalloproteinase 1 (MT1-MMP) is a key player in angiogenesis and vascular expansion. Here, we hypothesized elevated placental MT1-MMP levels in GDM induced by components of the diabetic environment. Therefore, we measured placental MT1-MMP in normal vs. GDM pregnancies, identified potential functional consequences, and investigated the contribution of hyperglycemia and the insulin/IGF axis. Immunohistochemistry identified placental cell types expressing MT1-MMP. MT1-MMP was compared between normal and GDM placentas by immunoblotting. Quantitative PCR of MT1-MMP in primary feto-placental endothelial cells (fpEC) and trophoblasts isolated from both normal and GDM placentas identified the cells contributing to the GDM-associated changes. A putative MT1-MMP role in angiogenesis was determined using blocking antibodies for in vitro angiogenesis assays. Potential GDM-associated factors and signaling pathways inducing MT1-MMP up-regulation in fpEC were identified using kinase inhibitors. Total and active MT1-MMP was increased in GDM placentas (+51 and 54%, respectively, P<0.05) as a result of up-regulated expression in fpEC (2.1-fold, P=0.02). MT1-MMP blocking antibodies reduced in vitro angiogenesis up to 25% (P=0.03). Pathophysiological levels of insulin and IGF-II, but not IGF-I and glucose, stimulated MT1-MMP expression in fpEC by phosphatidylinositol 3-kinase signals relayed through the insulin, but not IGF-I, receptor. GDM up-regulates MT1-MMP in the feto-placental endothelium, and insulin and IGF-II contribute. This may account for GDM-associated changes in the feto-placental vasculature.

  8. A Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) – Discoidin Domain Receptor 1 Axis Regulates Collagen-Induced Apoptosis in Breast Cancer Cells

    PubMed Central

    Assent, Delphine; Bourgot, Isabelle; Hennuy, Benoît; Geurts, Pierre; Noël, Agnès; Foidart, Jean-Michel; Maquoi, Erik

    2015-01-01

    During tumour dissemination, invading breast carcinoma cells become confronted with a reactive stroma, a type I collagen-rich environment endowed with anti-proliferative and pro-apoptotic properties. To develop metastatic capabilities, tumour cells must acquire the capacity to cope with this novel microenvironment. How cells interact with and respond to their microenvironment during cancer dissemination remains poorly understood. To address the impact of type I collagen on the fate of tumour cells, human breast carcinoma MCF-7 cells were cultured within three-dimensional type I collagen gels (3D COL1). Using this experimental model, we have previously demonstrated that membrane type-1 matrix metalloproteinase (MT1-MMP), a proteinase overexpressed in many aggressive tumours, promotes tumour progression by circumventing the collagen-induced up-regulation of BIK, a pro-apoptotic tumour suppressor, and hence apoptosis. Here we performed a transcriptomic analysis to decipher the molecular mechanisms regulating 3D COL1-induced apoptosis in human breast cancer cells. Control and MT1-MMP expressing MCF-7 cells were cultured on two-dimensional plastic plates or within 3D COL1 and a global transcriptional time-course analysis was performed. Shifting the cells from plastic plates to 3D COL1 activated a complex reprogramming of genes implicated in various biological processes. Bioinformatic analysis revealed a 3D COL1-mediated alteration of key cellular functions including apoptosis, cell proliferation, RNA processing and cytoskeleton remodelling. By using a panel of pharmacological inhibitors, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase specifically activated by collagen, as the initiator of 3D COL1-induced apoptosis. Our data support the concept that MT1-MMP contributes to the inactivation of the DDR1-BIK signalling axis through the cleavage of collagen fibres and/or the alteration of DDR1 receptor signalling unit, without triggering a

  9. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence

    PubMed Central

    El Azzouzi, Karim; Wiesner, Christiane

    2016-01-01

    Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion. PMID:27069022

  10. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion.

    PubMed

    Williams, Karla C; McNeilly, Rachael E; Coppolino, Marc G

    2014-07-01

    Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1-matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE)-mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.

  11. MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction.

    PubMed

    Koenig, Gerald C; Rowe, R Grant; Day, Sharlene M; Sabeh, Farideh; Atkinson, Jeffrey J; Cooke, Kenneth R; Weiss, Stephen J

    2012-05-01

    The myocardial extracellular matrix (ECM), an interwoven meshwork of proteins, glycoproteins, proteoglycans, and glycosaminoglycans that is dominated by polymeric fibrils of type I collagen, serves as the mechanical scaffold on which myocytes are arrayed for coordinated and synergistic force transduction. Following ischemic injury, cardiac ECM remodeling is initiated via localized proteolysis, the bulk of which has been assigned to matrix metalloproteinase (MMP) family members. Nevertheless, the key effector(s) of myocardial type I collagenolysis both in vitro and in vivo have remained unidentified. In this study, using cardiac explants from mice deficient in each of the major type I collagenolytic MMPs, including MMP-13, MMP-8, MMP-2, MMP-9, or MT1-MMP, we identify the membrane-anchored MMP, MT1-MMP, as the dominant collagenase that is operative within myocardial tissues in vitro. Extending these observations to an in vivo setting, mice heterozygous for an MT1-MMP-null allele display a distinct survival advantage and retain myocardial function relative to wild-type littermates in an experimental model of myocardial infarction, effects associated with preservation of the myocardial type I collagen network as a consequence of the decreased collagenolytic potential of cardiac fibroblasts. This study identifies MT1-MMP as a key MMP responsible for effecting postinfarction cardiac ECM remodeling and cardiac dysfunction.

  12. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity

    PubMed Central

    Rojas, Fausto; Hernandez, Maria E.; Silva, Milagros; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J.; Liu, Ping

    2015-01-01

    MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production. PMID:26204513

  13. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity.

    PubMed

    Rojas, Fausto; Hernandez, Maria E; Silva, Milagros; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J; Liu, Ping

    2015-01-01

    MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production.

  14. Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes.

    PubMed

    Parmo-Cabañas, Marisa; Molina-Ortiz, Isabel; Matías-Román, Salomón; García-Bernal, David; Carvajal-Vergara, Xonia; Valle, Inmaculada; Pandiella, Atanasio; Arroyo, Alicia G; Teixidó, Joaquin

    2006-01-01

    Malignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour cell invasion. The chemokine CXCL12 is expressed in the BM, and it was previously shown that it triggers myeloma cell migration and activation. In the present work we show that CXCL12 promotes myeloma cell invasion across Matrigel-reconstituted basement membranes and type I collagen gels. MMP-9 activity was required for invasion through Matrigel towards CXCL12, whereas TIMP-1, a MMP-9 inhibitor that we found to be expressed by myeloma and BM stromal cells, impaired the invasion. In addition, we show that the membrane-bound MT1-MMP metalloproteinase is expressed by myeloma cells and contributes to CXCL12-promoted myeloma cell invasion across Matrigel. Increase in MT1-MMP expression, as well as induction of its membrane polarization by CXCL12 in myeloma cells, might represent potential mechanisms contributing to this invasion. CXCL12-promoted invasion across type I collagen involved metalloproteinases different from MT1-MMP. These data indicate that CXCL12 could contribute to myeloma cell trafficking in the BM involving MMP-9 and MT1-MMP activities.

  15. MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin.

    PubMed

    Shi, Feng; Sottile, Jane

    2011-12-01

    The extracellular matrix (ECM) is dynamically remodeled by cells during development, normal tissue homeostasis and in a variety of disease processes. We previously showed that fibronectin is an important regulator of ECM remodeling. The deposition and/or polymerization of fibronectin into the ECM controls the deposition and stability of other ECM molecules. In addition, agents that inhibit fibronectin polymerization promote the turnover of fibronectin fibrils and enhance ECM fibronectin endocytosis and intracellular degradation. Endocytosis of ECM fibronectin is regulated by β1 integrins, including α5β1 integrin. We have examined the role of extracellular proteases in regulating ECM fibronectin turnover. Our data show that membrane type matrix metalloproteinase 1 (MT1-MMP; also known as MMP14) is a crucial regulator of fibronectin turnover. Cells lacking MT1-MMP show reduced turnover and endocytosis of ECM fibronectin. MT1-MMP regulates ECM fibronectin remodeling by promoting extracellular cleavage of fibronectin and by regulating α5β1-integrin endocytosis. Our data also show that fibronectin polymerization stabilizes fibronectin fibrils and inhibits ECM fibronectin endocytosis by inhibiting α5β1-integrin endocytosis. These data are the first to show that an ECM protein and its modifying enzyme can regulate integrin endocytosis. These data also show that integrin trafficking plays a major role in modulating ECM fibronectin remodeling. The dual dependence of ECM fibronectin turnover on extracellular proteolysis and endocytosis highlights the complex regulatory mechanisms that control ECM remodeling to ensure maintenance of proper tissue function.

  16. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  17. Targeting a Single Function of the Multifunctional Matrix Metalloprotease MT1-MMP

    PubMed Central

    Ingvarsen, Signe; Porse, Astrid; Erpicum, Charlotte; Maertens, Ludovic; Jürgensen, Henrik J.; Madsen, Daniel H.; Melander, Maria C.; Gårdsvoll, Henrik; Høyer-Hansen, Gunilla; Noel, Agnès; Holmbeck, Kenn; Engelholm, Lars H.; Behrendt, Niels

    2013-01-01

    The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role. PMID:23413031

  18. Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP: impact on lymphangiogenesis.

    PubMed

    Ingvarsen, Signe; Porse, Astrid; Erpicum, Charlotte; Maertens, Ludovic; Jürgensen, Henrik J; Madsen, Daniel H; Melander, Maria C; Gårdsvoll, Henrik; Høyer-Hansen, Gunilla; Noel, Agnès; Holmbeck, Kenn; Engelholm, Lars H; Behrendt, Niels

    2013-04-12

    The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role.

  19. Extracellular Matrix Proteolysis by MT1-MMP Contributes to Influenza-Related Tissue Damage and Mortality.

    PubMed

    Talmi-Frank, Dalit; Altboum, Zeev; Solomonov, Inna; Udi, Yael; Jaitin, Diego Adhemar; Klepfish, Mordehay; David, Eyal; Zhuravlev, Alina; Keren-Shaul, Hadas; Winter, Deborah R; Gat-Viks, Irit; Mandelboim, Michal; Ziv, Tamar; Amit, Ido; Sagi, Irit

    2016-10-12

    Mounting an effective immune response, while also protecting tissue integrity, is critical for host survival. We used a combined genomic and proteomic approach to investigate the role of extracellular matrix (ECM) proteolysis in achieving this balance in the lung during influenza virus infection. We identified the membrane-tethered matrix metalloprotease MT1-MMP as a prominent host-ECM-remodeling collagenase in influenza infection. Selective inhibition of MT1-MMP protected the tissue from infection-related structural and compositional tissue damage. MT1-MMP inhibition did not significantly alter the immune response or cytokine expression. The available flu therapeutic Oseltamivir did not prevent lung ECM damage and was less effective than anti-MT1-MMP in influenza virus Streptococcus pneumoniae coinfection paradigms. Combination therapy of Oseltamivir with anti-MT1-MMP showed a strong synergistic effect and resulted in complete recovery of infected mice. This study highlights the importance of tissue resilience in surviving infection and the potential of such host-pathogen therapy combinations for respiratory infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. MT1-MMP: universal or particular player in angiogenesis?

    PubMed

    Genís, Laura; Gálvez, Beatriz G; Gonzalo, Pilar; Arroyo, Alicia G

    2006-03-01

    Tumorigenesis involves not only tumor cells that become transformed but also the peritumoral stroma which reacts inducing inflammatory and angiogenic responses. Angiogenesis, the formation of new capillaries from preexisting vessels, is an absolute requirement for tumor growth and metastasis, and it can be induced and modulated by a wide variety of soluble factors. During angiogenesis, quiescent endothelial cells are activated and they initiate migration by degrading the basement membranes through the action of specific proteases, in particular of matrix metalloproteinases (MMPs). Among these, the membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified as a key player during the angiogenic response. In this review, we will summarize the role of MT1-MMP in angiogenesis and the regulatory mechanisms of this protease in endothelial cells. Since our recent findings have suggested that MT1-MMP is not universally required for angiogenesis, we hypothesize that the regulation and participation of MT1-MMP in angiogenesis may depend on the nature of the angiogenic stimulus. Experiments aimed at testing this hypothesis have shown that similarly to the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12, lipopolysaccharide (LPS) seems to induce the formation of capillary tubes by human or mouse endothelial cells (ECs) in an MT1-MMP-independent manner. The implications of these findings in the potential use of MT1-MMP inhibitors in cancer therapy are discussed.

  1. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway.

    PubMed

    Bravo-Cordero, Jose J; Marrero-Diaz, Raquel; Megías, Diego; Genís, Laura; García-Grande, Aranzazu; García, Maria A; Arroyo, Alicia G; Montoya, María C

    2007-03-21

    MT1-matrix metalloproteinase (MT1-MMP) is one of the most critical factors in the invasion machinery of tumor cells. Subcellular localization to invasive structures is key for MT1-MMP proinvasive activity. However, the mechanism driving this polarized distribution remains obscure. We now report that polarized exocytosis of MT1-MMP occurs during MDA-MB-231 adenocarcinoma cell migration into collagen type I three-dimensional matrices. Polarized trafficking of MT1-MMP is triggered by beta1 integrin-mediated adhesion to collagen, and is required for protease localization at invasive structures. Localization of MT1-MMP within VSV-G/Rab8-positive vesicles, but not in Rab11/Tf/TfRc-positive compartment in invasive cells, suggests the involvement of the exocytic traffic pathway. Furthermore, constitutively active Rab8 mutants induce MT1-MMP exocytic traffic, collagen degradation and invasion, whereas Rab8- but not Rab11-knockdown inhibited these processes. Altogether, these data reveal a novel pathway of MT1-MMP redistribution to invasive structures, exocytic vesicle trafficking, which is crucial for its role in tumor cell invasiveness. Mechanistically, MT1-MMP delivery to invasive structures, and therefore its proinvasive activity, is regulated by Rab8 GTPase.

  2. Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption

    PubMed Central

    Wimer, H.F.; Yamada, S.S.; Yang, T.; Holmbeck, K.; Foster, B.L.

    2016-01-01

    Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP−/−) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data

  3. Graded activation of the MEK1/MT1-MMP axis determines renal epithelial cell tumor phenotype

    PubMed Central

    Mahimkar, Rajeev; Alfonso-Jaume, Maria Alejandra; Cape, Leslie M.; Dahiya, Rajvir; Lovett, David H.

    2011-01-01

    Activation of Raf/Ras/mitogen-activated protein kinase (MEK)/mitogen-activated protein kinase signaling and elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) are associated with von Hippel–Lindau gene alterations in renal cell carcinoma. We postulated that the degree of MEK activation was related to graded expression of MT1-MMP and the resultant phenotype of renal epithelial tumors. Madin Darby canine kidney epithelial cells transfected with a MEK1 expression plasmid yielded populations with morphologic phenotypes ranging from epithelial, mixed epithelial/mesenchymal to mesenchymal. Clones were analyzed for MEK1 activity, MT1-MMP expression and extent of epithelial–mesenchymal transition. Phenotypes of the MDCK-MEK1 clones were evaluated in vivo with nu/nu mice. Tissue microarray of renal cell cancers was quantitatively assessed for expression of phosphorylated MEK1 and MT1-MMP proteins and correlations drawn to Fuhrman nuclear grade. Graded increases in the MEK signaling module were associated with graded induction of epithelial–mesenchymal transition of the MDCK cells and induction of MT1-MMP transcription and synthesis. Inhibition of MEK1 and MT1-MMP activity reversed the epithelial–mesenchymal transition. Tumors generated by epithelial, mixed epithelial/mesenchymal and mesenchymal MDCK clones demonstrated a gradient of phenotypes extending from well-differentiated, fully encapsulated non-invasive tumors to tumors with an anaplastic morphology, high Fuhrman nuclear score, neoangiogenesis and invasion. Tumor microarray demonstrated a statistically significant association between the extent of phosphorylated MEK1, MT1-MMP expression and nuclear grade. We conclude that graded increases in the MEK1 signaling module are correlated with M1-MMP expression, renal epithelial cell tumor phenotype, invasive activity and nuclear grade. Phosphorylated MEK1 and MT1-MMP may represent novel, and mechanistic, biomarkers for the assessment of renal

  4. Graded activation of the MEK1/MT1-MMP axis determines renal epithelial cell tumor phenotype.

    PubMed

    Mahimkar, Rajeev; Alfonso-Jaume, Maria Alejandra; Cape, Leslie M; Dahiya, Rajvir; Lovett, David H

    2011-12-01

    Activation of Raf/Ras/mitogen-activated protein kinase (MEK)/mitogen-activated protein kinase signaling and elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) are associated with von Hippel-Lindau gene alterations in renal cell carcinoma. We postulated that the degree of MEK activation was related to graded expression of MT1-MMP and the resultant phenotype of renal epithelial tumors. Madin Darby canine kidney epithelial cells transfected with a MEK1 expression plasmid yielded populations with morphologic phenotypes ranging from epithelial, mixed epithelial/mesenchymal to mesenchymal. Clones were analyzed for MEK1 activity, MT1-MMP expression and extent of epithelial-mesenchymal transition. Phenotypes of the MDCK-MEK1 clones were evaluated in vivo with nu/nu mice. Tissue microarray of renal cell cancers was quantitatively assessed for expression of phosphorylated MEK1 and MT1-MMP proteins and correlations drawn to Fuhrman nuclear grade. Graded increases in the MEK signaling module were associated with graded induction of epithelial-mesenchymal transition of the MDCK cells and induction of MT1-MMP transcription and synthesis. Inhibition of MEK1 and MT1-MMP activity reversed the epithelial-mesenchymal transition. Tumors generated by epithelial, mixed epithelial/mesenchymal and mesenchymal MDCK clones demonstrated a gradient of phenotypes extending from well-differentiated, fully encapsulated non-invasive tumors to tumors with an anaplastic morphology, high Fuhrman nuclear score, neoangiogenesis and invasion. Tumor microarray demonstrated a statistically significant association between the extent of phosphorylated MEK1, MT1-MMP expression and nuclear grade. We conclude that graded increases in the MEK1 signaling module are correlated with M1-MMP expression, renal epithelial cell tumor phenotype, invasive activity and nuclear grade. Phosphorylated MEK1 and MT1-MMP may represent novel, and mechanistic, biomarkers for the assessment of renal cell

  5. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation.

    PubMed

    Qin, Zhuo; Feng, Jinfa; Liu, Yusi; Deng, Li-Li; Lu, Changlian

    2016-01-01

    Increasing attention has been focused on the malignant tumor microenvironment, which plays important roles in tumor occurrence, progression and metastasis. Fibroblasts are recruited by platelet-derived growth factor (PDGFs) and invade the tumor microenvironment. In the PDGF family, PDGF-B has been reported to play an important role in the recruitment and invasion programs. However, whether PDGF-D plays a role in these programs remains unclear. We generated a recombinant plasmid expressing human PDGF-D and transfected the plasmid to dermal fibroblasts to examine the effects on cell invasive activities in 3D type I collagen gels. PDGF-D plasmid transfection enhanced fibroblast invasive activities both in invasive cell numbers and invasion depth in 3D collagen gels. These effects were blocked by Snail-specific siRNA transfection. PDGF-D transfection significantly induced Snail expression at both mRNA and protein levels. PDGF-D further upregulated MT1-MMP mRNA and protein expressions and this was inhibited when Snail was knocked down by siRNA. Both Snail and MT1-MMP expressions in fibroblasts and cellular invasive activities in 3D collagen induced by PDGF-D were inhibited by LY294002, SP600125, and U1026, the inhibitors of PI3K, JNK, and ERK1/2 signaling pathways, respectively. However, no effects were observed in response to the P38MAPK signaling pathway inhibitor SB203580. These effects of PDGF-D were confirmed by using the culture supernatants of the transfectants. Taken together, these data demonstrate that PDGF-D plays important roles in the recruitment and invasion programs of fibroblasts via the activation of PI3K, JNK and ERK1/2 signaling pathways, and upregulation of Snail and downstream effecter MT1-MMP. These findings indicate that PDGF-D is an important player in the tumor microenvironment for fibroblast recruitment.

  6. MT1-MMP-mediated basement membrane remodeling modulates renal development

    SciTech Connect

    Riggins, Karen S.; Mernaugh, Glenda; Su, Yan; Quaranta, Vito; Koshikawa, Naohiko; Seiki, Motoharu; Pozzi, Ambra; Zent, Roy

    2010-10-15

    Extracellular matrix (ECM) remodeling regulates multiple cellular functions required for normal development and tissue repair. Matrix metalloproteinases (MMPs) are key mediators of this process and membrane targeted MMPs (MT-MMPs) in particular have been shown to be important in normal development of specific organs. In this study we investigated the role of MT1-MMP in kidney development. We demonstrate that loss of MT1-MMP leads to a renal phenotype characterized by a moderate decrease in ureteric bud branching morphogenesis and a severe proliferation defect. The kidneys of MT1-MMP-null mice have increased deposition of collagen IV, laminins, perlecan, and nidogen and the phenotype is independent of the MT-1MMP target, MMP-2. Utilizing in vitro systems we demonstrated that MTI-MMP proteolytic activity is required for renal tubule cells to proliferate in three dimensional matrices and to migrate on collagen IV and laminins. Together these data suggest an important role for MT1-MMP in kidney development, which is mediated by its ability to regulate cell proliferation and migration by proteolytically cleaving kidney basement membrane components.

  7. CMT-3, a non-antimicrobial tetracycline (TC), inhibits MT1-MMP activity: relevance to cancer.

    PubMed

    Lee, H M; Golub, L M; Cao, J; Teronen, O; Laitinen, M; Salo, T; Zucker, S; Sorsa, T

    2001-02-01

    Tetracyclines (TCs) and their non-antimicrobial analogs (CMTs) have therapeutic potential to inhibit tissue destructive disease processes, such as cancer invasion and metastasis, by inhibiting certain matrix metalloproteinases. Enhanced matrix metalloproteinase-2 (MMP-2; gelatinase A) activity has been correlated to cancer invasiveness, and membrane type MMP (MT1-MMP) expressed by tumor cells is involved in localizing and activating pro-MMP-2, a pathway believed to mediate cancer induced tissue breakdown. CMT-3 (6-demethyl, 6-deoxy, 4-dedimethylamino TC) has been shown to experimentally suppress prostate cancer, colon adenocarcinoma and melanoma invasiveness in cell culture and to inhibit tumor growth and metastasis in vivo and was used in the current in vitro study. Confluent MT1-MMP transfected COS-1 cells were harvested, washed thoroughly, subjected to N(2) cavitation and cell membrane enriched fractions were isolated by sequential centrifugations. This MT1-MMP preparation exhibited (i) pro-MMP-2 activating activity as shown by molecular weight shift of this gelatinase from 72 kDa to 62 kDa using gelatin zymography, and (ii) the ability to degrade both [(3)H-methyl] gelatin and casein at 37 degrees C. Adding CMT-3 at final concentrations of 5--20microM inhibited MT1-MMP gelatinolytic and caseinolytic activity, blocked MT1-MMP activation of pro-MMP-2, and decreased invasiveness (using the Matrigel system) of HT-1080 fibrosarcoma cells. The inhibition of MT1-MMP by CMT-3 may partially explain the inhibition of cancer cell -mediated tissue breakdown and invasiveness by this non-antimicrobial tetracycline analog.

  8. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions.

    PubMed

    Fraley, Stephanie I; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  9. Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation.

    PubMed

    Kwak, Hyeong-Il; Kang, Hojin; Dave, Jui M; Mendoza, E Adriana; Su, Shih-Chi; Maxwell, Steve A; Bayless, Kayla J

    2012-06-01

    Endothelial cells normally line the vasculature and remain quiescent. However, these cells can be rapidly stimulated to undergo morphogenesis and initiate new blood vessel formation given the proper cues. This study reports a new mechanism for initiating angiogenic sprout formation that involves vimentin, the major intermediate filament protein in endothelial cells. Initial studies confirmed vimentin was required for sphingosine 1-phosphate (S1P)- and growth factor (GF)-induced endothelial cell invasion, and vimentin was cleaved by calpains during invasion. Calpains were predominantly activated by GF and were required for sprout initiation. Because others have reported membrane type 1-matrix metalloproteinase (MT1-MMP) is required for endothelial sprouting responses, we tested whether vimentin and calpain acted upstream of MT1-MMP. Both calpain and vimentin were required for successful MT1-MMP membrane translocation, which was stimulated by S1P. In addition, vimentin complexed with MT1-MMP in a manner that required both the cytoplasmic domain of MT1-MMP and calpain activation, which increased the soluble pool of vimentin in endothelial cells. Altogether, these data indicate that pro-angiogenic signals converge to activate calpain-dependent vimentin cleavage and increase vimentin solubility, which act upstream to facilitate MT1-MMP membrane translocation, resulting in successful endothelial sprout formation in three-dimensional collagen matrices. These findings help explain why S1P and GF synergize to stimulate robust sprouting in 3D collagen matrices.

  10. Activatable and Cell-Penetrable Multiplex FRET Nanosensor for Profiling MT1-MMP Activity in Single Cancer Cells

    PubMed Central

    Chung, Eddie Y.; Ochs, Christopher J.; Wang, Yi; Lei, Lei; Qin, Qin; Smith, Andrew M.; Strongin, Alex Y.; Kamm, Roger; Qi, Ying-Xin; Lu, Shaoying; Wang, Yingxiao

    2015-01-01

    We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells. PMID:26203778

  11. FGF receptor-4 (FGFR4) polymorphism acts as an activity switch of a membrane type 1 matrix metalloproteinase-FGFR4 complex.

    PubMed

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa; Lohi, Jouko; Chan, Kui Ming; Zhou, Zhongjun; Alitalo, Kari; Taipale, Jussi; Keski-Oja, Jorma; Lehti, Kaisa

    2010-09-07

    Tumor cells use membrane type 1 matrix metalloproteinase (MT1-MMP) for invasion and metastasis. However, the signaling mechanisms that underlie MT1-MMP regulation in cancer have remained unclear. Using a systematic gain-of-function kinome screen for MT1-MMP activity, we have here identified kinases that significantly enhance MT1-MMP activity in tumor cells. In particular, we discovered an MT1-MMP/FGF receptor-4 (FGFR4) membrane complex that either stimulates or suppresses MT1-MMP and FGFR4 activities, depending on a tumor progression-associated polymorphism in FGFR4. The FGFR4-R388 allele, linked to poor cancer prognosis, increased collagen invasion by decreasing lysosomal MT1-MMP degradation. FGFR4-R388 induced MT1-MMP phosphorylation and endosomal stabilization, and surprisingly, the increased MT1-MMP in return enhanced FGFR4-R388 autophosphorylation. A phosphorylation-defective MT1-MMP was stabilized on the cell surface, where it induced simultaneous FGFR4-R388 internalization and dissociation of cell-cell junctions. In contrast, the alternative FGFR4-G388 variant down-regulated MT1-MMP, and the overexpression of MT1-MMP and particularly its phosphorylation-defective mutant vice versa induced FGFR4-G388 degradation. These results provide a mechanistic basis for FGFR4-R388 function in cancer invasion.

  12. Cellular cholesterol regulates MT1 MMP dependent activation of MMP 2 via MEK-1 in HT1080 fibrosarcoma cells.

    PubMed

    Atkinson, Susan J; English, Jane L; Holway, Nicholas; Murphy, Gillian

    2004-05-21

    Unstimulated human fibrosarcoma cells (HT1080) constitutively secrete matrix metalloproteinase 2 (MMP 2) as a proenzyme requiring proteolytic cleavage by membrane type-1 MMP (MT1 MMP) for activation. Physiological and pharmacological stimuli induce clustering of MT1 MMP/tissue inhibitor of MMP 2 "receptors", promoting binding and activation of MMP 2. We now report that cholesterol depleted HT1080 cells accumulated MT1 MMP on the cell surface and activated MMP 2. A specific inhibitor of mitogen activated protein kinase kinase 1/2 inhibited both MMP 2 activation and extracellular signal-related kinase phosphorylation induced by cholesterol depletion. Our data indicate that the cholesterol content of unstimulated cells is critical for secretion of MMP 2 as an inactive zymogen and control of pericellular proteolysis.

  13. MT1-MMP and Type II Collagen Specify Skeletal Stem Cells and Their Bone and Cartilage Progeny

    PubMed Central

    Szabova, Ludmila; Yamada, Susan S.; Wimer, Helen; Chrysovergis, Kaliopi; Ingvarsen, Signe; Behrendt, Niels; Engelholm, Lars H.

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen–expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified in bone cells and skeletal stem/progenitor cells of wildtype mice. Moreover, bone marrow stromal cells isolated from mice expressing MT1-MMP under the control of the type II collagen promoter in an MT1-MMP–deficient background showed enhanced bone formation in vitro and in vivo compared with cells derived from nontransgenic MT1-MMP–deficient littermates. These observations show that type II collagen is not stringently confined to the chondrocyte but is expressed in skeletal stem/progenitor cells (able to regenerate bone, cartilage, myelosupportive stroma, marrow adipocytes) and in the chondrogenic and osteogenic lineage progeny where collagenolytic activity is a requisite for proper cell and tissue function. PMID:19419317

  14. A furin inhibitor downregulates osteosarcoma cell migration by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway.

    PubMed

    Liu, Bingshan; Li, Guojun; Wang, Xiao; Liu, Yang

    2014-04-01

    This study aimed to explore the exact mechanism of the effect of a furin inhibitor on the migration and invasion of MG-63 and Saos-2 osteosarcoma cells. MG-63 and Saos-2 osteosarcoma cells were treated with regular culture medium in the presence or absence of 480 nM α1-antitrypsin Portland (α1-PDX). Wound-healing and Transwell assays were used for the detection of the effects of α1-PDX on MG-63 and Saos-2 osteosarcoma cell migration and invasion. Western blot analysis and reverse transcription-polymerase chain reaction were performed to detect the expression levels of membrane type I matrix metalloproteinase (MT1-MMP), Wnt and β-catenin. A chromatin immunoprecipitation assay was used for detection of the levels of MT1-MMP gene transcription activity. The results showed that α1-PDX treatment significantly reduced the migration and invasion ability of the cells. Notably, the expression levels of MT1-MMP decreased evidently upon α1-PDX treatment, paralleled with reductions in the expression levels of Wnt and β-catenin. Further analysis of the transcriptional activity of MT1-MMP revealed that the α1-PDX-induced downregulation of the levels of MT1-MMP was mediated by the Wnt signaling pathway. These data suggest that α1-PDX plays a vital role in inhibiting MG-63 and Saos-2 osteosarcoma cell migration and invasion by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway.

  15. Expression of MMP-7 and MT1-MMP in oral squamous cell carcinoma as predictive indicator for tumor invasion and prognosis.

    PubMed

    de Vicente, J-C; Lequerica-Fernández, P; Santamaría, J; Fresno, M-F

    2007-08-01

    Squamous cell carcinoma of the oral cavity is a highly invasive neoplasm that spreads locally and metastasizes to regional lymph nodes. This process involves multiple proteolytic enzymes including matrilysin (MMP-7) and membrane type I-matrix metalloproteinase (MT1-MMP). This study was designed to explore the association between MMP-7 and MT1-MMP in the invasiveness and prognosis of oral squamous cell carcinoma (OSCC). About 4-microM, formalin-fixed, paraffin-embedded tissue sections from 69 patients with OSCC were immunohistochemically studied using specific antibodies against MMP-7 and MT1-MMP proteins. Immunostaining was semiquantitatively scored, and results were correlated with histologic and clinical variables including clinical behavior and survival. MMP-7 was observed only in cancer cells, and MT1-MMP in both tumoral tissue and stroma. MMP-7 expression was significantly correlated with lymph node metastasis (P = 0.03; RR = 3.2). MT1-MMP showed a significant association with TIMP-2 (in N+ cases) and p53 expression (P = 0.01). MMP-7 and MT1-MMP displayed a survival relevance, and in multivariate analysis they were independent prognostic indicators, particularly in neck node-positive cases.

  16. Early MT-1 MMP expression following elastase exposure is associated with increased cleaved MMP-2 activity in experimental rodent aortic aneurysms.

    PubMed

    Sinha, Indranil; Hannawa, Kevin K; Eliason, Jonathan L; Ailawadi, Gorav; Deogracias, Michael P; Bethi, Siddharth; Ford, John W; Roelofs, Karen J; Grigoryants, Vladimir; Henke, Peter K; Stanley, James C; Upchurch, Gilbert R

    2004-08-01

    The objective of this study was to determine the significance of membrane type 1 matrix metalloproteinase (MT1-MMP) activation of MMP-2 in experimental abdominal aortic aneurysms. Rat aortas were perfused with either saline as a control or elastase, and harvested on 2, 4, or 7 days after perfusion (n = 5 per treatment group/day). Aortic MT1-MMP and MMP-2 expression and protein were determined by real time polymerase chain reaction and Western blotting, respectively. Aortic explants were used to measure MMP-2 activity by zymography. Rat aortic smooth muscle cells in vitro were exposed to increasing doses of elastase and analyzed for MT-1 MMP expression. Aneurysms formed in 80% of the elastase-perfused aortas at 7 days, whereas none formed in the saline-perfused aortas. Significantly increased MT1-MMP expression was observed only on day 4, when levels were 6.5-fold higher in elastase-perfused aortas compared with saline-perfused aortas (P < .01). By day 7, MT1-MMP protein was present only in the elastase-perfused aortas (P = .02). By immunohistochemistry, MT1-MMP was detectable only in the elastase-perfused group at day 7. Cleaved MMP-2 activity (P = .045) was increased in elastase-perfused aortas compared with saline perfused aortas at day 7. In rat aortic smooth muscle cells, MT-1 MMP expression increased in response to elastase (P = .02). The rodent aortic aneurysm model exhibits upregulation of MT1-MMP expression and protein with subsequent increased conversion of MMP-2 from the latent to the cleaved form. Copyright 2004 Elsevier Inc.

  17. SPARC Upregulates MT1-MMP Expression, MMP-2 Activation, and the Secretion and Cleavage of Galectin-3 in U87MG Glioma Cells

    PubMed Central

    McClung, Heather M.; Thomas, Stacey L.; Osenkowski, Pamela; Toth, Marta; Menon, Priya; Raz, Avraham; Fridman, Rafael; Rempel, Sandra A.

    2007-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human gliomas and promotes glioma invasion. We have shown by cDNA array analysis that SPARC upregulates membrane type 1-matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2) transcripts. To confirm these findings at the protein level and determine whether SPARC expression correlates with increased MMP activity, we used Western blot to assess the levels of MT1-MMP, and gelatin zymography to assess MMP-2 levels and activity. We also examined the expression, secretion, and cleavage of galectin-3, a target of MT1-MMP and MMP-2. Our data confirm that SPARC upregulates MT1-MMP levels and MMP-2 activity. There was also an increase in secreted galectin-3, as well as an increase in the proteolytically processed form of galectin-3. Previous studies have demonstrated that MT1-MMP, MMP-2 and galectin-3 are increased in gliomas. Our results suggest that their upregulation and activation may be a consequence of increased SPARC expression. These data provide a provisional mechanism whereby SPARC contributes to brain tumor invasion. PMID:17490812

  18. MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells.

    PubMed

    Yañez-Mó, María; Barreiro, Olga; Gonzalo, Pilar; Batista, Alicia; Megías, Diego; Genís, Laura; Sachs, Norman; Sala-Valdés, Mónica; Alonso, Miguel A; Montoya, María C; Sonnenberg, Arnoud; Arroyo, Alicia G; Sánchez-Madrid, Francisco

    2008-10-15

    MT1-MMP plays a key role in endothelial function, as underscored by the angiogenic defects found in MT1-MMP deficient mice. We have studied the molecular interactions that underlie the functional regulation of MT1-MMP. At lateral endothelial cell junctions, MT1-MMP colocalizes with tetraspanin CD151 (Tspan 24) and its associated partner alpha3beta1 integrin. Biochemical and FRET analyses show that MT1-MMP, through its hemopexin domain, associates tightly with CD151, thus forming alpha3beta1 integrin/CD151/MT1-MMP ternary complexes. siRNA knockdown of HUVEC CD151 expression enhanced MT1-MMP-mediated activation of MMP2, and the same activation was seen in ex vivo lung endothelial cells isolated from CD151-deficient mice. However, analysis of collagen degradation in these experimental models revealed a diminished MT1-MMP enzymatic activity in confined areas around the cell periphery. CD151 knockdown affected both MT1-MMP subcellular localization and its inclusion into detergent-resistant membrane domains, and prevented biochemical association of the metalloproteinase with the integrin alpha3beta1. These data provide evidence for a novel regulatory role of tetraspanin microdomains on the collagenolytic activity of MT1-MMP and indicate that CD151 is a key regulator of MT1-MMP in endothelial homeostasis.

  19. Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP

    PubMed Central

    Decaneto, Elena; Suladze, Saba; Rosin, Christopher; Havenith, Martina; Lubitz, Wolfgang; Winter, Roland

    2015-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP or MMP-14) is a zinc-transmembrane metalloprotease involved in the degradation of extracellular matrix and tumor invasion. While changes in solvation of MT1-MMP have been recently studied, little is known about the structural and energetic changes associated with MT1-MMP while interacting with substrates. Steady-state kinetic and thermodynamic data (including activation energies and activation volumes) were measured over a wide range of temperatures and pressures by means of a stopped-flow fluorescence technique. Complementary temperature- and pressure-dependent Fourier-transform infrared measurements provided corresponding structural information of the protein. MT1-MMP is stable and active over a wide range of temperatures (10–55°C). A small conformational change was detected at 37°C, which is responsible for the change in activity observed at the same temperature. Pressure decreases the enzymatic activity until complete inactivation occurs at 2 kbar. The inactivation is associated with changes in the rate-limiting step of the reaction caused by additional hydration of the active site upon compression and/or minor conformational changes in the active site region. Based on these data, an energy and volume diagram could be established for the various steps of the enzymatic reaction. PMID:26636948

  20. MT1-MMP controls human mesenchymal stem cell trafficking and differentiation.

    PubMed

    Lu, Changlian; Li, Xiao-Yan; Hu, Yuexian; Rowe, R Grant; Weiss, Stephen J

    2010-01-14

    Human mesenchymal stem cells (hMSCs) localized to bone marrow, nonhematopoietic organs, as well as perivascular niches are postulated to traffic through type I collagen-rich stromal tissues to first infiltrate sites of tissue damage, inflammation, or neoplasia and then differentiate. Nevertheless, the molecular mechanisms supporting the ability of hMSCs to remodel 3-dimensional (3D) collagenous barriers during trafficking or differentiation remain undefined. Herein, we demonstrate that hMSCs degrade and penetrate type I collagen networks in tandem with the expression of a 5-member set of collagenolytic matrix metalloproteinases (MMPs). Specific silencing of each of these proteases reveals that only a single membrane-tethered metalloenzyme, termed MT1-MMP, plays a required role in hMSC-mediated collagenolysis, 3D invasion, and intravasation. Further, once confined within type I collagen-rich tissue, MT1-MMP also controls hMSC differentiation in a 3D-specific fashion. Together, these data demonstrate that hMSC invasion and differentiation programs fall under the control of the pericellular collagenase, MT1-MMP.

  1. Rho-ROCK-Myosin Signaling Meditates Membrane Type 1 Matrix Metalloproteinase-induced Cellular Aggregation of Keratinocytes*

    PubMed Central

    Dangi-Garimella, Surabhi; Redig, Amanda J.; Shields, Mario A.; Siddiqui, Mohammed A.; Munshi, Hidayatullah G.

    2010-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP, MMP14), which is associated with extracellular matrix (ECM) breakdown in squamous cell carcinoma (SCC), promotes tumor formation and epithelial-mesenchymal transition. However, in this report we demonstrate that MT1-MMP, by cleaving the underlying ECM, causes cellular aggregation of keratinocytes and SCC cells. Treatment with an MMP inhibitor abrogated MT1-MMP-induced phenotypic changes, but decreasing E-cadherin expression did not affect MT1-MMP-induced cellular aggregation. As ROCK1/2 can regulate cell-cell and cell-ECM interaction, we examined its role in mediating MT1-MMP-induced phenotypic changes. Blocking ROCK1/2 expression or activity abrogated the cellular aggregation resulting from MT1-MMP expression. Additionally, blocking Rho and non-muscle myosin attenuated MT1-MMP-induced phenotypic changes. Moreover, SCC cells expressing only the catalytically active MT1-MMP protein demonstrated increased cellular aggregation and increased myosin II activity in vivo when injected subcutaneously into nude mice. Together, these results demonstrate that expression of MT1-MMP may be anti-tumorigenic in keratinocytes by promoting cellular aggregation. PMID:20605790

  2. MEMBRANE-TYPE 1 MATRIX METALLOPROTEINASE DOWNREGULATES FIBROBLAST GROWTH FACTOR-2 BINDING TO THE CELL SURFACE AND INTRACELLULAR SIGNALING

    PubMed Central

    Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo

    2014-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1-MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell’s biological response to FGF-2. PMID:24986796

  3. Functional interplay between endothelial nitric oxide synthase and membrane type 1 matrix metalloproteinase in migrating endothelial cells.

    PubMed

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S; Gálvez, Beatriz G; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S; Arroyo, Alicia G

    2007-10-15

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1-matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders.

  4. Functional interplay between endothelial nitric oxide synthase and membrane type 1–matrix metalloproteinase in migrating endothelial cells

    PubMed Central

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.

    2007-01-01

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763

  5. CD44 regulates pancreatic cancer invasion through MT1-MMP.

    PubMed

    Jiang, Wei; Zhang, Yaqing; Kane, Kevin T; Collins, Meredith A; Simeone, Diane M; di Magliano, Marina Pasca; Nguyen, Kevin Tri

    2015-01-01

    Pancreatic cancer is one of the deadliest human malignancies due to its early metastatic spread and resistance to therapy. The mechanisms regulating pancreatic cancer metastasis are so far poorly understood. Here, using both in vitro and in vivo approaches, it is demonstrated that CD44, a transmembrane glycoprotein expressed on a subset of pancreatic cancer cells, is required for the induction of epithelial-mesenchymal transition (EMT) and the activation of an invasive program in pancreatic cancer. Mechanistically, the transcription factor Snail1 (SNAI1), a regulator of the EMT program, is a downstream target of CD44 in primary pancreatic cancer cells and regulates membrane bound metalloproteinase (MMP14/MT1-MMP) expression. In turn, MT1-MMP expression is required for pancreatic cancer invasion. Thus, these data establish the CD44-Snail-MMP axis as a key regulator of the EMT program and of invasion in pancreatic cancer. This study sets the stage for CD44 and MT1-MMP as therapeutic targets in pancreatic cancer, for which small molecule or biologic inhibitors are available. Visual Overview: http://mcr.aacrjournals.org/content/early/2014/09/10/1541-7786.MCR-14-0076/F1.large.jpg. ©2014 American Association for Cancer Research.

  6. CD44 regulates pancreatic cancer invasion through MT1-MMP

    PubMed Central

    Jiang, Wei; Zhang, Yaqing; Kane, Kevin T.; Collins, Meredith A.; Simeone, Diane M.; di Magliano, Marina Pasca; Nguyen, Kevin Tri

    2014-01-01

    Pancreatic cancer is one of the deadliest human malignancies due to its early metastatic spread and resistance to therapy. The mechanisms regulating pancreatic cancer metastasis are so far poorly understood. Here, using both in vitro and in vivo approaches, it is demonstrated that CD44, a transmembrane glycoprotein expressed on a subset of pancreatic cancer cells, is required for the induction of epithelial-mesenchymal transition (EMT) and the activation of an invasive program in pancreatic cancer. Mechanistically, the transcription factor Snail1 (SNAI1), a regulator of the EMT program, is a downstream target of CD44 in primary pancreatic cancer cells and regulates membrane bound metalloproteinase (MMP14/MT1-MMP) expression. In turn, MT1-MMP expression is required for pancreatic cancer invasion. Thus, these data establish the CD44-Snail-MMP axis as a key regulator of the EMT program and of invasion in pancreatic cancer. (135) IMPLICATIONS This study sets the stage for CD44 and MT1-MMP as therapeutic targets in pancreatic cancer, for which small molecule or biologic inhibitors are available. PMID:25566991

  7. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction.

    PubMed

    Spinale, Francis G; Mukherjee, Rupak; Zavadzkas, Juozas A; Koval, Christine N; Bouges, Shenikqua; Stroud, Robert E; Dobrucki, Lawrence W; Sinusas, Albert J

    2010-09-24

    The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.

  8. Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis.

    PubMed

    Gálvez, Beatriz G; Genís, Laura; Matías-Román, Salomón; Oblander, Samantha A; Tryggvason, Karl; Apte, Suneel S; Arroyo, Alicia G

    2005-01-14

    We have investigated the putative role and regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in angiogenesis induced by inflammatory factors of the chemokine family. The absence of MT1-MMP from null mice or derived mouse lung endothelial cells or the blockade of its activity with inhibitory antibodies resulted in the specific decrease of in vivo and in vitro angiogenesis induced by CCL2 but not CXCL12. Similarly, CCL2- and CXCL8-induced tube formation by human endothelial cells (ECs) was highly dependent on MT1-MMP activity. CCL2 and CXCL8 significantly increased MT1-MMP surface expression, clustering, activity, and function in human ECs. Investigation of the signaling pathways involved in chemokine-induced MT1-MMP activity in ECs revealed that CCL2 and CXCL8 induced cortical actin polymerization and sustained activation of phosphatidylinositol 3-kinase (PI3K) and the small GTPase Rac. Inhibition of PI3K or actin polymerization impaired CCL2-induced MT1-MMP activity. Finally, dimerization of MT1-MMP was found to be enhanced by CCL2 in ECs in a PI3K- and actin polymerization-dependent manner. In summary, we identify MT1-MMP as a molecular target preferentially involved in angiogenesis mediated by CCL2 and CXCL8, but not CXCL12, and suggest that MT1-MMP dimerization might be an important mechanism of its regulation during angiogenesis.

  9. Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia.

    PubMed

    Watanabe, Ayako; Hoshino, Daisuke; Hosino, Daisuke; Koshikawa, Naohiko; Seiki, Motoharu; Suzuki, Takashi; Ichikawa, Kazuhisa

    2013-01-01

    Focal degradation of extracellular matrix (ECM) is the first step in the invasion of cancer cells. MT1-MMP is a potent membrane proteinase employed by aggressive cancer cells. In our previous study, we reported that MT1-MMP was preferentially located at membrane protrusions called invadopodia, where MT1-MMP underwent quick turnover. Our computer simulation and experiments showed that this quick turnover was essential for the degradation of ECM at invadopodia (Hoshino, D., et al., (2012) PLoS Comp. Biol., 8: e1002479). Here we report on characterization and analysis of the ECM-degrading activity of MT1-MMP, aiming at elucidating a possible reason for its repetitive insertion in the ECM degradation. First, in our computational model, we found a very narrow transient peak in the activity of MT1-MMP followed by steady state activity. This transient activity was due to the inhibition by TIMP-2, and the steady state activity of MT1-MMP decreased dramatically at higher TIMP-2 concentrations. Second, we evaluated the role of the narrow transient activity in the ECM degradation. When the transient activity was forcibly suppressed in computer simulations, the ECM degradation was heavily suppressed, indicating the essential role of this transient peak in the ECM degradation. Third, we compared continuous and pulsatile turnover of MT1-MMP in the ECM degradation at invadopodia. The pulsatile insertion showed basically consistent results with the continuous insertion in the ECM degradation, and the ECM degrading efficacy depended heavily on the transient activity of MT1-MMP in both models. Unexpectedly, however, low-frequency/high-concentration insertion of MT1-MMP was more effective in ECM degradation than high-frequency/low-concentration pulsatile insertion even if the time-averaged amount of inserted MT1-MMP was the same. The present analysis and characterization of ECM degradation by MT1-MMP together with our previous report indicate a dynamic nature of MT1-MMP at

  10. Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A.

    PubMed

    Okada, A; Tomasetto, C; Lutz, Y; Bellocq, J P; Rio, M C; Basset, P

    1997-04-07

    Skin wound healing depends on cell migration and extracellular matrix remodeling. Both processes, which are necessary for reepithelization and restoration of the underlying connective tissue, are believed to involve the action of extracellular proteinases. We screened cDNA libraries and we found that six matrix metalloproteinase genes were highly expressed during rat skin wound healing. They were namely those of stromelysin 1, stromelysin 3, collagenase 3, gelatinase A (GelA), gelatinase B, and membrane type-1 matrix metalloproteinase (MT1-MMP). The expression kinetics of these MMP genes, the tissue distribution of their transcripts, the results of cotransfection experiments in COS-1 cells, and zymographic analyses performed using microdissected rat wound tissues support the possibility that during cutaneous wound healing pro-GelA and pro-gelatinase B are activated by MT1-MMP and stromelysin 1, respectively. Since MT1-MMP has been demonstrated to be a membrane-associated protein (Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki. 1994. Nature (Lond.). 370: 61-65), our finding that GelA and MT1-MMP transcripts were expressed in stromal cells exhibiting a similar tissue distribution suggests that MT1-MMP activates pro-GelA at the stromal cell surface. This possibility is further supported by our observation that the processing of pro-GelA to its mature form correlated to the detection of MT1-MMP in cell membranes of rat fibroblasts expressing the MT1-MMP and GelA genes. These observations, together with the detection of high levels of the mature GelA form in the granulation tissue but not in the regenerating epidermis, suggest that MT1-MMP and GelA contribute to the restoration of connective tissue during rat skin wound healing.

  11. Miniaturized antibodies for imaging membrane type-1 matrix metalloproteinase in cancers.

    PubMed

    Kondo, Naoya; Temma, Takashi; Shimizu, Yoichi; Watanabe, Hiroyuki; Higano, Keiichi; Takagi, Yoko; Ono, Masahiro; Saji, Hideo

    2013-04-01

    Since membrane type-1 matrix metalloproteinase (MT1-MMP) plays pivotal roles in tumor progression and metastasis and holds great promise as an early biomarker for malignant tumors, a method of evaluating MT1-MMP expression levels would be valuable for molecular biological and clinical studies. Although we have previously developed a (99m) Tc-labeled anti-MT1-MMP monoclonal IgG ((99m) Tc-MT1-mAb) as an MT1-MMP imaging probe by nuclear medical techniques for this purpose, slow pharmacokinetics were a problem due to its large molecular size. Thus, in this study, our aim was to develop miniaturized antibodies, a single chain antibody fragment (MT1-scFv) and a dimer of two molecules of scFv (MT1-diabody), as the basic structures of MT1-MMP imaging probes followed by in vitro and in vivo evaluation with an (111) In radiolabel. Phage display screening successfully provided MT1-scFv and MT1-diabody, which had sufficiently high affinity for MT1-MMP (KD  = 29.8 and 17.1 nM). Both (111) In labeled miniaturized antibodies showed higher uptake in MT1-MMP expressing HT1080 cells than in non-expressing MCF7 cells. An in vivo biodistribution study showed rapid pharmacokinetics for both probes, which exhibited >20-fold higher tumor to blood radioactivity ratios (T/B ratio), an index for in vivo imaging, than (99m) Tc-MT1-mAb 6 h post-administration, and significantly higher tumor accumulation in HT1080 than MCF7 cells. SPECT images showed heterogeneous distribution and ex vivo autoradiographic analysis revealed that the radioactivity distribution profiles in tumors corresponded to MT1-MMP-positive areas. These findings suggest that the newly developed miniaturized antibodies are promising probes for detection of MT1-MMP in cancer cells.

  12. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies.

    PubMed

    Hoshino, Daisuke; Koshikawa, Naohiko; Suzuki, Takashi; Quaranta, Vito; Weaver, Alissa M; Seiki, Motoharu; Ichikawa, Kazuhisa

    2012-01-01

    MT1-MMP is a potent invasion-promoting membrane protease employed by aggressive cancer cells. MT1-MMP localizes preferentially at membrane protrusions called invadopodia where it plays a central role in degradation of the surrounding extracellular matrix (ECM). Previous reports suggested a role for a continuous supply of MT1-MMP in ECM degradation. However, the turnover rate of MT1-MMP and the extent to which the turnover contributes to the ECM degradation at invadopodia have not been clarified. To approach this problem, we first performed FRAP (Fluorescence Recovery after Photobleaching) experiments with fluorescence-tagged MT1-MMP focusing on a single invadopodium and found very rapid recovery in FRAP signals, approximated by double-exponential plots with time constants of 26 s and 259 s. The recovery depended primarily on vesicle transport, but negligibly on lateral diffusion. Next we constructed a computational model employing the observed kinetics of the FRAP experiments. The simulations successfully reproduced our FRAP experiments. Next we inhibited the vesicle transport both experimentally, and in simulation. Addition of drugs inhibiting vesicle transport blocked ECM degradation experimentally, and the simulation showed no appreciable ECM degradation under conditions inhibiting vesicle transport. In addition, the degree of the reduction in ECM degradation depended on the degree of the reduction in the MT1-MMP turnover. Thus, our experiments and simulations have established the role of the rapid turnover of MT1-MMP in ECM degradation at invadopodia. Furthermore, our simulations suggested synergetic contributions of proteolytic activity and the MT1-MMP turnover to ECM degradation because there was a nonlinear and marked reduction in ECM degradation if both factors were reduced simultaneously. Thus our computational model provides a new in silico tool to design and evaluate intervention strategies in cancer cell invasion.

  13. Structural Studies of Matrix Metalloproteinase by X-Ray Diffraction.

    PubMed

    Decaneto, Elena; Lubitz, Wolfgang; Ogata, Hideaki

    2017-01-01

    Matrix Metalloproteinases (MMPs) are a family of proteolytic enzymes whose endopeptidase activity is dependent on the presence of specific metal ions. MT1-MMP (or MMP-14), which has been implicated in tumor progression and cellular invasion, contains a membrane-spanning region located C-terminal to a hemopexin-like domain and an N-terminal catalytic domain. We recombinantly expressed the catalytic domain of human MT1-MMP in E. coli and purified it from inclusion bodies using a refolding protocol that yielded significant quantities of active protein. Crystals of MT1-MMP were obtained using the vapour diffusion method. Here, we describe the protocols used for crystallization and the data analysis together with the resulting diffraction pattern.

  14. Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium.

    PubMed

    Matías-Román, Salomón; Gálvez, Beatriz G; Genís, Laura; Yáñez-Mó, María; de la Rosa, Gonzalo; Sánchez-Mateos, Paloma; Sánchez-Madrid, Francisco; Arroyo, Alicia G

    2005-05-15

    Membrane type 1-matrix metalloproteinase (MT1-MMP) is involved in endothelial and tumor-cell migration, but its putative role in leukocyte migration has not been characterized yet. Here, we demonstrate that anti-MT1-MMP monoclonal antibody (mAb) impaired monocyte chemotactic protein-1 (MCP-1)-stimulated monocyte migration on fibronectin (FN), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). In addition, monocyte transmigration through tumor necrosis factor-alpha (TNF-alpha)-activated endothelium is also inhibited by anti-MT1-MMP mAb. Therefore, regulation of MT1-MMP in human peripheral blood monocytes was investigated. First, MT1-MMP clustering was observed at motility-associated membrane protrusions of MCP-1-stimulated monocytes migrating on FN, VCAM-1, or ICAM-1 and at the leading edge, together with profilin, of monocytes transmigrating through activated endothelial cells. In addition, up-regulation of MT1-MMP expression was induced in human monocytes upon attachment to FN in a manner dependent on alpha4beta1 and alpha5beta1 integrins. Binding of monocytes to TNF-alpha-activated human endothelial cells as well as to VCAM-1 or ICAM-1 also resulted in an increase of MT1-MMP expression. These findings correlated with an enhancement of MT1-MMP fibrinolytic activity in monocytes bound to FN, VCAM-1, or ICAM-1. Our data show that MT1-MMP is required during human monocyte migration and endothelial transmigration and that MT1-MMP localization, expression, and activity are regulated in monocytes upon contact with FN or endothelial ligands, pointing to a key role of MT1-MMP in monocyte recruitment during inflammation.

  15. Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis.

    PubMed

    Hasebe, Takashi; Hartman, Rebecca; Matsuda, Hiroki; Shi, Yun-Bo

    2006-04-01

    The matrix metalloproteinases (MMPs) are a family of proteases capable of degrading various components of the extracellular matrix (ECM). Among them, the membrane type MMP-1 (MT1-MMP) has been shown to participate in the activation of MMP gelatinase A (GelA), suggesting that they may function together in development and pathogenesis. Here, we have investigated the spatiotemporal expression profiles of Xenopus laevis MT1-MMP and GelA genes during thyroid-hormone-dependent metamorphosis. We have focused our studies on two organs: (1) the intestine, which undergoes first the degeneration of the tadpole epithelium through apoptosis and then the development of adult epithelium and other tissues, and (2) the tail, which completely resorbs through programmed cell death. We show that both MT1-MMP and GelA are upregulated in the intestine and tail when both organs undergo metamorphosis. Within the organs, MT1-MMP and GelA are coexpressed in the connective tissues during both natural and thyroid-hormone-induced metamorphosis. In addition, MT1-MMP (but not GelA) is also expressed in the longitudinal muscle cells of the metamorphosing intestine. These results suggest that MT1-MMP and GelA function together in the ECM degradation or remodeling associated with metamorphosis and that MT1-MMP has additional GelA-independent roles in the development of adult longitudinal muscle in the intestine.

  16. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch.

    PubMed

    Liu, Chengxing; Feng, Pengfei; Li, Xiaona; Song, Jie; Chen, Weiyi

    2014-08-01

    Refractive surgery not only leads to tissue injury but also evokes mechanical stress increase of the cornea. How the mechanical stress affects the corneal matrix remodeling, specifically, matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of metalloproteinases; TIMPs) is not well understood. In this study, cultured rabbit corneal fibroblasts in vitro were subjected to regimen of 5%, 10%, or 15% equibiaxial stretch at 0.1 Hz for 3 or 24 h. MMP-2 protein level was measured by gelatin zymography and Western blotting. MMP-2, membrane type 1 MMP (MT1-MMP), and TIMP-2 mRNA levels were quantified by real-time quantitative PCR. Extracellular regulated protein kinase (ERK) phosphorylation protein levels were assessed by Western blotting. Our results showed that a 15% stretch resulted in increases in MMP-2 protein, MMP-2 mRNA, and MT1-MMP mRNA levels, but a decrease in TIMP-2 mRNA level. However, a 5% stretch caused decreases in MMP-2 protein and mRNA level, but an increase in TIMP-2 mRNA level, and no change in MT1-MMP mRNA level. A 15% stretch also caused a significant increase in ERK1/2 phosphorylation. Inhibition of the mitogenactivated protein kinase (MEK) pathway with PD98059 attenuated stretch-induced increase in MMP-2 production and ERK activity. These results suggest that small-magnitude stretching may promote corneal matrix synthetic events, whereas large-magnitude stretching promotes corneal matrix degradation by changing the balance between MMPs and TIMPs in corneal fibroblasts. Large-magnitude stretch-induced increase in pro-MMP-2 production was in an ERK-dependent manner. © 2014 by the Society for Experimental Biology and Medicine.

  17. Atorvastatin suppresses glioma invasion and migration by reducing microglial MT1-MMP expression.

    PubMed

    Yongjun, Yi; Shuyun, Huang; Lei, Chen; Xiangrong, Chen; Zhilin, Yang; Yiquan, Ke

    2013-07-15

    Microglia, the immune cells of the brain, often present in large numbers in gliomas, where they promote tumor growth and invasiveness. This study found that atorvastatin reduced the pro-tumorigenic effects of microglia on glioma migration and invasion by reducing the microglial expression of membrane type 1 metalloproteinase (MT1-MMP). The results suggest that down-regulation of MT1-MMP is controlled by a p38 MAPK pathway in microglia. Taken together, the results support further research on atorvastatin as a candidate for glioma therapy by targeting microglia.

  18. Methylseleninic acid inhibits PMA-stimulated pro-MMP-2 activation mediated by MT1-MMP expression and further tumor invasion through suppression of NF-kappaB activation.

    PubMed

    Park, Jong-Min; Kim, Aeyung; Oh, Jang-Hee; Chung, An-Sik

    2007-04-01

    Selenium, an essential biological trace element, reduces the incidence of cancer. Our previous studies show that selenite inhibits tumor invasion by suppressing the expression of matrix metalloproteinases (MMP) -2 and -9. Methylseleninic acid (MSeA), an immediate precursor of methylselenol, inhibits tumor cell growth in vitro and mammary carcinogenesis in vivo. In this study, we demonstrate that MSeA suppresses pro-MMP-2 activation in a dose-dependent manner induced by 12-O-tetradecanoylphorbol-13-acetate (PMA), and further decreases the invasiveness of HT1080 tumor cells. Membrane type-1-MMP (MT1-MMP) is a crucial element in the process of pro-MMP-2 activation. Pro-MMP-2 binds MT1-MMP, using tissue inhibitor of metalloproteinase-2 (TIMP-2) as an adaptor, by forming a trimolecular complex on the cell surface. MSeA blocked MT1-MMP in a dose-dependent manner, but not TIMP-2 expression. MMP-9 and TIMP-1 levels were not affected by MSeA. Selenite induced a decrease in protein levels of both pro-MMPs -9 and -2, but not active forms of pro-MMP-2. MT1-MMP expression is regulated by NF-kappaB. Our data show that the effect of MSeA on MT1-MMP expression is mediated through suppression of NF-kappaB activity. Methylselenol generated by selenomethionine (SeMet) and methioninase (METase) inhibited pro-MMP-2 activation induced by PMA, confirming the effect of MSeA on pro-MMP-2 activity. Moreover, ROS production induced by PMA was partly decreased in the presence of MSeA. This suppression of ROS production may be related to diminished NF-kappaB activity. Thus, our results suggest that MSeA blocks tumor invasion in vitro via inhibiting pro-MMP-2 activation mediated by suppression of MT1-MMP expression, which is regulated by the NF-kappaB signal pathway.

  19. Targeting the Warburg Effect That Arises in Tumor Cells Expressing Membrane Type-1 Matrix Metalloproteinase*

    PubMed Central

    Sakamoto, Takeharu; Niiya, Daigo; Seiki, Motoharu

    2011-01-01

    Hypoxia inducible factor-1 (HIF-1) is a key transcription factor required for cellular adaptation to hypoxia, although its physiological roles and activation mechanisms during normoxia have not been studied sufficiently. The Warburg effect, which is a hallmark of malignant tumors that is characterized by increased activity of aerobic glycolysis, accompanies activation of HIF-1 during normoxia. Besides tumor cells that have multiple genetic and epigenetic alterations, normal macrophages also use glycolysis for ATP production by depending upon elevated HIF-1 activity even during normoxia. We recently found that activity of factor inhibiting HIF-1 (FIH-1) is specifically suppressed in macrophages by a nonproteolytic activity of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Thus, MT1-MMP expressed in macrophages plays a significant role in regulating HIF-1 activity during normoxia. In the light of this finding, we examined here whether MT1-MMP contributes to the Warburg effect of tumor cells. All the tumor cell lines that express MT1-MMP exhibit increased glycolytic activity, and forced expression of MT1-MMP in MT1-MMP-negative tumor cells is sufficient to induce the Warburg effect. The cytoplasmic tail of MT1-MMP mediates the stimulation of aerobic glycolysis by increasing the expression of HIF-1 target genes. Specific intervention of the MT1-MMP-mediated activation of HIF-1 in tumor cells retarded tumor growth in mice. Systemic administration of a membrane-penetrating form of the cytoplasmic tail peptide in mice to inhibit HIF-1 activation competitively also exhibited a therapeutic effect on tumors. PMID:21372132

  20. Discoidin Domain Receptor 2 Mediates Collagen-Induced Activation of Membrane-Type 1 Matrix Metalloproteinase in Human Fibroblasts.

    PubMed

    Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko; Gray, Nathanael S; Itoh, Yoshifumi

    2017-03-07

    Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity including fibroblasts and invasive cancer cell. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it upregulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation is not clearly understood. In this study we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited collagen-induced activation of proMMP-2 and upregulation of MT1-MMP at the gene and protein level. Interestingly DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signalling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells, as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without non-helical telopeptides region compared to intact collagen fibrils. Those data suggest that DDR2 is a microenvironmental sensor that regulates fibroblasts migration in collagen-rich environment.

  1. Phase Differential Enhancement of FLIM to Distinguish FRET Components of a Biosensor for Monitoring Molecular Activity of Membrane Type 1 Matrix Metalloproteinase in Live Cells

    PubMed Central

    Eichorst, John Paul; Huang, He

    2012-01-01

    Fluorescence lifetime-resolved imaging microscopy (FLIM) has been used to monitor the enzymatic activity of a proteolytic enzyme, Membrane Type 1 Matrix Metalloproteinase (MT1-MMP), with a recently developed FRET-based biosensor in vitro and in live HeLa and HT1080 cells. MT1-MMP is a collagenaise that is involved in the destruction of extra-cellular matrix (ECM) proteins, as well as in various cellular functions including migration. The increased expression of MT1-MMP has been positively correlated with the invasive potential of tumor cells. However, the precise spatiotemporal activation patterns of MT1-MMP in live cells are still not well-established. The activity of MT1-MMP was examined with our biosensor in live cells. Imaging of live cells was performed with full-field frequency-domain FLIM. Image analysis was carried out both with polar plots and phase differential enhancement. Phase differential enhancement, which is similar to phase suppression, is shown to facilitate the differentiation between different conformations of the MT1-MMP biosensor in live cells when the lifetime differences are small. FLIM carried out in differential enhancement or phase suppression modes, requires only two acquired phase images, and permits rapid imaging of the activity of MT1-MMP in live cells. PMID:21519891

  2. Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo.

    PubMed

    Zhang, Wenyue; Matrisian, Lynn M; Holmbeck, Kenn; Vick, Catherine C; Rosenthal, Eben L

    2006-03-06

    Identification of fibroblast derived factors in tumor progression has the potential to provide novel molecular targets for modulating tumor cell growth and metastasis. Multiple matrix metalloproteases (MMPs) are expressed by both mesenchymal and epithelial cells within head and neck squamous cell carcinomas (HNSCCs), but the relative importance of these enzymes and the cell source is the subject of controversy. The invasive potential of HNSCC tumor cells were assessed in vitro atop type I collagen gels in coculture with wild-type (WT), MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts. A floor of mouth mouse model of HNSCC was used to assess in vivo growth after co-injection of FaDu tumor cells with MMP null fibroblasts. Here we report changes in tumor phenotype when FaDu HNSCCs cells are cocultured with WT, MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts in vitro and in vivo. WT, MMP-2 null and MMP-9 null fibroblasts, but not MT1-MMP null fibroblasts, spontaneously invaded into type I collagen gels. WT fibroblasts stimulated FaDu tumor cell invasion in coculture. This invasive phenotype was unaffected by combination with MMP-9 null fibroblasts, reduced with MMP-2 null fibroblasts (50%) and abrogated in MT1-MMP null fibroblasts. Co-injection of FaDu tumor cells with fibroblasts in an orthotopic oral cavity SCID mouse model demonstrated a reduction of tumor volume using MMP-9 and MMP-2 null fibroblasts (48% and 49%, respectively) compared to WT fibroblasts. Consistent with in vitro studies, MT1-MMP null fibroblasts when co-injected with FaDu cells resulted in a 90% reduction in tumor volume compared to FaDu cells injected with WT fibroblasts. These data suggest a role for fibroblast-derived MMP-2 and MT1-MMP in HNSCC tumor invasion in vitro and tumor growth in vivo.

  3. NHE1 mediates migration and invasion of HeLa cells via regulating the expression and localization of MT1-MMP.

    PubMed

    Lin, Yani; Wang, Jian; Jin, Weina; Wang, Lihong; Li, Huawen; Ma, Li; Li, Qinghua; Pang, Tianxiang

    2012-01-01

    Na(+)/H(+) exchanger 1 (NHE1), acting as an important regulator of intracellular pH (pH(i)) and extracellular pH (pH(e)), has been known to play a key role in the metastasis of many solid tumours. However, the exact mechanism underlying these processes, especially in cervical cancer, is still poorly understood. In the current study, we first showed that the inhibition of NHE1 activity by the specific inhibitor cariporide could suppress migration and invasion of HeLa cells in vitro. Moreover, cariporide also reversed the enhanced migration and invasion in HeLa cells by overexpressed membrane-type 1 matrix metalloproteinase (MT1-MMP). Subsequently, our results showed that NHE1 regulated the expression of MT1-MMP at both messenger RNA and protein levels as well as its localization. Meanwhile, we observed slight modification in the morphology of HeLa cell after treating with cariporide. The present work indicates that NHE1 mediates HeLa cell metastasis via regulating the expression and localization of MT1-MMP and provides a theoretical basis for the development of novel therapeutic strategies targeting cervical cancer.

  4. Expression of membrane type 1 matrix metalloproteinase in papillomavirus-positive cells: role of the human papillomavirus (HPV) 16 and HPV8 E7 gene products.

    PubMed

    Smola-Hess, Sigrun; Pahne, Jenny; Mauch, Cornelia; Zigrino, Paola; Smola, Hans; Pfister, Herbert J

    2005-05-01

    Matrix metalloproteinases (MMPs) degrade extracellular matrix. They are involved in cellular proliferation, migration, angiogenesis, invasion and metastasis. MT-1 MMP, a membrane-bound MMP, is expressed in carcinomas of the uterine cervix in vivo. This type of cancer is associated with human papillomavirus (HPV) infection. Here it was shown that keratinocytes transformed with HPV16 or HPV18 in vitro, and HPV-positive cervical carcinoma cell lines, constitutively expressed MT-1 MMP. Expression of the E7 protein from the mucosal and cutaneous high-risk types HPV16 and HPV8, but not from the cutaneous low-risk type HPV1, was sufficient to induce MT-1 MMP expression in primary human keratinocytes and HaCaT cells. As a consequence, MMP-2 was activated. MT-1 MMP expression might play a role in the HPV life cycle by promoting proliferation of host cells and might contribute to their invasive phenotype during malignant progression.

  5. Expression of membrane-type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage.

    PubMed Central

    Imai, K.; Ohta, S.; Matsumoto, T.; Fujimoto, N.; Sato, H.; Seiki, M.; Okada, Y.

    1997-01-01

    Matrix metalloproteinases (MMPs) are expressed in osteoarthritic (OA) cartilage and are thought to be involved in the degradation of cartilage extracellular matrix (ECM). Among these proteinases, MMP-2 (gelatinase A) demonstrates a wide range of substrate specificity against the ECM present in cartilage. Although MMP-2 expression increases in OA cartilage, the activation mechanism of the corresponding zymogen (pro-MMP-2) in cartilage is unknown. In this study, we examined the expression pattern of membrane-type 1 MMP (MT1-MMP) in human OA articular cartilage and its correlation with the activation of pro-MMP-2. Immunohistochemical studies demonstrate that MT1-MMP localizes to the chondrocytes in the superficial and transitional zones in all of the samples examined directly correlating with cartilage degradation. Reverse transcription polymerase chain reaction confirmed the predominant expression of MT1-MMP mRNA in the OA cartilage. In situ hybridization revealed the site of expression of MT1-MMP in OA cartilage to be the chondrocytes. Through gelatin zymography and a sandwich enzyme immunoassay it was demonstrated that OA cartilage explants secrete significantly higher levels of pro-MMP-2 than normal samples. Pro-MMP-2 activation was enhanced in the OA cartilage samples and correlated with MT1-MMP expression in the cartilage. Plasma membranes prepared from cultured chondrocytes with MT1-MMP expression and those directly isolated from OA cartilage could activate pro-MMP-2. MT1-MMP gene expression in cultured chondrocytes was induced by treatment with interleukin-1 alpha and/or tumor necrosis factor-alpha. These data suggest that cytokine-induced MT1-MMP in the chondrocytes may play a key role in the activation of pro-MMP-2 in the OA articular cartilage, leading to cartilage destruction through ECM degradation. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9212749

  6. Mutational and structural analyses of the hinge region of membrane type 1-matrix metalloproteinase and enzyme processing.

    PubMed

    Osenkowski, Pamela; Meroueh, Samy O; Pavel, Dumitru; Mobashery, Shahriar; Fridman, Rafael

    2005-07-15

    Membrane type 1 (MT1)-matrix metalloproteinase (MMP) is a major mediator of collagen degradation in the pericellular space in both physiological and pathological conditions. Previous evidence has shown that on the cell surface, active MT1-MMP undergoes autocatalytic processing to a major membrane-tethered 44-kDa product lacking the catalytic domain and displaying Gly285 at its N terminus, which is at the beginning of the hinge domain. However, the importance of this site and the hinge region in MT1-MMP processing is unknown. In the current study, we generated mutations and deletions in the hinge of MT1-MMP and followed their effect on processing. These studies established Gly284-Gly285 as the main cleavage site involved in the formation of the 44-kDa species. However, alterations at this site did not prevent processing. Instead, they forced downstream cleavages within the stretch of residues flanked by Gln296 and Ser304 in the hinge region, as determined by the processing profile of various hinge deletion mutants. Also, replacement of the hinge of MT1-MMP with the longer MT3-MMP hinge did not prevent processing of MT1-MMP. Molecular dynamic studies using a computational model of MT1-MMP revealed that the hinge region is a highly motile element that undergoes significant motion in the highly exposed loop formed by Pro295-Arg302 consistent with being a prime target for proteolysis, in agreement with the mutational data. These studies suggest that the hinge of MT1-MMP evolved to facilitate processing, a promiscuous but compulsory event in the destiny of MT1-MMP, which may play a key role in the control of pericellular proteolysis.

  7. Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion

    PubMed Central

    Vinnakota, Katyayni; Hu, Feng; Ku, Min-Chi; Georgieva, Petya B.; Szulzewsky, Frank; Pohlmann, Andreas; Waiczies, Sonia; Waiczies, Helmar; Niendorf, Thoralf; Lehnardt, Seija; Hanisch, Uwe-Karsten; Synowitz, Michael; Markovic, Darko; Wolf, Susanne A.; Glass, Rainer; Kettenmann, Helmut

    2013-01-01

    Background Glioblastomas are the most aggressive primary brain tumors in humans. Microglia/brain macrophage accumulation in and around the tumor correlates with malignancy and poor clinical prognosis of these tumors. We have previously shown that microglia promote glioma expansion through upregulation of membrane type 1 matrix metalloprotease (MT1-MMP). This upregulation depends on signaling via the Toll-like receptor (TLR) adaptor molecule myeloid differentiation primary response gene 88 (MyD88). Methods Using in vitro, ex vivo, and in vivo techniques, we identified TLR2 as the main TLR controlling microglial MT1-MMP expression and promoting microglia-assisted glioma expansion. Results The implantation of mouse GL261 glioma cells into TLR2 knockout mice resulted in significantly smaller tumors, reduced MT1-MMP expression, and enhanced survival rates compared with wild-type control mice. Tumor expansion studied in organotypic brain slices depended on both parenchymal TLR2 expression and the presence of microglia. Glioma-derived soluble factors and synthetic TLR2 specific ligands induced MT1-MMP expression in microglia from wild-type mice, but no such change in MT1-MMP gene expression was observed in microglia from TLR2 knockout mice. We also found evidence that TLR1 and TLR6 cofunction with TLR2 as heterodimers in regulating MT1-MMP expression in vitro. Conclusions Our results thus show that activation of TLR2 along with TLRs 1 and/or 6 converts microglia into a glioma supportive phenotype. PMID:24014382

  8. 1-furan-2-yl-3-pyridin-2-yl-propenone inhibits the invasion and migration of HT1080 human fibrosarcoma cells through the inhibition of proMMP-2 activation and down regulation of MMP-9 and MT1-MMP.

    PubMed

    Park, Byung Chul; Thapa, Dinesh; Lee, Yoon-Seok; Kwak, Mi-Kyoung; Lee, Eung-Seok; Choi, Han Gon; Yong, Chul Soon; Kim, Jung-Ae

    2007-07-19

    Matrix metalloproteinases (MMPs) play important roles in solid tumor invasion and migration. In this study, we showed that 1-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) dose-dependently inhibited HT1080 cell invasion and migration, and decreased MMP-2 and MMP-9 activities. Furthermore, FPP-3 reduced MMP-2 expression at protein and mRNA levels, and suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-enhanced expression of MT1-MMP without changing tissue inhibitors of metalloproteinase (TIMP)-2 level. FPP-3 also suppressed TPA-induced increases in MMP-9 protein and mRNA levels, but did not alter TIMP-1 level. Our results suggest that FFP-3 may be a valuable anti-invasive drug candidate for cancer therapy by suppressing MMP-2, MMP-9, and MT1-MMP.

  9. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    NASA Astrophysics Data System (ADS)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  10. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of membrane type 1 matrix metalloproteinase

    PubMed Central

    Ogata, Hideaki; Decaneto, Elena; Grossman, Moran; Havenith, Martina; Sagi, Irit; Lubitz, Wolfgang; Knipp, Markus

    2014-01-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) belongs to the large family of zinc-dependent endopeptidases termed MMPs that are located in the extracellular matrix. MT1-MMP was crystallized at 277 K using the vapour-diffusion method with PEG as a precipitating agent. Data sets for MT1-MMP were collected to 2.24 Å resolution at 100 K. The crystals belonged to space group P43212, with unit-cell parameters a = 62.99, c = 122.60 Å. The crystal contained one molecule per asymmetric unit, with a Matthews coefficient (V M) of 2.90 Å3 Da−1; the solvent content is estimated to be 57.6%. PMID:24637763

  11. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells.

    PubMed

    Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2014-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.

  12. Induction of membrane-type-1 matrix metalloproteinase by epidermal growth factor-mediated signaling in gliomas1

    PubMed Central

    Van Meter, Timothy E.; Broaddus, William C.; Rooprai, Harcharan K.; Pilkington, Geoffrey J.; Fillmore, Helen L.

    2004-01-01

    Increased expression of membrane-type matrix metalloproteinases (MT-MMPs) has previously been reported to correlate with increasing grade of malignancy in gliomas, a relationship shared with alterations in epidermal growth factor receptor (EGFR) signaling. To investigate the possibility of a causative role for EGFR signaling in increasing MT-MMP expression and subsequent peritumoral proteolysis, we characterized glioma cell lines for expression of MT1-MMP, MT2-MMP, MT3-MMP, and MT5-MMP by Western blotting and by quantitative real-time polymerase chain reaction analysis, and for MMP-2 activity following epidermal growth factor (EGF) stimulation. EGF stimulation of glioma cell lines resulted in a 2- to 4-fold increase in MT1-MMP mRNA levels. Although there were slight differences in MT2-, MT3-, and MT5-MMP mRNA expression following EGF stimulation, none of these demonstrated an increase similar to that of MT1-MMP expression. Treatment of high-grade glioma cell lines U251MG and IPSB-18 with EGF for 24 h resulted in a several-fold increase in MT1-MMP protein (2.5- and 5.1-fold, respectively) and in cyclin D1 (2.9-fold), as compared to untreated controls. No significant increase was detected in other MT-MMPs at the protein level. Although there was no detectable increase in proMMP-2 protein, there was an increase in MMP-2 activity. Furthermore, the MT1-MMP induction by EGF was prevented by pretreatment with the EGFR-specific tyrphostin inhibitor AG1478. Similarly, treatment with the phosphatidylinositol 3-kinase inhibitor LY294002 prevented the induction of MT1-MMP protein by EGF stimulation. These compounds additionally inhibited EGF-stimulated invasion in Matrigel Transwell assays. Our results indicate that one mechanism of EGFR-mediated invasiveness in gliomas may involve the induction of MT1-MMP. PMID:15279711

  13. N-WASP coordinates the delivery and F-actin–mediated capture of MT1-MMP at invasive pseudopods

    PubMed Central

    Yu, Xinzi; Zech, Tobias; McDonald, Laura; Gonzalez, Esther Garcia; Li, Ang; Macpherson, Iain; Schwarz, Juliane P.; Spence, Heather; Futó, Kinga; Timpson, Paul; Nixon, Colin; Ma, Yafeng; Anton, Ines M.; Visegrády, Balázs; Insall, Robert H.; Oien, Karin; Blyth, Karen; Norman, Jim C.

    2012-01-01

    Metastasizing tumor cells use matrix metalloproteases, such as the transmembrane collagenase MT1-MMP, together with actin-based protrusions, to break through extracellular matrix barriers and migrate in dense matrix. Here we show that the actin nucleation–promoting protein N-WASP (Neural Wiskott-Aldrich syndrome protein) is up-regulated in breast cancer, and has a pivotal role in mediating the assembly of elongated pseudopodia that are instrumental in matrix degradation. Although a role for N-WASP in invadopodia was known, we now show how N-WASP regulates invasive protrusion in 3D matrices. In actively invading cells, N-WASP promoted trafficking of MT1-MMP into invasive pseudopodia, primarily from late endosomes, from which it was delivered to the plasma membrane. Upon MT1-MMP’s arrival at the plasma membrane in pseudopodia, N-WASP stabilized MT1-MMP via direct tethering of its cytoplasmic tail to F-actin. Thus, N-WASP is crucial for extension of invasive pseudopods into which MT1-MMP traffics and for providing the correct cytoskeletal framework to couple matrix remodeling with protrusive invasion. PMID:23091069

  14. Membrane Type 1 Matrix Metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells

    PubMed Central

    2013-01-01

    Background Tissue invasion and metastasis are acquired abilities of cancer and related to the death in oral squamous cell carcinoma (OSCC). Emerging observations indicate that the epithelial-to-mesenchymal transition (EMT) is associated with tumor progression and the generation of cells with cancer stem cells (CSCs) properties. Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) is a cell surface proteinase, which is involved in degrading extracellular matrix components that can promote tumor invasion and cell migration. Methods In the current study, we utilized SCC9 cells stably transfected with an empty vector (SCC9-N) or a vector encoding human MT1-MMP (SCC9-M) to study the role of MT1-MMP in EMT development. Results Upon up-regulation of MT1-MMP, SCC9-M cells underwent EMT, in which they presented a fibroblast-like phenotype and had a decreased expression of epithelial markers (E-cadherin, cytokeratin18 and β-catenin) and an increased expression of mesenchymal markers (vimentin and fibronectin). We further demonstrated that MT1-MMP-induced morphologic changes increased the level of Twist and ZEB, and were dependent on repressing the transcription of E-cadherin. These activities resulted in low adhesive, high invasive abilities of the SCC9-M cells. Furthermore, MT1-MMP-induced transformed cells exhibited cancer stem cell (CSC)-like characteristics, such as low proliferation, self-renewal ability, resistance to chemotherapeutic drugs and apoptosis, and expression of CSCs surface markers. Conclusions In conclusion, our study indicates that overexpression of MT1-MMP induces EMT and results in the acquisition of CSC-like properties in SCC9 cells. Our growing understanding of the mechanism regulating EMT may provide new targets against invasion and metastasis in OSCC. PMID:23548172

  15. Modulation of the membrane type 1 matrix metalloproteinase cytoplasmic tail enhances tumor cell invasion and proliferation in three-dimensional collagen matrices.

    PubMed

    Moss, Natalie M; Wu, Yi I; Liu, Yueying; Munshi, H G; Stack, M Sharon

    2009-07-24

    Increasing evidence suggests that the cytoplasmic tail of membrane type 1 matrix metalloproteinase (MT1-MMP) is subject to phosphorylation and that this modification may influence its enzymatic activity at the cell surface. In this study, phosphorylated MT1-MMP is detected using a phospho-specific antibody recognizing a protein kinase C consensus sequence (phospho-TXR), and a MT1-MMP tail peptide is phosphorylated by exogenous protein kinase C. To characterize the potential role of cytoplasmic residue Thr(567) in these processes, mutants that mimic a state of either constitutive (T567E) or defective phosphorylation (T567A) were expressed and analyzed for their functional effects on MT1-MMP activity and cellular behavior. Phospho-mimetic mutants of Thr(567) exhibit enhanced matrix invasion as well as more extensive growth within a three-dimensional type I collagen matrix. Together, these findings suggest that MT1-MMP surface action is regulated by phosphorylation at cytoplasmic tail residue Thr(567) and that this modification plays a critical role in processes that are linked to tumor progression.

  16. Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development.

    PubMed

    Hasebe, Takashi; Hartman, Rebecca; Fu, Liezhen; Amano, Tosikazu; Shi, Yun-Bo

    2007-01-01

    Matrix metalloproteinases (MMPs) are a large family of extracellular or membrane-bound proteases. Their ability to cleave extracellular matrix (ECM) proteins has implicated a role in ECM remodeling to affect cell fate and behavior during development and in pathogenesis. We have shown previously that membrane-type 1 (MT1)-MMP [corrected] is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine and tail where GelA is expressed during Xenopus laevis metamorphosis, suggesting a cooperative role of these MMPs in development. Here, we show that Xenopus GelA and MT1-MMP interact with each other in vivo and that overexpression of MT1-MMP and GelA together in Xenopus embryos leads to the activation of pro-GelA. We further show that both MMPs are expressed during Xenopus embryogenesis, although MT1-MMP gene is expressed earlier than the GelA gene. To investigate whether the embryonic MMPs play a role in development, we have studied whether precocious expression of these MMPs alters development. Our results show that overexpression of both MMPs causes developmental abnormalities and embryonic death by a mechanism that requires the catalytic activity of the MMPs. More importantly, we show that coexpression of wild type MT1-MMP and GelA leads to a cooperative effect on embryonic development and that this cooperative effect is abolished when the catalytic activity of either MMP is eliminated through a point mutation in the catalytic domain. Thus, our studies support a cooperative role of these MMPs in embryonic development, likely through the activation of pro-GelA by MT1-MMP.

  17. Lack of Association between Membrane-Type 1 Matrix Metalloproteinase Expression and Clinically Relevant Molecular or Morphologic Tumor Characteristics at the Leading Edge of Invasive Colorectal Carcinoma

    PubMed Central

    Arndt, Annette; Kraft, Klaus; Wardelmann, Eva; Steinestel, Konrad

    2015-01-01

    Colorectal cancer (CRC) is one of the leading causes of death from cancer in the western world, but tumor biology and clinical course show great interindividual variation. Molecular and morphologic tumor characteristics, such as KRAS/BRAF mutation status, mismatch repair (MMR) protein expression, tumor growth pattern, and tumor cell budding, have been shown to be of key therapeutic and/or prognostic relevance in CRC. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-anchored zinc-binding endopeptidase that is expressed at the leading edge of various invasive carcinomas and promotes tumor cell invasion through degradation of the extracellular matrix. The aim of this study was to investigate possible associations between MT1-MMP expression and molecular tumor characteristics as well as morphologic features of tumor aggressiveness in a consecutive series of 79 CRC tissue samples. However, although MT1-MMP was expressed in 41/79 samples (52%), there was no significant association between MT1-MMP expression and KRAS/BRAF mutation status, MMR protein expression, presence of lymphovascular invasion, tumor growth pattern, tumor-infiltrating lymphocytes, or tumor cell budding in our sample cohort (P > 0.05). Thus, we conclude that although MT1-MMP may play a role in CRC invasion, it is not of key relevance to the current models of CRC invasion and aggressiveness. PMID:26106602

  18. Exosite Interactions Impact Matrix Metalloproteinase Collagen Specificities*

    PubMed Central

    Robichaud, Trista K.; Steffensen, Bjorn; Fields, Gregg B.

    2011-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I–III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769–783 from type I–III collagens, the second inserted α1(II) collagen residues 763–768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784–792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased kcat/Km and kcat for MMP-1. MMP-13 showed the opposite behavior with a decreased kcat/Km and kcat and a greatly improved Km in response to the C-terminal residues. Insertion of the N-terminal residues enhanced kcat/Km and kcat for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced Km and dramatically decreased kcat, resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs. PMID:21896477

  19. Matrix Metalloproteinase Inhibition by Heterotrimeric Triple-Helical Peptide Transition State Analogs

    PubMed Central

    Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2015-01-01

    Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple-helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches are providing inhibitors with desired MMP selectivities. PMID:25766890

  20. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid.

    PubMed

    Gutiérrez-Fernández, Ana; Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Abril, Jesús; Garabaya, Cecilia; Aguirre, Alina; Fueyo, Antonio; Fernández-García, María Soledad; Puente, Xose S; López-Otín, Carlos

    2015-07-14

    MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14(-/-) mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16(INK4a) and p21(CIP1/WAF) (1), increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14(-/-) mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions. © 2015 The Authors.

  1. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid

    PubMed Central

    Gutiérrez-Fernández, Ana; Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Abril, Jesús; Garabaya, Cecilia; Aguirre, Alina; Fueyo, Antonio; Fernández-García, María Soledad; Puente, Xose S; López-Otín, Carlos

    2015-01-01

    MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14−/− mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16INK4a and p21CIP1/WAF1, increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14−/− mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions. PMID:25991604

  2. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  3. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase

    PubMed Central

    Dave, Jui M.; Abbey, Colette A.; Duran, Camille L.; Seo, Heewon; Johnson, Gregory A.; Bayless, Kayla J.

    2016-01-01

    ABSTRACT During angiogenesis, endothelial cells must coordinate matrix proteolysis with migration. Here, we tested whether the focal adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated endothelial sprouting in three dimensions. Hic-5 silencing reduced endothelial sprouting and lumen formation, and sprouting defects were rescued by the return of Hic-5 expression. Pro-angiogenic factors enhanced colocalization and complex formation between membrane type-1 matrix metalloproteinase (MT1-MMP, also known as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for Hic-5 to form a complex with MT1-MMP. The degree of interaction between MT1-MMP and Hic-5 and the localization of the complex within detergent-resistant membrane fractions were enhanced during endothelial sprouting, and Hic-5 depletion lowered the surface levels of MT1-MMP. In addition, we observed that loss of Hic-5 partially reduced complex formation between MT1-MMP and focal adhesion kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges MT1-MMP and FAK. Finally, Hic-5 LIM2–LIM3 deletion mutants reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in angiogenic vessels during porcine pregnancy, supporting that this complex assembles during angiogenesis in vivo. Collectively, Hic-5 appears to enhance complex formation between MT1-MMP and FAK in activated endothelial cells, which likely coordinates matrix proteolysis and cell motility. PMID:26769900

  4. Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer.

    PubMed

    Rozanov, Dmitri V; Savinov, Alexei Y; Williams, Roy; Liu, Kang; Golubkov, Vladislav S; Krajewski, Stan; Strongin, Alex Y

    2008-06-01

    Invasion-promoting MT1-MMP is directly linked to tumorigenesis and metastasis. Our studies led us to identify those genes, the expression of which is universally linked to MT1-MMP in multiple tumor types. Genome-wide expression profiling of MT1-MMP-overexpressing versus MT1-MMP-silenced cancer cells and a further data mining analysis of the preexisting expression database of 190 human tumors of 14 cancer types led us to identify 11 genes, the expression of which correlated firmly and universally with that of MT1-MMP (P < 0.00001). These genes included regulators of energy metabolism (NNT), trafficking and membrane fusion (SLCO2A1 and ANXA7), signaling and transcription (NR3C1, JAG1, PI3K delta, and CK2 alpha), chromatin rearrangement (SMARCA1), cell division (STK38/NDR1), apoptosis (DAPK1), and mRNA splicing (SNRPB2). Our subsequent extensive analysis of cultured cells, tumor xenografts, and cancer patient biopsies supported our data mining. Our results suggest that transcriptional reprogramming of the specific downstream genes, which themselves are associated with tumorigenesis, represents a distinctive "molecular signature" of the proteolytically active MT1-MMP. We suggest that the transactivation activity of MT1-MMP contributes to the promigratory cell phenotype, which is induced by this tumorigenic proteinase. The activated downstream gene network then begins functioning in unison with MT1-MMP to rework the signaling, transport, cell division, energy metabolism, and other critical cell functions and to commit the cell to migration, invasion, and, consequently, tumorigenesis.

  5. PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway.

    PubMed

    Alfranca, Arántzazu; López-Oliva, Juan Manuel; Genís, Laura; López-Maderuelo, Dolores; Mirones, Isabel; Salvado, Dolores; Quesada, Antonio J; Arroyo, Alicia G; Redondo, Juan Miguel

    2008-08-15

    The development of a new vascular network is essential for the onset and progression of many pathophysiologic processes. Cyclooxygenase-2 displays a proangiogenic activity in in vitro and in vivo models, mediated principally through its metabolite prostaglandin E(2) (PGE(2)). Here, we provide evidence for a novel signaling route through which PGE(2) activates the Alk5-Smad3 pathway in endothelial cells. PGE(2) induces Alk5-dependent Smad3 nuclear translocation and DNA binding, and the activation of this pathway involves the release of active TGFbeta from its latent form through a process mediated by the metalloproteinase MT1-MMP, whose membrane clustering is promoted by PGE(2). MT1-MMP-dependent transforming growth factor beta (TGFbeta) signaling through Alk5 is also required for PGE(2)-induced endothelial cord formation in vitro, and Alk5 kinase activity is required for PGE(2)-induced neovascularization in vivo. These findings identify a novel signaling pathway linking PGE(2) and TGFbeta, 2 effectors involved in tumor growth and angiogenesis, and reveal potential targets for the treatment of angiogenesis-related disorders.

  6. Activated Hepatic Stellate Cells Are Dependent on Self-collagen, Cleaved by Membrane Type 1 Matrix Metalloproteinase for Their Growth

    PubMed Central

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-01-01

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  7. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies.

  8. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    PubMed

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function.

  9. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    PubMed

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  10. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion

    PubMed Central

    Chevalier, Clément; Collin, Guillaume; Descamps, Simon; Touaitahuata, Heiani; Simon, Valérie; Reymond, Nicolas; Fernandez, Laurent; Milhiet, Pierre-Emmanuel; Georget, Virginie; Urbach, Serge; Lasorsa, Laurence; Orsetti, Béatrice; Boissière-Michot, Florence; Lopez-Crapez, Evelyne; Theillet, Charles; Roche, Serge; Benistant, Christine

    2016-01-01

    ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2+/ER+ tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers. PMID:26899482

  11. Chaperone Nanobodies Protect Gelsolin Against MT1-MMP Degradation and Alleviate Amyloid Burden in the Gelsolin Amyloidosis Mouse Model

    PubMed Central

    Van Overbeke, Wouter; Verhelle, Adriaan; Everaert, Inge; Zwaenepoel, Olivier; Vandekerckhove, Joël; Cuvelier, Claude; Derave, Wim; Gettemans, Jan

    2014-01-01

    Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases. PMID:25023329

  12. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  13. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    PubMed

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  14. NHE1 mediates MDA-MB-231 cells invasion through the regulation of MT1-MMP.

    PubMed

    Lin, Yani; Chang, Guoqiang; Wang, Jian; Jin, Weina; Wang, Lihong; Li, Huawen; Ma, Li; Li, Qinghua; Pang, Tianxiang

    2011-08-15

    Na⁺/H⁺ exchanger 1 (NHE1), an important regulator of intracellular pH (pH(i)) and extracellular pH (pH(e)), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231 cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.

  15. Role of matrix metalloproteinases (MMPs) and MMP inhibitors on intracranial aneurysms: a review article

    PubMed Central

    Maradni, Azam; Khoshnevisan, Alireza; Mousavi, Seyed Hamzeh; Emamirazavi, Seyed Hasan; Noruzijavidan, Abbas

    2013-01-01

    Cerebrovascular disease is one of the leading causes of death in the world, and about one-fourth of cerebrovasculardeaths are due to ruptured cerebral aneurysms (CA). Hence it is important to find a way to reduce aneurysmformation and its subsequent morbidity and mortality. Proteolytic activity capable of lysing gelatin hasbeen shown to be increased in aneurysm tissue and expression of plasmin, membrane-type matrix metalloproteinase-1(MT1-MMP), and matrix metalloproteinase-2 (MMP-2) in aneurysmal wall is more than what we observein normal cerebral arteries. MMP inhibitors such as doxycycline and statins may prohibit aneurysm formationand growth. MMPs are important in tissue remodeling associated with various physiological and pathologicalprocesses such as morphogenesis, angiogenesis, apoptosis and tissue repair. In this article we review therole of MMPs and MMP inhibitors in formation of aneurysm. PMID:24926188

  16. Targeting of Breast Cancer through MT1-MMP/Tetraspanin Complexes

    DTIC Science & Technology

    2011-08-01

    connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92. Hotary, K., Allen, E., Punturieri, A., Yana, I., and Weiss, S. J. (2000...55] Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, Megias D, Genis L, Sachs N, Sala-Valdes M, Alonso MA, Montoya MC, et al. (2008). MT1-MMP collage...Colman H, Soroceanu L, et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and

  17. TGF-beta3-induced palatogenesis requires matrix metalloproteinases.

    PubMed

    Blavier, L; Lazaryev, A; Groffen, J; Heisterkamp, N; DeClerck, Y A; Kaartinen, V

    2001-05-01

    Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-beta3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-beta3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-beta3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.

  18. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat.

    PubMed

    Yang, Yi; Estrada, Eduardo Y; Thompson, Jeffrey F; Liu, Wenlan; Rosenberg, Gary A

    2007-04-01

    Matrix metalloproteinases (MMPs) disrupt the blood-brain barrier (BBB) during reperfusion. Occludin and claudins are recently described tight junction proteins (TJPs) that form the BBB. We hypothesized that the opening of the BBB was because of the degradation of TJPs by the MMPs. Spontaneously hypertensive rats had a 90 mins middle cerebral artery occlusion with reperfusion for 2, 3, or 24 h. Matrix metalloproteinases were measured by immunohistochemistry and in situ and gel zymography. Real-time polymerase chain reaction (PCR) measured mRNAs of MMP-2 and -9, furin, membrane-type MMP (MT1-MMP), occludin, and claudin-5. There was opening of the BBB in the piriform cortex after 3 h of reperfusion, and an MMP inhibitor, BB-1101 (30 mg/kg), prevented the opening. At 3 h, in situ zymograms showed gelatinase activity. Zymography and PCR showed greater increases in MMP-2 than in MMP-9. There were increased mRNA and immunohistochemistry for MT1-MMP and furin, which activate MMP-2. Claudin-5 and occludin mRNA expression decreased at 2 h in both hemispheres with fragments of both proteins seen on Western blot by 3 h on the ischemic side; treatment with BB-1101 reversed the degradation of the TJPs. Immunohistochemistry at 3 h showed fragmented TJPs within the endothelial cell clefts. By 24 h, in situ zymography showed gelatinase activity and gel zymography showed elevated levels of MMP-9. Disrupted TJPs previously seen in endothelial cells appeared in the surrounding astrocytes. Our results provide direct evidence that MMPs open the BBB by degrading TJPs and that an MMP inhibitor prevents degradation of the TJPs by MMPs.

  19. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton.

    PubMed

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-09-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.

  20. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases

    PubMed Central

    Harvey, P; Clark, I M; Jaurand, M-C; Warn, R M; Edwards, D R

    2000-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional factor involved both in development and tissue repair, as well as pathological processes such as cancer and metastasis. It has been identified in vivo in many types of tumours together with its tyrosine kinase receptor, Met. We show here that exogenous HGF/SF acts as a strong chemoattractant for human mesothelioma cell lines. The factor also enhanced cell adhesion to and invasion into Matrigel. The mesothelioma cell lines synthesized a panel of matrix metalloproteinases critical for tumour progression such as MMP-1, 2, 3, 9 and membrane-bound MT1-MMP. HGF/SF stimulated the expression of MMP-1, 9 and MT1-MMP and had a slight effect on expression of the MMP inhibitor TIMP-1 but not TIMP-2. However, there was no simple correlation between the levels of MMPs and TIMPs of the cell lines and their different invasion properties or between HGF/SF stimulatory effects on MMP expression and invasion. In addition, effects of protease inhibitors on invasion suggested that serine proteases were also expressed in human mesothelioma cell lines and were involved in HGF/SF-induced invasion. The results show a predominant role for HGF/SF in mesothelioma cell invasion, stimulating simultaneously adhesion, motility, invasion and regulation of MMP and TIMP levels. © 2000 Cancer Research Campaign PMID:11027427

  1. The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination.

    PubMed

    Marusak, Charles; Bayles, Ian; Ma, Jun; Gooyit, Major; Gao, Ming; Chang, Mayland; Bedogni, Barbara

    2016-11-01

    MT1-MMP and MMP2 have been implicated as pro-tumorigenic and pro-metastatic factors in a wide variety of cancers including melanoma. We have previously demonstrated that MT1-MMP is highly expressed in melanoma where it promotes melanoma cell invasion and metastasis in part through the activation of its target MMP2. Given the accessibility of MMPs, as they are either secreted (e.g. MMP2) or membrane-tethered (e.g. MT1-MMP), they represent ideal targets for specific inhibition via small molecules. Here we show that the novel small-molecule inhibitor ND-322 with high selectivity for MT1-MMP and MMP2, effectively inhibits MT1-MMP and MMP2 activity resulting in reduced in vitro melanoma cell growth, migration and invasion. Importantly, these inhibitory effects lead to significant reduction of melanoma tumor growth and metastasis. We further show that while cell migration and invasion could be similarly hampered by specific inhibition of either MT1-MMP or MMP2 via shRNAs, the growth inhibitory activity of ND-322 could only be mirrored by specific inhibition of MT1-MMP. These data support ND-322 as a novel effective inhibitor capable of counteracting both MT1-MMP and MMP2, two key proteases involved in melanoma growth and metastasis. ND-322 may therefore represent a new inhibitor in the repertoire of treatments against melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. New and Paradoxical Roles of Matrix Metalloproteinases in the Tumor Microenvironment

    PubMed Central

    Noël, Agnès; Gutiérrez-Fernández, Ana; Sounni, Nor Eddine; Behrendt, Niels; Maquoi, Erik; Lund, Ida K.; Cal, Santiago; Hoyer-Hansen, Gunilla; López-Otín, Carlos

    2012-01-01

    Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions necessary for tumor growth and dissemination. Matrix metalloproteinases (MMPs) constitute key players in this process, allowing tumor cells to modify the extracellular matrix (ECM) and release cytokines, growth factors, and other cell-surface molecules, ultimately facilitating protease-dependent tumor progression. Remodeling of the ECM by collagenolytic enzymes such as MMP1, MMP8, MMP13, or the membrane-bound MT1-MMP as well as by other membrane-anchored proteases is required for invasion and recruitment of novel blood vessels. However, the multiple roles of the MMPs do not all fit into a simple pattern. Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis, revealing that the genes encoding metalloproteinases, such as MMP8, MMP27, ADAM7, and ADAM29, are recurrently mutated in specific tumors, while several ADAMTSs are epigenetically silenced in different cancers. The importance of these proteases in modifying the tumor microenvironment highlights the need for a deeper understanding of how stroma cells and the ECM can modulate tumor progression. PMID:22822400

  3. Membrane type-matrix metalloproteinases in idiopathic pulmonary fibrosis.

    PubMed

    García-Alvarez, Jorge; Ramirez, Remedios; Sampieri, Clara L; Nuttall, Robert K; Edwards, Dylan R; Selman, Moises; Pardo, Annie

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. Some secreted matrix metalloproteinases (MMPs) as MMP2 are highly upregulated in IPF lungs. Membrane-type (MT)-MMPs participate in the activation of pro-MMP2. However, they have not been examined in IPF. Type I transmembrane MT-MMPs, MT1, MT2, MT3, and MT5-MMP were analyzed by real-time PCR and immunohistochemistry in IPF and normal lungs. MMP-2 was also immunolocalized and evaluated by gelatin zymography in BAL fluids. Additionally, the MT-MMPs were examined by real time PCR in lung fibroblasts stimulated with TGF-beta1 and IFN-gamma. MT1-MMP, was the most highly expressed followed by MT2- and MT5-MMP, and by a moderate expression of MT3-MMP. Regarding their localization, MT1- and MT2-MMPs were found in alveolar epithelial cells, MT3-MMP in fibroblasts from fibroblastic foci and alveolar epithelial cells and MT5-MMP in basal bronchiolar epithelial cells and in areas of squamous metaplasia. MMP2 was localized in alveolar and basal bronchiolar epithelial cells and fibroblasts, and increased active enzyme was observed in BAL fluids. In lung fibroblasts, TGF-beta1 induced a strong upregulation of MT3-MMP, both at the gene and protein level. This effect was blocked by genistein, a protein tyrosin kinase inhibitor and partially repressed by SB203580 a p38 MAP kinase inhibitor. IFN-gamma had no effect. MT-MMPs are expressed in IPF, in the same cell types as MMP2. Mostly by different types of epithelial cells a pivotal component in the aberrant remodeling of the lung microenvironment. Interestingly MT3-MMP that was found in fibroblastic foci was upregulated in vitro by TGF-beta1 a potent profibrotic mediator.

  4. Matrix metalloproteinase inhibitors.

    PubMed

    Wojtowicz-Praga, S M; Dickson, R B; Hawkins, M J

    1997-01-01

    The matrix metalloproteinases (MMPs) are a family of at least fifteen secreted and membrane-bound zinc-endopeptidases. Collectively, these enzymes can degrade all of the components of the extracellular matrix, including fibrallar and non-fibrallar collagens, fibronectin, laminin and basement membrane glycoproteins. MMPs are thought to be essential for the diverse invasive processes of angiogenesis and tumor metastasis. Numerous studies have shown that there is a close association between expression of various members of the MMP family by tumors and their proliferative and invasive behavior and metastatic potential. In some of human cancers a positive correlation has also been demonstrated between the intensity of new blood vessel growth (angiogenesis) and the likelihood of developing metastases. Thus, control of MMP activity in these two different contexts has generated considerable interest as a possible therapeutic target. The tissue inhibitors of metalloproteinases (TIMPs) are naturally occurring proteins that specifically inhibit matrix metalloproteinases, thus maintaining balance between matrix destruction and formation. An imbalance between MMPs and the associated TIMPs may play a significant role in the invasive phenotype of malignant tumors. TIMP-1 has been shown to inhibit tumor-induced angiogenesis in experimental systems. These findings raised the possibility of using an agent that affects expression or activity of MMPs as an anti-cancer therapy. TIMPs are probably not suitable for pharmacologic applications due to their short half-life in vivo. Batimastat (BB-94) and marimastat (BB-2516) are synthetic, low-molecular weight MMP inhibitors. They have a collagen-mimicking hydroxamate structure, which facilitates chelation of the zinc ion in the active site of the MMPs. These compounds inhibit MMPs potently and specifically. Batimastat was the first synthetic MMP inhibitor studied in humans with advanced malignancies, but its usefulness has been limited by

  5. Membrane-type 1 matrix metalloproteinase cytoplasmic tail binding protein-1 (MTCBP-1) acts as an eukaryotic aci-reductone dioxygenase (ARD) in the methionine salvage pathway.

    PubMed

    Hirano, Wakako; Gotoh, Isamu; Uekita, Takamasa; Seiki, Motoharu

    2005-06-01

    MTCBP-1 was identified as a protein that binds the cytoplasmic tail of membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Since MTCBP-1 has a putative beta-barrel structure, it is presumably a member of the recently proposed cupin superfamily that contains tremendously diverged functions of proteins in spite of their well-conserved beta-barrel structure. MTCBP-1 shows significant homology to the bacterial aci-reductone dioxygenase (ARD) in the cupin family, which is an enzyme in the methionine salvage pathway (MTA cycle). Since it is difficult to speculate the functions of cupin proteins simply based on their sequence homology, we examined whether the eukaryotic ARD homologs surely function in the methionine metabolism. Under sulfur-depleted conditions, yeast could grow when substrate of MTA cycle was provided. Disruption of the yeast ARD homolog, YMR009w gene, abolished ability of the cells to grow in this culture condition. Re-expression of either the YMR009w or MTCBP-1 gene restored the cell growth. Mutation analysis revealed that the glutamic acid residue in the beta-barrel fold and the N-terminal extension from the beta-barrel fold were found to be important for the activity to restore the growth. Thus, MTCBP-1 isolated as a binding protein for MT1-MMP was demonstrated to function as an ARD-like enzyme in the MTA cycle in yeast.

  6. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells.

    PubMed

    Augustin, Sébastien; Berard, Madeleine; Kellaf, Sabine; Peyri, Nicole; Fauvel-Lafève, Françoise; Legrand, Chantal; He, Lu; Crépin, Michel

    2009-04-01

    The effects of sodium phenylacetate (NaPa), an antitumoral molecule, on cell death and matrix metalloproteinase (MMP) activities and synthesis were investigated in two metastatic breast tumour cell lines, MDA-MB-231 and MDA-MB-435, cultured on three-dimensional type I collagen gels (3-D cultures). In both cell lines, NaPa inhibited cell proliferation and induced apoptotic cell death as measured by TUNEL assay, with an IC(30) of 20 mM and 10 mM for MDA-MB-231 and MDA-MB-435 cells, respectively. In MDA-MB-231 cells, NaPa also induced (i) an autophagic process evidenced by the appearance of autophagic vacuoles and an increased phosphatase acid activity, (ii) the formation of pseudopodia and (iii) an increase in MMP-1 and MMP-9 secretion without affecting MT1-MMP. In NaPa-treated MDA-MB-435 cells, no autophagic vacuoles were formed but F-actin depolymerisation was observed. MMP-1, MMP-9 and MT1-MMP levels were strongly enhanced in these cells but MMPs were not secreted and accumulated intracellularly. When breast cancer cells were treated with NaPa in the presence of an MMP inhibitor (GM6001), apoptotic cell death decreased and the induction of autophagic vacuoles in MDA-MB-231 cells was inhibited. Taken together, these data suggest that MMPs are involved in the autophagic cell death and/or apoptosis of breast tumour cells.

  7. The interrelationship of alpha4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis.

    PubMed

    Graesser, D; Mahooti, S; Haas, T; Davis, S; Clark, R B; Madri, J A

    1998-11-01

    Previous studies have suggested that surface expression of alpha4 integrin by autoreactive T-cell clones is necessary for the clones to induce experimental autoimmune encephalomyelitis (EAE), a mouse model for human multiple sclerosis. To provide direct evidence for this phenomenon, we have transfected alpha4 integrin into C19alpha4-LO, a myelin basic protein-reactive T-cell clone that does not express alpha4 integrin and does not induce EAE when adoptively transferred into a susceptible mouse strain. Transfection of alpha4 integrin converted this clone to an alpha4 integrin-expressing clone that induced EAE. We then examined potential mechanisms by which alpha4 integrin may facilitate the disease process. C19 T-cell clones adhered equally to a monolayer of microvascular endothelial cells, regardless of level of alpha4 integrin expression. However, in contrast to T-cell clones that do not express alpha4 integrin, T-cell clones that express alpha4 integrin (endogenously or by transfection) transmigrated through an endothelial cell layer and subendothelial matrix at an enhanced rate and adhered to recombinant vascular cell adhesion molecule-1 (rVCAM-1) and the CS1 fragment of fibronectin, and after adhesion to these ligands, a matrix-degrading metalloproteinase (MMP-2) was induced and activated. The clones were also shown to constitutively express the membrane-type matrix metalloproteinase (MT1-MMP), an enzyme that activates MMP-2. GM6001 and UK-221,316, inhibitors of metalloproteinases, reduced alpha4 integrin-mediated transmigration and EAE induction by C19 T-cell clones. In addition, we studied a second EAE-inducing T-cell clone, MM4, which constitutively expresses alpha4 integrin and MMP-2. Engagement of alpha4 integrin on the MM4 clone up-regulated the expression and activation of MMP-2, without changing the expression of MT1-MMP. MMP inhibitors also reduced transmigration of and EAE induction by the MM4 T-cell clone. These studies demonstrate directly that

  8. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review.

    PubMed

    Jezierska, Agnieszka; Motyl, Tomasz

    2009-02-01

    Matrix Metalloproteinase-2 (MMP-2) is an enzyme that degrades components of the extracellular matrix and thus plays a pivotal role in cell migration during physiological and pathological processes (e.g. gastric, pancrcreatic, prostate, and breast cancer). MMP-2 expression is dependent on extracellular matrix metalloproteinase inducer (EMMPRIN), Her2/neu, growth factors, cytokines, and hormones. Pro-MMP-2 activation needs MT1-MMP and TIMP-2 contribution. The active forms of MMPs subsequently release a cascade of activation of the remaining pro-MMPs. Inactivation of the physiological function of MMPs, or even pro-MMPs, is accomplished by non-covalent TIMP binding. The detection of active MMP-2 alone or the rate of pro-MMP-2 and active MMP-2 is considered a very sensitive indicator of cancer metastasis. Modulation of MMP-2 expression and activation through specific inhibitors and activators may thus provide a new mechanism for breast cancer treatment. Degradation of the cellular network established by adhesion molecules such as E-cadherin or ALCAM/CD166 causes tumor tissue relaxation, increases metastasis, and correlates with shortened survival in patients with primary breast carcinoma. A low level of MMP-2 is linked to favorable prognosis in patients with a hormone receptor-negative tumor, usually associated with high risk. Blocking MMP-2 secretion and activation during breast carcinoma development may decrease metastasis. Besides zoledronic acid and bisphosphonates, the new synthetic metalloproteinase blockers (MMPIs) batimastat, marimastat, and tetracycline derivates have been investigated in anticancer therapy. Recent research shows that modified synthetic siRNA targeting TIMP-2 may also regulate the balance between MMPs and TIMP-2 and thus decrease the degradation of extracellular matrix and prevent distant metastasis.

  9. Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells.

    PubMed

    Sugimoto, Koichi; Ohkawara, Hiroshi; Nakamura, Yuichi; Takuwa, Yoh; Ishibashi, Toshiyuki; Takeishi, Yasuchika

    2014-01-01

    Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells. Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation. The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.

  10. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    PubMed Central

    Chen, Qishan; Jin, Min; Yang, Feng; Zhu, Jianhua; Xiao, Qingzhong; Zhang, Li

    2013-01-01

    Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction with extracellular matrix (ECM) play a critical role in the processes. Matrix metalloproteinases (MMPs), well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential. PMID:23840100

  11. Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway.

    PubMed

    Choi, Young-Ae; Lim, Hyung-Kyu; Kim, Jae-Ryong; Lee, Chu-Hee; Kim, Young-Jo; Kang, Shin-Sung; Baek, Suk-Hwan

    2004-08-27

    Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.

  12. Importance of the Linker Region in Matrix Metalloproteinase-1 Domain Interactions

    PubMed Central

    Singh, Warispreet; Fields, Gregg B.; Christov, Christo Z.; Karabencheva-Christova, Tatyana G.

    2016-01-01

    Collagenolysis is catalyzed by enzymes from the matrix metalloproteinase (MMP) family, where one of the most studied is MMP-1. The X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP) provided important atomistic information, but few details on the effects of the conformational flexibility on catalysis. In addition, the role of the linker region between the catalytic (CAT) and hemopexin-like (HPX) domains was not defined. In order to reveal the dynamics and correlations of MMP-1 comprehensive atomistic molecular dynamics simulations of an MMP-1•THP complex was performed. To examine the role of the linker region for MMP-1 function simulations with linker regions from MT1-MMP/MMP-14 and MMP-13 replacing the MMP-1 linker region were performed. The MD studies were in good agreement with the experimental observation that in the MMP-1•THP X-ray crystallographic structure MMP-1 is in a “closed” conformation. MD revealed that the interactions of the THP with the both the CAT and HPX domains of MMP-1 are dynamic in nature, and the linker region of MMP-1 influences the interactions and dynamics of both the CAT and HPX domains and collagen binding to MMP-1. PMID:26998255

  13. Myocardial structure and matrix metalloproteinases.

    PubMed

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  14. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model.

    PubMed

    Bouchard, Gina; Therriault, Hélène; Geha, Sameh; Bujold, Rachel; Saucier, Caroline; Paquette, Benoit

    2017-02-14

    The prognosis of triple-negative breast cancer (TNBC) is still difficult to establish. Some TNBC benefit from radiotherapy (RT) and are cured, while in other patients metastases appear during the first 3 years after treatment. In this study, an animal model of TNBC was used to determine whether the expression of the cell membrane protease MT1-MMP in cancer cells was associated with radiation-stimulated development of lung metastases. Using invasion chambers, irradiated fibroblasts were used as chemoattractants to assess the invasiveness of TNBC D2A1 cell lines showing downregulated expression of MT1-MMP, which were compared with D2A1-wt (wild-type) and D2A1 shMT1-mock (empty vector) cell lines. In a mouse model, a mammary gland was irradiated followed by the implantation of the downregulated MT1-MMP D2A1, D2A1-wt or D2A1 shMT1-mock cell lines. Migration of D2A1 cells in the mammary gland, number of circulating tumour cells and development of lung metastases were assessed. The reduction of MT1-MMP expression decreased the invasiveness of D2A1 cells and blocked the radiation enhancement of cancer cell invasion. In BALB/c mice, irradiation of the mammary gland has stimulated the invasion of cancer cells, which was associated with a higher number of circulating tumour cells and of lung metastases. These adverse effects of radiation were prevented by downregulating the MT1-MMP. This study shows that the MT1-MMP is necessary for the radiation enhancement of lung metastasis development, and that its expression level and/or localisation could be evaluated as a biomarker for predicting the early recurrence observed in some TNBC patients.

  15. Endo180 and MT1-MMP are involved in the phagocytosis of collagen scaffolds by macrophages and is regulated by interferon-gamma.

    PubMed

    Ye, Q; Xing, Q; Ren, Y; Harmsen, M C; Bank, R A

    2010-10-07

    Subcutaneously implanted disks of hexamethylenediisocyanate or glutaraldehyde cross-linked sheep collagen (referred to as HDSC and GDSC, respectively) in mice show large differences in degradation rate. Although comparable numbers of macrophages are seen in HDSC and GDSC, phagocytosis of collagen by macrophages occurred only in GDSC. The molecular mechanisms involved in the phagocytosis of collagen by macrophages are essentially unknown. Immunofluorescence and RT-PCR showed that Endo180 was expressed in GDSC only. TissueFaxs showed that Endo180 co-localized with MT1-MMP on F4÷80 positive cells, which is likely responsible for the phagocytosis in GDSC. RT-PCR further showed that Endo180 expression correlated with high levels of IFN-γ mRNA. In vitro, IFN-γ induced the expression Endo180 and MT1-MMP in murine macrophages cultured on collagen type I (although too high levels of IFN-γ dampened the expression of Endo180 and MT1-MMP). Moreover, the expression of Endo180 and MT1-MMP induced by IFN-γ can be inhibited through IL-10. The differences in microenvironment between GDSC and HDSC (high IFN-γ and low IL-10 levels in GDSC, low IFN-γ and high IL-10 levels in HDSC) provide an explanation why phagocytosis of collagen by macrophages is only seen in GDSC. In summary, we show for the first time that the IFN-γ dependent co-expression of Endo180 and MT1-MMP on macrophages coincides with collagen phagocytosis, thus providing evidence that the mechanism of collagen phagocytosis operating in the foreign body reaction by macrophages is comparable with the mechanism of intracellular collagen degradation by fibroblasts seen under physiological conditions.

  16. Inhibitory effects of caffeic acid phenethyl ester on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells.

    PubMed

    Hwang, Hye Jin; Park, Hyen Joo; Chung, Hwa-Jin; Min, Hye-Young; Park, Eun-Jung; Hong, Ji-Young; Lee, Sang Kook

    2006-05-01

    Caffeic acid phenethyl ester (CAPE) derived from honeybee propolis has been used as a folk medicine. Recent study also revealed that CAPE has several biological activities including antioxidation, anti-inflammation and inhibition of tumor growth. The present study investigated the effect of CAPE on tumor invasion and metastasis by determining the regulation of matrix metalloproteinases (MMPs). Matrix metalloproteinases, which are zinc-dependent proteolytic enzymes, play a pivotal role in tumor metastasis by cleavage of extracellular matrix (ECM) as well as nonmatrix substrates. On this line, we examined the influence of CAPE on the gene expression of MMPs (MMP-2, MMP-9, MT1-MMP), tissue inhibitor of metalloproteinase-2 (TIMP-2) and in vitro invasiveness of human fibrosarcoma cells. Dose-dependent decreases in MMP and TIMP-2 mRNA levels were observed in CAPE-treated HT1080 human fibrosarcoma cells as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Gelatin zymography analysis also exhibited a significant down-regulation of MMP-2 and MMP-9 expression in HT1080 cells treated with CAPE compared to controls. In addition, CAPE inhibited the activated MMP-2 activity as well as invasion, motility, cell migration and colony formation of tumor cells. These data therefore provide direct evidence for the role of CAPE as a potent antimetastatic agent, which can markedly inhibit the metastatic and invasive capacity of malignant cells.

  17. Diurnal Variation of Tight Junction Integrity Associates Inversely with Matrix Metalloproteinase Expression in Xenopus laevis Corneal Epithelium: Implications for Circadian Regulation of Homeostatic Surface Cell Desquamation

    PubMed Central

    Wiechmann, Allan F.; Ceresa, Brian P.; Howard, Eric W.

    2014-01-01

    Background and Objectives The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs) are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium. Methodology/Principal Findings Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2), membrane type 1-MMP (MT1-MMP) and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime. Conclusions/Significance MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and

  18. Differentiated thyroid cancer cell invasion is regulated through epidermal growth factor receptor-dependent activation of matrix metalloproteinase (MMP)-2/gelatinase A

    PubMed Central

    Yeh, Michael W; Rougier, Jean-Philippe; Park, Jin-Woo; Duh, Quan-Yang; Wong, Mariwil; Werb, Zena; Clark, Orlo H

    2008-01-01

    Mechanisms of invasion in thyroid cancer remain poorly understood. We hypothesized that signaling via the epidermal growth factor receptor (EGFR) stimulates thyroid cancer cell invasion by altering the expression and cleavage of matrix metalloproteinases (MMPs). Papillary and follicular carcinoma cell lines were treated with EGF, the EGFR tyrosine kinase inhibitor AG1478, and the MMP inhibitors GM-6001 and Col-3. Flow cytometry was used to detect EGFR. In vitro invasion assays, gelatin zymography, and quantitative reverse transcription-PCR were used to assess the changes in invasive behavior and MMP expression and activation. All cell lines were found to overexpress functional EGFR. EGF stimulated invasion by thyroid cancer cells up to sevenfold (P<0.0001), a process that was antagonized completely by AG1478 and Col-3, partially by GM-6001, but not by the serine protease inhibitor aprotinin. EGF upregulated expression of MMP-9 (2.64– to 8.89-fold, P<0.0001) and membrane type-1 MMP (MT1-MMP, 1.97- to 2.67-fold, P<0.0001). This effect was blocked completely by AG1478 and partially by Col-3. The activation of MMP-2 paralleled MT1-MMP expression. We demonstrate that MMPs are critical effectors of invasion in the papillary and follicular thyroid cancer cell lines studied. Invasion is regulated by signaling through EGFR, an effect mediated by augmentation of gelatinase expression and activation. MMP inhibitors and growth factor antagonists may be effective tumoristatic agents for the treatment of aggressive thyroid carcinomas. PMID:17158762

  19. Solvent water interactions within the active site of the membrane type I matrix metalloproteinase.

    PubMed

    Decaneto, Elena; Vasilevskaya, Tatiana; Kutin, Yuri; Ogata, Hideaki; Grossman, Moran; Sagi, Irit; Havenith, Martina; Lubitz, Wolfgang; Thiel, Walter; Cox, Nicholas

    2017-09-27

    Matrix metalloproteinases (MMP) are an important family of proteases which catalyze the degradation of extracellular matrix components. While the mechanism of peptide cleavage is well established, the process of enzyme regeneration, which represents the rate limiting step of the catalytic cycle, remains unresolved. This step involves the loss of the newly formed N-terminus (amine) and C-terminus (carboxylate) protein fragments from the site of catalysis coupled with the inclusion of one or more solvent waters. Here we report a novel crystal structure of membrane type I MMP (MT1-MMP or MMP-14), which includes a small peptide bound at the catalytic Zn site via its C-terminus. This structure models the initial product state formed immediately after peptide cleavage but before the final proton transfer to the bound amine; the amine is not present in our system and as such proton transfer cannot occur. Modeling of the protein, including earlier structural data of Bertini and coworkers [I. Bertini, et al., Angew. Chem., Int. Ed., 2006, 45, 7952-7955], suggests that the C-terminus of the peptide is positioned to form an H-bond network to the amine site, which is mediated by a single oxygen of the functionally important Glu240 residue, facilitating efficient proton transfer. Additional quantum chemical calculations complemented with magneto-optical and magnetic resonance spectroscopies clarify the role of two additional, non-catalytic first coordination sphere waters identified in the crystal structure. One of these auxiliary waters acts to stabilize key intermediates of the reaction, while the second is proposed to facilitate C-fragment release, triggered by protonation of the amine. Together these results complete the enzymatic cycle of MMPs and provide new design criteria for inhibitors with improved efficacy.

  20. Matrix metalloproteinase-7 and matrix metalloproteinase-9 in pediatric multiple sclerosis.

    PubMed

    Yılmaz, Ünsal; Unsal, Yılmaz; Gücüyener, Kıvılcım; Kıvılcım, Gücüyener; Atak, Ayşegül; Ayşegül, Atak; Aral, Arzu; Arzu, Aral; Gürkaş, Esra; Esra, Gürkaş; Demir, Ercan; Ercan, Demir; Serdaroğlu, Ayşe; Ayşe, Serdaroğlu

    2012-09-01

    Matrix metalloproteinases and their tissue inhibitors play a key role in the pathogenesis of adult-onset multiple sclerosis, and were suggested as biomarkers of response to interferon-β, an established treatment in multiple sclerosis. However, data regarding pediatric population are scarce. We determined serum levels of matrix metalloproteinase-7, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinase-1 in children, and evaluated effects of interferon-β therapy on these measures. Serum samples from 14 children with relapsing, remitting multiple sclerosis at baseline and at month 12, and from 15 controls, were collected. Interferon-β treatment was initiated in eight patients. Mean serum matrix metalloproteinase-9 levels and matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 ratio were higher in patients compared with controls, and were reduced significantly in treated patients at month 12, but did not change in untreated patients. Mean matrix metalloproteinase-7 levels were lower in patients compared with controls, and increased significantly in the treated group, but did not change significantly in the untreated group. In pediatric multiple sclerosis, a shift in matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 balance toward proteolytic activity is evident, and interferon-β therapy demonstrates a beneficial effect on this disturbed balance. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Matrix metalloproteinases in metabolic syndrome.

    PubMed

    Hopps, E; Caimi, G

    2012-03-01

    Metabolic syndrome is commonly accompanied by an elevated cardiovascular risk with high morbidity and mortality. The alterations of the arterial vasculature begin with endothelial dysfunction and lead to micro- and macrovascular complications. The remodeling of the endothelial basal membrane, that promotes erosion and thrombosis, has a multifactorial pathogenesis that includes leukocyte activation, increased oxidative stress and also an altered matrix metalloproteinases (MMPs) expression. MMPs are endopeptidases which degrade extracellular matrix proteins, such as collagen, gelatins, fibronectin and laminin. They can be secreted by several cells within the vascular wall, but macrophages are determinant in the atherosclerotic plaques. Their activity is regulated by tissue inhibitors of MMP (TIMPs) and also by other molecules, such as plasmin. MMPs could be implicated in plaque instability predisposing to vascular complications. It has been demonstrated that an impaired MMP or TIMP expression is associated with higher risk of all-cause mortality. A large number of studies evaluated MMPs pattern in obesity, diabetes mellitus, arterial hypertension and dyslipidemia, all of which define metabolic syndrome according to several Consensus Statement (i.e. IDF, ATP III, AHA). However, few research have been carried out on subjects with metabolic syndrome. The evidences of an improvement in MMP/TIMP ratio with diet, exercise and medical therapy should encourage further investigations with the intent to contrast the atherosclerotic process and to reduce morbidity and mortality of this kind of patients.

  2. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    SciTech Connect

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William . E-mail: william.hornebeck@univ-reims.fr

    2006-06-30

    UVA irradiation, dose-dependently (5-20 J/cm{sup 2}), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ({sup 1}O{sub 2}). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively.

  3. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells.

    PubMed

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stéphane; Bobichon, Hélene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-06-30

    UVA irradiation, dose-dependently (5-20 J/cm2), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen (1O2). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively.

  4. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle.

    PubMed

    Haas, T L; Milkiewicz, M; Davis, S J; Zhou, A L; Egginton, S; Brown, M D; Madri, J A; Hudlicka, O

    2000-10-01

    Proteolysis of the capillary basement membrane is a hallmark of inflammation-mediated angiogenesis, but it is undetermined whether proteolysis plays a critical role in the process of activity-induced angiogenesis. Matrix metalloproteinases (MMPs) constitute the major class of proteases responsible for degradation of basement membrane proteins. We observed significant elevations of mRNA and protein levels of both MMP-2 and membrane type 1 (MT1)-MMP (2.9 +/- 0.7- and 1.5 +/- 0.1-fold above control, respectively) after 3 days of chronic electrical stimulation of rat skeletal muscle. Inhibition of MMP activity via the inhibitor GM-6001 prevented the growth of new capillaries as assessed by the capillary-to-fiber ratio (1.34 +/- 0.08 in GM-6001-treated muscles compared with 1.69 +/- 0.03 in control 7-day-stimulated muscles). This inhibition correlated with a significant reduction in the number of capillaries with observable breaks in the basement membrane, as assessed by electron microscopy (0.27 +/- 0.27% in GM-6001-treated muscles compared with 3.72 +/- 0.65% in control stimulated muscles). Proliferation of capillary-associated cells was significantly elevated by 2 days and remained elevated throughout 14 days of stimulation. Capillary-associated cell proliferation during muscle stimulation was not affected by MMP inhibition (80.3 +/- 9.3 nuclei in control and 63.5 +/- 8.5 nuclei in GM-6001-treated animals). We conclude that MMP proteolysis of capillary basement membrane proteins is a critical component of physiological angiogenesis, and we postulate that capillary-associated proliferation precedes and occurs independently of endothelial cell sprout formation.

  5. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases.

    PubMed

    Takino, Takahisa; Koshikawa, Naohiko; Miyamori, Hisashi; Tanaka, Motohiro; Sasaki, Takuma; Okada, Yasunori; Seiki, Motoharu; Sato, Hiroshi

    2003-07-24

    A human placenta cDNA library was screened by the expression cloning method for gene products that interact with matrix metalloproteinases (MMPs), and we isolated a cDNA whose product formed a stable complex with pro-MMP-2 and pro-MMP-9. The cDNA encoded the metastasis suppressor gene KiSS-1. KiSS-1 protein was shown to form a complex with pro-MMP. KiSS-1 protein is known to be processed to peptide ligand of a G-protein-coupled receptor (hOT7T175) named metastin, and suppresses metastasis of tumors expressing the receptor. Active MMP-2, MMP-9, MT1-MMP, MT3-MMP and MT5-MMP cleaved the Gly118-Leu119 peptide bond of not only full-length KiSS-1 protein but also metastin decapeptide. Metastin decapeptide induced formation of focal adhesion and actin stress fibers in cells expressing the receptor, and digestion of metastin decapeptide by MMP abolished its ligand activity. Migration of HT1080 cells expressing hOT7T175 that harbor a high-level MMP activity was only slightly suppressed by either metastin decapeptide or MMP inhibitor BB-94 alone, but the combination of metastin decapeptide and BB-94 showed a synergistic effect in blocking cell migration. We propose that metastin could be used as an antimetastatic agent in combination with MMP inhibitor, or MMP-resistant forms of metastin could be developed and may also be efficacious.

  6. Clinical implications of matrix metalloproteinases.

    PubMed

    Mandal, Malay; Mandal, Amritlal; Das, Sudip; Chakraborti, Tapati; Sajal, Chakraborti

    2003-10-01

    Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important for normal development, wound healing, and a wide variety of pathological processes, including the spread of metastatic cancer cells, arthritic destruction of joints, atherosclerosis, pulmonary fibrosis, emphysema and neuroinflammation. In the central nervous system (CNS), MMPs have been shown to degrade components of the basal lamina, leading to disruption of the blood brain barrier and to contribute to the neuroinflammatory responses in many neurological diseases. Inhibition of MMPs have been shown to prevent progression of these diseases. Currently, certain MMP inhibitors have entered into clinical trials. A goal to the future should be to design selective synthetic inhibitors of MMPs that have minimum side effects. MMP inhibitors are designed in such a way that these can not only bind at the active site of the proteinases but also to have the characteristics to bind to other sites of MMPs which might be a promising route for therapy. To name a few: catechins, a component isolated from green tea; and Novastal, derived from extracts of shark cartilage are currently in clinical trials for the treatment of MMP-mediated diseases.

  7. Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways.

    PubMed

    Huang, Hui-Pei; Shih, Yuan-Wei; Wu, Cheng-Hsun; Lai, Po-Ju; Hung, Chi-Nan; Wang, Chau-Jong

    2009-09-14

    Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepatoprotective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. In this study, we first report the anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line: C6 glioma cells. First (Ac)(5)GP exhibited an inhibitory effect on abilities of adhesion and motility by cell-matrix adhesion assay, wound healing assay and Boyden chamber assay. Second, the decreasing activity of matrix metalloproteinase-2 (MMP-2) was noted by gelatin zymography assay. Further analysis with semi-quantitative RT-PCR showed the mRNA levels of MMP-2 and membrane type I matrix metalloproteinase (MT1-MMP) were significantly reduced, while the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) was elevated by (Ac)(5)GP treatment. Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun. These findings proved (Ac)(5)GP is highly likely to be a inhibiting cancer migration agent to be further developed in the future.

  8. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    PubMed Central

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  9. Protein expression of MMP-2 and MT1-MMP in actinic keratosis, squamous cell carcinoma of the skin, and basal cell carcinoma.

    PubMed

    de Oliveira Poswar, Fabiano; de Carvalho Fraga, Carlos Alberto; Gomes, Emisael Stênio Batista; Farias, Lucyana Conceição; Souza, Linton Wallis Figueiredo; Santos, Sérgio Henrique Souza; Gomez, Ricardo Santiago; de-Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2015-02-01

    Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are 2 skin neoplasms with distinct potentials to invasion and metastasis. Actinic keratosis (AK) is a precursor lesion of SCC. Immunohistochemistry was performed to evaluate the expression of MMP-2 and MT1-MMP in samples of BCC (n = 29), SCC (n = 12), and AK (n = 13). The ratio of positive cells to total cells was used to quantify the staining. Statistical significance was considered under the level P < .05. We found a higher expression of MMP-2 in tumor stroma and parenchyma of SCC as compared to BCC. The expression of this protein was also similar between SCC and its precursor actinic keratosis, and it was higher in the stroma of high-risk BCC when compared to low-risk BCC. MT1-MMP, which is an activator of MMP-2, was similarly expressed in all groups. Our results suggest that MMP-2 expression may contribute to the distinct invasive patterns seen in SCC and BCC.

  10. Matrix metalloproteinases in destructive lung disease.

    PubMed

    Houghton, A McGarry

    2015-01-01

    Matrix metalloproteinases (MMPs) play essential physiologic roles in numerous processes ranging from development to wound repair. Unfortunately, given the broad substrate specificity of the MMP family as a whole, aberrant degradation of extracellular matrix proteins can result in destructive disease. Emphysema, the result of destroyed lung elastin and collagen matrix, is the prototypical example of such a destructive process. More recent data has highlighted that MMPs play much more elaborate physiologic and pathophysiologic roles than simple matrix protein cleavage. Key pathophysiological roles for MMPs in emphysema will be discussed herein.

  11. Inhibitory effects of a benz[f]indole-4,9-dione analog on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells.

    PubMed

    Park, Hyen Joo; Lee, Hyun-Jung; Min, Hye-Young; Chung, Hwa-Jin; Suh, Myung Eun; Park-Choo, Hye-Young; Kim, Choonmi; Kim, Hwa Jung; Seo, Eun-Kyung; Lee, Sang Kook

    2005-12-19

    In our previous study, a synthetic benz[f]indole-4,9-dione analog, 2-amino-3-ethoxycarbonyl-N-methylbenz[f]indole-4,9-dione (SME-6), exhibited a potential anti-tumor activity. We, in this study, further explored the anti-metastatic and anti-invasive effect of SME-6 by determining the regulation of matrix metalloproteinases (MMPs). MMPs, zinc-dependent proteolytic enzymes, play a pivotal role in tumor metastasis by cleavage of extracellular matrix as well as non-matrix substrates. On this line, we examined the influence of SME-6 on the expressions of MMP-2, -9, membrane type 1-MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-1, -2), and in vitro invasiveness of human fibrosarcoma cells. Dose-dependent suppressions of MMPs and TIMP-2 mRNA levels were observed in SME-6-treated HT1080 human fibrosarcoma cells detected by reverse transcriptase-polymerase chain reaction. TIMP-1 mRNA level, however, was induced in a dose-dependent manner. Gelatin zymographic analysis also exhibited a significant down-regulation of MMP-2 and -9 expression in HT1080 cells treated with SME-6 compared to controls. Furthermore, SME-6 inhibited the invasion, motility, and migration of tumor cells. Taken together, these data provide a possible role of SME-6 as a potential antitumor agent with the markedly inhibition of the metastatic and invasive capacity of malignant cells.

  12. Characterisation of matrix metalloproteinases and the effects of a broad-spectrum inhibitor (BB-1101) in peripheral nerve regeneration.

    PubMed

    Demestre, M; Wells, G M; Miller, K M; Smith, K J; Hughes, R A C; Gearing, A J; Gregson, N A

    2004-01-01

    The effect of treatment with a broad-spectrum inhibitor (BB1101) of the matrix metalloproteinases (MMPs) on nerve regeneration and functional recovery after nerve crush was examined. Drug treatment had no effect on latency but from 63 days the compound muscle action potential was significantly increased and was no different to that in the sham-operated controls at 72 days. Levels of MMP mRNA expression, and the localisation and activity of MMP proteins, were examined in rats for a 2 month period following a nerve crush injury, and compared with sham-operated controls. The mRNA of all the MMPs studied was up-regulated by 5-10 days after nerve crush, and they remained up-regulated for 40-63 days, except for MMP-9 which was down-regulated by 10 days. MMP immunoreactivity was localised to Schwann cells, macrophages and endothelial cells, and with the exception of membrane type 1-MMP (MT1-MMP), it was more intense after nerve crush compared with sham-operated controls. Regenerating axons showed immunoreactivity for MMP-2 and MMP-3. In situ zymography confirmed that the activity of MMPs in the nerve was increased following crush but that the activity was greatly reduced in rats treated with BB-1101. Thus despite the inhibition of MMPs by BB-1101, the drug did not appear to essentially affect nerve degeneration or regeneration following nerve crush but that it could be beneficial in promoting the more effective reinnervation of muscles possibly by actions at the level of the muscles.

  13. Matrix Metalloproteinases, Synaptic Injury, and Multiple Sclerosis

    PubMed Central

    Szklarczyk, Arek; Conant, Katherine

    2010-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system in which immune mediated damage to myelin is characteristic. For an overview of this condition and its pathophysiology, please refer to one of many excellent published reviews (Sorensen and Ransohoff, 1998; Weiner, 2009). To follow, is a discussion focused on the possibility that synaptic injury occurs in at least a subset of patients, and that matrix metalloproteinases (MMPs) play a role in such. PMID:21423441

  14. Matrix metalloproteinases in plants: a brief overview.

    PubMed

    Marino, Giada; Funk, Christiane

    2012-05-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.

  15. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury.

    PubMed

    Nishihara, Tasuku; Remacle, Albert G; Angert, Mila; Shubayev, Igor; Shiryaev, Sergey A; Liu, Huaqing; Dolkas, Jennifer; Chernov, Andrei V; Strongin, Alex Y; Shubayev, Veronica I

    2015-02-06

    Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain.

  16. Inhibitory effect of DA-125, a new anthracyclin analog antitumor agent, on the invasion of human fibrosarcoma cells by down-regulating the matrix metalloproteinases.

    PubMed

    Park, Hyen Joo; Chung, Hwa-Jin; Min, Hye-Young; Park, Eun-Jung; Hong, Ji-Young; Kim, Won Bae; Kim, Soon Hoe; Lee, Sang Kook

    2005-12-19

    Matrix metalloproteinases (MMPs), zinc-dependent proteolytic enzymes, play a pivotal role in tumor metastasis by cleavage of extracellular matrix as well as non-matrix substrates. In this study, we examined the influence of DA-125, a new anthracyclin analog, on the gene expression of MMPs (MMP-2, MMP-9 and MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) and in vitro invasiveness of human fibrosarcoma cells. Dose-dependent decreases of MMPs and TIMPs mRNA levels were observed in DA-125-treated HT1080 human fibrosarcoma cells detected by reverse transcriptase-polymerase chain reaction. Gelatin zymography analysis also showed a significant down-regulation of MMP-2 and MMP-9 expression in HT1080 cells treated with DA-125 compared to controls. In addition, DA-125 inhibited the invasion, motility and cell migration, and colony formation of tumor cells. These data, therefore, provide direct evidence for the role of DA-125 as a potential cancer chemotherapeutic agent, which can markedly inhibit the invasive capacity of malignant cells. Further, to clarify the transcriptional regulatory pathway, we primarily investigated the role of nuclear factor-kappaB (NF-kappaB) in the expression of MMPs by DA-125 in HT1080 cells. Electrophoretic mobility shift assay demonstrated that DA-125 modulates the binding activity of NF-kappaB. Using the luciferase reporter gene assay, a dose-dependent down-regulation of NF-kappaB-mediated luciferase expression was also observed. These results suggest that DA-125 down-regulates MMPs expression in HT1080 cells through the NF-kappaB-mediated pathway.

  17. Activation of Vav/Rho GTPase Signaling by CXCL12 Controls Membrane-Type Matrix Metalloproteinase–Dependent Melanoma Cell Invasion

    PubMed Central

    Bartolomé, Rubén A.; Molina-Ortiz, Isabel; Samaniego, Rafael; Sánchez-Mateos, Paloma; Bustelo, Xosé R.; Teixidó, Joaquin

    2007-01-01

    Melanoma cells express the chemokine receptor CXCR4, which confers invasive signals on binding to its ligand CXCL12. We show here that knocking down membrane-type matrix metal-loproteinase (MT1-MMP) expression translates into a blockade of invasion across reconstituted basement membranes and type I collagen gels in response to CXCL12, which is the result of lack of MMP-2 activation. Interference with MMP-2 expression further confirms its important role during this invasion. Vav proteins are guanine-nucleotide exchange factors for Rho GTPases that regulate actin dynamics and gene expression. We show that melanoma cells express Vav1 and Vav2, which are activated by CXCL12 involving Jak activity. Blocking Vav expression by RNA interference results in impaired activation of Rac and Rho by CXCL12 and in a remarkable inhibition of CXCL12-promoted invasion. Importantly, up-regulation of MT1-MMP expression by CXCL12, a mechanism contributing to melanoma cell invasion, is blocked by knocking down Vav expression or by inhibiting Jak. Together, these data indicate that activation of Jak/Vav/Rho GTPase pathway by CXCL12 is a key signaling event for MT1-MMP/MMP-2–dependent melanoma cell invasion. PMID:16397238

  18. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    PubMed Central

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  19. OVARIAN CANCER: INVOLVEMENT OF THE MATRIX METALLOPROTEINASES

    PubMed Central

    Al-Alem, Linah; Curry, Thomas E.

    2016-01-01

    Ovarian cancer is the leading cause of death from gynecologic malignancies. Reasons for the high mortality rate associated with ovarian cancer include a late diagnosis at which time the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members in the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. This review sheds light on the different MMPs in the various types of ovarian cancer and their impact on the progression of this gynecologic malignancy. PMID:25918438

  20. Ovarian cancer: involvement of the matrix metalloproteinases.

    PubMed

    Al-Alem, Linah; Curry, Thomas E

    2015-08-01

    Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.

  1. Matrix metalloproteinase interactions with collagen and elastin

    PubMed Central

    Van Doren, Steven R.

    2015-01-01

    Most abundant in the extracellular matrix are collagens, joined by elastin that confers elastic recoil to the lung, aorta, and skin. These fibrils are highly resistant to proteolysis but can succumb to a minority of the matrix metalloproteinases (MMPs). Considerable inroads to understanding how such MMPs move to the susceptible sites in collagen and then unwind the triple helix of collagen monomers have been gained. The essential role in unwinding of the hemopexin-like domain of interstitial collagenases or the collagen binding domain of gelatinases is highlighted. Elastolysis is also facilitated by the collagen binding domain in the cases of MMP-2 and MMP-9, and remote exosites of the catalytic domain in the case of MMP-12. PMID:25599938

  2. Matrix Metalloproteinases as Regulators of Periodontal Inflammation.

    PubMed

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-02-17

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.

  3. Matrix Metalloproteinases as Regulators of Periodontal Inflammation

    PubMed Central

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-01-01

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665

  4. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    PubMed

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  5. Synthesis, Kinetic Characterization and Metabolism of Diastereomeric 2-(1-(4-Phenoxyphenylsulfonyl)ethyl)thiiranes as Potent Gelatinase and MT1-MMP Inhibitors

    PubMed Central

    Gooyit, Major; Lee, Mijoon; Hesek, Dusan; Boggess, Bill; Oliver, Allen G.; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland

    2010-01-01

    Gelatinases (MMP-2 and MMP-9) have been implicated in a number of pathological conditions, including cancer and cardiovascular disease. Hence, small molecule inhibitors of these enzymes are highly sought for use as potential therapeutic agents. 2-(4-Phenoxyphenylsulfonylmethyl)thiirane (SB-3CT) has previously been demonstrated to be a potent and selective inhibitor of gelatinases, however, it is rapidly metabolized because of oxidation at the para position of the phenoxy ring and at the α-position to the sulfonyl group. α-Methyl variants of SB-3CT were conceived to improve metabolic stability and as mechanistic probes. We describe herein the synthesis and evaluation of these structural variants as potent inhibitors of gelatinases. Two (compounds 5b and 5d) among the four synthetic stereoisomers were found to exhibit slow-binding inhibition of gelatinases and MMP-14 (MT1-MMP), which is a hallmark of the mechanism of this class of inhibitors. The ability of these compounds to inhibit MMP-2, MMP-9, and MMP-14 could target cancer tissues more effectively. Metabolism of the newly synthesized inhibitors showed that both oxidation at the α-position to the sulfonyl group and oxidation at the para position of the terminal phenyl ring were prevented. Instead oxidation on the thiirane sulfur is the only biotransformation pathway observed for these gelatinase inhibitors. PMID:19824893

  6. Activity of matrix metalloproteinase-2 (MMP-2) in canine oronasal tumors.

    PubMed

    Nakaichi, Munekazu; Yunuki, Toshi; Okuda, Masaru; Une, Satoshi; Taura, Yasuho

    2007-04-01

    Activity of matrix metalloprotease-2 (MMP-2) and the expression of its related molecules were examined in spontaneous canine oronasal tumors. Tissue samples from melanoma and squamous cell carcinoma possessed higher MMP-2 activity, as shown in gelatin zymography, in comparison with acanthomatous epulis and nasal adenocarcinoma. Regional lymph node invasion and distant metastases were more frequently observed in the MMP-2 positive cases. There were no significant differences by RT-PCR examination in the expression of the genes encoding MMP-2, MT1-MMP and TIMP-2 among the tumor histological types. However, the MMP-2/TIMP-2 ratio showed a significantly higher level of the genes in the malignant oral melanoma and squamous cell carcinoma. The MMP-2/TIMP-2 ratio was also positively correlated with MMP-2 activity in gelatin zymography. These results indicate that the MMP-2/TIMP-2 ratio may be of value in evaluating the prognosis in canine oronasal cavity tumors.

  7. Chemical Biology for Understanding Matrix Metalloproteinase Function

    PubMed Central

    Knapinska, Anna; Fields, Gregg B.

    2013-01-01

    The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action. PMID:22933318

  8. Chemical biology for understanding matrix metalloproteinase function.

    PubMed

    Knapinska, Anna; Fields, Gregg B

    2012-09-24

    The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Matrix Metalloproteinases-7 and Kidney Fibrosis

    PubMed Central

    Ke, Ben; Fan, Chuqiao; Yang, Liping; Fang, Xiangdong

    2017-01-01

    Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease. PMID:28239354

  10. Matrix Metalloproteinases in Non-Neoplastic Disorders

    PubMed Central

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  11. Role of matrix metalloproteinases and their inhibitors in pancreatic cancer.

    PubMed

    Evans, J D; Ghaneh, P; Kawesha, A; Neoptolemos, J P

    1997-01-01

    The matrix metalloproteinases are a family of proteolytic enzymes which normally have an important physiological role in tissue remodelling and wound healing, but more recently have been implicated in the proteolytic events which occur during tumour invasion. The expanding family of matrix metalloproteinases and the specific tissue inhibitors of the matrix metalloproteinases are reviewed including their classification, structure, function, regulation of activity, and tissue expression with particular reference to pancreatic cancer. The effect of synthetic matrix metalloproteinases inhibitors in preclinical studies is reviewed together with the results of ongoing clinical trials in pancreatic cancer. Pancreatic cancer is associated with the overexpression of several matrix metalloproteinases with a reduced expression of their specific inhibitors. Orally bioavailable matrix metalloproteinase inhibitors have successfully completed phase I/II clinical trials with promising results. Multicentre randomised controlled phase IIb/III clinical trials aren currently under way in pancreatic cancer. Matrix metalloproteinase inhibition may represent a novel approach to the management of pancreatic cancer not only in advanced disease, but in the adjuvant treatment setting following tumour resection either alone or in combination with existing chemotherapeutic agents.

  12. The matrix metalloproteinase in larynx cancer.

    PubMed

    Grzelczyk, Weronika Lucas; Szemraj, Janusz; Józefowicz-Korczyńska, Magdalena

    2016-12-08

    One of the most common carcinoma occurring in the head and neck is laryngeal cancer. Despite the rapid scientific advances in medicine the prognosis for patients with such type of disease is not satisfying. In the last few years matrix metalloproteinases ‑ MMPs and their tissue inhibitors - TIMPs, mostly MMP‑2 and MMP‑9, arouses a great interest, especially in the process of carcinogenesis. It seems that their impact in the formation and development of laryngeal cancer is significant. MMPs a group of zinc‑ and calcium‑ dependent endopeptidases play crucial role extracellular matrix collagen degradation. That are enzymes, that degrade and the basement membrane by facilitating tumor growth, cell migration and tumor invasion. They are implicated in metastasis and angiogenesis potentiate within the tumor. Clear tendency was observed towards the higher MMPs and TIMPs expression in larynx cancer than in the stroma. Recent studies show correlations between increased MMP‑2 gene expression in the tumor tissue and clinical status, histopathological grading and metastases occurrence. The similar MMP2 over expression dependence were found on tumor recurrence and survival. Many authors pointed out, significant higher MMP‑2 expression as a potential marker of tumor invasiveness and worse prognosis in patients with larynx cancer. However, association of MMP 9 gene expression with laryngeal cancer clinicopathological features and survival of patients are ambiguous. Although, numerous researches show that this relationship does exists. Similar correlations could be found in TIMPs, but further studies are necessary because of small amount of literature.

  13. Matrix metalloproteinases in exercise and obesity.

    PubMed

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  14. Matrix metalloproteinases in exercise and obesity

    PubMed Central

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease. PMID:27471391

  15. Membrane-Bound and Exosomal Metastasis-Associated C4.4A Promotes Migration by Associating with the α6β4 Integrin and MT1-MMP12

    PubMed Central

    Ngora, Honoré; Galli, Uwe M; Miyazaki, Kaoru; Zöller, Margot

    2012-01-01

    Metastasis-associated C4.4A, which becomes upregulated during wound healing and, in some tumors, during tumor progression, is known to be frequently associated with hypoxia. With the function of C4.4A still unknown, we explored the impact of hypoxia on C4.4A expression and functional activity. Metastatic rat and human tumor lines upregulate C4.4A expression when cultured in the presence of CoCl2. Although hypoxia-inducible factor 1α (HIF-1α) becomes upregulated concomitantly, HIF-1α did not induce C4.4A transcription. Instead, hypoxia-induced C4.4A up-regulation promoted in vivo and in vitro wound healing, where increased migration on the C4.4A ligands laminin-111 and -332 was observed after a transient period of pronounced binding. Increased migration was accompanied by C4.4A associating with α6β4, MT1-MMP1, and TACE and by laminin fragmentation. Hypoxia also promoted the release of C4.4A in exosomes and TACE-mediated C4.4A shedding. The association of C4.4A with α6β4 and MT1-MMP1 was maintained in exosomes and exosomal α6β4- and MT1-MMP1-associated C4.4A but not shed C4.4A sufficient for laminin degradation. Hypoxia-induced recruitment of α6β4 toward raft-located C4.4A, MT1-MMP, and TACE allows for a shift from adhesion to motility, which is supported by laminin degradation. These findings provide the first explanation for the C4.4A contribution to wound healing and metastasis. PMID:22431918

  16. MT1-MMP Responsive Doxorubicin Conjugated Poly(lactic-co-glycolic Acid)/Poly(styrene-alt-maleic Anhydride) Core/Shell Microparticles for Intrahepatic Arterial Chemotherapy of Hepatic Cancer.

    PubMed

    Davaa, Enkhzaya; Lee, Junghan; Jenjob, Ratchapol; Yang, Su-Geun

    2017-01-11

    In this study, we demonstrated that the MT1-MMP-responsive peptide (sequence: GPLPLRSWGLK) and doxorubicin-conjugated poly(lactic-co-glycolic acid/poly(styrene-alt-maleic anhydride) core/shell microparticles (PLGA/pSMA MPs) can be applied for intrahepatic arterial injection for hepatocellular carcinoma (HCC). PLGA/pSMA MPs were prepared with a capillary-focused microfluidic device. The particle size, observed by scanning electron microscopy (SEM), was around 22 ± 3 μm. MT1-MMP-responsive peptide and doxorubicin (DOX) were chemically conjugated with pSMA segments on the shell of MPs to form a PLGA/pSMA-peptide-DOX complex, resulting in high encapsulation efficiency (91.1%) and loading content (2.9%). DOX was released from PLGA/pSMA-peptide-DOX MPs in a pH-dependent manner (∼25% at pH 5.4 and ∼8% at pH 7.4) and accumulated significantly in an MT1-MMP-overexpressing Hep3B cell line. An in vivo intrahepatic injection study showed localization of MPs on the hepatic vessels and hepatic lobes up to 24 h after the injection without any shunting to the lung. Moreover, MPs efficiently inhibited tumor growth of Hep3B hepatic tumor xenografted mouse models. We expect that PLGA/pSMA-peptide-DOX MPs can be utilized as an effective intrahepatic drug delivery system for the treatment of HCC.

  17. Examination of Matrix Metalloproteinase-1 in Solution

    PubMed Central

    Cerofolini, Linda; Fields, Gregg B.; Fragai, Marco; Geraldes, Carlos F. G. C.; Luchinat, Claudio; Parigi, Giacomo; Ravera, Enrico; Svergun, Dmitri I.; Teixeira, João M. C.

    2013-01-01

    Catalysis of collagen degradation by matrix metalloproteinase 1 (MMP-1) has been proposed to critically rely on flexibility between the catalytic (CAT) and hemopexin-like (HPX) domains. A rigorous assessment of the most readily accessed conformations in solution is required to explain the onset of substrate recognition and collagenolysis. The present study utilized paramagnetic NMR spectroscopy and small angle x-ray scattering (SAXS) to calculate the maximum occurrence (MO) of MMP-1 conformations. The MMP-1 conformations with large MO values (up to 47%) are restricted into a relatively small conformational region. All conformations with high MO values differ largely from the closed MMP-1 structures obtained by x-ray crystallography. The MO of the latter is ∼20%, which represents the upper limit for the presence of this conformation in the ensemble sampled by the protein in solution. In all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. Thus, overall analysis of the highest MO conformations indicated that MMP-1 in solution was poised to interact with collagen and then could readily proceed along the steps of collagenolysis. PMID:24025334

  18. Matrix metalloproteinase inhibitors in rheumatic diseases

    PubMed Central

    Close, D

    2001-01-01

    The rheumatic diseases continue to represent a significant healthcare burden in the 21st century. However, despite the best standard of care and recent therapeutic advances it is still not possible to consistently prevent the progressive joint destruction that leads to chronic disability. In rheumatoid arthritis and osteoarthritis this progressive cartilage and bone destruction is considered to be driven by an excess of the matrix metalloproteinase (MMP) enzymes. Consequently, a great number of potent small molecule MMP inhibitors have been examined. Several MMP inhibitors have entered clinical trials as a result of impressive data in animal models, although only one MMP inhibitor, Ro32-3555 (Trocade), a collagenase selective inhibitor, has been fully tested in the clinic, but it did not prevent progression of joint damage in patients with rheumatoid arthritis.
  The key stages and challenges associated with the development of an MMP inhibitor in the rheumatic diseases are presented below with particular reference to Trocade. It is concluded that the future success of MMP inhibitors necessitates a greater understanding of the joint destructive process and it is hoped that their development may be accompanied with clearer, more practical, outcome measures to test these drugs for, what remains, an unmet medical need.

 PMID:11890658

  19. Cell Death Control by Matrix Metalloproteinases.

    PubMed

    Zimmermann, Dirk; Gomez-Barrera, Juan A; Pasule, Christian; Brack-Frick, Ursula B; Sieferer, Elke; Nicholson, Tim M; Pfannstiel, Jens; Stintzi, Annick; Schaller, Andreas

    2016-06-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. The developmental and acute phases of insulin-induced laminitis involve minimal metalloproteinase activity.

    PubMed

    de Laat, M A; Kyaw-Tanner, M T; Nourian, A R; McGowan, C M; Sillence, M N; Pollitt, C C

    2011-04-15

    Metalloproteinases have been implicated in the pathogenesis of equine laminitis and other inflammatory conditions, through their role in the degradation and remodelling of the extracellular matrix environment. Matrix metalloproteinases (MMPs) and their inhibitors are present in normal equine lamellae, with increased secretion and activation of some metalloproteinases reported in horses with laminitis associated with systemic inflammation. It is unknown whether these enzymes are involved in insulin-induced laminitis, which occurs without overt systemic inflammation. In this study, gene expression of MMP-2, MMP-9, MT1-MMP, ADAMTS-4 and TIMP-3 was determined in the lamellar tissue of normal control horses (n=4) and horses that developed laminitis after 48 h of induced hyperinsulinaemia (n=4), using quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Protein concentrations of MMP-2 and MMP-9 were also examined using gelatin zymography in horses subject to prolonged hyperinsulinaemia for 6h (n=4), 12h (n=4), 24h (n=4) and 48 h (n=4), and in normal control horses (n=4). The only change in gene expression observed was an upregulation of MMP-9 (p<0.05) in horses that developed insulin-induced laminitis (48 h). Zymographical analysis showed an increase (p<0.05) in pro MMP-9 during the acute phase of laminitis (48 h), whereas pro MMP-2 was present in similar concentration in the tissue of all horses. Thus, MMP-2, MT1-MMP, TIMP-3 and ADAMTS-4 do not appear to play a significant role in the pathogenesis of insulin-induced laminitis. The increased expression of MMP-9 may be associated with the infiltration of inflammatory leukocytes, or may be a direct result of hyperinsulinaemia. The exact role of MMP-9 in basement membrane degradation in laminitis is uncertain as it appears to be present largely in the inactive form.

  1. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function

    PubMed Central

    Selvais, Charlotte; D'Auria, Ludovic; Tyteca, Donatienne; Perrot, Gwenn; Lemoine, Pascale; Troeberg, Linda; Dedieu, Stéphane; Noël, Agnès; Nagase, Hideaki; Henriet, Patrick; Courtoy, Pierre J.; Marbaix, Etienne; Emonard, Hervé

    2011-01-01

    Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.—Selvais, C., D'Auria, L., Tyteca, D., Perrot, G, Lemoine, P., Troeberg, L., Dedieu, S., Noël, A., Nagase, H., Henriet, P., Courtoy, P. J., Marbaix, E., Emonard, H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. PMID:21518850

  2. Expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinases during mouse embryonic development.

    PubMed

    Chen, Li; Nakai, Masaaki; Belton, Robert J; Nowak, Romana A

    2007-02-01

    Mouse embryo implantation is a highly invasive and controlled process that involves remodeling and degradation of the extracellular matrix of the uterus. Matrix metalloproteinases (MMPs) are the main proteinases facilitating this process. Extracellular matrix metalloproteinase inducer (EMMPRIN) can stimulate the production of MMPs and is required for successful implantation in the mouse. The aims of the present study were to examine the expression profiles of mRNA and proteins for EMMPRIN and MMPs in the developing mouse embryo in vitro, and to study whether EMMPRIN protein induces the production of MMPs by mouse blastocysts. EMMPRIN mRNA, detected by RT-PCR, was present at all stages of embryo development from the one-cell to the blastocyst outgrowth. EMMPRIN protein, observed by confocal microscopy, was present on the cell surface at the same stages of development as was the mRNA. Of seven MMPs studied, murine collagenase-like A (Mcol-A), murine collagenase-like B (Mcol-B) and gelatinase A (MMP-2) mRNAs were detected only in blastocyst outgrowths by RT-PCR. Gelatinase B (MMP-9) mRNA was detected both in expanded blastocysts and blastocyst outgrowths. MMP-2 and -9 proteins were detected in the cytoplasm of outgrowing trophoblast cells. Collagenase-2 (MMP-8), collagenase-3 (MMP-13), or stromelysin-1 (MMP-3) mRNAs were not present at any stage of pre- or peri-implantation mouse embryo development. Quantitative RT-PCR analyses showed that recombinant EMMPRIN protein did not stimulate MMP-2 or -9 expression by mouse blastocyst outgrowths. These data suggest that EMMPRIN may regulate physiological functions other than MMP production by mouse embryos during implantation.

  3. Matrix metalloproteinase-2 promoter variability in psoriasis.

    PubMed

    Vasku, Vladimir; Bienertova Vasku, Julie; Slonková, Veronika; Kanková, Katerina; Vasku, Anna

    2009-07-01

    The expression of matrix metalloproteinase-2 was observed to be significantly upregulated in psoriasis. The aim of this study was to associate the DNA polymorphic variants in MMP-2 promoter gene with psoriasis and/or with psoriasis phenotypes related to psoriasis and comorbid heredity. In the total of 582 Czech Caucasian individuals (386 patients with psoriasis and 196 controls of similar age and sex distribution without personal or family history of chronic disease of the skin), four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) were detected by PCR methods. A significant association of GG genotype of -790 MMP-2 polymorphism with psoriasis was observed (Pcorr = 0.04). Although no significant case-control differences in frequency of associated GG(-1575)CC(-1306)TT(-790) MMP-2 promoter genotype were observed, the genotype was found to be significantly less frequent in patients with family history of psoriasis (close as well as distant), family history of diabetes and personal history of allergy (2/11 vs. 55/32, odds ratio (OR) for GGCCTT 0.11, 95% confidential interval 0.02-0.50, Pcorr = 0.01). The significant difference between psoriatic patients with positive anamnestic data on diabetes, psoriasis and allergy compared with psoriatic patients that have only positive family history of diabetes was also observed (2/11 vs. 38/31, P = 0.009, Pcorr = 0.04; OR 0.15, 95% CI = 0.03-0.72 for psoriatic patients with GGCCTT genotype and family history of psoriasis, diabetes and personal history of allergy). To conclude, the associated GGCCTT genotype in the promoter of MMP-2 gene was less frequent in patients with positive family history of psoriasis, diabetes and personal history of allergy compared with psoriatic patients without them (2/11 vs. 68/57, P = 0.007, Pcorr = 0.04; OR = 0.15, 95% CI = 0.03-0.72 for psoriatic patients with family history of psoriasis and diabetes and with allergy). Based on our results, we suggest that the MMP-2 located in

  4. Isolation and characterization of chicken bile matrix metalloproteinase

    USDA-ARS?s Scientific Manuscript database

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  5. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    PubMed Central

    Philips, Neena; Auler, Susan; Hugo, Raul; Gonzalez, Salvador

    2011-01-01

    Matrix metalloproteinases (MMPs) are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars. PMID:21423679

  6. Matrix metalloproteinase inhibition: a review of anti-tumour activity.

    PubMed

    Brown, P D; Giavazzi, R

    1995-12-01

    Matrix metalloproteinases are a homologous family of proteolytic enzymes. Collectively, these proteinases are capable of degrading all components of the extracellular matrix, including proteolytically resistant fibrillar collagens. Extracellular matrices constitute the principal barrier to tumour growth and spread, and there is now experimental evidence that malignant tumours utilise matrix metalloproteinases to overcome this barrier. Inhibitors of matrix metalloproteinases may therefore be of therapeutic value in the treatment of metastatic disease. This review describes the activity of matrix metalloproteinases inhibitors (MMPIs), in experimental tumour models and in phase I/II clinical studies. Studies with MMPIs in vitro have shown that these agents are not cytotoxic but can inhibit the degradation of extracellular matrix by tumour cells. In experimental tumour models in vivo, MMPI treatment caused inhibition of tumour growth and metastatic spread in both rodent syngeneic and human xenograft models. MMPIs have also been shown to inhibit angiogenesis, a process essential for the rapid growth of most malignancies. MMPI therapy has the potential to arrest tumour growth and spread. As a non-cytotoxic 'tumourostatic' approach it may offer an ideal complement to surgery, radiotherapy and chemotherapy in the successful long-term treatment of metastatic disease.

  7. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity.

    PubMed

    Tauro, Marilena; Laghezza, Antonio; Loiodice, Fulvio; Piemontese, Luca; Caradonna, Alessia; Capelli, Davide; Montanari, Roberta; Pochetti, Giorgio; Di Pizio, Antonella; Agamennone, Mariangela; Campestre, Cristina; Tortorella, Paolo

    2016-01-01

    New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.

  8. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas

    PubMed Central

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-01-01

    Abstract The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas. We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method. Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61–11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91–3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63–7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52–6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06–2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48–2.20, P = 0.95). The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  9. Potential matrix metalloproteinase inhibitors from edible marine algae: a review.

    PubMed

    Thomas, Noel Vinay; Manivasagan, Panchanathan; Kim, Se-Kwon

    2014-05-01

    Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extra-cellular matrix degradation, and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological related diseases. Hence inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings and thus many of them could not make to the final clinical trials. Hence a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible sea-weeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Fucoidans from marine algae as potential matrix metalloproteinase inhibitors.

    PubMed

    Thomas, Noel Vinay; Kim, Se-Kwon

    2014-01-01

    Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extracellular matrix degradation and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological-related diseases. Hence, inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings, and thus many of them could not make to the final clinical trials. Hence, a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown a profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible seaweeds. © 2014 Elsevier Inc. All rights reserved.

  11. Chicken bile Matrix metalloproteinase; its characterization and significance

    USDA-ARS?s Scientific Manuscript database

    Previous studies from our lab had shown that the avian bile was rich in matrix metalloproteinase (MMP), enzymes implicated in the degradation of extracellular matrices (ECM) such as collagens and proteoglycans. We hypothesized that bile MMP may be evolutionarily associated with the digestion of ECM ...

  12. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases.

    PubMed

    Smith, Alexander C W; Kupchik, Yonatan M; Scofield, Michael D; Gipson, Cassandra D; Wiggins, Armina; Thomas, Charles A; Kalivas, Peter W

    2014-12-01

    Relapse to cocaine use necessitates remodeling excitatory synapses in the nucleus accumbens and synaptic reorganization requires matrix metalloproteinase (MMP) degradation of the extracellular matrix proteins. We found enduring increases in MMP-2 activity in rats after withdrawal from self-administered cocaine and transient increases in MMP-9 during cue-induced cocaine relapse. Cue-induced heroin and nicotine relapse increased MMP activity, and increased MMP activity was required for both cocaine relapse and relapse-associated synaptic plasticity.

  13. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  14. Effects of matrix metalloproteinase inhibitors on bone resorption and orthodontic tooth movement.

    PubMed

    Holliday, L S; Vakani, A; Archer, L; Dolce, C

    2003-09-01

    Matrix metalloproteinases are involved in the regulation of bone remodeling. The hypothesis that matrix metalloproteinase inhibitors may be useful for experimentally limiting orthodontic tooth movement, a process involving perturbations of normal bone remodeling, was tested. General matrix metalloproteinase inhibitors limited the resorption of bone slices by mouse marrow cultures stimulated by calcitriol, parathyroid hormone, and basic-fibroblast growth factor. Pre-coating dentin slices with short arginine-glycine aspartic acid (RGD) peptides, but not arginine-glycine-glutamic acid (RGE) controls, restored bone resorption in the presence of matrix metalloproteinase inhibitors. Orthodontic tooth movement was inhibited by local delivery of Ilomastat, a general matrix metalloproteinase inhibitor, with the use of ethylene-vinyl-acetate (ELVAX) 40, a non-biodegradable, non-inflammatory sustained-release polymer. This study shows that orthodontic tooth movement can be inhibited with the use of matrix metalloproteinase inhibitors, and suggests a mechanistic link between matrix metalloproteinase activity and the production of RGD peptides.

  15. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.

  16. CD97 inhibits cell migration in human fibrosarcoma cells by modulating TIMP-2/MT1- MMP/MMP-2 activity--role of GPS autoproteolysis and functional cooperation between the N- and C-terminal fragments.

    PubMed

    Hsiao, Cheng-Chih; Wang, Wen-Chih; Kuo, Wan-Lin; Chen, Hsin-Yi; Chen, Tse-Ching; Hamann, Jörg; Lin, Hsi-Hsien

    2014-11-01

    CD97 is a tumor-associated adhesion-class G-protein-coupled receptor involved in modulating cell migration. Adhesion-class G-protein-coupled receptors are characterized by proteolytic cleavage at a G-protein-coupled receptor proteolysis site (GPS) into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), which remain associated noncovalently. The molecular mechanism and the role of GPS proteolysis in CD97-modulated cell migration are not completely understood. We report here that CD97 expression in HT1080 fibrosarcoma cells enhanced tissue inhibitor of metalloproteinase-2 secretion, leading to reduced membrane type 1 matrix metalloproteinase and matrix metalloproteinase 2 activities. This, in turn, impaired cell migration and invasion in vitro and lung macrometastasis in vivo. CD97 expression also upregulated the expression of integrins, promoting cell adhesion. Importantly, these cellular functions absolutely required the presence of both the NTF and the CTF of CD97, confirming functional cooperation between the two receptor subunits. CD97 gene knockdown reversed these phenotypic changes. We conclude that GPS proteolysis and the functional interplay between the NTF and the CTF are indispensible for CD97 to inhibit HT1080 cell migration by suppressing matrix metalloproteinase activity. © 2014 FEBS.

  17. Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Aqueous Humor of Diabetic Macular Edema Patients

    PubMed Central

    Choi, Jin A.; Jee, Donghyun

    2016-01-01

    Purpose To assess the concentrations of matrix metalloproteinase (MMP)-1 and MMP-9 in the aqueous humor of diabetic macular edema (DME) patients. Method The concentrations of MMP-1 and MMP-9 in the aqueous humors of 15 cataract patients and 25 DME patients were compared. DME patients were analyzed according to the diabetic retinopathy (DR) stage, diabetes mellitus (DM) duration, pan-retinal photocoagulation (PRP) treatment, recurrence within 3 months, HbA1C (glycated hemoglobin) level, and axial length. Results The concentrations of MMP-1 and MMP-9 of the DME groups were higher than those of the control group (p = 0.005 and p = 0.002, respectively). There was a significant difference in MMP-1 concentration between the mild non-proliferative diabetic retinopathy (NPDR) group and the proliferative diabetic retinopathy (PDR) group (p = 0.012). MMP-1 concentrations were elevated in PRP-treated patients (p = 0.005). There was a significant difference in MMP-9 concentrations between the mild NPDR group and the PDR group (p < 0.001), and between the moderate and severe NPDR group and the PDR group (p < 0.001). The MMP-9 concentrations in PRP treated patients, DM patients with diabetes ≥ 10 years and recurrent DME within 3months were elevated (p = 0.023, p = 0.011, and p = 0.027, respectively). In correlation analyses, the MMP-1 level showed a significant correlation with age (r = -0.48, p = 0.01,), and the MMP-9 level showed significant correlations with axial length (r = -0.59, p < 0.01) and DM duration (r = 049, p = 0.01). Conclusions Concentrations of MMP-1 and MMP-9 were higher in the DME groups than in the control group. MMP-9 concentrations also differed depending on DR staging, DM duration, PRP treatment, and degree of axial myopia. MMP-9 may be more important than MMP-1 in the induction of DM complications in eyes. PMID:27467659

  18. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds.

    PubMed

    Vermeulen, Pieter; Dickens, Stijn; Degezelle, Karlien; Van den Berge, Stefaan; Hendrickx, Benoit; Vranckx, Jan Jeroen

    2009-07-01

    In search of an autologous vascularized skin substitute, we treated full-thickness wounds (FTWs) with autologous platelet-rich plasma gel (APG) in which we embedded endothelial progenitor cells (EPCs) and basal cell keratinocytes (KCs). We cultivated autologous KCs in low-serum conditions and expanded autologous EPCs from venous blood. FTWs (n = 55) were created on the backs of four pigs, covered with wound chambers, and randomly assigned to the following treatments: (1) APG, (2) APG + KCs, (3) APG + EPCs, (4) APG + KCs + EPCs, and (5) saline. All wounds were biopsied to measure neovascularization (lectin Bandeiraea Simplicifolia-1 (BS-1), alpha smooth muscle actin [alphaSMA], and membrane type 1 matrix metalloproteinase (MT1-MMP)), matrix deposition (fibronectin, collagen type I/III, and alphavbeta3), and reepithelialization. Wound fluids were analyzed for protein expression. All APG-treated wounds showed more vascular structures (p < 0.001), and the addition of EPCs further improved neovascularization, as confirmed by higher lectin, alphaSMA, and MT1-MMP. APG groups had higher collagen I/III (p < 0.05), alphavbeta3, and fibronectin content (p < 0.001), and they exhibited higher concentrations of platelet-derived growth factor subunit bb, basic fibroblast growth factor, hepatocyte growth factor, insulin growth factor-1, transforming growth factor-beta1 and -beta3, matrix metalloproteinase-1 and -z9, and tissue-inhibiting matrix metalloproteinase-1 and -2. Applying APG + KCs resulted in the highest reepithelialization rates (p < 0.001). No differences were found for wound contraction by planimetry. In this porcine FTW model, APG acts as a supportive biomatrix that, along with the embedded cells, improves extracellular matrix organization, promotes angiogenesis, and accelerates reepithelialization.

  19. Expression of tissue levels of matrix metalloproteinases and their inhibitors in breast cancer.

    PubMed

    Zhang, Ming; Teng, Xiao-dan; Guo, Xin-xin; Li, Zhi-gao; Han, Ji-guang; Yao, Lei

    2013-06-01

    We examined mRNA expression for MMP-2, MMP-7, MMP-9, MT1-MMP, TIMP-1, and TIMP-2 in human breast cancer tissues, and the association between their expression and clinicopathological variables. Breast tissue samples from 120 patients with breast cancer were available for this study. To determine mRNA expression for MMP-2, MMP-7, MMP-9, MT1-MMP, TIMP-1, and TIMP-2, semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out on tumor and normal tissues, respectively. Mean MMP-2, MMP-7, MMP-9, MT1-MMP, TIMP-1, and TIMP-2 mRNA expression in the breast cancer was significantly higher than in the normal tissue. In terms of tumor size and lymph node metastasis of breast cancer, the differences in MMP-2, MMP-7, MMP-9, and MT1-MMP mRNA expression levels were significant. The association between the increased expression of MMP-2, MMP-7, MMP-9, and MTI-MMP and clinicopathological parameters reflects a role in predicting the aggressive behavior of breast cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Structural bases for substrate and inhibitor recognition by matrix metalloproteinases.

    PubMed

    Aureli, Loretta; Gioia, Magda; Cerbara, Ilaria; Monaco, Susanna; Fasciglione, Giovanni Francesco; Marini, Stefano; Ascenzi, Paolo; Topai, Alessandra; Coletta, Massimo

    2008-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases which are involved in the proteolytic processing of several components of the extracellular matrix. As a consequence, MMPs are implicated in several physiological and pathological processes, like skeletal growth and remodelling, wound healing, cancer, arthritis, and multiple sclerosis, raising a very widespread interest toward this class of enzymes as potential therapeutic targets. Here, structure-function relationships are discussed to highlight the role of different MMP domains on substrate/inhibitor recognition and processing and to attempt the formulation of advanced guidelines, based on natural substrates, for the design of inhibitors more efficient in vivo.

  1. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers.

    PubMed

    Rempe, Ralf G; Hartz, Anika Ms; Bauer, Björn

    2016-09-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.

  2. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers

    PubMed Central

    Rempe, Ralf G; Hartz, Anika MS

    2016-01-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease, Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood–brain barrier in brain disorders. PMID:27323783

  3. Control of Matrix Metalloproteinase Catalytic Activity

    PubMed Central

    Ra, Hyun-Jeong; Parks, William C.

    2008-01-01

    Summary As their name implies, MMPs were first described as proteases that degrade extracellular matrix proteins, such as collagens, elastin, proteoglycans, and laminins. However, studies of MMP function in vivo have revealed that these proteinases act on a variety of extracellular protein substrates, often to activate latent forms of effector proteins, such as antimicrobial peptides and cytokines, or to alter protein function, such as shedding of cell-surface proteins. Because their substrates are diverse, MMPs are involved in variety of homeostatic functions, such as bone remodeling, wound healing, and several aspects of immunity. However, MMPs are also involved in a number of pathological processes, such as tumor progression, fibrosis, chronic inflammation, tissue destruction, and more. A key step in regulating MMP proteolysis is the conversion of the zymogen into an active proteinase. Several proMMPs are activated in the secretion pathway by furin proprotein convertases, but for most the activation mechanisms are largely not known. In this review, we discuss both authentic and potential mechanisms of proMMP activation. PMID:17669641

  4. Matrix metalloproteinases as reagents for cell isolation.

    PubMed

    Knapinska, Anna M; Amar, Sabrina; He, Zhong; Matosevic, Sandro; Zylberberg, Claudia; Fields, Gregg B

    2016-11-01

    Cell isolation methods for therapeutic purposes have seen little advancement over the years. The original methods of stem cell and islet isolation using bacterial collagenases were developed in the early 1980s and are still used today. Bacterial collagenases are subject to autodegradation, and isolates obtained with these enzymes may be contaminated with endotoxins, reducing cell viability and contributing to toxicity in downstream applications. Here we describe a novel method for isolation of mesenchymal stem cells from adipose tissue (ADSC) utilizing recombinantly produced matrix metalloproteases (MMPs). The ADSCs isolated by MMPs displayed essentially identical morphological and phenotypical characteristics to cells isolated by bacterially-derived collagenase I and Liberase™. Samples isolated with MMPs and Liberase™ had comparable levels of CD73, CD90, and CD105. The adipogenic and osteogenic potential of the ADSCs isolated by MMPs was retained as compared to cells isolated with Liberase™. However, ADSCs isolated by Liberase™ displayed 6% contamination with other cells as per negative markers revealed by PE staining, as opposed to<1% for all MMP-treated samples. MMP-based cell isolation may contribute to optimization of transplantation technology.

  5. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  6. High Matrix Metalloproteinase Activity is a Hallmark of Periapical Granulomas

    PubMed Central

    de Paula e Silva, Francisco Wanderley Garcia; D'Silva, Nisha J.; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-01-01

    Introduction Inability to distinguish periapical cysts from granulomas prior to performing root canal treatment leads to uncertainty in treatment outcomes, because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Since matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed using one-way ANOVA followed by Tukey test. Results We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the matrix metalloproteinase (MMP) family. Compared to cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs), in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared to cysts. Conclusion Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas, unlike periapical cysts. PMID:19720222

  7. Matrix metalloproteinase-13 refines pathological staging of precancerous colorectal lesions

    PubMed Central

    Wernicke, Anna-Katharina; Churin, Yuri; Sheridan, Diana; Windhorst, Anita; Tschuschner, Annette; Gattenlöhner, Stefan; Roderfeld, Martin; Roeb, Elke

    2016-01-01

    An exact classification of precancerous stages of colorectal polyps might improve therapy and patients' outcome. Here we investigate the association between grade of dysplasia and Matrix metalloproteinase-13 (MMP-13) expression in 137 biopsies from patients with cancerous and non-cancerous colorectal adenomas. A reproducible staining procedure for histologic MMP-13 analysis in routinely fixed colorectal biopsy specimens has been established. A newly adopted immunoreactive scoring system for MMP-13 was demonstrated as reliable readout. The strength of the association between pathologic stage and immunoreactive MMP-13 scoring emphasizes its eligibility for diagnosis in precancerous colorectal lesions. PMID:27716617

  8. The regulation of matrix metalloproteinases and their inhibitors.

    PubMed

    Clark, Ian M; Swingler, Tracey E; Sampieri, Clara L; Edwards, Dylan R

    2008-01-01

    The matrix metalloproteinases (MMP) are a family of 23 enzymes in man. These enzymes were originally described as cleaving extracellular matrix (ECM) substrates with a predominant role in ECM homeostasis, but it is now clear that they have much wider functionality. Control over MMP and/or tissue inhibitor of metalloproteinases (TIMP) activity in vivo occurs at different levels and involves factors such as regulation of gene expression, activation of zymogens and inhibition of active enzymes by specific inhibitors. Whilst these enzymes and inhibitors have clear roles in physiological tissue turnover and homeostasis, if control of their expression or activity is lost, they contribute to a number of pathologies including e.g. cancer, arthritis and cardiovascular disease. The expression of many MMPs and TIMPs is regulated at the level of transcription by a variety of growth factors, cytokines and chemokines, though post-transcriptional pathways may contribute to this regulation in specific cases. The contribution of epigenetic modifications has also been uncovered in recent years. The promoter regions of many of these genes have been, at least partly, characterised including the role of identified single nucleotide polymorphisms. This article aims to review current knowledge across these gene families and use a bioinformatic approach to fill the gaps where no functional data are available.

  9. Regulation and involvement of matrix metalloproteinases in vascular diseases

    PubMed Central

    Amin, Matthew; Pushpakumar, Sathnur; Muradashvili, Nino; Kundu, Sourav; Tyagi, Suresh C.; Sen, Utpal

    2017-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease. PMID:26709763

  10. Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer

    PubMed Central

    Waas, E T; Lomme, R M L M; DeGroot, J; Wobbes, Th; Hendriks, T

    2002-01-01

    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a limited (n=33) number of patients. Broad-spectrum matrix metalloproteinase activity and both the active and latent forms of the gelatinases matrix metalloproteinase-2 and -9 were higher in tumour than in normal mucosa. The ratio's between active and latent forms of matrix metalloproteinase-2 and -9 were highest in tumour tissue and normal mucosa, respectively. Matrix metalloproteinase-2 levels, both active and latent forms, correlated inversely with stage of disease, the tumours without synchronous distant metastases containing significantly (P=0.005) more active matrix metalloproteinase-2 than the others. At much lower levels of activity, the same trend was observed in distant normal mucosa. The level of latent form of matrix metalloproteinase-9 in tumour depended on tumour location. Neither the active form of matrix metalloproteinase-9 nor broad-spectrum matrix metalloproteinase activity in tumour tissue did correlate with any of the clinicopathological parameters investigated. The results demonstrate explicit differences between the activity of matrix metalloproteinase-2 and -9, indicating different roles for both gelatinases in tumour progression. Such data are necessary in order to develop rational anti-cancer therapies based on inhibition of specific matrix metalloproteinases. British Journal of Cancer (2002) 86, 1876–1883. doi:10.1038/sj.bjc.6600366 www.bjcancer.com © 2002 Cancer Research UK PMID:12085179

  11. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    PubMed

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  12. Matrix metalloproteinases as biomarkers of disease: updates and new insights.

    PubMed

    Galliera, Emanuela; Tacchini, Lorenza; Corsi Romanelli, Massimiliano M

    2015-02-01

    Matrix metalloproteinases (MMPs) play a pivotal role in remodeling the extracellular matrix (ECM) and are therefore of interest for new diagnostic tools for the clinical management of diseases involving ECM disruption. This setting ranges from the classical areas of MMP studies, such as vascular disease, cancer progression or bone disorders, to new emerging fields of application, such as neurodegenerative disease or sepsis. Increasing the knowledge about the role of MMPs in the pathogenesis of diseases where a clear diagnostic panel is still lacking could provide new insight and improve the identification and the clinical treatment of these human diseases. This review focuses on the latest descriptions of the clinical use of MMP as biomarkers in the diagnosis, prognosis and monitoring of different diseases, such as diabetes, cardiovascular diseases, cancer and metastasis, neurodegenerative disorders and sepsis.

  13. Roles and regulation of the matrix metalloproteinase system in parturition.

    PubMed

    Geng, Junnan; Huang, Cong; Jiang, Siwen

    2016-04-01

    Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. © 2016 Wiley Periodicals, Inc.

  14. Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update

    PubMed Central

    O'Sullivan, Shane; Gilmer, John F.

    2015-01-01

    Matrix metalloproteinases (MMPs) are known to be upregulated in inflammatory bowel disease (IBD) and other inflammatory conditions, but while their involvement is clear, their role in many settings has yet to be determined. Studies of the involvement of MMPs in IBD since 2006 have revealed an array of immune and stromal cells which release the proteases in response to inflammatory cytokines and growth factors. Through digestion of the extracellular matrix and cleavage of bioactive proteins, a huge diversity of roles have been revealed for the MMPs in IBD, where they have been shown to regulate epithelial barrier function, immune response, angiogenesis, fibrosis, and wound healing. For this reason, MMPs have been recognised as potential biomarkers for disease activity in IBD and inhibition remains a huge area of interest. This review describes new roles of MMPs in the pathophysiology of IBD and suggests future directions for the development of treatment strategies in this condition. PMID:25948887

  15. Localising matrix metalloproteinase activities in the pericellular environment

    PubMed Central

    Murphy, Gillian; Nagase, Hideaki

    2010-01-01

    Matrix metalloproteinases (MMPs) are a group of structurally related proteolytic enzymes containing a zinc ion in the active site. They are secreted from cells or bound to the plasma membrane and hydrolyze extracellular matrix (ECM) and cell surface-bound molecules. They therefore play key roles in morphogenesis, wound healing, tissue repair and remodelling in diseases such as cancer and arthritis. Whilst the cell anchored membrane-type MMPs (MT-MMPs) function pericellularly, the secreted MMPs have been considered to act within the ECM, away from the cells from which they are synthesized. However, recent studies have shown that secreted MMPs bind to specific cell surface receptors, membrane-anchored proteins or cell associated ECM molecules and function pericellularly at focussed locations. This minireview describes examples of cell surface and pericellular partners of MMPs and how they alter enzyme function and cellular behaviour. PMID:21087456

  16. Matrix metalloproteinases in liver injury, repair and fibrosis

    PubMed Central

    Duarte, Sergio; Baber, John; Fujii, Takehiro; Coito, Ana J.

    2015-01-01

    The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression. PMID:25599939

  17. The paradox of matrix metalloproteinases in infectious disease

    PubMed Central

    Elkington, PTG; O'Kane, CM; Friedland, JS

    2005-01-01

    Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that perform multiple roles in the normal immune response to infection. MMPs facilitate leucocyte recruitment, cytokine and chemokine processing, defensin activation and matrix remodelling. However, excess MMP activity following infection may lead to immunopathology that causes host morbidity or mortality and favours pathogen dissemination or persistence. Here, we review the normal functions of MMPs in immunity and then discuss viral and bacterial infections where excess MMP activity has been implicated in pathology, specifically examining HIV, HTLV-1, hepatitis B, endotoxin shock, Helicobacter pylori and Mycobacterium tuberculosis. Tissue destruction may be exacerbated further by bacterial-derived enzymes which activate the host pro-MMPs. Finally, the potential for therapeutic targeting of excess MMP activity in infection is considered. PMID:16178851

  18. Uterine cervical carcinoma: role of matrix metalloproteinases (review).

    PubMed

    Libra, Massimo; Scalisi, Aurora; Vella, Nadia; Clementi, Silvia; Sorio, Roberto; Stivala, Franca; Spandidos, Demetrios A; Mazzarino, Clorinda

    2009-04-01

    Epidemiological and experimental studies have provided evidence that human papillomavirus (HPV) infection is a main player in the development of uterine cervical neoplasms. Migration of cancer cells from the origin tissue to surrounding or distant organs is essential for tumor progression. Many studies of tumor invasion and metastases have focused on the degradation of the extracellular matrix where matrix metalloproteinases (MMPs) play a central role. Two of these enzymes, MMP-2 and MMP-9, have been correlated with the processes of tumor cell invasion and metastasis in human cancers, including uterine neoplasms. It has been shown that the up-regulation of MMPs is associated with progression of cervical uterine neoplasms. This review describes the current understanding of MMP-2 and MMP-9 expression and activity in pre-cancer and cancer lesions of cervical uterine, which may open new strategies for diagnostic and therapeutic interventions.

  19. The role of polyphosphates in the sequestration of matrix metalloproteinases.

    PubMed

    McCarty, Sara M; Percival, Steven L; Clegg, Peter D; Cochrane, Christine A

    2015-02-01

    This study outlines the potential of a novel therapeutic dressing for the management of chronic wounds. The dressing incorporates polyphosphate, a non toxic compound with a number of beneficial characteristics in terms of wound healing, in a foam matrix. The aim of this study was to identify the potential of polyphosphate incorporated in the foam dressing to sequester the activity of matrix metalloproteinases (MMPs) and proteases derived from Pseudomonas aeruginosa. Methods used included gelatin zymography and milk-casein agar plate analysis. Results have shown that this dressing is effectively capable of reducing the levels of MMP-2 and MMP-9 in both their active and latent forms using an in vitro model. The dressing also demonstrated the compound's potential in the regulation of P. aeruginosa derived proteases. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Time-dependent matrix metalloproteinases and tissue inhibitor of metalloproteinases expression change in fusarium solani keratitis.

    PubMed

    Li, Qian; Gao, Xin-Rui; Cui, Hong-Ping; Lang, Li-Li; Xie, Xiu-Wen; Chen, Qun

    2016-01-01

    To investigate matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression during the progress of fusarium solani (F.solani) keratitis in a rat model. A rat model of F.solani keratitis was produced using corneal scarification and a hand-made contact lens. MMPs and TIMPs expressiond were explored in this rat model of F.solani keratitis using real-time polymerase chain reaction (PCR) and DIF. GM6001 (400 µmol/mL) was used to treat infected corneas. The keratitis duration, amount and area of corneal neovascularization (CNV) were evaluated. MMP-3 expression was 66.3 times higher in infected corneas compared to normal corneas. MMP-8, -9, and -13 expressions were significantly upregulated in the mid-period of the infection, with infected-to-normal ratios of 4.03, 39.86, and 5.94, respectively. MMP-2 and -7 expressions increased in the late period, with the infected-to-normal ratios of 5.94 and 16.22, respectively. TIMP-1 expression was upregulated in the early period, and it was 43.17 times higher in infected compared to normal corneas, but TIMP-2, -3, and -4 expressions were mildly downregulated or unchanged. The results of DIF were consistent with the result of real-time PCR. GM6001, a MMPs inhibitor, decreased the duration of F.solani infection and the amount and area of CNV. MMPs and TIMPs contributed into the progress of F.solani keratitis.

  1. Induced sputum-retrieved matrix metalloproteinase 9 and tissue metalloproteinase inhibitor 1 in granulomatous diseases

    PubMed Central

    Fireman, E; Kraiem, Z; Sade, O; Greif, J; Fireman, Z

    2002-01-01

    Matrix metalloproteinases (MMPs) capable of degrading various components of connective tissue matrices, and tissue inhibitor metalloproteinases (TIMPs) are considered important in lung parenchymal remodeling and repair processes in pulmonary diseases. Induced sputum (IS) is a reliable noninvasive method to investigate pathogenesis, pathophysiology and treatment of lung disease. This study was designed to determine whether IS-MMP9/TIMP1 levels demonstrate lung parenchymal remodeling in sarcoidosis (SA) and Crohn's disease (CRD) patients. Sputum was induced and processed conventionally in 13 SA patients, 18 CRD patients and 9 controls. Two-hundred cells were counted on Giemsa-stained cytopreps, and T lymphocytes subsets (CD4 = T helper and CD8 = T suppressor cytotoxic cells) were analysed by FACS using monoclonal antibodies.MMP-9 and TIMP-1 were measured using commercial ELISA kits. MMP-9 concentrations, but not those of TIMP-1, were significantly greater in the sputum supernatant in SA and CRD patients compared to controls (P = 0·018 and P = 0·0019, respectively). The molar ratio, MMP-9/TIMP-1, was significantly higher in SA and CRD patients compared to controls (P = 0·008 and P = 0·024, respectively). Gelatinase species having a molecular weight similar to that of MMP-9 were demonstrated by zymographic analysis. MMP-9 levels were highly correlated with the CD4/CD8 ratio and DLCO capacity in SA but less in CRD patients. MMP-9 levels in IS provide a sensitive marker for pulmonary damage. PMID:12390324

  2. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles

    PubMed Central

    Alameddine, Hala S.; Morgan, Jennifer E.

    2016-01-01

    In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs’ overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis. PMID:27911334

  3. Matrix metalloproteinases in the formation of human synovial joint cavities.

    PubMed Central

    Edwards, J C; Wilkinson, L S; Soothill, P; Hembry, R M; Murphy, G; Reynolds, J J

    1996-01-01

    Matrix metalloproteinases (MMPs) have been implicated in tissue remodelling in growth and development. A histochemical study of human fetal limbs was undertaken to assess the presence, and consequently the possible role, of MMPs and their inhibitor TIMP-1 (tissue inhibitor of metalloproteinases-1) in synovial joint cavity formation. Cryostat sections of fetal limbs from 7 to 14 wk gestation were stained with specific antibodies to collagenase (MMP-1), gelantinases A (MMP-2) and B (MMP-9), stromelysin (MMP-3) and TIMP-1. Immunoreactive (IR) MMP-1, MMP-2 and MMP-3 were seen chiefly in chondrocytes, but in all cases in zones distant from the joint line before cavity formation. IR-MMP-1 and MMP-2 were also localised both in synovium and on the articular surfaces of joints after cavity formation. In addition IR-MMP-2 was seen in a "collar' of perichondrium alongside the hypertrophic zone of chondrocytes and weakly in bone marrow spaces. IR-MMP-9 was seen in neutrophil leucocytes and in bone marrow spaces. IR-TIMP-1 was generally distributed in connective tissue cells. No IR-MMP (1, 2,3 or 9) was seen along potential joint lines before or at the time of cavity formation, nor was there aspecific decrease in IR-TIMP-1 at this site. These findings confirm a role for metalloproteinases in developmental processes such as cartilage remodelling and bone marrow space formation. MMP-1 and MMP-2 may be involved in the remodelling of developing synovial tissue and the articular surfaces subsequent to cavity formation. However, we have failed to find evidence to indicate that the loss of tissue strength at the joint line which allows synovial joint cavity formation relates to high local levels of MMPS. Images Fig. 1 Fig. 2 PMID:8621334

  4. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants

    PubMed Central

    Verma, Sugreev; Kesh, Kousik; Ganguly, Nilanjan; Jana, Sayantan; Swarnakar, Snehasikta

    2014-01-01

    The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is

  5. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and {beta}1 integrin expression in vitro

    SciTech Connect

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2{sup -/-} myotube formation. When differentiated in horse serum-containing medium, TIMP-2{sup -/-} myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2{sup -/-} myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with {beta}1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2{sup -/-} myotube size and induces increased MMP-9 activation and decreased {beta}1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on {beta}1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and {beta}1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.

  6. Rabbit models of arthritis: immunolocalization of matrix metalloproteinases and tissue inhibitor of metalloproteinase in synovium and cartilage.

    PubMed Central

    Hembry, R. M.; Bagga, M. R.; Murphy, G.; Henderson, B.; Reynolds, J. J.

    1993-01-01

    The distribution of the matrix metalloproteinases, collagenase, stromelysin, gelatinases A and B, and the tissue inhibitor of metalloproteinases in cartilage and synovium removed from rabbits up to 27 days after induction of two models of arthritis was investigated by immunolocalization. Following intra-articular injection of poly-D-lysine/hyaluronic acid coacervate, collagenase and stromelysin were found bound to cartilage matrix, but there was little increase in chondrocyte synthesis of these enzymes. The synovium underwent a complex wound healing response involving invagination and encapsulation of the coacervate and inflammatory cell debris, during which all four metalloproteinases and tissue inhibitor of metalloproteinase could be immunolocalized. The second model, intra-articular injection of ovalbumin into sensitized rabbits, caused considerable chondrocyte necrosis; collagenase was found bound to cartilage matrix on day 13, although again there was little evidence of synthesis by chondrocytes. Inflammatory cell infiltration of meniscoid synovia took place initially, followed by fibrosis involving macrophagelike cells secreting gelatinase A. In both models there was rapid loss of glycosaminoglycan metachromasia from the cartilage matrix. These results are discussed in relation to current knowledge of metalloproteinase involvement in the chronic rheumatoid synovial pannus erosion of cartilage in humans. The data suggest that there are considerable differences between rheumatoid arthritis and these models, and their use must therefore be carefully defined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8342606

  7. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions.

  8. Systemic matrix metalloproteinase-8 response in chronic tonsillitis.

    PubMed

    Ilmarinen, Taru; Lont, Triin; Hagström, Jaana; Tervahartiala, Taina; Sorsa, Timo; Haglund, Caj; Munck-Wickland, Eva; Ramqvist, Torbjörn; Dalianis, Tina; Aaltonen, Leena-Maija

    2017-04-01

    The development of several life-long diseases, such as coronary heart disease, is affected by low-grade systemic inflammation. Data on the potential long-term health effects of chronic tonsillitis are limited. Many inflammatory conditions present with enhanced systemic matrix metalloproteinase (MMP)-8 response. In head and neck cancer, high plasma level of tissue inhibitor of metalloproteinase (TIMP)-1 predicts poor prognosis. We analyzed S-MMP-8 with immunofluorometric assay and S-TIMP-1 with an immunosorbent assay in 175 consecutive patients undergoing tonsillectomy for benign tonsillar disease, and in 33 control patients with tonsillar squamous cell carcinoma. Tonsillar human papillomavirus (HPV) status was determined by PCR. In patients with benign tonsillar disease, chronic tonsillitis without hypertrophy was associated with enhanced systemic MMP-8 response. Compared to patients with benign tonsillar disease, patients with tonsillar squamous cell carcinoma had significantly higher concentrations of S-MMP-8 and S-TIMP-1. Neither S-MMP-8 nor S-TIMP-1 correlated with tonsillar HPV positivity.

  9. Oxytocin prevents cartilage matrix destruction via regulating matrix metalloproteinases.

    PubMed

    Wu, Yixin; Wu, Tongyu; Xu, Binbin; Xu, Xiaoyan; Chen, Honggan; Li, Xiyao

    2017-05-06

    Degradation of the extracellular matrix type II Collagen (Col II) induced by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) is an important hallmark of Osteoarthritis (OA). Oxytocin (OT) is a well-known neurohypophysical hormone that is synthesized in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus. In this study, we have found that oxytocin receptor (OTR) was expressed in human primary chondrocytes, and the expression of which was reduced in chondrocytes from OA patients and in response to TNF-α treatment in a dose dependent manner. Notably, it was shown that TNF-α -induced degradation of Col II was restored by treatment with OT in a dose-dependent manner. In addition, TNF-α treatment (10 ng/mL) highly elevated the expression of MMP-1 and MMP-13 in SW1353 chondrocytes, which were reversed by OT in a dose dependent manner at both gene and protein expression levels. In addition, it was demonstrated that the JAK2/STAT1 pathway was involved in the restoration effects of OT in the degradation of Col II. Lastly, knockdown of OTR abolished the inhibitory effects of OT on the degradation of col II and the induction of MMP-1 and MMP-13 expression, suggesting the involvement of OTR. Our study implied the therapeutic potential of OT for cartilage degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.

    PubMed

    Choi, Jun Yong; Fuerst, Rita

    2017-01-01

    Structure-based virtual screening (SBVS) is a common method for the fast identification of hit structures at the beginning of a medicinal chemistry program in drug discovery. The SBVS, described in this manuscript, is focused on finding small molecule hits that can be further utilized as a starting point for the development of inhibitors of matrix metalloproteinase 13 (MMP-13) via structure-based molecular design. We intended to identify a set of structurally diverse hits, which occupy all subsites (S1'-S3', S2, and S3) centering the zinc containing binding site of MMP-13, by the virtual screening of a chemical library comprising more than ten million commercially available compounds. In total, 23 compounds were found as potential MMP-13 inhibitors using Glide docking followed by the analysis of the structural interaction fingerprints (SIFt) of the docked structures.

  11. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes.

    PubMed

    Chen, Wei-Ping; Xiong, Yan; Shi, Yong-Xiang; Hu, Peng-Fei; Bao, Jia-Peng; Wu, Li-Dong

    2014-03-01

    Astaxanthin is a red carotenoid pigment which exerts multiple biological activities. However, little is known about the effects of astaxanthin on matrix metalloproteinases (MMPs) in OA. The present study investigated the effects of astaxanthin on MMPs in human chondrocytes. Human chondrocytes were pretreated with astaxanthin at 1, 10 or 50μM, then, cells were stimulated with IL-1β (10ng/ml) for 24h. MMP-1, MMP-3 and MMP-13 were observed. We found that astaxanthin reduced the expression of MMP-1, MMP-3 and MMP-13 as well as the phosphorylation of two mitogen-activated protein kinases (MAPK) (p38 and ERK1/2) in IL-1β-stimulated chondrocytes. Astaxanthin also blocked the IκB-α degradation. These results suggest that astaxanthin may be beneficial in the treatment of OA. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  13. Venous aneurysm complicating arteriovenous fistula access and matrix metalloproteinases

    PubMed Central

    Serra, Raffaele; Butrico, Lucia; Grande, Raffaele; Placida, Girolamo Domenico; Rubino, Paolo; Settimio, Ugo Francesco; Quarto, Gennaro; Amato, Maurizio; Furino, Ermenegildo; Compagna, Rita; Amato, Bruno; Gallelli, Luca; de Franciscis, Stefano

    2015-01-01

    Introduction An arteriovenous fistula (AVF) for placed for hemodialysis may be burdened by one particular complication—the formation of a venous aneurysm. It has been shown that matrix metalloproteinases (MMPs) and neutrophil gelatinase-associated lipocalin (NGAL) could represent markers of disease in both venous and arterial vessels. Materials and methods This case study reports a rare case of enormous venous aneurysm-correlated MMP and NGAL levels in a woman with an AVF. Results Significantly higher levels of plasma MMP-1, MMP-8, MMP-9, and NGAL were detected in this patient during aneurysmal evaluation before the surgery; these levels significantly decreased 1, 3 and 6 months after surgery. Conclusion MMP and NGAL levels could represent a marker of aneurysmal disease, and their plasma evaluation could help physicians to stratify the risk of complications in patients with an AVF. PMID:28352747

  14. The history of matrix metalloproteinases: milestones, myths, and misperceptions

    PubMed Central

    Iyer, Rugmani Padmanabhan; Patterson, Nicolle L.; Fields, Gregg B.

    2012-01-01

    Since the discovery of tadpole collagenase in 1962, the matrix metalloproteinase (MMP) family has emerged as a significant proteinase group with recognized effects on the cardiovascular system. Over the last 40 years, many milestones have been achieved, from the identification of the first MMP, to the generation of the first MMP cDNA clone and null mouse, to the clinical approval of the first MMP inhibitor. Over the years, a few myths and misunderstandings have interwoven into the truths. In this review, we will discuss the major milestones of MMP research, as well as review the misinterpretations and misperceptions that have evolved. Clarifying the confusions and dispelling the myths will both provide a better understanding of MMP properties and functions and focus the cardiovascular field on the outstanding research questions that need to be addressed. PMID:22904159

  15. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life.

  16. A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy

    PubMed Central

    Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.Y.; Sun, L.

    2014-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy in humans and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy. PMID:25039784

  17. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective

    PubMed Central

    Small, Christopher D.; Crawford, Bryan D.

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology. PMID:27127457

  18. A role of matrix metalloproteinase-8 in atherosclerosis

    PubMed Central

    Laxton, Ross C.; Hu, Yanhua; Duchene, Johan; Zhang, Feng; Zhang, Zhongyi; Leung, Kit-Yi; Xiao, Qingzhong; Scotland, Ramona S.; Hodgkinson, Conrad P.; Smith, Katherine; Willeit, Johann; López-Otín, Carlos; Simpson, Iain A.; Kiechl, Stefan; Ahluwalia, Amrita; Xu, Qingbo; Ye, Shu

    2010-01-01

    Rationale Atherosclerotic lesions express matrix metalloproteinase-8 (MMP8) which possesses proteolytic activity on matrix proteins particularly fibrillar collagens and on non-matrix proteins such as angiotensin I (Ang I). Objective We studied whether MMP8 plays a role in atherogenesis. Methods and Results In atherosclerosis-prone apoE deficient mice, inactivating MMP8 resulted in a substantial reduction in atherosclerotic lesion formation. Immunohistochemical examinations showed that atherosclerotic lesions in MMP8 deficient mice had significantly fewer macrophages but increased collagen content. In line with results of in vitro assays showing Ang I cleavage by MMP8 generating angiotensin II (Ang II), MMP8 knockout mice had lower Ang II levels and lower blood pressure. In addition, we found that products of Ang I cleavage by MMP8 increased vascular cell adhesion molecule-1 (VCAM-1) expression and that MMP8 deficient mice had reduced VCAM-1 expression in atherosclerotic lesions. Intravital microscopy analysis showed that leukocyte rolling and adhesion on vascular endothelium was reduced in MMP8 knockout mice. Furthermore, we detected an association between MMP8 gene variation and extent of coronary atherosclerosis in patients with coronary artery disease. A relationship between MMP8 gene variation, plasma VCAM-1 level and atherosclerosis progression was also observed in a population-based, prospective study. Conclusion These results indicate that MMP8 is an important player in atherosclerosis. PMID:19745165

  19. Immunocharacterization of matrix metalloproteinase-2 and matrix metalloproteinase-9 in canine transmissible venereal tumors.

    PubMed

    Akkoc, A; Nak, D; Demirer, A; Şimşek, G

    2017-01-01

    Matrix metalloproteases (MMPs) are endogenous proteases that are responsible for degradation of extracellular matrix (ECM) proteins and cell surface antigens. The breakdown of ECM participates in the local invasion and distant metastases of malignant tumors. Canine transmissible venereal tumor (CTVT) is a naturally occurring contagious round cell neoplasm of dogs that affects mainly the external genitalia of both sexes. CTVT generally is a locally invasive tumor, but distant metastases also are common in puppies and immunocompromised dogs. We investigated the immune expressions and activities of MMP-2 and MMP-9 in CTVT. The presence of these enzymes in tumor cells and tissue homogenates was demonstrated by immunohistochemistry and western blotting. We used gelatin substrate zymography to evaluate the activities of MMP-2 and MMP-9 enzymes in tumor homogenates. We found that tumor cells expressed both MMP-2 and MMP-9. Electrophoretic bands corresponding to MMP-9 and MMP-2 were identified in immunoblots and clear bands that corresponded to the active forms of MMP-2 and MMP-9 also were detected in gelatin zymograms. Our study is the first detailed documentation of MMPs in CTVT.

  20. The role of matrix metalloproteinases in recurrent tonsillitis.

    PubMed

    Acioglu, Engin; Yigit, Ozgür; Alkan, Zeynep; Server, Ela Araz; Uzun, Hafize; Gelisgen, Ramisa

    2010-05-01

    The aim of this study was to investigate the status of matrix metalloproteinases (MMP-2, MMP-7, MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) due to dysregulated turnover of connective tissue matrices in children with recurrent tonsillitis (RT). Forty-four patients with RT were enrolled in the study. All patients with RT were graded according to the hypertrophy degree of the tonsillar tissue from grade I to grade IV. Patients with grade I tonsillar hypertrophy and grade II tonsillar hypertrophy were accepted as group A, patients with grade III tonsillar hypertrophy and grade IV tonsillar hypertrophy were accepted as group B Tonsillectomy was performed via the usual dissection-snare method. Tonsillar specimens of superficial and core region were evaluated for MMP-2, MMP-7, MMP-9 and TIMP-1 analysis. There was no statistical significance according to the MMP-2, MMP-7, MMP-9 and TIMP-1 activity of superficial part and core regions in both groups individually, MMP-9 level of both the superficial and core regions in group B had statistical significant higher results than group A (p=0.026, p=0.06 respectively). MMP-7 level of the superficial part in group B patients also had statistical significant higher results than group A (p=0.025). However, there was no statistical difference found between superficial and core region MMP-2 and TIMP-1 levels of group A and group B. Related to this, balance between MMP-7-9 and TIMP-1 activities tended to slip MMP-7 and MMP-9 sides with increased tonsillar grade. Results from this study suggest that the presence of MMPs in tonsil tissue consolidates the involvement of degraded extracellular matrix proteins in the pathophysiology of chronic tonsillitis. MMPs activity showed diffuse dissemination in the tonsillar tissue and especially MMP-9 and MMP-7 are the main promoters of the extracellular matrix that responded to inflammatory changes in the tonsillar tissue. Further studies are needed concerning the possible

  1. Expression of matrix metalloproteinase and its tissue inhibitor in haemangioma.

    PubMed

    Zhong, Shan; Yang, Guohua; Xia, Cong; Duanlian, Zhang; Shan, Shengguo

    2009-10-01

    The action mechanism of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in the genesis, development and degeneration of haemangioma was investigated by detecting their expression in the tissue of haemangioma in different phases by using the immunohistochemistry. Fifty paraffin-embedded specimens of skin capillary haemangioma were collected, which were documented in the Department of Pathology, Renmin Hospital of Wuhan University from 2000 to 2006. All samples were stained by regular HE method, and proliferative cell nuclear antigen (PCNA) was tested by immunohistochemical S-P method. The samples were classified according to the Mulliken criteria and the expression pattern of PCNA. Immunohistochemical S-P method was applied to detect the expression of MMP-2 and TIMP-2 in proliferative and degenerative phases of cutaneous capillary haemangioma, and in normal skin tissues. In combination with the detection of the expression of factor VIII-related antigen, it was verified that in haemangioma tissues, the cells expressing MMP-2 and TIMP-2 were vascular endothelial cells. The MMP-2 and TIMP-2 expression was quantitatively analyzed by image analysis system (HPIAS-1000), and one-way ANOVA(107) and SNK(q) test were done to analyze average absorbance (A) and positive area rate of immunohistochemically positive particles by using SPSS11.5. The results showed: (1) Among 50 samples of haemangioma, there were 26 proliferative haemangiomas, and 24 degenerative haemangiomas, respectively; (2) The expression of MMP-2 was weak in normal vascular endothelial cells, cytoplasm of connective tissues and extracellular matrix around blood vessels. The expression of MMP-2 in proliferative group was significantly higher than in degenerative group and control group (normal skin) (P<0.05), but there was no statistically significant difference between the latter two groups; (3) TIMP-2 was highly expressed in normal tissues, degenerative vascular

  2. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process.

  3. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  4. Plasma levels of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 correlate with disease stage and survival in colorectal cancer patients.

    PubMed

    Waas, Erwin T; Hendriks, Thijs; Lomme, Roger M L M; Wobbes, Theo

    2005-04-01

    The matrix metalloproteinases and their inhibitors are known to be involved in the process of tumor invasion and progression. Our objective was to investigate the potential diagnostic and prognostic value of plasma matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 in colorectal cancer. Gelatinase bioactivity and immunoreactivity of pro-matrix metalloproteinase-2 and -9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen were determined simultaneously in preoperative plasma and serum of colorectal cancer patients (n = 94) and in healthy controls (n = 51). Plasma pro-matrix metalloproteinase-2 levels were lower in colorectal cancer patients (P < 0.0001) than in controls, and its gelatinolytic activity revealed an inverse correlation with adverse clinicopathologic parameters, such as lymph node involvement (P = 0.017), stage (0, I, II vs. III, IV; P = 0.012), and the carcinoembryonic antigen level (P = 0.016). Pro-matrix metalloproteinase-9 levels did not differ between patients and controls. Pro-matrix metalloproteinase-2 gelatinolytic activity showed potential value in colorectal cancer diagnosis, identifying patients with 70 percent sensitivity at 95 percent specificity. Pro-matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen all showed lower sensitivities. Combining pro-matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 measurements increased the sensitivity significantly to 84 percent. With respect to prognosis, tissue inhibitor of metalloproteinase-1 showed value in predicting disease outcome in our patient group, whereas pro-matrix metalloproteinase-2 and -9 did not. The combination of tissue inhibitor of metalloproteinase-1 and carcinoembryonic antigen was better in predicting three-year survival than tissue inhibitor of metalloproteinase-1 alone, but it remains to be determined if the combination would be a better marker for survival than

  5. Matrix metalloproteinase-1 contribution to sarcoma cell invasion

    PubMed Central

    Garamszegi, Nandor; Garamszegi, Susanna P; Scully, Sean P

    2012-01-01

    Abstract Matrix metalloproteinase-1 (MMP-1) activity has been linked to numerous disease processes from arthritis to ulcer. Its proteolytic activity has been implicated inconsistently in different steps of tumourigenesis and metastasis. The discrepancies may be attributable to our limited understanding of MMP-1 production, cellular trafficking, secretion and local activation. Specifically, regulation of MMP-1 directional delivery versus its general extracellular matrix secretion is largely unknown. Inhibition of prenylation by farnesyl transferase inhibitor (FTI-276) decreased extracellular MMP-1 and subsequently reduced invasiveness by 30%. Parallel, stable cell line RNAi knockdown of MMP-1 confirmed its role in cellular invasiveness. The prenylation agonist farnesyl pyrophosphate (FPP) partially normalized FTI-276 inhibited extracellular MMP-1 levels and invasion capacity while transiently delayed its cellular podia distribution. MMP-1 directional delivery to these structures were confirmed by combination of a MMP-1–specific fluorogenic substrate, a MMP1-Ds-Red fusion protein construct expression and DQ-collagen degradation, which demonstrated coupling of directional delivery and activation. MetaMorph analysis of cellular lamellipodia structures indicated that FTI-276 inhibited formation and delivery to these structures. Farnesyl pyrophosphate partially restored lamellipodia area but not MMP-1 delivery under the time frame investigated. These results indicate that MMP-1 directional delivery to podia structures is involved in the invasive activity of sarcoma cells, and this process is prenylation sensitive. PMID:21801306

  6. Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy

    PubMed Central

    Ogura, Yuji; Tajrishi, Marjan M.; Sato, Shuichi; Hindi, Sajedah M.; Kumar, Ashok

    2014-01-01

    Matrix metalloproteinases (MMPs) are secreted proteinases that have physiologic roles in degradation and remodeling of extracellular matrix (ECM) in almost all tissues. However, their excessive production in disease conditions leads to many pathological features including tissue breakdown, inflammation, cell death, and fibrosis. Duchenne Muscular dystrophy (DMD) is a devastating genetic muscle disorder caused by partial or complete loss of cytoskeletal protein dystrophin. Progressive muscle wasting in DMD is accompanied by myofiber necrosis followed by cycles of regeneration and degeneration and inflammation that eventually result in replacement of myofiber by connective and adipose tissues. Emerging evidence suggests that gene expression and the activity of various MMPs are aberrantly regulated in muscle biopsies from DMD patients and in skeletal muscle of animal models of DMD. Moreover, a few studies employing genetic mouse models have revealed that different MMPs play distinct roles in disease progression in DMD. Modulation of the activity of MMPs improves myofiber regeneration and enhances the efficacy of transplantation and engraftment of muscle progenitor cells in dystrophic muscle in mouse models of DMD. Furthermore, recent reports also suggest that some MMPs especially MMP-9 can serve as a biomarker for diagnosis and prognosis of DMD. In this article, we provide a succinct overview of the regulation of various MMPs and their therapeutic importance in DMD. PMID:25364719

  7. Missense polymorphisms in matrix metalloproteinase genes and skin cancer risk.

    PubMed

    Nan, Hongmei; Niu, Tianhua; Hunter, David J; Han, Jiali

    2008-12-01

    Matrix metalloproteinases (MMP) degrade various components of the extracellular matrix, and their overexpression has been implicated in tumor progression. Nonsynonymous single nucleotide polymorphisms (SNPs) lead to amino acid substitutions that can alter the function of the encoded protein. We evaluated the associations of six nonsynonymous SNPs in the MMP3, MMP8, and MMP9 genes with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 normal controls. We observed that the MMP9 Arg668Gln polymorphism was significantly associated with a decreased risk of SCC. Compared with the Arg/Arg group, the multivariate odds ratio was 0.67 (95% confidence interval, 0.47-0.97) for the Arg/Gln group and 0.21 (95% confidence interval, 0.05-0.97) for the Gln/Gln group (P(trend) = 0.004). We did not observe any association of this SNP with the risks of melanoma and basal cell carcinoma. No associations were found for other SNPs with skin cancer risk. This study provides evidence for the contribution of the MMP9 Arg668Gln to SCC development.

  8. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid

    PubMed Central

    Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H.

    2011-01-01

    Introduction Endogenous dentin matrix metalloproteinases (MMPs) contribute to extracellular collagen matrix degradation in hybrid layers following adhesive dentin bonding procedures. Endodontic irrigants, including chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) may help protect the hybrid layer from this process. The objective of the present study was to determine the exposure time necessary for EDTA to inactivate endogenous MMP activity in human dentin. Methods Dentin beams (2×1×3 mm) were prepared from mid-coronal dentin of extracted third molars. The beams were demineralized in 10 wt% phosphoric acid which also activated endogenous MMPs, and were divided into four experimental groups based on exposure time to 17% EDTA (0, 1, 2 or 5 min). A generic colorimetric MMP assay measured MMP activity via absorbance at 412 nm. Data were evaluated by Kruskal Wallis ANOVA, followed by Dunn’s pair-wise comparisons at α = 0.05. Results All exposure times resulted in significant inhibition (P<0.001) compared to unexposed controls. Specifically, percent inhibition for 1-, 2-, and 5-minute exposure times were 55.1±21.5%, 72.8±11.7%, and 74.7±19.7%, respectively. Conclusions 17% EDTA significantly inhibits endogenous MMP activity of human dentin within 1–2 min. This may minimize hybrid layer degradation following resin bonding procedures in the root canal space. PMID:22152622

  9. Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy.

    PubMed

    Ogura, Yuji; Tajrishi, Marjan M; Sato, Shuichi; Hindi, Sajedah M; Kumar, Ashok

    2014-01-01

    Matrix metalloproteinases (MMPs) are secreted proteinases that have physiologic roles in degradation and remodeling of extracellular matrix (ECM) in almost all tissues. However, their excessive production in disease conditions leads to many pathological features including tissue breakdown, inflammation, cell death, and fibrosis. Duchenne Muscular dystrophy (DMD) is a devastating genetic muscle disorder caused by partial or complete loss of cytoskeletal protein dystrophin. Progressive muscle wasting in DMD is accompanied by myofiber necrosis followed by cycles of regeneration and degeneration and inflammation that eventually result in replacement of myofiber by connective and adipose tissues. Emerging evidence suggests that gene expression and the activity of various MMPs are aberrantly regulated in muscle biopsies from DMD patients and in skeletal muscle of animal models of DMD. Moreover, a few studies employing genetic mouse models have revealed that different MMPs play distinct roles in disease progression in DMD. Modulation of the activity of MMPs improves myofiber regeneration and enhances the efficacy of transplantation and engraftment of muscle progenitor cells in dystrophic muscle in mouse models of DMD. Furthermore, recent reports also suggest that some MMPs especially MMP-9 can serve as a biomarker for diagnosis and prognosis of DMD. In this article, we provide a succinct overview of the regulation of various MMPs and their therapeutic importance in DMD.

  10. High matrix metalloproteinase activity is a hallmark of periapical granulomas.

    PubMed

    de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-09-01

    The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.

  11. Placental matrix metalloproteinase--1 expression is increased in labor.

    PubMed

    Vu, Thanh-Danae; Yun Feng; Placido, Jessica; Reznik, Sandra E

    2008-04-01

    Matrix metalloproteinases (MMPs) are now known to process a broad spectrum of cell surface molecules and to function in several important biological processes. Testing for differences in gene expression in human placental chorionic villi in the absence or presence of labor, using cDNA microarray analysis, revealed that labor was associated with increased expression of MMP-1 gene expression in 5 placentas collected after term normal spontaneous deliveries compared with 5 placentas collected after term nonlaboring cesarean deliveries. Fibronectin 1 and collagen XVII, 2 other proteins involved in the homeostasis of the extracellular matrix, were also found to be upregulated in labor. MMP-1 was further tested in individual samples and found to be consistently overexpressed in labor. While previous microarray analyses have focused on either uterine tissue or the fetal membranes, the data presented here indicate for the first time that placental chorionic villus genes are likely to affect the initiation of parturition through altered processing of cell surface molecules by MMP-1.

  12. Degradation of basement membranes by human matrix metalloproteinase 3 (stromelysin).

    PubMed Central

    Bejarano, P A; Noelken, M E; Suzuki, K; Hudson, B G; Nagase, H

    1988-01-01

    Connective tissue cells synthesize and secrete a group of matrix metalloproteinases (MMPs), all of which are capable of degrading the extracellular-matrix components. One of them, MMP-3 (stromelysin) has been shown to degrade purified basement-membrane components, collagen IV and laminin [Okada, Y., Nagase, H. & Harris, E. D., Jr. (1986) J. Biol. Chem. 261, 14245-14255]. Here we report that MMP-3 degrades collagen IV and laminin in intact basement membranes from bovine glomeruli (GBM) and bovine anterior-lens capsules (LBM). Degradation products were analysed by SDS/polyacrylamide-gel electrophoresis to determine the number and sizes of polypeptide fragments. Immunoblotting techniques were used to identify the origins of the fragments, i.e. collagen IV or laminin. The fragments of collagen IV were further mapped using specific antibodies that recognize the N-terminal (7 S) domain, the C-terminal (NC-1) domain, or the major triple-helical region between the terminal domains. Degradation of collagen IV was extensive; many fragments were found, from both GBM and LBM, in the Mr range 25,000-380,000. A large fragment of laminin (Mr greater than 380,000) was found in the GBM digests without reduction, but it dissociated into 220,000-Mr chains upon reduction. The results suggest that MMP-3 plays an important role in the catabolism of basement membranes. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3223920

  13. Matrix metalloproteinases with gelatinolytic activity induced by Paracoccidioides brasiliensis infection

    PubMed Central

    Nishikaku, Angela Satie; Ribeiro, Luciana Cristina; Molina, Raphael Fagnani Sanchez; Albe, Bernardo Paulo; Cunha, Cláudia da Silva; Burger, Eva

    2009-01-01

    Matrix metalloproteinases (MMPs) modulate extracellular matrix turnover, inflammation and immunity. We studied MMP-9 and MMP-2 in experimental paracoccidioidomycosis. At 15 and 120 days after infection (DAI) with virulent Paracoccidioides brasiliensis, MMP-9 was positive by immunohistochemistry in multinucleated giant cells, in mononuclear cells with macrophage and lymphocyte morphologies and also in fungal cells in the lesions of susceptible and resistant mice. Using gelatin zymography, pro- and active MMP-9 and active MMP-2 were detected in all infected mice, but not in controls. Gelatinolytic activity was not observed in P. brasiliensis extracts. Semiquantitative analysis of gelatinolytic activities revealed weak or absent MMP-2 and strong MMP-9 activity in both mouse strains at 15 DAI, declining at 120 DAI. Avirulent P. brasiliensis-infected mice had residual lesions with MMP-9-positive pseudoxantomatous macrophages, but no gelatinase activity at 120 DAI. Our findings demonstrate the induction of MMPs, particularly MMP-9, in experimental paracoccidioidomycosis, suggesting a possible influence in the pattern of granulomas and in fungal dissemination. PMID:19765107

  14. Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted

    PubMed Central

    GREENLEE, KENDRA J.; WERB, ZENA; KHERADMAND, FARRAH

    2009-01-01

    The matrix metalloproteinases (MMPs), a family of 25 secreted and cell surface-bound neutral proteinases, process a large array of extracellular and cell surface proteins under normal and pathological conditions. MMPs play critical roles in lung organogenesis, but their expression, for the most part, is downregulated after generation of the alveoli. Our knowledge about the resurgence of the MMPs that occurs in most inflammatory diseases of the lung is rapidly expanding. Although not all members of the MMP family are found within the lung tissue, many are upregulated during the acute and chronic phases of these diseases. Furthermore, potential MMP targets in the lung include all structural proteins in the extracellular matrix (ECM), cell adhesion molecules, growth factors, cytokines, and chemokines. However, what is less known is the role of MMP proteolysis in modulating the function of these substrates in vivo. Because of their multiplicity and substantial substrate overlap, MMPs are thought to have redundant functions. However, as we explore in this review, such redundancy most likely evolved as a necessary compensatory mechanism given the critical regulatory importance of MMPs. While inhibition of MMPs has been proposed as a therapeutic option in a variety of inflammatory lung conditions, a complete understanding of the biology of these complex enzymes is needed before we can reasonably consider them as therapeutic targets. PMID:17237343

  15. Immunohistochemical expression of matrix metalloproteinase 13 in chronic periodontitis.

    PubMed

    Nagasupriya, Alapati; Rao, Donimukkala Bheemalingeswara; Ravikanth, Manyam; Kumar, Nalabolu Govind; Ramachandran, Cinnamanoor Rajmani; Saraswathi, Thillai Rajashekaran

    2014-01-01

    The extracellular matrix is a complex integrated system responsible for the physiologic properties of connective tissue. Collagen is the major extracellular component that is altered in pathologic conditions, mainly periodontitis. The destruction involves proteolytic enzymes, primarily matrix metalloproteinases (MMPs), which play a key role in mediating and regulating the connective tissue destruction in periodontitis. The study group included 40 patients with clinically diagnosed chronic periodontitis. The control group included 20 patients with clinically normal gingiva covering impacted third molars undergoing extraction or in areas where crown-lengthening procedures were performed. MMP-13 expression was demonstrated using immunohistochemistry in all the gingival biopsies, and the data were analyzed statistically. MMP-13 expression was observed more in chronic periodontitis when compared with normal gingiva. MMP-13 expression was expressed by fibroblasts, lymphocytes, macrophages, plasma cells, and basal cells of the sulcular epithelium. Comparative evaluation of all the clinical and histologic parameters with MMP-13 expression showed high statistical significance with Spearman correlation coefficient. Elevated levels of MMP-13 may play a role in the pathogenesis of chronic periodontitis. There is a direct correlation of increased expression of MMP-13 with various clinical and histologic parameters in disease severity.

  16. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis.

    PubMed

    You, Yiwen; Shan, Ying; Chen, Jing; Yue, Huijun; You, Bo; Shi, Si; Li, Xingyu; Cao, Xiaolei

    2015-12-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is known about the potential role of MMP13-containing exosomes in NPC. In this study, we found that MMP13 was overexpressed in NPC cells and exosomes purified from conditioned medium (CM) as well as NPC patients' plasma. Transwell analysis revealed that MMP13-containing exosomes facilitated the metastasis of NPC cells. Furthermore, siRNA inhibited the effect of MMP13-containing exosomes on tumor cells metastasis as well as angiogenesis. The current findings provided novel insight into the vital role of MMP13-containing exosomes in NPC progression which might offer unique insights for potential therapeutic strategies for NPC progressions.

  17. Expression of Matrix Metalloproteinases in Human Breast Cancer Tissues

    PubMed Central

    Benson, Chellakkan Selvanesan; Babu, Somasundaram Dinesh; Radhakrishna, Selvi; Selvamurugan, Nagarajan; Sankar, Bhaskaran Ravi

    2013-01-01

    BACKGROUND: Breast cancer is the most common cancer affecting women in the world today. Matrix metalloproteinases (MMPs) are a family of endopeptidases that can degrade extracellular matrix proteins and promote cell invasion and metastasis. MMPs are differentially expressed and their expressions are often associated with a poor prognosis for patients. OBJECTIVE: The aim of this study is to investigate and compare the expression of MMPs in different grades of human breast cancer tissues with normal breast tissues. PATIENTS AND METHODS: We collected 39 breast cancer samples (24 grade II and 15 grade III) along with 16 normal breast tissues from outside the tumor margin during cancer removal surgery. The samples were analysed for the expression of all known MMPs using real-time quantitative PCR. RESULTS: The results indicate that mRNA expressions of MMP-1, -9,-11,-15,-24 and -25 were upregulated in breast cancer tissues when compared to normal breast tissues. But, the mRNA expressions of MMP-10 and MMP-19 were downregulated in cancer tissue. In membrane associated MMPs like MMP-15 and MMP-24 we found a grade dependent increase of their mRNA expression. CONCLUSION: Our studies demonstrate that MMPs are differentially regulated in breast cancer tissues and they might play various roles in tumor invasion, metastasis and angiogenesis. Thus, MMPs are of immense value to be studied as diagnostic markers and drug target. PMID:23568046

  18. Nestin depletion induces melanoma matrix metalloproteinases and invasion

    PubMed Central

    Lee, Chung-Wei; Zhan, Qian; Lezcano, Cecilia; Frank, Markus H.; Huang, John; Larson, Allison; Lin, Jennifer Y.; Wan, Marilyn T.; Lin, Ping-I; Ma, Jie; Kleffel, Sonja; Schatton, Tobias; Lian, Christine G.; Murphy, George F.

    2015-01-01

    Matrix metalloproteinases (MMPs) are key biological mediators of processes as diverse as wound healing, embryogenesis, and cancer progression. Although MMPs may be induced through multiple signaling pathways, the precise mechanisms for their regulation in cancer are incompletely understood. Because cytoskeletal changes are known to accompany MMP expression, we sought to examine the potential role of the poorly understood cytoskeletal protein, nestin, in modulating melanoma MMPs. Nestin knockdown (KD) upregulated expression of specific MMPs and MMP-dependent invasion both through extracellular matrix barriers in vitro and in peritumoral connective tissue of xenografts in vivo. Development of 3-dimensionsal melanospheres that in vitro partially recapitulate non-invasive tumorigenic melanoma growth was inhibited by nestin KD, although ECM invasion by aberrant melanospheres that did form was enhanced. Mechanistically, nestin KD-dependent melanoma invasion was associated with intracellular redistribution of phosphorylated focal adhesion kinase (pFAK) and increased melanoma cell responsiveness to transforming growth factor-beta (TGF-β), both implicated in pathways of melanoma invasion. The results suggest that the heretofore poorly understood intermediate filament, nestin, may serve as a novel mediator of MMPs critical to melanoma virulence. PMID:25365206

  19. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis

    PubMed Central

    Pittayapruek, Pavida; Meephansan, Jitlada; Prapapan, Ornicha; Komine, Mayumi; Ohtsuki, Mamitaro

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions. PMID:27271600

  20. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  1. The matrix metalloproteinases 2 and 9 initiate uraemic vascular calcifications.

    PubMed

    Hecht, Eva; Freise, Christian; Websky, Karoline V; Nasser, Hamoud; Kretzschmar, Nadja; Stawowy, Philipp; Hocher, Berthold; Querfeld, Uwe

    2016-05-01

    The matrix metalloproteinases (MMP) MMP-2 and MMP-9 are physiological regulators of vascular remodelling. Their dysregulation could contribute to vascular calcification. We examined the role of the MMP-2 and MMP-9 in uraemic vascular calcification in vivo and in vitro. The impact of pharmacological MMP inhibition on the development of media calcifications was explored in an aggressive animal model of uraemic calcification. In addition, the selective effects of addition and inhibition, respectively, of MMP-2 and MMP-9 on calcium-/phosphate-induced calcifications were studied in a murine cell line of vascular smooth muscle cells (VSMCs). High-dose calcitriol treatment of uraemic rats given a high phosphate diet induced massive calcifications, apoptosis and increased gene expressions of MMP-2, MMP-9 and of osteogenic transcription factors and proteins in aortic VSMC. The MMP inhibitor doxycycline prevented the VSMC transdifferentiation to osteoblastic cells, suppressed transcription of mediators of matrix remodelling and almost completely blocked aortic calcifications while further increasing apoptosis. Similarly, specific inhibitors of either MMP-2 or -9, or of both gelatinases (Ro28-2653) and a selective knockdown of MMP-2/-9 mRNA expression blocked calcification of murine VSMC induced by calcification medium (CM). In contrast to MMP inhibition, recombinant MMP-2 or MMP-9 enhanced CM-induced calcifications and the secretion of gelatinases. These data indicate that both gelatinases provide essential signals for phenotypic VSMC conversion, matrix remodelling and the initiation of vascular calcification. Their inhibition seems a promising strategy in the prevention of vascular calcifications. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  2. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.

    PubMed

    Paiva, Katiucia Batista Silva; Granjeiro, José Mauro

    2014-11-01

    Bone-forming cells originate from distinct embryological layers, mesoderm (axial and appendicular bones) and ectoderm (precursor of neural crest cells, which mainly form facial bones). These cells will develop bones by two principal mechanisms: intramembranous and endochondral ossification. In both cases, condensation of multipotent mesenchymal cells occurs, at the site of the future bone, which differentiate into bone and cartilage-forming cells. During long bone development, an initial cartilaginous template is formed and replaced by bone in a coordinated and refined program involving chondrocyte proliferation and maturation, vascular invasion, recruitment of adult stem cells and intense remodeling of cartilage and bone matrix. Matrix metalloproteinases (MMPs) are the most important enzymes for cleaving structural components of the extracellular matrix (ECM), as well as other non-ECM molecules in the ECM space, pericellular perimeter and intracellularly. Thus, the bioactive molecules generated act on several biological events, such as development, tissue remodeling and homeostasis. Since the discovery of collagenase in bone cells, more than half of the MMP members have been detected in bone tissues under both physiological and pathological conditions. Pivotal functions of MMPs during development and bone regeneration have been revealed by knockout mouse models, such as chondrocyte proliferation and differentiation, osteoclast recruitment and function, bone modeling, coupling of bone resorption and formation (bone remodeling), osteoblast recruitment and survival, angiogenesis, osteocyte viability and function (biomechanical properties); as such alterations in MMP function may alter bone quality. In this review, we look at the principal properties of MMPs and their inhibitors (TIMPs and RECK), provide an up-date on their known functions in bone development and remodeling and discuss their potential application to Bone Bioengineering. Copyright © 2014 Elsevier Inc

  3. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin.

    PubMed Central

    Marchenko, G N; Ratnikov, B I; Rozanov, D V; Godzik, A; Deryugina, E I; Strongin, A Y

    2001-01-01

    Identification of expanding roles for matrix metalloproteinases (MMPs) in complex regulatory processes of tissue remodelling has stimulated the search for genes encoding proteinases with unique functions, regulation and expression patterns. By using a novel cloning strategy, we identified three previously unknown human MMPs, i.e. MMP-21, MMP-26 and MMP-28, in comprehensive gene libraries. The present study is focused on the gene and the protein of a novel MMP, MMP-26. Our findings show that MMP-26 is specifically expressed in cancer cells of epithelial origin, including carcinomas of lung, prostate and breast. Several unique structural and regulatory features, including an unusual 'cysteine-switch' motif, discriminate broad-spectrum MMP-26 from most other MMPs. MMP-26 efficiently cleaves fibrinogen and extracellular matrix proteins, including fibronectin, vitronectin and denatured collagen. Protein sequence, minimal modular domain structure, exon-intron mapping and computer modelling demonstrate similarity between MMP-26 and MMP-7 (matrilysin). However, substrate specificity and transcriptional regulation, as well as the functional role of MMP-26 and MMP-7 in cancer, are likely to be distinct. Despite these differences, matrilysin-2 may be a suitable trivial name for MMP-26. Our observations suggest an important specific function for MMP-26 in tumour progression and angiogenesis, and confirm and extend the recent findings of other authors [Park, Ni, Gerkema, Liu, Belozerov and Sang (2000) J. Biol. Chem. 275, 20540--20544; Uría and López-Otín (2000) Cancer Res. 60, 4745--4751; de Coignac, Elson, Delneste, Magistrelli, Jeannin, Aubry, Berthier, Schmitt, Bonnefoy and Gauchat (2000) Eur. J. Biochem. 267, 3323--3329]. PMID:11389678

  4. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with different types of scars and keloids.

    PubMed

    Ulrich, Dietmar; Ulrich, Franziska; Unglaub, Frank; Piatkowski, Andrzej; Pallua, Norbert

    2010-06-01

    Hypertrophic scars and keloids are fibroproliferative skin disorders characterised by progressive deposition of collagen. Our study is designed to investigate the expression and concentration of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in different types of scars and keloids. Total RNA from 19 proliferative hypertrophic scar samples of patients with extended burns (total body surface area (TBSA): 21+/-12%), 18 mature hypertrophic scar samples from patients after elective surgery, 14 keloid samples and 18 normotrophic scar samples was, respectively, extracted, and then mRNA was isolated. Besides, biopsies were obtained from non-scarred skin of the patients and extraction of total RNA performed. Relative mRNA expression of MMP 2, MMP 9, TIMP 1 and TIMP 2 was measured with reverse transcriptase polymerase chain reaction (RT-PCR). Serum concentrations of MMP-1, -2, -9, TIMP-1, and -2 were determined using an enzyme-linked immunosorbent assay (ELISA). Patients with extended hypertrophic scars after burn trauma presented a significantly higher TIMP-1 concentration (p<0.05) in their sera than the other patients. The relative expression of MMP 2 was significantly higher in samples of proliferative hypertrophic scars after burn injury. The relative expression of TIMP 1 and TIMP 2 was significantly higher in scar tissue of patients with proliferative and mature hypertrophic scars and keloids than in their regular skin and in scar samples of patients with normotrophic scars. The expression of TIMP 1 was significantly higher in samples of patients with keloids than in patients with hypertrophic scars. The concentration of TIMP-1 in sera of patients varies depending on the size of the involved fibrotic scar tissue. A decrease in MMP-to-TIMP expression in scar tissue may contribute to increased synthesis and deposition of collagen, leading to a severe fibrotic reaction with pathologic scar formation. The results implicate non

  5. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  6. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration

    PubMed Central

    Orgaz, Jose L.; Pandya, Pahini; Viros, Amaya; Albrengues, Jean; Nestle, Frank O.; Ridley, Anne J.; Gaggioli, Cedric; Marais, Richard; Karagiannis, Sophia N.; Sanz-Moreno, Victoria

    2014-01-01

    Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion. PMID:24963846

  7. Joint diseases and matrix metalloproteinases: a role for MMP-13.

    PubMed

    Takaishi, Hironari; Kimura, Tokuhiro; Dalal, Seema; Okada, Yasunori; D'Armiento, Jeanine

    2008-02-01

    The role of matrix metalloproteinases in disease has been investigated over the last two decades. A focus on this family of proteases is particularly emphasized in two major arthritides in humans, osteoarthritis and rheumatoid arthritis. Early work described the presence of multiple MMP family members in the joint of the disease state and recent advances in the development of new knockout mice and disease models have allowed investigators to directly test the role of the MMP proteases in arthritis. MMP-13 is expressed by chondrocytes and synovial cells in human OA and RA and is thought to play a critical role in cartilage destruction. The recent development of an MMP-13 knockout mouse has documented the important role for this enzyme in cartilage formation and further studies under disease conditions promise to reveal the function of this enzyme in disease pathology. This review describes a body of research that supports the development of novel selective MMP-13 inhibitors with the hope of developing these compounds in clinical trials for the treatment of arthritis.

  8. The role of inflammation and matrix metalloproteinases in equine endometriosis

    PubMed Central

    Benali, Silvia; Giannuzzi, Diana; Mantovani, Roberto; Castagnaro, Massimo; Falomo, Maria Elena

    2012-01-01

    Equine endometriosis is a multifactorial disease considered to be a major cause of equine infertility. The purpose of this study was to evaluate the reliability of histomorphological grading for biopsy-like samples compared to entire uterine wall samples, to examine the association between the degree of endometriosis with animal age, and to investigate the role of inflammation in endometriosis and the expression of different matrix metalloproteinases in equine endometrium. Histomorphological lesions in 35 uterine samples were examined while comparing biopsy-like samples and entire-wall samples. Seventeen uterine samples were stained with antibodies against MMP-2, MMP-9, MMP-14, and TIMP-2. The morphologic evaluation results of the biopsy-like tissue and entire-wall samples were significantly correlated. Endometriosis in older mares (>12 years of age) was more severe than in young mares (2~4 years of age), confirming the positive correlation between animal age and disease severity, while inflammation was poorly related to the degree of endometriosis. MMP-2 and MMP-14 were detected in stromal cells, while MMP-9 and TIMP-2 were both found in stromal and glandular epithelial cells. There were no significant differences in MMPs expression between the two groups (young vs. old mares). Additional studies on the activity of MMPs could further define the role of these enzymes in equine endometriosis. PMID:22705739

  9. Two matrix metalloproteinases inhibitors from Ferula persica var. persica.

    PubMed

    Shahverdi, A R; Saadat, F; Khorramizadeh, M R; Iranshahi, M; Khoshayand, M R

    2006-11-01

    Matrix metalloproteinases (MMPs) play a role in several physiologic and pathologic events. There is some evidence indicating the involvement of MMPs in tumor invasion and inflammatory diseases. Here we studied the chloroform extract of Ferula persica var. persica. The influence of these extracts vs. a reference drug, diclofenac sodium, on MMP production by the fibrosarcoma cell line was investigated using an in vitro cytotoxicity assay, sodium dodecyl sulfate-polyacrylamide, and gelatin zymography. The total extract of the roots was found to exhibit a selective inhibitory effect on tumor cell invasion. The bioactivity-guided fractionation of this extract led to the isolation of two compounds. These compounds showed highest MMP inhibitory effect at minimal toxic dose levels. Using conventional spectroscopy methods, the active fractions were identified as t-butyl 3-[(1-methylthiopropyl)dithio]-2-propenyl malonate (persicasulphide B) and umbelliprenin, previously isolated from F. persica var. latisecta. Since inhibition of MMP activity has been employed in modality therapy in diseases such as cancer, this compound might be promising in the preparation of anti-MMP therapeutic derivatives.

  10. Role of matrix metalloproteinases in radicular cysts and periapical granulomas.

    PubMed

    D'addazio, G; Artese, L; Piccirilli, M; Perfetti, G

    2014-01-01

    The aim of the present study was to evaluate the expression and distribution of different classes of matrix metalloproteinases (MMPs) in radicular cysts and periapical granulomas. Twenty consecutive specimens of radicular cysts and 20 of periapical granulomas were selected. Expression of MMP-2, -9, -8, -13, -3 was immunohistochemically evaluated. The intensity of expression of the MMPs was evaluated using a semi-quantitative analysis: low = +; intermediate = ++; high = +++. Positive expression of MMPs was present with different distribution. MMP-9 expressed differently in the lesions. Indeed, in periapical granulomas low expression was found in endothelial cells and fibroblasts, whilst high intensities were only detected in inflammatory cells. On the contrary, in radicular cysts the high intensities were mainly present in keratinocytes and fibroblasts. MMP-8 was mainly expressed in inflammatory cells of periapical granulomas. MMP-2 and -3 presented a low intensity of expression in both groups. MMP-13 showed a variable pattern of distribution in the different cell types of the two different lesions. The present investigation supports the role of MMPs in the inflammatory process leading to the development of radicular cysts and periapical granulomas. The results of the present study suggested that the increased enlargement of radicular cysts, compared to periapical granulomas, might be related to a higher expression of MMP-9. On the other hands, the higher intensity of expression of MMP-8 in periapical granulomas could be related to an active inflammatory process. MMP-8 could play an important role in the inflammation processes during the development of periapical lesions.

  11. Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline.

    PubMed

    Bach, D R; Tzovara, A; Vunder, J

    2017-04-04

    Learning to predict threat is a fundamental ability of many biological organisms, and a laboratory model for anxiety disorders. Interfering with such memories in humans would be of high clinical relevance. On the basis of studies in cell cultures and slice preparations, it is hypothesised that synaptic remodelling required for threat learning involves the extracellular enzyme matrix metalloproteinase (MMP) 9. However, in vivo evidence for this proposal is lacking. Here we investigate human Pavlovian fear conditioning under the blood-brain barrier crossing MMP inhibitor doxycyline in a pre-registered, randomised, double-blind, placebo-controlled trial. We find that recall of threat memory, measured with fear-potentiated startle 7 days after acquisition, is attenuated by ~60% in individuals who were under doxycycline during acquisition. This threat memory impairment is also reflected in increased behavioural surprise signals to the conditioned stimulus during subsequent re-learning, and already late during initial acquisition. Our findings support an emerging view that extracellular signalling pathways are crucially required for threat memory formation. Furthermore, they suggest novel pharmacological methods for primary prevention and treatment of posttraumatic stress disorder.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.65.

  12. Study of matrix metalloproteinases and their inhibitors in breast cancer

    PubMed Central

    Vizoso, F J; González, L O; Corte, M D; Rodríguez, J C; Vázquez, J; Lamelas, M L; Junquera, S; Merino, A M; García-Muñiz, J L

    2007-01-01

    An immunohistochemical study was performed using tissue microarrays and specific antibodies against matrix metalloproteinases (MMPs) 1, 2, 7, 9, 11, 13, 14, and their tisullar inhibitors (TIMPs) 1, 2, and 3. More than 2600 determinations on cancer specimens from 131 patients with primary ductal invasive tumours of the breast (65 with and 66 without distant metastasis) and controls were performed. Staining results were categorised using a score based on the intensity of the staining and a specific software program calculated the percentage of immunostained cells automatically. We observed a broad variation of the total immunostaining scores and the cell type expressing each protein. There were multiple and significant associations between the expression of the different MMPs and TIMPs evaluated and some parameters indicative of tumour aggressiveness, such as large tumour size, advanced tumour grade, high Nottinham prognostic index, negative oestrogen receptor status, peritumoural inflammation, desmoplastic reaction, and infiltrating tumoural edge. Likewise, the detection of elevated immunohistochemical scores for MMP-9, 11, TIMP-1, and TIMP-2, was significantly associated with a higher rate of distant metastases. The expression of MMP-9 or TIMP-2 by tumour cells, MMP-1, 7, 9, 11, 13, or TIMP-3 by fibroblastic cells, and MMP-7, 9, 11, 13, 14, TIMP-1, or TIMP-2 by mononuclear inflammatory cells, was also significantly associated with a higher rate of distant metastases. PMID:17342087

  13. Matrix Metalloproteinase-3 Accelerates Wound Healing following Dental Pulp Injury

    PubMed Central

    Zheng, Li; Amano, Kazuharu; Iohara, Koichiro; Ito, Masataka; Imabayashi, Kiyomi; Into, Takeshi; Matsushita, Kenji; Nakamura, Hiroshi; Nakashima, Misako

    2009-01-01

    Matrix metalloproteinases (MMPs) are implicated in a wide range of physiological and pathological processes, including morphogenesis, wound healing, angiogenesis, inflammation, and cancer. Angiogenesis is essential for reparative dentin formation during pulp wound healing. The mechanism of angiogenesis, however, still remains unclear. We hypothesized that certain MMPs expressed during pulp wound healing may support recovery processes. To address this issue, a rat pulp injury model was established to investigate expression of MMPs during wound healing. Real-time RT-PCR analysis showed that expression MMP-3 and MMP-9 (albeit lower extent) was up-regulated at 24 and 12 hours after pulp injury, respectively, whereas expression of MMP-2 and MMP-14 was not changed. MMP-3 mRNA and protein were localized in endothelial cells and/or endothelial progenitor cells in injured pulp in vivo. In addition, MMP-3 enhanced proliferation, migration, and survival of human umbilical vein endothelial cells in vitro. Furthermore, the topical application of MMP-3 protein on the rat-injured pulp tissue in vivo induced angiogenesis and reparative dentin formation at significantly higher levels compared with controls at 24 and 72 hours after treatment, respectively. Inhibition of endogenous MMP-3 by N-Isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid resulted in untoward wound healing. These results provide suggestive evidence that MMP-3 released from endothelial cells and/or endothelial progenitor cells in injured pulp plays critical roles in angiogenesis and pulp wound healing. PMID:19834065

  14. The Structural Basis for Matrix Metalloproteinase 1 Catalyzed Collagenolysis

    PubMed Central

    Bertini, Ivano; Fragai, Marco; Luchinat, Claudio; Melikian, Maxime; Toccafondi, Mirco; Lauer, Janelle L.; Fields, Gregg B.

    2012-01-01

    The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782–785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray “closed” conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally-derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function. PMID:22239621

  15. Matrix Metalloproteinases and Their Multiple Roles in Alzheimer's Disease

    PubMed Central

    Wang, Xiang-Xiang; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most prevalent type of dementia. Pathological changes in the AD brain include amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), as well as neuronal death and synaptic loss. Matrix metalloproteinases (MMPs) play an important role as inflammatory components in the pathogenesis of AD. MMP-2 might be assumed to have a protective role in AD and is the major MMP which is directly linked to Aβ in the brain. Synthesis of MMP-9 can be induced by Aβ, and the enzymes appear to exert multiple effects in AD in senile plaque homoeostasis. The proaggregatory influence on tau oligomer formation in strategic brain regions may be a potential neurotoxic side effect of MMP-9. MMP-3 levels are correlated to the duration of AD and correlate with the CSF T-tau and P-tau levels in the elderly controls. Elevated brain levels of MMP-3 might result in increased MMP-9 activity and indirectly facilitate tau aggregation. At present, the clinical utility of these proteins, particularly in plasma or serum, as potential early diagnostic biomarkers for AD remains to be established. More research is needed to understand the diverse roles of these proteases to design specific drugs and devise therapeutic strategies for AD. PMID:25050378

  16. German cockroach frass proteases cleave pro-matrix metalloproteinase-9.

    PubMed

    Hughes, Valerie S; Page, Kristen

    2007-01-01

    Matrix metalloproteinase (MMP)-9, secreted as pro-MMP-9, is cleaved by serine proteases at the N-terminus to generate active MMP-9. Pro-MMP-9 has been found in the bronchoalveolar lavage fluid of patients with asthma. Because many inhaled aeroallergens contain active proteases, the authors sought to determine whether German cockroach (GC) fecal remnants (frass) and house dust mite (HDM) were able to cleave pro-MMP-9. Treatment of recombinant human (rh) pro-MMP-9 with GC frass resulted in a dose- and time-dependent cleavage. This was abrogated by pretreating frass with an inhibitor of serine, but not cysteine protease activity. GC frass also induced cleavage of pro-MMP-9 from primary human neutrophils dependent on the active serine proteases in GC frass. HDM was less potent at cleaving pro-MMP-9. Alpha1-antitrypsin (A1AT), a naturally occurring protease inhibitor, attenuated GC frass-induced cleavage of pro-MMP-9. A1AT partially inactivated the serine protease activity in GC frass, while GC frass cleaved A1AT in a dose- and time-dependent manner. These data suggest that GC frass-derived serine proteases could regulate the activity of MMP-9 and that A1AT may play an important role in modulating GC frass activity in vivo. These data suggest a mechanism by which inhalation of GC frass could regulate airway remodeling through the activation of pro-MMP-9.

  17. A Novel Mechanism of Latency in Matrix Metalloproteinases*

    PubMed Central

    López-Pelegrín, Mar; Ksiazek, Miroslaw; Karim, Abdulkarim Y.; Guevara, Tibisay; Arolas, Joan L.; Potempa, Jan; Gomis-Rüth, F. Xavier

    2015-01-01

    The matrix metalloproteinases (MMPs) are a family of secreted soluble or membrane-anchored multimodular peptidases regularly found in several paralogous copies in animals and plants, where they have multiple functions. The minimal consensus domain architecture comprises a signal peptide, a 60–90-residue globular prodomain with a conserved sequence motif including a cysteine engaged in “cysteine-switch” or “Velcro” mediated latency, and a catalytic domain. Karilysin, from the human periodontopathogen Tannerella forsythia, is the only bacterial MMP to have been characterized biochemically to date. It shares with eukaryotic forms the catalytic domain but none of the flanking domains. Instead of the consensus MMP prodomain, it features a 14-residue propeptide, the shortest reported for a metallopeptidase, which lacks cysteines. Here we determined the structure of a prokarilysin fragment encompassing the propeptide and the catalytic domain, and found that the former runs across the cleft in the opposite direction to a bound substrate and inhibits the latter through an “aspartate-switch” mechanism. This finding is reminiscent of latency maintenance in the otherwise unrelated astacin and fragilysin metallopeptidase families. In addition, in vivo and biochemical assays showed that the propeptide contributes to protein folding and stability. Our analysis of prokarilysin reveals a novel mechanism of latency and activation in MMPs. Finally, our findings support the view that the karilysin catalytic domain was co-opted by competent bacteria through horizontal gene transfer from a eukaryotic source, and later evolved in a specific bacterial environment. PMID:25555916

  18. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  19. Matrix metalloproteinases as breast cancer drivers and therapeutic targets

    PubMed Central

    Radisky, Evette S.; Radisky, Derek C.

    2015-01-01

    Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs. PMID:25961550

  20. Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

    PubMed

    Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L

    2015-06-16

    Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling.

  1. Increased matrix metalloproteinase 9 activity in mild cognitive impairment.

    PubMed

    Bruno, Martin A; Mufson, Elliott J; Wuu, Joanne; Cuello, A Claudio

    2009-12-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissues from aged subjects with a clinical diagnosis of AD, mild cognitive impairment, or no cognitive impairment. The analysis demonstrated greater MMP-9 activity in both AD and mild cognitive impairment compared with no cognitive impairment brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in mild cognitive impairment and AD.

  2. Increased Matrix Metalloproteinase-9 Activity in Mild Cognitive Impairment

    PubMed Central

    Bruno, Martin A.; Mufson, Elliott J.; Wuu, Joanne; Cuello, A. Claudio

    2010-01-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissue from aged subjects with a clinical diagnosis of AD, mild cognitive impairment (MCI) or no cognitive impairment (NCI). The analysis demonstrated greater MMP-9 activity in both AD and MCI compared to NCI brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in MCI and AD. PMID:19915485

  3. Two Matrix Metalloproteinase Inhibitors from Scrophularia Striata Boiss

    PubMed Central

    Monsef–Esfahani, Hamid Reza; Shahverdi, Ahmad Reza; Khorramizadeh, Mohammad Reza; Amini, Mohsen; Hajiaghaee, Reza

    2014-01-01

    Many species belonging to the Scrophularia genus have been used since ancient times as folk remedies for many medical conditions such as scrofulas, scabies, tumors, eczema, psoriasis, inflammations. The aim of this study was to characterize the matrix metalloproteinases (MMPs) inhibitor compounds of the Scrophularia striata extract by bio-guide fractionation. The aerial parts of S. striata were collected and different extracts were sequentially prepared with increasingly polar solvents. The MMPs inhibitory activity of the crude extract and its fractions were evaluated by the Zymoanalysis method. The pure compounds were purified from the active fraction by chromatography methods. Chemical structures were deduced by nuclear magnetic resonance and mass spectrometry. Two active compounds (acteoside and nepitrin) were identified by bio-guide fractionation. The inhibitory effects of nepitrin and acteoside at 20 µg/mL were about 56 and 18 percent, respectivly. The inhibitory effects of acteoside at 80 µg/mL were increased to about 73 percent. In summary, the results suggest that nepitrin effectively inhibited MMPs inhibitory activity at low concentrations, whereas acteoside showed inhibition at high concentrations. PMID:24734066

  4. Important role of matrix metalloproteinase 9 in epileptogenesis

    PubMed Central

    Wilczynski, Grzegorz M.; Konopacki, Filip A.; Wilczek, Ewa; Lasiecka, Zofia; Gorlewicz, Adam; Michaluk, Piotr; Wawrzyniak, Marcin; Malinowska, Monika; Okulski, Pawel; Kolodziej, Lukasz R.; Konopka, Witold; Duniec, Kamila; Mioduszewska, Barbara; Nikolaev, Evgeni; Walczak, Agnieszka; Owczarek, Dorota; Gorecki, Dariusz C.; Zuschratter, Werner; Ottersen, Ole Petter; Kaczmarek, Leszek

    2008-01-01

    Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE. PMID:18332222

  5. Biophysical studies of matrix metalloproteinase/triple-helix complexes.

    PubMed

    Fields, Gregg B

    2014-01-01

    Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. The structures of MMPs, in solution and solid state and in the presence and absence of triple-helical collagen models, have been assessed by NMR spectroscopy, small-angle X-ray scattering, and X-ray crystallography. Structures observed in solution exhibit flexibility between the MMP catalytic (CAT) and hemopexin-like (HPX) domains, while solid-state structures are relatively compact. Evaluation of the maximum occurrence (MO) of MMP-1 conformations in solution found that, for all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. A mechanism for collagenolysis has been developed based on analysis of MMP solution structures. Information obtained from solid-state structures has proven valuable for analyzing specific contacts between MMPs and the collagen triple-helix.

  6. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  7. Matrix metalloproteinase 9 modulates collagen matrices and wound repair

    PubMed Central

    LeBert, Danny C.; Squirrell, Jayne M.; Rindy, Julie; Broadbridge, Elizabeth; Lui, Yuming; Zakrzewska, Anna; Eliceiri, Kevin W.; Meijer, Annemarie H.; Huttenlocher, Anna

    2015-01-01

    Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair. PMID:26015541

  8. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling.

    PubMed Central

    Ashworth, J L; Murphy, G; Rock, M J; Sherratt, M J; Shapiro, S D; Shuttleworth, C A; Kielty, C M

    1999-01-01

    Fibrillin is the principal structural component of the 10-12 nm diameter elastic microfibrils of the extracellular matrix. We have previously shown that both fibrillin molecules and assembled microfibrils are susceptible to degradation by serine proteases. In this study, we have investigated the potential catabolic effects of six matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-12, MMP-13 and MMP-14) on fibrillin molecules and on intact fibrillin-rich microfibrils isolated from ciliary zonules. Using newly synthesized recombinant fibrillin molecules, major cleavage sites within fibrillin-1 were identified. In particular, the six different MMPs generated a major degradation product of approximately 45 kDa from the N-terminal region of the molecule, whereas treatment of truncated, unprocessed and furin-processed C-termini also generated large degradation products. Introduction of a single ectopia lentis-causing amino acid substitution (E2447K; one-letter symbols for amino acids) in a calcium-binding epidermal growth factor-like domain, predicted to disrupt calcium binding, markedly altered the pattern of C-terminal fibrillin-1 degradation. However, the fragmentation pattern of a mutant fibrillin-1 with a comparable E-->K substitution in an upstream calcium-binding epidermal growth factor-like domain was indistinguishable from wild-type molecules. Ultrastructural examination highlighted that fibrillin-rich microfibrils isolated from ciliary zonules were grossly disrupted by MMPs. This is the first demonstration that fibrillin molecules and fibrillin-rich microfibrils are degraded by MMPs and that certain amino acid substitutions change the fragmentation patterns. These studies have important implications for physiological and pathological fibrillin catabolism and for loss of connective tissue elasticity in ageing and disease. PMID:10229672

  9. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    PubMed Central

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF. PMID:26121236

  10. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma

    PubMed Central

    2009-01-01

    Background Ameloblastoma is a frequent odontogenic benign tumor characterized by local invasiveness, high risk of recurrence and occasional metastasis and malignant transformation. Matrix metalloproteinase-2 (MMP-2) promotes tumor invasion and progression by destroying the extracellular matrix (ECM) and basement membrane. For this proteolytic activity, the endogenous inhibitor is reversion-inducing cysteine rich protein with Kazal motifs (RECK). The aim of this study was to characterize the relationship between RECK and MMP-2 expression and the clinical manifestation of ameloblastoma. Methods Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were employed to detect the protein and mRNA expression of RECK and MMP-2 in keratocystic odontogenic tumor (KCOT), ameloblastoma and ameloblastic carcinoma. Results RECK protein expression was significantly reduced in KCOT (87.5%), ameloblastoma (56.5%) and ameloblastic carcinoma (0%) (P < 0.01), and was significantly lower in recurrent ameloblastoma compared with primary ameloblastoma (P < 0.01), but did not differ by histological type of ameloblastoma. MMP-2 protein expression was significantly higher in ameloblastoma and ameloblastic carcinoma compared with KCOT (P < 0.01). RECK mRNA expression was significantly lower in ameloblastoma than in KCOT (P < 0.01), lower in recurrent ameloblastoma than in primary ameloblastoma, and was negative in ameloblastic carcinoma. MMP-2 mRNA expression was significantly higher in ameloblastoma compared with KCOT (P < 0.01), but was no different in recurrent ameloblastoma versus primary ameloblastoma. RECK protein expression was negatively associated with MMP-2 protein expression in ameloblastoma (r = -0.431, P < 0.01). Conclusion Low or no RECK expression and increased MMP-2 expression may be associated with negative clinical findings in ameloblastoma. RECK may participate in the invasion, recurrence and malignant transformation of ameloblastoma by

  11. Morphine modulates 72-kDa matrix metalloproteinase.

    PubMed

    Sagar, S; Sorbi, D; Arbeit, L A; Singhal, P C

    1994-10-01

    Mesangial expansion is considered to be a precursor of glomerulosclerosis, a predominant glomerular lesion in heroin nephropathy. In addition to matrix synthesis, matrix degradation may also contribute to expansion of mesangium. In this study, we evaluated the effect of morphine on metalloproteinases (gelatinases) that degrade type IV collagen and are secreted by mesangial cells (MC). Gelatinolytic activity was significantly decreased in media of MC exposed to morphine for 1 wk compared with control [control, 2,411.6 +/- 198.7; morphine (10(-6) M), 954.4 +/- 112.2 ng.mg protein-1.3 h-1; P < 0.001]. A similar effect was seen at 2 wk [control, 17,010.6 +/- 1,789.5; morphine (10(-6) M), 8,925.2 +/- 1,623.5 ng.mg protein-1.3 h-1; P < 0.02]. Percent change in gelatinolytic activity was 39.58% (1 wk) and 47.53% (2 wk) compared with control. Morphine at concentrations of 10(-10) to 10(-6) M decreased gelatinolytic activity in MC. In in vivo studies, 24-h urines of morphine-treated rats showed a lower (P < 0.01) gelatinolytic activity when compared with controls. Isolated glomeruli from morphine-treated rats also showed decreased (P < 0.05) gelatinolytic activity compared with control. Naloxone, an opioid antagonist, did not inhibit the effect of morphine on gelatinolytic activity of MC. These results suggest that morphine may cause a decrease in degradation of type IV collagen in patients with heroin addiction. Accumulation of collagen because of lack of gelatinolytic activity in the mesangium may contribute to the expansion of mesangium.

  12. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  13. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice.

    PubMed

    Stickens, Dominique; Behonick, Danielle J; Ortega, Nathalie; Heyer, Babette; Hartenstein, Bettina; Yu, Ying; Fosang, Amanda J; Schorpp-Kistner, Marina; Angel, Peter; Werb, Zena

    2004-12-01

    The assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic chondrocytes in the growth plate and in osteoblasts. Moreover, a mutation in the human MMP13 gene causes the Missouri variant of spondyloepimetaphyseal dysplasia. Inactivation of Mmp13 in mice through homologous recombination led to abnormal skeletal growth plate development. Chondrocytes differentiated normally but their exit from the growth plate was delayed. The severity of the Mmp13- null growth plate phenotype increased until about 5 weeks and completely resolved by 12 weeks of age. Mmp13-null mice had increased trabecular bone, which persisted for months. Conditional inactivation of Mmp13 in chondrocytes and osteoblasts showed that increases in trabecular bone occur independently of the improper cartilage ECM degradation caused by Mmp13 deficiency in late hypertrophic chondrocytes. Our studies identified the two major components of the cartilage ECM, collagen type II and aggrecan, as in vivo substrates for MMP13. We found that degradation of cartilage collagen and aggrecan is a coordinated process in which MMP13 works synergistically with MMP9. Mice lacking both MMP13 and MMP9 had severely impaired endochondral bone, characterized by diminished ECM remodeling, prolonged chondrocyte survival, delayed vascular recruitment and defective trabecular bone formation (resulting in drastically shortened bones). These data support the hypothesis that proper ECM remodeling is the dominant rate-limiting process for programmed cell death, angiogenesis and osteoblast recruitment during normal skeletal morphogenesis.

  14. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    PubMed

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  15. Production of matrix metalloproteinases in response to mycobacterial infection.

    PubMed

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.

  16. Conjunctival matrix metalloproteinases and their inhibitors in glaucoma patients.

    PubMed

    Helin-Toiviainen, Minna; Rönkkö, Seppo; Puustjärvi, Tuomo; Rekonen, Petri; Ollikainen, Minna; Uusitalo, Hannu

    2015-03-01

    Chronic conjunctival inflammation, caused by various reasons, for example long-term use of topical drugs and/or their preservatives, affects the outcome of glaucoma surgery by interfering with wound healing. Matrix metalloproteinases (MMPs) remodel extracellular matrix (ECM) and are involved in the wound healing process. This study was designed to evaluate the conjunctival expression of MMPs and their tissue inhibitors (TIMPs) in the normal eye, primary open-angle glaucoma (POAG) and exfoliation glaucoma (ExG) and whether there is an association between staining intensities and deep sclerectomy outcome. Immunohistochemical procedures were performed on conjunctival samples which were obtained from POAG (n=11) and ExG (n=14) patients as well as normal (n=7) subjects. Antibodies against MMPs (MMP-1, -2, -3 and -9) and TIMPs (TIMP-1, -2 and -3) were used. In conjunctival stroma, expression levels of MMP-2 (p=0.047), MMP-3 (p=0.009), MMP-9 (p<0.001), TIMP-1 (p=0.003), TIMP-2 (p<0.001) and TIMP-3 (p<0.001) in ExG and MMP-9 (p=0.008), TIMP-2 (p=0.02) and TIMP-3 (p=0.002) in POAG were significantly increased compared to control. We further found correlations between expression of MMP-1 and MMP-3 and the length of pilocarpine treatment. The expression of MMPs and TIMPs is increased in the conjunctiva of POAG and ExG patients having a long history of topical antiglaucoma drops. Antiglaucoma agents and/or their preservatives alter the remodelling balance of ECM in conjunctiva of POAG and ExG eyes. The balance between MMPs and TIMPs may play a crucial role in the conjunctival wound healing process and the outcome of glaucoma surgery. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. A NEW APPROACH TO KERATOCONUS DIAGNOSTICS USING MATRIX METALLOPROTEINASE-9 MARKER.

    PubMed

    Zilfyan, A; Abovyan, A

    2017-09-01

    In spite of numerous studies, the exact mechanism of the keratoconus development remains unknown. Nowadays, it is considered to be a multifactorial disorder, caused by a combination of both genetic and environmental factors. Some recent studies have indicated that IL-6 and matrix metalloproteinase-9 take crucial part in disease development. The study aims to test the association of keratoconus with elevated Matrix Metalloproteinase-9 levels in the lacrimal fluid of patients. In controlled, cross-sectional, double-masked study, the patients were examined as they attended the clinic; this method approximated random sampling. The study took place in "Shengavit" Medical Center (Yerevan). The study procedures were carried out in a standard examination room. The level of Matrix Metalloproteinase-9 was assessed using immunochromatographic analyses. In addition, a Shirmer's test was performed on all patients. In total, 90 patients (one eye of every patient) were examined. Three groups were distinguished: I (control) group - patients without any ocular pathology (n=30); II - patients with subclinical keratoconus (n=30); III - patients in the first, second, and third stages of keratoconus (n=30). In the third group (patients with obvious keratoconus), elevated levels of Matrix Metalloproteinase-9 were observed in 27 out of 30 eyes (90%). In the second group (patients with subclinical keratoconus), high levels of Matrix Metalloproteinase-9 were observed in 25 out of 30 eyes (83.33%). In the control group, only one eye out of 30 had an elevated level of Matrix Metalloproteinase-9 (3.33%). The results of the study demonstrate that the tear fluids of patients in the first to third stages of keratoconus or with subclinical keratoconus contain elevated levels of Matrix Metalloproteinase-9 as compared to the control group. Consequently, the detection of Matrix Metalloproteinase-9 in tear fluid can be used in the diagnostics of keratoconus.

  18. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    PubMed

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  19. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation

    PubMed Central

    Wei, Ting; Zhang, Haihong; Cetin, Neslihan; Miller, Emily; Moak, Teri; Suen, James Y.; Richter, Gresham T.

    2016-01-01

    Extracranial arteriovenous malformations (AVMs) are rare but dangerous congenital lesions arising from direct arterial-venous shunts without intervening capillaries. Progressive infiltration, expansion, and soft tissue destruction lead to bleeding, pain, debilitation and disfigurement. The pathophysiology of AVMs is not well understood. Matrix Metalloproteinases (MMPs) are thought to play an important role in pathologic processes underlying many diseases. This study investigates the expression of MMP-9 and MMP-2 in aggressive extracranial AVMs. The differential expression of MMP-9 and its regulatory factors is also examined. Herein we demonstrate that mRNA and protein expressions of MMP-9, but not MMP-2, are significantly higher in AVM tissues compared to normal tissues. The serum level of MMP-9, but not MMP-2, is also elevated in AVM patients compared to healthy controls. MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex is also significantly increased in AVM tissues. The MMP-9/ tissue inhibitor of metalloproteases-1 (TIMP-1) complex presents as a major form detected in normal tissues. The increased and aberrant expression of MMP-9 and specific MMP-9 forms may help explain the constitutive vascular remodeling and infiltrative nature of these lesions. Specific MMP-9 inhibitors would be a promising treatment for AVMs. PMID:27075045

  20. Genetics Home Reference: multicentric osteolysis, nodulosis, and arthropathy

    MedlinePlus

    ... MJ, Martignetti JA. Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis ... Meyer BF, Desnick RJ. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and ...

  1. Expression of matrix metalloproteinases-2, -8, -13, -26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma.

    PubMed

    Korpi, Jarkko T; Hagström, Jaana; Lehtonen, Niko; Parkkinen, Jyrki; Sorsa, Timo; Salo, Tuula; Laitinen, Minna

    2011-03-01

    Osteosarcoma (OS) is among most common malignant tumour of bone. Matrix metalloproteinases (MMPs) are predominantly associated with poor prognosis of several cancers, although some of them, like MMP-8, seem to have a protective role in some cancers. We analyzed the distribution patterns of MMP-2, -8, -13, -26, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in 25 OS patients. MMP-2, -8, -13, -26 and TIMP-1 were mostly detected in sarcoma cells. Response to chemotherapy affected the amount of MMP-2, -8, and -13 in resection sections when compared to biopsies: patients with excellent or good response had less positivity to MMP-2 in chemotherapy samples than those with moderate or poor response. We conclude that MMP-2, -8, -13, -26, and TIMP-1 are expressed in OS tissue, and all, except protective MMP-8, were also found in metastases indicating that MMPs and TIMP-1 can participate in the OS progression.

  2. Modulation of Breast Cancer Cell Functions by Intracellular Signaling Through the Membrane Type-1 Matrix Metalloproteinase

    DTIC Science & Technology

    2002-10-01

    mutations in the ecto- and cytoplasmic domains ofMT1-MMP. For this purpose we used: 1) a mutant with a complete deletion of the cytoplasmic domain (A563...582), 2) a mutant with a point mutation (E240A) in the catalytic domain that causes loss of the proteolytic activ- ity, and 3) a mutant with a deletion ...mediate this effect: decreased expression of the uPA and! or uPA receptor (uPAR) gene , removal of uPAR-bound uPA or increased internalization and degrada

  3. Matrix metalloproteinase inhibitory properties of benzalkonium chloride stabilizes adhesive interfaces.

    PubMed

    Sabatini, Camila; Patel, Shaival K

    2013-12-01

    This study evaluated the effects of different concentrations of benzalkonium chloride (BAC) on the preservation of adhesive interfaces created with two etch-and-rinse adhesives and its inhibitory properties on dentin matrix metalloproteinase (MMP) activity. The following groups were tested with the adhesive systems Optibond Solo Plus and All-Bond 3: Group 1, adhesive without inhibitor (control); Group 2, topical 2.0% chlorhexidine (2.0% CHX); Group 3, phosphoric acid with 1.0%wt BAC (BAC-PA); Group 4, 0.25% BAC-adhesive (0.25% BAC); Group 5, 0.5% BAC-adhesive (0.5% BAC); Group 6, 1.0% BAC-adhesive (1.0% BAC); and Group 7, 2.0% BAC-adhesive (2.0% BAC). Composite cylinders were fabricated, and shear bond strength (SBS) was evaluated after 24 h, 6 months, and 18 months of storage. Extracts from concentrated demineralized human dentin powder were subjected to SDS-PAGE and incubated in the presence of 0.25, 0.5, 1.0, and 2.0% BAC. Overall, stable bonds were maintained for 18 months. Improved bond strengths were seen for 0.5% BAC and 1.0% BAC when bonding with Optibond Solo Plus, and for 0.25% BAC and 0.5% BAC when bonding with All-Bond 3. Zymographic analysis revealed complete inhibition of gelatinolytic activity with BAC. Benzalkonium chloride, at all concentrations, inhibited dentin proteolytic activity, which seems to have contributed to the improved bond stability after 18 months for specific combinations of BAC concentration and adhesive.

  4. Matrix metalloproteinase-3 gene polymorphisms are associated with ischemic stroke.

    PubMed

    Kim, Su Kang; Kang, Sung Wook; Kim, Dong Hwan; Yun, Dong Hwan; Chung, Joo-Ho; Ban, Ju Yeon

    2012-02-01

    Stroke is a heterogeneous disease caused by different pathogenic mechanisms. Several candidate genes for stroke have been proposed, but few have been replicated. Matrix metalloproteinases (MMPs) are expressed following stroke. We investigated the association of single nucleotide polymorphisms (SNPs) of the MMP3 gene with stroke in the Korean population. This study included 186 stroke patients [116 ischemic stroke (IS) and 70 intracerebral hemorrhage (ICH)] and 668 age-matched control subjects (267 for IS and 401 for ICH). Three SNPs [rs520540 (Ala362Ala), rs602128 (Asp96Asp), and rs679620 (Lys45Glu)] in the coding region of MMP3 were selected and genotyped by direct sequencing. HelixTree, SNPAnalyzer, SNPStats, and Haploview version 4.2 were used to analyze genetic data. Multiple logistic regression models (codominant, dominant, and recessive models) were conducted to evaluate odds ratio, 95% confidence interval, and P value. Three SNPs in the MMP3 gene were significantly associated with IS (P<0.05). The genotype distribution of 3 SNPs differed between the IS and control subjects. However, there was no association of the SNPs between the ICH and control. In analysis of gender, 3 SNPs were also associated with IS in female group (P<0.05). These SNPs remained significantly associated with IS after the Bonferroni correction for multiple testing (P(c)<0.05). Haplotype analysis revealed that no haplotypes were associated with IS or ICH. Overall, the results of our study demonstrate an association of the MMP3 gene with development of IS, and no association of MMP3 with ICH.

  5. Plasma matrix metalloproteinase 2 levels and breast cancer risk.

    PubMed

    Aroner, Sarah A; Rosner, Bernard A; Tamimi, Rulla M; Tworoger, Shelley S; Baur, Nadja; Joos, Thomas O; Hankinson, Susan E

    2015-06-01

    Matrix metalloproteinase 2 (MMP2) is an enzyme with important functions in breast cancer invasion and metastasis. However, it is unclear whether circulating MMP2 levels may predict breast cancer risk. We conducted a prospective nested case-control analysis in the Nurses' Health Study among 1136 cases who were diagnosed with invasive breast cancer between 1992 and 2004 and 1136 matched controls. All participants provided blood samples in 1989-1990, and a subset (170 cases, 170 controls) contributed an additional sample in 2000-2002. Pre-diagnostic plasma MMP2 levels were measured via immunoassay, and conditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), adjusted for breast cancer risk factors. No association was observed between plasma MMP2 levels and risk of total invasive breast cancer (top vs. bottom quartile, OR=1.0; 95% CI: 0.7, 1.2; p-trend=0.89). Findings did not vary significantly by time since blood draw, body mass index, postmenopausal hormone use, or menopausal status at either blood draw or breast cancer diagnosis. MMP2 was associated with a greater risk of nodal metastases at diagnosis (top vs. bottom quartile, OR=1.5; 95% CI: 1.0, 2.2; p-heterogeneity, any vs. no lymph nodes=0.002), but no significant associations were observed with other tumor characteristics or with recurrent or fatal cancers. Plasma MMP2 levels do not appear to be predictive of total invasive breast cancer risk, although associations with aggressive disease warrant further study.

  6. Matrix metalloproteinase-10: a novel biomarker for idiopathic pulmonary fibrosis.

    PubMed

    Sokai, Akihiko; Handa, Tomohiro; Tanizawa, Kiminobu; Oga, Toru; Uno, Kazuko; Tsuruyama, Tatsuaki; Kubo, Takeshi; Ikezoe, Kohei; Nakatsuka, Yoshinari; Tanimura, Kazuya; Muro, Shigeo; Hirai, Toyohiro; Nagai, Sonoko; Chin, Kazuo; Mishima, Michiaki

    2015-09-29

    Matrix metalloproteinases (MMPs) are believed to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), and MMP-7 has been described as a useful biomarker for IPF. However, little is known regarding the significance of MMP-10 as a biomarker for IPF. This observational cohort study included 57 patients with IPF. Serum MMPs were comprehensively measured in all patients, and the relationships between these markers and both disease severity and prognosis were evaluated. Bronchoalveolar lavage fluid (BALF) MMP-7 and -10 levels were measured in 19 patients to investigate the correlation between these markers and their corresponding serum values. Immunohistochemical staining for MMP-10 was also performed in IPF lung tissue. Serum MMP-7 and -10 levels correlated significantly with both the percentage of predicted forced vital capacity (ρ = -0.31, p = 0.02 and ρ = -0.34, p < 0.01, respectively) and the percentage of predicted diffusing capacity of the lung for carbon monoxide (ρ = -0.32, p = 0.02 and ρ = -0.43, p < 0.01, respectively). BALF MMP-7 and -10 levels correlated with their corresponding serum concentrations. Only serum MMP-10 predicted clinical deterioration within 6 months and overall survival. In IPF lungs, the expression of MMP-10 was enhanced and localized to the alveolar epithelial cells, macrophages, and peripheral bronchiolar epithelial cells. MMP-10 may be a novel biomarker reflecting both disease severity and prognosis in patients with IPF.

  7. Periodontal Treatment Reduces Matrix Metalloproteinase Levels in Localized Aggressive Periodontitis

    PubMed Central

    Gonçalves, Patricia Furtado; Huang, Hong; McAninley, Suzanna; Alfant, Barnett; Harrison, Peter; Aukhil, Ikramuddin; Walker, Clay; Shaddox, Luciana Macchion

    2015-01-01

    Background Matrix metalloproteinases (MMPs) are a family of host-derived proteinases reported to mediate multiple functions associated with periodontal destruction and inflammation. We have previously reported high MMP levels in African-American children with localized aggressive periodontitis (LAP). However, little is known about MMP reductions in gingival crevicular fluid (GCF) after therapy. This study aimed to evaluate MMP levels in the GCF following treatment of LAP and to correlate these levels with clinical response. Methods GCF samples were collected from 29 African-American individuals diagnosed with LAP. GCF was collected from one diseased site (pocket depth [PD]>4mm, bleeding on probing [BoP] and clinical attachment level [CAL] ≥2mm) and one healthy site (PD≤3mm, no BoP) from each individual at baseline, 3 and 6 months after periodontal treatment, which consisted of full-mouth SRP and systemic antibiotics. The volume of GCF was controlled using a calibrated gingival fluid meter and levels of MMP-1, 2, 3, 8, 9, 12 and 13 were assessed using fluorometric kits. Results MMP-1, 8, 9 12, and 13 levels were reduced significantly up to 6 months, at which point were comparable with healthy sites. Significant correlations were noted between MMP-2, 3, 8, 9, 12 and 13 levels and % of sites with PD>4mm. MMP-3, 12 and 13 levels also correlated with mean pocket depth of affected sites. Conclusion Treatment of LAP with SRP and systemic antibiotics was effective in reducing the local levels specific MMPs in African-American individuals, which correlated positively with some clinical parameters. PMID:23537121

  8. Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity*

    PubMed Central

    Meier, Daniel T.; Tu, Ling-Hsien; Zraika, Sakeneh; Hogan, Meghan F.; Templin, Andrew T.; Hull, Rebecca L.; Raleigh, Daniel P.; Kahn, Steven E.

    2015-01-01

    Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1–15, 1–25, 16–37, 16–25, and 26–37. The fragments 1–15, 1–25, and 26–37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16–37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16–37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16–37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes. PMID:26483547

  9. A novel role for matrix metalloproteinase-8 in sepsis

    PubMed Central

    Solan, Patrick D.; Dunsmore, Katherine E.; Denenberg, Alvin G.; Odoms, Kelli; Zingarelli, Basilia; Wong, Hector R.

    2011-01-01

    Objectives Matrix metalloproteinase-8 (MMP-8) mRNA expression was previously found to be increased in whole blood of children with septic shock. The impact of this finding on the severity and inflammatory response to sepsis is unknown. Here, we investigate the relationship between MMP-8 and disease severity in a children with septic shock. We further corroborate the role of MMP-8 in sepsis in a murine model. Design Retrospective observational clinical study and randomized controlled laboratory experiments. Setting Pediatric intensive care units and an animal research facility at an academic children’s hospital. Patients/Subjects Patients age ≤ 10 years admitted to the intensive care unit with a diagnosis of septic shock. For laboratory studies, we utilized male mice deficient for MMP-8 and male wild type C57/Bl6 mice. Interventions Blood from children with septic shock was analyzed for MMP-8 mRNA expression and MMP-8 activity, and correlated with disease severity based on mortality and degree of organ failure. A murine model of sepsis was used to explore the effect of genetic and pharmacologic inhibition of MMP-8 on the inflammatory response to sepsis. Finally, activation of nuclear factor-κB (NF-κB) was assessed both in vitro and in vivo. Measurements and Main Results Increased MMP-8 mRNA expression and activity in septic shock correlates with decreased survival and increased organ failure in pediatric patients. Genetic and pharmacologic inhibition of MMP-8 leads to improved survival and a blunted inflammatory profile in a murine model of sepsis. We also identify MMP-8 as a direct in vitro activator of the pro-inflammatory transcription factor, NF-κB. Conclusions MMP-8 is a novel modulator of inflammation during sepsis and a potential therapeutic target. PMID:22020238

  10. Basis for substrate recognition and distinction by matrix metalloproteinases

    PubMed Central

    Ratnikov, Boris I.; Cieplak, Piotr; Gramatikoff, Kosi; Pierce, James; Eroshkin, Alexey; Igarashi, Yoshinobu; Kazanov, Marat; Sun, Qing; Godzik, Adam; Osterman, Andrei; Stec, Boguslaw; Strongin, Alex; Smith, Jeffrey W.

    2014-01-01

    Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure–function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221–227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure–function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50–57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs. PMID:25246591

  11. Autoantibodies against matrix metalloproteinase-1 in patients with localized scleroderma.

    PubMed

    Tomimura, Saori; Ogawa, Fumihide; Iwata, Yohei; Komura, Kazuhiro; Hara, Toshihide; Muroi, Eiji; Takenaka, Motoi; Shimizu, Kazuhiro; Hasegawa, Minoru; Fujimoto, Manabu; Sato, Shinichi

    2008-10-01

    Localized scleroderma (LSc) is characterized by cutaneous fibrosis and various autoantibodies. To determine the presence or levels of antibodies (Abs) against matrix metalloproteinase (MMP)-1 and their clinical relevance in LSc. Anti-MMP-1 Ab was examined by ELISA (Enzyme-Linked ImmunoSorbent Assay) and immunoblotting using human recombinant MMP-1. MMP-1 collagenase activity was determined using biotinylated collagen as substrate and the amount of cleaved biotinylated fragments of collagen by MMP-1 was measured by ELISA. LSc patients exhibited significantly elevated IgG anti-MMP-1 Ab levels relative to normal controls at similar level of patients with systemic sclerosis (SSc). However, IgG anti-MMP-1 Ab levels were comparable among the 3 LSc subgroups: morphea, linear scleroderma, and generalized morphea. When absorbance values higher than the mean+2S.D. of normal controls were considered positive, IgG or IgM anti-MMP-1 Ab was found in 46% and 49% of total LSc patients and SSc patients, respectively. Anti-MMP-1 Ab was detected most frequently in morphea patients (60%), followed by linear scleroderma patients (47%) and then generalized morphea patients (25%). LSc patients positive for IgG anti-MMP-1 Ab had elevated levels of IgG anti-single-stranded DNA Ab, IgG anti-nucleosome Ab, and shorter disease duration relative to those negative. The presence of anti-MMP-1 Ab in LSc patients was confirmed by immunoblotting. IgG isolated from LSc patients' sera positive for IgG anti-MMP-1 Ab by ELISA inhibited MMP-1 collagenase activity. These results suggest that anti-MMP-1 autoantibody is a novel autoantibody in LSc.

  12. Transgenic expression of matrix metalloproteinase-2 induces coronary artery ectasia

    PubMed Central

    Dahi, Sia; Karliner, Joel S; Sarkar, Rajabrata; Lovett, David H

    2011-01-01

    Coronary artery ectasia (CAE) is generally diagnosed in patients undergoing arteriography for presumptive atherosclerotic coronary artery disease. CAE is commonly considered as a variant of atherosclerotic disease; however, recent studies suggest that CAE is the result of a systemic vascular disorder. There is increasing evidence that aneurysmal vascular disease is a systemic disorder characterized by enhanced expression of pro-inflammatory cytokines and increased synthesis of enzymes capable of degrading elastin and other components of the vascular wall. Matrix metalloproteinase-2 degrades a number of extracellular substrates, including elastin and has been shown to play a critical role in the development of abdominal aortic aneurysms. This study characterizes the development of CAE in a unique murine transgenic model with cardiac-specific expression of active MMP-2. Transgenic mice were engineered to express an active form of MMP-2 under control of the α-myosin heavy chain promoter. Coronary artery diameters were quantified, along with studies of arterial structure, elastin integrity and vascular expression of the MMP-2 transgene. Latex casts quantified total coronary artery volumes and arterial branching. Mid-ventricular coronary luminal areas were increased in the MMP-2 transgenics, coupled with foci of aneurysmal dilation, ectasia and perivascular fibrosis. There was no evidence for atherogenesis. Coronary vascular elastin integrity was compromised and coupled with inflammatory cell infiltration. Latex casts of the coronary arteries displayed ectasia with fusiform dilatation. The MMP-2 transgenic closely replicates human CAE and supports a critical and initiating role for this enzyme in the pathogenesis of this disorder. PMID:21039989

  13. Interaction of Munc18c and Syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumour cells.

    PubMed

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-08-10

    Tumor cell invasion involves targeted localization of proteins required for interactions of the extracellular matrix (ECM) and for proteolysis. The localization of many proteins during these cell-ECM interactions relies on membrane trafficking mediated in part by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that reduced Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c, and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro. Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  14. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'.

    PubMed

    Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo; Carrilho, Marcela; Chaussain, Catherine

    2015-01-01

    Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.

  15. Variance of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) concentrations in activated, concentrated platelets from healthy male donors

    PubMed Central

    2014-01-01

    Background The use of autologous blood concentrates, such as activated, concentrated platelets, in orthopaedic clinical applications has had mixed results. Research on this topic has focused on growth factors and cytokines, with little directed towards matrix metalloproteinases (MMPs) which are involved in post-wound tissue remodeling. Methods In this study, the authors measured the levels of MMP-2, MMP-9 and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), in activated platelets derived from blood of healthy, male volunteers (n = 92), 19 to 60 years old. The levels of the natural inhibitors of these proteases, tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2 and TIMP-4 were also assessed. Results Notably, there was no significant change in concentration with age in four of six targets tested. However, TIMP-2 and TIMP-4 demonstrated a statistically significant increase in concentration for subjects older than 30 years of age compared to those 30 years and younger (P = 0.04 and P = 0.04, respectively). Conclusion TIMP-2 and TIMP-4 are global inhibitors of MMPs, including MMP-2 (Gelatinase A). MMP-2 targets native collagens, gelatin and elastin to remodel the extracellular matrix during wound healing. A decreased availability of pharmacologically active MMP-2 may diminish the effectiveness of the use of activated, concentrated platelets from older patients, and may also contribute to longer healing times in this population. PMID:24766991

  16. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  17. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas.

    PubMed

    Efsen, Eva; Saermark, Torben; Hansen, Alastair; Bruun, Eywin; Brynskov, Jørn

    2011-09-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity was significantly higher (about 3.5-times) in Crohn's fistulas (471 FU/μg protein, range 49-2661) compared with non-Crohn's fistulas [134 FU/μg protein, range 0-495, (p < 0.05)] and normal colon [153 FU/μg protein, range 77-243, (p < 0.01)]. MMP-3 activity was increased in Crohn's fistulas (1.4 ng/ml, range 0-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p < 0.02)]. The same applied to MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p < 0.04)]. Ramiprilate significantly decreased the average total MMP activity level by 42% and suppressed the specific MMP-3 activity by 72%, which is comparable to the effect of GM6001 (87%). Moreover, MMP-9 activity was completely blunted by ramiprilate. Doxycycline had no

  18. Matrix metalloproteinases (MMPs) in the endometrium of bitches.

    PubMed

    Chu Py, Po-yin; Salamonsen, L A; Lee, C S; Wright, P J

    2002-03-01

    The relationships between activities of matrix metalloproteinases (MMPs) in the canine uterus and the occurrence of degeneration of the luminal epithelium, cystic endometrial hyperplasia, pyometra and uterine remodelling post partum were determined. Mature bitches (n = 10) were ovariectomized, treated with hormones (oestradiol benzoate, progestagen) and investigated at stages simulating pro-oestrus (n = 2), oestrus (n = 2), dioestrus (n = 2), and mid- (n = 2) and late (n = 2) anoestrus (3 and 9 weeks, respectively, after cessation of treatment with progestagen). Untreated bitches (n = 1 per group) served as controls (Expt 1). An additional 10 ovariectomized bitches, at the end of treatment-induced simulated dioestrus, were treated each day for a further 3 weeks either with the same dose (standard dose, n = 3), a decreased dose (n = 3) or an increased dose (n = 3) of progestagen, or no treatment (withdrawal dose, n = 1). These bitches were then investigated (Expt 2). A suture was placed in the lumen of one uterine horn of another five bitches at ovariectomy. Three of these bitches were treated to induce simulated dioestrus and two bitches served as untreated controls. In the hormone-treated bitches, the suture resulted in cystic endometrial hyperplasia in one bitch and in cystic endometrial hyperplasia with pyometra in two bitches. The control bitches showed no cystic endometrial hyperplasia or pyometra (Expt 3). Four intact bitches were studied at 2 (n = 1), 3 (n = 2) and 11 (n = 1) weeks post partum. Uterine tissues were also collected from two bitches with naturally occurring cystic endometrial hyperplasia with pyometra (Expt 4). All uteri were examined histologically and the activities of MMP-2, -7 and -9 (latent and active forms) were assessed using zymography of extracts of endometrium. In Expts 1 and 2, marked degeneration of the luminal epithelium in six of 25 bitches (simulated mid-anoestrus, withdrawal dose and decreased dose groups) was not associated

  19. Suppression of matrix metalloproteinases inhibits establishment of ectopic lesions by human endometrium in nude mice.

    PubMed

    Bruner, K L; Matrisian, L M; Rodgers, W H; Gorstein, F; Osteen, K G

    1997-06-15

    Matrix metalloproteinases of the stromelysin family are expressed in the human endometrium as a consequence of cellular events during the menstrual cycle that require extracellular matrix remodeling. We have recently documented the presence of these enzymes in lesions of endometriosis, a benign disease that presents as persistent ectopic sites of endometrial tissue, usually within the peritoneal cavity. Endometriosis can develop after retrograde menstruation of endometrial tissue fragments, and establishment of ectopic sites within the peritoneal cavity requires breakdown of extracellular matrix. To examine whether matrix metalloproteinases might contribute to the steroid-dependent epidemiology and cellular pathophysiology of endometriosis, we have developed an experimental model of endometriosis using athymic nude mice as recipients of human endometrial tissue. Our results demonstrate that estrogen treatment of human endometrial tissue in organ culture maintains secretion of matrix metalloproteinases, and promotes establishment of ectopic peritoneal lesions when injected into recipient animals. In contrast, suppressing metalloproteinase secretion in vitro with progesterone treatment, or blocking enzyme activity with a natural inhibitor of metalloproteinases, inhibits the formation of ectopic lesions in this experimental model.

  20. Expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in tissues with a diagnosis of childhood lymphoma.

    PubMed

    Bozkurt, Ceyhun; Ertem, Ulya; Oksal, Aysegül; Sahin, Gürses; Yüksek, Nazmiye; Birgen, Dilek

    2008-09-01

    Matrix metalloproteinases (MMP) are enzymes involved in the reconfiguration of the microenvironment by means of degrading the extracellular matrix and have more than 20 subgroups containing zinc. Proteins that serve as the inhibitors of these enzymes are called tissue inhibitors of matrix metalloproteinase (TIMP). These enzymes have been shown to be active in a wide range of processes, from wound recovery to fetus development, heart diseases, and spread of malignant diseases. The aim of this study was to investigate whether there is a relationship between the type, stage, and prognosis of childhood lymphoma subjects and matrix metalloproteinase type-9 (MMP-9) and its inhibitor, tissue inhibitor of matrix metalloproteinase type-1 (TIMP-1). Paraffin blocks of childhood patients diagnosed with non-Hodgkin lymphoma (n = 23), Hodgkin lymphoma (n = 14), or reactive lymphadenopathy (n = 12) were retrospectively immunohistochemically stained with MMP-9 and TIMP-1 stains and whether there was a relationship between the degree of staining and the type, tumor stage, and prognosis of the disease was investigated. Moderate and high degrees of MMP-9 staining were detected in 94.6% of the lymphoma patient tissues and a slight TIMP-1 staining was detected in 21.6% of the lymphoma patient tissues. No relationship was observed between the degree of these staining patterns and the type, tumor stage, and prognosis of the disease. This study indicates that the equilibrium between MMP-9 and TIMP-1 is important in lymphomas in addition to all the physiological and pathologic events although MMP-9 and the TIMP-1 staining patterns are not related to the tumor stage, prognosis, and type of the disease. Larger series of patients are needed to determine the prognostic value of MMP-9 and TIMP-1 in childhood lymphoma.

  1. [Concentration of matrix metalloproteinases and magnesium ions in patients with varicose veins of lower limbs].

    PubMed

    Kalinin, R E; Suchkov, I A; Pshennikov, A S; Kamaev, A A; Mzhavanadze, N D

    The study was aimed at investigating alterations in the concentration of matrix metalloproteinases (MMP-1, MMP-9) and the tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as the level of magnesium ions (Mg(2+)) as an indicator of connective tissue dysplasia (CTD) in patients presenting with lower limb varicose veins. The study included a total of 110 people. Of these, the Study Group comprised 90 patients with lower limb varicose veins of clinical class C2-C6 (according to the CEAP classification) and the Control Group was composed of 20 apparently healthy volunteers. Samples of peripheral blood were examined. The content of MMP-9, MMP-1 and TIMP-1 in blood serum was determined by means of the quantitative solid-phase immunoenzymatic assay. The concentration of Mg(2+) was determined by the colorimetric method. We revealed a statistically significant interrelationship between the concentrations of matrix metalloproteinases and severity of varicose transformation of lower-limb veins, with the highest level of matrix metalloproteinases being observed in patients with cutaneous alterations and trophic ulcers. Determination of the level of matrix metalloproteinases and magnesium ions, characterizing connective tissue dysplasia, makes it possible to predict the development of lower limb chronic venous insufficiency and to evaluate the degree of its severity.

  2. The cloning and expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase 2 in normal canine lymph nodes and in canine lymphoma.

    PubMed

    Newman, R G; Kitchell, B E; Wallig, M A; Paria, B

    2008-04-01

    Matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), are known to be important in cancer. The purposes of this study were to determine the cDNA sequence of canine MMP-2 and to investigate the expression patterns of MMP-2 and TIMP2 in normal canine lymph nodes and spontaneously arising canine lymphomas. We cloned and sequenced a PCR product containing most (1901 base pairs) of the coding sequence of canine MMP-2 that translates into a 623 amino acid protein. The cDNA and deduced amino acid sequences are highly homologous to those of other mammalian species. Canine MMP-2 and TIMP2 mRNAs were detectable in the majority of normal lymph node and lymphomatous samples evaluated. No statistical difference was identified when comparing the expression of either gene with regard to normal versus neoplastic nodes, nodal versus extranodal lymphoma, lymphoma grade, or B versus T cell immunophenotype.

  3. Tissue inhibitors of matrix metalloproteinases 1 and 2 and matrix metalloproteinase activity in the serum and lungs of mice with lewis lung carcinoma.

    PubMed

    Kisarova, Ya A; Korolenko, T A

    2012-10-01

    We studied the content of tissue inhibitors of matrix metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) and activities of matrix metalloproteinases (MMP) in the serum and lungs of mice with Lewis lung carcinoma metastasizing into the lung. Metastasizing was associated with increased serum content of TIMP-1 and TIMP-2 (only on day 20 at the terminal stage of the tumor process). These data confirm the hypothesis on pro-tumorigenic role of TIMP-1 in the serum. Locally, the development of metastases was associated with a decrease in TIPM-1 concentration (day 7), an increase in TIMP-2 concentration (days 7 and 20), and elevated activity of MMP at all terms of the study (days 7, 15, and 20). Increased concentration of TIMP-2 in the lungs (but not in the serum) can be regarded as an indicator of Lewis lung carcinoma metastasizing.

  4. Matrix metalloproteinases as candidate biomarkers in adults with congenital heart disease.

    PubMed

    Baggen, Vivan J M; Eindhoven, Jannet A; van den Bosch, Annemien E; Witsenburg, Maarten; Cuypers, Judith A A E; Langstraat, Jannette S; Boersma, Eric; Roos-Hesselink, Jolien W

    2016-07-01

    Context Matrix metalloproteinases (MMPs) are associated with diastolic dysfunction and heart failure in acquired heart disease. Objective To investigate the role of MMPs as novel biomarkers in clinically stable adults with congenital heart disease. Methods We measured serum MMP-2, -3, -9 and tissue inhibitor of matrix metalloproteinase-1 in 425 patients and analysed the association with cardiac function and exercise capacity. Results MMP-2 was significantly associated with exercise capacity, ventilatory efficiency and left ventricular deceleration time, independently of age, sex, body surface area and NT-proBNP. Conclusion MMP-2 may provide new information in the clinical evaluation of adults with congenital heart disease.

  5. Roles of Matrix Metalloproteinases and Their Targets in Epileptogenesis and Seizures

    PubMed Central

    Mizoguchi, Hiroyuki

    2013-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors, which together regulate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathological conditions. Recent studies have suggested that prolonged seizures are associated with high MMP levels in serum and neural tissues, and certain extracellular macromolecule targets may influence the pathogenesis of epilepsy and seizure. In this review, we discuss the roles of MMP activation in animal models of epilepsy. PMID:24023547

  6. LRP1 regulates remodeling of the extracellular matrix by fibroblasts

    PubMed Central

    Gaultier, Alban; Hollister, Margaret; Reynolds, Irene; Hsieh, En-hui; Gonias, Steven L.

    2009-01-01

    Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR. PMID:19699300

  7. Substance P up-regulates matrix metalloproteinase-1 and down-regulates collagen in human lung fibroblast.

    PubMed

    Ramos, Carlos; Montaño, Martha; Cisneros, Jose; Sommer, Bettina; Delgado, Javier; Gonzalez-Avila, Georgina

    2007-01-01

    Substance P is involved in inflammatory processes, but its effect on extracellular matrix metabolism has not been studied; therefore, the authors evaluated its effect on collagen synthesis and degradation, expression of pro-alpha1(I) collagen, matrix metalloproteinase-1 and -2, and tissue inhibitor of metalloproteinase-1 and -2 in normal human lung fibroblast strains. Substance P induced a decrease in collagen biosynthesis, concomitant to a down-regulation of pro-alpha1(I) collagen mRNA. In contrast, an increase in collagen degradation was observed, accompanied with an up-regulation of matrix metalloproteinase-1. Substance P did not influence tissue inhibitor of metalloproteinase-1 and -2 or matrix metalloproteinase-2 expression. The results suggest that substance P participates in extracellular matrix metabolism.

  8. Immunohistochemical correlation of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-2 in tobacco associated epithelial dysplasia.

    PubMed

    Bajracharya, Dipshikha; Shrestha, Bijayatha; Kamath, Asha; Menon, Aparna; Radhakrishnan, Raghu

    2014-01-01

    To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs) progressing to oral cancer are related to the severity of epithelial dysplasia. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P < 0.001). Kruskal-Wallis test to compare the median score of MMP-2 and TIMP-2 in different grades of dysplasia showed statistical significance (P < 0.001), and a Spearman's correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  9. Glomerular Protein Levels of Matrix Metalloproteinase-1 and Tissue Inhibitor of Metalloproteinase-1 Are Lower in Diabetic Subjects

    PubMed Central

    Cornish, Toby C.; Bagnasco, Serena M.; Macgregor, Anne M.; Lu, Jie; Selvin, Elizabeth; Halushka, Marc K.

    2009-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) regulate extracellular matrix turnover throughout the body, including in renal glomeruli. We investigated protein levels of multiple MMPs (MMP-1, MMP-2, MMP-3, and MMP-9) and TIMP-1 in glomeruli and investigated whether disease phenotypes were associated with levels of these proteins. Renal cortex was collected from 100 adult autopsy subjects arrayed across 17 tissue microarrays. Immunohistochemical staining intensity for each MMP and TIMP-1 was determined using quantitative color deconvolution techniques. We observed significantly decreased glomerular MMP-1 and TIMP-1 staining in subjects with diabetes, hypertension, and an estimated glomerular filtration rate <30 ml/min/1.73 m2 in univariate analyses. MMP-1 staining, but not TIMP-1 staining, was inversely correlated with increased glomerular fibrosis (r = −0.40). In multivariable analysis, diabetes was robustly associated with decreased staining intensity. This study indicates that in human subjects, the long-term sequelae of diseases such as diabetes that cause chronic renal failure result in decreased TIMP-1 and MMP-1 proteins in renal glomeruli. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 57:995–1001, 2009) PMID:19506087

  10. Binding of Matrix Metalloproteinase Inhibitors to Extracellular Matrix: 3D-QSAR Analysis

    PubMed Central

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R.; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P.; Cook, Gregory R.; Balaz, Stefan

    2008-01-01

    Binding to the extracellular matrix (ECM), one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with ECM determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases (MMPs), and other drug candidates. The nature of ECM binding was elucidated for 63 MMP inhibitors, for which the association constants to an ECM mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified ECM surrogate was analyzed using the Comparative Molecular Field Analysis (CoMFA), which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to ECM in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel CoMFA models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the ECM binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective MMP inhibitors. PMID:18844670

  11. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    PubMed

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  12. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    ERIC Educational Resources Information Center

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  13. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    ERIC Educational Resources Information Center

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  14. An Efficient Synthesis of 5-Amido-3-Hydroxy-4-Pyrones as Inhibitors of Matrix Metalloproteinases

    PubMed Central

    Yan, Yi-Long; Cohen, Seth M.

    2008-01-01

    3-Hydroxy-4-pyrones are a class of important metal chelators with versatile medicinal applications. An efficient pathway for the preparation of new 5-amido-3-hydroxy-4-pyrone derivatives has been developed. The synthesized 5-amido-3-hydroxy-4-pyrones have been evaluated as inhibitors of matrix metalloproteinases. PMID:17521196

  15. Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury.

    PubMed Central

    Fini, M. E.; Parks, W. C.; Rinehart, W. B.; Girard, M. T.; Matsubara, M.; Cook, J. R.; West-Mays, J. A.; Sadow, P. M.; Burgeson, R. E.; Jeffrey, J. J.; Raizman, M. B.; Krueger, R. R.; Zieske, J. D.

    1996-01-01

    Delayed re-epithelialization of the cornea after injury usually precedes stromal ulceration. Previous findings using a rat thermal injury model suggested that re-epithelialization is impeded by products of resident corneal cells, which destroy adhesive structures at the basement membrane zone. In this study, we provide additional evidence for this concept. Failure to re-epithelialize was found to correlate with an increase in the amounts of gelatinolytic matrix metalloproteinases present in the rat cornea. One of these gelatinases, gelatinase B, is synthesized by the resident corneal cells, and inhibitions of its synthesis correlated with inhibition of basement membrane dissolution. The matrix metalloproteinases collagenase and stromelysin are also synthesized by resident corneal cells in thermally injured corneas of rabbits, but the timing of bulk enzyme synthesis correlated more closely with deposition of repair tissue in the stroma than with failure to re-epithelialize. Nevertheless, in human corneas with repair defects, gelatinase B and collagenase are synthesized by cells in the basal layer of the epithelium directly adjacent to the basement membrane, suggesting that both could participate in dissolution of this structure. Importantly, treatment of thermally injured corneas with a synthetic inhibitor of matrix metalloproteinases significantly improved basement membrane integrity. These data support the concept that over-expression of matrix metalloproteinases by resident corneal cells impedes re-epithelialization after some types of corneal injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:8863676

  16. A barcode-free combinatorial screening platform for matrix metalloproteinase screening.

    PubMed

    Rane, Tushar D; Zec, Helena C; Wang, Tza-Huei

    2015-02-03

    Application of droplet microfluidics to combinatorial screening applications remains elusive because of the need for composition-identifying unique barcodes. Here we propose a barcode-free continuous flow droplet microfluidic platform to suit the requirements of combinatorial screening applications. We demonstrate robust and repeatable functioning of this platform with matrix metalloproteinase activity screening as a sample application.

  17. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    USDA-ARS?s Scientific Manuscript database

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  18. A Barcode-Free Combinatorial Screening Platform for Matrix Metalloproteinase Screening

    PubMed Central

    2015-01-01

    Application of droplet microfluidics to combinatorial screening applications remains elusive because of the need for composition-identifying unique barcodes. Here we propose a barcode-free continuous flow droplet microfluidic platform to suit the requirements of combinatorial screening applications. We demonstrate robust and repeatable functioning of this platform with matrix metalloproteinase activity screening as a sample application. PMID:25543856

  19. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis

    PubMed Central

    Bergers, Gabriele; Brekken, Rolf; McMahon, Gerald; Vu, Thiennu H.; Itoh, Takeshi; Tamaki, Kazuhiko; Tanzawa, Kazuhiko; Thorpe, Philip; Itohara, Shigeyoshi; Werb, Zena; Hanahan, Douglas

    2010-01-01

    During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch. PMID:11025665

  20. Activities of matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in idiopathic hemotympanum and otitis media with effusion

    PubMed Central

    Moon, Sung K.; Linthicum, Fred H.; Yang, Hae Dong; Lee, Seung Joo; Park, Keehyun

    2008-01-01

    Conclusion The expression profile of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) was specific to the type of middle ear effusion. Further studies are necessary for elucidating its correlation with the sequelae of otitis media with effusion (OME) and idiopathic hemotympanum. Objectives We aimed to investigate the relative activities of gelatinases (MMP-2 and 9), stromelysin-1 (MMP-3), matrilysin-1 (MMP-7) as well as measuring TIMP-2 levels in the serous and mucous effusions of OME and hemorrhagic effusion of the idiopathic hemotympanum. Method Middle ear effusions were collected from patients with OME and idiopathic hemotympanum, and were classified as mucoid, serous or hemorrhagic. MMP activity in the effusion samples was examined by gelatin and casein zymography. Levels of TIMP-2 were measured by ELISA. Human temporal bones sections, with and without otitis media (OM), were examined histologically. Results One case showed tympanic membrane thinning in the OM group, but none in the control group. While MMP-2 was present in all effusions, the active form of MMP-2 was found only in mucous effusions. MMP-3 and MMP-7 activity was detected only in the mucous effusions. MMP-9 exhibited activity in all effusions, with the highest levels in mucous effusions. TIMP-2 levels were markedly elevated in serous effusions. PMID:17851959

  1. Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects

    PubMed Central

    Zhang, Chen; Kim, Se-Kwon

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products. PMID:19597572

  2. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    PubMed

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Purification and properties of a small latent matrix metalloproteinase of the rat uterus.

    PubMed

    Woessner, J F; Taplin, C J

    1988-11-15

    A small metalloproteinase that digests Azocoll was found in the uterus of the rat. Its activity increased to high levels during the postpartum period in parallel with the breakdown of the extracellular matrix exclusive of collagen (Sellers, A., and Woessner, J.F., Jr. (1980) Biochem. J. 189, 521-531). This enzyme has now been purified almost 7,000-fold to homogeneity from 12 g of tissue using molecular sieve chromatography, blue sepharose chromatography, and zinc-chelate chromatography. Gel electrophoresis with sodium dodecyl sulfate and dithiothreitol gives Mr = 28,000 for the latent form of the enzyme and Mr = 19,000 for the active form that arises spontaneously or by treatment with aminophenylmercuric acetate. The enzyme digests components of the extracellular matrix including gelatins of types I, III, IV, and V, fibronectin, and proteoglycan. It digests the alpha 2(I) chain of gelatin in preference to the alpha 1(I) chain and cleaves dinitrophenyl-Pro-Leu-Gly-Ile-Ala-Gly-Pro-D-Arg. It cleaves the B chain of insulin at two points: Ala14-Leu15 and Tyr16-Leu17. It has no action on collagens of types I, III, IV, or V at 26 degrees C and no action on elastin or phenylazo-Pro-Leu-Gly-Pro-D-Arg. The pH optimum is at pH 7 and the pI at 5.9. The enzyme requires zinc and calcium ions for activity; cobalt and strontium can partially replace these metal ions. The enzyme is not inhibited by low levels of phosphoramidon or Zincov. Its properties clearly distinguish it from collagenase, gelatinase (matrix metalloproteinase 2), and stromelysin (matrix metalloproteinase 3); it therefore constitutes a further member of the family of extracellular matrix metalloendopeptidases. The name matrix metalloproteinase 7 is proposed.

  4. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix

    PubMed Central

    Charadram, Nattida; Farahani, Ramin M; Harty, Derek; Rathsam, Catherine; Swain, Michael V; Hunter, Neil

    2011-01-01

    Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4

  5. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    NASA Astrophysics Data System (ADS)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  6. Matrix Metalloproteinase Gene Activation Resulting from Disordred Epigenetic Mechanisms in Rheumatoid Arthritis

    PubMed Central

    Araki, Yasuto; Mimura, Toshihide

    2017-01-01

    Matrix metalloproteinases (MMPs) are implicated in the degradation of extracellular matrix (ECM). Rheumatoid arthritis (RA) synovial fibroblasts (SFs) produce matrix-degrading enzymes, including MMPs, which facilitate cartilage destruction in the affected joints in RA. Epigenetic mechanisms contribute to change in the chromatin state, resulting in an alteration of gene transcription. Recently, MMP gene activation has been shown to be caused in RASFs by the dysregulation of epigenetic changes, such as histone modifications, DNA methylation, and microRNA (miRNA) signaling. In this paper, we review the role of MMPs in the pathogenesis of RA as well as the disordered epigenetic mechanisms regulating MMP gene activation in RASFs. PMID:28441353

  7. Matrix metalloproteinase and its inhibitor in temporomandibular joint osteoarthrosis after indirect trauma in young goats.

    PubMed

    Wang, Yan-Liang; Li, Xin-Jun; Qin, Rui-Feng; Lei, De-Lin; Liu, Yan-Pu; Wu, Gao-Yi; Zhang, Yong-Jie; Yan-Jin; Wang, Da-Zhang; Hu, Kai-Jin

    2008-04-01

    Our aim was to examine the change in expression of matrix metalloproteinases (MMP-13), matrix metalloproteinases-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in the articular cartilage of goats with experimentally-induced osteoarthrosis of the temporomandibular joint (TMJ) at various times. Osteoarthrosis was induced in 20 goats in the bilateral TMJ and 5 goats acted as controls. There were 5 goats in each group, and a group was killed at 7 days, and 1, 3, and 6 months postoperatively. The samples were collected, and the joints evaluated histologically. Immunofluorescence was used to detect the presence of MMPs and TIMP-1 in the articular disc and condylar cartilage. The ultrastructure of the articular disc and condylar surface at 1 month was examined with scanning electron microscopy (SEM). Osteoarthrosis of the TMJ progressed gradually over time. MMP-13, MMP-3, and TIMP-1 were expressed strongly in the TMJ soon after injury; MMP-13 became gradually weakened, and MMP-3 strengthened later. None of these were expressed in the normal condyle. After a month the surface of the arthrotic condyle was uneven, and the underlying collagen fibrils were exposed in irregular fissures on the surface. The secretion of TIMP-1 was related closely to the changes of MMPs during osteoarthrosis of the TMJ. The unbalanced ratio between them caused degradation of the matrix of the cartilage and might be the cause of osteoarthrosis of the TMJ.

  8. Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin shock.

    PubMed

    Hu, Jialiang; Van den Steen, Philippe E; Dillen, Chris; Opdenakker, Ghislain

    2005-08-15

    Gram-negative sepsis, bacterial meningitis and endotoxin shock are life-threatening disorders, associated with the rapid release of neutrophil enzymes. Neutrophil collagenase/matrix metalloproteinase-8 (MMP-8) and gelatinase B/matrix metalloproteinase-9 (MMP-9) are contained in granules, are quickly exocytosed upon granulocyte activation and efficiently cleave intact and denatured collagens, respectively. Genetic ablation of gelatinase B protects against endotoxin-induced mortality. Therefore, we designed and synthesized a peptidomimetic gelatinase B inhibitor Regasepin1, and compared the selectivity for the collagenases MMP-1, MMP-8 and MMP-13. Regasepin1 was found to inhibit, almost to the same degree, the neutrophil enzymes MMP-8 and MMP-9 and the monocytic tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE/ADAM-17) in vitro. With the use of mass spectrometry analysis, the plasma half-life of inhibitor levels was determined after an intraperitoneal bolus injection in mice. Plasma peak levels of the inhibitor were reached at 50 min after intraperitoneal injection and the subsequent half-life in the circulation exceeded 40 min. Regasepin1 protected mice against lethal endotoxinemia by intraperitoneal and intravenous injection routes. This proves the principle that early neutrophil MMP inhibition followed by TACE blockade may become a treatment strategy of gram-negative sepsis, endotoxinemia and other life-threatening inflammatory reactions.

  9. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    PubMed

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC.

  10. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-05

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  11. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  12. Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity.

    PubMed Central

    Finzel, B. C.; Baldwin, E. T.; Bryant, G. L.; Hess, G. F.; Wilks, J. W.; Trepod, C. M.; Mott, J. E.; Marshall, V. P.; Petzold, G. L.; Poorman, R. A.; O'Sullivan, T. J.; Schostarez, H. J.; Mitchell, M. A.

    1998-01-01

    The binding of two 5-substituted-1,3,4-thiadiazole-2-thione inhibitors to the matrix metalloproteinase stromelysin (MMP-3) have been characterized by protein crystallography. Both inhibitors coordinate to the catalytic zinc cation via an exocyclic sulfur and lay in an unusual position across the unprimed (P1-P3) side of the proteinase active site. Nitrogen atoms in the thiadiazole moiety make specific hydrogen bond interactions with enzyme structural elements that are conserved across all enzymes in the matrix metalloproteinase class. Strong hydrophobic interactions between the inhibitors and the side chain of tyrosine-155 appear to be responsible for the very high selectivity of these inhibitors for stromelysin. In these enzyme/inhibitor complexes, the S1' enzyme subsite is unoccupied. A conformational rearrangement of the catalytic domain occurs that reveals an inherent flexibility of the substrate binding region leading to speculation about a possible mechanism for modulation of stromelysin activity and selectivity. PMID:9792098

  13. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  14. Cysteine protease cathepsins and matrix metalloproteinases in the development of abdominal aortic aneurysms

    PubMed Central

    Qin, Yanwen; Cao, Xu; Yang, Yaoguo; Shi, Guo-Ping

    2013-01-01

    Both cysteine protease cathepsins and matrix metalloproteinases are implicated in the pathogenesis of abdominal aortic aneurysms (AAAs) in humans and animals. Blood and aortic tissues from humans or animals with AAAs contain much higher levels of these proteases, and often lower levels of their endogenous inhibitors, than do blood and aortic tissues from healthy subjects. Protease- and protease inhibitor-deficient mice and synthetic protease inhibitors have affirmed that cysteinyl cathepsins and matrix metalloproteinases both participate directly in AAA development in several experimental model systems. Here, we summarize our current understanding of how proteases contribute to the pathogenesis of AAA, and discuss whether proteases or their inhibitors may serve as diagnostic biomarkers or potential therapeutic targets for this common human arterial disease. PMID:23259477

  15. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    PubMed

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  16. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in pigmented villonodular synovitis suggests their potential role for joint destruction.

    PubMed

    Uchibori, Mitsutoshi; Nishida, Yoshihiro; Tabata, Izuru; Sugiura, Hideshi; Nakashima, Hiroatsu; Yamada, Yoshihisa; Ishiguro, Naoki

    2004-01-01

    Pigmented villonodular synovitis (PVNS) is an uncommon idiopathic, proliferative synovial disease. Since matrix metalloproteinases (MMP) are assumed to play an important role in the pathogenesis of PVNS, we examined the expression and activity of MMP and tissue inhibitor of metalloproteinases (TIMP) in PVNS. Synovial tissue samples were obtained from 10 patients with PVNS (knee 8, ankle 2) and 4 patients each with rheumatoid arthritis (RA) or osteoarthritis (OA) for comparison. Protein deposition and mRNA expression were determined by conventional immunohistochemical studies and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Gelatin zymography was performed for detection of gelatin-degrading activity. The quantity of MMP and TIMP was measured by ELISA. Intense immunostaining for MMP-1 was detected in both the multinucleated giant cells and mononuclear cells, whereas TIMP-1 was weakly positive. MMP-9 immunostained predominantly in the multinucleated cells, whereas other MMP and TIMP were weakly detected. RT-PCR analysis showed that mRNA expression of MMP-9 was stimulated in PVNS, whereas MMP-2 mRNA was not, compared to RA or OA. The gelatin zymogram indicated protease activities predominantly at 92 kDa and 67 kDa. In accord with the immunostaining results, the amount of MMP-1 and MMP-9 protein was significantly higher than that of TIMP-1 and MMP-2, respectively. We characterized the expression and activity of MMP in PVNS and observed that PVNS tissues predominantly produce MMP-1 and MMP-9. Given that PVNS occasionally induces joint destruction, stimulated expression of MMP-1 and MMP-9 may contribute to the invasive activity and the bone and cartilage loss in PVNS.

  17. Matrix Metalloproteinases -8 and -9 and Tissue Inhibitor of Metalloproteinase-1 in Burn Patients. A Prospective Observational Study

    PubMed Central

    Hästbacka, Johanna; Fredén, Filip; Hult, Maarit; Bergquist, Maria; Wilkman, Erika; Vuola, Jyrki; Sorsa, Timo; Tervahartiala, Taina; Huss, Fredrik

    2015-01-01

    Introduction Matrix metalloproteinases (MMPs) -8 and -9 are released from neutrophils in acute inflammation and may contribute to permeability changes in burn injury. In retrospective studies on sepsis, levels of MMP-8, MMP-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) differed from those of healthy controls, and TIMP-1 showed an association with outcome. Our objective was to investigate the relationship between these proteins and disease severity and outcome in burn patients. Methods In this prospective, observational, two-center study, we collected plasma samples from admission to day 21 post-burn, and burn blister fluid samples on admission. We compared MMP-8, -9, and TIMP-1 levels between TBSA<20% (N = 19) and TBSA>20% (N = 30) injured patients and healthy controls, and between 90-day survivors and non-survivors. MMP-8, -9, and TIMP-1 levels at 24-48 hours from injury, their maximal levels, and their time-adjusted means were compared between groups. Correlations with clinical parameters and the extent of burn were analyzed. MMP-8, -9, and TIMP-1 levels in burn blister fluids were also studied. Results Plasma MMP-8 and -9 were higher in patients than in healthy controls (P<0.001 and P = 0.016), but only MMP-8 differed between the TBSA<20% and TBSA>20% groups. MMP-8 and -9 were not associated with clinical severity or outcome measures. TIMP-1 differed significantly between patients and controls (P<0.001) and between TBSA<20% and TBSA>20% groups (P<0.002). TIMP-1 was associated with 90-day mortality and correlated with the extent of injury and clinical measures of disease severity. TIMP-1 may serve as a new biomarker in outcome prognostication of burn patients. PMID:25945788

  18. Timing and duration of nursing from birth affect neonatal porcine uterine matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1.

    PubMed

    Ho, T Y; Rahman, K M; Camp, M E; Wiley, A A; Bartol, F F; Bagnell, C A

    2017-04-01

    Nursing for 2 d from birth supports neonatal porcine uterine and cervical development. However, it is not clear how timing or duration of lactocrine signaling from birth (postnatal day = PND 0) affects development of neonatal female reproductive tract tissues. Therefore, studies were conducted to determine effects of age at first nursing and duration of nursing from birth on specific elements of the matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) system in uterine and cervical tissues at PND 2. When nursing was initiated at 0 h or 30 min of age, targeted proteins, including proMMP9 and MMP9, were detected in uterine and cervical tissues on PND 2, as was uterine TIMP1. However, these proteins were undetectable when nursing was delayed for 12 h and when gilts were fed milk replacer for 48 h from birth. Increasing the duration of nursing from 30 min to 12 h from birth increased uterine (P < 0.05) and cervical (P < 0.001) MMP9 levels to those observed in gilts nursed for 48 h. Similarly, uterine TIMP1 levels increased with duration of nursing. Uterine MMP2 levels were detectable but unaffected by age at first nursing or duration of nursing from birth. Uterine MMP2 and MMP9 activities, monitored by zymography, reflected immunoblotting data. Results provide evidence for the utility of MMP9 and TIMP1 as markers of age- and lactocrine-sensitive porcine female reproductive tract development.

  19. [Design, synthesis and activity evaluation of novel matrix metalloproteinases inhibitors based on the structure of enzyme].

    PubMed

    Jia, Hong; Guo, Yan-shen; Ge, Yi-yu; Wen, Hui; Yang, Jing; Yang, Xiu-ying; Du, Guan-hua; Yang, Guang-zhong

    2007-12-01

    A novel inhibitor series for matrix metalloproteinases (MMPs) were designed and synthesized. Using succinate and malonate as zinc binding groups and long hydrophobic substituents to bind with S1' pockets, the compounds showed micromolar inhibition and selectivity for MMP-2 over others. And we found a better activity compound. It is a chance to find a better precursor of MMP-2 inhibitors with activity and bioavailability by further optimization of compounds.

  20. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    PubMed Central

    Iizuka, Shinji; Ishimaru, Naozumi; Kudo, Yasusei

    2014-01-01

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis. PMID:24531055

  1. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    SciTech Connect

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  2. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts.

    PubMed

    Yang, Min; Huang, Haichang; Li, Jingzi; Huang, Wen; Wang, Haiyan

    2007-01-01

    The involvement of gelatinase (matrix metalloproteinase-2 [MMP-2] and MMP-9) in the matrix remodeling and development of tubulointerstitial fibrosis has been studied recently, but relatively little is known about the regulators and the mechanisms controlling the activation and expression of gelatinase in renal fibroblasts. In these studies, the production and underlying signaling pathway for gelatinase by exogenous connective tissue growth factor (CTGF) treatment were investigated. Here, we show that CTGF acts as a potent promoter of the activation and expression of MMP-2, but not MMP-9 in normal rat kidney fibroblasts cell line (NRK-49F). We found that CTGF significantly increased the activity of MMP-2, as well as MMP-2 protein in conditioned medium and MMP-2 mRNA levels in cells. In studies to address the mechanisms involved in the regulation of MMP-2 activity, we found that the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), the inhibitor of MMP-2, decreased significantly when cells were treated with CTGF. Further studies showed that extracellular signal-regulated kinase (ERK) signaling is responsible for most of the CTGF-induced MMP-2 expression and TIMP-2 suppression. When NRK-49F fibroblasts were incubated with CTGF, activation of ERK1/2 signaling was observed. Suppression of ERK1/2 activation with nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, was associated with a reduction of CTGF-stimulated MMP-2 activity and protein expression. In addition, the CTGF-mediated reduction of TIMP-2 activity and protein expression was prevented when ERK1/2 activation was inhibited by PD98059. These results provide evidence that CTGF augments activation of MMP-2 through an effect on MMP-2 protein expression and TIMP-2 suppression, and that these effects are dependent on the activation of the ERK1/2 pathway.

  3. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  4. Differential expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in avian tibial dyschondroplasia.

    PubMed

    Shahzad, Muhammad; Liu, Jingying; Gao, Jianfeng; Wang, Zhi; Zhang, Ding; Nabi, Fazul; Li, Kun; Li, Jiakui

    2015-01-01

    Tibial dyschondroplasia (TD) is an avian bone disorder of different aetiologies that may be associated with lameness. The disorder is characterized by focal disruption of endochondral bone formation, with a lack of matrix proteolysis and an accumulation of non-mineralized avascular cartilage. The aim of this study was to determine the expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in normal, thiram-induced TD lesions and in the process of recovery from TD in broiler chickens. An extracellular matrix (ECM) degrading enzyme, matrix metalloproteinase-9 (MMP-9), was selected to investigate the effects of CD147 in the degradation of ECM. Gene expression was analysed by quantitative real-time polymerase chain reaction and protein levels by immunohistochemistry and western blotting. The birds were divided into three groups: thiram fed; recovery; and controls. Genes encoding CD147 and MMP-9 were down-regulated during the development of the disease, and were up-regulated during recovery. Western blotting also showed lower protein levels of CD147 in TD, which increased during the recovery phase associated with ECM degradation and growth plate repair. The findings of this study suggest that ECM has a crucial role in the occurrence of TD and that CD147 appears to play a pivotal role in matrix proteolysis in the chicken, similar to that in other species.

  5. Matrix metalloproteinase 14 is required for fibrous tissue expansion

    PubMed Central

    Taylor, Susan H; Yeung, Ching-Yan Chloé; Kalson, Nicholas S; Lu, Yinhui; Zigrino, Paola; Starborg, Tobias; Warwood, Stacey; Holmes, David F; Canty-Laird, Elizabeth G; Mauch, Cornelia; Kadler, Karl E

    2015-01-01

    Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI: http://dx.doi.org/10.7554/eLife.09345.001 PMID:26390284

  6. Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice

    PubMed Central

    Kundu, Soumi; Tyagi, Neetu; Sen, Utpal

    2010-01-01

    Clinical study reports hearing loss in patients with low folic acid (FA) and elevated homocysteine (Hcy). We hypothesize that elevated Hcy induces imbalance in matrix turnover and oxidative stress in cochlea. Cystathione β-synthase heterozygous knockout mice were used as model for hyperhomocysteinemia. Matrix remodeling induced by Hcy resulted from elevated MMP-2, -9, and -14. MMP-2 and -9 showed elevated gelatinase activity in CBS (±) cochlea. Tissue inhibitors of matrix metalloproteinase were significantly lower in CBS (±) cochlea. The expression analyses for MMPs and TIMPs were equally represented at protein and mRNA levels. Cochlea of CBS mice showed following structural changes; (1) detachment of tectorial membrane lying on hair cells (2) thinner s. vascularis (3) large fibroblast in spiral ligament. Hcy induced higher protein nitrotyrosination and cytosolic NADPHoxidase subunit p22phox in cochlea. It is thus suggested that Hcy induced matrix imbalance, structural changes and oxidative stress in cochlea. PMID:19590937

  7. Common Matrix Metalloproteinases (MMP-8, -9, -25, and -26) Cannot Explain Dentigerous Cyst Expansion

    PubMed Central

    Lehtonen, Niko; Färkkilä, Esa; Hietanen, Jarkko; Teronen, Olli; Sorsa, Timo; Hagström, Jaana

    2014-01-01

    Objective: Mechanisms of the dentigerous cyst formation from the normal eruption follicle is unknown but disturbances in the proteolytic activity have been suspected, since the growth of these cysts is accompanied by local bone destruction. The aim of the present study was to evaluate the expression of matrix metalloproteinases (MMP) in human dental dentigerous cysts and healthy dental follicles. Materials and Methods: We studied 10 patients with dentigerous cysts and 10 healthy dental follicles from the lower jaw in respect to their immunoexpression of MMPs -8, -9, -25, and -26 and tissue inhibitor of metalloproteinases -1 (TIMP-1). Results: MMP-8 was expressed slightly more in cyst epithelium than in odontogenic epithelium of healthy controls dental follicle but the difference lacked statistical difference. Other MMPs and TIMP-1 did not differ regarding the studied specimens. Conclusion: Differences in MMP expression cannot solely explain the cyst expansion suggesting the potential involvement of other osteolytic mechanisms. PMID:25386530

  8. Involvement of extracellular-matrix-degrading metalloproteinases in rabbit aortic smooth-muscle cell proliferation.

    PubMed Central

    Southgate, K M; Davies, M; Booth, R F; Newby, A C

    1992-01-01

    We investigated the influence of two structurally unrelated inhibitors of matrix-degrading metalloproteinases, Ro 31-4724 and Ro 31-7467, on the primary proliferation of smooth-muscle cells from rabbit aortic explants. Both agents inhibited proliferation in a concentration-dependent manner, but did not affect cell viability. Smooth-muscle cells grown out from explants secreted 95 kDa and 72 kDa gelatinase enzymes that were also inhibited in a concentration-dependent manner by Ro 31-4724 and Ro 31-7467. Interstitial collagenase and stromelysin were not detected. We conclude that metalloproteinases are likely to be involved in the initiation of smooth-muscle proliferation. Images Fig. 2. Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1445285

  9. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders.

    PubMed

    Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S

    2015-11-01

    Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P < 0.0001); L-lactic acid levels were elevated in CTV (P = 0.0116). EMMPRIN and MMP-8 concentrations were elevated in VVC (P < 0.0001). EMMPRIN and L-lactic acid concentrations (P ≤ 0.008), but not EMMPRIN and D-lactic acid, were correlated in all groups. EMMPRIN also increased in proportion with the ratio of L- to D-lactic acid in controls and in women with BV (P ≤ 0.009). Concentrations of EMMPRIN and MMP-8 were correlated in controls and women with VVC (P ≤ 0.0002). Candida albicans induced EMMPRIN release from vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.

  10. Expression and correlation of CD44v6, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9 in Krukenberg tumor

    PubMed Central

    Lou, Ge; Gao, Ying; Ning, Xiao-Ming; Zhang, Qi-Fan

    2005-01-01

    AIM: To explore the expression and correlation of CD44v6, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and matrix metalloproteinase (MMP)-9 in Krukenberg and primary epithelial ovarian carcinoma. METHODS: The expressions of CD44v6, VEGF, MMP-2 and MMP-9 were detected by immunohistochemical method in 20 cases of normal ovarian tissues, 38 cases of Krukenberg tumor and 45 cases of primary epithelial ovarian carcinoma. RESULTS: The expression of CD44v6 (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: χ2 = 4.516, P = 0.034; Krukenberg tumor tissue vs normal ovarian tissue: χ2 = 19.537, P = 0.001) and VEGF (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: P = 0.026; Krukenberg tumor tissue vs normal ovarian tissue: χ2 = 22.895, P = 0.001) was significantly higher in primary epithelial ovarian carcinoma tissue and Krukenberg tumor tissue than in normal ovarian tissue. The positive expression rate of MMP-2 and MMP-9 was 0% in the normal ovarian tissue. The positive expression rate of CD44v6 (χ2 = 10.398, P = 0.001), VEGF (χ2 = 13.149, P = 0.001), MMP-2 (χ2 = 33.668, P = 0.001) and MMP-9 (χ2 = 38.839, P = 0.001) was remarkably higher in Krukenberg tumor than in primary epithelial ovarian carcinoma. The correlation of CD44v6, VEGF, MMP-2, and MMP-9 was observed in primary epithelial ovarian carcinoma and Krukenberg tumor. CONCLUSION: CD44v6, VEGF, MMP-2, and MMP-9 are involved in ovarian carcinoma, gastric cancer and Krukenberg tumor. Detection of CD44v6, VEGF, MMP-2 and MMP-9 may contribute to the diagnosis of ovarian carcinoma, gastric cancer, and Krukenberg tumor. PMID:16124061

  11. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    PubMed

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  12. Distribution of matrix metalloproteinases and their inhibitor, TIMP-1, in developing human osteophytic bone

    PubMed Central

    BORD, SHARYN; HORNER, ALAN; HEMBRY, ROSALIND M.; REYNOLDS, JOHN J.; COMPSTON, JULIET E.

    1997-01-01

    Connective tissues synthesise and secrete a family of matrix metalloproteinases (MMPs) which are capable of degrading most components of the extracellular matrix. Animal studies suggest that the MMPs play a role in bone turnover. Using specific polyclonal antisera, immunohistochemistry was used to determine the patterns of synthesis and distribution of collagenase (MMP-1), stromelysin (MMP-3), gelatinase A (MMP-2) and gelatinase B (MMP-9) and of the tissue inhibitor of metalloproteinases-1 (TIMP-1) within developing human osteophytic bone. The different MMPs and TIMP showed distinct patterns of localisation. Collagenase expression was seen at sites of vascular invasion, in osteoblasts synthesising new matrix and in some osteoclasts at sites of resorption. Chondrocytes demonstrated variable levels of collagenase and stromelysin expression throughout the proliferative and hypertrophic regions, stromelysin showing both cell-associated and strong matrix staining. Intense gelatinase B expression was observed at sites of bone resorption in osteoclasts and mononuclear cells. Gelatinase A was only weakly expressed in the fibrocartilage adjacent to areas of endochondral ossification. There was widespread but variable expression of TIMP-1 throughout the fibrous tissue, cartilage and bone. These results indicate that MMPs play a role in the development of human bone from cartilage and fibrous tissue and are likely to have multiple functions. PMID:9279657

  13. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease.

    PubMed

    Martinez-Aguilar, Esther; Gomez-Rodriguez, Violeta; Orbe, Josune; Rodriguez, Jose A; Fernández-Alonso, Leopoldo; Roncal, Carmen; Páramo, Jose A

    2015-02-01

    Peripheral arterial disease (PAD) is associated with poor prognosis in terms of cardiovascular (CV) morbidity and mortality. Matrix metalloproteinases (MMPs) contribute to vascular remodeling by degrading extracellular matrix components and play a role in atherosclerosis as demonstrated for MMP-10 (stromelysin-2). This study analyzed MMP-10 levels in PAD patients according to disease severity and CV risk factors and evaluated the prognostic value of MMP-10 for CV events and mortality in lower limb arterial disease after a follow-up period of 2 years. MMP-10 was measured by enzyme-linked immunosorbent assay in 187 PAD patients and 200 sex-matched controls. PAD patients presented with increased levels of MMP-10 (702 ± 326 pg/mL control vs 946 ± 473 pg/mL PAD; P < .001) and decreased levels of tissue inhibitor of matrix metalloproteinase 1 (312 ± 117 ng/mL control vs 235 ± 110 ng/mL PAD; P < .001) compared with controls. Among PAD patients, those with critical limb ischemia (n = 88) showed higher levels of MMP-10 (1086 ± 478 pg/mL vs 822 ± 436 pg/mL; P < .001) compared with those with intermittent claudication (n = 99), whereas the MMP-10/tissue inhibitor of matrix metalloproteinase 1 ratio remained similar. The univariate analysis showed an association between MMP-10, age (P = .015), hypertension (P = .021), and ankle-brachial index (P = .006) in PAD patients that remained significantly associated with PAD severity after adjustment for other CV risk factors. Patients with the highest MMP-10 tertile had an increased incidence of all-cause mortality and CV mortality (P < .03). Our results suggest that MMP-10 is associated with severity and poor outcome in PAD. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  14. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury

    PubMed Central

    Phillips, Linda L.; Chan, Julie L.; Doperalski, Adele E.; Reeves, Thomas M.

    2014-01-01

    Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity. PMID:25206824

  15. Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis.

    PubMed

    Huang, Chao-Cheng; Chuang, Jiin-Haur; Chou, Ming-Huei; Wu, Chia-Lin; Chen, Ching-Mei; Wang, Chih-Chi; Chen, Yaw-Sen; Chen, Chao-Long; Tai, Ming-Hong

    2005-07-01

    Matrix metalloproteinases (MMPs) are the proteases responsible for tissue remodeling during liver fibrosis caused by various disorders including biliary atresia. However, information regarding the relative contribution of these proteases to liver fibrosis is still limited. We studied matrix metalloproteinase-2 (MMP-2), -7, -9 and -13 mRNA expressions in the liver tissue of early-stage biliary atresia at the time of Kasai's procedure, late-stage biliary atresia at the time of liver transplantation with advanced fibrosis and nondiseased control without liver fibrosis. The results of real-time quantitative reverse transcriptase-PCR analysis revealed that only MMP-2 and -7 expressions were significantly different between groups. MMP-2 was significantly higher in Liver Transplantation group than both in Control (P=0.010) and in Kasai's Procedure (P=0.001) groups, whereas the difference of MMP-2 expression between Control and Kasai's Procedure was not significant. However, the relative expression level of MMP-7 was sequentially elevated when comparing Control, Kasai's Procedure and Liver Transplantation groups, and there was significant (P=0.019) difference when comparing Control and Liver Transplantation groups. Moreover, the fold difference in MMP-7 mRNA was much higher than that in MMP-2 mRNA between groups. The expressions of MMP-7 were further confirmed by agarose gel electrophoresis and Western blotting. Immunohistochemical analysis revealed a significant positive correlation of the scores of MMP-7 immunostaining with the stages of liver fibrosis. In situ hybridization demonstrated that the bile ductular epithelial cells, Kupffer cells and hepatocytes were the major producers of matrix metalloproteinase-7 in the liver. Our results imply that MMP-7 is a major MMP associated with the tissue remodeling during the progression of liver fibrosis in biliary atresia.

  16. Effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney.

    PubMed

    Sulikowski, Tadeusz; Domanski, Leszek; Zietek, Zbigniew; Adler, Grażyna; Pawlik, Andrzej; Ciechanowicz, Andrzej; Ciechanowski, Kazimierz; Ostrowski, Marek

    2012-01-30

    Matrix metalloproteinases and tissue inhibitor of metalloproteinases play an important role in the regulation of mesangial cell proliferation and may be involved in ischemia-reperfusion injuries. Preservation solutions are thought to diminish the ischemic injury and appropriate choice of the solution should guarantee a better graft function and good prognosis for graft survival. The aim of the study was to examine the effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney. The study was carried out on Wistar rat kidneys divided into 3 groups: kidneys perfused with 0.9% NaCl (control group), with UW, and with EC preservation solution. The results show an enhancement of MMP-2 and TIMP-2 gene expression after 12 min of cold ischemia. This increase was more expressed in kidneys preserved with UW solution in comparison with kidneys perfused with EC solution and 0.9% NaCl. After 24 h of cold ischemia the expression of MMP-2 and TIMP-2 genes in kidney perfused with UW solution decreased, while in kidneys perfused with EC it was increased. After warm ischemia the MMP-2 and TIMP-2 gene expression increased, whereas it was significantly lower in kidneys perfused with EC solution.

  17. Impaired lung repair during neutropenia can be reverted by matrix metalloproteinase-9.

    PubMed

    Blázquez-Prieto, Jorge; López-Alonso, Inés; Amado-Rodríguez, Laura; Huidobro, Covadonga; González-López, Adrián; Kuebler, Wolfgang M; Albaiceta, Guillermo M

    2017-09-25

    Neutrophils may cause tissue disruption during migration and by releasing cytotoxic molecules. However, the benefits of neutrophil depletion observed in experimental models of lung injury do not correspond with the poor outcome of neutropenic patients. To clarify the role of neutrophils during repair, mice with ventilator induced lung injury (VILI) were rendered neutropenic after damage, and followed for 48 hours of spontaneous breathing. Lungs were harvested and inflammatory mediators and matrix metalloproteinases measured. Bronchoalveolar lavage fluid (BALF) from ventilated patients with acute respiratory distress syndrome, with or without neutropenia, was collected, the same mediators measured and their effects in an ex vivo model of alveolar repair studied. Finally, neutropenic mice were treated after VILI with exogenous matrix metalloproteinase-9 (MMP-9). Lungs from neutropenic animals showed delayed repair and displayed higher levels of tumour necrosis factor α, interferon γ and macrophage inflammatory protein 2, and absence of MMP-9. BALF from ventilated neutropenic patients with acute respiratory distress syndrome showed similar results. BALFs from neutropenic patients yielded a delayed closure rate of epithelial wounds ex vivo, which was improved by removal of collagen or addition of exogenous MMP-9. Lastly, treatment of neutropenic mice with exogenous MMP-9 after VILI reduced tissue damage without modifying cytokine concentrations. Release of MMP-9 from neutrophils is required for adequate matrix processing and lung repair. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Matrix metalloproteinase enzymes and their naturally derived inhibitors: novel targets in photocarcinoma therapy.

    PubMed

    Gupta, Anshita; Kaur, Chanchal Deep; Jangdey, Manmohan; Saraf, Swarnlata

    2014-01-01

    The continuous exposure of skin to ultraviolet radiations generates reactive oxygen species leading to photoaging in which degradation of dermal collagen and degeneration of elastic fibers occurs. Matrix metalloproteinase [MMP] enzymes are the proteolytic enzymes which have significant potentiality of cleaving extracellular matrix [ECM] against Ultraviolet [UV] radiation. The important MMPs are MMP1, MMP2 and MMP7 which promote skin cancer when irradiated by UV rays. In lieu of this, the investigation of MMPs and their inhibitors are constantly being studied for successive results. Recent researches have focused on some traditionally used bioactive moieties as natural matrix metalloproteinases inhibitors (MMPIs) and emphasized on the need of more extensive and specific studies on MMPIs, so that a good combination of natural or synthetic MMPIs with the conventional drugs can be evolved for cancer chemotherapy. In this review, we discuss the current view on the feasibility of MMPs as targets for therapeutic intervention in cancer. This review also summarizes the role of small molecular weight natural MMPIs and a clinical update of those natural MMPIs that are under clinical trial stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Titanium implants induce expression of matrix metalloproteinases in bone during osseointegration.

    PubMed

    Shubayev, Veronica I; Brånemark, Rickard; Steinauer, Joanne; Myers, Robert R

    2004-01-01

    Implanted pure titanium fixtures are able to completely integrate with bone, in part because of the formation of a strong extracellular matrix (ECM) bond at the titanium-bone interface. In this study, we used a rodent femur model of intramedullary osseointegration to analyze the changes in immunoreactivity of ECM-controlling matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinase-3 (TIMP-3), and tumor necrosis factor alpha (TNF-alpha) during osseointegration. We observed dramatic increases in MMP-2, MMP-9, MMP-7, TIMP-3, and TNF-alpha in osteocytes, osteoclasts, haversian canals, and the interface matrix in bone ipsilateral to the titanium implant. An increase in TIMP-3, MMP-9, and MMP-7 in hypertrophied chondrocytes and the vascular component of the epiphysial growth plate was also observed in experimental bone. These findings were not seen in contralateral or sham-operated bone, where the titanium fixtures were threaded into the femur and immediately removed. Our data link titanium-induced bone remodeling to changes in expression and distribution of MMPs.

  20. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature

    PubMed Central

    Chow, A K; Cena, J; Schulz, R

    2007-01-01

    Matrix metalloproteinases (MMPs) have been shown to play significant roles in a number of physiological as well as pathological processes. Best known to proteolyse components of the extracellular matrix, MMPs have recently been discovered to also target a growing list of proteins apart from these, both inside and outside the cell. MMPs have also been traditionally thought of as enzymes involved in chronic processes such as angiogenesis, remodelling and atherosclerosis on a days-week time-scale. However they are now understood to also act acutely in response to oxidative stress on a minutes time-scale on non-extracellular matrix substrates. This review focuses on the acute actions and both extracellular and intracellular targets of two prominent MMP family members, MMP-2 and -9, in cardiovascular diseases including ischaemia/reperfusion injury, inflammatory heart disease, septic shock and pre-eclampsia. Also discussed are various ways of regulating MMP activity, including post-translational mechanisms, the endogenous tissue inhibitors of metalloproteinases and pharmacological inhibitors. A comprehensive understanding of MMP biology is necessary for the development of novel pharmacological therapies to combat the impact of cardiovascular disease. PMID:17592511

  1. Lack of association of matrix metalloproteinase-9 promoter gene polymorphism in obstructive sleep apnea syndrome.

    PubMed

    Yalcınkaya, Mustafa; Erbek, Selim S; Babakurban, Seda Turkoglu; Kupeli, Elif; Bozbas, Serife; Terzi, Yunus K; Sahin, Feride Iffet

    2015-09-01

    Obstructive sleep apnea syndrome (OSAS) is a public health problem. There is an effort to establish the genetic contributions to the development of OSAS. One is matrix metalloproteinases, extracellular matrix degrading enzymes related to systemic inflammation. However, the impact of matrix metalloproteinase-9 (MMP-9) genotypes on the development of OSAS is unknown. Our aim was to determine whether MMP-9 single nucleotide polymorphism (SNP) (MMP-9 -1562C > T) is related to susceptibility to OSAS. A total of 106 patients with a history of sleep apnea and 88 controls without a history of sleep apnea were enrolled in this study. Genotypes were determined by restriction fragment length polymorphism analyses after polymerase chain reaction. Genotypes and allele frequencies of the MMP-9 -1562C > T SNP was not statistically different between the patient and control groups (p > 0.05). There was a statistical association between apnea-hypopnea index (AHI) and body mass index (BMI), and also between AHI and neck circumference (p < 0.001). There was no association among the genotypes and AHI, neck circumference, or BMI (p > 0.05). We found no association between MMP-9 -1562C > T SNP and OSAS. Studies to investigate the role of other polymorphisms and expression of MMP-9 gene will provide more information. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Fluorinated matrix metalloproteinases inhibitors--Phosphonate based potential probes for positron emission tomography.

    PubMed

    Beutel, Bernd; Daniliuc, Constantin G; Riemann, Burkhard; Schäfers, Michael; Haufe, Günter

    2016-02-15

    Fluorine-containing inhibitors of matrix metalloproteinases (MMPs) can serve as lead structures for the development of (18)F-labeled radioligands. These compounds might be useful as non-invasive imaging probes to characterize pathologies associated with increased MMP activity. Results with a series of fluorinated analogs of a known biphenyl sulfonamide inhibitor have shown that fluorine can be incorporated into two different positions of the molecular scaffold without significant loss of potency in the nanomolar range. Additionally, the potential of a hitherto unknown fluorinated tertiary sulfonamide as MMP inhibitor has been demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors.

    PubMed

    Floquet, Nicolas; Marechal, Jean-Didier; Badet-Denisot, Marie-Ange; Robert, Charles H; Dauchez, Manuel; Perahia, David

    2006-10-02

    We demonstrate the utility of normal mode analysis in correctly predicting the binding modes of inhibitors in the active sites of matrix metalloproteinases (MMPs). We show the accuracy in predicting the positions of MMP-3 inhibitors is strongly dependent on which structure is used as the target, especially when it has been energy minimized. This dependency can be overcome by using intermediate structures generated along one of the normal modes previously calculated for a given target. These results may be of prime importance for further in silico drug discovery.

  4. The Role of Microglia and Matrix Metalloproteinases Involvement in Neuroinflammation and Gliomas

    PubMed Central

    Könnecke, Helen; Bechmann, Ingo

    2013-01-01

    Matrix metalloproteinases (MMPs) are involved in the pathogenesis of neuroinflammatory diseases (such as multiple sclerosis) as well as in the expansion of malignant gliomas because they facilitate penetration of anatomical barriers (such as the glia limitans) and migration within the neuropil. This review elucidates pathomechanisms and summarizes the current knowledge of the involvement of MMPs in neuroinflammation and glioma, invasion highlighting microglia as major sources of MMPs. The induction of expression, suppression, and multiple pathways of function of MMPs in these scenarios will also be discussed. Understanding the induction and action of MMPs might provide valuable information and reveal attractive targets for future therapeutic strategies. PMID:24023566

  5. Matrix Metalloproteinase-9 Polymorphism 1562 C > T (rs3918242) Associated with Protection against Placental Malaria

    PubMed Central

    Apoorv, Thittayil Suresh; Babu, Phanithi Prakash; Meese, Stefanie; Gai, Prabhanjan P.; Bedu-Addo, George; Mockenhaupt, Frank P.

    2015-01-01

    Phagocytosis of malaria pigment (hemozoin) induces increased activity of matrix metalloproteinase (MMP)-9, an endopeptidase involved in cytokine regulation. In this study, we examined whether a common functional MMP-9 promoter polymorphism (rs3918242) affects Plasmodium falciparum infection in pregnancy. Eighteen percent of Ghanaian primiparae carried the minor T allele. It was associated with reduced odds of placental hemozoin and of placental as well as peripheral blood parasitemia. The results indicate that a common MMP-9 polymorphism protects against placental malaria indicating that this endopeptidase is involved in susceptibility to P. falciparum. PMID:26013370

  6. Matrix Metalloproteinases as a Therapeutic Target to Improve Neurologic Recovery After Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    patterns in a multicenter study of acute spinal cord injury . Spine 24S: S68–S86. 46. Zhang H, Chang M, Hansen CN, Basso DM, Noble-Haeusslein LJ (2011... Cervical Spinal Cord Injury : Opportunities to Enhance the Time to Definitive Treatment. J Neurotrauma 30: 487–491. MMP Inhibition in Spinal Cord Injured...are evaluating efficacy of GM6001, a matrix metalloproteinase (MMP) inhibitor in a murine model of spinal cord injury (UCSF) and in dogs (Texas A & M

  7. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye.

    PubMed

    Lanza, Nicole L; Valenzuela, Felipe; Perez, Victor L; Galor, Anat

    2016-04-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. However, the subjective symptoms of dry eye poorly correlate to the current gold standard for diagnostic tests, reflecting the need to develop better objective tests for the diagnosis of dry eye. This review considers the role of ocular surface matrix metalloproteinase 9 (MMP-9) in dry eye and the implications of a novel point-of-care test that measures MMP-9 levels, InflammaDry (RPS, Sarasota, FL) on choosing appropriate therapeutic treatments.

  8. Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization.

    PubMed

    Hosford, Gayle E; Fang, Xin; Olson, David M

    2004-07-01

    Matrix metalloproteinases (MMP) are likely effectors of normal lung development, especially branching morphogenesis, angiogenesis, and extracellular matrix degradation. Because hyperoxia exposure (>95% O(2)) from d 4 to 14 in newborn rat pups leads to arrest of alveolarization and mimics newborn chronic lung disease, we tested whether hyperoxia altered MMP-2 and -9 mRNA, protein, and enzymatic activity, and the mRNA and protein expression of the endogenous tissue inhibitor of MMP, TIMP-1. No changes due to hyperoxia exposure were observed in MMP-2 mRNA or pro-enzyme (72 kD) protein levels between d 6 and 14, although the overall protein mass and zymographic activity of the active (68 kD) enzyme were diminished (p < 0.05, ANOVA). However, hyperoxia significantly decreased levels of MMP-9 mRNA and pro-MMP-9 protein and diminished overall MMP-9 pro-enzyme activity. TIMP-1 mRNA was not elevated by hyperoxia until d 14, but protein levels were significantly (p < 0.001) elevated by hyperoxia from d 9 to 14. To estimate the potential of MMP inhibition to arrest alveolarization, administration of doxycycline (20 mg/kg, twice daily by gavage), a pan-MMP proteolysis inhibitor, arrested lung alveolarization. We conclude that hyperoxia decreases MMP-9 mRNA, protein, and activity and elevates TIMP-1 protein, and these changes have the potential to contribute to the arrest of normal lung development.

  9. Imbalances between Matrix Metalloproteinases (MMPs) and Tissue Inhibitor of Metalloproteinases (TIMPs) in Maternal Serum during Preterm Labor

    PubMed Central

    Tency, Inge; Verstraelen, Hans; Kroes, Ivo; Holtappels, Gabriële; Verhasselt, Bruno; Vaneechoutte, Mario

    2012-01-01

    Background Matrix metalloproteinases (MMPs) are involved in remodeling of the extracellular matrix (ECM) during pregnancy and parturition. Aberrant ECM degradation by MMPs or an imbalance between MMPs and their tissue inhibitors (TIMPs) have been implicated in the pathogenesis of preterm labor, however few studies have investigated MMPs or TIMPs in maternal serum. Therefore, the purpose of this study was to determine serum concentrations of MMP-3, MMP-9 and all four TIMPs as well as MMP:TIMP ratios during term and preterm labor. Methods A case control study with 166 singleton pregnancies, divided into four groups: (1) women with preterm birth, delivering before 34 weeks (PTB); (2) gestational age (GA) matched controls, not in preterm labor; (3) women at term in labor and (4) at term not in labor. MMP and TIMP concentrations were measured using Luminex technology. Results MMP-9 and TIMP-4 concentrations were higher in women with PTB vs. GA matched controls (resp. p = 0.01 and p<0.001). An increase in MMP-9:TIMP-1 and MMP-9:TIMP-2 ratio was observed in women with PTB compared to GA matched controls (resp. p = 0.02 and p<0.001) as well as compared to women at term in labor (resp. p = 0.006 and p<0.001). Multiple regression results with groups recoded as three key covariates showed significantly higher MMP-9 concentrations, higher MMP-9:TIMP-1 and MMP-9:TIMP-2 ratios and lower TIMP-1 and -2 concentrations for preterm labor. Significantly higher MMP-9 and TIMP-4 concentrations and MMP-9:TIMP-2 ratios were observed for labor. Conclusions Serum MMP-9:TIMP-1 and MMP-9:TIMP-2 balances are tilting in favor of gelatinolysis during preterm labor. TIMP-1 and -2 concentrations were lower in preterm gestation, irrespective of labor, while TIMP-4 concentrations were raised in labor. These observations suggest that aberrant serum expression of MMP:TIMP ratios and TIMPs reflect pregnancy and labor status, providing a far less invasive method to determine enzymes

  10. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.

    PubMed

    Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław

    2016-01-01

    The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

  11. Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13

    PubMed Central

    Attur, Mukundan; Yang, Qing; Shimada, Kohei; Tachida, Yuki; Nagase, Hiroyuki; Mignatti, Paolo; Statman, Lauren; Palmer, Glyn; Kirsch, Thorsten; Beier, Frank; Abramson, Steven B.

    2015-01-01

    We investigated the role of periostin, an extracellular matrix protein, in the pathophysiology of osteoarthritis (OA). In OA, dysregulated gene expression and phenotypic changes in articular chondrocytes culminate in progressive loss of cartilage from the joint surface. The molecular mechanisms underlying this process are poorly understood. We examined periostin expression by immunohistochemical analysis of lesional and nonlesional cartilage from human and rodent OA knee cartilage. In addition, we used small interfering (si)RNA and adenovirus transduction of chondrocytes to knock down and up-regulate periostin levels, respectively, and analyzed its effect on matrix metalloproteinase (MMP)-13, a disintegrin and MMP with thrombospondin motifs (ADAMTS)-4, and type II collagen expression. We found high periostin levels in human and rodent OA cartilage. Periostin increased MMP-13 expression dose [1–10 µg/ml (EC50 0.5–1 μg/ml)] and time (24–72 h) dependently, significantly enhanced expression of ADAMTS4 mRNA, and promoted cartilage degeneration through collagen and proteoglycan degradation. Periostin induction of MMP-13 expression was inhibited by CCT031374 hydrobromide, an inhibitor of the canonical Wnt/β-catenin signaling pathway. In addition, siRNA-mediated knockdown of endogenous periostin blocked constitutive MMP-13 expression. These findings implicate periostin as a catabolic protein that promotes cartilage degeneration in OA by up-regulating MMP-13 through canonical Wnt signaling.—Attur, M., Yang, Q., Shimada, K., Tachida, Y., Nagase, H., Mignatti, P., Statman, L., Palmer, G., Kirsch, T., Beier, F., Abramson, A. B. Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13. PMID:26092928

  12. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity

    PubMed Central

    Meszaros, Evan

    2012-01-01

    Primary osteoarthritis (OA) is a musculoskeletal disorder of unknown etiology. OA is characterized by an imbalance between anabolism and catabolism in, and altered homeostasis of articular cartilage. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif are upregulated in OA joints. Extracellular matrix (ECM) proteins are critical for resistance to compressive forces and for maintaining the tensile properties of the tissue. Tissue inhibitor of metalloproteinases (TIMPs) is the endogenous inhibitor of MMPs, but in OA, TIMPs do not effectively neutralize MMP activity. Upregulation of MMP gene expression occurs in OA in a milieu of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor α. Presently, the medical therapy of OA includes mainly nonsteroidal anti-inflammatory drugs and corticosteroids which dampen pain and inflammation but appear to have little effect on restoring joint function. Experimental interventions to restore the imbalance between anabolism and catabolism include small molecule inhibitors of MMP subtypes or inhibitors of the interaction between IL-1 and its receptor. Although these agents have some positive effects on reducing MMP subtype activity they have little efficacy at the clinical level. MMP-9 is one MMP subtype implicated in the degradation of articular cartilage ECM proteins. MMP-9 was found in OA synovial fluid as a complex with neutrophil gelatinase-associated lipocalin (NGAL) which protected MMP-9 from autodegradation. Suppressing NGAL synthesis or promoting NGAL degradation may result in reducing the activity of MMP-9. We also propose initiating a search for enzyme–protein interactions to dampen other MMP subtype activity which could suppress ECM protein breakdown. PMID:23342237

  13. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives.

    PubMed

    Zhang, Shan-chuan; Kern, Matthias

    2009-12-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength. Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhesives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability.

  14. Matrix metalloproteinases: a role in the contraction of vitreo-retinal scar tissue.

    PubMed

    Sheridan, C M; Occleston, N L; Hiscott, P; Kon, C H; Khaw, P T; Grierson, I

    2001-10-01

    The most common cause of failure of retinal reattachment surgery is formation of fibrocellular contractile membranes on both surfaces of the neuroretina. This intraocular fibrosis, known as proliferative vitreoretinopathy, results in a blinding tractional retinal detachment because of the contractile nature of the membrane. Contractility is a cell-mediated event that is thought to be dependent on locomotion and adhesion to the extracellular matrix. Interactions between cells and the extracellular matrix can be influenced by matrix metalloproteinases (MMPs) and we investigated the role of MMPs in two in vitro models (two- and three-dimensional) of human retinal pigment epithelial (RPE) cell-mediated contraction. MMP activity was detected using enzyme-linked immunosorbent assays and zymography techniques that revealed MMP-1, -2, -3, and -9 positivity during the collagen matrix contraction assays. RPE-populated collagen matrix contraction (three-dimensional) was inhibited using a cocktail of anti-MMP antibodies and with Galardin (a broad-spectrum MMP inhibitor). Galardin inhibition was dose-dependent, reversible, and dependent on cell number. MMP inhibitors had no effect on contraction when RPEs were seeded on two-dimensional collagen matrices or on cellular adhesion to collagen type I. Our results suggest that MMP activity may be required for three-dimensional but not two-dimensional RPE-collagen matrix contraction.

  15. The Role of Host-derived Dentinal Matrix Metalloproteinases in Reducing Dentin Bonding of Resin Adhesives

    PubMed Central

    Zhang, Shan-chuan; Kern, Matthias

    2009-01-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength. Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modern self-etch and etch-and-rinse adhesives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability. PMID:20690420

  16. [Expression of matrix metalloproteinases-9 and tissue inhibitors of matrix metalloproteinases-1 in connective tissue of vaginal wall of women with stress urinary incontinence].

    PubMed

    Zhang, Qun-Fang; Song, Yan-Feng; Zhu, Zhong-Yong

    2006-12-01

    To study semi-quantitatively mRNA expression of matrix metalloproteinase-9 (MMP-9) and its inhibitor, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), in vaginal wall connective tissue in women with stress urinary incontinence (SUI) compared to continent controls, and to explore the relationship between MMP-9, TIMP-1 and SUI. Vaginal wall tissues were obtained from 24 women with SUI who were followed-up (12 cases are > 60 years old and 12 cases < or = 60 years old). Seven patients undergoing total hysterectomy for carcinoma in situ of cervix without urinary incontinence served as control group. RNA was extracted and quantified. Semi-quantitative competitive reverse transcription was carried out with oligo-nucleotide primers to quantify MMP-9 and TIMP-1 mRNA expression. We used GeneSnap to analyze the data. MMP-9 in three groups (> 60, < or = 60 years and control) was 0.56 +/- 0.20, 0.56 +/- 0.19, 0.37 +/- 0.18, significantly decreased (P < 0.05). There was no difference between > 60 and < or = 60 year age groups (P > 0.05). TIMP-1 in three groups was 0.23 +/- 0.11, 0.31 +/- 0.12, 0.41 +/- 0.13, significantly increased (P < 0.05). There was a great difference between > 60 and < or = 60 year age groups in TIMP expression (P > 0.05). The ratio of MMP-9/TIMP-1 in > 60, < or = 60 year age groups and control group was 2.49 +/- 1.82, 1.82 +/- 1.58, 0.90 +/- 1.38, significantly decreased (P < 0.05). Stress urinary incontinent women demonstrate a significant increase in MMP-9 mRNA expression and significant decrease in TIMP-1 mRNA expression. In SUI patients, proportion of MMP-9 and TIMP-1 was overbalanced. Both these findings are consistent with increased collagen breakdown and may play an important role in the onset and development of SUI.

  17. Matrix Metalloproteinases and their Inhibitors in Vascular Remodeling and Vascular Disease

    PubMed Central

    Raffetto, Joseph D.; Khalil, Raouf A.

    2008-01-01

    Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade various components of the extracellular matrix (ECM). Members of the MMP family include collagenases, gelatinases, stromelysins, matrilysins and membrane-type MMPs. ProMMPs are cleaved into active forms that promote degradation of ECM proteins. Also, recent evidence suggests direct or indirect effects of MMPs on ion channels in the endothelium and vascular smooth muscle, and on other mechanisms of vascular relaxation/contraction. Endogenous tissue inhibitors of metalloproteinases (TIMPs) reduce excessive proteolytic ECM degradation by MMPs. The balance between MMPs and TIMPs plays a major role in vascular remodeling, angiogenesis, and the uterine and systemic vasodilation during normal pregnancy. An imbalance in the MMPs/TIMPs activity ratio may underlie the pathogenesis of vascular diseases such as abdominal aortic aneurysm, varicose veins, hypertension and preeclampsia. Downregulation of MMPs using genetic manipulations of endogenous TIMPs, or synthetic pharmacological inhibitors such as BB-94 (Batimastat) and doxycycline, and Ro-28-2653, a more specific inhibitor of gelatinases and membrane type 1-MMP, could be beneficial in reducing the MMP-mediated vascular dysfunction and the progressive vessel wall damage associated with vascular disease. PMID:17678629

  18. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart

    PubMed Central

    Kwak, Hyo-Bum; Kim, Jong-hee; Joshi, Kumar; Yeh, Alvin; Martinez, Daniel A.; Lawler, John M.

    2011-01-01

    Aging impairs function in the nonischemic heart and is associated with mechanical remodeling. This process includes accumulation of collagen (i.e., fibrosis) and dysregulation of active matrix metalloproteinases (MMPs). Exercise training (ET) improves cardiac function, but the pathways of protection remain poorly understood. Young (3 mo) and old (31 mo) FBNF1 rats were assigned into sedentary and exercise groups, with ET group rats training on a treadmill 45 min/d, 5 d/wk for 12 wk. Nonlinear optical microscopy (NLOM), histology, immunohistochemistry (IHC), and Western blot analyses were performed on the left ventricle and septum. NLOM, IHC, and histological imaging revealed that ET reduced age-associated elevation of collagen type I fibers. Active MMP-1, active MMP-2, and MMP-14 in the ECM fraction of the left ventricle were reduced by aging, an effect abrogated by ET. Tissue inhibitor of MMP (TIMP-1) was elevated with age but protected by ET. Transforming growth factor-β (TGF-β), upstream regulator of TIMP-1, increased with age but was attenuated by ET. Therefore, exercise training could protect the aging heart against dysregulation of MMPs and fibrosis by suppressing elevation of TIMP-1 and TGF-β.—Kwak, H.-B., Kim, J.-H., Joshi, K., Yeh, A., Martinez, D. A., Lawler, J. M. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. PMID:21148111

  19. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants.

    PubMed

    Juica, Natalia E; Rodas, Paula I; Solar, Paula; Borda, Paula; Vargas, Renato; Muñoz, Cristobal; Paredes, Rodolfo; Christodoulides, Myron; Velasquez, Luis A

    2017-01-01

    Background:Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection.

  20. Prophylactic sesame oil attenuates sinusoidal obstruction syndrome by inhibiting matrix metalloproteinase-9 and oxidative stress.

    PubMed

    Periasamy, Srinivasan; Yang, Shan-Shan; Chen, Shin-Yi; Chang, Chih-Ching; Liu, Ming-Yie

    2013-07-01

    Sinusoidal obstruction syndrome (SOS) occurs in patients undergoing hematopoietic cell transplantation and chemotherapy. The chemotherapeutic drugs oxaliplatin and cyclophosphamide cause SOS. Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its antioxidant property. The authors investigated the protective effect of prophylactic sesame oil against monocrotaline-induced SOS in rats. Male Sprague-Dawley rats were gavaged with a single dose of sesame oil (0.5, 1, 2, or 4 mL/kg). One hour later, those rats were gavaged with monocrotaline (90 mg/kg) to induce SOS. Control rats were treated with saline only. Aspartate transaminase, alanine transaminase, laminin, collagen, myeloperoxidase, nitrate content, lipid peroxidation, glutathione levels, matrix metalloproteinase (MMP)-9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed 48 hours after the monocrotaline gavage. All tested parameters except TIMP-1, laminin, collagen, and glutathione were higher in monocrotaline-treated rats than in saline-only-treated control rats. In sesame oil-treated rats, all tested parameters except TIMP-1, laminin, collagen, and glutathione were significantly attenuated compared with monocrotaline-only-treated rats. Sesame oil downregulated MMP-9 expression but upregulated TIMP-1 expression in monocrotaline-only-treated rats. In addition, a histological analysis of liver tissue samples showed that sesame oil showed significant protection. A single prophylactic dose of sesame oil protects against SOS by downregulating MMP-9 expression, upregulating TIMP-1 expression, and inhibiting oxidative stress.

  1. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants

    PubMed Central

    Juica, Natalia E.; Rodas, Paula I.; Solar, Paula; Borda, Paula; Vargas, Renato; Muñoz, Cristobal; Paredes, Rodolfo; Christodoulides, Myron; Velasquez, Luis A.

    2017-01-01

    Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection. PMID:28932707

  2. Acute myocardial infarction is reflected in salivary matrix metalloproteinase-8 activation level.

    PubMed

    Buduneli, Eralp; Mäntylä, Päivi; Emingil, Gülnur; Tervahartiala, Taina; Pussinen, Pirkko; Barış, Nezihi; Akıllı, Azem; Atilla, Gül; Sorsa, Timo

    2011-05-01

    The aim of this study is to compare salivary and serum biomarker levels and degrees of matrix metalloproteinase (MMP) activation between patients with acute myocardial infarction (AMI) and systemically healthy patients (non-AMI) with similar periodontal conditions. A total of 92 patients (47 AMI and 28 non-AMI patients with gingivitis or periodontitis; and 17 systemically and periodontally healthy patients as a control group) were recruited. Clinical periodontal measurements were recorded; stimulated whole saliva and serum samples were collected. AMI patients were clinically examined within 3 to 4 days after admission to the coronary care unit. Saliva samples were analyzed for levels of MMP-8, MMP-7, and tissue inhibitor of matrix metalloproteinase (TIMP)-1. Serums were tested for MMP-8, MMP-9, TIMP-1, and TIMP-2 levels by immunofluorometric assay and enzyme-linked immunosorbent assay. Molecular forms and degree of activation of salivary MMP-8, MMP-9, and MMP-13 were analyzed by computer-scanned immunoblots. Total salivary MMP-8 assessed by immunofluorometric assay method and immunoblot densitometric units was higher in non-AMI than in AMI patients' saliva, but a significantly higher percentage of AMI patients' MMP-8 was activated polymorphonuclear leukocyte (PMN) type (P <0.001) regardless of periodontal diagnosis.Serum MMP-8, MMP-9, and TIMP-1 levels were significantly higher in AMI (for all markers and all comparisons,P <0.05). Characteristic for AMI was dominance of active PMN MMP-8 in saliva [corrected].

  3. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization

    PubMed Central

    Di, Yu; Nie, Qing-Zhu; Chen, Xiao-Long

    2016-01-01

    AIM To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. METHODS C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. RESULTS Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). CONCLUSION These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP. PMID:27366678

  4. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    PubMed

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  5. Extracellular matrix metalloproteinase inducer is increased in smokers' bronchoalveolar lavage fluid.

    PubMed

    Betsuyaku, Tomoko; Tanino, Mishie; Nagai, Katsura; Nasuhara, Yasuyuki; Nishimura, Masaharu; Senior, Robert M

    2003-07-15

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also called basigin, is present in the lung during development, but its expression in normal adult lung is minimal. Increases of EMMPRIN have been found in various forms of experimental lung injury. To determine whether EMMPRIN might be involved in alveolar injury/repair associated with smoking, we developed an ELISA for EMMPRIN and applied it to bronchoalveolar lavage fluids from never-smokers (n = 7), former smokers (n = 16), and current smokers (n = 58). The smoker groups included subjects with emphysema, as determined by high-resolution chest computed tomography. EMMPRIN levels were significantly elevated in current and former smokers (315 +/- 20 and 175 +/- 15 pg/ml SEM, respectively, compared with 31 +/- 7 pg/ml in never-smokers), but the EMMPRIN levels of smokers with emphysema were not different from smokers without emphysema. Immunohistochemistry of smokers' lung tissue showed EMMPRIN in bronchiolar epithelium and alveolar macrophages, but EMMPRIN mRNA in alveolar macrophages was not different between current and never-smokers. Matrix metalloproteinase-1 was also detectable in the bronchoalveolar lavage fluid from some smokers but not in never-smokers. These findings indicate that smoking is associated with increased intrapulmonary EMMPRIN. Whether EMMPRIN is involved in smoking-induced lung pathology remains to be determined.

  6. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  7. Prenatal urinary matrix metalloproteinase profiling as a potential diagnostic tool in fetal obstructive uropathy.

    PubMed

    Nicksa, Grace A; Yu, David C; Curatolo, Adam S; McNeish, Brendan L; Barnewolt, Carol E; Valim, Clarissa; Buchmiller, Terry L; Moses, Marsha A; Fauza, Dario O

    2010-01-01

    The diagnostic evaluation, patient stratification, and prenatal counseling for congenital obstructive uropathy remain sub-optimal. Matrix metalloproteinase (MMP) expression profiles are emerging as a valuable diagnostic tool in assorted disease processes. We sought to determine whether congenital obstructive uropathy impacts MMP expression in fetal urine. Fetal lambs (n = 25) were divided in two groups: group I (n = 12) underwent a sham operation and group II (n = 13) underwent creation of a complete urinary tract obstruction. Gelatin zymography panels for 4 MMP species were performed on fetal urine in both groups at comparable times post-operatively. Statistical analysis was by the Fisher's exact test (P < .05). Overall fetal survival was 80% (20/25). A variety of significant differences in MMP expression between the two groups were identified. The following profiles were present only in obstructed animals: any MMP other than MMP-2 (P = .029), including any MMP other than 63 kDa and 65 kDa (P = .009); 2 or more MMPs excluding MMP-2s (0.029); and 3 or more MMPs (P = .029). Limited matrix metalloproteinase expression is present in the urine of normal ovine fetuses. Fetal obstructive uropathy impacts urinary MMP expression in various distinguishable patterns. Prenatal urinary MMP profiling may become a practical and valuable diagnostic tool in the evaluation of congenital obstructive uropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS.

    PubMed

    Aschner, Yael; Zemans, Rachel L; Yamashita, Cory M; Downey, Gregory P

    2014-10-01

    Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.

  9. Changes in the Expression and Protein Level of Matrix Metalloproteinases after Exposure to Waterpipe Tobacco Smoke

    PubMed Central

    Khabour, Omar; Alzoubi, Karem H.; Abu Thiab, Tuqa M.; Al-Husein, Belal A.; Eissenberg, Thomas; Shihadeh, Alan

    2016-01-01

    Waterpipe smoking has become a worldwide epidemic with health consequences that only now are beginning to be understood fully. Because waterpipe use involves inhaling a large volume of toxicant-laden smoke that can cause inflammation, some health consequences may include inflammation-mediated lung injury. Excess matrix metalloproteinase expression is a key step in the etiology of toxicant exposure-driven inflammation and injury. In this study, changes in the level and mRNA of major matrix metalloproteinases (MMP-1, -9 and -12) in the lungs of mice following exposure to waterpipe smoke were investigated. Balb/c mice were exposed to waterpipe smoke for one hour daily, over a period of two or eight weeks. Control mice were exposed to fresh air only. ELISA and Real-Time PCR techniques were used to determine the protein and mRNA levels of MMP1, 9 and 12 respectively in the lungs. Our findings showed that MMP1, 9 and 12 levels in the lung significantly increased after both two (P < 0.05) and eight weeks (P < 0.01) exposures. Similarly, RT-PCR findings showed that mRNA of those proteinases significantly increased following two (P < 0.01) and eight weeks (P < 0.001) exposures. In conclusion, waterpipe smoking is associated strongly with lung injury as measured by elevation in the expression of MMPs in the lung tissue. PMID:26484568

  10. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases.

    PubMed

    Díaz, Natalia; Suarez, Dimas; Sordo, Tomás L

    2006-11-30

    X-ray analyses of matrix metalloproteinases (MMPs) have shown that the catalytic zinc ion (Zn1) can bind to one to three water molecules in addition to three conserved histidine residues. To estimate the relative stability of the possible Zn1 coordination structures in the active site of the MMPs, we carry out computational analyses on the coordination environment of the Zn1 ion in the gelatinase A enzyme (or matrix metalloproteinase 2; MMP-2). Four-, five-, and six-coordinated complexes representative of the Zn1 site are fully characterized by means of quantum mechanical (QM) methodologies. On one hand, B3LYP/LACVP* minimizations of various cluster models of the MMP-2 active site show that the trigonal bipyramidal geometry is energetically favored in the gas phase and that continuum solvent effects stabilize preferentially the tetrahedral complexes. On the other hand, B3LYP/OPLS-AA hybrid QM/molecular mechanical calculations in the solvated catalytic domain of the MMP-2 enzyme complemented with electrostatic Poisson-Boltzmann calculations show that the mature enzyme presents most likely a Zn1 ion coordinated by three histidine residues and two water molecules, while the active site glutamic acid is negatively charged. In consonance with X-ray diffraction data, other possible Zn1 configurations, a six-coordinated structure with Zn1-water as well as four- and five-coordinated complexes with a Zn1-bound hydroxide, are predicted to be very close in energy.

  11. HIV-1-infected macrophages induce astrogliosis by SDF-1{alpha} and matrix metalloproteinases

    SciTech Connect

    Okamoto, Mika; Wang, Xin; Baba, Masanori . E-mail: baba@m.kufm.kagoshima-u.ac.jp

    2005-11-04

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1{alpha} or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1{alpha} production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1{alpha} was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1{alpha} and MMP production, which implies a mechanism of astrogliosis in HAD.

  12. Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond.

    PubMed

    Cieplak, Piotr; Strongin, Alex Y

    2017-03-24

    Understanding the physiological role of any protease requires identification of both its cleavage substrates and their relative cleavage efficacy as compared with other substrates and other proteinases. Our review manuscript is focused on the cleavage preferences of the individual matrix metalloproteinases (MMPs) and the cleavage similarity and distinction that exist in the human MMP family. The recent in-depth analysis of MMPs by us and many others greatly increased knowledge of the MMP biology and structural-functional relationships among this protease family members. A better knowledge of cleavage preferences of MMPs has led us to the development of the prediction tools that are now capable of the high throughput reliable prediction and ranking the MMP cleavage sites in the peptide sequences in silico. Our software unifies and consolidates volumes of the pre-existing data. Now this prediction-ranking in silico tool is ready to be used by others. The software we developed may facilitate both the identification of the novel proteolytic regulatory pathways and the discovery of the previously uncharacterized substrates of the individual MMPs. Because now the MMP research may be based on the mathematical probability parameters rather than on either random luck or common sense alone, the researchers armed with this novel in silico tool will be better equipped to fine-tune or, at least, to sharply focus their wet chemistry experiments. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.

  13. Immunohistochemical expression of matrix metalloproteinases in photodamaged skin by photodynamic therapy.

    PubMed

    Almeida Issa, M C; Piñeiro-Maceira, J; Farias, R E; Pureza, M; Raggio Luiz, R; Manela-Azulay, M

    2009-09-01

    Photodynamic therapy (PDT) has been described for photoageing treatment, but its mechanism of action is not clarified. Although PDT-induced matrix metalloproteinase (MMP) expression and collagen production have been studied in normal skin and in inflammatory disease, there is no report about the effect of PDT on the extracellular matrix in photodamaged skin. To evaluate skin remodelling induced by methyl aminolaevulinate (MAL)-PDT in photodamaged skin by histological and immunohistochemical studies. Fourteen patients were treated with two sessions of MAL-PDT. The light source was a light-emitting diode (635 nm, 37 J cm(-2)). Skin biopsies were performed in all patients before and at 3 and 6 months after treatment. Immunohistochemical studies evaluated collagen types I and III, MMP-1, MMP-3, MMP-7, MMP-9, MMP-12 and tissue inhibitor of metalloproteinases-1. Global improvement in photodamaged skin was observed. A significant increase in expression of MMP-9 in the dermis was detected at 3 months after treatment (P = 0.002). Significant increases in the expression of collagen type I at 3 months (P = 0.002) and at 6 months after treatment (P = 0.001) were also observed. Skin remodelling induced by MAL-PDT was demonstrated in photodamaged skin. Two sessions of MAL-PDT increases immunohistochemical expression of MMP-9 in the dermis at 3 months after treatment, and also of collagen type I.

  14. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review.

    PubMed

    Christensen, Sara; Purslow, Peter P

    2016-09-01

    Matrix metalloproteinases (MMPs) are a group of enzymes that degrade extracellular matrix components but are also important signaling molecules that regulate many biological processes including muscle, adipose and connective tissue development. Most recently it has been discovered that MMPs act as intracellular signaling molecules inducing gene expression and altering related proteins in the nucleus. Several single nucleotide polymorphisms of MMPs and their inhibitors are known to exist and most of the research on MMPs to date has focused on their activity in relation to human health and disease. Nevertheless there is a growing body of evidence identifying important roles of MMPs as regulators of myogenesis, fibrogenesis and adipogenesis. The aim of this review is to highlight the currently known functions of the MMPs that have a direct bearing on the deposition of meat components and their relationship with meat quality. Some central pathways by which these enzymes can affect the tenderness, the amount and type of fatty acids are highlighted.

  15. Fluctuating Roles of Matrix Metalloproteinase-9 in Oral Squamous Cell Carcinoma

    PubMed Central

    Vilen, Suvi-Tuuli; Salo, Tuula; Sorsa, Timo; Nyberg, Pia

    2013-01-01

    One hallmark of cancer is the degradation of the extracellular matrix (ECM), which is caused by proteinases. In oral cancers, matrix metalloproteinases (MMPs), especially MMP-9, are associated with this degradation. MMPs break down the ECM allowing cancer to spread; they also release various factors from their cryptic sites, including cytokines. These factors modulate cell behavior and enhance cancer progression by regulating angiogenesis, migration, proliferation, and invasion. The development of early metastases is typical for oral cancer, and increased MMP-9 expression is associated with a poor disease prognosis. However, many studies fail to relate MMP-9 expression with metastasis formation. Contrary to earlier models, recent studies show that MMP-9 plays a protective role in oral cancers. Therefore, the role of MMP-9 is complicated and may fluctuate throughout the different types and stages of oral cancers. PMID:23365550

  16. Matrix metalloproteinases: a review of their structure and role in systemic sclerosis.

    PubMed

    Peng, Wen-jia; Yan, Jun-wei; Wan, Ya-nan; Wang, Bing-xiang; Tao, Jin-hui; Yang, Guo-jun; Pan, Hai-feng; Wang, Jing

    2012-12-01

    Matrix metalloproteinases (MMPs) are the main enzymes involved in arterial wall extracellular matrix (ECM) degradation and remodeling, whose activity has been involved in various normal and pathologic processes, such as inflammation, fibrosis. As a result, the MMPs have come to consider as both therapeutic targets and diagnostic tools for the treatment and diagnosis of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Systemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by an excessive over-production of collagen and other ECM, resulting in skin thickening and fibrosis of internal organs. In recent years, abnormal expression of MMPs has been demonstrated with the pathogenesis of SSc, and the association of different polymorphisms on MMPs genes with SSc has been extensively studied. This review describes the structure, function and regulation of MMPs and shortly summarizes current understanding on experimental findings, genetic associations of MMPs in SSc.

  17. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond.

    PubMed

    Freitas-Rodríguez, Sandra; Folgueras, Alicia R; López-Otín, Carlos

    2017-11-01

    Proteases are a set of enzymes that have been involved in multiple biological processes throughout evolution. Among them, extracellular matrix (ECM) remodeling has emerged as one of the most relevant functions exerted by these proteins, being essential in the regulation of critical events such as embryonic development or tissue homeostasis. Hence, it is not surprising that dysregulation in any protease function that affects ECM homeostasis may contribute to the aging process. Matrix metalloproteinases (MMPs) are one of the most important families of proteases involved in the tight control of ECM remodeling over time. In this review, we will discuss how MMPs and other proteases alter ECM composition and mechanical properties in aging, thereby affecting stem cell niches and the development of senescent phenotypes. Finally, we will summarize recent findings that associate MMPs with the development of age-related diseases, such as neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In vivo detecting matrix metalloproteinase (MMP) activity by a genetically engineered fluorescent probe

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Su, Ting; Luo, Qingming

    2007-02-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) enhances tumor invasion and metastasis. To monitor MMP activity, we constructed plasmid that encoded a fluorescent sensor DC, in which an MMP substrate site (MSS) is sandwiched between DsRed2 and ECFP. MMPs are secretory proteins, only acting on the outside of cells; hence, an expressing vector was used that displayed the fluorescent sensor on the cellular surface. The DC was expressed in cells with high secretory MMP, so MSS was cleaved by MMP. Also, GM6001, an MMP inhibitor, causes DsRed2 signals to increase in living cells and on the chick embryo chorioallantoic membrane (CAM). Thus, this fluorescent sensor was able to sensitively monitor MMP activation in vivo. Potential applications for this sensor include high-throughput screening for MMP inhibitors for anti-cancer research, and detailed analysis of the effects of MMP inhibitors.

  19. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy

    PubMed Central

    Bunn, R. Clay; Fowlkes, John L.

    2008-01-01

    Matrix metalloproteinases (MMPs), a family of proteinases including collagenases, gelatinases, stromely-sins, matrilysins, and membrane-type MMPs, affect the breakdown and turnover of extracellular matrix (ECM).Moreover, they are major physiologic determinants of ECM degradation and turnover in the glomerulus. Renal hypertrophy and abnormal ECM deposition are hallmarks of diabetic nephropathy (DN), suggesting that altered MMP expression or activation contributes to renal injury in DN. Herein, we review and summarize recent information supporting a role for MMPs in the pathogenesis of DN. Specifically, studies describing dysregulated activity of MMPs and/or their tissue inhibitors in various experimental models of diabetes, including animal models of type 1 or type 2 diabetes, clinical investigations of human type 1 or type 2 diabetes, and kidney cell culture studies are reviewed. PMID:18972226

  20. Serum levels of matrix metalloproteinase-13 in patients with eosinophilic fasciitis.

    PubMed

    Asano, Yoshihide; Ihn, Hironobu; Jinnin, Masatoshi; Tamaki, Zenshiro; Tamaki, Kunihiko; Sato, Shinichi

    2014-08-01

    Matrix metalloproteinase-13 (MMP-13), a member of the collagenase family, has been implicated in the pathogenesis of connective tissue diseases characterized by extracellular matrix remodeling. Since serum MMP-13 levels reflect disease severity of systemic sclerosis and localized scleroderma, we evaluated the clinical significance of serum MMP-13 levels in eosinophilic fasciitis (EF). All the EF patients had serum MMP-13 levels lower than the mean - 2SD of healthy controls. Serum MMP-13 levels were also significantly decreased in EF patients compared with diffuse cutaneous systemic sclerosis, limited cutaneous systemic sclerosis, and generalized morphea patients. Although serum MMP-13 levels did not reflect any clinical and serological features of EF, these results indicate that MMP-13 may be involved in the development of this disease. © 2014 Japanese Dermatological Association.

  1. Inflammation and breast cancer. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer

    PubMed Central

    Hojilla, Carlo V; Wood, Geoffrey A; Khokha, Rama

    2008-01-01

    Two rapidly evolving fields are converging to impact breast cancer: one has identified novel substrates of metalloproteinases that alter immune cell function, and the other has revealed a role for inflammation in human cancers. Evidence now shows that the mechanisms underlying these two fields interact in the context of breast cancer, providing new opportunities to understand this disease and uncover novel therapeutic strategies. The metalloproteinase class of enzymes is well studied in mammary gland development and physiology, but mostly in the context of extracellular matrix modification. Aberrant metalloproteinase expression has also been implicated in breast cancer progression, where these genes act as tumor modifiers. Here, we review how the metalloproteinase axis impacts mammary physiology and tumorigenesis and is associated with inflammatory cell influx in human breast cancer, and evaluate its potential as a regulator of inflammation in the mammary gland. PMID:18394187

  2. Inhibitory effect of acetylsalicylic acid on matrix metalloproteinase - 2 activity in human endothelial cells exposed to high glucose.

    PubMed

    Nicolae, Manuela; Tircol, Magdalena; Alexandru, Dorin

    2005-01-01

    Matrix metalloproteinases play a major role in the process of angiogenesis, an important feature of diabetes complications, cancer or rheumatoid arthritis. High glucose concentrations were reported to augment metalloproteinase-2 secretion in some cell types. In the present study we investigated the influence of acetylsalicylic acid on metalloproteinase- 2 secretion and expression in endothelial cells cultured for one week in high glucose conditions (25 mM and 33 mM). Metalloproteinase-2 activity was evidenced by gel zymography, the protein was identified by Western blotting, and the gene expression was quantitated by RT-PCR. The results indicated a marked inhibitory effect of acetylsalicylic acid at gene expression level (approximately 43%) and also at secretion level in samples of conditioned media (approximately 30%) and cellular homogenates (approximately 70%). This may suggest that acetylsalicylic acid could have a beneficial effect in preventing the angiogenic process that appears in diabetes complications.

  3. Chemically modified tetracycline (CMT-8) and estrogen promote wound healing in ovariectomized rats: effects on matrix metalloproteinase-2, membrane type 1 matrix metalloproteinase, and laminin-5 gamma2-chain.

    PubMed

    Pirilä, Emma; Parikka, Mataleens; Ramamurthy, Nungavarm S; Maisi, Päivi; McClain, Steve; Kucine, Allan; Tervahartiala, Taina; Prikk, Kaiu; Golub, Lorne M; Salo, Tuula; Sorsa, Timo

    2002-01-01

    Estrogen deficiency is associated with impaired cutaneous wound healing. Remodeling of the extracellular matrix in wound healing involves the action of matrix metalloproteinases on basement membrane zone components, especially laminin-5. We studied the effects of estrogen and a potent matrix metalloproteinase inhibitor, chemically modified non-antimicrobial tetracycline, CMT-8, on wound healing in ovariectomized rats. At the tissue level, laminin-5 gamma2-chain expression was decreased and the migration-inductive 80 kDa form of laminin-5 gamma2-chain was absent in ovariectomized rats when compared with sham and CMT-8- or estrogen-treated ovariectomized animals as detected by Western blotting. The highest levels of gelatinolytic activity (matrix metalloproteinase-2 and -9) were found in sham animals. Levels were reduced in ovariectomized rats and were lowest after treating ovariectomized rats with CMT-8 or estrogen as analyzed by functional activity assay and zymography. The total amount of membrane type 1-matrix metalloproteinase was unchanged in all groups. We conclude that CMT-8 and estrogen can promote wound healing in ovariectomized rats, not only by normalizing wound bed total collagen content and structure, but also by recovering the expression and processing of key molecules in wound healing, i.e., laminin-5 gamma2-chain. This study shows, for the first time, the role of estrogen and CMT-8 in laminin-5 gamma2-chain modulation in vivo.

  4. Matrix metalloproteinase-13 expression in the progression of colorectal adenoma to carcinoma : Matrix metalloproteinase-13 expression in the colorectal adenoma and carcinoma.

    PubMed

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira K; Abdel-Aziz, Azza

    2014-06-01

    Most colorectal carcinomas (CRCs) are considered to arise from conventional adenoma based on the concept of the adenoma-carcinoma sequence. Matrix metalloproteinases (MMPs) are known to be overexpressed as normal mucosa progresses to adenomas and carcinomas. There has been little previous investigation about MMP-13 expression in adenoma-carcinoma sequence. In this study, we aimed to investigate the immunohistochemical expression of MMP-13 in colorectal adenoma and CRC specimens using tissue microarray (TMA) technique. A total of 40 cases of CRC associated with adenoma were collected from files of the Pathology laboratory at Mansoura Gastroenterology Center between January 2007 and January 2012. Sections from TMA blocks were prepared and stained for MMP-13. Immunoreactivity to MMP-13 staining was localized to the cytoplasm of mildly, moderately, and severely dysplatic cells of adenomas and CRC tumor cells that were either homogenous or heterogeneous. There was no significant difference in MMP-13 expression between adenomas and CRCs either non-mucinous or mucinous. Adenomas with high MMP-13 expression were significantly associated with moderate to marked degree of inflammatory cellular infiltrate and presence of familial adenomatous polyps. In conclusion, MMP-13 may be a potential biological marker of early tumorigenesis in the adenoma-carcinoma sequence.

  5. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    PubMed

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  6. Reactive site mutations in tissue inhibitor of metalloproteinase-3 disrupt inhibition of matrix metalloproteinases but not tumor necrosis factor-alpha-converting enzyme.

    PubMed

    Wei, Shuo; Kashiwagi, Masahide; Kota, Smitha; Xie, Zhihong; Nagase, Hideaki; Brew, Keith

    2005-09-23

    Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.

  7. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease

    PubMed Central

    MacColl, Elisabeth

    2015-01-01

    Lower-extremity veins have efficient wall structure and function and competent valves that permit upward movement of deoxygenated blood toward the heart against hydrostatic venous pressure. Matrix metalloproteinases (MMPs) play an important role in maintaining vein wall structure and function. MMPs are zinc-binding endopeptidases secreted as inactive pro-MMPs by fibroblasts, vascular smooth muscle (VSM), and leukocytes. Pro-MMPs are activated by various activators including other MMPs and proteinases. MMPs cause degradation of extracellular matrix (ECM) proteins such as collagen and elastin, and could have additional effects on the endothelium, as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. Increased lower-extremity hydrostatic venous pressure is thought to induce hypoxia-inducible factors and other MMP inducers/activators such as extracellular matrix metalloproteinase inducer, prostanoids, chymase, and hormones, leading to increased MMP expression/activity, ECM degradation, VSM relaxation, and venous dilation. Leukocyte infiltration and inflammation of the vein wall cause further increases in MMPs, vein wall dilation, valve degradation, and different clinical stages of chronic venous disease (CVD), including varicose veins (VVs). VVs are characterized by ECM imbalance, incompetent valves, venous reflux, wall dilation, and tortuosity. VVs often show increased MMP levels, but may show no change or decreased levels, depending on the VV region (atrophic regions with little ECM versus hypertrophic regions with abundant ECM) and MMP form (inactive pro-MMP versus active MMP). Management of VVs includes compression stockings, venotonics, and surgical obliteration or removal. Because these approaches do not treat the causes of VVs, alternative methods are being developed. In addition to endogenous tissue inhibitors of MMPs, synthetic MMP inhibitors have been developed, and their effects in the treatment of VVs need to be examined. PMID

  8. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease.

    PubMed

    MacColl, Elisabeth; Khalil, Raouf A

    2015-12-01

    Lower-extremity veins have efficient wall structure and function and competent valves that permit upward movement of deoxygenated blood toward the heart against hydrostatic venous pressure. Matrix metalloproteinases (MMPs) play an important role in maintaining vein wall structure and function. MMPs are zinc-binding endopeptidases secreted as inactive pro-MMPs by fibroblasts, vascular smooth muscle (VSM), and leukocytes. Pro-MMPs are activated by various activators including other MMPs and proteinases. MMPs cause degradation of extracellular matrix (ECM) proteins such as collagen and elastin, and could have additional effects on the endothelium, as well as VSM cell migration, proliferation, Ca(2+) signaling, and contraction. Increased lower-extremity hydrostatic venous pressure is thought to induce hypoxia-inducible factors and other MMP inducers/activators such as extracellular matrix metalloproteinase inducer, prostanoids, chymase, and hormones, leading to increased MMP expression/activity, ECM degradation, VSM relaxation, and venous dilation. Leukocyte infiltration and inflammation of the vein wall cause further increases in MMPs, vein wall dilation, valve degradation, and different clinical stages of chronic venous disease (CVD), including varicose veins (VVs). VVs are characterized by ECM imbalance, incompetent valves, venous reflux, wall dilation, and tortuosity. VVs often show increased MMP levels, but may show no change or decreased levels, depending on the VV region (atrophic regions with little ECM versus hypertrophic regions with abundant ECM) and MMP form (inactive pro-MMP versus active MMP). Management of VVs includes compression stockings, venotonics, and surgical obliteration or removal. Because these approaches do not treat the causes of VVs, alternative methods are being developed. In addition to endogenous tissue inhibitors of MMPs, synthetic MMP inhibitors have been developed, and their effects in the treatment of VVs need to be examined.

  9. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis

    PubMed Central

    Robert, Sacha; Gicquel, Thomas; Victoni, Tatiana; Valença, Samuel; Barreto, Emiliano; Bailly-Maître, Béatrice; Boichot, Elisabeth; Lagente, Vincent

    2016-01-01

    Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis. PMID:27247426

  10. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes.

    PubMed Central

    Théret, N.; Musso, O.; L'Helgoualc'h, A.; Clément, B.

    1997-01-01

    Activation of matrix metalloproteinase (MMP)-2, the 72-kd collagenase IV/gelatinase A, is involved in extracellular matrix remodeling. It has been suggested that a membrane-type MMP (MT-MMP-1) and the tissue inhibitor of metalloproteinase (TIMP)-2 are involved in MMP-2 processing, but the exact mechanism(s) of its activation remains unclear. We have investigated the role of cell-cell cooperation in the activation of pro-MMP-2 in the liver, using pure cultures and co-cultures of hepatocytes and hepatic stellate cells (HSCs). Northern blot analysis and in situ hybridization showed that, in both pure and co-cultures, HSCs, but not hepatocytes, expressed MMP-2, TIMP-2, and MT-MMP-1 mRNA. Zymography analyses revealed the latent form of MMP-2 in medium from 2-day-old pure HSC cultures with higher amounts in medium from hepatocyte/HSC co-cultures. When hepatocytes were added to 10-day-old HSC cultures, the activated form of MMP-2 was detected, concomitantly with the deposition of an abundant extracellular matrix. Incubation of plasma membrane-enriched fractions from hepatocytes with conditioned medium from pure HSC cultures generated the activated species of MMP-2 (62 and 59 kd). Activation of pro-MMP-2 by hepatocyte membranes was inhibited by EDTA, heat, and trypsin but not by serine proteinase inhibitors. These data show that the co-expression of TIMP-2, MMP-2, and MT-MMP-1 by HSCs does not lead to secretion of the activated form of MMP-2. Hepatocytes, which do not express MMP-2, TIMP-2, or MT-MMP-1, induce MMP-2 activation through a plasma membrane-dependent mechanism(s), thus suggesting that cell-cell interactions are involved in this process in vivo. Images Figure 1 Figure 2 Figure 3 PMID:9006321

  11. Cell-mediated degradation of type IV collagen and gelatin films is dependent on the activation of matrix metalloproteinases.

    PubMed Central

    Atkinson, S J; Ward, R V; Reynolds, J J; Murphy, G

    1992-01-01

    The ability of normal rabbit dermal fibroblasts to degrade films of type IV collagen and gelatin when stimulated by phorbol ester was shown to be dependent on the induction, secretion and activation of 95 kDa gelatinase B and the secretion and activation of 72 kDa gelatinase A and stromelysin. Degradation was inhibited by exogenous human recombinant tissue inhibitor of metalloproteinases-1, specific antibodies to gelatinase and stromelysin and by the reactive-oxygen-metabolite inhibitor catalase. We discuss the various pathways for activation of matrix metalloproteinases in this model system and conclude that, although plasmin may play a key role in the activation of gelatinase B and stromelysin, gelatinase A is activated by a mechanism which has yet to be elucidated. The involvement of oxygen radicals in the direct activation of matrix metalloproteinases in this model is thought to be unlikely. Images Fig. 2. Fig. 3. Fig. 4. PMID:1463464

  12. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2012-01-01

    Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826

  13. How do epidermal matrix metalloproteinases support re-epithelialization during skin healing?

    PubMed

    Michopoulou, Anna; Rousselle, Patricia

    2015-04-01

    Epithelialization of normal wounds occurs by an orderly series of events whereby keratinocytes migrate, proliferate, and differentiate to restore the epidermal barrier function. Keratinocyte migration is one of the earliest and crucial events determining the efficiency of the overall wound repair process. In response to various stimuli including that of growth factors, cytokines and the extracellular matrix, activated keratinocytes at the edges of the wound undergo dramatic morphological changes according to their migratory behaviour through development of protrusive adhesion contacts and cytoskeleton rearrangements. These phenotypic changes are accompanied by the upregulated expression of a new set of genes, among which are adhesion receptors and specific matrix degrading enzymes named matrix metalloproteinases (MMPs). The tightly regulated spatial and temporal MMP expression is crucial for proper re-epithelialization. These multi-domain zinc-containing endopeptidases are necessary for the proper completion of multiple features of epidermal regeneration. They play a key role in the migration process by controlling the repeated cycles of keratinocyte attachment and retraction. In the meantime, they process, degrade or remodel the extracellular matrix often producing cleavages in a gain-of-function manner.

  14. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14

    PubMed Central

    Gawden-Bone, Christian; Zhou, Zhongjun; King, Emma; Prescott, Alan; Watts, Colin; Lucocq, John

    2010-01-01

    Podosomes are spot-like actin-rich structures formed at the ventral surface of monocytic and haematopoietic cells. Podosomes degrade extracellular matrix and are proposed to be involved in cell migration. A key question is whether podosomes form protrusions similar to the invadopodia of cancer cells. We characterised podosomes of immature dendritic cells using electron microscopy combined with both conventional and novel high-resolution structured illumination light microscopy. Dendritic cell podosomes are composed of actin foci surrounded by a specialised ring region that is rich in material containing paxillin. We found that podosomes were preferential sites for protrusion into polycarbonate filters impregnated with crosslinked gelatin, degrading up to 2 μm of matrix in 24 hours. Podosome-associated uptake of colloidal gold-labelled gelatin matrix appeared to occur via large phagosome-like structures or narrow tubular invaginations. The motor protein myosin-II was excluded from ring or core regions but was concentrated around them and the myosin-II inhibitor Blebbistatin reduced the length of podosome protrusions. Finally, we found that degradation, protrusion and endocytosis in this system are dependent on the matrix metalloproteinase MMP-14. We propose that podosomes mediate migration of dendritic cells through tissues by means of myosin-II-dependent protrusion coupled to MMP-14-dependent degradation and endocytosis. PMID:20356925

  15. Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler's murine encephalomyelitis.

    PubMed

    Hansmann, Florian; Herder, Vanessa; Kalkuhl, Arno; Haist, Verena; Zhang, Ning; Schaudien, Dirk; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2012-07-01

    Matrix metalloproteinases (MMPs) are a family of extracellular proteases involved in the pathogenesis of demyelinating diseases like multiple sclerosis (MS). The aim of the present study was to investigate whether MMPs induce direct myelin degradation, leukocyte infiltration, disruption of the blood-brain barrier (BBB), and/or extracellular matrix remodeling in the pathogenesis of Theiler's murine encephalomyelitis (TME), a virus-induced model of MS. During the demyelinating phase of TME, the highest transcriptional upregulation was detected for Mmp12, followed by Mmp3. Mmp12 (-/-) mice showed reduced demyelination, macrophage infiltration, and motor deficits compared with wild-type- and Mmp3 knock-out mice. However, BBB remained unaltered, and the amount of extracellular matrix deposition was similar in knock-out mice and wild-type mice. Furthermore, stereotaxic injection of activated MMP-3, -9, and -12 into the caudal cerebellar peduncle of adult mice induced a focally extensive primary demyelination prior to infiltration of inflammatory cells, as well as a reduction in the number of oligodendrocytes and a leakage of BBB. All these results demonstrate that MMP-12 plays an essential role in the pathogenesis of TME, most likely due to its primary myelin- or oligodendrocyte-toxic potential and its role in macrophage extravasation, whereas there was no sign of BBB damage or alterations to extracellular matrix remodeling/deposition. Thus, interrupting the MMP-12 cascade may be a relevant therapeutic approach for preventing chronic progressive demyelination.

  16. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis

    PubMed Central

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-01-01

    AIM: To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. METHODS: MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). RESULTS: 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. CONCLUSION: MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish. PMID:20333791

  17. On the origin of matrix metalloproteinase-2 and -9 in blood platelets.

    PubMed

    Wrzyszcz, Aneta; Wozniak, Mieczyslaw

    2012-01-01

    To date, several matrix metalloproteinases (MMPs) have been identified in human platelets. In most research studies, the platelets are obtained using the isolation method from plasma by centrifugation and washing. The metalloproteinase content in the platelets can be affected by the isolation technique and the leukocyte contamination. In this work, we studied the influence of the isolation method on the detection of platelet MMPs and explore the expression of these enzymes in megakaryoblastic MEG-01 cells. We investigated the expression of mRNAs encoding for MMP-2 and -9 in platelets and MEG-01 cells. Using gelatin zymography and western blotting, we examined the expression and release of MMP-2 and 9 by platelets and MEG-01 cells and checked whether the amount of the released MMPs depends on the volume of tested platelet and leukocyte contamination. To investigate the MMP-2 expression profile, we used zymography and flow cytometry. Platelets, in contrast to the MEG-01 cells, neither contain mRNA for MMP-2 nor -9. The platelets contain pro-MMP-2 and release it during the activation. The population of uncontaminated (leukocytes<0.02%) platelets contained no MMP-9 or the active form of MMP-2. We have observed that the activity of MMP-2 in platelet lysate is proportional to their mean volume and that the MMP-2 activity may not be detected if very small platelets are examined. We conclude that the detection of gelatinases in platelets depends on platelet isolation techniques and the degree of leukocyte contamination.

  18. Elevated levels of matrix metalloproteinases and chronic wound healing: an updated review of clinical evidence.

    PubMed

    Lazaro, J L; Izzo, V; Meaume, S; Davies, A H; Lobmann, R; Uccioli, L

    2016-05-01

    In the past 20 years, research and clinical trials on the healing process of chronic wounds have highlighted the key role of the family of enzymes called matrix metalloproteinases (MMPs). If a strong correlation between the course of healing of chronic wounds and the levels of a biological marker can be demonstrated, then it may be possible to: i) identify the best marker threshold to predict the clinical evolution of the pathology; and ii) if causality has been found between the marker and pathology, to improve the healing outcome, to change the marker level. The databases Medline and Embase were searched to identify clinical trials pertaining to the assessment of MMPs in chronic wounds with the following keywords 'metalloproteinase' or 'metalloprotease' and 'wound healing'. Clinical trials were considered for inclusion if they enrolled patients with cutaneous chronic wounds and were published in English. More than 50 clinical trials, consensus documents and guidelines were assessed for this review. MMPs play key roles in the wound healing process, and excessive expression and activation of some of these enzymes is seen in chronic cutaneous wounds where healing is delayed. Levels of MMPs are affected by a number of factors, including patient and wound characteristics. Levels of MMPs can be used to indicate the prognosis of chronic wounds and protease modulating treatments used to improve healing rates. The authors report no conflicts of interest in this work.

  19. Matrix metalloproteinase-8 levels in periodontal disease patients: A systematic review.

    PubMed

    de Morais, E F; Pinheiro, J C; Leite, R B; Santos, P P A; Barboza, C A G; Freitas, R A

    2017-09-12

    Periodontal disease is characterized as a disorder of the oral microbiota resulting in an immune response which, in turn, leads to the destruction of periodontal tissue. Matrix metalloproteinase-8 (MMP-8) has been reported as the major metalloproteinase involved in periodontal disease, being present at high levels in gingival crevicular fluid and salivary fluid (SF). The aim of this systematic review was to evaluate the scientific literature regarding the expression of MMP-8 in gingival crevicular fluid and SF in patients with periodontal disease, analyzing its validity as a possible biomarker in the diagnosis of periodontal disease. A systematic review of the literature was performed using the PubMed/Medline, CENTRAL and Science Direct databases. Studies concerning the use of MMP-8 in the diagnosis of periodontal disease that evaluated its effectiveness as a biomarker for periodontal disease were selected. The search strategy provided a total of 6483 studies. After selection, six articles met all the inclusion criteria and were included in the present systematic review. The studies demonstrated significantly higher concentrations of MMP-8 in patients with periodontal disease compared with controls, as well as in patients presenting more advanced stages of periodontal disease. The findings on higher MMP-8 concentrations in patients with periodontal disease compared with controls imply the potential adjunctive use of MMP-8 in the diagnosis of periodontal disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Suppression of local invasion of ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro

    PubMed Central

    Wang, Anxun; Zhang, Bin; Huang, Hongzhang; Zhang, Leitao; Zeng, Donglin; Tao, Qian; Wang, Jianguang; Pan, Chaobin

    2008-01-01

    Background Ameloblastomas are odontogenic neoplasms characterized by local invasiveness. This study was conducted to address the role of matrix metalloproteinase-2 (MMP-2) in the invasiveness of ameloblastomas. Methods Plasmids containing either MMP-2 siRNA or tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA were created and subsequently transfected into primary ameloblastoma cells. Zymography, RT-PCR, and Western blots were used to assess MMP-2 activity and expression of MMP-2 and TIMP-2, as well as protein levels. Results Primary cultures of ameloblastoma cells expressed cytokeratin (CK) 14 and 16, and MMP-2, but only weakly expressed CK18 and vimentin. MMP-2 mRNA and protein levels were significantly inhibited by RNA interference (P < 0.05). Both MMP-2 siRNA and TIMP-2 overexpression inhibited MMP-2 activity and the in vitro invasiveness of ameloblastoma. Conclusion These results indicate that inhibition of MMP-2 activity suppresses the local invasiveness of ameloblastoma cells. This mechanism may serve as a novel therapeutic target in ameloblastomas pursuant to additional research. PMID:18588710

  1. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis.

    PubMed

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-03-28

    To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish.

  2. Stromal matrix metalloproteinase-14 expression correlates with the grade and biological behavior of mammary phyllodes tumors.

    PubMed

    Kim, Ga-Eon; Kim, Jo-Heon; Lee, Kyung Hwa; Choi, Yoo Duck; Lee, Ji Shin; Lee, Jae Hyuk; Nam, Jong Hee; Choi, Chan; Park, Min Ho; Yoon, Jung Han

    2012-05-01

    Phyllodes tumors (PTs) of the breast are rare biphasic tumors with the potential for invasion and metastatic spread. Matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) are involved in several key aspects of tumoral growth, invasion, and metastasis, but little is known of their expression in PTs. The objective of this study was to assess the expression of MMPs and TIMPs in PTs and to determine their association with grade and clinical behavior of PTs. Eighty-two PTs (50 benign, 22 borderline, and 10 malignant) were studied. Automated immunohistochemical staining for MMP-1, -2, -7, -9, -11, -13, and -14 and TIMP-1, -2, and -3 was performed using tissue microarray blocks and the expression of MMPs and TIMPs was assessed in the stromal component. There were no significant differences in the expression of stromal MMPs and TIMPs in the 3 groups of PTs, except for MMP-14. There was a significant increase in stromal MMP-14 expression with increasing PT grade (P<0.01). The stromal MMP-14 expression in the borderline and malignant PTs was higher than that in benign PTs (P<0.05 and P<0.05, respectively). Furthermore, the expression of stromal MMP-14 was associated with a higher rate of recurrence (P<0.05). Our results show for the first time that stromal MMP-14 expression is associated with the grade and clinical behavior of PTs of the breast.

  3. The matrix metalloproteinase inhibitor BB-1101 prevents experimental autoimmune uveoretinitis (EAU).

    PubMed

    Wallace, G R; Whiston, R A; Stanford, M R; Wells, G M; Gearing, A J; Clements, J M

    1999-12-01

    EAU is characterized by breakdown of the blood-retinal barrier and extravasation of leucocytes into retinal tissue leading to destruction of photoreceptor cells. Matrix metalloproteinases (MMP) have been implicated in trafficking of cells into tissues, but their role in inflammatory eye disease is unclear. A synthetic MMP inhibitor, BB-1101, was administered subcutaneously, from either day 0 or day 7, to Lewis rats challenged with bovine S-antigen to induce EAU. When given up to day 14, BB-1101 reduced the incidence of disease and delayed the day of onset of clinical disease. When administered from day 7 until day 21, EAU was completely abrogated. A quantitative polymerase chain reaction (PCR) assay showed an increase of both matrilysin (MMP-7), neutrophil collagenase (MMP-8) and macrophage metalloproteinase (MMP-12) in retinas from EAU animals compared with naive controls. These enzymes are produced by activated leucocytes and act on components of the basement membrane. These results therefore implicate these MMP as integral to the development of pathology in EAU.

  4. The matrix metalloproteinase inhibitor BB-1101 prevents experimental autoimmune uveoretinitis (EAU)

    PubMed Central

    Wallace, G R; Whiston, R A; Stanford, M R; Wells, G M A; Gearing, A J H; Clements, J M

    1999-01-01

    EAU is characterized by breakdown of the blood–retinal barrier and extravasation of leucocytes into retinal tissue leading to destruction of photoreceptor cells. Matrix metalloproteinases (MMP) have been implicated in trafficking of cells into tissues, but their role in inflammatory eye disease is unclear. A synthetic MMP inhibitor, BB-1101, was administered subcutaneously, from either day 0 or day 7, to Lewis rats challenged with bovine S-antigen to induce EAU. When given up to day 14, BB-1101 reduced the incidence of disease and delayed the day of onset of clinical disease. When administered from day 7 until day 21, EAU was completely abrogated. A quantitative polymerase chain reaction (PCR) assay showed an increase of both matrilysin (MMP-7), neutrophil collagenase (MMP-8) and macrophage metalloproteinase (MMP-12) in retinas from EAU animals compared with naive controls. These enzymes are produced by activated leucocytes and act on components of the basement membrane. These results therefore implicate these MMP as integral to the development of pathology in EAU. PMID:10594553

  5. Serum levels of matrix metalloproteinase-10 are associated with the severity of atherosclerosis in patients with chronic kidney disease.

    PubMed

    Coll, Blai; Rodríguez, Jose A; Craver, Lourdes; Orbe, Josune; Martínez-Alonso, Montserrat; Ortiz, Alberto; Díez, Javier; Beloqui, Oscar; Borras, Merce; Valdivielso, Jose M; Fernández, Elvira; Páramo, José A

    2010-12-01

    Cardiovascular disease is the leading cause of mortality in chronic kidney disease (CKD). As matrix metalloproteinases have a major role in atherosclerosis, we hypothesized that alterations in metalloproteinases-8, -10 and their tissue inhibitor-1 can be associated with the severity of atherosclerosis in patients with kidney disease. This was evaluated in a cross-sectional, observational study of 111 patients with stages I-V kidney disease, 217 patients on dialysis and 50 healthy controls. The severity of atherosclerosis was estimated with the atherosclerosis score (AS), combining the results of ankle-brachial index and carotid ultrasound. Serum levels of the two metalloproteinases and tissue inhibitor-1 were measured by enzyme-linked immunosorbent assay and were significantly increased in patients with kidney disease compared with the healthy controls, and higher in patients on dialysis than in earlier stages of CKD. The severity of the AS was also more prevalent in the dialysis group, in which serum levels of both metalloproteinases and tissue inhibitor-1 were significantly higher. After multivariate analysis, metalloproteinase-10, dialysis, C-reactive protein, age, and male gender were associated with increased risk of atherosclerosis. Thus, patients with CKD exhibit elevated levels of circulating metalloproteinase-10, and this was independently associated with the severity of atherosclerosis and may represent a new biomarker of atherosclerotic diseases.

  6. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    PubMed

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-04-03

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1-deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies.

  7. Identification and characterization of matrix metalloproteinase-13 sequence structure and expression during embryogenesis and infection in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    Matrix metalloproteinase-13 (MMP-13), referred to as collagenase-3, is a proteolytic enzyme that plays a key role in degradation and remodelling of host extracellularmatrix proteins. The objective of this study was to characterize the MMP-13 gene in channel catfish, and to determine its pattern of e...

  8. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  9. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  10. Inhibitory effect of cephalothin on matrix metalloproteinase activity around loose hip prostheses.

    PubMed Central

    Santavirta, S; Takagi, M; Konttinen, Y T; Sorsa, T; Suda, A

    1996-01-01

    The inhibitory effects of drugs on matrix metalloproteinase (MMP) activity in tissues around sites of loose total hip arthroplasty (THA) prostheses were studied. For activity measurements, a DNP-S (dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg) peptide degradation assay was performed by means of high-performance liquid chromatography. Neutral salt tissue extracts revealed significantly elevated MMP activity in THA samples compared with that in noninflamed synovial tissue from the knee joint. This elevation was markedly inhibited by cephalothin, but not by doxycycline, tetracycline, or gentamicin. These results indicate that cephalothin can inhibit MMP activity in reactive periprosthetic tissue and thus reduce, by a nonantimicrobial mechanism, the tissue destruction associated with the loosening of THA implants. PMID:8787916

  11. Diet-Induced Obesity and Reduced Skin Cancer Susceptibility in Matrix Metalloproteinase 19-Deficient Mice

    PubMed Central

    Pendás, Alberto M.; Folgueras, Alicia R.; Llano, Elena; Caterina, John; Frerard, Françoise; Rodríguez, Francisco; Astudillo, Aurora; Noël, Agnès; Birkedal-Hansen, Henning; López-Otín, Carlos

    2004-01-01

    Matrix metalloproteinase 19 (MMP-19) is a member of the MMP family of endopeptidases that, in contrast to most MMPs, is widely expressed in human tissues under normal quiescent conditions. MMP-19 has been found to be associated with ovulation and angiogenic processes and is deregulated in diverse pathological conditions such as rheumatoid arthritis and cancer. To gain further insights into the in vivo functions of this protease, we have generated mutant mice deficient in Mmp19. These mice are viable and fertile and do not display any obvious abnormalities. However, Mmp19-null mice develop a diet-induced obesity due to adipocyte hypertrophy and exhibit decreased susceptibility to skin tumors induced by chemical carcinogens. Based on these results, we suggest that this enzyme plays an in vivo role in some of the tissue remodeling events associated with adipogenesis, as well as in pathological processes such as tumor progression. PMID:15169894

  12. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration

    PubMed Central

    López-Rivera, Esther; Lizarbe, Tania R.; Martínez-Moreno, Mónica; López-Novoa, José Miguel; Rodríguez-Barbero, Alicia; Rodrigo, José; Fernández, Ana Patricia; Álvarez-Barrientos, Alberto; Lamas, Santiago; Zaragoza, Carlos

    2005-01-01

    To explore the mechanisms by which NO elicits endothelial cell (EC) migration we used murine and bovine aortic ECs in an in vitro wound-healing model. We found that exogenous or endogenous NO stimulated EC migration. Moreover, migration was significantly delayed in ECs derived from endothelial NO synthase-deficient mice compared with WT murine aortic EC. To assess the contribution of matrix metalloproteinase (MMP)-13 to NO-mediated EC migration, we used RNA interference to silence MMP-13 expression in ECs. Migration was delayed in cells in which MMP-13 was silenced. In untreated cells MMP-13 was localized to caveolae, forming a complex with caveolin-1. Stimulation with NO disrupted this complex and significantly increased extracellular MMP-13 abundance, leading to collagen breakdown. Our findings show that MMP-13 is an important effector of NO-activated endothelial migration. PMID:15728377

  13. Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF-κB Signaling in Osteoarthritis

    PubMed Central

    Li, Yusheng; Jiang, Wei; Wang, Hua; Deng, Zhenhan; Zeng, Chao; Tu, Min; Li, Liangjun; Xiao, Wenfeng; Gao, Shuguang; Luo, Wei

    2016-01-01

    Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway. PMID:27656654

  14. Reduction of matrix metalloproteinase-9 expression by culture filtrate of Paecilomyces farinosus J3.

    PubMed

    Lee, Hyun-Jin; Park, Chul-Hong; Son, Hyung-U; Heo, Jin-Chul; Nam, Sung-Hee; Lee, Kwang-Gil; Yeo, Joo-Hong; Yoon, Cheol-Sik; Kim, Jong-Myeung; Shin, Yong-Kyu; Kim, Si-Oh; Lee, Sang-Han

    2011-03-01

    The aim of the present study was to investigate the anti-tumor effects of a culture filtrate of Paecilomyces farinosus J3. Various anti-tumor assays using B16 melanoma cells were carried out. Paecilomyces farinosus J3 significantly decreased the wound healing capability, invasiveness and angiogenic activity, which was confirmed by wound healing, human umbilical vein endothelial cell and invasion assays. Paecilomyces farinosus J3 strongly inhibited cell migration, tube formation and the angiogenic process in a concentration-dependent manner. Zymographic analysis also indicated a reduced expression of matrix metalloproteinase-9 (MMP-9), a 92-kDa gelatinase. Taken together, the results indicate that the anti-tumor activities of Paecilomyces farinosus J3 originate from the reduction of MMP-9 expression in B16F10 cells.

  15. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors

    PubMed Central

    Zhou, Jing; Brinckerhoff, Constance; Lubert, Susan; Yang, Kui; Saini, Jasmine; Hooke, Jeffrey; Mural, Richard; Shriver, Craig; Somiari, Stella

    2013-01-01

    A guanine insertion polymorphism in matrix metalloproteinase-1 promoter (MMP-1 2G) is linked to early onset and aggressiveness in cancer. We determined the role of MMP-1 2G on the level of MMP-1 expression and breast cancer severity in benign breast disease, atypical hyperplasia, invasive and non invasive (in situ) breast cancer. We observed no significant difference in genotype distribution among the different breast disease groups. However, the level of MMP-1 expression was significantly higher in atypical ductal hyperplasia compared to benign breast disease; and in invasive breast cancer compared to in situ breast cancer. MMP-1 2G insertion polymorphism in the invasive group also correlated significantly with the expression of MMP-1 and breast cancer prognostic markers HER2 and P53. PMID:22011282

  16. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    PubMed Central

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Negative controls were provided by CSF from 20 healthy controls. Results: Compared to multiple sclerosis CSF and CSF from healthy controls, levels of interleukin (IL)-8, IL-6, and MMP-2